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systems of imprimitivity

a topological group and Q2 C C™ be a G-space.

Suppose that
U:G — 7% () is a unitary representation of the group G on the
unitary operators acting on the Hilbert space .77’ and that
p: C(Q) = Z () is a * - homomorphism of the C* - algebra of
continuous functions C(Q) on the algebra . (.77) of all bounded
operators acting on the Hilbert space /7.

The triple (G, U, p) is said to be a system of imprimitivity if
p(g-f)=U(g)'p(fU(s).f € C(Q) g€,

where (g -f)(w) =f(g™"-w), w € Q.
The notion of imprimitivity was introduced by Mackey.
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examples of imprimitivity

roup G = Gy/{+I}, where

Gr=su)={ (5 2)ilaP+|sp=1].

acts naturally on the unit disc [D.

The map U : G — % (L*(D)) defined by (U,-1f)(z) = &' (z)f (g(2)) is
a unitary representation of the Mobius group.

The map p : C(D) — £ (L*(D)) defined by the formula p (f) = M is
a * - homomorphism.

The triple (G, p, U), with these choices, forms a system of
imprimitivity.
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a possible generalization

e start with a homomorphism of a function algebra rather
omorphism of a C* - algebra?

For instance, the multiplication operator on the Bergman space A%(ID)
— the Hilbert space of square integrable holomorphic functions on the
unit disc — defines a homomorphism of the disc algebra <7 (ID) by the
formula p(f) = My, f in &/ (D).

Like before, (U,-1f)(z) = ¢'(z)f (g(z)) defines a unitary
representation of the Mobius group on the Bergman space.

The algebra homomorphism p and the unitary representation U
satisfy the imprimitivity relation, that is,

U;:Mg—l(z)Ug =M,.

We say that the operator of multiplication by z on the Bergman space
A?(D) is homogeneous.
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Construction of Homogeneous operators

o on € J}, wheref, : T — T is the function f,,(z) = 7"
and J is some’subset of 7.

Declaring the vectors in the set [F(J) to be orthogonal, as soon as the
norms are prescribed, we can complete the linear span of the vectors
in IF(J) to form a Hilbert space, say .7 (/).

Forg e G,f € .#(J),z € T and complex parameters, A, (L, define

(Reu(&™))) (@) =@ |£Q) ¥ (Fogr) (2),
where g'(z)? 1= exp (410gg'(2))
There is no apriori guarantee that R, , is unitary (even bounded)! But
if R; ,, unitary, then it defines a projective unitary representation on
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Multiplier representations

n of the form R ,, : G — .7 (J),

(Or more generally, one of the form M 1. Rg, where My, is the
multiplication by J/, and R, is the composition by g with

Jon(2) = Jo(h(2))Jn(2).)

is said to be a multiplier representation.

Let .77 be a space of functions, say, on the unit disc or the unit circle.
Suppose the operator 7 defined by the rule (7f)(x) = xf(x),f € 7 is
bounded.

If there is a multiplier representation, say U, of the group G on the
Hilbert space .77 then the operator 7" is homogeneous and U is the
associated representation.
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Representations of Mob

Holomorphic Discrete Series:

54200 =07 =NU{0}, |[ful® = Bt 5™ ne .

The Hilbert space A+ )( ), usually called the weighted Bergman
space, is a space of holomorphic functions on D with reproducing
kernel (1 —ziw) %,

Anti-holomorphic Discrete Series: D) . This is easily obtained from
the holomorphic Discrete series. We have D) (g) := D; (g*), where
8" (z) = g(2).

Complimentary Series: C) 5, —1 <A <1,0< 0 <

1 o o |n\ 1 k+A/2+1/2—0
Y1) +0,7=7, |f|> =TI"5 m ez.

T

_l,s:iy,yER,u:%Jrs,J:Z, full = 1,n € Z.
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1 Seies Examples: These give the unweighted bi-lateral

shift!
The Discrete Series Examples: For any real A > 0, the unilateral shift
with weight sequence Zi)lt

(up to unitary equivalence, this is the operator M%) of multiplication
by the coordinate function z on the Hilbert space A*) (D))

is homogeneous.

The Complimentary Series Examples: The bi-lateral shift K, , with

weight sequence , / %v 0 < a < b < 1 are homogeneous. This is easy
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Examples

1 Seies Examples: These give the unweighted bi-lateral

shift!
The Discrete Series Examples: For any real A > 0, the unilateral shift
with weight sequence :LIL

(up to unitary equivalence, this is the operator M%) of multiplication
by the coordinate function z on the Hilbert space A*) (D))

is homogeneous.

The Complimentary Series Examples: The bi-lateral shift K, , with

weight sequence  / %Z? 0 < a < b < 1 are homogeneous. This is easy

to see by considering the Complimentary Series with
A=a+b—1,0=(b—a)/2.

One other Example: The bi-lateral shift with 1 except in any one slot,
where it is allowed to be any complex number. m
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Block shifts

U, such that K > k > Uy is a representation of K C G,
the rotation group. Write Ky for z — ¢/, If

H(n)={xeH: Ux=e""10y},

then 7 : 5¢(n) — ¢ (n+ 1) is a block shift.

A complete classification of these for dim.7"(n) < | was obtained in
[1] using the representation theory of G. First examples for

dim .77 (n) = 2 appeared in [3]. Recently [2], a m - parameter family
of examples with dim .77 (n) = m was constructed. This leads to a
compleet classification of the homogeneous operators in the Cowen -
Douglas class.
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Holomorphic Hermitian vector bundles

rator 7 on a Hilbert space .77 is said to be in the
Cowen - Douglas class of the domain Q C C if its eigenspaces
E,,, w € Q are of constant finite dimension.

Cowen and Douglas show that £ C Q x 7 with fiber E,, is a
holomorphic Hermitian vector bundle,

isomorphism classes of £ correspond to unitary equivalence
classes of 7',

E is irreducible as a holomorphic Hermitian vector bundle if and
only if 7 is irreducible.

Important to note here is that £ has a reproducing kernel. Indeed,
ev,, : ## — E; induced by the map / — (f,-) is continuous and hence ¢
K(z,w) = ev; oev, is a reproducing kernel for E*. e
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Reproducing Kernel

ill always use trivialization of the bundles with standard
Euclidea er product. The Hilbert space .77” C Hol(Q,C") has a
reproducing Kernel K, (z) : C" — C” such that

<vaW§> = <f(w)7§>7f€ "%076 eC".

The operators in the Cowen-Douglas class can be realized as the
adjoint of the multiplication operator M defined by (Mf)(z) = zf(z)
on a Hilbert space with holomorphic functions possessing a
reproducing kernel.

Theorem

An operator T in the Cowen-Douglas class is homogeneous if and
only if the corresponding holomorphic Hermitian bundle E is
homogeneous under G.
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How do we do it?

For 1 and 2, classic method of holomorphic induction applies.

The holomorphic induction, in this case, involves finite dimensional
representations of the Lie algebra of triangular matrices which are in
one - one correspondence with holomorphic homogeneous vector
bundles
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variant Hermitian structures on the homogeneous
holomorphi@vector bundle (making it into a homogeneous
holomorphic’Hermitian vector bundle), if they exist, are given by
p () - invariant inner products on the representation space.

An inner product is p () - invariant if and only if p () is diagonal
with real diagonal elements in an appropriate basis.

We will be interested only in bundles with a Hermitian structure. So,
we will assume without restricting generality, that the representation
space of p is C" and that p (/) is a real diagonal matrix.
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ce [p(h). p(y)] = —p(y), we have p(y)V; € V;_, where
EeC:p(h)§ =A&}. Hence (p,C") is (always orthogonal!)
m:
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the cocycle

The sections of homogeneous holomorphic vector bundle £ are
holomorphic functions I) — C”. The G action is given by

fios Jéf [V (fog ") with multiplier

() (e’ (@)D T Yy Yo if p2

@) = { N A

a b
Whereg:(c ),cg:c.



Hermitian structure

tructure appears as an inner product (-, -), on C" for
e can write

(§,€). = (H(2)$,£), with H(z) - 0.

each z € ID.




Hermitian structure

A Hermi
each z € ID.

tructure appears as an inner product (-, -), on C" for
e can write

(C,E), = (H(z)C,E), with H(z) > 0.

We have homogeneity of the holomorphic Hermitian vector bundle if
and only if

Jo(2)H(g-2) U, (2)* =H(z)7", forallze D, g € G.

Let (E(MY) ,H) be the holomorphic Hermitian with Hermitian
Structure H > 0.
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There are equivalences: (EY) H) ~ (EMY) H')if Y/ = AYA™!,
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Hermitian structure

There are equivalences: (E(TY) H) ~ (EMY) H')if Y/ = AYA™,
H' = A"~ HA with block-diagonal A.

Hence each class has a representative (E-Y)_I). The classes can be
parametrized as "), with Y] the equivalence class under
block-diagonal unitary conjugation.

Theorem
We have EY) = EX') if and only if 1 =0’ and Y' = AYA™" with a
block diagonal matrix A.

o
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basic question

When there is a reproducing kernel?

If there is one, it gives a canonical Hermitian structure by setting

H(z) =K(z,2)~".

Letp, = ———
P = 7 (

we have

) €G.50p. 0=z Witing /" for J ™ (2),

21—

*

K(z9) =1 "K(0,07""

So, the question is only: what can K(0,0) be?
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construction of the reproducing kernel

e Hilbert space of holomorphic functions on the unit

ducing kernel (1 —ziw))~>*. This is homogeneous
under the multiplier g’ * for the G action.

Let AN = @j’?;()njA(””). For Y as before and 11 > 0, define

disc with re

1 1 v nl—ir :
(F(y:ﬂ)ﬁ)g = { (=)t 2n+2))-; Yo YDy ¥ l2]

0 ife<j

Let .2(") denote the image of I in the space of holomorphic
functions Hol(DD, C").

Define a Hilbert space structure on .72"("-) by stipulating I'"*") to be
unitary. We thus have a reproducing kernel Hilbert space.

p e
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s lifts to a multiplier representation on .7"") with
YJI) (
2).



er the natural G - action on AT = &7, AT to 71,

The reproducing kernel for K7 (z,w) for the Hilbert space .7#"-)
is of the form Jéy‘m (z)K(0, O)J(Y’n) with

<

moq 1
K*M(0,0),, = : Yy Yi Y, Y
0= YT m T gy ¢ Wi i

Theorem

These are all the homogeneous holomorphic vector bundles with a
reproducing kernel.
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intertwining operator from (some) A" to our Hilbert space.



Proof

Given any holomorphic homogeneous Hermitian vector bundle
(assume irreducible), as a holomorphic homogeneous vector bundle it
is of the form E("-Y)_ Since it has a reproducing kernel, the G— action
on it is unitary.

One can see that this unitary representation is a sum @Uj(nﬂ ) ® I, of
irreducible discrete series representations. So there exists some
intertwining operator from (some) A" to our Hilbert space.

An application of Schur’s Lemma gives that 3 N > 0 such that F/(VWY)
is this intertwining operator.

&
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omorphic homogeneous Hermitian vector bundles, we had the



omorphic homogeneous Hermitian vector bundles, we had the

Theorem
EMM) jsq holomorphic homogeneous Hermitian vector bundle if

and only if 1 > 0 and

Jj—1 (_1}/‘+k71
I-Y; )/j,l...YkHY,jH...Yj,l YJ*

;)U—k)!(2n+j+k—1)j_k

Y;>0,1<j<m

S



main theorem

Theorem

All the homogeneous holomorphic Hermitian vector bundles with a
reproducing kernel correspond to homogeneous operators in the
Cowen — Douglas class. The irreducible ones are the adjoint of the
multiplication operator M on the space 7" for some n >0 and
irreducible Y. The block matrix Y is determined up to conjugacy by
block diagonal unitaries.
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Thank you!
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