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The field of Topology was born out of the realisation that in some fundamental
sense, a sphere and an ellipsoid resemble each other but differ from a torus – the
surface of a rubber tube (or a doughnut). A striking instance of this can be seen
by imagining water flowing smoothly on these. On the surface of a sphere or an
ellipsoid (or an egg), the water must (at any given instant of time) be stationary
somewhere. This is not so in the case of the torus.

In topology, we regard the sphere and the ellipsoid as having the same topological

type, which we make precise later. Topology is the study of properties that are
shared by objects of the same topological type. These are generally the global
properties. Understanding the different topological types of spaces, the so called
classification problem, is thus a fundamental question in topology.

In the case of surfaces (more precisely closed surfaces), there are two infinite
sequences of topological types. The first sequence, consisting of the so called ori-

entable surfaces, consist of the sphere, the torus, the 2-holed torus, the 3-holed
torus and so on (see figure 1). One would like to have a similar classification in
all dimensions. However, due to fundamental algorithmic issues, it is impossible to
have such a list in dimensions four and above.

There is a simple way to characterise the sphere among surfaces. If we take any
curve on the sphere, we can shrink it to a point while remaining on the sphere. A
space with this property is called simply-connected. A torus is not simply-connected
as a curve that goes around the torus cannot be shrunk to a point while remaining
on the torus. In fact, the sphere is the only simply-connected surface.

In 1904, Poincaré raised the question as to whether a similar characterisation of
the (3-dimensional) sphere holds in dimension 3. That this is so has come to be
known as the Poincaré conjecture. As topology exploded in the twentieth century,
several attempts were made to prove this (and some to disprove it). However, at the
turn of the millennium this remained unsolved. Surprisingly, the higher dimensional
analogue of this statement turned out to be easier and has been solved.

In 2002-2003, three preprints ([8], [9] and [10]) rich in ideas but frugal with de-
tails, were posted by the Russian mathematician Grisha Perelman, who had been
working on this in in solitude for seven years at the Steklov Institute. These were
based on the Ricci flow, which was introduced by Richard Hamilton in 1982. Hamil-
ton had developed the theory of Ricci flow through the 1980’s and 1990’s, proving
many important results and developing a programme [4] which, if completed, would
lead to the Poincaré conjecture and much more. Perelman introduced a series of
highly original ideas and powerful techniques to complete Hamilton’s programme.

It has taken two years for the mathematical community to assimilate Perelman’s
ideas and expand his preprints into complete proofs. Very recently, an article [1]
and a book [7] containing complete and mostly self-contained proofs of the Poincare
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Figure 1. The first three orientable surfaces

conjecture have been posted. An earlier set of notes which filled in many details in
Perelman’s papers is [5].

In this article we attempt to give an exposition of Perelman’s work and the
mathematics that went into it.
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thank Basudeb Datta, Gautham Bharali and Joseph Samuel for helpful comments.

1. Some notions of topology

In this section, we informally formalise the Poincaré conjecture. To do this, we
first need to introduce the higher-dimensional analogues of surfaces, namely smooth

manifolds. For those in the know, we consider throughout diffeomorphism types of
smooth manifolds as this suffices in dimension 3.

To introduce manifolds we take a closer look at surfaces. A surface in R
3 is the

set of zeroes of a smooth function f(x, y, z) which is non-singular, i.e., for each
point on the surface the gradient ∇f(x, y, z) of f is non-zero. Basic examples of
this are the plane z = 0 and the sphere x2 + y2 + z2 − 1 = 0.

In analogy with this, we can consider a subset M ⊂ R
n which is the set of zeroes

of n−k smooth functions f1,. . . , fn−k whose gradients ∇fi are linearly independent
for all points in M . Such a subset of R

n is a k-dimensional manifold or a k-manifold.
More generally, a set M given as above may have several components. We

consider each component of M to be a k-manifold. For the rest of this article, by
a k-manifold M we mean a component of the subset M ⊂ R

n which is the set
of zeroes of n − k smooth functions f1,. . . , fn−k whose gradients ∇fi are linearly
independent for all points in M .1

We say that two smooth k-dimensional manifolds M and N are diffeomorphic if
there is a smooth one-to-one correspondence f : M → N between the points of the
manifolds with a smooth inverse. The function f is called a diffeomorphism.

We say that a manifold (defined as above) is closed or compact if it is contained
in a bounded subset of R

n.
In this language, the Poincaré conjecture can be stated as follows.

Conjecture (Poincaré). Any closed, simply-connected 3-manifold is diffeomorphic

to the 3-dimensional sphere S3.

For a brief history of the Poincaré conjecture, see [6].
A small region around any point in a surface can be given a pair of local coor-

dinates. For example, away from the poles, the latitude and the longitude form
coordinates for any small region on the sphere. Local coordinates correspond to

1This is equivalent to the usual definition by a theorem of Nash.
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Figure 2. A knotted curve

making a map of a region of the surface on a piece of paper in such a way that
objects that are close to each other on the surface remain close on the map. One
cannot make a single such map of the whole surface, but it is easy to see that one
can construct an atlas of such maps. Each map is usually called a chart.

Similarly, a small region around any point in a k-manifold M can be given a
system of k local coordinates x1,. . . xk. It is frequently convenient to study local
properties of a manifold using these coordinates. These allow one to treat small
regions of the manifold as subsets of Euclidean space, using a chart as in the case
of surfaces. By using an atlas of such charts, one can study the whole manifold.

2. Why the Poincaré conjecture is difficult

Both the plane and 3-dimensional space are simply-connected but with an im-
portant difference. If we take a closed, embedded curve in the plane (i.e., a curve
which does not cross itself), it is the boundary of an embedded disc. However, an
embedded curve in 3-dimensional space may be knotted(see figure 2). This means
that as we deform a knotted curve to a point, along the way it must cross itself.

Thus, an embedded curve in a simply-connected 3-manifold M may not bound
an embedded disc. Furthermore, such a curve may not be contained in a ball B in
M . While embedded disks are useful in topology, immersed disks (i.e., disks that
cross themselves) are not. It is this which makes the Poincaré conjecture difficult
(in dimension 3).

The analogue of the Poincaré conjecture in dimensions 5 and above is easier than
in dimension 3 for a related reason. Namely, any (2-dimensional) disc in a manifold
of dimension at least 5 can be perturbed to an embedded disc, just as a curve in
3-dimensional space can be perturbed so that it does not cross itself.

What made Perelman’s proof, and Hamilton’s programme, possible was the work
of Thurston in the 70’s, where he proposed a kind of classification of 3-manifolds,
the so called geometrization conjecture [11]. Thurston’s geometrization conjecture
had as a special case the Poincaré conjecture, but being a statement about all 3-
manifolds could be approached without using the hypothesis of simple-connectivity.

However most of the work on geometrization in the 1980’s and 1990’s was done by
splitting into cases, so to prove the Poincaré conjecture one was still stuck with try-
ing to use the simple-connectivity hypothesis. An exception to this was Hamilton’s
programme. Interestingly, Perelman found a nice way to use simple-connectivity
within Hamilton’s programme, which simplified his proof of the Poincaré conjecture
(but not of the full geometrization conjecture).



4 SIDDHARTHA GADGIL AND HARISH SESHADRI

A

B C

Figure 3. The holonomy on a sphere

To introduce Hamilton’s approach we need to reformulate the Poincaré con-
jecture as a statement relating topology to Riemannian geometry, namely that a
compact, simply-connected 3-manifold has an Einstein metric. To make sense of
this we need some Riemannian geometry.

3. Some Riemannian geometry

3.1. Wind-vanes on spheres. Let us begin with a few thought experiments. Con-
sider a frictionless wind-vane in vacuum. Assume that the wind-vane is initially
stationary. Then if we rotate the base of the wind-vane, the arrow does not move
(as there is no friction).

Now assume that the wind-vane is placed flat on a plane. Let us move the base
of the wind-vane smoothly along a curve in the plane. Then the wind-vane points
in a constant direction, i.e., the direction of the wind-vane gives parallel vectors
along the curve. This gives a physical meaning to vectors at different points being
parallel.

Something more interesting happens if we perform the same experiment on the
surface of a sphere (see figure 3). Suppose the wind-vane is initially placed at the
point A which we take to be the north pole, and points in the direction of B on
the equator. Let C be another point on the equator. We shall move the wind-vane
along the longitude AB, then along the equator from B to C and finally back to A
along a longitude.

As we move along AB, the wind-vane is always pointing in the direction of
motion. We can see this by symmetry - as the two sides of the longitude of a sphere
look the same, the there is no reason for the wind-vane to turn right rather than left
(or vice versa). When we reach B, the wind-vane is perpendicular to the equator,
so that it is pointing due south. Now as we move along the equator to C (by
symmetry) it continues to point south. Hence when we reach C, we are pointing
along the longitude through C towards the south pole. Finally, as we move the
wind-vane back along the longitude AC, it continues to point towards C.

Notice that something remarkable has happened. The wind-vane which was
pointing towards B is now pointing towards C. Thus if we look at parallel vectors
along the loop ABCA, we end up with a different vector from the one we had
started with. Thus parallel transport around a loop on a sphere leads to a rotation,
in technical language the holonomy of the parallel transport. This happens because
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the sphere is curved, and the amount by which we rotate depends on the curvature.
By contrast, in the plane the holonomy is always the identity, i.e., each vector is
taken to itself.

We need some basic concepts before returning to parallel transport and curva-
ture.

3.2. Intrinsic differential geometry. In intrinsic differential geometry, we study
the geometry of a space M in terms of measurements made on the space M . This
began with the work of Gauss, who was involved in surveying large areas of land
where one had to take into account the curvature of the earth. Even though the
earth is embedded in 3-dimensional space, the measurements we make cannot take
advantage of this.

Intrinsic differential geometry gained new importance because of the general

theory of relativity, where one studies curved space-time. Thus, we have manifolds
with distances on them that do not arise from an embedding in some R

n. This
depended on the higher-dimensional, and more sophisticated, version of intrinsic
differential geometry developed by Riemann. Today, intrinsic differential geometry
is generally referred to as Riemannian geometry.

To study Riemannian geometry, we need to understand the analogues of the
usual geometric concepts from Euclidean geometry as well as the new subtleties
encountered in the more general setting. Most of the new subtleties are captured
by the curvature.

3.3. Tangent spaces. Let M be a k-dimensional manifold in R
n and let p ∈ M

be a point. Consider all smooth curves γ : (−1, 1) → M with γ(0) = p. The set of
vectors v = γ′(0) for such curves γ gives the tangent space TpM . This is a vector
space of dimension k contained in R

n. For example, the tangent space of a sphere
with center the origin at a point p on the sphere consists of vectors perpendicular
to p.

If a particle moves smoothly in M along the curve α(t), its velocity V (t) = α′(t)
is a vector tangent to M at the point α(t), i.e., V (t) ∈ Tα(t)M . In general if α(t)
is a curve and V (t) a vector in Tα(t)M for all t, then V is said to be a (tangent)
vector field along α.

3.4. Riemannian metrics. If α : (a, b) → M is a smooth curve then its length is

given by l(α) =
∫ b

a
‖α′(t)‖dt. Similarly, its energy, i.e., the total kinetic energy of

a particle moving along the path α, is given by E(α) =
∫ b

a
‖α′(t)‖2dt

Observe that these quantities are determined by the inner product (i.e., dot
product) on the tangent spaces Tp(M), and do not in any other way depend on
how M sits as a subset of R

n. Thus, if we specify the inner product on Tp(M)
for each p ∈ M (varying smoothly), then we can compute geometric quantities like
lengths, energies, angles (using the cosine formula) etc..

A Riemannian metric g on M is an inner product specified on TpM for each
p ∈ M . Thus, g refers to a collection of inner products, one for each TpM . We
further require that g varies smoothly in M . For a point p ∈ M and vectors
V, W ∈ TpM , the inner product of V and W corresponding to the Riemannian
metric g is denoted g(V, W ).

A Riemannian manifold (M, g) is a manifold M with a Riemannian metric g on
it. Recall that near any point in M , a small region U ⊂ M can be given a system
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of local coordinates x1,. . . ,xk. If we denote the corresponding coordinate vectors
by ê1,. . . ,êk, then for any point p in U the inner product on TpU is determined by
the matrix gij = g(êi, êj). This is a symmetric matrix.

The first examples of Riemannian manifolds are submanifolds M ⊂ R
n, with

the inner product on TpM the restriction of the usual inner product on R
n. This

metric is called the metric induced from R
n.

A second important class of examples are product metrics. If (M, g) and (N, h)
are Riemannian manifolds, we can define their product (M ×N, g⊕h). The points
of M × N consist of pairs (x, y), with x ∈ M and y ∈ N . The tangent space
T(x,y)M × N of the product consists of pairs of vectors (u, v) with u ∈ TxM and
v ∈ TyN . The inner product (g ⊕ h) is given by

(g ⊕ h)((u, v), (u′, v′)) = g(u, u′) + h(v, v′)

We can identify the space of vectors of the form (u, 0) (respectively (0, v) with
TxM (respectively TyN).

3.5. Isometries. Two Riemannian manifolds (M, g) and (N, h) are said to be iso-

metric if there is a diffeomorphism from M to N so that the length of any curve in
M is the same as that of the corresponding curve in N . In Riemannian geometry,
we regard two isometric manifolds as the same.

3.6. Geodesics. Geodesics are the analogues of straight lines. A straight line
segment is the shortest path between its endpoints. Furthermore, if a particle
moves in space with no force acting on it, then it moves along a straight line at
constant speed. It is this property we seek to generalise. To do this, however we
need to consider not just minima (of the length or energy) but critical points, i.e.
points at which the first derivative of the relevant function (length or energy in our
case) vanishes. Elementary calculus tells us that all minima are critical points but
the converse is not true.

According to Lagrangian mechanics, the path γ(t) taken by a particle in the
absence of any force is a critical point of the total kinetic energy of the particle
along its path (among paths with fixed endpoints). As we have seen, this Energy
can be defined on any Riemannian manifold. We define a geodesic to be a critical
point of the energy among paths with fixed endpoints.

3.7. Extrinsic covariant derivatives. Newton’s law says that in the absence of
a force, a particle in Euclidean space has zero acceleration. However, if a particle
moves in a sphere it cannot have zero acceleration (as a particle with zero accelera-
tion moves along a straight line). Instead we may assume that the force, hence the
acceleration, is perpendicular to the sphere. This would mean that the orthogonal

projection of the acceleration on to the tangent space is zero.
In the Euclidean case, the acceleration is the derivative of the velocity. By the

above, the natural replacement for this in the case of the induced metric on M is
to take the projection of the usual derivative. This is the covariant derivative in
this special case. To distinguish this from the more general notion, we shall often
refer to this as the extrinsic covariant derivative.

More precisely, let α(t) be a smooth curve in M and let V (t) be a smooth vector

field along α. We then define the covariant derivative DV (t)
dt

to be the orthogonal

projection onto Tα(t) of the usual derivative dV
dt

of V .
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We say that a vector field V as above is parallel if its covariant derivative is zero
everywhere. A curve γ(s) is a geodesic if and only if its velocity is parallel (in the
case of an induced metric).

3.8. Intrinsic covariant derivatives. The extrinsic covariant derivative is unsat-
isfactory as it is not clear how to extend the definition to Riemannian metrics on M
different from the induced metric. There is an elegant way around this in much the
same spirit as Euclid. In classical Euclidean geometry, one does not define lines,
points or angles, but instead we have axioms relating these notions. One expects
(though there are logical issues involved) that these axioms completely determine
Euclidean geometry.

We proceed in the same way, guided by the extrinsic covariant derivatives.
Namely we consider properties that we expect the covariant derivative to satisfy,
and which are satisfied by the extrinsic covariant derivative. Once the axioms are
correctly formulated, it is easy to show that these properties uniquely determine
the covariant derivative.

The first two axioms, linearity and Leibniz rule, are the natural analogues of
properties of the usual directional derivatives. The third, compatibility with the

metric says that for a parallel vector field V (s), ‖V (s)‖ is constant.
The forth axiom, torsion freeness, is equivalent to the statement that the accel-

eration Dγ′(t)
dt

of a geodesic γ(t) is zero. This says that paths minimising energy
satisfy Newton’s law for motion in the absence of a force.

All the above properties are both geometrically and physically reasonable. As
these uniquely determine the covariant derivative, we shall take them as the axioms

that define the covariant derivative.

3.9. Curvature. The curvature of a surface measures the holonomy, which is the
result of parallel transport around a loop. This can be readily quantified in terms
of the covariant derivative.

Let P ∈ M be a point and let X ,Y and Z be tangent vectors at this point. Let

α(s, t) be a smooth function with values in M such that α(0, 0) = P , dα(0,0)
ds

= X

and dα(0,0)
dt

= Y . Extend Z to a smooth vector field along α(s, t).
Define a vector R(X, Y )Z by

R(X, Y )Z =
D

ds

D

dt
Z − D

dt

D

ds
Z

The vector valued function R(X, Y )Z is called the curvature tensor. Essentially,
the holonomy around a parallelogram is the difference between performing parallel
transport first along a horizontal side and then a vertical side and performing
parallel transport first along a vertical side and then a horizontal side. As parallel
vector fields are those whose covariant derivative is zero, it is not difficult to see
that the curvature tensor (as defined above) measures the holonomy about a small
parallelogram (more precisely, the appropriate limit of holonomies).

3.10. Gaussian, Sectional, Ricci, and Scalar curvatures. The curvature ten-
sor is a complicated algebraic object. It is more useful to have numbers, whose sign
and magnitude tell us about the geometry of the surface.

The simplest curvature is the Gaussian curvature, which is defined for a surface
(M, g) (i.e., a 2-dimensional Riemannian manifold). Let p ∈ M be a point and let
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X, Y ∈ TpM be orthogonal unit vectors. Then we define K(p) = g(R(X, Y )X, Y ).
This is independent of X and Y .

In higher dimensions, if we take X and Y as above, we still get a curvature,
but this now depends on the plane ξ in TpM spanned by X and Y (in the case of
surfaces, the plane is all of TpM). This is called the sectional curvature K(p, ξ) at
p along the plane ξ. We sometimes denote the sectional curvature by Kg(x, ξ) to
clarify what metric we consider.

Averaging all the sectional curvatures at a point gives the scalar curvature R(p).
There is an intermediate quantity, called the Ricci tensor which is very fundamental
in our situation. This is defined by taking the appropriate trace as below.

Fix vectors U and V in TpM , which need not be orthogonal or of unit length.
Then W 7→ R(U, W )V is a linear transformation on TpM . A basic result in Rie-
mannian geometry says that the matrix of this linear transformation (with respect
to an orthonormal basis for the inner product from g) is symmetric. We define
Ric(U, V ) to be the trace of this matrix.

Another basic property of the curvature tensor is that this is symmetric in U and
V , i.e., Ric(U, V ) is a symmetric bilinear form. The somewhat unnatural definition
is to exploit these symmetries. Recall that the Riemannian metric g is also given
in local coordinates by a symmetric matrix. The Ricci flow exploits this analogy.

We consider some examples.

(1) Euclidean space. This is just R
n with the usual inner product. In this case,

all the sectional curvatures are zero. Hence so is the Ricci tensor and the
scalar curvature.

(2) Sphere Sn(r) of radius r with the metric induced from R
n+1. In this case,

all sectional curvatures are equal to r−2, Ric(U, V ) = (n − 1)r−2g(U, V )
and R(p) = n(n − 1)r−2 for any point p. Here g(·, ·) is (the restriction of)
the standard inner product in R

n

(3) There is an analogue of Example 2, called hyperbolic space, for which the
sectional curvature is −r−2. The underlying manifold can be taken to be
R

n. We will not describe the metric since we won’t need it.

We have the following important converse of the above examples: Let
(M, g) be a simply-connected complete Riemannian manifold of constant
sectional curvature k. Then M is isometric to Euclidean space, the sphere
of radius

√

1/k or hyperbolic space according as k = 0, k > 0 or k < 0
respectively.

(4) A product Riemannian manifold (M × N, g = g1 ⊕ g2): If ξ is a plane in
Tp(M × N) that is tangent to M(respectively N), then K(p, ξ) = K1(ξ)
(respectively K2(ξ)). Here K1 and K2 denote the sectional curvatures with
respect to g1 and g2. On the other hand, if ξ is the span of a vector tangent
to M and one tangent to N , then K(ξ) = 0

(5) As a special case of the above, consider a surface M which is the product
of two circles, possibly of different radii, with the product metric. Then
the tangent plane at any point is spanned by a vector tangent to the first
circle and one tangent to the second circle. Hence the sectional curvature
of M at any point is zero.

(6) Another example of a product metric that we need is that on M = S2 ×R.
In this case, the sectional curvature K(x, ξ) is 1 if ξ is the tangent plane of
S2 and 0 if ξ contains the tangent space of R.
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3.11. The Jacobi equation. We would like to relate the geometry of a manifold
to its curvature. The best way to do this is through the Jacobi equation. We shall
consider the case of surfaces and mention how this case generalises.

Consider a family of geodesics αu(T ) starting at p, all of which have unit speed.
Let α(t) = α0(t) and let N(t) be the unit vector at the point α(t) normal to α′(t).

The Jacobi vector field is J(t) = ∂
∂u

αu(t)|u=0. In the case of surfaces, this is of
the form J(t) = f(t)N(t).

By differentiating the equation for a geodesic and using the definition of curva-
ture, we can see that the Jacobi vector fields J(t) = f(t)N(t) on surfaces satisfy
the Jacobi equation

d2f

dt2
+ K(α(t))f = 0.

If the curvature K is zero, then this says that f is a linear function, as happens
in the Euclidean plane. In particular, geodesics move apart at a constant rate. If
K = 1, the solutions to the equation are linear combinations of the trigonometric
functions sin(t) and cos(t). Thus, geodesics bend towards each other and meet in a
finite time. This happens, for instance, on the sphere. Finally, if K = −1, solutions
are exponential functions, so geodesics diverge exponentially fast.

One can derive similar conclusions for positive or negative (not necessarily con-
stant) curvature metrics, using the Sturm-Liouville theory of ordinary differential
equations.

In higher dimensions, we can derive a similar Jacobi equation

D2J

dt2
+ R(V, J)V = 0,

where V (t) = α′(t).
In case the sectional curvature is positive (respectively negative), i.e., is positive

(respectively negative) at each point and in each plane at that point, we can reason
as in the case of surfaces. One can still draw some conclusions in the case of positive
Ricci curvature.

3.12. Manifolds with non-negative sectional curvature. By the Jacobi equa-
tion, if a Riemannian manifold has non-negative curvature, geodesics do not diverge
faster than in Euclidean space. This has strong consequences for the geometry and
topology of these manifolds. In particular, if a simply-connected 3-manifold (M, g)
has non-negative sectional curvature, it is diffeomorphic to one of R

3, S3 and S2×R.
Moreover, if (M, g) is diffeomorphic to S2 × R then g is a product metric.

3.13. Scaling and curvature. Suppose (M, g) is a Riemannian manifold and c >
0 is a constant. Then the sectional curvature K ′ of the Riemannian manifold
(M, cg) is related to the sectional curvature K of (M, g) by

K ′(p, ξ) = c−1K(p, ξ)

for every point p ∈ M and every tangent plane ξ ⊂ TpM at that point.
Note that if c is large, then K ′ is small. Hence, given a compact Riemannian

manifold (M, g) we can always choose c large enough so that (M, cg) has sectional
curvatures lying between −1 and 1.
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4. Einstein metrics and the Poincaré conjecture

An Einstein metric is a metric of constant Ricci curvature. More precisely, an
Einstein metric with constant curvature a is a metric that satisfies, for all p ∈ M
and U, V ∈ TpM , the equation

Ric(U, V ) = ag(U, V ).

These can also be characterised as being the critical points among metrics with
fixed volume of the Einstein-Hilbert action in general relativity.

To relate Einstein metrics to the Poincare conjecture, one notes that an Einstein
metric g on a 3-manifold necessarily has constant sectional curvature (in all dimen-
sions metrics of constant sectional curvature are Einstein metrics). Hence, by 3.10,
one concludes that if (M, g) is closed, simply-connected and Einstein, then (M, g)
is isometric to S3 with a round metric. Note that we can rule out Euclidean and
Hyperbolic space since they are not closed. In particular, M is diffeomorphic to
S3.

Hence the Poincaré conjecture can be formulated as saying that any closed,

simply-connected 3-manifold has an Einstein metric. More generally, Thurston’s
geometrisation conjecture says that every closed 3-manifold can be decomposed into
pieces in some specified way so that each piece admits a locally homogeneous metric,
a concept more general than that of a metric with constant sectional curvature.

5. Hamilton’s Ricci flow

In the 1980’s and 1990’s Hamilton built a programme to prove geometrisation,
beginning with a paper [3] where he showed that if a 3-manifold has a metric with
positive Ricci curvature then it has an Einstein metric. By positive Ricci curvature

we mean that if p ∈ M and U ∈ TpM is non-zero, then Ric(U, U) > 0.
Hamilton’s approach was to start with a given metric g and consider the 1-

parameter family of Riemannian metrics g(t) satisfying the Ricci flow equation

(1)
∂g

∂t
= −2Ric(t), g(0) = g,

where Ric(t) is the Ricci curvature of the metric g(t).
To get a feeling for the analytical properties of this equation, we first consider the

simpler case of the heat equation which governs the diffusion of heat in an isolated
body. The heat equation is

∂u

∂t
= 4u.

The temperature in an isolated body becomes uniform as time progresses; one hopes
similarly that the Ricci flow makes the Ricci curvature uniform. Further, the min-
imum temperature of the isolated body increases (and the maximum temperature
decreases) with time. This latter property is called a maximum principle.

To see the relation of the Ricci flow with the heat equation, we use special
local coordinates called harmonic coordinates (i.e., coordinates {xi} such that the
functions xi are harmonic). We can find such coordinates around any point in a
Riemannian manifold M . In these coordinates we have

Ricij = −1

2
4gij + Q(g, ∂g),
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where Q is an expression involving g and the first partial derivatives of g and
Rij = Ric(êi, êj).

Hence the Ricci flow resembles the heat flow
∂gij

∂t
= 4gij leading to the hope that

the Ricci curvature becomes uniform as time progresses. However, there is an extra
term Q(g, ∂g) of lower order. Such a term is called the reaction term and equations
of this form are known as reaction-diffusion equation. In order to understand such
an equation, one needs to understand both the nature of the reaction term and
conditions that govern whether the reaction or the diffusion terms dominate.

Let us consider some examples: If g is the induced metric on the sphere S3

of radius 1, then g(t) = (1 − 4t)g is the solution to (1). Note that the radius
of (S3, g(t)) is

√
1 − 4t and the sectional curvatures are 1

1−4t
. As t → 1

4 , these
curvatures blow-up.

More generally, if g(t) is an Einstein metric the Ricci flow simply rescales the
metric. In fact, if Ric = ag, then g(t) = (1−2at)g satisfies (1). Note that (M, g(t))
shrinks, expands or remains stationary depending on whether a > 0, a < 0 or
a = 0.

On the other hand, if the metric is fixed up to rescaling by the Ricci flow then
it is an Einstein metric.

We need to consider a more general class of solutions g(t), called the Ricci solitons

for which the manifolds (M, g(t)) are isometric up to scaling. More precisely, a Ricci
soliton is a solution g(t) so that for each time t there is a constant c(t) such that
(M, g(t)) and (M, c(t)g(0)) are isometric.

Let (M1 ×M2, g1 ⊕ g2) be a product Riemannian manifold. Then the Ricci flow
beginning at g1 ⊕ g2 is of the form g(t) = g1(t) ⊕ g2(t), where g1(t) and g2(t) are
the flows on M1 and M2 beginning with g1 and g2. Ricci flow preserves product
structure. In particular, the flow beginning with the standard product metric g0⊕g1

on S2 × R is g(t) = (1 − 2t)g0 ⊕ g1, i.e., the S2 shrinks while the R direction does
not change. This example is crucial for understanding regions of high curvature
along Ricci flow.

We now consider some analytical properties of the Ricci flow. One of the first
results proved by Hamilton was that, given any initial metric g(0) on a smooth
manifold M , the Ricci flow equation has a solution on some time interval [0, ε).
Furthermore, this solution is unique. It follows that a solution to the equation with
initial metric g(0) exists on some maximal interval [0, T ), with T either finite or
infinite and is unique on this interval.

Further, if T is finite the curvature becomes very large as we approach T . More
precisely, there is a sequence of points xi, times ti ∈ [0, T ) with ti → T and planes
ξi ∈ Txi

M such that the sectional curvatures Kg(ti)(xi, ξi) of the metric g(ti) at xi

for the plane ξi goes to ±∞. Often we choose xi, ξi and ti with maximal curvature
in the sense that |Kg(ti)(xi, ξi)| ≥ |Kg(t′)(y, ζ)| for all times t′ ∈ [0, ti] and all y ∈ M ,
ζ ∈ TyM .

The main idea of Hamilton’s programme is to evolve an arbitrary initial metric
on a closed simply-connected 3-manifold along the Ricci flow and hope that the
resulting metric converges, up to rescaling, to an Einstein metric. Hamilton showed
that this does happen when g has positive Ricci curvature.

It is convenient to analyse separately the cases where the maximal interval of
existence [0, T ) is finite and infinite. It turns out, as we explain later, that if the
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manifold is simply-connected, then this time-interval is finite. In particular, the
curvature blows-up in finite time on certain parts of the manifold.

The central issue in Hamilton’s programme was to understand, topologically and
geometrically, the parts of the manifold where curvature blows-up along the Ricci
flow.

6. Pinching and zoom

The first major steps in understanding the geometry near points of large sectional
curvature were due to Hamilton and Ivey, using maximum principles.

In the simple case of a heat equation we have a maximum principle that says
that if the temperature is initially greater than a constant α at all points in the
manifold, then this continues to hold for all subsequent times. In the case of the
Ricci flow, we have a similar maximum principle for the scalar curvature. This is
because the reaction term for the evolution of the scalar curvature is positive. As
a consequence, the scalar curvature evolving along the Ricci flow is larger than the
solution to the heat equation with the same initial conditions. In particular, we
obtain the important conclusion that scalar curvature R is bounded below along the

Ricci flow.
Hamilton also developed a maximum principle for tensors which enabled him to

prove that if Ric(g) > 0, then Ric(g(t)) > 0 where g(t) is the solution to Ricci flow
with g(0) = g. More generally, starting with an arbitrary metric, Hamilton and
Ivey independently obtained an inequality for the curvature using this maximum
principle. All these maximum principles amount to showing and using positivity
properties of the reaction term.

Now, suppose xi, ξi and ti are as in the previous section, It follows from the
results of Hamilton and Hamilton-Ivey that R(xi) → ∞. This is very remarkable -
it says that if some sectional curvatures become large in magnitude, the average of
the sectional curvatures also becomes large. Furthermore, if R(x) is large, (at some
time t) the pinching estimate says that if the sectional curvature of some plane is
negative at x, its magnitude is small compared to R(x).

The precise statement of the Hamilton-Ivey result is the following: There is a
non-increasing function φ : R → R, such that limy→∞φ(y) = 0, and a constant C
such that

K(x, t) ≥ −φ(R(x, t))|R(x, t)| + C,

for any sectional curvature K(x, t). Since R is bounded below, this inequality leads
to the conclusions mentioned above.

This can be exploited using a classical technique in partial-differential equations
called blow-up analysis. Suppose we choose xi and ξi with maximal curvature as
in the previous section. We rescale the metric g(ti) by λi = |Kg(ti)(xi, ξi)|. Then
all sectional curvatures of (M, λig(ti)) lie between 1 and −1 and some sectional
curvature at xi is equal to 1. Recalling from 3.13 the scaling properties of curvature,
it follows from the Hamilton-Ivey inequality that if the sectional curvature of λig(ti)
is negative somewhere, it has very small magnitude. Thus, the metric is almost

non-negatively curved.
To exploit this further, one needs to consider limits of the above metrics.
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Figure 4. An example of convergence

7. Convergence of Riemannian manifolds

We have seen above that it is important to understand limits of Riemannian
metrics. First we recall a simpler situation.

Consider a bounded sequence {xn} of points on the real line or in the plane.
Such a sequence may not be convergent, as it may oscillate (for example consider
the sequence xn = (−1)n + 1

n
on the real line). However, some subsequence of xn

converges. A point to which some subsequence of xn converges is called a limit

point (in our example 1 and −1 are the limit points as they are the limits of odd
and even terms). One can deduce that, for large n, xn is close to one of the limit
points (e.g., (−1)n + 1

n
is close to 1 or −1). Finally, note that if the sequence is not

bounded, it may have no limit points.
A space X is said to be compact if every sequence in the set has a limit point in

X . Manifolds that are closed in terms of our earlier definition are compact.
We consider now the analogous situation where we have a sequence of Riemann-

ian manifolds. We would like an analogue of the boundedness condition on points
in the plane to ensure compactness. This allows us to understand the properties of
a sequence of manifolds by understanding the properties of the limit points (which
are Riemannian manifolds).

Firstly, we need to specify what we mean by convergence of Riemannian man-
ifolds. Equivalently we need to say when the distance between two manifolds is
small (say less than ε). Recall that two Riemannian manifolds (M, g) and (N, h)
are isometric (i.e., equal) if there is a diffeomorphism f : M → N so that for every
curve α in M , the length of α is equal to that of the corresponding curve f ◦ α in
N . In the case of compact manifolds, we say that the distance between M and N
is less than ε if there is a diffeomorphism f : M → N so that for every curve α in
M , the ratio of the length of α to that of f ◦α is between 1− ε and 1+ ε (i.e., close
to 1). We call a map f as above an ε-almost isometry.

In order to study convergence of non-compact Riemannian manifolds, we need to
specify basepoints. By (M, p) we henceforth mean a manifold M with the basepoint
p ∈ M . Given two such manifolds (M, p) and (N, q) with basepoints, we say that the
distance between them is less than ε if there is an ε-almost isometry f : BM → BN

between the ball BM of radius 1/ε around p in M and the ball BN of radius 1/ε
around q.

In order to assert that a given sequence of Riemannian manifolds has a convergent
subsequence, it turns out that we need two conditions - bounded curvature and non-

collapse. The first simply says that there is a bound C such that the magnitude
of the sectional curvatures is bounded above by C for all planes at all points in all
the manifolds Mi.

The second condition is required to ensure that we do not collapse to a lower
dimensional space. The non-collapsing condition is that the volumes of all the balls
of radius 1 in all the manifolds Mi are bounded below by some positive number V0.

Let us consider some examples to illustrate these concepts. In the first, we let
Mi = S2, pi = p and gi = ig, where g is the usual round metric on the two-sphere
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Figure 5. A sequence without bounded curvature with the limit singular

Figure 6. An example of collapsing

Limiting manifold

Figure 7. Sequences of manifolds and their blow-up limits

S2 and p is a fixed point in S2. In this case, (Mi, gi, pi) converges to Euclidean
plane with the flat metric. Another example is illustrated in Figure 4.

For our next example, let Mi = S1 × S1 be the 2-torus, gi = i−1g0 ⊕ g0 and
pi = (p, q), where g0 is the usual metric on the circle. Observe that (Mi, gi) is the
torus with the product metric obtained by viewing the torus as a product of a circle
of radius 1/i with a circle of radius 1.

In this case the sectional curvature of (Mi, gi) is zero for any i. On the other
hand, the limit of this sequence of metrics is the degenerate metric 0 ⊕ g0. Hence
the limit of the Riemannian manifolds (in the appropriate sense) is a circle (see
Figure 6), which has a lower dimension than the spaces we considered. Note that
the volume of any ball of radius 1 in (Mi, gi) is proportional to i−1, hence non-
collapse condition is violated.

One of the major results of Perelman was that in the situation of the blow-up
limit of the previous section, i.e., when the metrics gi arise as rescalings at certain
times along the Ricci flow, the non-collapsing condition holds.

Suppose we choose xi to have maximal curvatures. If we rescale so that the
curvature at xi is 1, then the curvature everywhere is at most 1. Also (M, cig(ti))
satisfies the non-collapsing condition by Perelman. Hence, by the above we get
limiting Riemannian manifolds. Our rescaled manifolds are close to these limit-
ing manifolds which have, by the Hamilton-Ivey pinching estimate, non-negative
sectional curvature.

8. Perelman’s canonical neighbourhoods

Let us assume that we have a Ricci flow on a simply-connected, closed 3-manifold
with the curvature of the flow blowing up in finite time T . The results of the
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previous section can be summarized as follows: Consider a sequence of times ti

increasing to T and points xi of maximal curvature λi (at time ti). Rescaling g(ti)
by λi, we have seen that a subsequence of (M, λig(ti)) converges to a non-negatively
curved manifold. We recall that the only simply-connected non-negatively curved
manifolds in dimension 3 are R

3, S3 and S2×R, with a product metric in the third
case. Using this and other special properties of the limit, it can be proved that the
limiting manifold is “standard”. Hence, by definition of the limit manifold, it follows
that small neighbourhoods of the points xi are close to being “standard”. However,
this procedure does not work if we want to understand points with high curvature
which are not the maximal curvature points. The problem is that rescaling with
respect to these points does not give metrics with curvature bounded independent
of i.

A surprising and remarkable result of Perelman, which overcomes this difficulty
and can be considered to be one of the central results in his proofs is the canonical

neighbourhood theorem. This says that any point of high scalar curvature has a
canonical neighbourhood which is a Riemannian manifold with metric very simi-
lar to a spherical space form or a neck S2 × I or is a so called ε-cap. If M is
simply-connected, the spherical space form must be a sphere and the ε-cap must
be diffeomorphic to a 3-dimensional ball.

This result is surprising in many ways. Normally, by the kind of rescaling argu-
ment sketched above, we can study a neighbourhood of a point of maximal curva-
ture. However, one expects that near points of high (but not maximal) curvature,
there are nearby points where the curvature is much higher.

Thus, in general one expects the structure of curvature to be like a fractal, with
peaks of many scales. Further, even very small regions of high curvature may have
non-trivial topology and geometry. This is because, for any closed manifold, we can
rescale the metric to make the diameter very small, at the cost of making curvature
high.

One can view this in the more general context of complex systems arising from
reaction-diffusion equations, of which the Ricci flow is a typical case. Typically,
one gets a variety of behaviour at various scales emerging from the system. Hence
it may be of considerable value to understand why this does not happen in the case
of Ricci flow in dimension 3.

The proof of the canonical neighbourhood theorem is a subtle argument which
again involves taking limits of Riemannian manifolds, among other things. A rough
sketch is given in Section 12.

9. Outline of the proof

We are now in a position to outline the proof of the Poincaré conjecture. Consider
a simply-connected 3-manifold M with a Riemannian metric on it. We evolve this
along the Ricci flow for the largest interval [0, T ) on which the flow is defined.

As a special case of the finite extinction property, whose proof we sketch below,
T must be finite. Thus, for some finite T , as we approach T the scalar curvature
goes to infinity on a subset of M .

Consider the subset Ωρ of M where the curvature is bounded by a large number
ρ for all t ∈ [0, T ) i.e., let Ωρ = {x ∈ M |R(x, t) ≤ ρ for all t}. We choose ρ large
enough that points of curvature greater than ρ have a canonical neighbourhood.
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Neck with Cap

Surgered Manifold

Neck

Figure 8. Surgery

For a time t close to T , the canonical neighbourhood theorem holds for the
complement N of the interior of Ωρ. Thus, every point in this complement has a
neighbourhood that is a neck, a cap or diffeomorphic to a sphere. Putting these
neighbourhoods together, we get either a sphere or a manifold diffeomorphic to
S2 × [−1, 1] (which is a union of several necks) which may have a cap attached at
one or both ends. Topologically in each of these cases we obtain a sphere, a ball, or
S2 × [−1, 1]. It follows in particular that the boundary of Ωρ consists of 2-spheres.

If Ωρ is empty however large we choose ρ, in other words if the curvature blows-
up on the entire manifold M , then the above implies that M is diffeomorphic to
S3 and would be done.

Otherwise, we discard the set int(N) = M − Ωρ and we attach balls to each of
the boundary spheres of Ωρ to get a Riemannian manifold. This operation is called
surgery.

Now we continue to evolve the manifold, which now has several components,
by the Ricci flow. Once more, we evolve the metric along the Ricci flow till the
curvature blows up, and repeat the above surgery procedure. Note that as we flow a
component in the above process, either the curvature blows up everywhere or necks
are formed. In the former case, we know that the component is a sphere. Such
components are said to become extinct, and we continue the Ricci flow without
them. In this case, the surgery is viewed as deleting the component.

Thus, we can inductively define the process called Ricci flow with surgery (see
Figure 8). We need technical results that say that all the properties that we have
for the ordinary Ricci flow hold for Ricci flow with surgery. We also need a result
saying that in any finite time interval only finitely many surgeries are required to
show that Ricci flow with surgery can be defined for all positive times.

A result of Perelman (for which a simpler and more elegant proof was provided
by Colding and Minicozzi [2]) says that if the manifold M is simply-connected, then
all the components of the Ricci flow with surgery become extinct in finite time. This
is proved by considering a geometric quantity called the waist and showing that it
goes to zero in finite time.
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Thus, the above process becomes extinct in finite time. If we view this process
backwards from the extinction time, we see that either spheres are created (the
opposite of extinction) or two components are connected by a tube (the opposite of
surgery). It is easy to see that the result after finitely many such steps is a collection
of spheres. Thus, the manifold M we started with must have been a sphere.

In the rest of the paper we sketch some of the techniques involved in proving the
results mentioned.

10. Perelman’s entropy functional

Up to the work of Perelman, it was not even known that there were no non-trivial
periodic orbits for the Ricci flow, i.e., where the initial metric is not a soliton, but
after flowing according to the Ricci flow for a finite time, one ends up with the
metric isometric to the one started with up to scaling. Periodic orbits can occur for
arbitrary smooth flows, but not gradient flows of a function as the function must
decrease along the gradient flow.

One of the first constructions of Perelman was that of an entropy functional, with
the Ricci flow being the gradient flow of the negative of this entropy up to change
of coordinates (i.e., up to a diffeomorphism). This was used to rule out periodic
orbits for the Ricci flow. The entropy and its extensions were used to prove many
results, including the non-collapsing results.

To construct the entropy, one starts with a manifold M with a fixed volume

element (technically, a smooth measure) dV0 on it. In local coordinates, this means
that we are given a positive density function ρ0 so that the volume of a region is
defined to be the integral of ρ0 on the region.

Any Riemannian metric g has a volume element dVg associated with it, with
density in local coordinates det(gij). We can find a function f such that dV =
efdV0. Given this, Perelman defines an entropy functional by

∫

R + ‖∇f‖2

As mentioned above, the Ricci flow is, up to change of coordinates, the gradient
flow of the negative of the entropy. Thus entropy increases along the Ricci flow,
ruling out periodic orbits. Note that as we have to rule out periodic orbits up to
scaling, there are additional arguments needed.

Further conclusions can be obtained by using the freedom in choosing the mea-
sure dV0. For instance, we take dV0 to be concentrated near a point x in M . If
(M, g(t)), rescaled to make the curvature bounded at x, collapses near x, then one
can show that the entropy must go to zero. But this contradicts the result that the
entropy is increasing, proving non-collapsing.

There is plenty of speculation as to the meaning of entropy, but we confine
ourselves to quoting some perceptive remarks of Mike Anderson. Observe that there
are Ricci flows along which the geometry of the manifold does not change, namely,
the Ricci solitons. Further, for so called gradient Ricci solitons, the metric along the
Ricci flow is fixed up to scaling and volume preserving change of coordinates. Thus,
the entropy must be constant for such flows, i.e., these must be critical points for
the entropy. A calculation shows that the the critical points of the above functional
are precisely the gradient Ricci solitons.
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11. Parabolic rescaling and asymptotic solitons

Consider now the situation where the curvature blows up at time T . We have
seen that by rescaling by the maximal scalar curvature we can get limiting manifolds
of positive curvature. One can do better than this – by rescaling time as well, we
get a new solution to the Ricci flow equation on a large interval. By shifting in
time, we can take this to be an interval of the form [−A, 0], with A large. This
process is called parabolic rescaling.

More precisely, let g(t) be a Ricci flow for t ∈ [0, T ). Given a scaling factor λ > 0
and a time τ ∈ [0, T ), we can define a new Ricci flow on the interval [−λτ, λ(T −τ)]
by

g̃(t) = λ g(τ +
t

λ
).

For the rescalings that we consider, λ is the maximum of sectional curvature at time
τ and [0, T ) will be the maximal interval of definition of the flow. Since T < ∞, we
know that λ → ∞.

Similar to the theorem guaranteeing the existence of limits of Riemannian man-
ifolds, Hamilton proved a convergence theorem for manifolds with Ricci flows. In
particular, we can consider limit points of the sequence of parabolically rescaled
flows. These limits will then be what Perelman calls κ-solutions, i.e., solutions to
the Ricci flow equation defined on (−∞, 0] of non-negative curvature which satisfy
a non-collapsing condition.

In order to understand κ-solutions (M, h(t)), Pereleman showed that we can
associate an asymptotic soliton to such a solution. This is done as follows: Take
an appropriate sequence of points qk and times tk → −∞ and parabolically rescale
(M, h(t)) by λ = t−1

k . These rescaled flows can be shown to converge to a soliton
with special properties. Perelman then proved that the only such solitons are the
standard flow on S2×R or a quotient of S3 using non-negativity of curvature as well
as properties deduced by an analysis of the entropy functional. This classification
of asymptotic solitons leads to the required understanding of κ-solutions.

As a consequence, one obtains a canonical neighbourhood theorem for κ-solutions,
i.e., one obtains a neighbourhood U of x and a time interval (t1, t2) such that the
Ricci flow on U × (t1, t2) is close to the usual flow on S2 × R or S3 or an ε-cap.

Further, Perelman obtains an important technical result which gives a control
on the oscillation of the scalar curvature for such canonical neighbourhoods. This
plays a crucial role in proving the canonical neighbourhood theorem for points of
high (but not maximal) curvature.

12. Points of high scalar curvature

For points of maximal scalar curvature, we can parabolically rescale to get a
limiting κ-solution. By the above, these points have canonical neighbourhoods.

To proceed further, i.e., to deal with points of high curvature which may not be
maximal curvature points, Perelman uses an ingenious inductive argument. A point
is said to be good if it satisfies the canonical neighbourhood theorem. Perelman
considers a sequence of ‘maximally bad points’ yi, more precisely, bad points yi with
scalar curvature Ri so that any point with scalar curvature at least 2Ri a good point.
Then he considers a ball of some fixed radius ρ in the metric gi rescaled so that the
scalar curvature at yi becomes 1.
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As yi is in general not a point of maximal curvature, there may be points where
the curvature is larger than 1 in the rescaled metric. However, Perelman gives an
elegant argument to show that the curvature is bounded in balls of fixed size ρ
(with respect to gi) centered at yi. Observe that any bad point automatically has
curvature bounded by 2, while the curvature in the neighbourhood of a good point
does not oscillate by much, as remarked at the the end of the last section. So if ρ
is small enough it is easy to conclude that neither good points nor bad points have
curvature above 4 in the rescaled metric.

As we have a bound on the curvature, one can consider the limit of the Riemann-
ian metrics on some ball of size ρ. Finally, Perelman considers the largest such ρ
and shows that it must be infinite, i.e., we have a parabolic limit as with points of
maximal curvature, allowing one to prove the canonical neighbourhood theorem.
This is a geometric argument involving the theory of Alexandrov spaces with cur-
vature bounded below. We shall not enter into the details but confine ourself to the
remark that the result used there is one which rules out behaviour at many scales.

13. Concluding remarks

The value of a mathematical theorem in Science and Engineering often lies not
just in its statement but in the ideas that are developed in the course of proving the
theorem. In this respect, Perelman’s (and Hamilton’s) work is very rich in ideas
which, when digested, may have consequences in a wide range of subjects outside
mathematics.

A recent instance of this is the phenomenon of bubbling or energy concentration,
first discovered while studying minimal surfaces. This has now become the heart
of non-linear analysis with an enormous range of applications.

In the case of Perelman’s work and the Hamilton programme, there are at least
two sets of ideas which may be fundamental elsewhere. The first set are those
deduced from Hamilton’s maximal principles and Perelman’s entropy functional.
These are true for the Ricci flow in all dimensions, and perhaps for a wide range of
systems.

The second set of ideas which involve Perelman’s constructions together with
non-negative curvature show that the Ricci flow in dimension three does not show
certain kinds of complex behaviour. As is well known, the non-negativity of the
curvature is a dynamical property amounting to saying that the geodesic flow is not
chaotic (i.e., does not depend sensitively on initial conditions). One may speculate
that the ideas that went into studying the Ricci flow would give some insight into
when a system exhibits complex behaviour.
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[8] G. Perelman The entropy formula for the Ricci flow and its geometric application,

math.DG/0211159.
[9] G. Perelman Ricci flow with surgery on three-manifolds, math.DG/0211159.

[10] G. Perelman Finite extinction time for the solutions to the Ricci flow on certain three-

manifolds, math.DG/0211159.
[11] W. P. Thurston Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull.

Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357-381.

Department of Mathematics, Indian Institute of Science, Bangalore 560012

E-mail address: gadgil@math.iisc.ernet.in

E-mail address: harish@math.iisc.ernet.in


