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The Cowen - Douglas class

A Hilbert module over the polynomial ring C[z] := Clzy,.... Zm| is a
Hilbert space H which is a C|z] -module with the assumption

Hp : f” < CP”fH f €, pc C[é]a
for some (), > 0.

The multiplication /; by the coordinate functions =z;,
M;f:==z;-f, 1 <7 <m, then defines a commutative tuple
M = (M, ..., M,,) of linear bounded operators acting on ” and
vice-versa.

A Hilbert module H over the polynomial ring C[z] is said to be in the
Cowen-Douglas class B,(2), ne N, if

dim H/m,H =n < oo forall we

Nweomy,H = {0}, where m,, denotes the maximal ideal in C[z] at m

...l 4

w.
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Not an example!

However, many natural examples of Hilbert modules fail to be in the
class B, (Q).

For instance, H§(D?):= {f € H*(D?): f(0) =0} isnotin B,(D?).
The problem is that the dimension of the joint kernel

3 /my, H = NJLKer(M; — wj)*

is no longer a constant.

Indeed, we have (an easy calculation)

1 ifw #(0,0)

dim (3 /m,,}) = {2 if w=(0,0).

We outline an attempt to systematically study examples like the one @
given above using methods of complex analytic geometry. —t
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What about the kernel?

The computation of the dimension of the joint kernel for the module
HZ(D?) serves another purpose as well.

It shows that the module /77(ID?) is not equivalent to the usual Hardy
module. The dimension of the joint kernel for the Hardy module is 1
everywhere on the bi-disc.

This is a gennuine multi-variate phenomenon — for the unit disc, the
Hardy module is equivalent to all its sub-modules.

Clearly, the dimension of the joint kernel is an important unitary invaraint
for a module. However, in many instances, calculating this dimension, or
other numerical invariants is possible only after determining the kernel
itself.
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A Hilbert module M C O(€2) is said to be in the class B,(() if

it possesses a reproducing kernel /& ( we don't rule out the possibility:
K(w,w) =0 for w insome closed subset X of (1) and

The dimension of M /m,,M is finite for all w € .

Most of the examples in 5, ({)) are obtained by taking submodules of
Hilbert modules H(C O((2)) in the Cowen-Douglas class B ((2).

Are there others?
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A couple of questions

Let M € 95,(C2) be a Hilbert module and J C M be a polynomial
ideal. Assume without loss of generality that 0 € VV(J). Now, we ask

if there exists a set of polynomials py, ..., p; such that

pi(()“ﬁ] PR %;M)K[J](Zsu”)"w:& 1= 1 s at7

spans the joint kernel of [J] ;

what conditions, if any, will ensure that the polynomials p, ..., p¢ , as

above, is a generating set for J 7

o
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Relation between %5,(2) and B;(Q2)

The following Lemma isolates a very large class of elements from 5 (()
which belong to B ({);) for some open subset (), C ().

Lemma. Suppose M € B,(€) is the closure of a polynomial ideal J.
Then M isin B{(S)) if the ideal I is singly generated while if it is
generated by the polynomials pi.po, ..., pt , then M isin B1(Q2\ X)
for X ={z:p1(2)=... =p(2) =0}.
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Construction of the sheaf model

Following the correspondence of a vector bundle with a locally free sheaf,
we construct a sheaf $™(Q) for the Hilbert module M.

The sheaf $™ is the subsheaf of the sheaf of holomorphic functions
O(2) whose stalk 8)' at we Q is

For any Hilbert module M in 93,(€)) , the sheaf 8 is coherent.

This is essentially Noether's stationary lemmal
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Outline of the proof of the Theorem

We point out that the linear span of the set of vectors

{K\)|1<i<d} in M isindependent of the generators ¢!, ..., qy .

and that the vectors I\'f,f‘?. | < < d, are eigenvectors for the adjoint of
the action of C[z] on the Hilbert module M at wy.

Key ingredients in the proof are the following observations.

There is a decomposition for a function in any submodule of ©,,, in
terms of its generators valid over a small neighbourhood of wy.

The coefficients in this decomposition satisfy uniform norm bounds in a
even smaller compact neighbourhood of wy.

0., is a local ring to which Nakayama's lemma applies.
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The Gleason problem

One easy consequence of the decomposition theorem is the inequality

dimker D(nj—g)- > #{minimal generators for S%}

> dim SJV[ /m(ou'o)sivvfo

= wo
One of the basic question is to ask if we have equality under additional
hypothesis on the Hilbert module M. Thus assuming M to be an
analytic Hilbert module then Chen and Guo have shown that equality
is forced. We show that this property continues to hold for submodules of
analytic Hilbert modules.

Corollary. If M = [J] be a submodule of an analytic Hilbert module
over Clz] , where J s an ideal in the polynomial ring C|z| and
w e V(J) is a smooth point, then

dim ker D ng— )=

{ 1 forw ¢ V(I) N Q; @

codimension of V(J) for w e V(J)NQ.
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The characteristic space

Let J be an ideal in the polynomial ring C|z].

The characteristic space of an ideal J in C[z| at the point w is the
vector space

Vw(@) :={q € Clz] : ¢(D)p|lw =0, p € T}.
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The characteristic space

Let J be an ideal in the polynomial ring C|[z].

The characteristic space of an ideal J in C[z| at the point w is the
vector space

Vu(J) :={q € Cl2] : ¢(D)plw =0, p € T}.
The envolope I of the ideal I is

{p € Clz] : ¢(D)plw =0, g € V,u (9)}.

If the zero set of the ideal Jis {w} then I =V, (7).

u

This describes an ideal by prescribing conditions on derivatives. We
stretch this a little more. @
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An auxiliary space

Let “{f,p(J) be the auxiliary space V,(m,J). Then we have
dim NKer(M; — w;)* = dim V,,(3)/V., (7).

Actually, we have something much more substantial.

Lemma. Fix w, € Q0 and polynomials ¢, . ... q:- Let J bea
polynomial ideal and KK be the reproducing kernel corresponding the
Hilbert module [J] , which is assumed to be in 51({). Then the

vectors
01 (DK () -+ G0 (DYE (-3 0) [y
form a basis of the joint kernel M'" | ker(M; —wq ;)" if and only if the
classes [q7],. .., lg/] form a basis of Vo (9)/ Ve, (7).
However, it is not clear if we can choose the polynomials {¢i, ..., Gt} to 4
be a generating set for the ideal J @

14



A canonical set of generators

Theorem. Let 7 C[z] be a homogeneous ideal and {p;, ..., Po}
be a minimal set of generators for J consisting of homogeneous
polynomials. Let X be the reproducing kernel corresponding to the
Hilbert module [J] , which is assumed to be in 5,(C)). Then there
exists a set of generators (,...,q, for the ideal J such that the set

{¢;(D)K (-, w)|w=o : 1 <i <}

is a basis for N7, ker M.
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A canonical set of generators

Theorem. Let 7 C[z] be a homogeneous ideal and {p;, ..., Po}

be a minimal set of generators for J consisting of homogeneous

polynomials. Let X be the reproducing kernel corresponding to the

Hilbert module [J] , which is assumed to be in 5,(C)). Then there

exists a set of generators (,...,q, for the ideal J such that the set
{¢;(D)K (-, w)|w=o : 1 <i <0}

is a basis for N} ker M.

We note that the new set {¢, ..., (v} of generators for J is more or

less ~“canonical''. It is uniquely determined modulo a linear

transformation as shown below.
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25| be the ideal generated by z; + 25, and
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An Example

We have

n

72

Let J C C|zy, 25| be the ideal generated by =z + 2z, and z35.
V(J) = {0}. The reproducing kernel K for [J] C H?(D?)
s B 1 7 (z1 — 2z2) (w1 — w2) 7
Kp(zw) = (1 — z1w1) (1 — 2212) 2 !
= (it )@+ @) 22);’““ T P2) Ly e i,
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Let J C Clzy, 5] be the ideal generated by z; + 25 and 27. We have
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However, we have ¢, = z; + 2, and ¢, = (21 — 23)” and they generate
the ideal J as well.
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Example contd.

However, we have ¢ = z; + 25 and ¢ = (2 — 25)? and they generate
the ideal J as well. Moreover, {((51 Jr(j_))[(( 11') 0 ((71 — (7_))2]\7( (1')‘()}
forms a basis of the joint kernel.

Let J be the ideal generated by z; + 25 and j and J be the ideal
generated by z; and z5. Since z; is not a linear combination of
214 2 and 27, it follows that 7 +# 7.

Indeed, our Theorem provides an effective tool for deciding when an ideal

is a monomial ideal.

Let {q1,..., (v} be a canonical set of generators for J. Let A be the
collection of monomials in the expressions of {1, ..., (o} thatarein J.
If the number of algebraically independent monomials in A is v, then

J is a monomial ideal. @



Back to H?(D?)

In the example of the module Z(D?) , we have

SH(f(D‘)) _ {Ouv if’LL' # (00)
m(0,0)0(0,0) if w = (0,0).
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Back to H?(D?)

In the example of the module Z(D?) , we have

S{,{é(DZ) _ {Ou’ ifw # (00)
m((),o)o(o.o) if w = (0,0).
While the germs of holomorphic function O, at w € D? is singly
genarated (even if w = (0,0) ), the ideal m4.0y0(0.0) € O(p.0) is 2 -

generated.

Thus the number of generators match the dimension of the joint
eigenspace, in this case.

The reproducing kernel /22 (2, w) is easy to compute:

21W1 + 2oW2 — 2122W1 W3

(1 721117)1)(1 72217)2) ’ m

Koy (z,w) =1 =



Back to our favorite example

How do we find the unique pair of vectors A" and K %7
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Back to our favorite example

How do we find the unique pair of vectors A" and K %7

set w0, = wy for wy # 0, and take the limit:

K2 mey (2, w
lim HU(LLD)(, )

(w1 ,w2)—0 w1

= K§V(2) + 0K (2) = 21 + 0120

to obtain l\'([‘;l) and l\'(()z) by the uniqueness in the Decomposition
Theorem. Similarly, for w605 = w; with ws # 0, we have

lim 7[(]{5@2) (=, w)

(w1,w2)—0 wWo

= KP(2) + 0KV (2) = 22 + 6221



A resolution of the singularity at 0

Thus we have a Hermitian line bundle on the complex projective space
T\l given by the frame (/| = 21 (/1,}_) and ()2} > 29 ()23|.
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A resolution of the singularity at 0

Thus we have a Hermitian line bundle on the complex projective space
?l given by the frame (/| = 21 (/1,}_) and ()2} > 29 ()22|.

The curvature of this line bundle is then an invariant for the Hilbert
module /77(ID?). This curvature is easily calculated and is given by the
formula X (0) = (1 + |0|*)~2
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A resolution of the singularity at 0

Thus we have a Hermitian line bundle on the complex projective space
?l given by the frame (/| = 21 (/1,}_) and ()2} > 29 ()22|.

The curvature of this line bundle is then an invariant for the Hilbert
module /77(ID?). This curvature is easily calculated and is given by the
formula X (0) = (1 + |0|*)~2

The decomposition theorem yields similar results in many other examples.
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The isomorphism of Modules

For any two Hilbert module M; and M, in the class %;(()) and
LMy — M5 a module map between them, let
§L . 8Mi (V) — 8M2(V) be the map defined by

8 filvgi = _ Lfilvgi, for fi € M, g; € O(V), n € N.
i=1 =1

The map 8" is well defined: if 7" | filvg; = > filvd:, then
Y1 Lfilvei = > 1 Lfilvii.



The isomorphism of Modules

For any two Hilbert module M; and M, in the class B({2) and
LMy — M5 a module map between them, let
§L . 8Mi (V) — 8M2(V) be the map defined by

8" filvgi = Lfilvgi, for fi € My, g; € O(V), n € N.
=il =1l

The map S% is well defined: if > " | filyg:=> ", filv i, then
S Lfilvgi =Y i1 Lfilv -
Suppose M is isomorphic to M, via a unitary module map L. Now,

it is easy to verify that (S”)~! = 8% . It then follows that $'"' is
isomorphic, as a sheaf of modules over O, to 82 via the map S”.



The Rigidity Theorem

For wy € X, the common zero set of the two modules M; and s,
the stalks are not just isomorphic but equal:
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The Rigidity Theorem

For wy € X, the common zero set of the two modules M; and s,
the stalks are not just isomorphic but equal:

Siv,rol = {7 = 1’1}7,0, 1 g; € Mlh, &S ,,,,O“,U, 1<i1<n,ne N}
= {i=1"hof;: fi € Mo, h; € 1,04,,1 <i<n,neN}

= {i=1"hifi: f; € Mg, i € mOuy,1 <i<n,neN}=8N

wo
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The Rigidity Theorem

For wy € X, the common zero set of the two modules M; and s,
the stalks are not just isomorphic but equal:

My
Swo

= {i=1"h9;:9i € M1, h; € 04,1 <i<mn,neN}
= {i=1"hof;: fi € Mo, h; € 1,04,,1 <i<n,neN}
= {i=1"hifi: f; € Mg, i € mOuy,1 <i<n,neN}=8N

wo

Theorem. Let M C O(Q) and M C O()) be two Hilbert modules of
the form [J] and [J], respectively, where 1.7 are polynomial ideals.



The Rigidity Theorem

For w, € X, the common zero set of the two modules M; and M,
the stalks are not just isomorphic but equal:

Siv,rol = {7 = 1’1}7,(], 1 g; € Mlh, &S ,,,,O“,U, 1<i1<n,ne N}
= {L = 1nh2d)f2 3 fL € My, h; € mOw“, 1<:1<n,n¢€ N}

= {é= 1"’}Az,ifz- Cfi € M2,izi €m0y, 1 <i<nneN}= §Mz,

wo

Theorem. Let M C O(Q) and M C O()) be two Hilbert modules of
the form [J] and [J], respectively, where 1.7 are polynomial ideals.
Assume that M, M are in B, (€2) and that the dimension of the zero
set of these modules is at most m — 2. Furthermore, also assume that
every algebraic component of V(J) and \*'(j) intersects ().



The Rigidity Theorem

For w, € X, the common zero set of the two modules M; and M,
the stalks are not just isomorphic but equal:

Sjlwol = {7 = 1’1}7,(], 1 g; € Mlh, &S ,,,,O“,U, 1<i1<n,ne N}
= {L = 1nh2d)f2 3 fL € My, h; € mOw“, 1<:1<n,n¢€ N}

= {§= 1”’lAz,Z-fz- Cfi € M2,izi €m0y, 1 <i<nneN}= §Mz,

Wo

Theorem. Let M C O(Q) and M C O()) be two Hilbert modules of
the form [J] and [J], respectively, where 1.7 are polynomial ideals.
Assume that M, M are in B, (€2) and that the dimension of the zero
set of these modules is at most m — 2. Furthermore, also assume that
every algebraic component of V' (J) and \*'(j) intersects (). If M and
M are equivalent, then J=17. i



Applications

Example. For j=1,2 let 9, C Clz1....,2,], m > 2, be the ideals
generated by -7 and 2720 /. Let [J,] be the submodule in the
Hardy module /7%(ID""). Now, from the Theorem proved above, it
follows that [J;] is equivalent to [J5| if and only if J; =J5. We

conclude that these two ideals are same only if & = ko.
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Example. For j=1,2 let 9, C Clz1....,2,], m > 2, be the ideals
generated by -7 and 2720 /. Let [J,] be the submodule in the
Hardy module /7%(ID""). Now, from the Theorem proved above, it
follows that [J;] is equivalent to [J5| if and only if J; =J5. We

conclude that these two ideals are same only if & = ko.

Let M be a Hilbert module in 5, (€2), which is the closure, in M, of
some polynomial ideal J. Let A denote the corresponding reproducing
kernel. Let wy € V (M),



Applications

Example. For j=1,2 let 9, C Clz1....,2,], m > 2, be the ideals
generated by -7 and 2720 /. Let [J,] be the submodule in the
Hardy module /7%(ID""). Now, from the Theorem proved above, it
follows that [J;] is equivalent to [J5| if and only if J; =J5. We

conclude that these two ideals are same only if & = ko.

Let M be a Hilbert module in 5, (€2), which is the closure, in M, of
some polynomial ideal J. Let A denote the corresponding reproducing
kernel. Let wy € V(M). Set

t = dim S%/mu,,u 87)[0 = dim N}.; ker(M; —wo;)* = dim Vo (7)/ Vg (9).



Applications

Example. For j=1,2 let 9, C Clz1....,2,], m > 2, be the ideals
generated by -7 and 2720 /. Let [J,] be the submodule in the
Hardy module /7%(ID""). Now, from the Theorem proved above, it
follows that [J,] is equivalent to [J5] if and only if T, =J,. We

conclude that these two ideals are same only if & = ko.

Let M be a Hilbert module in 5, (€2), which is the closure, in M, of
some polynomial ideal J. Let A denote the corresponding reproducing
kernel. Let wy € Y"(J\T). Set

t = dim SM /M, 8y, = dim N7y ker(M; —wo;)" = dim Vi, (9)/ Vo, (9).

0 U(J

By the Decomposition Theorem, there exists a minimal set of generators
g1, ,g¢ of S(\)“ and a » > 0 such that

t
= Zgj(w)K(j)(-,u:) for all w € A(wg;r)

for some choice of anti-holomorphic functions
KO KO A(wg;r) = M. 23



New vector bundles

Consider the open set U/
Y — ¢

w1

(A(wo;r) x {ug Z0}) N A(u'”: r). Let
1,2 <j <t On this chart g;(w)=6jg;(w). From the
decomposition for the /A (-,w), we have

t
K(-,w) = g1 (w){KD (-, w) + Zé]vi(j)(\w)}.

j=2

o
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New vector bundles

Consider the open set U/
Y — ¢

w1

(A(wo;r) x {ug Z0}) N A(u'”: r). Let
1,2 <j <t On this chart g;(w)=6jg;(w). From the
decomposition for the /A (-,w), we have

t
E(w) = i) {EO(,w) + Y KD (w)}.
j=2
This decomposition then yields a section on the chart U, of the line
bundle on the blow-up space A/(wg:7):

t
s1(w,0) = KW (- w) + Z @KU)(-,w).

Jj=2



New vector bundles

Consider the open set /1 = (A(wg;r) x {up £ 0}) N ﬁ(uv(): r). Let
2= 0;,2 < j<t. On this chart g;(w)=6;g;(w). From the

decomposition for the /(. w), we have

t
E(w) = g1 (w){KD(,w) + Y 01K (-, w)}.
j=2
This decomposition then yields a section on the chart U, of the line
bundle on the blow-up space A/(wg:7):

t
s1(w,0) = KO (-, w) + Z Q%K(j)(-,w).
Jj=2
The vectors i )(-,w) are not uniquely determined. However, there
exists a canonical choice of these vectors starting from a basis,
{v1,..., v}, of the joint kernel NI, ker(M; — w;)*: )

K(,w) = Zgj(w)P(w, Wo)vj, w € A(wo;T)

=1




Restriction to the exceptional set

Let L£(M) be the line bundle on the blow-up space i(u-(): )
determined by the section (w,0) — s;(w,#), where
t
s1(w, ) = P(w, wp)vy + Zéjlﬂp(ﬁ/‘,lﬂo)llj, (w,8) € Uy.
=2
In general, 7 need not be a complex manifold. However, the restriction
of s to p '(wy) for wy € Z determines a holomorphic line bundle
Lo(M) on p’l(u'())* which is the set
{(u y, (@) : (o, m(w)) € p~H(wo)}, . Thus s1 = s1(w,0)|{wy} x {u; 20}
is given by the formula

t
51(0) = K(l)(',w()) + Z ()jl]((.i)(.’wo)

Jj=2

Since the vectors K ) (-, wy), 1 < j <t are uniquely determined by them

generators ¢, ..., gi,  s1 is well defined.

25



many more examples

Theorem. Let M C O(2) and M C O( )) be two Hilbert modules of
the form [J] and [J], respectively and J, 7 C Clz].
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many more examples

Theorem. Let M C O(Q) and M C O(2) be two Hilbert modules of
the form [J] and [J], respectively and 3, 7 C C[z]. Assume that M, M
are in 25,(C)) and that the dimension of the zero set of these modules is
at most m — 2.
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many more examples

Theorem. Let M C O(Q) and M C O(2) be two Hilbert modules of
the form [J] and [J], respectively and 3, 7 C C[z]. Assume that M, M
are in 25,(C)) and that the dimension of the zero set of these modules is

at most 1 — 2. If the modules M and M are equivalent, then the
corresponding bundles L,(M) and &,(N) they determine on the
projective space p~'(wy)* for wy € Z, are equivalent as Hermitian

holomorphic line bundle.



many more examples

Theorem. Let M C O(2) and M C O(S) be two Hilbert modules of
the form [J] and [J], respectively and 3, 7 C C[z]. Assume that M, M
are in 25,(C)) and that the dimension of the zero set of these modules is
at most m — 2. If the modules M and M are equivalent, then the
corresponding bundles L(M) and Lo(M) they determine on the
projective space p~'(wy)* for wy € Z, are equivalent as Hermitian
holomorphic line bundle.

Example. Let B? be the unit ball in C?. For —1 < a, 3,0 < +oc,
let L2 ,,(B?) be the Hilbert space of functions on B” satisfying

17 1po= [ 1F@PauG,22) <+,

du(z1,22) = (a+B+0+2)|22|% (1 —|21)% — |22]?)*(1 — |22]?)Pd A(21, %2) 4
and dA(z1,22) = dA(z1)dA(z2). @




Many more examples

The weighted Bergman space A” , ,(B?) is the subspace of L7 , ,(B?%)
consisting of the holomorphic functions on B”. The Hilbert space

A?  ,(B?) is non-trivial if we assume that the parameters o, 3,0
satisfy the additional condition: o+ 3 +0+2 > 0.

Proposition. Suppose I is an ideal in C|z;, 2] with V(J) = {0}.
Then the Hilbert modules [J] 12 (z2) and [J] 2 () are unitarily
equivalent if and only if o =o', 3= /" and 0 =10



Another set of Invariants




Local construction of vector bundles

Let Py be the orthogonal projection onto the joint kernel M /m,, M

Lemma. The dimension of ker Po(M/m, M) is constant in a suitably
small neighbourhood (), of w, € ().
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28



Local construction of vector bundles

Let Py be the orthogonal projection onto the joint kernel M /m,, M

Lemma. The dimension of ker Po(M/m, M) is constant in a suitably
small neighbourhood (), of w, € ().

Thus
CPZ}E ={(w, f) € AxM: f € kerPoD(nj—w)-} and 7(w, f) = w

may possibly define a holomorphic Hermitian vector bundle on the open
set ().



Existence of holomorphic structure

Existence of the operator Rys(w) satisfying

RM(?I/‘)D(M,H‘)Y- = [I— P D vi—wy*
D(M—'u:)‘RM(/w) = F)ran D(nv—w)y*

on () is established.
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Existence of holomorphic structure

Existence of the operator Rys(w) satisfying
RM(?U)D(M,U‘)Y. = I- Pk(—‘,r D (M —w)*
D(M—u:)‘RM(U}) = Puan D (ni—w)y*

on () is established.

(Here, Dipi—y)y» : M — M@ --- @M is the operator
il <(J[l - “’l)i,/a ~~~~~ (A\[/rz - “'m\)h,/‘) )
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Existence of holomorphic structure

Existence of the operator Rys(w) satisfying
Rm(w)Dv—w)s = 1 — Prer Dipg_uy»
D(M—u:)‘RM(U}) - F)ran D (ni—w)y*

on () is established.

(Here, Dipi—y)y» : M — M@ --- @M is the operator
/ = <(:\[l o “T)a/a ~~~~~ (A\[/rz o “,m\):«'/*) )

Then the operator
P(w,wo) = I — {I — Rv(wo)Dig—wo } " Rvi(wo) Dvi—w)*

is clearly seen to be well-defined and holomorphic for

w € B(wo; || R(wo) | ™) @



Theorem. If any two Hilbert modules M and M from B1(Q) are

equivalent, then the corresponding holomorphic Hermitian vector bundles
‘.P'\l

wo

and P, they determine on (), are equivalent.

ey
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Examples, calculation of the invariant

For A\, ;> 0, let KM denote the positive definite kernel
o) \(1; o7 2w €D on the bi-disc. Let

Hy M) 2y .= {f e HM")(D?) : £(0,0) = 0} be the corresponding
Hllbert module in %, (D?). The normalized metric ho(w, w) , which is
real analytic, is of the form

My 2 4 220 [, |2 ﬁlm(;lﬁ)'zwli?
ho( y=1+ (% w) H H
ho(w, w) =
AL 2 L +1 2
\/;7(#“) w2 W1 (H >z\1b1\ + B3 |wa|
o3
+O(|w[*),

where O(|wl|?); ; is of degree > 3.



The final outcome of these calculations

The curvature for P at (0,0) is given by the 2 x 2 matrices

A+1 A\ 2
( 2 A02 > ) ( 0 ‘/i“,(A4ZL) > )
7 ) )
0 )2 0 0

M
< 1 OAN 2 v ) , < (A1) 31 ) .
\/,\7(,\+;¢> 0 0 o=

ey
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The final outcome of these calculations

The curvature for P at (0,0) is given by the 2 x 2 matrices

A+1 A\ 2
( 2 A02 > ) ( 0 ‘/i“,(A4ZL) > )
7 ) )
0 )2 0 0

M
< 1 OAN 2 v ) , < (A1) 31 ) .
\/,\7(,\+;¢> 0 0 o=

HM)(D?) and 1/((;’\/'*‘/)(:D>3) are equivalent if and only if A = )\ and
/

W= .




Thank you!



	Motivation
	 The sheaf model
	The decomposition theorem

	The joint kernel of a Hilbert module
	Another set of Invariants

