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what is a Homogeneous operator?

Let D⊂ C, be the unit disc. The group

G0 := SU(1,1) =
{(

a b
b̄ ā

)
:| a |2 − | b |2= 1

}
acts on D : z 7→ az+b

b̄z+ā . The Möbius Group G is the group
G0/{±I}. It is the group of holomorphic automorphism of D.

Definition
A bounded operator T on a Hilbert space H is homogeneous if the
spectrum σ(T) is contained in the closed unit disc D̄ and for every
g ∈ G, there exists a unitary Ug such that

g(T) = U−1
g TUg.
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kernel function

All Hilbert spaces H are assumed to be spaces of holomorphic
functions f : D→ V taking their values in a finite dimensional
Hilbert space V and possessing a reproducing kernel K.

A reproducing kernel is a function K : D×D→ Hom(V,V)
holomorphic in the first variable and anti-holomorphic in the
second, such that Kwζ defined by (Kwζ )(z) := K(z,w)ζ is in
H for each w ∈ D, ζ ∈ V, and

〈f ,Kwζ 〉H = 〈f (w),ζ 〉V
for all f ∈H .

As is well known, if {en}∞
n=0 is any orthonormal basis of H ,

then we have

K(z,w) =
∞

∑
n=0

en(z)en(w)∗

with the sum converging pointwise.
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cocycle

We will be concerned with multiplier representations of the
universal cover G̃ on the Hilbert space H . A cocycle is a
continuous function J : G̃×D→ Hom(V,V), holomorphic on
D, such that

J(gh,z) = J(h,z)J(g,hz)

for all g,h ∈ G̃ and z ∈ D. For g ∈ G̃, we define U(g) on
Hol(D,V) by

(U(g)f )(z) = J(g−1,z)f (g−1(z)).

It is easy to see that the cocycle identity is equivalent to
U(gh) = U(g)U(h).
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multiplier representations

Suppose that the action g 7→ U(g), g ∈ G̃, preserves H and is
unitary on it, then we say that U is a multiplier representation of
G̃.

Also, if the reproducing kernel K transforms according to the
rule

J(g,z)K(g(z),g(w))J(g,w)∗ = K(z,w)

for all g ∈ G̃; z,w ∈ D, then we say that K is quasi-invariant.

Proposition
Suppose H has a reproducing kernel K. Then the multiplier
representation U defined using J is unitary if and only if K is
quasi-invariant.
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construction of homogeneous operators

Let H be a space of functions, say, on the unit disc or the unit
circle. Suppose that

the operator T defined by the rule (Tf )(z) = zf (z), f ∈H is
bounded and that

there is a multiplier representation, say U, of the group G on
the Hilbert space H

then the operator T is homogeneous and U is the associated
representation.
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discrete series representations of Möb

Holomorphic Discrete Series: Fix a real λ > 0. The group G̃
acts on the Hilbert space A(λ )(D) , usually called the weighted
Bergman space, which is a space of holomorphic functions on D
with reproducing kernel (1− zw̄)−2λ via the cocycle (g′)λ .
This action is the Discrete representation D+

λ
of the group G̃.

The operator M(λ ) of multiplication by the coordinate function
z on the Hilbert space A(λ )(D) is homogeneous with the
associated representation D+

λ
.

This is the unilateral shift with weight sequence
√

n+1
n+λ

is
homogeneous.
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the Cowen-Douglas class

Definition
A bounded operator T on a Hilbert space H is said to be in the
Cowen - Douglas class of the domain Ω⊆ C if its eigenspaces
Ew, w ∈Ω are of constant finite dimension.

Cowen and Douglas show that E ⊆Ω×H with fiber Ew is a
holomorphic Hermitian vector bundle,
isomorphism classes of E correspond to unitary equivalence
classes of T ,
E is irreducible as a holomorphic Hermitian vector bundle if and
only if T is irreducible.

Important to note here is that E has a reproducing kernel.
Indeed, evw : H → E∗w induced by the map f 7→ 〈f , ·〉 is
continuous and hence K(z,w) = ev∗w ◦ evz is a reproducing
kernel for E∗ .
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trivialization

Here we will always use trivialization of the bundles with standard
Euclidean inner product. The Hilbert space H ⊆ Hol(Ω,Cn) has a
reproducing kernel Kw(z) : Cn→ Cn such that

〈f ,Kwξ 〉= 〈f (w),ξ 〉, f ∈H , ξ ∈ Cn.

The operators in the Cowen-Douglas class can be realized as the
adjoint of the multiplication operator M defined by (Mf )(z) = zf (z)
on a Hilbert space with holomorphic functions possessing a
reproducing kernel.

Theorem
An operator T in the Cowen-Douglas class is homogeneous if and
only if the corresponding holomorphic Hermitian bundle E is
homogeneous under G̃ .
Goal: Describe all homogeneous holomorphic Hermitian vector
bundles!



trivialization

Here we will always use trivialization of the bundles with standard
Euclidean inner product. The Hilbert space H ⊆ Hol(Ω,Cn) has a
reproducing kernel Kw(z) : Cn→ Cn such that

〈f ,Kwξ 〉= 〈f (w),ξ 〉, f ∈H , ξ ∈ Cn.

The operators in the Cowen-Douglas class can be realized as the
adjoint of the multiplication operator M defined by (Mf )(z) = zf (z)
on a Hilbert space with holomorphic functions possessing a
reproducing kernel.

Theorem
An operator T in the Cowen-Douglas class is homogeneous if and
only if the corresponding holomorphic Hermitian bundle E is
homogeneous under G̃ .
Goal: Describe all homogeneous holomorphic Hermitian vector
bundles!



trivialization

Here we will always use trivialization of the bundles with standard
Euclidean inner product. The Hilbert space H ⊆ Hol(Ω,Cn) has a
reproducing kernel Kw(z) : Cn→ Cn such that

〈f ,Kwξ 〉= 〈f (w),ξ 〉, f ∈H , ξ ∈ Cn.

The operators in the Cowen-Douglas class can be realized as the
adjoint of the multiplication operator M defined by (Mf )(z) = zf (z)
on a Hilbert space with holomorphic functions possessing a
reproducing kernel.

Theorem
An operator T in the Cowen-Douglas class is homogeneous if and
only if the corresponding holomorphic Hermitian bundle E is
homogeneous under G̃ .
Goal: Describe all homogeneous holomorphic Hermitian vector
bundles!



construction of the cocycles

Let
(
(A(λ )(D),(1− zw̄))−2λ

)
be the weighted Bergman space.

This is homogeneous under the multiplier
(
g′
)λ for the G̃

action. Let A(η) =⊕m
j=0djA(η+j).

Given η > 0 and Y = (Y1, . . . ,Ym), where Yj is a dj×dj

complex matrix, define

(
Γ
(Y,η)fj

)
`
=

{
1

(`−j)!
1

(2η+2j)`−j
Y` · · ·Yj+1D`−jfj if `≥ j

0 if ` < j
.

Let H (Y,η) denote the image of Γ(Y,η) in the space of
holomorphic functions Hol(D,Cn). Define a Hilbert space
structure on H (Y,η) by stipulating Γ(Y,η) to be unitary. We
thus have a reproducing kernel Hilbert space.
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the intertwining

Transfer the natural G̃ - action on A(η) =⊕m
j=0njA(η+j) to

H (Y,η). This actions lifts to a multiplier representation on
H (Y,η) with multiplier J(Y,η)

g (z) = Dg(z)exp(−cY)Dg(z),
where Dg(z) is the diagonal matrix with
Dg(z)j,j = (cz+d)−

j
2 Idj

.

The reproducing kernel for K(Y,η)(z,w) for the Hilbert space
H (Y,η) is of the form J(Y,η)

g (z)K(0,0)J(Y,η)
z

∗
with

K(λ ,η)(0,0)`,` =
`

∑
j=0

1
(`− j)!

1
(2η +2j)`+j

Y` · · ·Yj+`Y∗j+` · · ·Y∗` .

Theorem
These are all the homogeneous holomorphic vector bundles with a
reproducing kernel.
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Thank you!
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