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definitions

An operator T from a Hilbert space into itself is said to be
homogeneous
if φ(T ) is unitarily equivalent to T for all φ in Möb,
the group of bi-holomorphic automorphisms of the unit disc, which
are analytic on the spectrum of T .
We say that a projective unitary representation σ of Möb is
associated with an operator T if

φ(T ) = σ(φ)∗Tσ(φ)

for all φ in Möb. Clearly, if T has an associated representation then
T is homogeneous.
A huge number of (unitarily inequivalent) examples of homogeneous
operators are known.
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main results

We prove that if T is a cnu contraction with associated (projective
unitary) representation σ, then there is a unique projective unitary
representation σ̂, extending σ, associated with the minimal unitary
dilation W of T .

Indeed, we have the formula for σ̂ in terms of σ, namely,

σ̂ = (π ⊗ D+
1 ) ⊕ σ ⊕ (π∗ ⊗ D−

1 ),

where D±
1 are the two Discrete series representations (one

holomorphic and the other anti-holomorphic) living on the Hardy
space H2(T), and π, π∗ are representations of the Mobius group living
on the two defect spaces of T and explicitly defined in terms of σ.
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We find a product formula for the characteristic function θ of any
cnu contractive homogeneous operator:

θ(z) = π∗(φz)∗Cπ(φz), z ∈ D, (1)

where φ0 is the identity in Möb and, for z ̸= 0 in D, φz is the unique
involution in Möb which interchanges 0 and z . Here, the two
companion representations π, π∗ are the ones that appear in the
decomposition of σ̂.

We make this formula explicit by describing the two representations
π∗ and π in the case of a large family of homogeneous contractions in
the Cowen-Douglas class.
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the Möbius group

Möb = {φα,β : α ∈ T, β ∈ D}, where

φα,β(z) = α
z − β

1 − β̄z
, z ∈ D. (2)

Möb is the Möbius group of all biholomorphic automorphisms of D.
Recall that φβ := φ−1,β, β ∈ D, is the unique involution in Möb
which interchanges 0 and β.

Möb is topologised via the obvious identification with T × D. With
this topology, Möb becomes a topological group. Abstractly, it is
isomorphic to PSL(2,R) and to PSU(1, 1).
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multipliers
Let G be a locally compact second countable topological group.
Then a measurable function π : G → U(H) is called a
projective representation of G on the Hilbert space H if there is a
function (necessarily Borel) m : G × G → T such that

π(1) = I, π(g1g2) = m(g1, g2)π(g1)π(g2)

for all g1, g2 in G .
This requirement on a projective representation implies that its
associated multiplier m satisfies

m(g , 1) = 1 = m(1, g),
m(g1, g2)m(g1g2, g3) = m(g1, g2g3)m(g2, g3)

for all elements g , g1, g2, g3 of G .
Any Borel function m : G × G → T satisfying these conditions is
called a multiplier of G .
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Sz.-Nagy – Foias model theory
Recall that an operator T is called a contraction if ∥T∥ ≤ 1, and it is
called completely non-unitary (cnu) if T has no non-trivial invariant
subspace M such that the restriction of T to M is unitary. T is
called a pure contraction if ∥Tx∥ < ∥x∥ for all non-zero vectors x .
To any cnu contraction T on a Hilbert space, Sz.-Nagy and
Foias associate a pure contraction valued analytic function

θT : D → B(D, D∗),

where D = clos
(
ran

√
I − T ∗T

)
, and D∗ = clos

(
ran

√
I − TT ∗ ),

called the characteristic function of T .
Two pure contraction valued analytic functions θi : D → B(Di , D∗i),
i = 1, 2, are said to coincide if there exist two unitary operators
τ1 : D1 → D2, τ2 : D∗1 → D∗2 such that

θ2(z)τ1 = τ2θ1(z), z ∈ D.
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unitary equivalence of contractions

The theory of Sz.-Nagy and Foias shows that
▶ two cnu contractions are unitarily equivalent if and only if their

characteristic functions coincide,
▶ any pure contraction valued analytic function is the

characteristic function of some cnu contraction.
In general, the model for the operator associated with a given
function θ is difficult to describe.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

transformation rule

Theorem
A pure contraction valued analytic function θ on D is the
characteristic function of a homogeneous cnu contraction if and
only if θ ◦ φ coincides with θ for every φ in Möb.
As an interesting particular case of this theorem, one finds that any
cnu contraction with a constant characteristic function is necessarily
homogeneous.

Question
Are there cnu contractions with nonconstant characteristic function?
The holomorphic discrete series examples (λ ≥ 1) provide many
examples of cnu contractions with non-constant characteristic
function.
One may ask if it is possible to obtain a characterization of
homogeneous cnu contractions using the characteristic functions?
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the product formula

Theorem
If T is an irreducible homogeneous contraction then its characteristic
function θ : D → B(D, D∗) is given by

θ(z) = π∗(φz)∗Cπ(φz), z ∈ D

where π and π∗ are two projective representations of Möb (on the
Hilbert spaces D and D∗ respectively) with a common multiplier.
Further, C : D → D∗ is a pure contraction which intertwines σ|K and
π|K.
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the converse

Theorem
Conversely, whenever π, π∗ are projective representations of Möb
with a common multiplier and C is a purely contractive intertwiner
between π∗|K and π|K such that the function θ defined by
θ(z) = π∗(φz)∗Cπ(φz) is analytic on D, then θ is the characteristic
function of a homogeneous cnu contraction (not necessarily
irreducible).

(Here φz is the involution in Möb which interchanges 0 and z . Also,
K = {φ ∈ Möb : φ(0) = 0} is the standard maximal compact
subgroup of Möb.)

This theorem provides a recipe for classifying homogeneous
contractions.
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isometric dilation

Let T be a contraction onH and V : D ⊗ H2 ⊕ H → D ⊗ H2 ⊕ H be
the operator

V =
(

I ⊗ S iDT
0 T

)
, DT : H → D, DT =

√
I − T ∗T ,

and i : D → D ⊗ H2, x 7→ x ⊗ 1, S : H2 → H2, (Sf )(z) = zf (z),
f ∈ H2.
One easily verifies that V is an isometric dilation of T , that is,
PHV n

|H = T n.
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unitary dilation

Let D∗ := clos
(
ran

√
I − TT ∗ ). It is possible to construct a unitary

dilation U : D ⊗ H2 ⊕ H ⊕ D∗ ⊗ H2 → D ⊗ H2 ⊕ H ⊕ D∗ ⊗ H2

in a similar manner:

U =

 I ⊗ S iDT ∗
0 T D∗

T ∗ i∗
∗

0 0 I ⊗ S∗

 ,

where DT ∗ : H → D∗, DT ∗ =
√

I − TT ∗ and i∗ : D∗ → D∗ ⊗ H2,
x 7→ x ⊗ 1.
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new representations from old ones

Set c : Möb × D → C will denote the function c(φ, z) = (φ′)1/2(z).

Theorem 1
Let T be a homogeneous contraction with associated representation
σ and W be the minimal unitary dilation. Then the unique
representaion σ̂ extending σ and associated with W is of the form

(π ⊗ D+
1 ) ⊕ σ ⊕ (π∗ ⊗ D−

1 ),

where π : Möb → U(D) and π∗ : Möb → U(D∗) are given by the
formula

π(φ)D = Dσ(φ)c(φ, T )−1, π∗(φ)D∗ = D∗σ(φ)c(φ, T )−1∗
.
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surprise

The representations π, π∗ appear both in the product formula for the
characteristic function of the operator T and the representation σ̂ of
its minimal unitary dilation.
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new representations from old ones

Set c : Möb × D → C will denote the function c(φ, z) = (φ′)1/2(z).

Theorem 2
Let T be a homogeneous contraction with associated representation
σ and W be the minimal unitary dilation. Then the unique
representaion σ̂ extending σ and associated with W is of the form

(π ⊗ D+
1 ) ⊕ σ ⊕ (π∗ ⊗ D−

1 ),

where π : Möb → U(D) and π∗ : Möb → U(D∗) are given by the
formula

π(φ)D = Dσ(φ)c(φ, T )−1, π∗(φ)D∗ = D∗σ(φ)c(φ, T )−1∗
.
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surprise

The representations π, π∗ appear both in the product formula for the
characteristic function of the operator T and the representation σ̂ of
its minimal unitary dilation.
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the discrete series examples

For positive real numbers λ, let H(λ) denote the Hilbert space of
holomorphic functions on D with reproducing kernel B(λ),
B(λ)(z , w) = (1 − wz)−λ. Let D+

λ (φ) : Möb → U
(
H(λ)) be the

operator

D+
λ (φ) =

(
φ′)λ

2 f ◦ φ, f ∈ H(λ), φ ∈ Möb.

D+
λ is the holomorphic Discrete series representation of Möb living on

the Hilbert space H(λ).
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the Gamma map

Let H(λ)
n denote the Hilbert space ⊕n−1

i=0 H(λi ), where λi = λ + 2i and
n ∈ N.
Given an n - tuple of strictly positive numbers µ := (µ0, . . . , µn−1),
let

Γ(λ,µ) : H(λ)
n → Hol(D,Cn)

be the map defined by

(
Γ(λ,µ)(f )

)
ℓ

=
∑

0≤j≤ℓ

√
µj
(ℓ

j
)

(λ + 2j)ℓ−j
f (ℓ−j)
j , 0 ≤ ℓ < n, f = ⊕0≤j<nfj .

Let H(λ,µ) be the image of Γ(λ,µ). The operator M(λ,µ) of
multiplication by the coordinate function on H(λ,µ) is said to be a
generic contraction if λ > 1 and µk+1

µk
> (k+1)2

(λ+2k−1)(λ+2k) for
0 ≤ k ≤ n − 2.
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explicit formula

Theorem
Let M(λ,µ) be a generic contraction. Then the characteristic function
of M(λ,µ) coincides with the function

θ(λ,µ) : D → B
(

⊕0≤k<n H(λ+2k+1), ⊕0≤j<nH(λ+2j−1))
given by the formulae

θ(λ,µ)(z) =
(

⊕0≤j<n D+
λ+2j−1(φz)∗)C(⊕0≤k<n D+

λ+2k+1
)

=
((
θjk(z)

))
0≤j,k<n, z ∈ D,

where C is an explicitly determined block operator.
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Here’s wishing Bhaskar Bagchi all the
best in the coming years!
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