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Abstract. We study two notions of topological entropy of correspondences introduced by
Friedland and Dinh–Sibony. Upper bounds are known for both. We identify a class of holo-
morphic correspondences whose entropy in the sense of Dinh–Sibony equals the known upper
bound. This provides an exact computation of the entropy for rational semigroups. We also
explore a connection between these two notions of entropy.

1. Introduction, definitions and some results

This paper studies certain semigroups of holomorphic maps. It is motivated, however, by two
related notions of topological entropy — one of which applies to meromorphic correspondences
on a compact Kähler manifold, while the other applies, more generally, to closed relations on a
compact metric space. Both notions are thus applicable to holomorphic correspondences (which
we shall define presently) on a compact Kähler manifold. The first notion is due to Dinh and
Sibony [3] while the second, introduced much earlier, is due to Friedland [4]. In both cases, upper
bounds for each type of topological entropy were given: by Friedland in [4] and by Dinh–Sibony
in [3]. However, for either type of entropy, this upper bound is in general strictly greater than
the actual entropy. In this work, among other things, we identify a natural class of holomorphic
correspondences for which this upper bound equals the entropy of Dinh–Sibony.

We use the word “natural” because the above-mentioned correspondences turn out to be cor-
respondences representing certain semigroups of holomorphic maps. Hence, the main results in
this paper will be stated for these semigroups. To get to these results, we need some definitions.

Definition 1.1. Let X1 and X2 be two compact, connected complex manifolds of dimension n.
A holomorphic correspondence from X1 to X2 is a formal linear combination of the form

Γ =
∑

1≤j≤N
mjΓj , (1.1)

where the mj ’s are positive integers and Γ1,Γ2, . . . ,ΓN are distinct irreducible complex-analytic
subvarieties of X1 ×X2 of pure dimension n that satisfy the following conditions:

(1) for each Γj in (1.1), π1|Γj and π2|Γj are surjective;

(2) for each x ∈ X1 and y ∈ X2,
(
π−1

1 {x} ∩ Γj
)

and
(
π−1

2 {y} ∩ Γj
)

are finite sets for each j;

where πi is the projection onto Xi, i = 1, 2.

Given a holomorphic correspondence Γ from X1 to X2, the set (in terms of the notation in
(1.1)) ∪1≤j≤NΓj is called the support of Γ, which we denote by |Γ|. The data (m1, . . . ,mN ) in
(1.1) are an essential part of the definition above. We shall elaborate on this below, but a brief
reason is as follows. If X1 = X2 = X in Definition 1.1, then we say that Γ is a holomorphic
correspondence on X. Two holomorphic correspondences on X can be composed with each
other. It is possible for a correspondence Γ, even if m1 = · · · = mN = 1, to be such that some of
the irreducible components of Γ◦Γ occur with multiplicity higher than 1. The ability to compose
two correspondences introduces the perspective of dynamics to the study of correspondences.
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We now introduce the two notions of entropy that we alluded to. We begin with the more
general notion.

Definition 1.2 (Friedland, [4, 5]). Let X be a compact metric space and let Γ be a closed
relation on X (i.e., Γ is a closed subset of X ×X and the projection π1|Γ is surjective). Let

XN := {(x0, x1, x2, . . . ) : xn ∈ X, n ∈ N}
endowed with the product topology, and let

Γ∞ := {(x0, x1, x2, . . . ) ∈ XN : (xn, xn+1) ∈ Γ ∀n ∈ N}.
If Γ∞ is endowed with the topology that it inherits from XN, then, by definition, the left-shift
on XN induces a continuous map σ : Γ∞ −→ Γ∞, where σ : (x0, x1, x2, . . . ) 7−→ (x1, x2, x3, . . . ).
Then Friedland’s entropy for Γ, denoted by hF (Γ), is defined as the topological entropy, in the
sense of Bowen, of σ : Γ∞ −→ Γ∞ (usually denoted by h(σ) in the literature).

For the next definition, we need an alternative presentation of the correspondence introduced
in Definition 1.1. We rewrite Γ as

Γ =
∑′

1≤j≤M
Γ•j , (1.2)

where the primed sum indicates that the irreducible subvarieties Γ•j , j = 1, . . . ,M , are not
necessarily distinct and are repeated according to multiplicity that is given by the coefficients
m1, . . . ,mN in (1.1). Therefore, M = m1 + · · ·+mN . With this explanation, we give

Definition 1.3 (Dinh–Sibony, [3]). Let X be compact, connected complex manifold and let Γ
be a holomorphic correspondence on X. For each ν ∈ Z+, a ν-orbit of Γ is any tuple of the form

(x0, x1, . . . , xν ;α1, . . . , αν) ∈ Xν+1 × {1, . . . ,M}ν ,
where (xj−1, xj) ∈ Γ•αj , j = 1, . . . , ν, assuming the presentation (1.2) for Γ. Fix a metric d

compatible with the topology of X. If F is a family of ν-orbits, we say that F is an (ε, ν)-
separated family, ε > 0, if for all pairs of distinct elements

(x0, x1, . . . , xν ;α1, . . . , αν) and (y0, y1, . . . , yν ;β1, . . . , βν)

of F , we have

d(xj , yj) > ε for some j = 0, 1, . . . , ν or αj 6= βj for some j = 1, . . . , ν. (1.3)

Then, the topological entropy of Γ, denoted by htop(Γ), is defined as

htop(Γ) := sup
ε>0

lim sup
ν→∞

1

ν
log
(

max{]F : F is an (ε, ν)-separated family}
)
.

Remark 1.4. Since the manifold X is compact, for any ε > 0 and ν ∈ Z+, any (ε, ν)-separated
family in the above definition is finite. Furthermore, it is routine to verify (see [3, Section 4])
that htop(Γ) does not depend on the choice of the metric d for defining (ε, ν)-separatedness.

Definition 1.5. A rational semigroup is a semigroup, with composition of maps as the semi-
group operation, whose elements are surjective holomorphic self-maps of Pn for some n ∈ Z+.

Remark 1.6. Note that, despite the word “rational” in Definition 1.5, the elements of a rational
semigroup on Pn, n ≥ 2, do not possess indeterminacies. We have some results about classical
rational semigroups (i.e., defined on (C∪{∞}) ∼= P1), and do not want to coin new terminology
for theorems that also hold true for higher-dimensional analogues of the latter semigroups. This
is the reason for the term “rational semigroups” introduced in Definition 1.5.

There is a very natural connection between finitely generated rational semigroups and holo-
morphic correspondences. Since this association defines the holomorphic correspondences for
which we shall make exact entropy computations, let us state it formally. This association
makes sense in greater generality, and not just for rational semigroups.
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Definition 1.7. Let X be a compact, connected complex manifold and let S be a finitely
generated semigroup consisting of surjective holomorphic self-maps of X. Let G = {f1, . . . , fN}
be a set of generators of S. We call the holomorphic correspondence

ΓG :=
∑

1≤j≤N
graph(fj) (1.4)

on X the holomorphic correspondence associated with (S,G ).

As has been observed earlier — see [7] by Ghys, Langevin and Walczak for the case of pseu-
dogroups, or [5] — the entropy of a finitely-generated semigroup requires the specification of a
set of generators. Thus, for X and S as in Definition 1.7, and for a choice G of a set of generators
of S, we formally set:

hF (S,G ) := hF
(
|ΓG |

)
and htop(S,G ) := htop(ΓG ).

Recall that if f : Pn −→ Pn is holomorphic, then using homogeneous coordinates, we have:

f([z0 : z1 : · · · : zn]) =
[
f0(z0, z1, . . . , zn) : f1(z0, z1, . . . , zn) : · · · : fn(z0, z1, . . . , zn)

]
,

where there exists a number d1(f) ∈ Z+, and f0, f1, . . . , fn are homogeneous polynomials of
degree d1(f) such that ∩ni=0 f

−1
i {0} = {0}. With this definition, we can state our first result.

Theorem 1.8. Let S be a finitely generated rational semigroup on Pn for some n ∈ Z+. Let
G = {f1, . . . , fN} be a set of generators of S. Then

htop(S,G ) = log
(∑

1≤j≤N
d1(fj)

n
)
.

We can say a lot more than Theorem 1.8. The latter is a consequence of a more general
theorem, which provides bounds from above and below on htop(S,G ) in a more general context —
see Theorem 4.2 below. Here, however: as the notion of a rational semigroup first arose in
the area of complex dynamics in one dimension (see [9] by Hinkkanen and Martin) — and to
foreshadow Theorem 5.2 — we state the following special case:

Corollary 1.9. Let S be a finitely generated rational semigroup on P1, and let G = {f1, . . . , fN}
be a set of generators of S. Then

htop(S,G ) = log
(∑

1≤j≤N
deg(fj)

)
.

We now turn to Friedland’s entropy. Although it makes sense in a much more general setting,
hF turns out to be harder to compute. This is because, among other reasons, notions approx-
imating concepts such as irreducible components, etc., are much less well-behaved outside the
complex-analytic setting, and do not feature in Definition 1.2. In the complex-analytic setting,
this leads to two difficulties that one can point to (with X here as in Definition 1.1):

(i) A holomorphic correspondence Γ on X can be iterated. If dtop(Γ) denotes the topological
degree of Γ (see Section 2), then one has the identity dtop(Γ

◦ν) = dtop(Γ)ν for any ν ∈ Z+.
The analogous identity for the ν-fold iterate of the relation |Γ|— which is relevant to the
entropy hF — is not true in general. This vitiates computations of hF .

(ii) If X is Kähler, then either type of entropy is dominated by the quantity lov(Γ) (see
Section 2) — which results from a technique of Gromov [8]. For similar reasons as in (i),
lov(Γ) turns out not to be the best upper bound for hF (Γ) even for Γ = ΓG .

Rather few examples of exact computations of hF (not necessarily in the holomorphic category)
are known: see, for instance, [5, Section 5] and [6] by Geller and Pollicott. But, as indicated
above, computing hF is inherently hard. However, certain lower bounds for hF (S,G ), G finite,
are almost immediate: hF (S,G ) ≥ hF (〈f : f ∈ G ′〉,G ′) for any ∅ 6= G ′  G (see Section 5 for
details). In contrast to this, for S a rational semigroup on P1, we shall establish a lower bound
for hF (S,G ) that takes into consideration each of the generators in G . This is our Theorem 5.2.
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Since it requires some notation, we present it in Section 5. This theorem, in turn, relies on
our central proposition of Section 3, which might be of independent interest. The proof of
Theorem 1.8 (from which Corollary 1.9 is immediate) is presented in Section 4.

2. Complex geometry preliminaries

This section is devoted to a discussion of terminology from geometry appearing in Section 1
whose definitions had been deferred, and to stating a result that constitutes one part of the
proofs of Theorem 1.8 and Corollary 1.9.

We first begin with a discussion of the composition of two holomorphic correspondences. Since
one needs to understand this only to define a certain finite sequence of numbers associated to
a correspondence Γ, we shall be brief. We refer the reader to [3, Section 3] for details (with a
note to those unfamiliar with holomorphic correspondences that the footnote to [3, Section 3] is
irrelevant in the case of holomorphic correspondences). We focus on two points that are relevant
to this article (in what follows, Γ◦ν will denote the νth iterated composition of Γ):

(i) With X as in Definition 1.1, consider two holomorphic correspondences

Γ1 =
∑′

1≤j≤M1

Γ•1, j and Γ2 =
∑′

1≤k≤M2

Γ•2, k

on X, written in accordance with the presentation (1.2). The support of Γ2 ◦Γ1 is just the
classical composition of |Γ2| with |Γ1| as relations. Let us denote the latter composition
by ?. If Ys, jk, s = 1, . . . ,M(j, k), are the distinct irreducible components of |Γ•2, k| ? |Γ•1, j |,
then let

ηs, jk := the number of y’s, for a generic (x, z) ∈ Ys, jk, such that

(x, y) ∈ Γ•1, j & (y, z) ∈ Γ•2, k.

Then, the definition in [3, Section 3] results in the formula:

Γ2 ◦ Γ1 :=
∑

1≤j≤M1

∑
1≤k≤M2

∑
1≤s≤M(j, k)

ηs, jkYs, jk.

(ii) For the semigroup S, a choice of a set of generators G , and the correspondence ΓG intro-
duced in Definition 1.7, we have

Γ◦2G := ΓG ◦ ΓG =
∑

1≤j, k≤N
graph(gj ◦ gk).

Observe that if S is not a free semigroup and if, for instance, there exists a relation of the form
gj1 ◦ gk1 = gj2 ◦ gk2 for (j1, k1) 6= (j2, k2), then the irreducible variety graph(gj1 ◦ gk1) would
occur with multiplicity at least 2. Observations such as the one above are the reason why the
data (m1, . . . ,mN ) in (1.1) are essential in defining a holomorphic correspondence.

One can pull back certain types of currents by a holomorphic correspondence — see [2, Sec-
tion 3.1]. The formal prescription for the pullback (which we denote by F ∗Γ) of any current T
of bidegree (p, p), p = 0, 1, . . . , n (recall that dimC(X) = n) is:

F ∗Γ(T ) := (π1)∗ (π∗2(T ) ∧ [Γ])

whenever the intersection π∗2(T ) ∧ [Γ] makes sense. Here, Γ detemines a current of bidimension
(n, n) given by the currents of integration defined by its constituent subvarieties — which we
denote by [Γ]. For example: any smooth (p, p)-form Θ on X, p = 0, 1, . . . , n, can be pulled back
by Γ to give a (p, p)-current (equivalenty, a current of bidimension (n− p, n− p)) as follows:

〈F ∗Γ(Θ), ϕ〉 :=

N∑
j=1

mj

∫
reg(Γj)

(
π2|Γj

)∗
Θ ∧

(
π1|Γj

)∗
ϕ ∀(n− p, n− p)-forms ϕ,
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using the presentation (1.1) for Γ. Now suppose (X,ω) is a Kähler manifold and let ωX denote
the normalisation of ω so that

∫
X ω

n
X = 1. For p = 0, 1, . . . , n, we define the pth intermediate

degree of Γ by
λp(Γ) := 〈F ∗Γ(ωpX), ωn−pX 〉.

It is well known that for each p, λp is sub-multiplicative with respect to composition. Thus, the
limit on the right-hand side below

dp(Γ) := lim
ν→∞

λp(Γ
◦ν)1/ν , p = 0, 1, . . . , n, (2.1)

exists. The number dp(Γ) is called the pth dynamical degree of Γ. Since the limit on the

right-hand side of (2.1) exists, dp(Γ
◦k) = dp(Γ)k, p = 0, 1, . . . , n, for every k ∈ Z+.

With these definitions, we can state a result that we shall need in proving Theorem 1.8 and
Corollary 1.9.

Result 2.1 (paraphrasing of [3, Theorem 1.1]). Let (X,ω) be a compact Kähler manifold of
dimension n and let Γ be a holomorphic correspondence on X. Then

htop(Γ) ≤ max
0≤p≤n

log dp(Γ).

We ought to mention that Dinh–Sibony establish the above bound on htop for the more gen-
eral class of meromorphic correspondences. Furthermore, this bound is actually obtained —
adapting a technique of Gromov [8] — by computing the value of lov(Γ), which dominates
htop(Γ). Roughly speaking, lov(Γ) is the asymptotic rate of logarithmic growth (relative to
ν) of the volume of the space of all ν-orbits.

3. Notation and essential propositions on topological entropy

We begin by fixing some notation that will be needed for the propositions in this section
and in subsequent sections. The objects introduced here will pertain to a general holomorphic
correspondence Γ, and our notation will be with reference to the presentation (1.2) of Γ.

We begin by introducing an object similar to Γ∞ of Definition 1.2. The parameter M has
the same meaning in the following definition as in (1.2):

ΓX := {(x0, x1, x2, . . . ;α1, α2, . . . ) ∈ XN × {1, . . . ,M}Z+ : (xν−1, xν) ∈ Γ•αν ∀ν ∈ Z+}.

This space is endowed with the topology that it inherits from XN×{1, . . . ,M}Z+ endowed with
the product topology. We will denote by ΓOν the space of all ν-orbits, i.e.,

ΓOν := {(x0, . . . xν ;α1, . . . , αν) ∈ Xν+1 × {1, . . . ,M}ν : (xj−1, xj) ∈ Γ•αj , 1 ≤ j ≤ ν}.

The above is endowed with the relative topology that it inherits from Xν+1 × {1, . . . ,M}ν .

We shall need the following maps. By a mild abuse of notation, we shall denote by πitn either
the map πitn : ΓX −→ XN or the map πitn : ΓOν −→ Xν+1 that maps the relevant orbit of an
iteration under Γ to the itinerary of points in X along that orbit. In other words:

πitn : ΓX 3 (x0, x1, . . . ;α1, . . . ) 7→ (x0, x1, . . . ) or

πitn : ΓOν 3 (x0, x1, . . . , xν ;α1, . . . , αν) 7→ (x0, x1, . . . , xν) respectively,

where the precise definition of πitn will be obvious from the context. By a similar abuse of
notation, we shall denote by πsymb either the map πsymb : ΓX −→ {1, . . . ,M}Z+ or the map
πsymb : ΓOν −→ {1, . . . ,M}ν , defined by

πsymb : ΓX 3 (x0, x1, . . . ;α1, . . . ) 7→ (α1, . . . ) or

πsymb : ΓOν 3 (x0, x1, . . . , xν ;α1, . . . , αν) 7→ (α1, . . . , αν) respectively.

Lastly, start : ΓOν −→ X will denote the map (x0, x1, . . . , xν ;α1, . . . , αν) 7→ x0.

We shall also need a standard result in elementary topology (we abbreviate σ◦j as σj):
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Lemma 3.1. Let (Y,D) be a compact metric space and let D̂ denote the metric

D̂(x̂, ŷ) := sup
n∈N

D(xn, yn)

2n
,

x̂ := (x0, x1, x2, . . . ) and ŷ := (y0, y1, y2, . . . ), which metrises the product topology on Y N. Let
σ : (x0, x1, x2, . . . ) 7−→ (x1, x2, x3, . . . ) be the left-shift on Y N. Then:

max
0≤j≤n

D̂
(
σj(x̂), σj(ŷ)

)
= sup

j∈N

D(xj , yj)

2(j−n)+
,

where (j − n)+ := max(j − n, 0).

Before stating the principal result of this section, we make a clarification. If Y is a compact
metric space, and f : Y −→ Y is a continuous map, then the topological entropy of f , i.e.,
of a map — which we shall denote by h(f) — will mean the entropy introduced by Bowen [1].
(Bowen’s definition does not require Y to be compact. In that case, f must be uniformly
continuous relative to the metric on Y , and the value of Bowen’s entropy of f depends on this
metric. But when Y is compact, then Bowen’s entropy is independent of the metric, provided
it metrises the topology on Y .)

We now state and prove a result that will be needed in the proof of Theorem 5.2. This result
is hinted at in [3, Section 4]. However:

• It is unclear if Proposition 3.2 follows, as alluded to in [3], from the conjugacy invariance
of topological entropy (which applies to pairs of maps).

• For Γ as in Definition 1.1, if the topological degree of
(
π1|Γj

)
≥ 2 for any j ∈ {1, . . . , N},

then it is unclear whether Γ can at all be conjugated to a shift on ΓX.

While we shall apply Proposition 3.2 only to the holomorphic correspondence ΓG in Section 5,
it holds true for general holomorphic correspondences. It may thus be of independent interest.
In view of the two points above, it seems worthwhile to state and give a direct proof of

Proposition 3.2. Let X and Γ be as in Definition 1.1. For ε > 0 and ν ∈ Z+, let

N(ε, ν) := the cardinality of any (ε, ν)-separated family of ν-orbits, in the

sense of Definition 1.3, having the greatest possible cardinality.

Let S denote the restriction of the shift map

σ : (x0, x1, x2, . . . ;α1, α2, . . . ) 7→ (x1, x2, x3, . . . ;α2, α3, . . . )

to ΓX. Then,

htop(Γ) := sup
ε>0

lim sup
ν→∞

1

ν
logN(ε, ν) = h(S ),

where h(S ) is the entropy, in the sense of Bowen, of the continuous map S : ΓX −→ ΓX.

Proof. Let us fix a metric d on the complex manifold X that is compatible with the manifold
topology. We choose the metric

∆
(
(x0, x1, . . . ;α1, . . . ), (y0, y1, . . . ;β1, . . . )

)
:= max

[
sup
ν∈N

d(xν , yν)

2ν
, sup
ν∈N

δ(αν+1, βν+1)

2ν

]
(where δ denotes the 0-1 metric on the symbols {1, . . . ,M}) which metrises the topology on
ΓX. Since we must show that htop(Γ) equals the Bowen entropy of S , we introduce, for ε > 0
and ν ∈ Z+, the set

M(ε, ν) := the cardinality of any ε-separated set of orbits of S

of duration ν having the greatest possible cardinality.
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Recall that any two orbits,

O1 := (x0, x1, . . . ;α1, . . . ) and O2 := (y0, y1, . . . ;β1, . . . ), (3.1)

belonging to any of the sets referred to in the definition of M(ε, ν) satisfy

max
0≤j≤ν

∆(S j
(
O1),S j(O2)

)
> ε. (3.2)

Fix a ν ∈ Z+. It suffices to consider ε ∈ (0, 1).

Let S(ε, ν) ⊂ ΓOν be an (ε, ν)-separated family, in the sense of Definition 1.3, such that
]S(ε, ν) = N(ε, ν). For each ν-orbit x ∈ S(ε, ν), let us pick a (x0, x1, x2, . . . ;α1, α2 . . . ) ∈ ΓX
such that

(x0, x1, . . . , xν ;α1, . . . , αν) = x,

and fix it. Call the latter infinite orbit x̃. Let us consider two distinct ν-orbits

x := (x0, x1, . . . , xν ;α1, . . . , αν) and y := (y0, y1, . . . , yν ;β1, . . . , βν)

belonging to S(ε, ν). We have two possibilities for the pair {x, y}:
Case 1. max 0≤j≤ν d(xj , yj) > ε.

Then (with the meaning of ỹ hopefully being clear) by the definition of ∆, and in view of
Lemma 3.1, we have

max
0≤j≤ν

∆
(
S j(x̃),S j(ỹ)

)
≥ sup

j∈N

d(xj , yj)

2(j−ν)+
> ε. (3.3)

Case 2. max 0≤j≤ν d(xj , yj) ≤ ε.
In this case, by (1.3) there exists a j∗, with 1 ≤ j∗ ≤ ν, such that αj∗ 6= βj∗ . Therefore, in view
of Lemma 3.1, we have

max
0≤j≤ν

∆
(
S j(x̃),S j(ỹ)

)
≥ sup

j∈N

δ(αj+1, βj+1)

2(j−ν)+
≥ 1 > ε. (3.4)

From (3.3) and (3.4) it follows that the set {x̃ ∈ ΓO : x ∈ S(ε, ν)} is an ε-separated set of
orbits of S in the sense of (3.2). Since the latter set has cardinality N(ε, ν), we get:

M(ε, ν) ≥ N(ε, ν). (3.5)

Now let Σ(ε, ν) ⊂ ΓX be an ε-separated set of orbits in the sense of (3.2) such that ]Σ(ε, ν) =
M(ε, ν). Then, for two distinct orbits O1,O2 ∈ Σ(ε, ν), we have (using the notation in (3.1)):

d(xj , yj)

2(j−ν)+
≤ ε ∀j ≥ ν + log2(1/ε) + log2(diam(X)), (3.6)

δ(αj+1, βj+1)

2(j−ν)+
≤ ε ∀j ≥ ν + log2(1/ε), (3.7)

where log2(t) := log(t)/ log(2) ∀t > 0. Given the definition of the metric ∆, it is impossible for
the quantities

max
0≤j≤ν

sup
k∈N

d
(
πk ◦ πitn(S j(O1)), πk ◦ πitn(S j(O2))

)
2k

,

and

max
0≤j≤ν

sup
k∈Z+

δ
(
πk ◦ πsymb(S j(O1)), πk ◦ πsymb(S j(O2))

)
2k−1

(where πk denotes the projection onto the kth factor) to both be less than or equal to ε. Thus,
by (3.6), (3.7) and Lemma 3.1, we have

d(xj , yj) > 2(j−ν)+ε or δ(αj+1, βj+1) 6= 0 for some j : 0 ≤ j ≤ C(ε) + ν,
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where C(ε) is the greatest integer that is strictly less than log2(1/ε) + log2(diam(X)). Hence

(x0, x1 . . . , xC(ε)+ν ;α1, . . . , αC(ε)+ν) and (y0, y1 . . . , yC(ε)+ν ;β1, . . . , βC(ε)+ν)

are (ε, C(ε)+ν)-separated in the sense of Definition 1.3. Since this applies to any pair of distinct
O1,O2 ∈ Σ(ε, ν), we get

N(ε, C(ε) + ν) ≥ M(ε, ν).

From this and (3.5), it follows that

N(ε, ν) ≤ M(ε, ν) ≤ N(ε, C(ε) + ν).

From the above, and from the definitions of the numbers M(ε, ν) and N(ε, ν), the result is now
immediate. �

We end this section with a result on (classical) topological entropy. It will be needed in the
proof of Theorem 5.2. To state it, we need some terminology. Let (Y,D) be as in Lemma 3.1
and let f : Y −→ Y be a continuous map. Let K ⊆ Y . Given ε > 0 and n ∈ Z+, a subset
F ⊂ Y is said to (ε, n)-span K with respect to f if for each x ∈ K there exists a y ∈ F so that

D
(
f j(x), f j(y)

)
≤ ε ∀j = 0, 1, . . . , n− 1.

Let rn(ε,K) := inf{]F : F ⊂ Y (ε, n)-spans K}. If K is compact, then, clearly, rn(ε,K) is
finite for any ε > 0 and n ∈ Z+. Now, define:

h(f,K) := lim
ε→0+

lim sup
n→∞

1

n
log
(
rn(ε,K)

)
. (3.8)

We must admit that, in the above discussion, we are omitting a considerable amount of context.
The quantity h(f,K) is an ingredient in the definition of Bowen’s entropy h(f) which — as
mentioned right after Lemma 3.1 — does not require Y to be compact. We have not defined
Bowen’s entropy in this paper since we assume that it is widely known. However, h(f,K) merits
a definition as it is a more specialised quantity. Before we state the result that we need, we must
mention that as Y above is compact, h(f,K) does not depend on the choice of D, provided it
metrises the topology on Y : see the proof of [1, Proposition 3].

Result 3.3 (Bowen, [1, Theorem 17]). Let (Yi, di), i = 1, 2, be two compact metric spaces.
Let fi : Yi −→ Yi, i = 1, 2, be continuous surjective maps. Let π : Y1 −→ Y2 be a continuous
surjective map such that π ◦ f1 = f2 ◦ π. Then

h(f2) ≤ h(f1) ≤ h(f2) + sup
y∈Y2

h(f1, π
−1{y}).

4. The proof of Theorem 1.8

This section will chiefly be devoted to Theorem 4.2 below. Theorem 1.8 would follow as its
corollary. But before we can prove Theorem 4.2, we must present an auxiliary quantity and a
lemma. To do so, let X, Γ and d be as in Definition 1.3. For a given ν ∈ Z+, fix a ν-tuple
α := (α1, . . . , αν) ∈ {1, . . . ,M}ν . We say that a family F of ν-orbits is (ε,α)-separated if for
all pairs of distinct elements

(x0, x1, . . . , xν ;β1, . . . , βν) and (y0, y1, . . . , yν ; γ1, . . . , γν)

of F , we have

• (β1, . . . , βν) = α = (γ1, . . . , γν); and
• max0≤j≤ν d(xj , yj) > ε.
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Lemma 4.1. Let X and Γ be as in Definition 1.3. For ε > 0, ν ∈ Z+ and α ∈ {1, . . . ,M}ν , let

n(ε,α) := the cardinality of any (ε,α)-separated family of

ν-orbits having the greatest possible cardinality.

Then,

htop(Γ) = sup
ε>0

lim sup
ν→∞

1

ν
log

[ ∑
α∈{1,...,M}ν

n(ε,α)

]
.

The proof of this lemma is extremely elementary. But since it is vital to the proof of Theorem 4.2,
we provide the following

Outline of proof. Fix an ε > 0 and ν ∈ Z+. For α ∈ {1, . . . ,M}, let F (α) be an (ε,α)-separated
family such that ]F (α) = n(ε,α). Write

F :=
⋃

α∈{1,...,M}ν
F (α).

The lemma follows from the fact that F is an (ε, ν)-separated family and that ]F = N(ε, ν) —
where N(ε, ν) is as introduced in Proposition 3.2. Both these statements follow from the defi-
nitions and the fact that if

(x0, x1, . . . , xν ;α1, . . . , αν) ∈ F
(
(α1, . . . , αν)

)
, (y0, y1, . . . , yν ;β1, . . . , βν) ∈ F

(
(β1, . . . , βν)

)
,

and (α1, . . . , αν) 6= (β1, . . . , βν) then these two ν-orbits are (ε, ν)-separated in the sense of
Definition 1.3. 2

We can now present the central result of this section. In what follows, dtop will denote the
topological degree, while for a surjective holomorphic map f : X −→ X, X a compact Kähler
manifold, dp(f) will denote the pth dynamical degree of graph(f) (see Section 2). One half of
our proof of the following theorem is strongly influenced by the derivation by Misiurewicz and
Przytycki [11] of a lower bound for topological entropy of a single map in the C1 setting. Our
notation below follows the treatment of the above result by Katok–Hasselblatt in [10, Chapter 8].

Theorem 4.2. Let (X,ω) be a compact Kähler manifold of dimension n and let S be a finitely
generated semigroup consisting of surjective holomorphic self-maps of X. Let G = {f1, . . . , fN}
be a set of generators of S. Then

log

(∑N

j=1
dtop(fj)

)
≤ htop(S,G )

≤ max

[
log(N), log

(∑N

j=1
dtop(fj)

)
, max

1≤p≤n−1
log dp(ΓG )

]
. (4.1)

Proof. Let ωX be the normalisation of the form ω as in Section 2. For any holomorphic corre-
spondence Γ on X, we have (see [2, Section 3.1], for instance):

λn(Γ) =
∑

1≤j≤N
mj

∫
reg(Γj)

(
π2|Γj

)∗
ωX , (4.2)

assuming the presentation (1.2) for Γ. Since, for each j = 1, . . . , N , (Γj , π2, X) is a holomorphic
branched covering, if follows from (4.2) and a change-of-variable argument that λn(Γ) equals
the topological degree of Γ: call if dtop(Γ). Since the toplogical degree is multiplicative with
respect to composition, it follows from (2.1) that

dn(Γ) = lim
ν→∞

dtop(Γ
◦ν)1/ν = dtop(Γ)

for any holomorphic correspondence Γ on X. Applying this to the correspondence ΓG we get

dn(ΓG ) =
∑

1≤j≤N
dtop(fj). (4.3)
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A completely analogous discussion (whose details we leave to the reader) gives us d0(ΓG ) = N .
Recalling the definition of htop(S,G ), the upper bound in (4.1) follows from the last identity,
(4.3), and Result 2.1.

For any holomorphic map f : X −→ X, let Jac(f) denote the real Jacobian of f determined
by the volume form ωn. Since f is holomorphic, Jac(f) ≥ 0. Fix a metric d that metrises the
topology of X. Fix a number L such that

L > 1 and sup
x∈X

Jac(fj)(x) ≤ L, j = 1, . . . , N.

Let us pick a number β ∈ (0, 1) and set δ(β) := L−β/(1−β). Define the sets

B(β, j) := {x ∈ X : Jac(fj)(x) ≥ δ(β)}, j = 1, . . . , N,

and consider the open cover consisting of balls,

C (β, j) :=
{
Bd(x; rx) : x ∈ B(β, j) and fj |Bd(x;rx) is invertible

}
,

of B(β, j), j = 1, . . . , N . Let ε(β, j) ∈ (0, 1) be a Lebesgue number of C (β, j) (each B(β, j) is
compact) and write ε(β) := min1≤j≤N ε(β, j).

Fix a ν ∈ Z+. We simplify the symbol ΓGOν to GOν . For each α ∈ {1, . . . , N}ν , define

Aβ,α :=
{

(x0, x1, . . . , xν ;α) ∈ GOν | ]{1 ≤ k ≤ ν : xk−1 ∈ B(β, αk)} ≤ βν
}
.

For any l: 1 ≤ l ≤ ν, let us abbreviate

fαl ◦ · · · ◦ fα1 =: f(α1,...,αl).

Whenever ν ≥ 2, the chain rule gives

Jac
(
f(α1,...,αν)

)
(x) =

 ∏
2≤k≤ν

Jac
(
fαk
)(
f(α1,...,αk−1)(x)

) Jac
(
fα1

)
(x).

Therefore, by the definitions of Aβ,α and L (for any ν ∈ Z+):

0 ≤ Jac
(
f(α1,...,αν)

)
(x0) < δ(β)ν−[βν]L[βν]

≤ δ(β)ν(1−β)Lβν = 1 ∀(x0, x1, . . . , xν ;α) ∈ Aβ,α, (4.4)

where here (and elsewhere in this proof) [s] denotes the greatest integer less than or equal to s.
If µX denotes the Borel measure, constructed in the standard manner, with the property that
µX(Ω) :=

∫
Ω ω

n for every coordinate patch Ω ⊆ X, then:

(a) (4.4) implies that µX
(
f(α1,...,αν)(Aβ,α)

)
< µX(X) for each α = (α1, . . . , αν) ∈ {1, . . . , N}ν .

(b) Thus, if we fix an α, then, by Sard’s Theorem, there exists a point in X \ fα(Aβ,α) that
is a regular value of fα.

Let us call this regular value xν .

For the α = (α1, . . . , αν) fixed in (b) above, for any αk, 1 ≤ k ≤ ν, and any regular value y
of fαk , we present a construction associated with the pair (y, k). Define

S(y, k) :=


f−1
αk
{y}, if f−1

αk
{y} ⊂ B(β, αk),

{x(y)}, if f−1
αk
{y} 6⊂ B(β, αk),

where, x(y) denotes some point in f−1
αk
{y} \ B(β, αk) that we pick and fix. We now consider the

point xν introduced at the end of the previous paragraph. We will use it to construct a certain
(ε(β),α)-separated family in GOν using the following iterative construction. This construction
is possible because, as every f ∈ S is surjective, by the definition of a regular value we get:

each element of (fαν ◦ · · · ◦ fαk+1
)−1{xν} is a regular value of fαk for 1 ≤ k ≤ ν − 1.
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Define (the maps appearing below were defined in Section 3):

1Oα := {(x, xν ;αν) : x ∈ S(xν , ν)},
k+1Oα :=

⋃
ξ∈ kOν

{
(x, πitn(ξ);αν−k, . . . , αν) : x ∈ S(start(ξ), ν − k)

}
, 1 ≤ k ≤ ν − 1.

Here, we commit a minor abuse of notation in that if, for 1 ≤ k ≤ ν − 1, kOν 3 ξ =
(xν−k, . . . , xν ;αν−k+1, . . . , αν), then we interpret (x, πitn(ξ);αν−k, . . . , αν) to mean

(x, xν−k, . . . , xν ;αν−k, . . . , αν) and not (x, (xν−k, . . . , xν);αν−k, . . . , αν).

With this explanation, note that each kOν is a collection of k-orbits that end at the point xν .
The iterative construction lengthens each k-orbit ξ ∈ kOν to one or more (k + 1)-orbits by
designating new initial points for the latter orbits.

Let us write Oα := νOα. We now show that Oα is an (ε(β),α)-separated family of ν-orbits.
To do so, consider two distinct ν-orbits

x := (x0, . . . , xν−1, xν ;α) and y := (y0, . . . , yν−1, xν ;α)

in Oα (note that, by construction, the terminal points of these ν-orbits are the same). Write

τ := max{1 ≤ k ≤ ν : xk−1 6= yk−1}.

By our iterative construction, xτ−1, yτ−1 ∈ f−1
ατ {xτ}. In terms of the notation introduced above,

this also tells us that ]S(xτ , τ) ≥ 2. This means that

xτ−1, yτ−1 ∈ B(β, ατ ) and fατ is injective on small balls around xτ−1, yτ−1.

Clearly, xτ−1 and yτ−1 cannot belong to one single ball belonging to the open cover C (β, ατ ).
Thus, by the definition of Lebesgue number, d(xτ−1, yτ−1) > ε(β). Since x 6= y ∈ Oα were
arbitrarily chosen, we conclude that Oα is an (ε(β),α)-separated family.

Write dj := dtop(fj), j = 1, . . . , N . We may assume without loss of generality that d1 ≤ · · · ≤
dN . Let νj := the number of times j appears in α. Let us now set

m := [βν] + 1, J := max{1 ≤ j ≤ N : ν1 + · · ·+ νj < m}. (4.5)

By construction, for each ν-orbit x ∈ Oα, start(x) ∈ f−1
α {xν}. Hence, by our above choice of xν ,

{start(x) : x ∈ Oα} ∩Aβ,α = ∅. (4.6)

Some more notation: write

Σ(x) := {1 ≤ k ≤ ν : xk−1 ∈ B(β, αk)}, σ(x) := ]Σ(x)

for each x = (x0, x1, . . . , xν ;α) ∈ Oα. Additionally, let k1 < k2 < · · · < kσ(x) denote the ordering
of the elements of Σ(x). By (4.6), σ(x) ≥ m for each x ∈ Oα. With these facts, we can estimate
]Oα. To do so, pick and fix an x = (x0, x1, . . . , xν ;α) ∈ Oα. By construction:

]S(xk, k) =

{
1, if k /∈ Σ(x),

dαk , if k ∈ Σ(x).

This means that in Oα :

(∗) we can find dαkl distinct ν-orbits that traverse the points xkl , xkl+1, . . . , xν ∈ X corre-

sponding, respectively, to iterations of orders kl, kl + 1, . . . , ν of ΓG , l = 1, . . . σ(x).

This implies that Oα would have the smallest possible number of orbits of the kind described
by (∗) if ν1 + · · · + νJ =: d(α) of the elements of Σ(x) were to correspond to νj distinct terms
in the tuple (x0, . . . , xν−1) being in B(β, j), j = 1, . . . , J . From this discussion and (∗), we get
the (perhaps very conservative) lower bound:

n(ε(β),α) ≥ ]Oα ≥ dν11 . . . dνJJ d
m−d(α)
J+1 . (4.7)
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Here, n(ε(β),α) is as in Lemma 4.1, and the first inequality in (4.7) is owing to the fact that
Oα is (ε(β),α)-separated.

Now, given any (ν1, . . . , νN ) ∈ NN satisfying ν1 + · · · + νN = [βν] + 1, we can find an
α ∈ {1, . . . , N}ν so that the νj ’s are related to this α precisely as in the last paragraph. Thus:∑

α∈{1,...,N}ν
n(ε,α) ≥

∑
ν1,...,νN∈N
ν1+···+νN=m

dν11 . . . dνNN

= (d1 + · · ·+ dN )m ≥ (d1 + · · ·+ dN )βν .

Applying Lemma 4.1, this gives

htop(S,G ) := htop(ΓG ) ≥ β log(d1 + · · ·+ dN ).

However, as this holds for any β ∈ (0, 1), letting β → 1−, we get

h(S,G ) ≥ log(d1 + . . . dN ).

This establishes the lower bound in (4.1), and hence the result. �

We remark here that it is, in general, not possible to get a cleaner upper bound for htop(S,G )
than (4.1). For instance, there isn’t, in general, a way to determine which of the numbers
{d1(f), . . . , dn(f)} is the largest even for f : X −→ X surjective and holomorphic (let alone
for a general correspondence Γ). We shall not discuss here what is known in general about
the function {0, 1, . . . , n} 3 p 7→ dp(f). However, for X as above, λp(f), for f : X −→ X
holomorphic and p = 0, 1, . . . , n, can be determined cohomologically. This can lead to cleaner
expressions whenever Hp,p(X;R) are one-dimensional for each p = 1, . . . , n. This, essentially, is
what underlies

The proof of Theorem 1.8. Russakovskii–Shiffman have shown [12, Section 4] that for any non-
constant holomorphic map f : Pn −→ Pn

λp(f) = dp(f) and dp(f) = d1(f)p for p = 1, . . . , n. (4.8)

As argued in the proof of Theorem 4.2, dn(f) = dtop(f). Thus, from the above facts, we get

λp(f) = dtop(f)p/n, for p = 1, . . . , n. (4.9)

Fix a set of generators {f1, . . . , fN} of S. Clearly, by definition, λp(Γ
◦ν
G ) is the sum of the pth

intermediate degrees of the maps, counted according to multiplicity, whose graphs constitute
Γ◦νG . From (4.9), we see that for Pn, λp, p = 1, . . . , n, is multiplicative with respect to composition
of non-constant holomorphic self-maps. Thus, by (4.8), we get

λp(Γ
◦ν
G ) =

(
d1(f1)p + · · ·+ d1(fN )p

)ν
for p = 1, . . . , n.

Hence, dp(ΓG ) =
(
d1(f1)p + · · · + d1(fN )p

)
, p = 1, . . . , n. As for p = 0: d0(ΓG ) = N . Given

these facts, the conclusion of Theorem 1.8 follows from Theorem 4.2. �

Corollary 1.9 now follows immediately.

5. Concerning Friedland’s entropy

This section is dedicated to the result on hF mentioned in Section 1 — i.e., Theorem 5.2. First,
however, we need some notation and a lemma. Let S be a finitely generated rational semigroup
on P1. If we fix a finite set of generators G , then the space Γ∞ (introduced in Definition 1.2)
corresponding to ΓG will be denoted by Γ∞G . Also, we abbreviate ΓG P1 to GP1. Given any
holomorphic correspondence Γ from X1 to X2, where Xi, i = 1, 2, are as in Definition 1.1, we
define

FΓ(x) := π2

((
π1||Γ|

)−1{x}
)
∀x ∈ X1,
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and write F νΓ (x) := FΓ◦ν (x). Coming back to the correspondence ΓG : we abbreviate F νΓG
(x) to

F νG (x).

Lemma 5.1. Let S be a finitely generated rational semigroup on P1. Let G = {f1, . . . , fN} be
a set of generators of S. Write

SG :=
⋃N

j=1

⋃
i 6=j
{x ∈ P1 : fi(x) = fj(x)}.

Consider a point O = (x0, x1, x2, . . . ) ∈ Γ∞G . If the pre-image of O under the map πitn : GP1 −→
Γ∞G is infinite, then there exist an n• ∈ N and a point

x• ∈ SG

⋂(
lim sup
ν→∞

F νG (x•)
)

such that x• = xn•.

Proof. First consider any O = (x0, x1, x2, . . . ) ∈ Γ∞G . For each ν ∈ Z+, there are only finitely

many j such that fj(xν−1) = xν . Thus, it is easy to see that π−1
itn{O} is infinite if and only if

(∗∗) there exists a sequence of positive integers ν1 < ν2 < ν3 < · · · such that for each k ∈ Z+,
fj(x(νk−1)) = xνk for more than one j ∈ {1, . . . , N}.

Now, assume that π−1
itn{O} is infinite. Then, by (∗∗) there exists a sequence of positive integers

ν1 < ν2 < ν3 < · · · such that
x(νk−1) ∈ SG ∀k ∈ Z+. (5.1)

Since f1, . . . , fN are distinct and P1 is one-dimensional, SG is finite. Thus, by (5.1), we conclude
that there exists an increasing subsequence {νk`} ⊂ {νk} and a point x• ∈ SG such that

x(νk`−1) = x• ∈ SG ∀` ∈ Z+.

If we write n` := νk` − νk1 , then the above equation implies that x• ∈ Fn`G (x•) for every
` ∈ Z+ \ {1}. Therefore, we conclude that

x• ∈
⋂

k∈N

⋃
ν≥k

F νG (x•) =: lim sup
ν→∞

F νG (x•).

Taking n• = (νk1 − 1), the desired conclusion is obtained. �

Before we present Theorem 5.2, we elaborate upon the remark made towards the end of
Section 1. For the purposes of this discussion, let X be any compact metric space and let S
be the semigroup generated by the maps fj : X −→ X, j = 1, . . . , N , that are continuous, and
take Γ = ∪1≤j≤N graph(fj) in Definition 1.2. For each A  {1, . . . , N}, A 6= ∅, consider

Y (A) := {(x0, x1, x2, . . . ) ∈ Γ∞ : xn+1 = fj(xn) for some j ∈ A, n = 0, 1, 2, . . . }.

Y (A) is a closed subspace of Γ∞ that is invariant under σ, where σ is as in Definition 1.2.
Recalling the definition of hF (S,G ), the basic properties of Bowen’s entropy, and as Y (A) is
σ-invariant, we get (as before, G := {f1, . . . , fN})

hF (S,G ) ≥ h
(
σ|Y (A)

)
= hF (〈fj : j ∈ A〉, {fj : j ∈ A}).

When A = {j}, write Y (A) =: Y (j). Observe: fj is conjugate to σ|Y (j) via the map x 7−→
(x, fj(x), fj ◦ fj(x), . . . ) ∈ Y (j). From this and our preceding argument, we get

hF (S,G ) ≥ h
(
σ|Y (j)

)
= h(fj) ∀j = 1, . . . , N.

Hence, hF (S,G ) ≥ max1≤j≤N h(fj). In particular, this estimate holds true for all the semigroups
discussed in Sections 1, 4 and the present section.

However, one might intuit from the previous lemma that the latter lower bounds are in general
inefficient (as least when S is a finitely generated rational semigroup on P1). That intuition
motivates the principal result of this section. We follow below the notation established for
Proposition 3.2 — for instance, S is the shift map introduced by that proposition.
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Theorem 5.2. Let S be a finitely generated rational semigroup on P1. Let G = {f1, . . . , fN}
be a set of generators of S. Define

E(G ) :=
{

(x0, x1, x2, . . . ) ∈ Γ∞G : x0 ∈ SG and x0 ∈ lim sup
ν→∞

F νG (x0)
}
.

Then, Friedland’s entropy satisfies

log
(∑

1≤j≤N
deg(fj)

)
− sup

O∈E(G )
h
(
S , π−1

itn{O}
)
≤ hF (S,G )

≤ log
(∑

1≤j≤N
deg(fj)

)
.

Proof. Consider the compact metric spaces GP1 and Γ∞G . Denote by σ : Γ∞G −→ Γ∞G the shift

Γ∞G 3 (x0, x1, x2, . . . ) 7→ (x1, x2, x3, . . . ).

Recall that S : GX −→ GX is as described in Proposition 3.2. We have:

• πitn is a continuous surjective map; and
• πitn ◦S = σ ◦ πitn.

In other words, σ is a factor of S . Thus, Proposition 3.2 and Corollary 1.9 together imply:

hF (S,G ) := h(σ) ≤ h(S ) = htop(S,G ) = log
(∑

1≤j≤N
deg(fj)

)
. (5.2)

We now derive the lower bound for hF . For the moment, fix an O ∈ Γ∞G . We have two cases.

Case 1. π−1
itn{O} is a finite set.

For any ν ∈ Z+ and ε > 0, O (ε, ν)-spans itself. Thus, the finiteness of π−1
itn{O} implies that

h(S , π−1
itn{O}) = 0.

Case 2. π−1
itn{O} is an infinite set.

Write O = (x0, x1, x2, . . . ). In this case, Lemma 5.1 enables us to define

k(O) := min
{
n ∈ N : xn ∈ SG ∩

(
lim sup
ν→∞

F νG (xn)
)}
.

If k(O) ≥ 1, then by definition, there is a fixed tuple (α1, . . . , αk(O)) such that every element of

π−1
itn{O} has the form (x0, . . . , xk(O), . . . ;α1, . . . , αk(O), . . . ). Thus, following the notation of the

discussion that precedes Result 3.3, for each ε > 0 we have:

rν
(
ε, π−1

itn{O}
)

= rν
(
ε, π−1

itn{(xk(O), xk(O)+1, xk(O)+2 , . . . )}
)
∀ν suffiiciently large.

We therefore conclude (irrespective of whether k(O) = 0 or k(O) ≥ 1) that

h
(
S , π−1

itn{O}
)

= h
(
S , π−1

itn{(xk(O), xk(O)+1, xk(O)+2 , . . . )}
)
, and

xk(O) ∈ SG ∩
(

lim sup
ν→∞

F νG (xk(O))
)
. (5.3)

From the discussion of each of the above cases, and by (5.3), we get

sup
O∈Γ∞G

h
(
S , π−1

itn{O}
)

= sup
O∈E(G )

h
(
S , π−1

itn{O}
)
.

From this, Result 3.3 and Proposition 3.2, we have

htop(S,G ) = h(S ) ≤ h(σ) + supO∈E(G ) h
(
S , π−1

itn{O}
)

= hF (S,G ) + supO∈E(G ) h
(
S , π−1

itn{O}
)
. (5.4)

From (5.2) and (5.4), and given the conclusion of Corollary 1.9, the theorem follows. �
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