Classification of homogeneous operators in the Cowen-Douglas class

Gadadhar Misra

Indian Institute of Science Bangalore (joint with A. Korányi)

Indo-Spanish Conference on Geometry and Analysis ICMAT, Madrid September 11, 2012

• Let *G* be a topological group and $\Omega \subseteq \mathbb{C}^m$ be a *G*-space.

• Suppose that

 $U: G \to \mathcal{U}(\mathscr{H})$ is a unitary representation of the group G on the unitary operators acting on the Hilbert space \mathscr{H} and that $\rho: \mathbb{C}(\Omega) \to \mathscr{L}(\mathscr{H})$ is a * - homomorphism of the \mathbb{C}^* - algebra of continuous functions $\mathbb{C}(\Omega)$ on the algebra $\mathscr{L}(\mathscr{H})$ of all bounded operators acting on the Hilbert space \mathscr{H} .

• The triple (G, U, ρ) is said to be a system of imprimitivity if

 $ho(g\cdot f)=U(g)^*
ho(f)U(g), f\in \mathbb{C}(\Omega),g\in G,$

where $(g \cdot f)(w) = f(g^{-1} \cdot w), w \in \Omega$.

- Let *G* be a topological group and $\Omega \subseteq \mathbb{C}^m$ be a *G*-space.
- Suppose that

 $U: G \to \mathscr{U}(\mathscr{H})$ is a unitary representation of the group *G* on the unitary operators acting on the Hilbert space \mathscr{H} and that $\rho: C(\Omega) \to \mathscr{L}(\mathscr{H})$ is a \ast -homomorphism of the *C* - algebra of continuous functions $C(\Omega)$ on the algebra $\mathscr{L}(\mathscr{H})$ of all bounded operators acting on the Hilbert space \mathscr{H} .

• The triple (G, U, ρ) is said to be a system of imprimitivity if

 $ho(g\cdot f)=U(g)^*
ho(f)U(g), f\in \mathbb{C}(\Omega),g\in G,$

where $(g \cdot f)(w) = f(g^{-1} \cdot w), w \in \Omega$.

- Let *G* be a topological group and $\Omega \subseteq \mathbb{C}^m$ be a *G*-space.
- Suppose that

 $U: G \to \mathcal{U}(\mathcal{H})$ is a unitary representation of the group *G* on the unitary operators acting on the Hilbert space \mathcal{H} and that $\rho: C(\Omega) \to \mathcal{L}(\mathcal{H})$ is a * - homomorphism of the *C*^{*} - algebra of continuous functions $C(\Omega)$ on the algebra $\mathcal{L}(\mathcal{H})$ of all bounded operators acting on the Hilbert space \mathcal{H} .

• The triple (G, U, ρ) is said to be a system of imprimitivity if

 $ho(g\cdot f)=U(g)^*
ho(f)U(g), f\in {
m C}(\Omega), g\in G,$

where $(g \cdot f)(w) = f(g^{-1} \cdot w), w \in \Omega$.

- Let *G* be a topological group and $\Omega \subseteq \mathbb{C}^m$ be a *G*-space.
- Suppose that

 $U: G \to \mathcal{U}(\mathcal{H})$ is a unitary representation of the group *G* on the unitary operators acting on the Hilbert space \mathcal{H} and that $\rho: C(\Omega) \to \mathcal{L}(\mathcal{H})$ is a * - homomorphism of the *C* - algebra of continuous functions $C(\Omega)$ on the algebra $\mathcal{L}(\mathcal{H})$ of all bounded operators acting on the Hilbert space \mathcal{H} .

• The triple (G, U, ρ) is said to be a system of imprimitivity if

 $ho\left(g\cdot f
ight)=U(g)^{*}
ho\left(f
ight)U(g),f\in {
m C}(\Omega),g\in G,$

where $(g \cdot f)(w) = f(g^{-1} \cdot w), w \in \Omega$.

- Let *G* be a topological group and $\Omega \subseteq \mathbb{C}^m$ be a *G*-space.
- Suppose that

 $U: G \to \mathscr{U}(\mathscr{H})$ is a unitary representation of the group *G* on the unitary operators acting on the Hilbert space \mathscr{H} and that $\rho: \mathbb{C}(\Omega) \to \mathscr{L}(\mathscr{H})$ is a * - homomorphism of the C^* - algebra of continuous functions $\mathbb{C}(\Omega)$ on the algebra $\mathscr{L}(\mathscr{H})$ of all bounded operators acting on the Hilbert space \mathscr{H} .

• The triple (G, U, ρ) is said to be a system of imprimitivity if

 $\rho(g \cdot f) = U(g)^* \rho(f) U(g), f \in \mathbf{C}(\Omega), g \in G,$

where $(g \cdot f)(w) = f(g^{-1} \cdot w), w \in \Omega$.

- Let *G* be a topological group and $\Omega \subseteq \mathbb{C}^m$ be a *G*-space.
- Suppose that

 $U: G \to \mathscr{U}(\mathscr{H})$ is a unitary representation of the group *G* on the unitary operators acting on the Hilbert space \mathscr{H} and that $\rho: \mathbb{C}(\Omega) \to \mathscr{L}(\mathscr{H})$ is a * - homomorphism of the C^* - algebra of continuous functions $\mathbb{C}(\Omega)$ on the algebra $\mathscr{L}(\mathscr{H})$ of all bounded operators acting on the Hilbert space \mathscr{H} .

• The triple (G, U, ρ) is said to be a system of imprimitivity if

 $\rho(g \cdot f) = U(g)^* \rho(f) U(g), f \in \mathbf{C}(\Omega), g \in G,$

where $(g \cdot f)(w) = f(g^{-1} \cdot w), w \in \Omega$.

$$G_0 = SU(1,1) = \left\{ \begin{pmatrix} a & b \\ \bar{b} & \bar{a} \end{pmatrix}; |a|^2 + |b|^2 = 1 \right\},\$$

acts naturally on the unit disc \mathbb{D} .

The map $U: G \to \mathscr{U}(L^2(\mathbb{D}))$ defined by $(U_{g^{-1}}f)(z) = g'(z)f(g(z))$ is a unitary representation of the Möbius group.

The map $\rho : C(\overline{\mathbb{D}}) \to \mathscr{L}(L^2(\mathbb{D}))$ defined by the formula $\rho(f) = M_f$ is a * - homomorphism.

$$G_0 = SU(1,1) = \left\{ \begin{pmatrix} a & b \\ \bar{b} & \bar{a} \end{pmatrix}; |a|^2 + |b|^2 = 1 \right\},\$$

acts naturally on the unit disc \mathbb{D} .

The map $U: G \to \mathscr{U}(L^2(\mathbb{D}))$ defined by $(U_{g^{-1}}f)(z) = g'(z)f(g(z))$ is a unitary representation of the Möbius group.

The map $\rho : C(\overline{\mathbb{D}}) \to \mathscr{L}(L^2(\mathbb{D}))$ defined by the formula $\rho(f) = M_f$ is a * - homomorphism.

$$G_0 = SU(1,1) = \left\{ \begin{pmatrix} a & b \\ \bar{b} & \bar{a} \end{pmatrix}; |a|^2 + |b|^2 = 1 \right\},\$$

acts naturally on the unit disc \mathbb{D} .

The map $U: G \to \mathscr{U}(L^2(\mathbb{D}))$ defined by $(U_{g^{-1}}f)(z) = g'(z)f(g(z))$ is a unitary representation of the Möbius group.

The map $\rho : C(\overline{\mathbb{D}}) \to \mathscr{L}(L^2(\mathbb{D}))$ defined by the formula $\rho(f) = M_f$ is a * - homomorphism.

$$G_0 = SU(1,1) = \left\{ \begin{pmatrix} a & b \\ \bar{b} & \bar{a} \end{pmatrix}; |a|^2 + |b|^2 = 1 \right\},\$$

acts naturally on the unit disc \mathbb{D} .

The map $U: G \to \mathscr{U}(L^2(\mathbb{D}))$ defined by $(U_{g^{-1}}f)(z) = g'(z)f(g(z))$ is a unitary representation of the Möbius group.

The map $\rho : C(\overline{\mathbb{D}}) \to \mathscr{L}(L^2(\mathbb{D}))$ defined by the formula $\rho(f) = M_f$ is a * - homomorphism.

What if we start with a homomorphism of a function algebra rather than a * - homomorphism of a C^* - algebra?

For instance, the multiplication operator on the Bergman space $\mathbb{A}^2(\mathbb{D})$ – the Hilbert space of square integrable holomorphic functions on the unit disc – defines a homomorphism of the disc algebra $\mathscr{A}(\mathbb{D})$ by the formula $\rho(f) = M_f$, f in $\mathscr{A}(\mathbb{D})$.

Like before, $(U_{g^{-1}}f)(z) = g'(z)f(g(z))$ defines a unitary representation of the Möbius group on the Bergman space.

The algebra homomorphism ρ and the unitary representation U satisfy the imprimitivity relation, that is,

 $U_g^* M_{g^{-1}(z)} U_g = M_z.$

We say that the operator of multiplication by *z* on the Bergman space $\mathbb{A}^2(\mathbb{D})$ is homogeneous.

What if we start with a homomorphism of a function algebra rather than a * - homomorphism of a C^* - algebra?

For instance, the multiplication operator on the Bergman space $\mathbb{A}^2(\mathbb{D})$ – the Hilbert space of square integrable holomorphic functions on the unit disc – defines a homomorphism of the disc algebra $\mathscr{A}(\mathbb{D})$ by the formula $\rho(f) = M_f$, f in $\mathscr{A}(\mathbb{D})$.

Like before, $(U_{g^{-1}}f)(z) = g'(z)f(g(z))$ defines a unitary representation of the Möbius group on the Bergman space.

The algebra homomorphism ρ and the unitary representation U satisfy the imprimitivity relation, that is,

 $U_g^* M_{g^{-1}(z)} U_g = M_z.$

We say that the operator of multiplication by *z* on the Bergman space $\mathbb{A}^2(\mathbb{D})$ is homogeneous.

What if we start with a homomorphism of a function algebra rather than a * - homomorphism of a C^* - algebra?

For instance, the multiplication operator on the Bergman space $\mathbb{A}^2(\mathbb{D})$ – the Hilbert space of square integrable holomorphic functions on the unit disc – defines a homomorphism of the disc algebra $\mathscr{A}(\mathbb{D})$ by the formula $\rho(f) = M_f$, f in $\mathscr{A}(\mathbb{D})$.

Like before, $(U_{g^{-1}}f)(z) = g'(z)f(g(z))$ defines a unitary representation of the Möbius group on the Bergman space.

The algebra homomorphism ρ and the unitary representation U satisfy the imprimitivity relation, that is,

 $U_{g}^{*}M_{g^{-1}(z)}U_{g} = M_{z}.$

We say that the operator of multiplication by *z* on the Bergman space $\mathbb{A}^2(\mathbb{D})$ is homogeneous.

Declaring the vectors in the set $\mathbb{F}(J)$ to be orthogonal, as soon as the norms are prescribed, we can complete the linear span of the vectors in $\mathbb{F}(J)$ to form a Hilbert space, say $\mathscr{F}(J)$. For $g \in G, f \in \mathscr{F}(J), z \in \mathbb{T}$ and complex parameters, λ, μ , define

 $\left(\left(R_{\lambda,\mu}(g^{-1})\right)f\right)(z) = g'(z)^{\frac{\lambda}{2}} \mid g'(z) \mid^{\mu} (f \circ g)(z),$

where $g'(z)^{\frac{\lambda}{2}} := \exp\left(\frac{\lambda}{2}\log g'(z)\right)$ There is no apriori guarantee that $R_{\lambda,\mu}$ is unitary (even bounded)! But if $R_{\lambda,\mu}$ unitary, then it defines a projective unitary representation on $\mathscr{F}(J)$.

Declaring the vectors in the set $\mathbb{F}(J)$ to be orthogonal, as soon as the norms are prescribed, we can complete the linear span of the vectors in $\mathbb{F}(J)$ to form a Hilbert space, say $\mathscr{F}(J)$.

For $g \in G, f \in \mathscr{F}(J), z \in \mathbb{T}$ and complex parameters, λ, μ , define

 $\left(\left(R_{\lambda,\mu}(g^{-1})\right)f\right)(z) = g'(z)^{\frac{\lambda}{2}} \mid g'(z) \mid^{\mu} (f \circ g)(z),$

where $g'(z)^{\frac{\lambda}{2}} := \exp\left(\frac{\lambda}{2}\log g'(z)\right)$ There is no apriori guarantee that $R_{\lambda,\mu}$ is unitary (even bounded)! But if $R_{\lambda,\mu}$ unitary, then it defines a projective unitary representation on $\mathscr{F}(J)$.

Declaring the vectors in the set $\mathbb{F}(J)$ to be orthogonal, as soon as the norms are prescribed, we can complete the linear span of the vectors in $\mathbb{F}(J)$ to form a Hilbert space, say $\mathscr{F}(J)$. For $g \in G, f \in \mathscr{F}(J), z \in \mathbb{T}$ and complex parameters, λ, μ , define

 $\left(\left(R_{\lambda,\mu}(g^{-1})\right)f\right)(z) = g'(z)^{\frac{\lambda}{2}} \mid g'(z) \mid^{\mu} (f \circ g)(z),$

where $g'(z)^{\frac{\lambda}{2}} := \exp\left(\frac{\lambda}{2}\log g'(z)\right)$

There is no apriori guarantee that $R_{\lambda,\mu}$ is unitary (even bounded)! But if $R_{\lambda,\mu}$ unitary, then it defines a projective unitary representation on $\mathscr{F}(J)$.

Declaring the vectors in the set $\mathbb{F}(J)$ to be orthogonal, as soon as the norms are prescribed, we can complete the linear span of the vectors in $\mathbb{F}(J)$ to form a Hilbert space, say $\mathscr{F}(J)$. For $g \in G, f \in \mathscr{F}(J), z \in \mathbb{T}$ and complex parameters, λ, μ , define

$$\left(\left(R_{\lambda,\mu}(g^{-1})\right)f\right)(z) = g'(z)^{\frac{\lambda}{2}} \mid g'(z) \mid^{\mu} (f \circ g)(z),$$

where $g'(z)^{\frac{\lambda}{2}} := \exp\left(\frac{\lambda}{2}\log g'(z)\right)$

There is no apriori guarantee that $R_{\lambda,\mu}$ is unitary (even bounded)! But if $R_{\lambda,\mu}$ unitary, then it defines a projective unitary representation on $\mathscr{F}(J)$.

A representation of the form $R_{\lambda,\mu}: G \to \mathscr{F}(J)$,

(Or more generally, one of the form $M_{J_g}R_g$, where M_{J_g} is the multiplication by J_g and R_g is the composition by g with $J_{gh}(z) = J_g(h(z))J_h(z)$.)

is said to be a multiplier representation.

Let \mathscr{H} be a space of functions, say, on the unit disc or the unit circle. Suppose the operator *T* defined by the rule $(Tf)(x) = xf(x), f \in \mathscr{H}$ is bounded.

A representation of the form $R_{\lambda,\mu}: G \to \mathscr{F}(J)$, (Or more generally, one of the form $M_{J_g}R_g$, where M_{J_g} is the multiplication by J_g and R_g is the composition by g with $J_{gh}(z) = J_g(h(z))J_h(z)$.)

is said to be a multiplier representation.

Let \mathcal{H} be a space of functions, say, on the unit disc or the unit circle. Suppose the operator *T* defined by the rule $(Tf)(x) = xf(x), f \in \mathcal{H}$ is bounded.

A representation of the form $R_{\lambda,\mu}: G \to \mathscr{F}(J)$, (Or more generally, one of the form $M_{J_g}R_g$, where M_{J_g} is the multiplication by J_g and R_g is the composition by g with $J_{gh}(z) = J_g(h(z))J_h(z)$.)

is said to be a multiplier representation.

Let \mathscr{H} be a space of functions, say, on the unit disc or the unit circle. Suppose the operator *T* defined by the rule $(Tf)(x) = xf(x), f \in \mathscr{H}$ is bounded.

A representation of the form $R_{\lambda,\mu}: G \to \mathscr{F}(J)$,

(Or more generally, one of the form $M_{J_g}R_g$, where M_{J_g} is the multiplication by J_g and R_g is the composition by g with $J_{gh}(z) = J_g(h(z))J_h(z)$.)

is said to be a multiplier representation.

Let \mathcal{H} be a space of functions, say, on the unit disc or the unit circle. Suppose the operator *T* defined by the rule $(Tf)(x) = xf(x), f \in \mathcal{H}$ is bounded.

A representation of the form $R_{\lambda,\mu}: G \to \mathscr{F}(J)$,

(Or more generally, one of the form $M_{J_g}R_g$, where M_{J_g} is the multiplication by J_g and R_g is the composition by g with $J_{gh}(z) = J_g(h(z))J_h(z)$.)

is said to be a multiplier representation.

Let \mathcal{H} be a space of functions, say, on the unit disc or the unit circle. Suppose the operator *T* defined by the rule $(Tf)(x) = xf(x), f \in \mathcal{H}$ is bounded.

Principal Series:

 $P_{\lambda,s}, -1 < \lambda \le 1, s = iy, y \in \mathbb{R}, \mu = \frac{1-\lambda}{2} + s, J = \mathbb{Z}, ||f_n|| = 1, n \in \mathbb{Z}.$

Principal Series:

 $P_{\lambda,s}, -1 < \lambda \le 1, s = iy, y \in \mathbb{R}, \mu = \frac{1-\lambda}{2} + s, J = \mathbb{Z}, ||f_n|| = 1, n \in \mathbb{Z}.$ Holomorphic Discrete Series:

 $D^+_\lambda, \lambda \geq 0, \mu = 0 J = \mathbb{N} \cup \{0\}, \|f_n\|^2 = rac{\Gamma(n+1)\Gamma(\lambda)}{\Gamma(n+\lambda)}, n \in \mathbb{N}.$

The Hilbert space $\mathbb{A}^{(\lambda)}(\mathbb{D})$, usually called the weighted Bergman space, is a space of holomorphic functions on \mathbb{D} with reproducing kernel $(1 - z\bar{w})^{-\lambda}$.

Anti-holomorphic Discrete Series: D_{λ}^{-} . This is easily obtained from the holomorphic Discrete series. We have $D_{\lambda}^{-}(g) := D_{\lambda}^{+}(g^{*})$, where $g^{*}(z) = \overline{g(\overline{z})}$. Complimentary Series: $C_{\lambda} = -1 \le \lambda \le 1, 0 \le \sigma \le \frac{1-|\lambda|}{2}, \mu = 0$

 $\frac{1}{2}(1-\lambda) + \sigma, J = \mathbb{Z}, ||f_n||^2 = \prod_{k=0}^{|n|-1} \frac{k \pm \lambda/2 + 1/2 - \sigma}{k \pm \lambda/2 + 1/2 + \sigma}, n \in \mathbb{Z}.$

Principal Series:

 $P_{\lambda,s}, -1 < \lambda \le 1, s = iy, y \in \mathbb{R}, \mu = \frac{1-\lambda}{2} + s, J = \mathbb{Z}, ||f_n|| = 1, n \in \mathbb{Z}.$ Holomorphic Discrete Series:

 $D^+_\lambda, \lambda \geq 0, \mu = 0 J = \mathbb{N} \cup \{0\}, \|f_n\|^2 = rac{\Gamma(n+1)\Gamma(\lambda)}{\Gamma(n+\lambda)}, n \in \mathbb{N}.$

The Hilbert space $\mathbb{A}^{(\lambda)}(\mathbb{D})$, usually called the weighted Bergman space, is a space of holomorphic functions on \mathbb{D} with reproducing kernel $(1 - z\bar{w})^{-\lambda}$.

Anti-holomorphic Discrete Series: D_{λ}^{-} . This is easily obtained from the holomorphic Discrete series. We have $D_{\lambda}^{-}(g) := D_{\lambda}^{+}(g^{*})$, where $g^{*}(z) = \overline{g(\overline{z})}$. Complimentary Series: $C_{\lambda,\sigma}, -1 < \lambda < 1, 0 < \sigma < \frac{1-|\lambda|}{2}, \mu = \frac{1}{2}(1-\lambda) + \sigma$, $I = \mathbb{Z}$, $\|f_{\tau}\|^{2} = \Pi^{|n|-1} \frac{k \pm \lambda/2 + 1/2 - \sigma}{n \in \mathbb{Z}}$.

Principal Series:

 $P_{\lambda,s}, -1 < \lambda \le 1, s = iy, y \in \mathbb{R}, \mu = \frac{1-\lambda}{2} + s, J = \mathbb{Z}, ||f_n|| = 1, n \in \mathbb{Z}.$ Holomorphic Discrete Series:

 $D^+_{\lambda}, \lambda \geq 0, \mu = 0 J = \mathbb{N} \cup \{0\}, \|f_n\|^2 = rac{\Gamma(n+1)\Gamma(\lambda)}{\Gamma(n+\lambda)}, n \in \mathbb{N}.$

The Hilbert space $\mathbb{A}^{(\lambda)}(\mathbb{D})$, usually called the weighted Bergman space, is a space of holomorphic functions on \mathbb{D} with reproducing kernel $(1 - z\bar{w})^{-\lambda}$.

Anti-holomorphic Discrete Series: D_{λ}^{-} . This is easily obtained from the holomorphic Discrete series. We have $D_{\lambda}^{-}(g) := D_{\lambda}^{+}(g^{*})$, where $g^{*}(z) = \overline{g(\overline{z})}$.

Complimentary Series: $C_{\lambda,\sigma}$, $-1 < \lambda < 1$, $0 < \sigma < \frac{1-|\lambda|}{2}$, $\mu = \frac{1}{2}(1-\lambda) + \sigma$, $J = \mathbb{Z}$, $||f_n||^2 = \prod_{k=0}^{|n|-1} \frac{k \pm \lambda/2 + 1/2 - \sigma}{k \pm \lambda/2 + 1/2 + \sigma}$, $n \in \mathbb{Z}$.

Principal Series:

 $P_{\lambda,s}, -1 < \lambda \le 1, s = iy, y \in \mathbb{R}, \mu = \frac{1-\lambda}{2} + s, J = \mathbb{Z}, ||f_n|| = 1, n \in \mathbb{Z}.$ Holomorphic Discrete Series:

 $D^+_{\lambda}, \lambda \geq 0, \mu = 0 J = \mathbb{N} \cup \{0\}, \|f_n\|^2 = rac{\Gamma(n+1)\Gamma(\lambda)}{\Gamma(n+\lambda)}, n \in \mathbb{N}.$

The Hilbert space $\mathbb{A}^{(\lambda)}(\mathbb{D})$, usually called the weighted Bergman space, is a space of holomorphic functions on \mathbb{D} with reproducing kernel $(1 - z\bar{w})^{-\lambda}$.

Anti-holomorphic Discrete Series: D_{λ}^{-} . This is easily obtained from the holomorphic Discrete series. We have $D_{\lambda}^{-}(g) := D_{\lambda}^{+}(g^{*})$, where $g^{*}(z) = \overline{g(\overline{z})}$.

Complimentary Series: $C_{\lambda,\sigma}$, $-1 < \lambda < 1$, $0 < \sigma < \frac{1-|\lambda|}{2}$, $\mu = \frac{1}{2}(1-\lambda) + \sigma$, $J = \mathbb{Z}$, $||f_n||^2 = \prod_{k=0}^{|n|-1} \frac{k \pm \lambda/2 + 1/2 - \sigma}{k \pm \lambda/2 + 1/2 + \sigma}$, $n \in \mathbb{Z}$.

The Principal Seies Examples: These give the unweighted bi-lateral shift!

The Discrete Series Examples: For any real $\lambda > 0$, the unilateral shift with weight sequence $\sqrt{\frac{n+1}{n+\lambda}}$

(up to unitary equivalence, this is the operator $M^{(\lambda)}$ of multiplication by the coordinate function *z* on the Hilbert space $\mathbb{A}^{(\lambda)}(\mathbb{D})$) is homogeneous.

The Complimentary Series Examples: The bi-lateral shift $K_{a,b}$ with weight sequence $\sqrt{\frac{n+a}{n+b}}$, 0 < a < b < 1 are homogeneous. This is easy to see by considering the Complimentary Series with $\lambda = a+b-1$, $\sigma = (b-a)/2$.

Examples

The Principal Seies Examples: These give the unweighted bi-lateral shift!

The Discrete Series Examples: For any real $\lambda > 0$, the unilateral shift with weight sequence $\sqrt{\frac{n+1}{n+\lambda}}$

(up to unitary equivalence, this is the operator $M^{(\lambda)}$ of multiplication by the coordinate function *z* on the Hilbert space $\mathbb{A}^{(\lambda)}(\mathbb{D})$) is homogeneous.

The Complimentary Series Examples: The bi-lateral shift $K_{a,b}$ with weight sequence $\sqrt{\frac{n+a}{n+b}}$, 0 < a < b < 1 are homogeneous. This is easy to see by considering the Complimentary Series with $\lambda = a+b-1$, $\sigma = (b-a)/2$.

The Principal Seies Examples: These give the unweighted bi-lateral shift!

The Discrete Series Examples: For any real $\lambda > 0$, the unilateral shift with weight sequence $\sqrt{\frac{n+1}{n+\lambda}}$

(up to unitary equivalence, this is the operator $M^{(\lambda)}$ of multiplication by the coordinate function *z* on the Hilbert space $\mathbb{A}^{(\lambda)}(\mathbb{D})$)

is homogeneous.

Examples

The Complimentary Series Examples: The bi-lateral shift $K_{a,b}$ with weight sequence $\sqrt{\frac{n+a}{n+b}}$, 0 < a < b < 1 are homogeneous. This is easy to see by considering the Complimentary Series with $\lambda = a+b-1$, $\sigma = (b-a)/2$.

The Principal Seies Examples: These give the unweighted bi-lateral shift!

Examples

The Discrete Series Examples: For any real $\lambda > 0$, the unilateral shift with weight sequence $\sqrt{\frac{n+1}{n+\lambda}}$

(up to unitary equivalence, this is the operator $M^{(\lambda)}$ of multiplication by the coordinate function *z* on the Hilbert space $\mathbb{A}^{(\lambda)}(\mathbb{D})$) is homogeneous.

The Complimentary Series Examples: The bi-lateral shift $K_{a,b}$ with weight sequence $\sqrt{\frac{n+a}{n+b}}$, 0 < a < b < 1 are homogeneous. This is easy to see by considering the Complimentary Series with $\lambda = a+b-1$, $\sigma = (b-a)/2$.

The Principal Seies Examples: These give the unwe

Examples

The Principal Seies Examples: These give the unweighted bi-lateral shift!

The Discrete Series Examples: For any real $\lambda > 0$, the unilateral shift with weight sequence $\sqrt{\frac{n+1}{n+\lambda}}$

(up to unitary equivalence, this is the operator $M^{(\lambda)}$ of multiplication by the coordinate function *z* on the Hilbert space $\mathbb{A}^{(\lambda)}(\mathbb{D})$) is homogeneous.

The Complimentary Series Examples: The bi-lateral shift $K_{a,b}$ with weight sequence $\sqrt{\frac{n+a}{n+b}}$, 0 < a < b < 1 are homogeneous. This is easy to see by considering the Complimentary Series with $\lambda = a+b-1$, $\sigma = (b-a)/2$.

The Principal Seies Examples: These give the unweighted bi-lateral shift!

Examples

The Discrete Series Examples: For any real $\lambda > 0$, the unilateral shift with weight sequence $\sqrt{\frac{n+1}{n+\lambda}}$

(up to unitary equivalence, this is the operator $M^{(\lambda)}$ of multiplication by the coordinate function *z* on the Hilbert space $\mathbb{A}^{(\lambda)}(\mathbb{D})$) is homogeneous.

The Complimentary Series Examples: The bi-lateral shift $K_{a,b}$ with weight sequence $\sqrt{\frac{n+a}{n+b}}$, 0 < a < b < 1 are homogeneous. This is easy to see by considering the Complimentary Series with $\lambda = a+b-1$, $\sigma = (b-a)/2$.

We can choose U_g such that $\mathbb{K} \ni k \mapsto U_k$ is a representation of $\mathbb{K} \subseteq G$, the rotation group. Write K_θ for $z \mapsto e^{i\theta} z$. If

$$\mathscr{H}(n) = \{ x \in \mathscr{H} : U_k x = e^{i(n-1)\theta} x \},\$$

then $T: \mathscr{H}(n) \to \mathscr{H}(n+1)$ is a block shift.

A complete classification of these for dim $\mathscr{H}(n) \leq 1$ was obtained in [1] using the representation theory of \tilde{G} . First examples for dim $\mathscr{H}(n) = 2$ appeared in [3]. Recently [2], a *m* - parameter family of examples with dim $\mathscr{H}(n) = m$ was constructed. This leads to a complet classification of the homogeneous operators in the Cowen - Douglas class.

We can choose U_g such that $\mathbb{K} \ni k \mapsto U_k$ is a representation of $\mathbb{K} \subseteq G$, the rotation group. Write K_θ for $z \mapsto e^{i\theta} z$. If

$$\mathscr{H}(n) = \{ x \in \mathscr{H} : U_k x = e^{i(n-1)\theta} x \},\$$

then $T: \mathscr{H}(n) \to \mathscr{H}(n+1)$ is a block shift.

A complete classification of these for dim $\mathscr{H}(n) \leq 1$ was obtained in [1] using the representation theory of \tilde{G} . First examples for dim $\mathscr{H}(n) = 2$ appeared in [3]. Recently [2], a *m* - parameter family of examples with dim $\mathscr{H}(n) = m$ was constructed. This leads to a complet classification of the homogeneous operators in the Cowen-Douglas class.

We can choose U_g such that $\mathbb{K} \ni k \mapsto U_k$ is a representation of $\mathbb{K} \subseteq G$, the rotation group. Write K_θ for $z \mapsto e^{i\theta} z$. If

$$\mathscr{H}(n) = \{ x \in \mathscr{H} : U_k x = e^{i(n-1)\theta} x \},\$$

then $T: \mathscr{H}(n) \to \mathscr{H}(n+1)$ is a block shift.

A complete classification of these for dim $\mathscr{H}(n) \leq 1$ was obtained in [1] using the representation theory of \tilde{G} . First examples for dim $\mathscr{H}(n) = 2$ appeared in [3]. Recently [2], a *m* - parameter family of examples with dim $\mathscr{H}(n) = m$ was constructed. This leads to a complet classification of the homogeneous operators in the Cowen - Douglas class.

We can choose U_g such that $\mathbb{K} \ni k \mapsto U_k$ is a representation of $\mathbb{K} \subseteq G$, the rotation group. Write K_{θ} for $z \mapsto e^{i\theta} z$. If

$$\mathscr{H}(n) = \{ x \in \mathscr{H} : U_k x = e^{i(n-1)\theta} x \},\$$

then $T: \mathscr{H}(n) \to \mathscr{H}(n+1)$ is a block shift.

A complete classification of these for dim $\mathscr{H}(n) \leq 1$ was obtained in [1] using the representation theory of \tilde{G} . First examples for dim $\mathscr{H}(n) = 2$ appeared in [3]. Recently [2], a *m* - parameter family of examples with dim $\mathscr{H}(n) = m$ was constructed. This leads to a complet classification of the homogeneous operators in the Cowen - Douglas class.

We can choose U_g such that $\mathbb{K} \ni k \mapsto U_k$ is a representation of $\mathbb{K} \subseteq G$, the rotation group. Write K_θ for $z \mapsto e^{i\theta} z$. If

$$\mathscr{H}(n) = \{ x \in \mathscr{H} : U_k x = e^{i(n-1)\theta} x \},\$$

then $T: \mathscr{H}(n) \to \mathscr{H}(n+1)$ is a block shift.

A complete classification of these for dim $\mathscr{H}(n) \leq 1$ was obtained in [1] using the representation theory of \tilde{G} . First examples for dim $\mathscr{H}(n) = 2$ appeared in [3]. Recently [2], a *m* - parameter family of examples with dim $\mathscr{H}(n) = m$ was constructed. This leads to a complet classification of the homogeneous operators in the Cowen - Douglas class.

Holomorphic Hermitian vector bundles

Definition

A bounded operator *T* on a Hilbert space \mathscr{H} is said to be in the Cowen - Douglas class of the domain $\Omega \subseteq \mathbb{C}$ if its eigenspaces $E_w, w \in \Omega$ are of constant finite dimension.

Cowen and Douglas show that $E \subseteq \Omega \times \mathscr{H}$ with fiber E_w is a holomorphic Hermitian vector bundle,

isomorphism classes of E correspond to unitary equivalence classes of T,

E is irreducible as a holomorphic Hermitian vector bundle if and only if *T* is irreducible.

Important to note here is that *E* has a reproducing kernel. Indeed, $ev_w : \mathscr{H} \to E_w^*$ induced by the map $f \mapsto \langle f, \cdot \rangle$ is continuous and hence $K(z,w) = ev_w^* \circ ev_z$ is a reproducing kernel for E^* .

Holomorphic Hermitian vector bundles

Definition

A bounded operator *T* on a Hilbert space \mathscr{H} is said to be in the Cowen - Douglas class of the domain $\Omega \subseteq \mathbb{C}$ if its eigenspaces $E_w, w \in \Omega$ are of constant finite dimension.

Cowen and Douglas show that $E \subseteq \Omega \times \mathscr{H}$ with fiber E_w is a holomorphic Hermitian vector bundle,

isomorphism classes of E correspond to unitary equivalence classes of T,

E is irreducible as a holomorphic Hermitian vector bundle if and only if T is irreducible.

Important to note here is that *E* has a reproducing kernel. Indeed, $ev_w : \mathscr{H} \to E_w^*$ induced by the map $f \mapsto \langle f, \cdot \rangle$ is continuous and hence $K(z, w) = ev_w^* \circ ev_z$ is a reproducing kernel for E^* .

Holomorphic Hermitian vector bundles

Definition

A bounded operator *T* on a Hilbert space \mathscr{H} is said to be in the Cowen - Douglas class of the domain $\Omega \subseteq \mathbb{C}$ if its eigenspaces $E_w, w \in \Omega$ are of constant finite dimension.

Cowen and Douglas show that $E \subseteq \Omega \times \mathscr{H}$ with fiber E_w is a holomorphic Hermitian vector bundle,

isomorphism classes of E correspond to unitary equivalence classes of T,

E is irreducible as a holomorphic Hermitian vector bundle if and only if T is irreducible.

Important to note here is that *E* has a reproducing kernel. Indeed, $ev_w : \mathscr{H} \to E_w^*$ induced by the map $f \mapsto \langle f, \cdot \rangle$ is continuous and hence $K(z,w) = ev_w^* \circ ev_z$ is a reproducing kernel for E^* .

Here we will always use trivialization of the bundles with standard Euclidean inner product. The Hilbert space $\mathscr{H} \subseteq \operatorname{Hol}(\Omega, \mathbb{C}^n)$ has a reproducing kernel $K_w(z) : \mathbb{C}^n \to \mathbb{C}^n$ such that

 $\langle f, K_w \xi \rangle = \langle f(w), \xi \rangle, f \in \mathscr{H}, \xi \in \mathbb{C}^n.$

The operators in the Cowen-Douglas class can be realized as the adjoint of the multiplication operator M defined by (Mf)(z) = zf(z) on a Hilbert space with holomorphic functions possessing a reproducing kernel.

Theorem

An operator T in the Cowen-Douglas class is homogeneous if and only if the corresponding holomorphic Hermitian bundle E is homogeneous under \tilde{G} .

Here we will always use trivialization of the bundles with standard Euclidean inner product. The Hilbert space $\mathscr{H} \subseteq \operatorname{Hol}(\Omega, \mathbb{C}^n)$ has a reproducing kernel $K_w(z) : \mathbb{C}^n \to \mathbb{C}^n$ such that

 $\langle f, K_w \xi \rangle = \langle f(w), \xi \rangle, f \in \mathscr{H}, \xi \in \mathbb{C}^n.$

The operators in the Cowen-Douglas class can be realized as the adjoint of the multiplication operator M defined by (Mf)(z) = zf(z) on a Hilbert space with holomorphic functions possessing a reproducing kernel.

Theorem

An operator T in the Cowen-Douglas class is homogeneous if and only if the corresponding holomorphic Hermitian bundle E is homogeneous under \tilde{G} .

Here we will always use trivialization of the bundles with standard Euclidean inner product. The Hilbert space $\mathscr{H} \subseteq \operatorname{Hol}(\Omega, \mathbb{C}^n)$ has a reproducing kernel $K_w(z) : \mathbb{C}^n \to \mathbb{C}^n$ such that

 $\langle f, K_w \xi \rangle = \langle f(w), \xi \rangle, f \in \mathscr{H}, \xi \in \mathbb{C}^n.$

The operators in the Cowen-Douglas class can be realized as the adjoint of the multiplication operator M defined by (Mf)(z) = zf(z) on a Hilbert space with holomorphic functions possessing a reproducing kernel.

Theorem

An operator T in the Cowen-Douglas class is homogeneous if and only if the corresponding holomorphic Hermitian bundle E is homogeneous under \tilde{G} .

- All holomorphic homogeneous vector bundles
- All holomorphic homogeneous Hermitian vector bundles (irreducible ones, enough)
- All holomorphic homogeneous Hermitian vector bundles with a reproducing kernel
- Ø Among the latter, those that give homogeneous CD operators.

- All holomorphic homogeneous vector bundles
- 2 All holomorphic homogeneous *Hermitian* vector bundles (irreducible ones, enough)
- All holomorphic homogeneous Hermitian vector bundles with a reproducing kernel
- Ø Among the latter, those that give homogeneous CD operators.

- All holomorphic homogeneous vector bundles
- All holomorphic homogeneous *Hermitian* vector bundles (irreducible ones, enough)
- 3 All holomorphic homogeneous Hermitian vector bundles with a reproducing kernel
- Ø Among the latter, those that give homogeneous CD operators.

- All holomorphic homogeneous vector bundles
- All holomorphic homogeneous Hermitian vector bundles (irreducible ones, enough)
- 3 All holomorphic homogeneous Hermitian vector bundles with a reproducing kernel
- Ø Among the latter, those that give homogeneous CD operators.

- All holomorphic homogeneous vector bundles
- All holomorphic homogeneous Hermitian vector bundles (irreducible ones, enough)
- 3 All holomorphic homogeneous *H*ermitian vector bundles with a reproducing kernel
- Image Among the latter, those that give homogeneous CD operators.

- All holomorphic homogeneous vector bundles
- All holomorphic homogeneous Hermitian vector bundles (irreducible ones, enough)
- 3 All holomorphic homogeneous *H*ermitian vector bundles with a reproducing kernel
- Among the latter, those that give homogeneous CD operators.

- All holomorphic homogeneous vector bundles
- All holomorphic homogeneous Hermitian vector bundles (irreducible ones, enough)
- 3 All holomorphic homogeneous *H*ermitian vector bundles with a reproducing kernel
- Among the latter, those that give homogeneous CD operators.

For 1 and 2, classic method of holomorphic induction applies.

The holomorphic induction, in this case, involves finite dimensional representations of the Lie algebra of triangular matrices which are in one - one correspondence with holomorphic homogeneous vector bundles

For 1 and 2, classic method of holomorphic induction applies. The holomorphic induction, in this case, involves finite dimensional representations of the Lie algebra of triangular matrices which are in one - one correspondence with holomorphic homogeneous vector bundles

Let $\mathfrak{t} \subseteq \mathfrak{g}^{\mathbb{C}} = \mathfrak{sl}(2,\mathbb{C})$ be the algebra $\mathbb{C}h + \mathbb{C}y$, where

$$h = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Linear representations (ρ, V) of the algebra $\mathfrak{t} \subseteq \mathfrak{g}^{\mathbb{C}} = \mathfrak{sl}(2, \mathbb{C})$ satisfying $[\rho(h), \rho(y)] = -\rho(y)$ give all the homogeneous holomorphic vector bundles.

Let $\mathfrak{t} \subseteq \mathfrak{g}^{\mathbb{C}} = \mathfrak{sl}(2,\mathbb{C})$ be the algebra $\mathbb{C}h + \mathbb{C}y$, where

$$h = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Linear representations (ρ, V) of the algebra $\mathfrak{t} \subseteq \mathfrak{g}^{\mathbb{C}} = \mathfrak{sl}(2, \mathbb{C})$ satisfying $[\rho(h), \rho(y)] = -\rho(y)$ give all the homogeneous holomorphic vector bundles.

Let $\mathfrak{t} \subseteq \mathfrak{g}^{\mathbb{C}} = \mathfrak{sl}(2,\mathbb{C})$ be the algebra $\mathbb{C}h + \mathbb{C}y$, where

$$h = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Linear representations (ρ, V) of the algebra $\mathfrak{t} \subseteq \mathfrak{g}^{\mathbb{C}} = \mathfrak{sl}(2, \mathbb{C})$ satisfying $[\rho(h), \rho(y)] = -\rho(y)$ give all the homogeneous holomorphic vector bundles.

Let $\mathfrak{t} \subseteq \mathfrak{g}^{\mathbb{C}} = \mathfrak{sl}(2,\mathbb{C})$ be the algebra $\mathbb{C}h + \mathbb{C}y$, where

$$h = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Linear representations (ρ, V) of the algebra $\mathfrak{t} \subseteq \mathfrak{g}^{\mathbb{C}} = \mathfrak{sl}(2, \mathbb{C})$ satisfying $[\rho(h), \rho(y)] = -\rho(y)$ give all the homogeneous holomorphic vector bundles.

The \tilde{G} - invariant Hermitian structures on the homogeneous holomorphic vector bundle (making it into a homogeneous holomorphic Hermitian vector bundle), if they exist, are given by $\rho(\tilde{\mathbb{K}})$ - invariant inner products on the representation space.

An inner product is $\rho(\mathbb{K})$ - invariant if and only if $\rho(h)$ is diagonal with real diagonal elements in an appropriate basis.

We will be interested only in bundles with a Hermitian structure. So, we will assume without restricting generality, that the representation space of ρ is \mathbb{C}^n and that $\rho(h)$ is a real diagonal matrix.

The \tilde{G} - invariant Hermitian structures on the homogeneous holomorphic vector bundle (making it into a homogeneous holomorphic Hermitian vector bundle), if they exist, are given by $\rho(\tilde{\mathbb{K}})$ - invariant inner products on the representation space.

An inner product is $\rho(\tilde{\mathbb{K}})$ - invariant if and only if $\rho(h)$ is diagonal with real diagonal elements in an appropriate basis.

We will be interested only in bundles with a Hermitian structure. So, we will assume without restricting generality, that the representation space of ρ is \mathbb{C}^n and that $\rho(h)$ is a real diagonal matrix.

The \tilde{G} - invariant Hermitian structures on the homogeneous holomorphic vector bundle (making it into a homogeneous holomorphic Hermitian vector bundle), if they exist, are given by $\rho(\tilde{\mathbb{K}})$ - invariant inner products on the representation space.

An inner product is $\rho(\tilde{\mathbb{K}})$ - invariant if and only if $\rho(h)$ is diagonal with real diagonal elements in an appropriate basis.

We will be interested only in bundles with a Hermitian structure. So, we will assume without restricting generality, that the representation space of ρ is \mathbb{C}^n and that $\rho(h)$ is a real diagonal matrix.

$$\rho(h) = \begin{pmatrix} -\eta I_0 & \\ & \ddots & \\ & & -(\eta + m)I_m \end{pmatrix}, \text{ with } I_j = I \text{ on } V_{-(\eta + j)} = \mathbb{C}^{n_j}$$

$$Y := \rho(y) = \begin{pmatrix} 0 & & & \\ Y_1 & 0 & & \\ & Y_2 & 0 & \\ & & \ddots & \ddots & \\ & & & Y_m & 0 \end{pmatrix}, Y_j : V_{-(\eta+j-1)} \to V_{-(\eta+j-1)}.$$

$$\rho(h) = \begin{pmatrix} -\eta I_0 & \\ & \ddots & \\ & & -(\eta + m)I_m \end{pmatrix}, \text{ with } I_j = I \text{ on } V_{-(\eta + j)} = \mathbb{C}^{n_j}$$

$$Y := \rho(y) = \begin{pmatrix} 0 & & & \\ Y_1 & 0 & & \\ & Y_2 & 0 & \\ & & \ddots & \ddots & \\ & & & Y_m & 0 \end{pmatrix}, Y_j : V_{-(\eta+j-1)} \to V_{-(\eta+j-1)}.$$

$$\rho(h) = \begin{pmatrix} -\eta I_0 & \\ & \ddots & \\ & & -(\eta + m)I_m \end{pmatrix}, \text{ with } I_j = I \text{ on } V_{-(\eta + j)} = \mathbb{C}^{n_j}$$

$$Y := \rho(y) = \begin{pmatrix} 0 & & & \\ Y_1 & 0 & & \\ & Y_2 & 0 & \\ & & \ddots & \ddots & \\ & & & Y_m & 0 \end{pmatrix}, Y_j : V_{-(\eta+j-1)} \to V_{-(\eta+j-1)}.$$

$$\rho(h) = \begin{pmatrix} -\eta I_0 & \\ & \ddots & \\ & & -(\eta + m)I_m \end{pmatrix}, \text{ with } I_j = I \text{ on } V_{-(\eta + j)} = \mathbb{C}^{n_j}$$

$$Y := \rho(y) = \begin{pmatrix} 0 & & & \\ Y_1 & 0 & & \\ & Y_2 & 0 & \\ & & \ddots & \ddots & \\ & & & Y_m & 0 \end{pmatrix}, Y_j : V_{-(\eta+j-1)} \to V_{-(\eta+j-1)}.$$

The sections of homogeneous holomorphic vector bundle $E^{(Y,\eta)}$ are holomorphic functions $\mathbb{D} \to \mathbb{C}^n$. The \tilde{G} action is given by $f \mapsto J^{(Y,\eta)}_{g^{-1}}(f \circ g^{-1})$ with multiplier

$$((J_g^{(Y,\eta)}(z)))_{p,\ell} = \begin{cases} \binom{p}{\ell} (-c_g)^{p-\ell} (g')(z)^{\eta+\frac{p+\ell}{2}} Y_p \cdots Y_{\ell+1} & \text{if } p \ge \ell \\ 0 & \text{if } p < \ell \end{cases},$$

where $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, c_g = c.$

A Hermitian structure appears as an inner product $\langle \cdot, \cdot \rangle_z$ on \mathbb{C}^n for each $z \in \mathbb{D}$. We can write

 $\langle \zeta, \xi \rangle_z = \langle H(z)\zeta, \xi \rangle, \text{ with } H(z) \succ 0.$

We have homogeneity of the holomorphic Hermitian vector bundle if and only if

 $J_g(z)H(g \cdot z)^{-1}J_g(z)^* = H(z)^{-1}$, for all $z \in \mathbb{D}$, $g \in G$.

Let $(E^{(\eta,Y)}, H)$ be the holomorphic Hermitian with Hermitian Structure H > 0.

A Hermitian structure appears as an inner product $\langle \cdot, \cdot \rangle_z$ on \mathbb{C}^n for each $z \in \mathbb{D}$. We can write

 $\langle \zeta, \xi \rangle_z = \langle H(z)\zeta, \xi \rangle$, with $H(z) \succ 0$.

We have homogeneity of the holomorphic Hermitian vector bundle if and only if

 $J_g(z)H(g \cdot z)^{-1}J_g(z)^* = H(z)^{-1}$, for all $z \in \mathbb{D}$, $g \in G$.

Let $(E^{(\eta,Y)}, H)$ be the holomorphic Hermitian with Hermitian Structure H > 0.

There are equivalences: $(E^{(\eta,Y)},H) \approx (E^{(\eta,Y')},H')$ if $Y' = AYA^{-1}$, $H' = A^{*-1}HA$ with block-diagonal *A*.

Hence each class has a representative $(E^{(\eta,Y)}, I)$. The classes can be parametrized as $E^{\eta, [Y]}$, with [Y] the equivalence class under block-diagonal unitary conjugation.

Theorem

We have $E^{(Y,\eta)} \equiv E^{(Y',\eta')}$ if and only if $\eta = \eta'$ and $Y' = AYA^{-1}$ with a block diagonal matrix A.

There are equivalences: $(E^{(\eta,Y)},H) \approx (E^{(\eta,Y')},H')$ if $Y' = AYA^{-1}$, $H' = A^{*-1}HA$ with block-diagonal *A*. Hence each class has a representative $(E^{(\eta,Y)},I)$. The classes can be parametrized as $E^{\eta,[Y]}$, with [Y] the equivalence class under block-diagonal unitary conjugation.

Theorem

We have $E^{(Y,\eta)} \equiv E^{(Y',\eta')}$ if and only if $\eta = \eta'$ and $Y' = AYA^{-1}$ with a block diagonal matrix A.

When there is a reproducing kernel?

If there is one, it gives a canonical Hermitian structure by setting $H(z) = K(z, z)^{-1}$.

Let $p_z = \frac{1}{\sqrt{1-|z|^2}} \begin{pmatrix} 1 & z \\ \overline{z} & 1 \end{pmatrix} \in G$, so $p_z \cdot 0 = z$. Writing $J_z^{(Y,\eta)}$ for $J_{p_z}^{(Y,\eta)}(z)$, we have

 $K(z,z) = J_z^{(Y,\eta)} K(0,0) J_z^{(Y,\eta)^*}.$

So, the question is only: what can K(0,0) be?

When there is a reproducing kernel?

If there is one, it gives a canonical Hermitian structure by setting $H(z) = K(z,z)^{-1}$.

Let $p_z = \frac{1}{\sqrt{1-|z|^2}} \begin{pmatrix} 1 & z \\ \overline{z} & 1 \end{pmatrix} \in G$, so $p_z \cdot 0 = z$. Writing $J_z^{(Y,\eta)}$ for $J_{p_z}^{(Y,\eta)}(z)$, we have

 $K(z,z) = J_z^{(Y,\eta)} K(0,0) J_z^{(Y,\eta)^*}$

So, the question is only: what can K(0,0) be?

When there is a reproducing kernel?

If there is one, it gives a canonical Hermitian structure by setting $H(z) = K(z,z)^{-1}$.

Let $p_z = \frac{1}{\sqrt{1-|z|^2}} \begin{pmatrix} 1 & z \\ \bar{z} & 1 \end{pmatrix} \in G$, so $p_z \cdot 0 = z$. Writing $J_z^{(Y,\eta)}$ for $J_{p_z}^{(Y,\eta)}(z)$, we have

$$K(z,z) = J_z^{(Y,\eta)} K(0,0) J_z^{(Y,\eta)^*}.$$

So, the question is only: what can K(0,0) be?

Let $\mathbb{A}^{(\lambda)}$ be the Hilbert space of holomorphic functions on the unit disc with reproducing kernel $(1 - z\overline{w}))^{-2\lambda}$. This is homogeneous under the multiplier g'^{λ} for the \tilde{G} action.

Let $\mathbf{A}^{(\eta)} = \bigoplus_{j=0}^{m} n_j \mathbb{A}^{(\eta+j)}$. For *Y* as before and $\eta > 0$, define

$$\left(\Gamma^{(Y,\eta)}f_{j}\right)_{\ell} = \begin{cases} \frac{1}{(\ell-j)!} \frac{1}{(2\eta+2j)_{\ell-j}} Y_{\ell} \cdots Y_{j+1} D^{\ell-j}f_{j} & \text{if } \ell \geq j \\ 0 & \text{if } \ell < j \end{cases}.$$

Let $\mathscr{H}^{(Y,\eta)}$ denote the image of $\Gamma^{(Y,\eta)}$ in the space of holomorphic functions $\operatorname{Hol}(\mathbb{D},\mathbb{C}^n)$.

Define a Hilbert space structure on $\mathscr{H}^{(Y,\eta)}$ by stipulating $\Gamma^{(Y,\eta)}$ to be unitary. We thus have a reproducing kernel Hilbert space.

Let $\mathbb{A}^{(\lambda)}$ be the Hilbert space of holomorphic functions on the unit disc with reproducing kernel $(1 - z\overline{w}))^{-2\lambda}$. This is homogeneous under the multiplier g'^{λ} for the \tilde{G} action. Let $\mathbf{A}^{(\eta)} = \bigoplus_{i=0}^{m} n_i \mathbb{A}^{(\eta+j)}$. For *Y* as before and $\eta > 0$, define

$$\left(\Gamma^{(Y,\eta)}f_{j}\right)_{\ell} = \begin{cases} \frac{1}{(\ell-j)!} \frac{1}{(2\eta+2j)_{\ell-j}} Y_{\ell} \cdots Y_{j+1} D^{\ell-j}f_{j} & \text{if } \ell \geq j \\ 0 & \text{if } \ell < j \end{cases}.$$

Let $\mathscr{H}^{(Y,\eta)}$ denote the image of $\Gamma^{(Y,\eta)}$ in the space of holomorphic functions $\operatorname{Hol}(\mathbb{D}, \mathbb{C}^n)$.

Define a Hilbert space structure on $\mathscr{H}^{(Y,\eta)}$ by stipulating $\Gamma^{(Y,\eta)}$ to be unitary. We thus have a reproducing kernel Hilbert space.

Let $\mathbb{A}^{(\lambda)}$ be the Hilbert space of holomorphic functions on the unit disc with reproducing kernel $(1 - z\overline{w}))^{-2\lambda}$. This is homogeneous under the multiplier g'^{λ} for the \tilde{G} action. Let $\mathbf{A}^{(\eta)} = \bigoplus_{i=0}^{m} n_i \mathbb{A}^{(\eta+j)}$. For *Y* as before and $\eta > 0$, define

$$\left(\Gamma^{(Y,\eta)}f_{j}\right)_{\ell} = \begin{cases} \frac{1}{(\ell-j)!} \frac{1}{(2\eta+2j)_{\ell-j}} Y_{\ell} \cdots Y_{j+1} D^{\ell-j}f_{j} & \text{if } \ell \geq j \\ 0 & \text{if } \ell < j \end{cases}.$$

Let $\mathscr{H}^{(Y,\eta)}$ denote the image of $\Gamma^{(Y,\eta)}$ in the space of holomorphic functions $\operatorname{Hol}(\mathbb{D}, \mathbb{C}^n)$.

Define a Hilbert space structure on $\mathscr{H}^{(Y,\eta)}$ by stipulating $\Gamma^{(Y,\eta)}$ to be unitary. We thus have a reproducing kernel Hilbert space.

Transfer the natural \tilde{G} - action on $\mathbf{A}^{(\eta)} = \bigoplus_{j=0}^{m} n_j \mathbb{A}^{(\eta+j)}$ to $\mathscr{H}^{(Y,\eta)}$.

This actions lifts to a multiplier representation on $\mathscr{H}^{(Y,\eta)}$ with multiplier $J_g^{(Y,\eta)}(z)$.

The reproducing kernel for $K^{(Y,\eta)}(z,w)$ for the Hilbert space $\mathscr{H}^{(Y,\eta)}$ is of the form $J_g^{(Y,\eta)}(z)K(0,0)J_z^{(Y,\eta)^*}$ with

$$K^{(\lambda,\eta)}(0,0)_{\ell,\ell} = \sum_{j=0}^m rac{1}{(\ell-j)!} rac{1}{(2\eta+2j)_{\ell+j}} Y_\ell \cdots Y_{j+\ell} Y_{j+\ell}^* \cdots Y_\ell^*.$$

Theorem

These are all the homogeneous holomorphic vector bundles with a reproducing kernel.

Transfer the natural \tilde{G} - action on $\mathbf{A}^{(\eta)} = \bigoplus_{j=0}^{m} n_j \mathbb{A}^{(\eta+j)}$ to $\mathscr{H}^{(Y,\eta)}$.

This actions lifts to a multiplier representation on $\mathscr{H}^{(Y,\eta)}$ with multiplier $J_g^{(Y,\eta)}(z)$.

The reproducing kernel for $K^{(Y,\eta)}(z,w)$ for the Hilbert space $\mathscr{H}^{(Y,\eta)}$ is of the form $J_g^{(Y,\eta)}(z)K(0,0)J_z^{(Y,\eta)*}$ with

$$K^{(\lambda,\eta)}(0,0)_{\ell,\ell} = \sum_{j=0}^m rac{1}{(\ell-j)!} rac{1}{(2\eta+2j)_{\ell+j}} Y_\ell \cdots Y_{j+\ell} Y_{j+\ell}^* \cdots Y_\ell^*.$$

Theorem

These are all the homogeneous holomorphic vector bundles with a reproducing kernel.

Transfer the natural \tilde{G} - action on $\mathbf{A}^{(\eta)} = \bigoplus_{j=0}^{m} n_j \mathbb{A}^{(\eta+j)}$ to $\mathscr{H}^{(Y,\eta)}$.

This actions lifts to a multiplier representation on $\mathscr{H}^{(Y,\eta)}$ with multiplier $J_g^{(Y,\eta)}(z)$.

The reproducing kernel for $K^{(Y,\eta)}(z,w)$ for the Hilbert space $\mathscr{H}^{(Y,\eta)}$ is of the form $J_g^{(Y,\eta)}(z)K(0,0)J_z^{(Y,\eta)*}$ with

$$K^{(\lambda,\eta)}(0,0)_{\ell,\ell} = \sum_{j=0}^{m} \frac{1}{(\ell-j)!} \frac{1}{(2\eta+2j)_{\ell+j}} Y_{\ell} \cdots Y_{j+\ell} Y_{j+\ell}^* \cdots Y_{\ell}^*.$$

Theorem

These are all the homogeneous holomorphic vector bundles with a reproducing kernel.

Given any holomorphic homogeneous Hermitian vector bundle (assume irreducible), as a holomorphic homogeneous vector bundle it is of the form $E^{(\eta,Y)}$. Since it has a reproducing kernel, the \tilde{G} - action on it is unitary.

One can see that this unitary representation is a sum $\oplus U_j^{(\eta+j)} \otimes I_{n_j}$ of irreducible discrete series representations. So there exists some intertwining operator from (some) $\mathbb{A}^{(\eta)}$ to our Hilbert space. An application of Schur's Lemma gives that $\exists N > 0$ such that $\Gamma_N^{(\eta,Y)}$ is this intertwining operator.

Given any holomorphic homogeneous Hermitian vector bundle (assume irreducible), as a holomorphic homogeneous vector bundle it is of the form $E^{(\eta,Y)}$. Since it has a reproducing kernel, the \tilde{G} - action on it is unitary.

One can see that this unitary representation is a sum $\oplus U_j^{(\eta+j)} \otimes I_{\eta_j}$ of irreducible discrete series representations. So there exists some intertwining operator from (some) $\mathbb{A}^{(\eta)}$ to our Hilbert space.

An application of Schur's Lemma gives that $\exists N > 0$ such that $\Gamma_N^{(\eta, \chi)}$ is this intertwining operator.

Given any holomorphic homogeneous Hermitian vector bundle (assume irreducible), as a holomorphic homogeneous vector bundle it is of the form $E^{(\eta,Y)}$. Since it has a reproducing kernel, the \tilde{G} - action on it is unitary.

One can see that this unitary representation is a sum $\oplus U_j^{(\eta+j)} \otimes I_{n_j}$ of irreducible discrete series representations. So there exists some intertwining operator from (some) $\mathbb{A}^{(\eta)}$ to our Hilbert space. An application of Schur's Lemma gives that $\exists N > 0$ such that $\Gamma_N^{(\eta,Y)}$ is this intertwining operator.

For holomorphic homogeneous Hermitian vector bundles, we had the convenient parametrization $E^{(\eta, [Y])}$, $\eta \in \mathbb{R}$, *Y* as before. Now we can also tell which ones among these have their Hermitian structure come from a reproducing kernel.

Theorem

 $E^{(\eta,[Y])}$ is a holomorphic homogeneous Hermitian vector bundle if and only if $\eta > 0$ and

$$I - Y_j \left(\sum_{k=0}^{j-1} \frac{(-1)^{j+k-1}}{(j-k)!(2\eta+j+k-1)_{j-k}} Y_{j-1} \dots Y_{k+1} Y_{k+1}^* \dots Y_{j-1}^* \right) Y_j^*$$

 $Y_j^* > 0, \, 1 \le j \le m$

For holomorphic homogeneous Hermitian vector bundles, we had the convenient parametrization $E^{(\eta, [Y])}$, $\eta \in \mathbb{R}$, *Y* as before. Now we can also tell which ones among these have their Hermitian structure come from a reproducing kernel.

Theorem

 $E^{(\eta,[Y])}$ is a holomorphic homogeneous Hermitian vector bundle if and only if $\eta > 0$ and

$$I - Y_j \left(\sum_{k=0}^{j-1} \frac{(-1)^{j+k-1}}{(j-k)!(2\eta+j+k-1)_{j-k}} Y_{j-1} \dots Y_{k+1} Y_{k+1}^* \dots Y_{j-1}^* \right) Y_j^*$$

 $Y_j^*>0,\,1\leq j\leq m$

Theorem

All the homogeneous holomorphic Hermitian vector bundles with a reproducing kernel correspond to homogeneous operators in the Cowen – Douglas class. The irreducible ones are the adjoint of the multiplication operator M on the space $\mathscr{H}^{(Y,\eta)}$ for some $\eta > 0$ and irreducible Y. The block matrix Y is determined up to conjugacy by block diagonal unitaries.

There is a simple orthonormal system for the Hilbert space $\mathbb{A}^{(\lambda)}$. Hence we can find such a system for $\mathbf{A}^{(\eta)}$ as well. Transplant it using $\Gamma^{(Y,\eta)}$ to the Hilbert space $\mathscr{H}^{(Y,\eta)}$.

The multiplication operator in this basis has a block diagonal form with $M_n := M : \mathscr{H}(n) \to \mathscr{H}(n+1)$. This description is sufficiently explicit to see:

There is a simple orthonormal system for the Hilbert space $\mathbb{A}^{(\lambda)}$. Hence we can find such a system for $\mathbf{A}^{(\eta)}$ as well. Transplant it using $\Gamma^{(Y,\eta)}$ to the Hilbert space $\mathscr{H}^{(Y,\eta)}$.

The multiplication operator in this basis has a block diagonal form with $M_n := M : \mathscr{H}(n) \to \mathscr{H}(n+1)$. This description is sufficiently explicit to see:

There is a simple orthonormal system for the Hilbert space $\mathbb{A}^{(\lambda)}$. Hence we can find such a system for $\mathbf{A}^{(\eta)}$ as well. Transplant it using $\Gamma^{(Y,\eta)}$ to the Hilbert space $\mathscr{H}^{(Y,\eta)}$.

The multiplication operator in this basis has a block diagonal form with $M_n := M : \mathcal{H}(n) \to \mathcal{H}(n+1)$. This description is sufficiently explicit to see:

There is a simple orthonormal system for the Hilbert space $\mathbb{A}^{(\lambda)}$. Hence we can find such a system for $\mathbf{A}^{(\eta)}$ as well. Transplant it using $\Gamma^{(Y,\eta)}$ to the Hilbert space $\mathscr{H}^{(Y,\eta)}$.

The multiplication operator in this basis has a block diagonal form with $M_n := M : \mathcal{H}(n) \to \mathcal{H}(n+1)$. This description is sufficiently explicit to see:

- B. Bagchi and G. Misra, *The homogeneous shifts*, J. Func. Anal. 204 (2003), 293 –319.
- A. Korányi and G. Misra, *Homogeneous operators on Hilbert spaces of holomorphic functions*, J. Func. Anal **254** (2008), 2419–2436.
- D. R. Wilkins, Homogeneous vector bundles and Cowen -Douglas operators, International J. of Math. 4 (1993), 503 – 520.

Thank you!

