Homology : Overview
due by Monday, Feb 21, 2022
-
For a topological space
$X\neq\phi$
, we define the suspension$\Sigma (X)$
of$X$
to be the quotient$\Sigma (X) = (X \times [-1, 1])/\sim$
where$\sim$
is the equivalence relation generated by$(x_1, t_1) \sim (x_2, t_2)$
if$t_1 = t_2$
and$t_1 \in \{-1, 1\}$
. Let$i_X\colon\thinspace X \to \Sigma(X)$
be given by$i_X(x) = (x, 0)$
.-
(a) Show that
$\widetilde{H}_0(\Sigma (X)) = 0$
and$\widetilde{H}_{n+1}(\Sigma (X))\cong \widetilde{H}_n(X)$
for$n \geq 0$
. -
(b) Show that, for all
$n\geq 0$
,$i_{X*}\colon\thinspace\widetilde{H}_n(X) \to \widetilde{H}_n(\Sigma (X))$
is the zero homomorphism. -
(c) Define
$\Sigma^n(X)$
inductively by$\Sigma^{n+1}(X)=\Sigma(\Sigma^n(X))$
for$n\geq 0$
and$\Sigma^0(X) = X$
. Define$\Sigma^\infty(X)$
as the direct limit of the directed system$$X \overset{i_X}\longrightarrow \Sigma(X)\overset{i_{\Sigma (X)}}\longrightarrow \dots \to \Sigma^n(X) \overset{i_{\Sigma^n (X)}}\longrightarrow \dots .$$
What is$H_*(\Sigma^\infty(X))$
(prove your answer)?
-
-
Let
$X\subset \mathbb{R}^2$
be the two-holed disc$$X = D((0, 0), 1)\setminus\left(\overset{\circ} D((\frac{1}{2}, 0), \frac{1}{4}) \cup \overset{\circ} D((-\frac{1}{2}, 0), \frac{1}{4})\right),$$
where$D((x, y), r)$
and$\overset{\circ} D((x, y), r)$
denote the closed and open discs with centre$(x, y)$
and radius$r$
, respectively.-
(a) What is the homology of
$X$
(prove your answer)? -
(b) Let
$f\colon\thinspace X\to X$
be a map that is homotopic to the identity on$X$
. Show that$f$
has a fixed point. -
(c) Prove or disprove: there is a map
$f\colon\thinspace X \to X$
with no fixed point.
-
-
-
(a) Let
$X = I_1 \coprod I_2$
be a disjoint union of two closed intervals and let$f\colon\thinspace X \to S^3$
be an embedding. Show that$$\widetilde{H}_n(S^3 \setminus f(X))= \begin{cases} \mathbb{Z}&\mbox{if } n = 2 \\ 0 & \mbox{if } n \neq 2 \end{cases}$$
-
(b) Let
$Y = S^1\times I$
be an annulus and let$f\colon\thinspace Y \to S^3$
be an embedding. Show that$$\widetilde{H}_n(S^3 \setminus f(Y))= \begin{cases} \mathbb{Z}&\mbox{if } n = 1 \\ 0 & \mbox{if } n \neq 1 \end{cases}$$
-