A product formula for homogeneous characteristic functions

Gadadhar Misra

joint with Bhaskar Bagchi and Somnath Hazra Indian Institute of Science, Bangalore

IMS2019 at IIT Kharagpur

November 22, 2019

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆○ ◆

definitions

An operator T from a Hilbert space into itself is said to be *homogeneous*

if $\varphi(T)$ is unitarily equivalent to T for all φ in Möb,

the group of bi-holomorphic automorphisms of the unit disc, which are analytic on the spectrum of T.

We say that a projective unitary representation σ of Möb is associated with an operator T if

$$\varphi(T) = \sigma(\varphi)^* T \sigma(\varphi)$$

for all φ in Möb. Clearly, if ${\cal T}$ has an associated representation then ${\cal T}$ is homogeneous.

A huge number of (unitarily inequivalent) examples of homogeneous operators are known.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆○ ◆

definitions

An operator T from a Hilbert space into itself is said to be *homogeneous*

if $\varphi(T)$ is unitarily equivalent to T for all φ in Möb,

the group of bi-holomorphic automorphisms of the unit disc, which are analytic on the spectrum of T.

We say that a projective unitary representation σ of Möb is associated with an operator ${\cal T}$ if

$$\varphi(T) = \sigma(\varphi)^* T \sigma(\varphi)$$

for all φ in Möb. Clearly, if ${\cal T}$ has an associated representation then ${\cal T}$ is homogeneous.

A huge number of (unitarily inequivalent) examples of homogeneous operators are known.

main results

We prove that if T is a cnu contraction with associated (projective unitary) representation σ , then there is a unique projective unitary representation $\hat{\sigma}$, extending σ , associated with the minimal unitary dilation W of T.

Indeed, we have the formula for $\hat{\sigma}$ in terms of σ , namely,

 $\widehat{\sigma} = (\pi \otimes D_1^+) \oplus \sigma \oplus (\pi_* \otimes D_1^-),$

where D_1^{\pm} are the two Discrete series representations (one holomorphic and the other anti-holomorphic) living on the Hardy space $H^2(\mathbb{T})$, and π , π_* are representations of the Mobius group living on the two defect spaces of T and explicitly defined in terms of σ .

main results

We prove that if T is a cnu contraction with associated (projective unitary) representation σ , then there is a unique projective unitary representation $\hat{\sigma}$, extending σ , associated with the minimal unitary dilation W of T.

Indeed, we have the formula for $\hat{\sigma}$ in terms of σ , namely,

$$\widehat{\sigma} = (\pi \otimes D_1^+) \oplus \sigma \oplus (\pi_* \otimes D_1^-),$$

where D_1^{\pm} are the two Discrete series representations (one holomorphic and the other anti-holomorphic) living on the Hardy space $H^2(\mathbb{T})$, and π , π_* are representations of the Mobius group living on the two defect spaces of T and explicitly defined in terms of σ . We find a *product formula* for the characteristic function θ of any cnu contractive homogeneous operator:

$$\theta(z) = \pi_*(\varphi_z)^* C \pi(\varphi_z), \quad z \in \mathbb{D},$$
(1)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆○ ◆

where φ_0 is the identity in Möb and, for $z \neq 0$ in \mathbb{D} , φ_z is the unique involution in Möb which interchanges 0 and z. Here, the two companion representations π, π_* are the ones that appear in the decomposition of $\hat{\sigma}$.

We make this formula explicit by describing the two representations π_* and π in the case of a large family of homogeneous contractions in the Cowen-Douglas class.

We find a *product formula* for the characteristic function θ of any cnu contractive homogeneous operator:

$$\theta(z) = \pi_*(\varphi_z)^* C \pi(\varphi_z), \quad z \in \mathbb{D},$$
(1)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆○ ◆

where φ_0 is the identity in Möb and, for $z \neq 0$ in \mathbb{D} , φ_z is the unique involution in Möb which interchanges 0 and z. Here, the two companion representations π, π_* are the ones that appear in the decomposition of $\hat{\sigma}$.

We make this formula explicit by describing the two representations π_* and π in the case of a large family of homogeneous contractions in the Cowen-Douglas class.

the Möbius group

$$\begin{array}{l} \mathsf{M\ddot{o}b} = \{\varphi_{\alpha,\beta} : \alpha \in \mathbb{T}, \beta \in \mathbb{D}\}, \text{ where} \\ \\ \varphi_{\alpha,\beta}(z) = \alpha \frac{z - \beta}{1 - \bar{\beta}z}, \quad z \in \mathbb{D}. \end{array} \tag{2}$$

Möb is the Möbius group of all biholomorphic automorphisms of \mathbb{D} . Recall that $\varphi_{\beta} := \varphi_{-1,\beta}, \ \beta \in \mathbb{D}$, is the unique involution in Möb which interchanges 0 and β .

Möb is topologised via the obvious identification with $\mathbb{T} \times \mathbb{D}$. With this topology, Möb becomes a topological group. Abstractly, it is isomorphic to $PSL(2,\mathbb{R})$ and to PSU(1,1).

人口 医水黄 医水黄 医水黄素 计目录

the Möbius group

 $\mathsf{M\ddot{o}b} = \{\varphi_{\alpha,\beta} : \alpha \in \mathbb{T}, \beta \in \mathbb{D}\}, \text{ where }$

$$\varphi_{\alpha,\beta}(z) = \alpha \frac{z-\beta}{1-\overline{\beta}z}, \quad z \in \mathbb{D}.$$
 (2)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

Möb is the Möbius group of all biholomorphic automorphisms of \mathbb{D} . Recall that $\varphi_{\beta} := \varphi_{-1,\beta}, \ \beta \in \mathbb{D}$, is the unique involution in Möb which interchanges 0 and β .

Möb is topologised via the obvious identification with $\mathbb{T} \times \mathbb{D}$. With this topology, Möb becomes a topological group. Abstractly, it is isomorphic to $PSL(2,\mathbb{R})$ and to PSU(1,1).

the Möbius group

$$\mathsf{M\ddot{o}b} = \{\varphi_{\alpha,\beta} : \alpha \in \mathbb{T}, \beta \in \mathbb{D}\}, \text{ where }$$

$$\varphi_{\alpha,\beta}(z) = \alpha \frac{z-\beta}{1-\overline{\beta}z}, \quad z \in \mathbb{D}.$$
 (2)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Möb is the Möbius group of all biholomorphic automorphisms of \mathbb{D} . Recall that $\varphi_{\beta} := \varphi_{-1,\beta}, \ \beta \in \mathbb{D}$, is the unique involution in Möb which interchanges 0 and β .

Möb is topologised via the obvious identification with $\mathbb{T} \times \mathbb{D}$. With this topology, Möb becomes a topological group. Abstractly, it is isomorphic to $PSL(2,\mathbb{R})$ and to PSU(1,1).

multipliers

Let G be a locally compact second countable topological group. Then a measurable function $\pi : G \to \mathcal{U}(\mathcal{H})$ is called a *projective representation* of G on the Hilbert space \mathcal{H} if there is a function (necessarily Borel) $m : G \times G \to \mathbb{T}$ such that

$$\pi(1) = I, \ \pi(g_1g_2) = m(g_1,g_2)\pi(g_1)\pi(g_2)$$

for all g_1, g_2 in G.

This requirement on a projective representation implies that its associated multiplier *m* satisfies

$$m(g,1) = 1 = m(1,g),$$

 $m(g_1,g_2)m(g_1g_2,g_3) = m(g_1,g_2g_3)m(g_2,g_3)$

for all elements g, g_1, g_2, g_3 of G. Any Borel function $m : G \times G \to \mathbb{T}$ satisfying these conditions is called a *multiplier* of G.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

multipliers

Let *G* be a locally compact second countable topological group. Then a measurable function $\pi : G \to \mathcal{U}(\mathcal{H})$ is called a *projective representation* of *G* on the Hilbert space \mathcal{H} if there is a function (necessarily Borel) $m : G \times G \to \mathbb{T}$ such that

$$\pi(1) = I, \ \pi(g_1g_2) = m(g_1,g_2)\pi(g_1)\pi(g_2)$$

for all g_1, g_2 in G.

This requirement on a projective representation implies that its associated multiplier m satisfies

for all elements g, g_1, g_2, g_3 of G.

Any Borel function $m: G \times G \to \mathbb{T}$ satisfying these conditions is called a *multiplier* of *G*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

multipliers

Let *G* be a locally compact second countable topological group. Then a measurable function $\pi : G \to \mathcal{U}(\mathcal{H})$ is called a *projective representation* of *G* on the Hilbert space \mathcal{H} if there is a function (necessarily Borel) $m : G \times G \to \mathbb{T}$ such that

$$\pi(1) = I, \ \pi(g_1g_2) = m(g_1,g_2)\pi(g_1)\pi(g_2)$$

for all g_1, g_2 in G.

This requirement on a projective representation implies that its associated multiplier m satisfies

for all elements g, g_1, g_2, g_3 of G. Any Borel function $m : G \times G \to \mathbb{T}$ satisfying these conditions is called a *multiplier* of G.

Sz.-Nagy – Foias model theory

Recall that an operator T is called a *contraction* if $||T|| \le 1$, and it is called *completely non-unitary* (cnu) if T has no non-trivial invariant subspace \mathcal{M} such that the restriction of T to \mathcal{M} is unitary. T is called a *pure contraction* if ||Tx|| < ||x|| for all non-zero vectors x.

To any cnu contraction T on a Hilbert space, Sz.-Nagy and Foias associate a pure contraction valued analytic function

 $\theta_T: \mathbb{D} \to \mathcal{B}(\mathcal{D}, \mathcal{D}_*),$

where $\mathcal{D} = \operatorname{clos}(\operatorname{ran}\sqrt{I - T^*T})$, and $\mathcal{D}_* = \operatorname{clos}(\operatorname{ran}\sqrt{I - TT^*})$, called the *characteristic function* of T.

Two pure contraction valued analytic functions $\theta_i : \mathbb{D} \to \mathcal{B}(\mathcal{D}_i, \mathcal{D}_{*i}),$ i = 1, 2, are said to *coincide* if there exist two unitary operators $\tau_1 : \mathcal{D}_1 \to \mathcal{D}_2, \ \tau_2 : \mathcal{D}_{*1} \to \mathcal{D}_{*2}$ such that

$$heta_2(z) au_1= au_2 heta_1(z),\,\,z\in\mathbb{D}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sz.-Nagy – Foias model theory

Recall that an operator T is called a *contraction* if $||T|| \le 1$, and it is called *completely non-unitary* (cnu) if T has no non-trivial invariant subspace \mathcal{M} such that the restriction of T to \mathcal{M} is unitary. T is called a *pure contraction* if ||Tx|| < ||x|| for all non-zero vectors x.

To any cnu contraction T on a Hilbert space, Sz.-Nagy and Foias associate a pure contraction valued analytic function

 $\theta_T: \mathbb{D} \to \mathcal{B}(\mathcal{D}, \mathcal{D}_*),$

where $\mathcal{D} = \operatorname{clos}(\operatorname{ran}\sqrt{I - T^*T})$, and $\mathcal{D}_* = \operatorname{clos}(\operatorname{ran}\sqrt{I - TT^*})$, called the *characteristic function* of T.

Two pure contraction valued analytic functions $\theta_i : \mathbb{D} \to \mathcal{B}(\mathcal{D}_i, \mathcal{D}_{*i}),$ i = 1, 2, are said to *coincide* if there exist two unitary operators $\tau_1 : \mathcal{D}_1 \to \mathcal{D}_2, \ \tau_2 : \mathcal{D}_{*1} \to \mathcal{D}_{*2}$ such that

$$\theta_2(z)\tau_1 = \tau_2\theta_1(z), \ z \in \mathbb{D}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sz.-Nagy – Foias model theory

Recall that an operator T is called a *contraction* if $||T|| \le 1$, and it is called *completely non-unitary* (cnu) if T has no non-trivial invariant subspace \mathcal{M} such that the restriction of T to \mathcal{M} is unitary. T is called a *pure contraction* if ||Tx|| < ||x|| for all non-zero vectors x.

To any cnu contraction T on a Hilbert space, Sz.-Nagy and Foias associate a pure contraction valued analytic function

$$\theta_T: \mathbb{D} \to \mathcal{B}(\mathcal{D}, \mathcal{D}_*),$$

where $\mathcal{D} = \operatorname{clos}(\operatorname{ran}\sqrt{I - T^*T})$, and $\mathcal{D}_* = \operatorname{clos}(\operatorname{ran}\sqrt{I - TT^*})$, called the *characteristic function* of T.

Two pure contraction valued analytic functions $\theta_i : \mathbb{D} \to \mathcal{B}(\mathcal{D}_i, \mathcal{D}_{*i})$, i = 1, 2, are said to *coincide* if there exist two unitary operators $\tau_1 : \mathcal{D}_1 \to \mathcal{D}_2, \ \tau_2 : \mathcal{D}_{*1} \to \mathcal{D}_{*2}$ such that

$$heta_2(z) au_1= au_2 heta_1(z),\,\,z\in\mathbb{D}.$$

unitary equivalence of contractions

The theory of Sz.-Nagy and Foias shows that

two cnu contractions are unitarily equivalent if and only if their characteristic functions coincide,

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

any pure contraction valued analytic function is the characteristic function of some cnu contraction.

In general, the model for the operator associated with a given function θ is difficult to describe.

transformation rule

Theorem

A pure contraction valued analytic function θ on \mathbb{D} is the characteristic function of a homogeneous cnu contraction if and only if $\theta \circ \varphi$ coincides with θ for every φ in Möb.

As an interesting particular case of this theorem, one finds that any cnu contraction with a constant characteristic function is necessarily homogeneous.

Question

Are there cnu contractions with nonconstant characteristic function?

The holomorphic discrete series examples $(\lambda \ge 1)$ provide many examples of cnu contractions with non-constant characteristic function.

One may ask if it is possible to obtain a characterization of homogeneous cnu contractions using the characteristic functions?

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

transformation rule

Theorem

A pure contraction valued analytic function θ on \mathbb{D} is the characteristic function of a homogeneous cnu contraction if and only if $\theta \circ \varphi$ coincides with θ for every φ in Möb.

As an interesting particular case of this theorem, one finds that any cnu contraction with a constant characteristic function is necessarily homogeneous.

Question

Are there cnu contractions with nonconstant characteristic function? The holomorphic discrete series examples ($\lambda \ge 1$) provide many examples of cnu contractions with non-constant characteristic function.

One may ask if it is possible to obtain a characterization of homogeneous cnu contractions using the characteristic functions?

transformation rule

Theorem

A pure contraction valued analytic function θ on \mathbb{D} is the characteristic function of a homogeneous cnu contraction if and only if $\theta \circ \varphi$ coincides with θ for every φ in Möb.

As an interesting particular case of this theorem, one finds that any cnu contraction with a constant characteristic function is necessarily homogeneous.

Question

Are there cnu contractions with nonconstant characteristic function? The holomorphic discrete series examples ($\lambda \ge 1$) provide many examples of cnu contractions with non-constant characteristic function.

One may ask if it is possible to obtain a characterization of homogeneous cnu contractions using the characteristic functions?

the product formula

Theorem

If T is an irreducible homogeneous contraction then its characteristic function $\theta : \mathbb{D} \to \mathcal{B}(\mathcal{D}, \mathcal{D}_*)$ is given by

$$heta(z) = \pi_*(\varphi_z)^* C \pi(\varphi_z), \ z \in \mathbb{D}$$

where π and π_* are two projective representations of Möb (on the Hilbert spaces \mathcal{D} and \mathcal{D}_* respectively) with a common multiplier. Further, $C : \mathcal{D} \to \mathcal{D}_*$ is a pure contraction which intertwines $\sigma|_{\mathbb{K}}$ and $\pi|_{\mathbb{K}}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

the converse

Theorem

Conversely, whenever π , π_* are projective representations of Möb with a common multiplier and C is a purely contractive intertwiner between $\pi_*|_{\mathbb{K}}$ and $\pi|_{\mathbb{K}}$ such that the function θ defined by $\theta(z) = \pi_*(\varphi_z)^* C \pi(\varphi_z)$ is analytic on \mathbb{D} , then θ is the characteristic function of a homogeneous cnu contraction (not necessarily irreducible).

(Here φ_z is the involution in Möb which interchanges 0 and z. Also, $\mathbb{K} = \{\varphi \in \text{Möb} : \varphi(0) = 0\}$ is the standard maximal compact subgroup of Möb.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This theorem provides a recipe for classifying homogeneous contractions.

the converse

Theorem

Conversely, whenever π , π_* are projective representations of Möb with a common multiplier and C is a purely contractive intertwiner between $\pi_*|_{\mathbb{K}}$ and $\pi|_{\mathbb{K}}$ such that the function θ defined by $\theta(z) = \pi_*(\varphi_z)^* C \pi(\varphi_z)$ is analytic on \mathbb{D} , then θ is the characteristic function of a homogeneous cnu contraction (not necessarily irreducible).

(Here φ_z is the involution in Möb which interchanges 0 and z. Also, $\mathbb{K} = \{\varphi \in \text{Möb} : \varphi(0) = 0\}$ is the standard maximal compact subgroup of Möb.)

This theorem provides a recipe for classifying homogeneous contractions.

isometric dilation

Let T be a contraction on \mathcal{H} and $V : \mathcal{D} \otimes H^2 \oplus \mathcal{H} \to \mathcal{D} \otimes H^2 \oplus \mathcal{H}$ be the operator

$$V = \begin{pmatrix} I \otimes S & iD_T \\ 0 & T \end{pmatrix}, \ D_T : \mathcal{H} \to \mathcal{D}, \ D_T = \sqrt{I - T^*T},$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < ?

and $i: \mathcal{D} \to \mathcal{D} \otimes H^2$, $x \mapsto x \otimes 1$, $S: H^2 \to H^2$, (Sf)(z) = zf(z), $f \in H^2$.

One easily verifies that V is an isometric dilation of T, that is, $P_{\mathcal{H}}V_{|\mathcal{H}}^{n} = T^{n}$.

unitary dilation

Let $\mathcal{D}_* := \operatorname{clos}(\operatorname{ran}\sqrt{I - TT^*})$. It is possible to construct a unitary dilation $U : \mathcal{D} \otimes H^2 \oplus \mathcal{H} \oplus \mathcal{D}_* \otimes H^2 \to \mathcal{D} \otimes H^2 \oplus \mathcal{H} \oplus \mathcal{D}_* \otimes H^2$ in a similar manner:

$$U = \begin{pmatrix} I \otimes S & iD_{T} & * \\ 0 & T & D_{T^{*}}^{*}i_{*}^{*} \\ 0 & 0 & I \otimes S^{*} \end{pmatrix},$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < ?

where $D_{T^*} : \mathcal{H} \to \mathcal{D}_*$, $D_{T^*} = \sqrt{I - TT^*}$ and $i_* : \mathcal{D}_* \to \mathcal{D}_* \otimes H^2$, $x \mapsto x \otimes 1$.

new representations from old ones

Set $c : M\"{o}b \times \mathbb{D} \to \mathbb{C}$ will denote the function $c(\varphi, z) = (\varphi')^{1/2}(z)$. Theorem 1

Let T be a homogeneous contraction with associated representation σ and W be the minimal unitary dilation. Then the unique representation $\hat{\sigma}$ extending σ and associated with W is of the form

$$(\pi\otimes D_1^+)\oplus\sigma\oplus(\pi_*\otimes D_1^-),$$

where π : Möb $\rightarrow U(D)$ and π_* : Möb $\rightarrow U(D_*)$ are given by the formula

$$\pi(\varphi)D=D\sigma(\varphi)c(\varphi,T)^{-1},\ \pi_*(\varphi)D_*=D_*\sigma(\varphi)c(\varphi,T)^{-1*}.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

surprise

The representations π, π_* appear both in the product formula for the characteristic function of the operator T and the representation $\hat{\sigma}$ of its minimal unitary dilation.

new representations from old ones

Set $c : M\"{o}b \times \mathbb{D} \to \mathbb{C}$ will denote the function $c(\varphi, z) = (\varphi')^{1/2}(z)$. Theorem 2

Let T be a homogeneous contraction with associated representation σ and W be the minimal unitary dilation. Then the unique representation $\hat{\sigma}$ extending σ and associated with W is of the form

$$(\pi\otimes D_1^+)\oplus\sigma\oplus(\pi_*\otimes D_1^-),$$

where π : $M\ddot{o}b \rightarrow U(D)$ and π_* : $M\ddot{o}b \rightarrow U(D_*)$ are given by the formula

$$\pi(\varphi)D=D\sigma(\varphi)c(\varphi,T)^{-1},\ \pi_*(\varphi)D_*=D_*\sigma(\varphi)c(\varphi,T)^{-1*}.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

surprise

The representations π, π_* appear both in the product formula for the characteristic function of the operator T and the representation $\hat{\sigma}$ of its minimal unitary dilation.

the discrete series examples

For positive real numbers λ , let $\mathcal{H}^{(\lambda)}$ denote the Hilbert space of holomorphic functions on \mathbb{D} with reproducing kernel $B^{(\lambda)}$, $B^{(\lambda)}(z,w) = (1-\overline{w}z)^{-\lambda}$. Let $D^+_{\lambda}(\varphi) : \text{M\"ob} \to \mathcal{U}(\mathcal{H}^{(\lambda)})$ be the operator

$$\mathcal{D}^+_\lambda(arphi)=(arphi')^{rac{\lambda}{2}}f\circarphi,\,\,f\in\mathcal{H}^{(\lambda)},\,\,arphi\in\mathsf{M\"ob}.$$

 D_{λ}^{+} is the holomorphic Discrete series representation of Möb living on the Hilbert space $\mathcal{H}^{(\lambda)}$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

the Gamma map

Let $\mathcal{H}_n^{(\lambda)}$ denote the Hilbert space $\bigoplus_{i=0}^{n-1} \mathcal{H}^{(\lambda_i)}$, where $\lambda_i = \lambda + 2i$ and $n \in \mathbb{N}$.

Given an n - tuple of strictly positive numbers $\underline{\mu} := (\mu_0, \ldots, \mu_{n-1})$, let

$$\mathsf{F}^{(\lambda,\underline{\mu})}:\mathcal{H}^{(\lambda)}_n o\mathsf{Hol}(\mathbb{D},\mathbb{C}^n)$$

be the map defined by

$$\left(\Gamma^{(\lambda,\underline{\mu})}(\underline{f})\right)_{\ell} = \sum_{0 \leq j \leq \ell} \frac{\sqrt{\mu_j} {\ell \choose j}}{(\lambda + 2j)_{\ell-j}} f_j^{(\ell-j)}, \ 0 \leq \ell < n, \ f = \bigoplus_{0 \leq j < n} f_j.$$

Let $\mathcal{H}^{(\lambda,\underline{\mu})}$ be the image of $\Gamma^{(\lambda,\underline{\mu})}$. The operator $M^{(\lambda,\underline{\mu})}$ of multiplication by the coordinate function on $\mathcal{H}^{(\lambda,\underline{\mu})}$ is said to be a *generic contraction* if $\lambda > 1$ and $\frac{\mu_{k+1}}{\mu_k} > \frac{(k+1)^2}{(\lambda+2k-1)(\lambda+2k)}$ for $0 \le k \le n-2$.

explicit formula

Theorem

Let $M^{(\lambda,\underline{\mu})}$ be a generic contraction. Then the characteristic function of $M^{(\lambda,\underline{\mu})}$ coincides with the function

$$\theta^{(\lambda,\underline{\mu})}:\mathbb{D}\to\mathcal{B}(\oplus_{0\leq k< n}\mathcal{H}^{(\lambda+2k+1)},\oplus_{0\leq j< n}\mathcal{H}^{(\lambda+2j-1)})$$

given by the formulae

$$\theta^{(\lambda,\underline{\mu})}(z) = (\bigoplus_{0 \le j < n} D^+_{\lambda+2j-1}(\varphi_z)^*) C(\bigoplus_{0 \le k < n} D^+_{\lambda+2k+1})$$
$$= (\theta_{jk}(z))_{0 \le j,k < n}, \ z \in \mathbb{D},$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

where C is an explicitly determined block operator.

Here's wishing Bhaskar Bagchi all the best in the coming years!

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●