Homogeneous Vector Bundles and intertwining Operators for Symmetric Domains

Gadadhar Misra

Indian Institute of Science Bangalore (joint with A. Korányi and H. Upmeier)

Geometry of Banach Spaces and Operator Theory March 27, 2015

what is a Homogeneous operator?

Let $\mathbb{D} \subset \mathbb{C}$, be the unit disc. The group

$$G_0 := SU(1,1) = \left\{ \begin{pmatrix} a & b \\ \bar{b} & \bar{a} \end{pmatrix} : |a|^2 - |b|^2 = 1 \right\}$$

acts on $\mathbb{D}: z \mapsto \frac{az+b}{bz+\bar{a}}$. The Möbius Group *G* is the group $G_0/\{\pm I\}$. It is the group of holomorphic automorphism of \mathbb{D} .

Definition

A bounded operator T on a Hilbert space \mathscr{H} is homogeneous if the spectrum $\sigma(T)$ is contained in the closed unit disc \mathbb{D} and for every $g \in G$, there exists a unitary U_g such that

 $g(T) = U_g^{-1} T U_g$

what is a Homogeneous operator?

Let $\mathbb{D} \subset \mathbb{C}$, be the unit disc. The group

$$G_0 := SU(1,1) = \left\{ \begin{pmatrix} a & b \\ \bar{b} & \bar{a} \end{pmatrix} : |a|^2 - |b|^2 = 1 \right\}$$

acts on $\mathbb{D}: z \mapsto \frac{az+b}{bz+\bar{a}}$. The Möbius Group *G* is the group $G_0/\{\pm I\}$. It is the group of holomorphic automorphism of \mathbb{D} .

Definition

A bounded operator T on a Hilbert space \mathscr{H} is homogeneous if the spectrum $\sigma(T)$ is contained in the closed unit disc $\overline{\mathbb{D}}$ and for every $g \in G$, there exists a unitary U_g such that

 $g(T) = U_g^{-1} T U_g$

what is a Homogeneous operator?

Let $\mathbb{D} \subset \mathbb{C}$, be the unit disc. The group

$$G_0 := SU(1,1) = \left\{ \begin{pmatrix} a & b \\ \bar{b} & \bar{a} \end{pmatrix} : |a|^2 - |b|^2 = 1 \right\}$$

acts on $\mathbb{D}: z \mapsto \frac{az+b}{\bar{b}z+\bar{a}}$. The Möbius Group *G* is the group $G_0/\{\pm I\}$. It is the group of holomorphic automorphism of \mathbb{D} .

Definition

A bounded operator T on a Hilbert space \mathscr{H} is homogeneous if the spectrum $\sigma(T)$ is contained in the closed unit disc $\overline{\mathbb{D}}$ and for every $g \in G$, there exists a unitary U_g such that

 $g(T) = U_g^{-1}TU_g.$

kernel function

All Hilbert spaces \mathscr{H} are assumed to be spaces of holomorphic functions $f: \mathbb{D} \to V$ taking their values in a finite dimensional Hilbert space V and possessing a reproducing kernel K. A reproducing kernel is a function $K: \mathbb{D} \times \mathbb{D} \to \text{Hom}(V, V)$ holomorphic in the first variable and anti-holomorphic in the second, such that $K_w \zeta$ defined by $(K_w \zeta)(z) := K(z, w)\zeta$ is in \mathscr{H} for each $w \in \mathbb{D}, \zeta \in V$, and

 $\langle f, K_w \zeta \rangle_{\mathscr{H}} = \langle f(w), \zeta \rangle_V$

for all $f \in \mathscr{H}$.

As is well known, if $\{e_n\}_{n=0}^{\infty}$ is any orthonormal basis of \mathcal{H} , then we have

$$K(z,w) = \sum_{n=0}^{\infty} e_n(z) e_n(w)^*$$

with the sum converging pointwise.

All Hilbert spaces \mathscr{H} are assumed to be spaces of holomorphic functions $f: \mathbb{D} \to V$ taking their values in a finite dimensional Hilbert space V and possessing a reproducing kernel K. A reproducing kernel is a function $K: \mathbb{D} \times \mathbb{D} \to \text{Hom}(V, V)$ holomorphic in the first variable and anti-holomorphic in the second, such that $K_w \zeta$ defined by $(K_w \zeta)(z) := K(z, w) \zeta$ is in \mathscr{H} for each $w \in \mathbb{D}, \zeta \in V$, and

$$\langle f, K_w \zeta \rangle_{\mathscr{H}} = \langle f(w), \zeta \rangle_V$$

for all $f \in \mathscr{H}$.

As is well known, if $\{e_n\}_{n=0}^{\infty}$ is any orthonormal basis of \mathcal{H} , then we have

$$K(z,w) = \sum_{n=0}^{\infty} e_n(z) e_n(w)^*$$

with the sum converging pointwise.

All Hilbert spaces \mathscr{H} are assumed to be spaces of holomorphic functions $f: \mathbb{D} \to V$ taking their values in a finite dimensional Hilbert space V and possessing a reproducing kernel K. A reproducing kernel is a function $K: \mathbb{D} \times \mathbb{D} \to \text{Hom}(V, V)$ holomorphic in the first variable and anti-holomorphic in the second, such that $K_w \zeta$ defined by $(K_w \zeta)(z) := K(z, w) \zeta$ is in \mathscr{H} for each $w \in \mathbb{D}, \zeta \in V$, and

$$\langle f, K_w \zeta \rangle_{\mathscr{H}} = \langle f(w), \zeta \rangle_V$$

for all $f \in \mathcal{H}$.

As is well known, if $\{e_n\}_{n=0}^{\infty}$ is any orthonormal basis of \mathcal{H} , then we have

$$K(z,w) = \sum_{n=0}^{\infty} e_n(z) e_n(w)^*$$

with the sum converging pointwise.

We will be concerned with multiplier representations of the universal cover \tilde{G} on the Hilbert space \mathscr{H} . A cocycle is a continuous function $J: \tilde{G} \times \mathbb{D} \to \operatorname{Hom}(V, V)$, holomorphic on \mathbb{D} , such that

cocycle

J(gh,z) = J(h,z)J(g,hz)

for all $g,h \in \tilde{G}$ and $z \in \mathbb{D}$. For $g \in \tilde{G}$, we define U(g) on $Hol(\mathbb{D}, V)$ by

 $(U(g)f)(z) = J(g^{-1}, z)f(g^{-1}(z)).$

It is easy to see that the cocycle identity is equivalent to U(gh) = U(g)U(h).

We will be concerned with multiplier representations of the universal cover \tilde{G} on the Hilbert space \mathscr{H} . A cocycle is a continuous function $J: \tilde{G} \times \mathbb{D} \to \operatorname{Hom}(V, V)$, holomorphic on \mathbb{D} , such that

cocycle

J(gh,z) = J(h,z)J(g,hz)

for all $g,h \in \tilde{G}$ and $z \in \mathbb{D}$. For $g \in \tilde{G}$, we define U(g) on $Hol(\mathbb{D}, V)$ by

 $(U(g)f)(z) = J(g^{-1}, z)f(g^{-1}(z)).$

It is easy to see that the cocycle identity is equivalent to U(gh) = U(g)U(h).

Also, if the reproducing kernel K transforms according to the rule

 $J(g,z)K(g(z),g(w))J(g,w)^*=K(z,w)$

for all $g \in \tilde{G}$; $z, w \in \mathbb{D}$, then we say that *K* is quasi-invariant.

Proposition

Also, if the reproducing kernel K transforms according to the rule

 $J(g,z)K(g(z),g(w))J(g,w)^* = K(z,w)$

for all $g \in \tilde{G}$; $z, w \in \mathbb{D}$, then we say that *K* is quasi-invariant.

Proposition

Also, if the reproducing kernel K transforms according to the rule

 $J(g,z)K(g(z),g(w))J(g,w)^* = K(z,w)$

for all $g \in \tilde{G}$; $z, w \in \mathbb{D}$, then we say that *K* is quasi-invariant.

Proposition

Also, if the reproducing kernel K transforms according to the rule

 $J(g,z)K(g(z),g(w))J(g,w)^* = K(z,w)$

for all $g \in \tilde{G}$; $z, w \in \mathbb{D}$, then we say that *K* is quasi-invariant.

Proposition

the operator T defined by the rule $(Tf)(z) = zf(z), f \in \mathcal{H}$ is bounded and that

there is a multiplier representation, say U, of the group G on the Hilbert space \mathcal{H}

the operator T defined by the rule $(Tf)(z) = zf(z), f \in \mathcal{H}$ is bounded and that

there is a multiplier representation, say U, of the group G on the Hilbert space \mathcal{H}

the operator T defined by the rule $(Tf)(z) = zf(z), f \in \mathcal{H}$ is bounded and that

there is a multiplier representation, say U, of the group G on the Hilbert space \mathcal{H}

the operator T defined by the rule $(Tf)(z) = zf(z), f \in \mathcal{H}$ is bounded and that

there is a multiplier representation, say U, of the group G on the Hilbert space \mathcal{H}

Holomorphic Discrete Series: Fix a real $\lambda > 0$. The group \tilde{G} acts on the Hilbert space $\mathbb{A}^{(\lambda)}(\mathbb{D})$, usually called the weighted Bergman space, which is a space of holomorphic functions on \mathbb{D} with reproducing kernel $(1 - z\bar{w})^{-2\lambda}$ via the cocycle $(g')^{\lambda}$. This action is the Discrete representation D_{λ}^{+} of the group \tilde{G} .

The operator $M^{(\lambda)}$ of multiplication by the coordinate function z on the Hilbert space $\mathbb{A}^{(\lambda)}(\mathbb{D})$ is homogeneous with the associated representation D^+_{λ} .

This is the unilateral shift with weight sequence $\sqrt{\frac{n+1}{n+\lambda}}$ is homogeneous.

Holomorphic Discrete Series: Fix a real $\lambda > 0$. The group \tilde{G} acts on the Hilbert space $\mathbb{A}^{(\lambda)}(\mathbb{D})$, usually called the weighted Bergman space, which is a space of holomorphic functions on \mathbb{D} with reproducing kernel $(1 - z\bar{w})^{-2\lambda}$ via the cocycle $(g')^{\lambda}$. This action is the Discrete representation D_{λ}^{+} of the group \tilde{G} . The operator $M^{(\lambda)}$ of multiplication by the coordinate function z on the Hilbert space $\mathbb{A}^{(\lambda)}(\mathbb{D})$ is homogeneous with the associated representation D_{λ}^{+} .

This is the unilateral shift with weight sequence $\sqrt{\frac{n+1}{n+\lambda}}$ is homogeneous.

Definition

A bounded operator T on a Hilbert space \mathscr{H} is said to be in the Cowen - Douglas class of the domain $\Omega \subseteq \mathbb{C}$ if its eigenspaces $E_w, w \in \Omega$ are of constant finite dimension.

Cowen and Douglas show that $E \subseteq \Omega \times \mathscr{H}$ with fiber E_w is a holomorphic Hermitian vector bundle, isomorphism classes of E correspond to unitary equivalence

classes of T

E is irreducible as a holomorphic Hermitian vector bundle if and only if T is irreducible.

Definition

A bounded operator T on a Hilbert space \mathscr{H} is said to be in the Cowen - Douglas class of the domain $\Omega \subseteq \mathbb{C}$ if its eigenspaces $E_w, w \in \Omega$ are of constant finite dimension.

Cowen and Douglas show that $E \subseteq \Omega \times \mathscr{H}$ with fiber E_w is a holomorphic Hermitian vector bundle, isomorphism classes of E correspond to unitary equivalence classes of T, E is irreducible as a holomorphic Hermitian vector bundle if and only if T is irreducible.

Definition

A bounded operator *T* on a Hilbert space \mathscr{H} is said to be in the Cowen - Douglas class of the domain $\Omega \subseteq \mathbb{C}$ if its eigenspaces $E_w, w \in \Omega$ are of constant finite dimension.

Cowen and Douglas show that $E \subseteq \Omega \times \mathscr{H}$ with fiber E_w is a holomorphic Hermitian vector bundle,

isomorphism classes of E correspond to unitary equivalence classes of T,

E is irreducible as a holomorphic Hermitian vector bundle if and only if T is irreducible.

Definition

A bounded operator T on a Hilbert space \mathscr{H} is said to be in the Cowen - Douglas class of the domain $\Omega \subseteq \mathbb{C}$ if its eigenspaces $E_w, w \in \Omega$ are of constant finite dimension.

Cowen and Douglas show that $E \subseteq \Omega \times \mathscr{H}$ with fiber E_w is a holomorphic Hermitian vector bundle, isomorphism classes of *E* correspond to unitary equivalence classes of *T*,

E is irreducible as a holomorphic Hermitian vector bundle if and only if T is irreducible.

Definition

A bounded operator *T* on a Hilbert space \mathscr{H} is said to be in the Cowen - Douglas class of the domain $\Omega \subseteq \mathbb{C}$ if its eigenspaces $E_w, w \in \Omega$ are of constant finite dimension.

Cowen and Douglas show that $E \subseteq \Omega \times \mathscr{H}$ with fiber E_w is a holomorphic Hermitian vector bundle, isomorphism classes of E correspond to unitary equivalence classes of T, E is irreducible as a holomorphic Hermitian vector bundle if and only if T is irreducible.

Definition

A bounded operator *T* on a Hilbert space \mathscr{H} is said to be in the Cowen - Douglas class of the domain $\Omega \subseteq \mathbb{C}$ if its eigenspaces $E_w, w \in \Omega$ are of constant finite dimension.

Cowen and Douglas show that $E \subseteq \Omega \times \mathscr{H}$ with fiber E_w is a holomorphic Hermitian vector bundle, isomorphism classes of E correspond to unitary equivalence classes of T, E is irreducible as a holomorphic Hermitian vector bundle if and only if T is irreducible.

Here we will always use trivialization of the bundles with standard Euclidean inner product. The Hilbert space $\mathscr{H} \subseteq \operatorname{Hol}(\Omega, \mathbb{C}^n)$ has a reproducing kernel $K_w(z) : \mathbb{C}^n \to \mathbb{C}^n$ such that

 $\langle f, K_w \xi \rangle = \langle f(w), \xi \rangle, f \in \mathscr{H}, \xi \in \mathbb{C}^n.$

The operators in the Cowen-Douglas class can be realized as the adjoint of the multiplication operator M defined by (Mf)(z) = zf(z) on a Hilbert space with holomorphic functions possessing a reproducing kernel.

Theorem

An operator T in the Cowen-Douglas class is homogeneous if and only if the corresponding holomorphic Hermitian bundle E is homogeneous under \tilde{G} .

Goal: Describe all homogeneous holomorphic Hermitian vector bundles!

Here we will always use trivialization of the bundles with standard Euclidean inner product. The Hilbert space $\mathscr{H} \subseteq \operatorname{Hol}(\Omega, \mathbb{C}^n)$ has a reproducing kernel $K_w(z) : \mathbb{C}^n \to \mathbb{C}^n$ such that

 $\langle f, K_w \xi \rangle = \langle f(w), \xi \rangle, f \in \mathscr{H}, \xi \in \mathbb{C}^n.$

The operators in the Cowen-Douglas class can be realized as the adjoint of the multiplication operator M defined by (Mf)(z) = zf(z) on a Hilbert space with holomorphic functions possessing a reproducing kernel.

Theorem

An operator T in the Cowen-Douglas class is homogeneous if and only if the corresponding holomorphic Hermitian bundle E is homogeneous under \tilde{G} .

Goal: Describe all homogeneous holomorphic Hermitian vector bundles!

Here we will always use trivialization of the bundles with standard Euclidean inner product. The Hilbert space $\mathscr{H} \subseteq \operatorname{Hol}(\Omega, \mathbb{C}^n)$ has a reproducing kernel $K_w(z) : \mathbb{C}^n \to \mathbb{C}^n$ such that

 $\langle f, K_w \xi \rangle = \langle f(w), \xi \rangle, f \in \mathscr{H}, \xi \in \mathbb{C}^n.$

The operators in the Cowen-Douglas class can be realized as the adjoint of the multiplication operator M defined by (Mf)(z) = zf(z) on a Hilbert space with holomorphic functions possessing a reproducing kernel.

Theorem

An operator T in the Cowen-Douglas class is homogeneous if and only if the corresponding holomorphic Hermitian bundle E is homogeneous under \tilde{G} .

Goal: Describe all homogeneous holomorphic Hermitian vector bundles!

Let $((\mathbb{A}^{(\lambda)}(\mathbb{D}), (1-z\bar{w}))^{-2\lambda})$ be the weighted Bergman space. This is homogeneous under the multiplier $(g')^{\lambda}$ for the \tilde{G} action. Let $\mathbf{A}^{(\eta)} = \bigoplus_{j=0}^{m} d_{j} \mathbb{A}^{(\eta+j)}$. Given $\eta > 0$ and $Y = (Y_{1}, \dots, Y_{m})$, where Y_{j} is a $d_{j} \times d_{j}$

complex matrix, define

$$\left(\Gamma^{(Y,\eta)}f_{j}\right)_{\ell} = \begin{cases} \frac{1}{(\ell-j)!} \frac{1}{(2\eta+2j)_{\ell-j}} Y_{\ell} \cdots Y_{j+1} D^{\ell-j}f_{j} & \text{if } \ell \geq j\\ 0 & \text{if } \ell < j \end{cases}.$$

Let $\mathscr{H}^{(Y,\eta)}$ denote the image of $\Gamma^{(Y,\eta)}$ in the space of holomorphic functions $\operatorname{Hol}(\mathbb{D},\mathbb{C}^n)$. Define a Hilbert space structure on $\mathscr{H}^{(Y,\eta)}$ by stipulating $\Gamma^{(Y,\eta)}$ to be unitary. We thus have a reproducing kernel Hilbert space.

Let $((\mathbb{A}^{(\lambda)}(\mathbb{D}), (1-z\bar{w}))^{-2\lambda})$ be the weighted Bergman space. This is homogeneous under the multiplier $(g')^{\lambda}$ for the \tilde{G} action. Let $\mathbf{A}^{(\eta)} = \bigoplus_{j=0}^{m} d_j \mathbb{A}^{(\eta+j)}$. Given $\eta > 0$ and $Y = (Y_1, \dots, Y_m)$, where Y_j is a $d_j \times d_j$ complex matrix, define

$$\left(\Gamma^{(Y,\eta)}f_{j}\right)_{\ell} = \begin{cases} \frac{1}{(\ell-j)!} \frac{1}{(2\eta+2j)_{\ell-j}} Y_{\ell} \cdots Y_{j+1} D^{\ell-j}f_{j} & \text{if } \ell \geq j \\ 0 & \text{if } \ell < j \end{cases}.$$

Let $\mathscr{H}^{(Y,\eta)}$ denote the image of $\Gamma^{(Y,\eta)}$ in the space of holomorphic functions $\operatorname{Hol}(\mathbb{D},\mathbb{C}^n)$. Define a Hilbert space structure on $\mathscr{H}^{(Y,\eta)}$ by stipulating $\Gamma^{(Y,\eta)}$ to be unitary. We thus have a reproducing kernel Hilbert space.

Let $((\mathbb{A}^{(\lambda)}(\mathbb{D}), (1-z\bar{w}))^{-2\lambda})$ be the weighted Bergman space. This is homogeneous under the multiplier $(g')^{\lambda}$ for the \tilde{G} action. Let $\mathbf{A}^{(\eta)} = \bigoplus_{j=0}^{m} d_j \mathbb{A}^{(\eta+j)}$. Given $\eta > 0$ and $Y = (Y_1, \dots, Y_m)$, where Y_j is a $d_j \times d_j$ complex matrix, define

$$\left(\Gamma^{(Y,\eta)}f_{j}\right)_{\ell} = \begin{cases} \frac{1}{(\ell-j)!} \frac{1}{(2\eta+2j)_{\ell-j}} Y_{\ell} \cdots Y_{j+1} D^{\ell-j}f_{j} & \text{if } \ell \geq j \\ 0 & \text{if } \ell < j \end{cases}$$

Let $\mathscr{H}^{(Y,\eta)}$ denote the image of $\Gamma^{(Y,\eta)}$ in the space of holomorphic functions $\operatorname{Hol}(\mathbb{D},\mathbb{C}^n)$. Define a Hilbert space structure on $\mathscr{H}^{(Y,\eta)}$ by stipulating $\Gamma^{(Y,\eta)}$ to be unitary. We thus have a reproducing kernel Hilbert space.

Transfer the natural \tilde{G} - action on $\mathbf{A}^{(\eta)} = \bigoplus_{j=0}^{m} n_j \mathbb{A}^{(\eta+j)}$ to $\mathscr{H}^{(Y,\eta)}$. This actions lifts to a multiplier representation on $\mathscr{H}^{(Y,\eta)}$ with multiplier $J_g^{(Y,\eta)}(z) = D_g(z) \exp(-cY) D_g(z)$, where $D_g(z)$ is the diagonal matrix with $D_g(z)_{j,j} = (cz+d)^{-\frac{j}{2}} I_{d_j}$. The reproducing kernel for $K^{(Y,\eta)}(z,w)$ for the Hilbert space

 $\mathscr{H}^{(Y,\eta)}$ is of the form $J_g^{(Y,\eta)}(z)K(0,0)J_z^{(Y,\eta)*}$ with

$$K^{(\lambda,\eta)}(0,0)_{\ell,\ell} = \sum_{j=0}^{\ell} \frac{1}{(\ell-j)!} \frac{1}{(2\eta+2j)_{\ell+j}} Y_{\ell} \cdots Y_{j+\ell} Y_{j+\ell}^* \cdots Y_{\ell}^*.$$

Theorem

These are all the homogeneous holomorphic vector bundles with a reproducing kernel.

Transfer the natural \tilde{G} - action on $\mathbf{A}^{(\eta)} = \bigoplus_{j=0}^{m} n_j \mathbb{A}^{(\eta+j)}$ to $\mathscr{H}^{(Y,\eta)}$. This actions lifts to a multiplier representation on $\mathscr{H}^{(Y,\eta)}$ with multiplier $J_g^{(Y,\eta)}(z) = D_g(z) \exp(-cY) D_g(z)$, where $D_g(z)$ is the diagonal matrix with $D_g(z)_{j,j} = (cz+d)^{-\frac{j}{2}} I_{d_j}$. The reproducing kernel for $K^{(Y,\eta)}(z,w)$ for the Hilbert space $\mathscr{H}^{(Y,\eta)}$ is of the form $J_g^{(Y,\eta)}(z)K(0,0)J_z^{(Y,\eta)*}$ with

$$K^{(\lambda,\eta)}(0,0)_{\ell,\ell} = \sum_{j=0}^{\ell} \frac{1}{(\ell-j)!} \frac{1}{(2\eta+2j)_{\ell+j}} Y_{\ell} \cdots Y_{j+\ell} Y_{j+\ell}^* \cdots Y_{\ell}^*.$$

Theorem

These are all the homogeneous holomorphic vector bundles with a reproducing kernel.

Transfer the natural \tilde{G} - action on $\mathbf{A}^{(\eta)} = \bigoplus_{j=0}^{m} n_j \mathbb{A}^{(\eta+j)}$ to $\mathscr{H}^{(Y,\eta)}$. This actions lifts to a multiplier representation on $\mathscr{H}^{(Y,\eta)}$ with multiplier $J_g^{(Y,\eta)}(z) = D_g(z) \exp(-cY) D_g(z)$, where $D_g(z)$ is the diagonal matrix with $D_g(z)_{j,j} = (cz+d)^{-\frac{j}{2}} I_{d_j}$. The reproducing kernel for $K^{(Y,\eta)}(z,w)$ for the Hilbert space $\mathscr{H}^{(Y,\eta)}$ is of the form $J_g^{(Y,\eta)}(z)K(0,0)J_z^{(Y,\eta)*}$ with

$$K^{(\lambda,\eta)}(0,0)_{\ell,\ell} = \sum_{j=0}^{\ell} \frac{1}{(\ell-j)!} \frac{1}{(2\eta+2j)_{\ell+j}} Y_{\ell} \cdots Y_{j+\ell} Y_{j+\ell}^* \cdots Y_{\ell}^*.$$

Theorem

These are all the homogeneous holomorphic vector bundles with a reproducing kernel.

Thank you!

