Homology : Overview
due by Monday, Feb 21, 2022
-
For a topological space
$X\neq\phi$, we define the suspension$\Sigma (X)$of$X$to be the quotient$\Sigma (X) = (X \times [-1, 1])/\sim$where$\sim$is the equivalence relation generated by$(x_1, t_1) \sim (x_2, t_2)$if$t_1 = t_2$and$t_1 \in \{-1, 1\}$. Let$i_X\colon\thinspace X \to \Sigma(X)$be given by$i_X(x) = (x, 0)$.-
(a) Show that
$\widetilde{H}_0(\Sigma (X)) = 0$and$\widetilde{H}_{n+1}(\Sigma (X))\cong \widetilde{H}_n(X)$for$n \geq 0$. -
(b) Show that, for all
$n\geq 0$,$i_{X*}\colon\thinspace\widetilde{H}_n(X) \to \widetilde{H}_n(\Sigma (X))$is the zero homomorphism. -
(c) Define
$\Sigma^n(X)$inductively by$\Sigma^{n+1}(X)=\Sigma(\Sigma^n(X))$for$n\geq 0$and$\Sigma^0(X) = X$. Define$\Sigma^\infty(X)$as the direct limit of the directed system$$X \overset{i_X}\longrightarrow \Sigma(X)\overset{i_{\Sigma (X)}}\longrightarrow \dots \to \Sigma^n(X) \overset{i_{\Sigma^n (X)}}\longrightarrow \dots .$$What is$H_*(\Sigma^\infty(X))$(prove your answer)?
-
-
Let
$X\subset \mathbb{R}^2$be the two-holed disc$$X = D((0, 0), 1)\setminus\left(\overset{\circ} D((\frac{1}{2}, 0), \frac{1}{4}) \cup \overset{\circ} D((-\frac{1}{2}, 0), \frac{1}{4})\right),$$where$D((x, y), r)$and$\overset{\circ} D((x, y), r)$denote the closed and open discs with centre$(x, y)$and radius$r$, respectively.-
(a) What is the homology of
$X$(prove your answer)? -
(b) Let
$f\colon\thinspace X\to X$be a map that is homotopic to the identity on$X$. Show that$f$has a fixed point. -
(c) Prove or disprove: there is a map
$f\colon\thinspace X \to X$with no fixed point.
-
-
-
(a) Let
$X = I_1 \coprod I_2$be a disjoint union of two closed intervals and let$f\colon\thinspace X \to S^3$be an embedding. Show that$$\widetilde{H}_n(S^3 \setminus f(X))= \begin{cases} \mathbb{Z}&\mbox{if } n = 2 \\ 0 & \mbox{if } n \neq 2 \end{cases}$$ -
(b) Let
$Y = S^1\times I$be an annulus and let$f\colon\thinspace Y \to S^3$be an embedding. Show that$$\widetilde{H}_n(S^3 \setminus f(Y))= \begin{cases} \mathbb{Z}&\mbox{if } n = 1 \\ 0 & \mbox{if } n \neq 1 \end{cases}$$
-