CW-Complexes
due by Monday, Feb 14, 2022
-
Let
$\Gamma$
be a $1$-dimensional CW complex and let$X$
be a CW-complex. Consider a map$f: \Gamma\to X$
. Then prove or disprove the following.- (a)
$f$
must be homotopic to a map with image in the$0$
-skeleton$X^{(0)}$
of$X$
. - (b)
$f$
must be homotopic to a map with image in the$1$
-skeleton$X^{(1)}$
of$X$
.
- (a)
-
Fix
$n\geq 2$
. Let$D=[0, 1]^n$
and let$A$
and$B$
be subsets of$D$
given by$$A = \{(x_1, x_2, \dots, x_n)\in D : \exists i, 1 \leq i \leq n, x_i \in \{0, 1\}\}$$
and$$B = (\{1\}\times [0, 1]^{n- 1})\cup\{(x_1, x_2, \dots, x_n)\in D : \exists i, 1 < i \leq n, x_i \in \{0, 1\}\}$$
Let$X = D / A$
and$Y = D/ B$
be the quotients of$D$
with$A$
and$B$
identified to points, respectively. Prove or disprove the following- (a)
$X$
is homeomorphic to the$n$
-sphere$S^n$
. - (b)
$Y$
is homeomorphic to$D$
.
- (a)