A sheaf model for semi-Fredholm Hilbert modules

Gadadhar Misra School of Mathematics & Statistics Newcastle University Analysis Seminar November 04, 2010

Indian Institute of Science Bangalore (joint with S. Biswas)

Motivation

The Cowen - Douglas class

A Hilbert module over the polynomial ring $\mathbb{C}[\underline{z}] := \mathbb{C}[z_1, \dots, z_m]$ is a Hilbert space \mathcal{H} which is a $\mathbb{C}[\underline{z}]$ -module with the assumption

$\|p \cdot f\| \le C_p \|f\|, \quad f \in, \quad p \in \mathbb{C}[\underline{z}],$

for some $C_p > 0$.

The multiplication M_j by the coordinate functions z_j , $M_j f := z_j \cdot f, 1 \le j \le m$, then defines a commutative tuple $\mathbf{M} = (M_1, ..., M_m)$ of linear bounded operators acting on " and vice-versa.

A Hilbert module $\mathcal H$ over the polynomial ring $\mathbb C[\underline z]$ is said to be in the Cowen-Douglas class $\mathrm B_n(\Omega)$, $n\in\mathbb N$, if

 $\dim \mathcal{H}/\mathfrak{m}_w \mathcal{H} = n < \infty$ for all $w \in \Omega$

 $\cap_{w \in \Omega} \mathfrak{m}_w \mathcal{H} = \{0\}, \text{ where } \mathfrak{m}_w \text{ denotes the maximal ideal in } \mathbb{C}[\underline{z}] \text{ at } w.$

The Cowen - Douglas class

A Hilbert module over the polynomial ring $\mathbb{C}[\underline{z}] := \mathbb{C}[z_1, \dots, z_m]$ is a Hilbert space \mathcal{H} which is a $\mathbb{C}[\underline{z}]$ -module with the assumption

$||p \cdot f|| \le C_p ||f||, \quad f \in, \quad p \in \mathbb{C}[\underline{z}],$

for some $C_p > 0$.

The multiplication M_j by the coordinate functions z_j , $M_j f := z_j \cdot f, 1 \le j \le m$, then defines a commutative tuple $\mathbf{M} = (M_1, ..., M_m)$ of linear bounded operators acting on " and vice-versa.

A Hilbert module $\mathcal H$ over the polynomial ring $\mathbb C[\underline z]$ is said to be in the Cowen-Douglas class $\mathrm B_n(\Omega)$, $n\in\mathbb N$, if

 $\dim \mathfrak{H}/\mathfrak{m}_w \mathfrak{H} = n < \infty \ \text{ for all } \ w \in \Omega$

 $\cap_{w\in\Omega}\mathfrak{m}_w\mathcal{H}=\{0\},\ \text{where}\ \mathfrak{m}_w\ \text{denotes the maximal ideal in}\ \mathbb{C}[\underline{z}]\ \text{at}\ w.$

A Hilbert module over the polynomial ring $\mathbb{C}[\underline{z}] := \mathbb{C}[z_1, \dots, z_m]$ is a Hilbert space \mathcal{H} which is a $\mathbb{C}[\underline{z}]$ -module with the assumption

 $||p \cdot f|| \le C_p ||f||, \quad f \in, \quad p \in \mathbb{C}[\underline{z}],$

for some $C_p > 0$.

The multiplication M_j by the coordinate functions z_j , $M_j f := z_j \cdot f, 1 \le j \le m$, then defines a commutative tuple $\mathbf{M} = (M_1, ..., M_m)$ of linear bounded operators acting on " and vice-versa.

A Hilbert module $\mathcal H$ over the polynomial ring $\mathbb C[\underline z]$ is said to be in the Cowen-Douglas class $\mathrm B_n(\Omega)$, $n\in\mathbb N$, if

 $\dim \mathcal{H}/\mathfrak{m}_w \mathcal{H} = n < \infty \ \text{ for all } \ w \in \Omega$

 $\bigcap_{w \in \Omega} \mathfrak{m}_w \mathcal{H} = \{0\}, \text{ where } \mathfrak{m}_w \text{ denotes the maximal ideal in } \mathbb{C}[\underline{z}] \text{ at } w.$

A Hilbert module over the polynomial ring $\mathbb{C}[\underline{z}] := \mathbb{C}[z_1, \dots, z_m]$ is a Hilbert space \mathcal{H} which is a $\mathbb{C}[\underline{z}]$ -module with the assumption

 $||p \cdot f|| \le C_p ||f||, \quad f \in, \quad p \in \mathbb{C}[\underline{z}],$

for some $C_p > 0$.

The multiplication M_j by the coordinate functions z_j , $M_j f := z_j \cdot f, 1 \le j \le m$, then defines a commutative tuple $\mathbf{M} = (M_1, ..., M_m)$ of linear bounded operators acting on " and vice-versa.

A Hilbert module $\mathcal H$ over the polynomial ring $\mathbb C[\underline z]$ is said to be in the Cowen-Douglas class $\mathrm B_n(\Omega)$, $n\in\mathbb N$, if

 $\dim \mathcal{H}/\mathfrak{m}_w \mathcal{H} = n < \infty \ \text{ for all } \ w \in \Omega$

 $\bigcap_{w \in \Omega} \mathfrak{m}_w \mathcal{H} = \{0\}, \text{ where } \mathfrak{m}_w \text{ denotes the maximal ideal in } \mathbb{C}[\underline{z}] \text{ at } w.$

A Hilbert module over the polynomial ring $\mathbb{C}[\underline{z}] := \mathbb{C}[z_1, \dots, z_m]$ is a Hilbert space \mathcal{H} which is a $\mathbb{C}[\underline{z}]$ -module with the assumption

 $||p \cdot f|| \le C_p ||f||, \quad f \in, \quad p \in \mathbb{C}[\underline{z}],$

for some $C_p > 0$.

The multiplication M_j by the coordinate functions z_j , $M_j f := z_j \cdot f, 1 \le j \le m$, then defines a commutative tuple $\mathbf{M} = (M_1, ..., M_m)$ of linear bounded operators acting on " and vice-versa.

A Hilbert module $\mathcal H$ over the polynomial ring $\mathbb C[\underline z]$ is said to be in the Cowen-Douglas class $\mathrm B_n(\Omega)$, $n\in\mathbb N$, if

 $\dim \mathcal{H}/\mathfrak{m}_w \mathcal{H} = n < \infty \text{ for all } w \in \Omega$

 $\bigcap_{w \in \Omega} \mathfrak{m}_w \mathcal{H} = \{0\}, \text{ where } \mathfrak{m}_w \text{ denotes the maximal ideal in } \mathbb{C}[\underline{z}] \text{ at } w.$

Cowen and Douglas prove that isomorphic Hilbert modules correspond to equivalent vector bundles and vice-versa.

Also, they provide a model for the Hilbert modules in $B_n(\Omega)$. Cowen and Douglas (Curto and Salinas, in general) show that these modules can be realized as a Hilbert space consisting of holomorphic functions on Ω possessing a reproducing kernel. The module action is then simply the pointwise multiplication.

Cowen and Douglas prove that isomorphic Hilbert modules correspond to equivalent vector bundles and vice-versa.

Also, they provide a model for the Hilbert modules in $B_n(\Omega)$. Cowen and Douglas (Curto and Salinas, in general) show that these modules can be realized as a Hilbert space consisting of holomorphic functions on Ω possessing a reproducing kernel. The module action is then simply the pointwise multiplication.

Cowen and Douglas prove that isomorphic Hilbert modules correspond to equivalent vector bundles and vice-versa.

Also, they provide a model for the Hilbert modules in $B_n(\Omega)$. Cowen and Douglas (Curto and Salinas, in general) show that these modules can be realized as a Hilbert space consisting of holomorphic functions on Ω possessing a reproducing kernel. The module action is then simply the pointwise multiplication.

Cowen and Douglas prove that isomorphic Hilbert modules correspond to equivalent vector bundles and vice-versa.

Also, they provide a model for the Hilbert modules in $B_n(\Omega)$. Cowen and Douglas (Curto and Salinas, in general) show that these modules can be realized as a Hilbert space consisting of holomorphic functions on Ω possessing a reproducing kernel. The module action is then simply the pointwise multiplication.

Cowen and Douglas prove that isomorphic Hilbert modules correspond to equivalent vector bundles and vice-versa.

Also, they provide a model for the Hilbert modules in $B_n(\Omega)$. Cowen and Douglas (Curto and Salinas, in general) show that these modules can be realized as a Hilbert space consisting of holomorphic functions on Ω possessing a reproducing kernel. The module action is then simply the pointwise multiplication.

However, many natural examples of Hilbert modules fail to be in the class $B_n(\Omega)$.

For instance, $\ H^2_0(\mathbb{D}^2):=\{f\in H^2(\mathbb{D}^2): f(0)=0\}$ is not in $\ \mathrm{B}_n(\mathbb{D}^2).$

The problem is that the dimension of the joint kernel

 $\mathcal{H}/\mathfrak{m}_w\mathcal{H}\cong\cap_{j=0}^m\mathrm{Ker}(M_j-w_j)^*$

is no longer a constant.

Indeed, we have (an easy calculation)

$$\dim \left(\mathcal{H}/\mathfrak{m}_w \mathcal{H} \right) = \begin{cases} 1 & \text{if } w \neq (0,0) \\ 2 & \text{if } w = (0,0). \end{cases}$$

However, many natural examples of Hilbert modules fail to be in the class $B_n(\Omega)$.

For instance, $H_0^2(\mathbb{D}^2) := \{ f \in H^2(\mathbb{D}^2) : f(0) = 0 \}$ is not in $B_n(\mathbb{D}^2)$.

The problem is that the dimension of the joint kernel

 $\mathcal{H}/\mathfrak{m}_w\mathcal{H}\cong\cap_{j=0}^m\mathrm{Ker}(M_j-w_j)^*$

is no longer a constant.

Indeed, we have (an easy calculation)

$$\dim \left(\mathfrak{H}/\mathfrak{m}_w \mathfrak{H} \right) = \begin{cases} 1 & \text{if } w \neq (0,0) \\ 2 & \text{if } w = (0,0). \end{cases}$$

However, many natural examples of Hilbert modules fail to be in the class $B_n(\Omega)$.

For instance, $H_0^2(\mathbb{D}^2) := \{f \in H^2(\mathbb{D}^2) : f(0) = 0\}$ is not in $B_n(\mathbb{D}^2)$.

The problem is that the dimension of the joint kernel

 $\mathcal{H}/\mathfrak{m}_w\mathcal{H}\cong \cap_{j=0}^m \mathrm{Ker}(M_j-w_j)^*$

is no longer a constant.

Indeed, we have (an easy calculation)

$$\dim \left(\mathfrak{H}/\mathfrak{m}_w \mathfrak{H} \right) = \begin{cases} 1 & \text{if } w \neq (0,0) \\ 2 & \text{if } w = (0,0). \end{cases}$$

However, many natural examples of Hilbert modules fail to be in the class $B_n(\Omega)$.

For instance, $H_0^2(\mathbb{D}^2) := \{f \in H^2(\mathbb{D}^2) : f(0) = 0\}$ is not in $B_n(\mathbb{D}^2)$.

The problem is that the dimension of the joint kernel

 $\mathcal{H}/\mathfrak{m}_w\mathcal{H}\cong \cap_{j=0}^m \mathrm{Ker}(M_j-w_j)^*$

is no longer a constant.

Indeed, we have (an easy calculation)

$$\dim \left(\mathcal{H}/\mathfrak{m}_w \mathcal{H} \right) = \begin{cases} 1 & \text{if } w \neq (0,0) \\ 2 & \text{if } w = (0,0). \end{cases}$$

However, many natural examples of Hilbert modules fail to be in the class $B_n(\Omega)$.

For instance, $H_0^2(\mathbb{D}^2) := \{f \in H^2(\mathbb{D}^2) : f(0) = 0\}$ is not in $B_n(\mathbb{D}^2)$.

The problem is that the dimension of the joint kernel

 $\mathcal{H}/\mathfrak{m}_w\mathcal{H}\cong \cap_{j=0}^m \mathrm{Ker}(M_j-w_j)^*$

is no longer a constant.

Indeed, we have (an easy calculation)

$$\dim \left(\mathcal{H}/\mathfrak{m}_w \mathcal{H} \right) = \begin{cases} 1 & \text{if } w \neq (0,0) \\ 2 & \text{if } w = (0,0). \end{cases}$$

It shows that the module $H_0^2(\mathbb{D}^2)$ is not equivalent to the usual Hardy module. The dimension of the joint kernel for the Hardy module is 1 everywhere on the bi-disc.

This is a *gennuine* multi-variate phenomenon – for the unit disc, the Hardy module is equivalent to all its sub-modules.

It shows that the module $H_0^2(\mathbb{D}^2)$ is not equivalent to the usual Hardy module. The dimension of the joint kernel for the Hardy module is 1 everywhere on the bi-disc.

This is a *gennuine* multi-variate phenomenon – for the unit disc, the Hardy module is equivalent to all its sub-modules.

It shows that the module $H_0^2(\mathbb{D}^2)$ is not equivalent to the usual Hardy module. The dimension of the joint kernel for the Hardy module is 1 everywhere on the bi-disc.

This is a *gennuine* multi-variate phenomenon – for the unit disc, the Hardy module is equivalent to all its sub-modules.

It shows that the module $H_0^2(\mathbb{D}^2)$ is not equivalent to the usual Hardy module. The dimension of the joint kernel for the Hardy module is 1 everywhere on the bi-disc.

This is a *gennuine* multi-variate phenomenon – for the unit disc, the Hardy module is equivalent to all its sub-modules.

A Hilbert module $\mathcal{M}\subset \mathcal{O}(\Omega)$ is said to be in the class $\mathfrak{B}_1(\Omega)$ if

it possesses a reproducing kernel K (we don't rule out the possibility: K(w,w)=0~ for ~w~ in some closed subset ~X~ of $~\Omega$) and

The dimension of $\mathfrak{M}/\mathfrak{m}_w\mathfrak{M}$ is finite for all $w \in \Omega$.

Most of the examples in $\mathfrak{B}_1(\Omega)$ are obtained by taking submodules of Hilbert modules $\mathfrak{H}(\subseteq \mathfrak{O}(\Omega))$ in the Cowen-Douglas class $B_1(\Omega)$.

Are there others?

A Hilbert module $\mathcal{M} \subset \mathcal{O}(\Omega)$ is said to be in the class $\mathfrak{B}_1(\Omega)$ if

it possesses a reproducing kernel K (we don't rule out the possibility: $K(w,w)=0~~{\rm for}~~w~~{\rm in}$ some closed subset $~X~~{\rm of}~~\Omega$) and

The dimension of $\mathcal{M}/\mathfrak{m}_w\mathcal{M}$ is finite for all $w \in \Omega$.

Most of the examples in $\mathfrak{B}_1(\Omega)$ are obtained by taking submodules of Hilbert modules $\mathfrak{H}(\subseteq \mathfrak{O}(\Omega))$ in the Cowen-Douglas class $B_1(\Omega)$.

Are there others?

A Hilbert module $\mathcal{M} \subset \mathcal{O}(\Omega)$ is said to be in the class $\mathfrak{B}_1(\Omega)$ if

it possesses a reproducing kernel K (we don't rule out the possibility: K(w,w)=0~ for ~w~ in some closed subset ~X~ of $~\Omega$) and

The dimension of $\mathcal{M}/\mathfrak{m}_w\mathcal{M}$ is finite for all $w \in \Omega$.

Most of the examples in $\mathfrak{B}_1(\Omega)$ are obtained by taking submodules of Hilbert modules $\mathfrak{H}(\subseteq \mathfrak{O}(\Omega))$ in the Cowen-Douglas class $B_1(\Omega)$.

Are there others?

Let $\mathcal{M} \in \mathfrak{B}_1(\Omega)$ be a Hilbert module and $\mathfrak{I} \subseteq \mathcal{M}$ be a polynomial ideal. Assume without loss of generality that $0 \in V(\mathfrak{I})$. Now, we ask

if there exists a set of polynomials p_1,\ldots,p_t such that

$$p_i(\frac{\partial}{\partial \bar{w}_1}, \dots, \frac{\partial}{\partial \bar{w}_m}) K_{[\mathcal{I}]}(z, w)|_{w=0}, i = 1, \dots, t,$$

spans the joint kernel of $[\mathcal{I}]$;

what conditions, if any, will ensure that the polynomials $\ p_1,\ldots,p_t$, as above, is a generating set for $\ {\mathbb J}$?

Let $\mathcal{M} \in \mathfrak{B}_1(\Omega)$ be a Hilbert module and $\mathfrak{I} \subseteq \mathcal{M}$ be a polynomial ideal. Assume without loss of generality that $0 \in V(\mathfrak{I})$. Now, we ask if there exists a set of polynomials p_1, \ldots, p_t such that

$$p_i(\frac{\partial}{\partial \bar{w}_1}, \dots, \frac{\partial}{\partial \bar{w}_m})K_{[\mathcal{I}]}(z, w)|_{w=0}, i = 1, \dots, t,$$

spans the joint kernel of $\ [\ensuremath{\mathbb{J}}]$;

what conditions, if any, will ensure that the polynomials $\ p_1,\ldots,p_t$, as above, is a generating set for $\ {\mathfrak I}$?

Let $\mathcal{M} \in \mathfrak{B}_1(\Omega)$ be a Hilbert module and $\mathfrak{I} \subseteq \mathcal{M}$ be a polynomial ideal. Assume without loss of generality that $0 \in V(\mathfrak{I})$. Now, we ask if there exists a set of polynomials p_1, \ldots, p_t such that

$$p_i(\frac{\partial}{\partial \bar{w}_1}, \dots, \frac{\partial}{\partial \bar{w}_m})K_{[\mathcal{I}]}(z, w)|_{w=0}, i = 1, \dots, t,$$

spans the joint kernel of $[\mathcal{I}]$;

what conditions, if any, will ensure that the polynomials p_1, \ldots, p_t , as above, is a generating set for \Im ?

The following Lemma isolates a very large class of elements from $\mathfrak{B}_1(\Omega)$ which belong to $B_1(\Omega_0)$ for some open subset $\Omega_0 \subseteq \Omega$.

Lemma. Suppose $\mathcal{M} \in \mathfrak{B}_1(\Omega)$ is the closure of a polynomial ideal J. Then \mathcal{M} is in $B_1(\Omega)$ if the ideal J is singly generated while if it is generated by the polynomials p_1, p_2, \ldots, p_t , then \mathcal{M} is in $B_1(\Omega \setminus X)$ for $X = \{z : p_1(z) = \ldots = p_t(z) = 0\}.$

The following Lemma isolates a very large class of elements from $\mathfrak{B}_1(\Omega)$ which belong to $B_1(\Omega_0)$ for some open subset $\Omega_0 \subseteq \Omega$.

Lemma. Suppose $\mathcal{M} \in \mathfrak{B}_1(\Omega)$ is the closure of a polynomial ideal J. Then \mathcal{M} is in $B_1(\Omega)$ if the ideal J is singly generated while if it is generated by the polynomials p_1, p_2, \ldots, p_t , then \mathcal{M} is in $B_1(\Omega \setminus X)$ for $X = \{z : p_1(z) = \ldots = p_t(z) = 0\}.$

The sheaf model

The sheaf $S^{\mathcal{M}}$ is the subsheaf of the sheaf of holomorphic functions $\mathcal{O}(\Omega)$ whose stalk $S^{\mathcal{M}}_w$ at $w \in \Omega$ is

$$\left\{(f_1)_w \mathbb{O}_w + \dots + (f_n)_w \mathbb{O}_w : f_1, \dots, f_n \in \mathcal{M}\right\}$$

For any Hilbert module \mathfrak{M} in $\mathfrak{B}_1(\Omega)$, the sheaf $\mathcal{S}^{\mathfrak{M}}$ is coherent. This is essentially Noether's stationary lemma!

The sheaf $S^{\mathcal{M}}$ is the subsheaf of the sheaf of holomorphic functions $\mathcal{O}(\Omega)$ whose stalk $S^{\mathcal{M}}_w$ at $w \in \Omega$ is

$$\left\{(f_1)_w \mathcal{O}_w + \dots + (f_n)_w \mathcal{O}_w : f_1, \dots, f_n \in \mathcal{M}\right\}$$

For any Hilbert module \mathcal{M} in $\mathfrak{B}_1(\Omega)$, the sheaf $S^{\mathcal{M}}$ is coherent. This is essentially Noether's stationary lemma!

The sheaf $S^{\mathcal{M}}$ is the subsheaf of the sheaf of holomorphic functions $\mathcal{O}(\Omega)$ whose stalk $S^{\mathcal{M}}_w$ at $w \in \Omega$ is

$$\left\{(f_1)_w \mathcal{O}_w + \dots + (f_n)_w \mathcal{O}_w : f_1, \dots, f_n \in \mathcal{M}\right\}$$

For any Hilbert module \mathcal{M} in $\mathfrak{B}_1(\Omega)$, the sheaf $\mathfrak{S}^{\mathcal{M}}$ is coherent.

This is essentially Noether's stationary lemma!

The sheaf $S^{\mathcal{M}}$ is the subsheaf of the sheaf of holomorphic functions $\mathcal{O}(\Omega)$ whose stalk $S^{\mathcal{M}}_w$ at $w \in \Omega$ is

$$\left\{(f_1)_w \mathcal{O}_w + \dots + (f_n)_w \mathcal{O}_w : f_1, \dots, f_n \in \mathcal{M}\right\}$$

For any Hilbert module \mathcal{M} in $\mathfrak{B}_1(\Omega)$, the sheaf $S^{\mathcal{M}}$ is coherent. This is essentially Noether's stationary lemma!

Theorem. Suppose g_i^0 , $1 \le i \le d$, be a minimal set of generators for the stalk $S_{w_0}^{\mathcal{M}}$. Then there exists a open neighborhood Ω_0 of w_0 such that

 $K(\cdot, w) := K_w = g_1^0(w) K_w^{(1)} + \dots + g_n^0(w) K_w^{(d)}, \ w \in \Omega_0$

for some choice of anti-holomorphic functions $K^{(1)},\ldots,K^{(d)}:\Omega_0\to\mathfrak{M}$, , the vectors $K^{(i)}_w,\,1\leq i\leq d$, are linearly independent in \mathfrak{M} for w in Ω_0

the vectors $\;\{K_{w_0}^{(i)}\mid 1\leq i\leq d\}\;$ are uniquely determined by these generators $\;g_1^0,\ldots,g_d^0$,

,

Theorem. Suppose g_i^0 , $1 \le i \le d$, be a minimal set of generators for the stalk $S_{w_0}^{\mathcal{M}}$. Then there exists a open neighborhood Ω_0 of w_0 such that

 $K(\cdot, w) := K_w = g_1^0(w) K_w^{(1)} + \dots + g_n^0(w) K_w^{(d)}, \ w \in \Omega_0$

for some choice of anti-holomorphic functions $\ K^{(1)},\ldots,K^{(d)}:\Omega_0 o \mathfrak{M}$

the vectors $\;K^{(i)}_w,\, 1\leq i\leq d$, are linearly independent in $\;\mathcal{M}\;$ for $\;w\;$ in $\Omega_0\;$

the vectors $\{K_{w_0}^{(i)} \mid 1 \leq i \leq d\}$ are uniquely determined by these generators g_1^0,\ldots,g_d^0 ,

Theorem. Suppose g_i^0 , $1 \le i \le d$, be a minimal set of generators for the stalk $S_{w_0}^{\mathcal{M}}$. Then there exists a open neighborhood Ω_0 of w_0 such that

 $K(\cdot, w) := K_w = g_1^0(w) K_w^{(1)} + \dots + g_n^0(w) K_w^{(d)}, \ w \in \Omega_0$

for some choice of anti-holomorphic functions $\ K^{(1)},\ldots,K^{(d)}:\Omega_0 o \mathfrak{M}$

the vectors $\,K^{(i)}_w,\,1\leq i\leq d$, are linearly independent in $\,\mathfrak{M}\,$ for $\,w\,$ in $\Omega_0\,$

the vectors $\{K_{w_0}^{(i)} \mid 1 \leq i \leq d\}$ are uniquely determined by these generators g_1^0,\ldots,g_d^0 ,

Theorem. Suppose g_i^0 , $1 \le i \le d$, be a minimal set of generators for the stalk $S_{w_0}^{\mathcal{M}}$. Then there exists a open neighborhood Ω_0 of w_0 such that

 $K(\cdot, w) := K_w = g_1^0(w) K_w^{(1)} + \dots + g_n^0(w) K_w^{(d)}, \ w \in \Omega_0$

for some choice of anti-holomorphic functions $\ K^{(1)},\ldots,K^{(d)}:\Omega_0 o \mathfrak{M}$

the vectors $\,K^{(i)}_w,\,1\leq i\leq d$, are linearly independent in $\,\mathfrak{M}\,$ for $\,w\,$ in $\Omega_0\,$

the vectors $\{K_{w_0}^{(i)} \mid 1 \leq i \leq d\}$ are uniquely determined by these generators g_1^0,\ldots,g_d^0 ,

We point out that the linear span of the set of vectors $\{K_{w_0}^{(i)} \mid 1 \leq i \leq d\}$ in \mathcal{M} is independent of the generators g_1^0, \ldots, g_d^0 ,

Key ingredients in the proof are the following observations.

There is a decomposition for a function in any submodule of \mathcal{O}_{w_0} in terms of its generators valid over a small neighbourhood of w_0 .

The coefficients in this decomposition satisfy uniform norm bounds in a even smaller compact neighbourhood of w_0 .

Key ingredients in the proof are the following observations.

There is a decomposition for a function in any submodule of \mathcal{O}_{w_0} in terms of its generators valid over a small neighbourhood of w_0 .

The coefficients in this decomposition satisfy uniform norm bounds in a even smaller compact neighbourhood of w_0 .

Key ingredients in the proof are the following observations.

There is a decomposition for a function in any submodule of \mathcal{O}_{w_0} in terms of its generators valid over a small neighbourhood of w_0 .

The coefficients in this decomposition satisfy uniform norm bounds in a even smaller compact neighbourhood of w_0 .

Key ingredients in the proof are the following observations.

There is a decomposition for a function in any submodule of \mathcal{O}_{w_0} in terms of its generators valid over a small neighbourhood of w_0 .

The coefficients in this decomposition satisfy uniform norm bounds in a even smaller compact neighbourhood of w_0 .

Key ingredients in the proof are the following observations.

There is a decomposition for a function in any submodule of \mathcal{O}_{w_0} in terms of its generators valid over a small neighbourhood of w_0 .

The coefficients in this decomposition satisfy uniform norm bounds in a even smaller compact neighbourhood of w_0 .

One easy consequence of the decomposition theorem is the inequality

 $\dim \ker D_{(\mathbf{M}-w_0)^*} \geq \sharp \{ \min \text{ minimal generators for } S_{w_0}^{\mathcal{M}} \} \\ \geq \dim S_{w_0}^{\mathcal{M}} / \mathfrak{m}(\mathfrak{O}_{w_0}) S_{w_0}^{\mathcal{M}}.$

One of the basic question is to ask if we have equality under additional hypothesis on the Hilbert module \mathcal{M} . Thus assuming \mathcal{M} to be an analytic Hilbert module then Chen and Guo have shown that equality is forced. We show that this property continues to hold for submodules of analytic Hilbert modules.

Corollary. If $\mathcal{M} = [\mathfrak{I}]$ be a submodule of an analytic Hilbert module over $\mathbb{C}[\underline{z}]$, where \mathfrak{I} is an ideal in the polynomial ring $\mathbb{C}[\underline{z}]$ and $w \in V(\mathfrak{I})$ is a smooth point, then

$$\begin{split} \dim \ker D_{(\mathbf{M}-w)^*} \\ &= \begin{cases} 1 & \text{for } w \notin V(\mathfrak{I}) \cap \Omega; \\ \text{codimension of } V(\mathfrak{I}) & \text{for } w \in V(\mathfrak{I}) \cap \Omega. \end{cases} \end{split}$$

One easy consequence of the decomposition theorem is the inequality

 $\dim \ker D_{(\mathbf{M}-w_0)^*} \geq \sharp \{ \min \text{ minimal generators for } S_{w_0}^{\mathcal{M}} \} \\ \geq \dim S_{w_0}^{\mathcal{M}} / \mathfrak{m}(\mathcal{O}_{w_0}) S_{w_0}^{\mathcal{M}}.$

One of the basic question is to ask if we have equality under additional hypothesis on the Hilbert module \mathcal{M} . Thus assuming \mathcal{M} to be an analytic Hilbert module then Chen and Guo have shown that equality is forced. We show that this property continues to hold for submodules of analytic Hilbert modules.

Corollary. If $\mathcal{M} = [\mathfrak{I}]$ be a submodule of an analytic Hilbert module over $\mathbb{C}[\underline{z}]$, where \mathfrak{I} is an ideal in the polynomial ring $\mathbb{C}[\underline{z}]$ and $w \in V(\mathfrak{I})$ is a smooth point, then

$$\begin{split} \dim \ker D_{(\mathbf{M}-w)^*} \\ &= \begin{cases} 1 & \text{for } w \notin V(\mathfrak{I}) \cap \Omega; \\ \text{codimension of } V(\mathfrak{I}) & \text{for } w \in V(\mathfrak{I}) \cap \Omega. \end{cases} \end{split}$$

One easy consequence of the decomposition theorem is the inequality

 $\dim \ker D_{(\mathbf{M}-w_0)^*} \geq \sharp \{ \min \text{ minimal generators for } S_{w_0}^{\mathcal{M}} \} \\ \geq \dim S_{w_0}^{\mathcal{M}} / \mathfrak{m}(\mathcal{O}_{w_0}) S_{w_0}^{\mathcal{M}}.$

One of the basic question is to ask if we have equality under additional hypothesis on the Hilbert module \mathcal{M} . Thus assuming \mathcal{M} to be an analytic Hilbert module then Chen and Guo have shown that equality is forced. We show that this property continues to hold for submodules of analytic Hilbert modules.

Corollary. If $\mathcal{M} = [\mathfrak{I}]$ be a submodule of an analytic Hilbert module over $\mathbb{C}[\underline{z}]$, where \mathfrak{I} is an ideal in the polynomial ring $\mathbb{C}[\underline{z}]$ and $w \in V(\mathfrak{I})$ is a smooth point, then

 $\dim \ker D_{(\mathbf{M}-w)^*} = \begin{cases} 1 & \text{for } w \notin V(\mathfrak{I}) \cap \Omega; \\ \text{codimension of } V(\mathfrak{I}) & \text{for } w \in V(\mathfrak{I}) \cap \Omega. \end{cases}$

One easy consequence of the decomposition theorem is the inequality

 $\dim \ker D_{(\mathbf{M}-w_0)^*} \geq \sharp \{ \min \text{ minimal generators for } S_{w_0}^{\mathcal{M}} \} \\ \geq \dim S_{w_0}^{\mathcal{M}} / \mathfrak{m}(\mathcal{O}_{w_0}) S_{w_0}^{\mathcal{M}}.$

One of the basic question is to ask if we have equality under additional hypothesis on the Hilbert module \mathcal{M} . Thus assuming \mathcal{M} to be an analytic Hilbert module then Chen and Guo have shown that equality is forced. We show that this property continues to hold for submodules of analytic Hilbert modules.

Corollary. If $\mathcal{M} = [\mathfrak{I}]$ be a submodule of an analytic Hilbert module over $\mathbb{C}[\underline{z}]$, where \mathfrak{I} is an ideal in the polynomial ring $\mathbb{C}[\underline{z}]$ and $w \in V(\mathfrak{I})$ is a smooth point, then

$$\begin{split} \dim \ker D_{(\mathbf{M}-w)^*} \\ &= \begin{cases} 1 & \text{for } w \notin V(\mathfrak{I}) \cap \Omega; \\ \text{codimension of } V(\mathfrak{I}) & \text{for } w \in V(\mathfrak{I}) \cap \Omega. \end{cases} \end{split}$$

One easy consequence of the decomposition theorem is the inequality

 $\dim \ker D_{(\mathbf{M}-w_0)^*} \geq \sharp \{ \min \text{ minimal generators for } S_{w_0}^{\mathcal{M}} \} \\ \geq \dim S_{w_0}^{\mathcal{M}} / \mathfrak{m}(\mathcal{O}_{w_0}) S_{w_0}^{\mathcal{M}}.$

One of the basic question is to ask if we have equality under additional hypothesis on the Hilbert module \mathcal{M} . Thus assuming \mathcal{M} to be an analytic Hilbert module then Chen and Guo have shown that equality is forced. We show that this property continues to hold for submodules of analytic Hilbert modules.

Corollary. If $\mathcal{M} = [\mathfrak{I}]$ be a submodule of an analytic Hilbert module over $\mathbb{C}[\underline{z}]$, where \mathfrak{I} is an ideal in the polynomial ring $\mathbb{C}[\underline{z}]$ and $w \in V(\mathfrak{I})$ is a smooth point, then

$$\begin{split} \dim \ker D_{(\mathbf{M}-w)^*} \\ &= \begin{array}{cc} \left\{ \begin{array}{ll} 1 & \text{for } w \notin V(\mathcal{I}) \cap \Omega; \\ \text{codimension of } V(\mathcal{I}) & \text{for } w \in V(\mathcal{I}) \cap \Omega. \end{array} \right. \end{split}$$

The joint kernel of a Hilbert module

 $\mathbb{V}_w(\mathfrak{I}):=\{q\in\mathbb{C}[\underline{z}]:q(D)p|_w=0,\,p\in\mathfrak{I}\}.$

The envolope $\, \mathbb{J}^e_w \,$ of the ideal $\, \mathbb{J} \,$ is

 $\{p \in \mathbb{C}[\underline{z}] : q(D)p|_w = 0, \, q \in \mathbb{V}_w(\mathcal{I})\}.$

If the zero set of the ideal \mathfrak{I} is $\{w\}$ then $\mathfrak{I}^e_w = \mathbb{V}_w(\mathfrak{I}).$

 $\mathbb{V}_w(\mathfrak{I}):=\{q\in\mathbb{C}[\underline{z}]:q(D)p|_w=0,\,p\in\mathfrak{I}\}.$

The envolope $\ensuremath{\mathbb{J}}^e_w$ of the ideal $\ensuremath{\mathbb{J}}$ is

 $\{p \in \mathbb{C}[\underline{z}] : q(D)p|_w = 0, \, q \in \mathbb{V}_w(\mathcal{I})\}.$

If the zero set of the ideal \mathfrak{I} is $\{w\}$ then $\mathfrak{I}^e_w = \mathbb{V}_w(\mathfrak{I})$.

 $\mathbb{V}_w(\mathfrak{I}):=\{q\in\mathbb{C}[\underline{z}]:q(D)p|_w=0,\,p\in\mathfrak{I}\}.$

The envolope $\ensuremath{\mathbb{J}}^e_w$ of the ideal $\ensuremath{\mathbb{J}}$ is

 $\{p \in \mathbb{C}[\underline{z}] : q(D)p|_w = 0, \, q \in \mathbb{V}_w(\mathfrak{I})\}.$

If the zero set of the ideal \mathfrak{I} is $\{w\}$ then $\mathfrak{I}^e_w = \mathbb{V}_w(\mathfrak{I})$.

 $\mathbb{V}_w(\mathfrak{I}) := \{ q \in \mathbb{C}[\underline{z}] : q(D)p|_w = 0, \, p \in \mathfrak{I} \}.$

The envolope $\ensuremath{\mathbb{J}}^e_w$ of the ideal $\ensuremath{\mathbb{J}}$ is

 $\{p \in \mathbb{C}[\underline{z}] : q(D)p|_w = 0, \, q \in \mathbb{V}_w(\mathcal{I})\}.$

If the zero set of the ideal \mathfrak{I} is $\{w\}$ then $\mathfrak{I}^e_w = \mathbb{V}_w(\mathfrak{I})$.

Actually, we have something much more substantial.

Lemma. Fix $w_0 \in \Omega$ and polynomials q_1, \ldots, q_t . Let \mathfrak{I} be a polynomial ideal and K be the reproducing kernel corresponding the Hilbert module $[\mathfrak{I}]$, which is assumed to be in $\mathfrak{B}_1(\Omega)$. Then the vectors

 $q_1(\bar{D})K(\cdot,w)|_{w=w_0},\ldots,q_t(\bar{D})K(\cdot,w)|_{w=w_0}$

form a basis of the joint kernel $\cap_{j=1}^{m} \ker(M_j - w_{0j})^*$ if and only if the classes $[q_1^*], \ldots, [q_t^*]$ form a basis of $\tilde{\mathbb{V}}_{w_0}(\mathfrak{I})/\mathbb{V}_{w_0}(\mathfrak{I})$.

However, it is not clear if we can choose the polynomials $\{q_1,\ldots,q_t\}$ to be a generating set for the ideal $|\mathcal{I}|$

Actually, we have something much more substantial.

Lemma. Fix $w_0 \in \Omega$ and polynomials q_1, \ldots, q_t . Let \Im be a polynomial ideal and K be the reproducing kernel corresponding the Hilbert module $[\Im]$, which is assumed to be in $\mathfrak{B}_1(\Omega)$. Then the vectors

 $q_1(\bar{D})K(\cdot,w)|_{w=w_0},\ldots,q_t(\bar{D})K(\cdot,w)|_{w=w_0}$

form a basis of the joint kernel $\cap_{j=1}^{m} \ker(M_j - w_{0j})^*$ if and only if the classes $[q_1^*], \ldots, [q_t^*]$ form a basis of $\tilde{\mathbb{V}}_{w_0}(\mathcal{I})/\mathbb{V}_{w_0}(\mathcal{I})$.

However, it is not clear if we can choose the polynomials $~\{q_1,\ldots,q_t\}~$ to be a generating set for the ideal $~\Im$

Actually, we have something much more substantial.

Lemma. Fix $w_0 \in \Omega$ and polynomials q_1, \ldots, q_t . Let \mathfrak{I} be a polynomial ideal and K be the reproducing kernel corresponding the Hilbert module $[\mathfrak{I}]$, which is assumed to be in $\mathfrak{B}_1(\Omega)$. Then the vectors

 $q_1(\bar{D})K(\cdot,w)|_{w=w_0},\ldots,q_t(\bar{D})K(\cdot,w)|_{w=w_0}$

form a basis of the joint kernel $\bigcap_{j=1}^{m} \ker(M_j - w_{0j})^*$ if and only if the classes $[q_1^*], \ldots, [q_t^*]$ form a basis of $\tilde{\mathbb{V}}_{w_0}(\mathfrak{I})/\mathbb{V}_{w_0}(\mathfrak{I})$.

However, it is not clear if we can choose the polynomials $\ \{q_1,\ldots,q_t\}$ to be a generating set for the ideal $\ \mathfrak I$

Actually, we have something much more substantial.

Lemma. Fix $w_0 \in \Omega$ and polynomials q_1, \ldots, q_t . Let \mathfrak{I} be a polynomial ideal and K be the reproducing kernel corresponding the Hilbert module $[\mathfrak{I}]$, which is assumed to be in $\mathfrak{B}_1(\Omega)$. Then the vectors

$$q_1(\bar{D})K(\cdot,w)|_{w=w_0},\ldots,q_t(\bar{D})K(\cdot,w)|_{w=w_0}$$

form a basis of the joint kernel $\bigcap_{j=1}^{m} \ker(M_j - w_{0j})^*$ if and only if the classes $[q_1^*], \ldots, [q_t^*]$ form a basis of $\tilde{\mathbb{V}}_{w_0}(\mathfrak{I})/\mathbb{V}_{w_0}(\mathfrak{I})$.

However, it is not clear if we can choose the polynomials $\{q_1,\ldots,q_t\}$ to be a generating set for the ideal $\ \Im$

Theorem. Let $\mathcal{J} \subset \mathbb{C}[\underline{z}]$ be a homogeneous ideal and $\{p_1, \ldots, p_v\}$ be a minimal set of generators for \mathfrak{I} consisting of homogeneous polynomials. Let K be the reproducing kernel corresponding to the Hilbert module $[\mathfrak{I}]$, which is assumed to be in $\mathfrak{B}_1(\Omega)$. Then there exists a set of generators q_1, \ldots, q_v for the ideal \mathfrak{I} such that the set

 $\{q_i(\bar{D})K(\cdot,w)|_{w=0}: 1 \le i \le v\}$

is a basis for $\bigcap_{j=1}^m \ker M_j^*$.

We note that the new set $\{q_1, \ldots, q_v\}$ of generators for \mathfrak{I} is more or less ``canonical''. It is uniquely determined modulo a linear transformation as shown below.

Theorem. Let $\mathcal{J} \subset \mathbb{C}[\underline{z}]$ be a homogeneous ideal and $\{p_1, \ldots, p_v\}$ be a minimal set of generators for \mathcal{J} consisting of homogeneous polynomials. Let K be the reproducing kernel corresponding to the Hilbert module $[\mathcal{J}]$, which is assumed to be in $\mathfrak{B}_1(\Omega)$. Then there exists a set of generators q_1, \ldots, q_v for the ideal \mathcal{J} such that the set

 $\{q_i(\bar{D})K(\cdot,w)|_{w=0}: 1 \le i \le v\}$

is a basis for $\cap_{j=1}^m \ker M_j^*$.

We note that the new set $\{q_1, \ldots, q_v\}$ of generators for \mathcal{I} is more or less ``canonical''. It is uniquely determined modulo a linear transformation as shown below.

Let $\mathfrak{I} \subset \mathbb{C}[z_1, z_2]$ be the ideal generated by $z_1 + z_2$ and z_2^2 . We have $V(\mathfrak{I}) = \{0\}$. The reproducing kernel K for $[\mathfrak{I}] \subseteq H^2(\mathbb{D}^2)$ is

$$K_{[1]}(z,w) = \frac{1}{(1-z_1\bar{w}_1)(1-z_2\bar{w}_2)} - \frac{(z_1-z_2)(\bar{w}_1-\bar{w}_2)}{2} - 1$$
$$= \frac{(z_1+z_2)(\bar{w}_1+\bar{w}_2)}{2} + i + j \ge 2^{\infty} z_1^i z_2^j \bar{w}_1^i \bar{w}_2^j.$$

The vector $\overline{\partial}_2^2 K_{[\mathcal{I}]}(z, w)|_0 = 2z_2^2$ is not in the joint kernel of $P_{[\mathcal{I}]}(M_1^*, M_2^*)|_{[\mathcal{I}]}$ since $M_2^*(z_2^2) = z_2$ and $P_{[\mathcal{I}]}z_2 = (z_1 + z_2)/2 \neq 0$.

Let $\mathcal{I} \subset \mathbb{C}[z_1, z_2]$ be the ideal generated by $z_1 + z_2$ and z_2^2 . We have $V(\mathcal{I}) = \{0\}$. The reproducing kernel K for $[\mathcal{I}] \subseteq H^2(\mathbb{D}^2)$ is

$$\begin{split} K_{[\mathcal{I}]}(z,w) &= \frac{1}{(1-z_1\bar{w}_1)(1-z_2\bar{w}_2)} - \frac{(z_1-z_2)(\bar{w}_1-\bar{w}_2)}{2} - 1\\ &= \frac{(z_1+z_2)(\bar{w}_1+\bar{w}_2)}{2} + i + j \geq 2^\infty z_1^i z_2^j \bar{w}_1^i \bar{w}_2^j. \end{split}$$

The vector $\overline{\partial}_2^2 K_{[\mathcal{I}]}(z, w)|_0 = 2z_2^2$ is not in the joint kernel of $P_{[\mathcal{I}]}(M_1^*, M_2^*)|_{[\mathcal{I}]}$ since $M_2^*(z_2^2) = z_2$ and $P_{[\mathcal{I}]}z_2 = (z_1 + z_2)/2 \neq 0$.

Let $\mathcal{I} \subset \mathbb{C}[z_1, z_2]$ be the ideal generated by $z_1 + z_2$ and z_2^2 . We have $V(\mathcal{I}) = \{0\}$. The reproducing kernel K for $[\mathcal{I}] \subseteq H^2(\mathbb{D}^2)$ is

$$\begin{split} K_{[\mathcal{I}]}(z,w) &= \frac{1}{(1-z_1\bar{w}_1)(1-z_2\bar{w}_2)} - \frac{(z_1-z_2)(\bar{w}_1-\bar{w}_2)}{2} - 1\\ &= \frac{(z_1+z_2)(\bar{w}_1+\bar{w}_2)}{2} + i + j \geq 2^\infty z_1^i z_2^j \bar{w}_1^i \bar{w}_2^j. \end{split}$$

The vector $\bar{\partial}_2^2 K_{[\mathcal{I}]}(z,w)|_0 = 2z_2^2$ is not in the joint kernel of $P_{[\mathcal{I}]}(M_1^*, M_2^*)|_{[\mathcal{I}]}$ since $M_2^*(z_2^2) = z_2$ and $P_{[\mathcal{I}]}z_2 = (z_1 + z_2)/2 \neq 0$.

Let $\mathcal{I} \subset \mathbb{C}[z_1, z_2]$ be the ideal generated by $z_1 + z_2$ and z_2^2 . We have $V(\mathcal{I}) = \{0\}$. The reproducing kernel K for $[\mathcal{I}] \subseteq H^2(\mathbb{D}^2)$ is

$$\begin{split} K_{[\mathcal{I}]}(z,w) &= \frac{1}{(1-z_1\bar{w}_1)(1-z_2\bar{w}_2)} - \frac{(z_1-z_2)(\bar{w}_1-\bar{w}_2)}{2} - 1\\ &= \frac{(z_1+z_2)(\bar{w}_1+\bar{w}_2)}{2} + i + j \geq 2^\infty z_1^i z_2^j \bar{w}_1^i \bar{w}_2^j. \end{split}$$

The vector $\bar{\partial}_2^2 K_{[\mathcal{I}]}(z,w)|_0 = 2z_2^2$ is not in the joint kernel of $P_{[\mathcal{I}]}(M_1^*, M_2^*)|_{[\mathcal{I}]}$ since $M_2^*(z_2^2) = z_2$ and $P_{[\mathcal{I}]}z_2 = (z_1 + z_2)/2 \neq 0$.

Let \mathcal{I} be the ideal generated by $z_1 + z_2$ and z_2^2 and $\tilde{\mathcal{I}}$ be the ideal generated by z_1 and z_2^2 . Since z_1 is not a linear combination of $z_1 + z_2$ and z_2^2 , it follows that $\mathcal{I} \neq \tilde{\mathcal{I}}$.

Indeed, our Theorem provides an effective tool for deciding when an ideal is a monomial ideal.

Let $\{q_1, \ldots, q_v\}$ be a canonical set of generators for \mathfrak{I} . Let Λ be the collection of monomials in the expressions of $\{q_1, \ldots, q_v\}$ that are in \mathfrak{I} . If the number of algebraically independent monomials in Λ is v, then \mathfrak{I} is a monomial ideal.

Let \mathcal{I} be the ideal generated by $z_1 + z_2$ and z_2^2 and \mathcal{I} be the ideal generated by z_1 and z_2^2 . Since z_1 is not a linear combination of $z_1 + z_2$ and z_2^2 , it follows that $\mathcal{I} \neq \tilde{\mathcal{I}}$.

Indeed, our Theorem provides an effective tool for deciding when an ideal is a monomial ideal.

Let $\{q_1, \ldots, q_v\}$ be a canonical set of generators for \mathfrak{I} . Let Λ be the collection of monomials in the expressions of $\{q_1, \ldots, q_v\}$ that are in \mathfrak{I} . If the number of algebraically independent monomials in Λ is v, then \mathfrak{I} is a monomial ideal.

Let \mathcal{J} be the ideal generated by $z_1 + z_2$ and z_2^2 and $\tilde{\mathcal{J}}$ be the ideal generated by z_1 and z_2^2 . Since z_1 is not a linear combination of $z_1 + z_2$ and z_2^2 , it follows that $\mathcal{I} \neq \tilde{\mathcal{J}}$.

Indeed, our Theorem provides an effective tool for deciding when an ideal is a monomial ideal.

Let $\{q_1, \ldots, q_v\}$ be a canonical set of generators for \mathfrak{I} . Let Λ be the collection of monomials in the expressions of $\{q_1, \ldots, q_v\}$ that are in \mathfrak{I} . If the number of algebraically independent monomials in Λ is v, then \mathfrak{I} is a monomial ideal.

Let \mathcal{J} be the ideal generated by $z_1 + z_2$ and z_2^2 and $\tilde{\mathcal{J}}$ be the ideal generated by z_1 and z_2^2 . Since z_1 is not a linear combination of $z_1 + z_2$ and z_2^2 , it follows that $\mathcal{I} \neq \tilde{\mathcal{J}}$.

Indeed, our Theorem provides an effective tool for deciding when an ideal is a monomial ideal.

Let $\{q_1, \ldots, q_v\}$ be a canonical set of generators for \mathcal{I} . Let Λ be the collection of monomials in the expressions of $\{q_1, \ldots, q_v\}$ that are in \mathcal{I} . If the number of algebraically independent monomials in Λ is v, then \mathcal{I} is a monomial ideal.

Let \mathcal{J} be the ideal generated by $z_1 + z_2$ and z_2^2 and $\tilde{\mathcal{J}}$ be the ideal generated by z_1 and z_2^2 . Since z_1 is not a linear combination of $z_1 + z_2$ and z_2^2 , it follows that $\mathcal{I} \neq \tilde{\mathcal{J}}$.

Indeed, our Theorem provides an effective tool for deciding when an ideal is a monomial ideal.

Let $\{q_1, \ldots, q_v\}$ be a canonical set of generators for \mathfrak{I} . Let Λ be the collection of monomials in the expressions of $\{q_1, \ldots, q_v\}$ that are in \mathfrak{I} . If the number of algebraically independent monomials in Λ is v, then \mathfrak{I} is a monomial ideal.

Back to $H^2_0(\mathbb{D}^2)$

In the example of the module $\ H^2_0(\mathbb{D}^2)$, we have

$$\mathbb{S}^{H^2_0(\mathbb{D}^2)}_w = \begin{cases} \mathbb{O}_w & \text{if } w \neq (0,0) \\ \mathfrak{m}_{(0,0)} \mathbb{O}_{(0,0)} & \text{if } w = (0,0). \end{cases}$$

While the germs of holomorphic function \mathcal{O}_w at $w \in \mathbb{D}^2$ is singly genarated (even if w = (0,0)), the ideal $\mathfrak{m}_{(0,0)}\mathcal{O}_{(0,0)} \subseteq \mathcal{O}_{(0,0)}$ is 2 -generated.

Thus the number of generators match the dimension of the joint eigenspace, in this case.

The reproducing kernel $K_{H^2_{\mathfrak{o}}(\mathbb{D}^2)}(z,w)$ is easy to compute:

$$K_{H^2(\mathbb{D}^2)}(z,w) - 1 = \frac{z_1 \bar{w}_1 + z_2 \bar{w}_2 - z_1 z_2 \bar{w}_1 \bar{w}_2}{(1 - z_1 \bar{w}_1)(1 - z_2 \bar{w}_2)}.$$

In the example of the module $\ H^2_0(\mathbb{D}^2)$, we have

$$\mathbb{S}^{H^2_0(\mathbb{D}^2)}_w = \begin{cases} \mathbb{O}_w & \text{if } w \neq (0,0) \\ \mathfrak{m}_{(0,0)} \mathbb{O}_{(0,0)} & \text{if } w = (0,0). \end{cases}$$

While the germs of holomorphic function \mathcal{O}_w at $w \in \mathbb{D}^2$ is singly genarated (even if w = (0,0)), the ideal $\mathfrak{m}_{(0,0)}\mathcal{O}_{(0,0)} \subseteq \mathcal{O}_{(0,0)}$ is 2 - generated.

Thus the number of generators match the dimension of the joint eigenspace, in this case.

The reproducing kernel $K_{H^2_{\mathfrak{o}}(\mathbb{D}^2)}(z,w)$ is easy to compute:

$$K_{H^2(\mathbb{D}^2)}(z,w) - 1 = \frac{z_1 \bar{w}_1 + z_2 \bar{w}_2 - z_1 z_2 \bar{w}_1 \bar{w}_2}{(1 - z_1 \bar{w}_1)(1 - z_2 \bar{w}_2)}$$

In the example of the module $\ H^2_0(\mathbb{D}^2)$, we have

$$\mathbb{S}^{H^2_0(\mathbb{D}^2)}_w = \begin{cases} \mathbb{O}_w & \text{if } w \neq (0,0) \\ \mathfrak{m}_{(0,0)} \mathbb{O}_{(0,0)} & \text{if } w = (0,0). \end{cases}$$

While the germs of holomorphic function \mathcal{O}_w at $w \in \mathbb{D}^2$ is singly genarated (even if w = (0,0)), the ideal $\mathfrak{m}_{(0,0)}\mathcal{O}_{(0,0)} \subseteq \mathcal{O}_{(0,0)}$ is 2 -generated.

Thus the number of generators match the dimension of the joint eigenspace, in this case.

The reproducing kernel $K_{H^2_{\alpha}(\mathbb{D}^2)}(z,w)$ is easy to compute:

$$K_{H^2(\mathbb{D}^2)}(z,w) - 1 = \frac{z_1 \bar{w}_1 + z_2 \bar{w}_2 - z_1 z_2 \bar{w}_1 \bar{w}_2}{(1 - z_1 \bar{w}_1)(1 - z_2 \bar{w}_2)}$$

In the example of the module $\ H^2_0(\mathbb{D}^2)$, we have

$$\mathbb{S}^{H^2_0(\mathbb{D}^2)}_w = \begin{cases} \mathbb{O}_w & \text{if } w \neq (0,0) \\ \mathfrak{m}_{(0,0)} \mathbb{O}_{(0,0)} & \text{if } w = (0,0). \end{cases}$$

While the germs of holomorphic function \mathcal{O}_w at $w \in \mathbb{D}^2$ is singly genarated (even if w = (0,0)), the ideal $\mathfrak{m}_{(0,0)}\mathcal{O}_{(0,0)} \subseteq \mathcal{O}_{(0,0)}$ is 2 -generated.

Thus the number of generators match the dimension of the joint eigenspace, in this case.

The reproducing kernel $K_{H^2_0(\mathbb{D}^2)}(z,w)$ is easy to compute:

$$K_{H^2(\mathbb{D}^2)}(z,w) - 1 = \frac{z_1 \bar{w}_1 + z_2 \bar{w}_2 - z_1 z_2 \bar{w}_1 \bar{w}_2}{(1 - z_1 \bar{w}_1)(1 - z_2 \bar{w}_2)}$$

How do we find the unique pair of vectors $K_0^{(1)}$ and $K_0^{(2)}$?

set $\, ar w_1 heta_1 = ar w_2 \,$ for $\, w_1
eq 0$, and take the limit:

$$\lim_{(w_1,w_2)\to 0} \frac{K_{H_0^2(\mathbb{D}^2)}(z,w)}{\bar{w}_1} = K_0^{(1)}(z) + \theta_1 K_0^{(2)}(z) = z_1 + \theta_1 z_2$$

to obtain $K_0^{(1)}$ and $K_0^{(2)}$ by the uniqueness in the Decomposition Theorem. Similarly, for $\bar{w}_2 \theta_2 = \bar{w}_1$ with $w_2 \neq 0$, we have

$$\lim_{(w_1,w_2)\to 0} \frac{K_{H_0^2(\mathbb{D}^2)}(z,w)}{\bar{w}_2} = K_0^{(2)}(z) + \theta_2 K_0^{(1)}(z) = z_2 + \theta_2 z_1.$$

How do we find the unique pair of vectors $K_0^{(1)}$ and $K_0^{(2)}$? set $\bar{w}_1\theta_1 = \bar{w}_2$ for $w_1 \neq 0$, and take the limit:

$$\lim_{(w_1,w_2)\to 0} \frac{K_{H_0^2(\mathbb{D}^2)}(z,w)}{\bar{w}_1} = K_0^{(1)}(z) + \theta_1 K_0^{(2)}(z) = z_1 + \theta_1 z_2$$

to obtain $K_0^{(1)}$ and $K_0^{(2)}$ by the uniqueness in the Decomposition Theorem. Similarly, for $\bar{w}_2\theta_2 = \bar{w}_1$ with $w_2 \neq 0$, we have

$$\lim_{(w_1,w_2)\to 0} \frac{K_{H_0^2(\mathbb{D}^2)}(z,w)}{\bar{w}_2} = K_0^{(2)}(z) + \theta_2 K_0^{(1)}(z) = z_2 + \theta_2 z_1.$$

Thus we have a Hermitian line bundle on the complex projective space \mathbb{P}^1 given by the frame $\theta_1 \mapsto z_1 + \theta_1 z_2$ and $\theta_2 \mapsto z_2 + \theta_2 z_1$.

The curvature of this line bundle is then an invariant for the Hilbert module $H_0^2(\mathbb{D}^2)$. This curvature is easily calculated and is given by the formula $\mathcal{K}(\theta) = (1 + |\theta|^2)^{-2}$.

The decomposition theorem yields similar results in many other examples.

Thus we have a Hermitian line bundle on the complex projective space \mathbb{P}^1 given by the frame $\theta_1 \mapsto z_1 + \theta_1 z_2$ and $\theta_2 \mapsto z_2 + \theta_2 z_1$.

The curvature of this line bundle is then an invariant for the Hilbert module $H_0^2(\mathbb{D}^2)$. This curvature is easily calculated and is given by the formula $\mathcal{K}(\theta) = (1 + |\theta|^2)^{-2}$.

The decomposition theorem yields similar results in many other examples.

Thus we have a Hermitian line bundle on the complex projective space \mathbb{P}^1 given by the frame $\theta_1 \mapsto z_1 + \theta_1 z_2$ and $\theta_2 \mapsto z_2 + \theta_2 z_1$.

The curvature of this line bundle is then an invariant for the Hilbert module $H_0^2(\mathbb{D}^2)$. This curvature is easily calculated and is given by the formula $\mathcal{K}(\theta) = (1 + |\theta|^2)^{-2}$.

The decomposition theorem yields similar results in many other examples.

For any two Hilbert module \mathcal{M}_1 and \mathcal{M}_2 in the class $\mathcal{B}_1(\Omega)$ and $L: \mathcal{M}_1 \to \mathcal{M}_2$ a module map between them, let $S^L: S^{\mathcal{M}_1}(V) \to S^{\mathcal{M}_2}(V)$ be the map defined by

$$\mathbb{S}^L \sum_{i=1}^n f_i|_V g_i := \sum_{i=1}^n L f_i|_V g_i, \text{ for } f_i \in \mathfrak{M}_1, g_i \in \mathfrak{O}(V), n \in \mathbb{N}.$$

The map \mathcal{S}^L is well defined: if $\sum_{i=1}^n f_i|_V g_i = \sum_{i=1}^n \hat{f}_i|_V \hat{g}_i$, then $\sum_{i=1}^n L f_i|_V g_i = \sum_{i=1}^n L \hat{f}_i|_V \hat{g}_i$.

Suppose \mathcal{M}_1 is isomorphic to \mathcal{M}_2 via a unitary module map L. Now, it is easy to verify that $(S^L)^{-1} = S^{L^*}$. It then follows that $S^{\mathcal{M}_1}$ is isomorphic, as a sheaf of modules over \mathcal{O}_{Ω} , to $S^{\mathcal{M}_2}$ via the map S^L .

For any two Hilbert module \mathcal{M}_1 and \mathcal{M}_2 in the class $\mathcal{B}_1(\Omega)$ and $L: \mathcal{M}_1 \to \mathcal{M}_2$ a module map between them, let $S^L: S^{\mathcal{M}_1}(V) \to S^{\mathcal{M}_2}(V)$ be the map defined by

$$\mathcal{S}^L \sum_{i=1}^n f_i|_V g_i := \sum_{i=1}^n L f_i|_V g_i, \text{ for } f_i \in \mathcal{M}_1, g_i \in \mathcal{O}(V), n \in \mathbb{N}.$$

The map S^L is well defined: if $\sum_{i=1}^n f_i|_V g_i = \sum_{i=1}^n \hat{f}_i|_V \hat{g}_i$, then $\sum_{i=1}^n Lf_i|_V g_i = \sum_{i=1}^n L\hat{f}_i|_V \hat{g}_i$.

Suppose \mathcal{M}_1 is isomorphic to \mathcal{M}_2 via a unitary module map L. Now, it is easy to verify that $(S^L)^{-1} = S^{L^*}$. It then follows that $S^{\mathcal{M}_1}$ is isomorphic, as a sheaf of modules over \mathcal{O}_{Ω} , to $S^{\mathcal{M}_2}$ via the map S^L .

For $w_0 \in X$, the common zero set of the two modules \mathcal{M}_1 and \mathcal{M}_2 , the stalks are not just isomorphic but equal:

$$\begin{split} \mathcal{S}_{w_0}^{\mathcal{M}_1} &= \{ i = 1^n h_i g_i : g_i \in \mathcal{M}_1, h_i \in {}_m \mathcal{O}_{w_0}, 1 \le i \le n, n \in \mathbb{N} \} \\ &= \{ i = 1^n h_i \phi f_i : f_i \in \mathcal{M}_2, h_i \in {}_m \mathcal{O}_{w_0}, 1 \le i \le n, n \in \mathbb{N} \} \\ &= \{ i = 1^n \hat{h}_i f_i : f_i \in \mathcal{M}_2, \hat{h}_i \in {}_m \mathcal{O}_{w_0}, 1 \le i \le n, n \in \mathbb{N} \} = \mathcal{S}_{w_0}^{\mathcal{M}_2}. \end{split}$$

Theorem. Let $\mathcal{M} \subseteq \mathcal{O}(\Omega)$ and $\mathcal{M} \subseteq \mathcal{O}(\Omega)$ be two Hilbert modules of the form [J] and [\hat{J}], respectively, where $\Im, \hat{\Im}$ are polynomial ideals. Assume that $\mathcal{M}, \hat{\mathcal{M}}$ are in $\mathfrak{B}_1(\Omega)$ and that the dimension of the zero set of these modules is at most m - 2. Furthermore, also assume that every algebraic component of $V(\Im)$ and $V(\hat{\Im})$ intersects Ω . If \mathcal{M} and $\hat{\mathcal{M}}$ are equivalent, then $\Im = \hat{\Im}$.

The Rigidity Theorem

For $w_0 \in X$, the common zero set of the two modules \mathcal{M}_1 and \mathcal{M}_2 , the stalks are not just isomorphic but equal:

$$\begin{split} \mathcal{S}_{w_0}^{\mathcal{M}_1} &= \{ i = 1^n h_i g_i : g_i \in \mathcal{M}_1, h_i \in {}_m \mathcal{O}_{w_0}, 1 \le i \le n, n \in \mathbb{N} \} \\ &= \{ i = 1^n h_i \phi f_i : f_i \in \mathcal{M}_2, h_i \in {}_m \mathcal{O}_{w_0}, 1 \le i \le n, n \in \mathbb{N} \} \\ &= \{ i = 1^n \hat{h}_i f_i : f_i \in \mathcal{M}_2, \hat{h}_i \in {}_m \mathcal{O}_{w_0}, 1 \le i \le n, n \in \mathbb{N} \} = \mathcal{S}_{w_0}^{\mathcal{M}_2}. \end{split}$$

Theorem. Let $\mathcal{M} \subseteq \mathcal{O}(\Omega)$ and $\mathcal{M} \subseteq \mathcal{O}(\Omega)$ be two Hilbert modules of the form [J] and [Ĵ], respectively, where $\mathfrak{I}, \hat{\mathfrak{I}}$ are polynomial ideals. Assume that $\mathcal{M}, \hat{\mathcal{M}}$ are in $\mathfrak{B}_1(\Omega)$ and that the dimension of the zero set of these modules is at most m - 2. Furthermore, also assume that every algebraic component of $V(\mathfrak{I})$ and $V(\hat{\mathfrak{I}})$ intersects Ω . If \mathcal{M} and $\hat{\mathcal{M}}$ are equivalent, then $\mathfrak{I} = \hat{\mathfrak{I}}$.

The Rigidity Theorem

For $w_0 \in X$, the common zero set of the two modules \mathcal{M}_1 and \mathcal{M}_2 , the stalks are not just isomorphic but equal:

$$\begin{split} \mathcal{S}_{w_0}^{\mathcal{M}_1} &= \{ i = 1^n h_i g_i : g_i \in \mathcal{M}_1, h_i \in {}_m \mathcal{O}_{w_0}, 1 \le i \le n, n \in \mathbb{N} \} \\ &= \{ i = 1^n h_i \phi f_i : f_i \in \mathcal{M}_2, h_i \in {}_m \mathcal{O}_{w_0}, 1 \le i \le n, n \in \mathbb{N} \} \\ &= \{ i = 1^n \hat{h}_i f_i : f_i \in \mathcal{M}_2, \hat{h}_i \in {}_m \mathcal{O}_{w_0}, 1 \le i \le n, n \in \mathbb{N} \} = \mathcal{S}_{w_0}^{\mathcal{M}_2}. \end{split}$$

Theorem. Let $\mathcal{M} \subseteq \mathcal{O}(\Omega)$ and $\hat{\mathcal{M}} \subseteq \mathcal{O}(\Omega)$ be two Hilbert modules of the form $[\mathfrak{I}]$ and $[\hat{\mathfrak{I}}]$, respectively, where $\mathfrak{I}, \hat{\mathfrak{I}}$ are polynomial ideals. Assume that $\mathcal{M}, \hat{\mathcal{M}}$ are in $\mathfrak{B}_1(\Omega)$ and that the dimension of the zero set of these modules is at most m - 2. Furthermore, also assume that every algebraic component of $V(\mathfrak{I})$ and $V(\hat{\mathfrak{I}})$ intersects Ω . If \mathcal{M} and $\hat{\mathcal{M}}$ are equivalent, then $\mathfrak{I} = \hat{\mathfrak{I}}$. For $w_0 \in X$, the common zero set of the two modules \mathcal{M}_1 and \mathcal{M}_2 , the stalks are not just isomorphic but equal:

$$\begin{split} \mathcal{S}_{w_0}^{\mathcal{M}_1} &= \{ i = 1^n h_i g_i : g_i \in \mathcal{M}_1, h_i \in {}_m \mathcal{O}_{w_0}, 1 \le i \le n, n \in \mathbb{N} \} \\ &= \{ i = 1^n h_i \phi f_i : f_i \in \mathcal{M}_2, h_i \in {}_m \mathcal{O}_{w_0}, 1 \le i \le n, n \in \mathbb{N} \} \\ &= \{ i = 1^n \hat{h}_i f_i : f_i \in \mathcal{M}_2, \hat{h}_i \in {}_m \mathcal{O}_{w_0}, 1 \le i \le n, n \in \mathbb{N} \} = \mathcal{S}_{w_0}^{\mathcal{M}_2}. \end{split}$$

Theorem. Let $\mathcal{M} \subseteq \mathcal{O}(\Omega)$ and $\hat{\mathcal{M}} \subseteq \mathcal{O}(\Omega)$ be two Hilbert modules of the form $[\mathfrak{I}]$ and $[\hat{\mathfrak{I}}]$, respectively, where $\mathfrak{I}, \hat{\mathfrak{I}}$ are polynomial ideals. Assume that $\mathcal{M}, \hat{\mathcal{M}}$ are in $\mathfrak{B}_1(\Omega)$ and that the dimension of the zero set of these modules is at most m-2. Furthermore, also assume that every algebraic component of $V(\mathfrak{I})$ and $V(\hat{\mathfrak{I}})$ intersects Ω . If \mathcal{M} and \mathcal{M} are equivalent, then $\mathfrak{I} = \hat{\mathfrak{I}}$. For $w_0 \in X$, the common zero set of the two modules \mathcal{M}_1 and \mathcal{M}_2 , the stalks are not just isomorphic but equal:

$$\begin{split} \mathcal{S}_{w_0}^{\mathcal{M}_1} &= \{ i = 1^n h_i g_i : g_i \in \mathcal{M}_1, h_i \in {}_m \mathcal{O}_{w_0}, 1 \le i \le n, n \in \mathbb{N} \} \\ &= \{ i = 1^n h_i \phi f_i : f_i \in \mathcal{M}_2, h_i \in {}_m \mathcal{O}_{w_0}, 1 \le i \le n, n \in \mathbb{N} \} \\ &= \{ i = 1^n \hat{h}_i f_i : f_i \in \mathcal{M}_2, \hat{h}_i \in {}_m \mathcal{O}_{w_0}, 1 \le i \le n, n \in \mathbb{N} \} = \mathcal{S}_{w_0}^{\mathcal{M}_2}. \end{split}$$

Theorem. Let $\mathcal{M} \subseteq \mathcal{O}(\Omega)$ and $\hat{\mathcal{M}} \subseteq \mathcal{O}(\Omega)$ be two Hilbert modules of the form $[\mathfrak{I}]$ and $[\hat{\mathfrak{I}}]$, respectively, where $\mathfrak{I}, \hat{\mathfrak{I}}$ are polynomial ideals. Assume that $\mathcal{M}, \hat{\mathcal{M}}$ are in $\mathfrak{B}_1(\Omega)$ and that the dimension of the zero set of these modules is at most m-2. Furthermore, also assume that every algebraic component of $V(\mathfrak{I})$ and $V(\hat{\mathfrak{I}})$ intersects Ω . If \mathcal{M} and $\hat{\mathcal{M}}$ are equivalent, then $\mathfrak{I} = \hat{\mathfrak{I}}$.

Example. For j = 1, 2, let $\mathfrak{I}_j \subset \mathbb{C}[z_1, \ldots, z_m]$, m > 2, be the ideals generated by z_1^n and $z_1^{k_j} z_2^{n-k_j}$. Let $[\mathfrak{I}_j]$ be the submodule in the Hardy module $H^2(\mathbb{D}^m)$. Now, from the Theorem proved above, it follows that $[\mathfrak{I}_1]$ is equivalent to $[\mathfrak{I}_2]$ if and only if $\mathfrak{I}_1 = \mathfrak{I}_2$. We conclude that these two ideals are same only if $k_1 = k_2$.

Let \mathcal{M} be a Hilbert module in $\mathfrak{B}_1(\Omega)$, which is the closure, in \mathcal{M} , of some polynomial ideal \mathfrak{I} . Let K denote the corresponding reproducing kernel. Let $w_0 \in V(\mathcal{M})$. Set

 $t = \dim \mathbb{S}_{w_0}^{\mathcal{M}} / \mathfrak{m}_{w_0} \mathbb{S}_{w_0}^{\mathcal{M}} = \dim \cap_{j=1}^m \ker(M_j - w_{0j})^* = \dim \widehat{\mathbb{V}}_{w_0}(\mathfrak{I}) / \mathbb{V}_{w_0}(\mathfrak{I}).$

By the Decomposition Theorem, there exists a minimal set of generators g_1, \cdots, g_t of $S_0^{M_1}$ and a r > 0 such that

$$K(\cdot,w) = \sum_{i=1}^{r} \overline{g_j(w)} K^{(j)}(\cdot,w)$$
 for all $w \in \Delta(w_0;r)$

for some choice of anti-holomorphic functions $K^{(1)}, \ldots, K^{(t)} : \Delta(w_0; r) \to \mathfrak{M}.$

Example. For j = 1, 2, let $\mathfrak{I}_j \subset \mathbb{C}[z_1, \ldots, z_m]$, m > 2, be the ideals generated by z_1^n and $z_1^{k_j} z_2^{n-k_j}$. Let $[\mathfrak{I}_j]$ be the submodule in the Hardy module $H^2(\mathbb{D}^m)$. Now, from the Theorem proved above, it follows that $[\mathfrak{I}_1]$ is equivalent to $[\mathfrak{I}_2]$ if and only if $\mathfrak{I}_1 = \mathfrak{I}_2$. We conclude that these two ideals are same only if $k_1 = k_2$.

Let \mathcal{M} be a Hilbert module in $\mathfrak{B}_1(\Omega)$, which is the closure, in \mathcal{M} , of some polynomial ideal \mathfrak{I} . Let K denote the corresponding reproducing kernel. Let $w_0 \in V(\mathcal{M})$. Set

 $t = \dim \mathbb{S}_{w_0}^{\mathcal{M}} / \mathfrak{m}_{w_0} \mathbb{S}_{w_0}^{\mathcal{M}} = \dim \bigcap_{j=1}^m \ker(M_j - w_{0j})^* = \dim \hat{\mathbb{V}}_{w_0}(\mathfrak{I}) / \mathbb{V}_{w_0}(\mathfrak{I}).$

By the Decomposition Theorem, there exists a minimal set of generators g_1, \cdots, g_t of $\mathcal{S}_0^{\mathcal{M}_1}$ and a r > 0 such that

$$K(\cdot, w) = \sum_{i=1}^{t} \overline{g_j(w)} K^{(j)}(\cdot, w) \text{ for all } w \in \Delta(w_0; r)$$

for some choice of anti-holomorphic functions $K^{(1)},\ldots,K^{(t)}:\Delta(w_0;r) o\mathfrak{M}.$

Example. For j = 1, 2, let $\mathfrak{I}_j \subset \mathbb{C}[z_1, \ldots, z_m]$, m > 2, be the ideals generated by z_1^n and $z_1^{k_j} z_2^{n-k_j}$. Let $[\mathfrak{I}_j]$ be the submodule in the Hardy module $H^2(\mathbb{D}^m)$. Now, from the Theorem proved above, it follows that $[\mathfrak{I}_1]$ is equivalent to $[\mathfrak{I}_2]$ if and only if $\mathfrak{I}_1 = \mathfrak{I}_2$. We conclude that these two ideals are same only if $k_1 = k_2$.

Let \mathcal{M} be a Hilbert module in $\mathfrak{B}_1(\Omega)$, which is the closure, in \mathcal{M} , of some polynomial ideal \mathcal{I} . Let K denote the corresponding reproducing kernel. Let $w_0 \in V(\mathcal{M})$. Set

$$t = \dim \mathbb{S}_{w_0}^{\mathcal{M}} / \mathfrak{m}_{w_0} \mathbb{S}_{w_0}^{\mathcal{M}} = \dim \cap_{j=1}^m \ker(M_j - w_{0j})^* = \dim \widehat{\mathbb{V}}_{w_0}(\mathfrak{I}) / \mathbb{V}_{w_0}(\mathfrak{I}).$$

By the Decomposition Theorem, there exists a minimal set of generators g_1, \cdots, g_t of $\mathcal{S}_0^{\mathcal{M}_1}$ and a r > 0 such that

$$K(\cdot,w) = \sum_{i=1}^{\iota} \overline{g_j(w)} K^{(j)}(\cdot,w) \text{ for all } w \in \Delta(w_0;r)$$

for some choice of anti-holomorphic functions $K^{(1)},\ldots,K^{(t)}:\Delta(w_0;r)
ightarrow \mathfrak{M}.$

Example. For j = 1, 2, let $\mathfrak{I}_j \subset \mathbb{C}[z_1, \ldots, z_m]$, m > 2, be the ideals generated by z_1^n and $z_1^{k_j} z_2^{n-k_j}$. Let $[\mathfrak{I}_j]$ be the submodule in the Hardy module $H^2(\mathbb{D}^m)$. Now, from the Theorem proved above, it follows that $[\mathfrak{I}_1]$ is equivalent to $[\mathfrak{I}_2]$ if and only if $\mathfrak{I}_1 = \mathfrak{I}_2$. We conclude that these two ideals are same only if $k_1 = k_2$.

Let \mathcal{M} be a Hilbert module in $\mathfrak{B}_1(\Omega)$, which is the closure, in \mathcal{M} , of some polynomial ideal \mathcal{I} . Let K denote the corresponding reproducing kernel. Let $w_0 \in V(\mathcal{M})$. Set

 $t = \dim \mathbb{S}_{w_0}^{\mathcal{M}} / \mathfrak{m}_{w_0} \mathbb{S}_{w_0}^{\mathcal{M}} = \dim \bigcap_{j=1}^m \ker(M_j - w_{0j})^* = \dim \hat{\mathbb{V}}_{w_0}(\mathfrak{I}) / \mathbb{V}_{w_0}(\mathfrak{I}).$

By the Decomposition Theorem, there exists a minimal set of generators g_1,\cdots,g_t of $\mathbb{S}_0^{\mathcal{M}_1}$ and a r>0 such that

$$K(\cdot,w) = \sum_{i=1}^{\tau} \overline{g_j(w)} K^{(j)}(\cdot,w) \text{ for all } w \in \Delta(w_0;r)$$

for some choice of anti-holomorphic functions $K^{(1)},\ldots,K^{(t)}:\Delta(w_0;r) o \mathfrak{M}.$

New vector bundles

Consider the open set $U_1 = (\Delta(w_0; r) \times \{u_1 \neq 0\}) \cap \widehat{\Delta}(w_0; r)$. Let $\frac{u_j}{u_1} = \theta_j^1, \ 2 \leq j \leq t$. On this chart $g_j(w) = \theta_j^1 g_j(w)$. From the decomposition for the $K(\cdot, w)$, we have

$$K(\cdot, w) = \overline{g_1(w)} \{ K^{(1)}(\cdot, w) + \sum_{j=2}^t \overline{\theta}_j^1 K^{(j)}(\cdot, w) \}.$$

This decomposition then yields a section on the chart $|U_1,|$ of the line bundle on the blow-up space $|\widehat{\Delta}(w_0;r)
angle$

$$s_1(w,\theta) = K^{(1)}(\cdot,w) + \sum_{j=2}^t \bar{\theta}_j^1 K^{(j)}(\cdot,w).$$

The vectors $K^{(j)}(\cdot, w)$ are not uniquely determined. However, there exists a canonical choice of these vectors starting from a basis, $\{v_1, \ldots, v_t\}$, of the joint kernel $\cap_{i=1}^n \ker(M_i - w_i)^*$:

$$K(\cdot, w) = \sum_{j=1}^{t} \overline{g_j(w)} P(\bar{w}, \bar{w}_0) v_j, \, w \in \Delta(w_0; r)$$

for some up 0 and construction of the stalls CM

New vector bundles

Consider the open set $U_1 = (\Delta(w_0; r) \times \{u_1 \neq 0\}) \cap \widehat{\Delta}(w_0; r)$. Let $\frac{u_j}{u_1} = \theta_j^1, \ 2 \leq j \leq t$. On this chart $g_j(w) = \theta_j^1 g_j(w)$. From the decomposition for the $K(\cdot, w)$, we have

$$K(\cdot, w) = \overline{g_1(w)} \{ K^{(1)}(\cdot, w) + \sum_{j=2}^t \overline{\theta}_j^1 K^{(j)}(\cdot, w) \}.$$

This decomposition then yields a section on the chart U_1 , of the line bundle on the blow-up space $\widehat{\Delta}(w_0; r)$:

$$s_1(w,\theta) = K^{(1)}(\cdot,w) + \sum_{j=2}^t \bar{\theta}_j^1 K^{(j)}(\cdot,w).$$

The vectors $K^{(j)}(\cdot, w)$ are not uniquely determined. However, there exists a canonical choice of these vectors starting from a basis, $\{v_1, \ldots, v_t\}$, of the joint kernel $\cap_{i=1}^n \ker(M_i - w_i)^*$:

$$K(\cdot, w) = \sum_{j=1}^{t} \overline{g_j(w)} P(\bar{w}, \bar{w}_0) v_j, \ w \in \Delta(w_0; r)$$

for some up 0 and constant on a fithe stall. CM

New vector bundles

Consider the open set $U_1 = (\Delta(w_0; r) \times \{u_1 \neq 0\}) \cap \widehat{\Delta}(w_0; r)$. Let $\frac{u_j}{u_1} = \theta_j^1, 2 \leq j \leq t$. On this chart $g_j(w) = \theta_j^1 g_j(w)$. From the decomposition for the $K(\cdot, w)$, we have

$$K(\cdot, w) = \overline{g_1(w)} \{ K^{(1)}(\cdot, w) + \sum_{j=2}^t \bar{\theta}_j^1 K^{(j)}(\cdot, w) \}.$$

This decomposition then yields a section on the chart U_1 , of the line bundle on the blow-up space $\widehat{\Delta}(w_0; r)$:

$$s_1(w,\theta) = K^{(1)}(\cdot,w) + \sum_{j=2}^t \bar{\theta}_j^1 K^{(j)}(\cdot,w).$$

The vectors $K^{(j)}(\cdot, w)$ are not uniquely determined. However, there exists a canonical choice of these vectors starting from a basis, $\{v_1, \ldots, v_t\}$, of the joint kernel $\bigcap_{i=1}^n \ker(M_i - w_i)^*$:

$$K(\cdot, w) = \sum_{j=1}^{t} \overline{g_j(w)} P(\bar{w}, \bar{w}_0) v_j, \, w \in \Delta(w_0; r)$$

for some up 0 and non-notice a stable stall. SM

Restriction to the exceptional set

Let $\mathcal{L}(\mathcal{M})$ be the line bundle on the blow-up space $\widehat{\Delta}(w_0; r)$ determined by the section $(w, \theta) \mapsto s_1(w, \theta)$, where

$$s_1(w,\theta) = P(\bar{w},\bar{w}_0)v_1 + \sum_{j=2}^t \bar{\theta}_j^1 P(\bar{w},\bar{w}_0)v_j, \ (w,\theta) \in U_1.$$

In general, Z need not be a complex manifold. However, the restriction of s_1 to $p^{-1}(w_0)$ for $w_0 \in Z$ determines a holomorphic line bundle $\mathcal{L}_0(\mathcal{M})$ on $p^{-1}(w_0)^*$ which is the set $\{(w_0, \pi(\bar{u})) : (\bar{w}_0, \pi(u)) \in p^{-1}(w_0)\}$. Thus $s_1 = s_1(w, \theta)|_{\{w_0\} \times \{u_i \neq 0\}}$ is given by the formula

$$s_1(\theta) = K^{(1)}(\cdot, w_0) + \sum_{j=2}^t \bar{\theta}_j^1 K^{(j)}(\cdot, w_0).$$

Since the vectors $K^{(j)}(\cdot, w_0), 1 \le j \le t$ are uniquely determined by the generators g_1, \ldots, g_t, s_1 is well defined.

Theorem. Let $\mathcal{M} \subseteq \mathcal{O}(\Omega)$ and $\hat{\mathcal{M}} \subseteq \mathcal{O}(\Omega)$ be two Hilbert modules of the form [J] and $[\hat{J}]$, respectively and J, $\hat{J} \subseteq \mathbb{C}[\underline{z}]$. Assume that $\mathcal{M}, \tilde{\mathcal{M}}$ are in $\mathfrak{B}_1(\Omega)$ and that the dimension of the zero set of these modules is at most m-2. If the modules \mathcal{M} and $\hat{\mathcal{M}}$ are equivalent, then the corresponding bundles $\mathcal{L}_0(\mathcal{M})$ and $\mathcal{L}_0(\hat{\mathcal{M}})$ they determine on the projective space $p^{-1}(w_0)^*$ for $w_0 \in Z$, are equivalent as Hermitian holomorphic line bundle.

Example. Let \mathbb{B}^2 be the unit ball in \mathbb{C}^2 . For $-1 < \alpha, \beta, \theta < +\infty$, let $L^2_{\alpha,\beta,\theta}(\mathbb{B}^2)$ be the Hilbert space of functions on \mathbb{B}^2 satisfying

$$\| f \|_{\alpha,\beta,\theta}^2 = \int_{\mathbb{B}^2} |f(z)|^2 d\mu(z_1, z_2) < +\infty,$$

$$\begin{split} d\mu(z_1,z_2) &= (\alpha+\beta+\theta+2)|z_2|^{2\theta}(1-|z_1|^2-|z_2|^2)^{\alpha}(1-|z_2|^2)^{\beta}dA(z_1,z_2)\\ \text{and} \quad dA(z_1,z_2) &= dA(z_1)dA(z_2). \end{split}$$

Theorem. Let $\mathcal{M} \subseteq \mathcal{O}(\Omega)$ and $\hat{\mathcal{M}} \subseteq \mathcal{O}(\Omega)$ be two Hilbert modules of the form [J] and [\hat{J}], respectively and J, $\hat{J} \subseteq \mathbb{C}[\underline{z}]$. Assume that $\mathcal{M}, \hat{\mathcal{M}}$ are in $\mathfrak{B}_1(\Omega)$ and that the dimension of the zero set of these modules is at most m-2. If the modules \mathcal{M} and \mathcal{M} are equivalent, then the corresponding bundles $\mathcal{L}_0(\mathcal{M})$ and $\mathcal{L}_0(\hat{\mathcal{M}})$ they determine on the projective space $p^{-1}(w_0)^*$ for $w_0 \in Z$, are equivalent as Hermitian holomorphic line bundle.

Example. Let \mathbb{B}^2 be the unit ball in \mathbb{C}^2 . For $-1 < \alpha, \beta, \theta < +\infty$, let $L^2_{\alpha,\beta,\theta}(\mathbb{B}^2)$ be the Hilbert space of functions on \mathbb{B}^2 satisfying

$$\| f \|_{\alpha,\beta,\theta}^2 = \int_{\mathbb{B}^2} |f(z)|^2 d\mu(z_1, z_2) < +\infty,$$

$$\begin{split} d\mu(z_1,z_2) &= (\alpha+\beta+\theta+2)|z_2|^{2\theta}(1-|z_1|^2-|z_2|^2)^\alpha(1-|z_2|^2)^\beta dA(z_1,z_2)\\ \text{and} \quad dA(z_1,z_2) &= dA(z_1)dA(z_2). \end{split}$$

Theorem. Let $\mathfrak{M} \subseteq \mathfrak{O}(\Omega)$ and $\hat{\mathfrak{M}} \subseteq \mathfrak{O}(\Omega)$ be two Hilbert modules of the form [J] and [$\hat{\mathfrak{I}}$], respectively and J, $\hat{\mathfrak{I}} \subseteq \mathbb{C}[\underline{z}]$. Assume that \mathfrak{M} , $\hat{\mathfrak{M}}$ are in $\mathfrak{B}_1(\Omega)$ and that the dimension of the zero set of these modules is at most m-2. If the modules \mathfrak{M} and $\hat{\mathfrak{M}}$ are equivalent, then the corresponding bundles $\mathcal{L}_0(\mathfrak{M})$ and $\mathcal{L}_0(\hat{\mathfrak{M}})$ they determine on the projective space $p^{-1}(w_0)^*$ for $w_0 \in \mathbb{Z}$, are equivalent as Hermitian holomorphic line bundle.

Example. Let \mathbb{B}^2 be the unit ball in \mathbb{C}^2 . For $-1 < \alpha, \beta, \theta < +\infty$, let $L^2_{\alpha,\beta,\theta}(\mathbb{B}^2)$ be the Hilbert space of functions on \mathbb{B}^2 satisfying

$$\| f \|_{\alpha,\beta,\theta}^2 = \int_{\mathbb{B}^2} |f(z)|^2 d\mu(z_1, z_2) < +\infty,$$

$$\begin{split} d\mu(z_1,z_2) &= (\alpha+\beta+\theta+2)|z_2|^{2\theta}(1-|z_1|^2-|z_2|^2)^\alpha(1-|z_2|^2)^\beta dA(z_1,z_2) \\ \text{and} \quad dA(z_1,z_2) &= dA(z_1)dA(z_2). \end{split}$$

Theorem. Let $\mathfrak{M} \subseteq \mathfrak{O}(\Omega)$ and $\hat{\mathfrak{M}} \subseteq \mathfrak{O}(\Omega)$ be two Hilbert modules of the form $[\mathfrak{I}]$ and $[\hat{\mathfrak{I}}]$, respectively and $\mathfrak{I}, \hat{\mathfrak{I}} \subseteq \mathbb{C}[\underline{z}]$. Assume that $\mathfrak{M}, \hat{\mathfrak{M}}$ are in $\mathfrak{B}_1(\Omega)$ and that the dimension of the zero set of these modules is at most m-2. If the modules \mathfrak{M} and $\hat{\mathfrak{M}}$ are equivalent, then the corresponding bundles $\mathcal{L}_0(\mathfrak{M})$ and $\mathcal{L}_0(\hat{\mathfrak{M}})$ they determine on the projective space $p^{-1}(w_0)^*$ for $w_0 \in \mathbb{Z}$, are equivalent as Hermitian holomorphic line bundle.

Example. Let \mathbb{B}^2 be the unit ball in \mathbb{C}^2 . For $-1 < \alpha, \beta, \theta < +\infty$, let $L^2_{\alpha,\beta,\theta}(\mathbb{B}^2)$ be the Hilbert space of functions on \mathbb{B}^2 satisfying

$$\| f \|_{\alpha,\beta,\theta}^2 = \int_{\mathbb{B}^2} |f(z)|^2 d\mu(z_1, z_2) < +\infty,$$

 $\begin{array}{l} d\mu(z_1,z_2)=(\alpha+\beta+\theta+2)|z_2|^{2\theta}(1-|z_1|^2-|z_2|^2)^{\alpha}(1-|z_2|^2)^{\beta}dA(z_1,z_2) \\ \text{and} \quad dA(z_1,z_2)=dA(z_1)dA(z_2). \end{array}$

The weighted Bergman space $\mathcal{A}^2_{\alpha,\beta,\theta}(\mathbb{B}^2)$ is the subspace of $L^2_{\alpha,\beta,\theta}(\mathbb{B}^2)$ consisting of the holomorphic functions on \mathbb{B}^2 . The Hilbert space $\mathcal{A}^2_{\alpha,\beta,\theta}(\mathbb{B}^2)$ is non-trivial if we assume that the parameters α,β,θ satisfy the additional condition: $\alpha + \beta + \theta + 2 > 0$.

Proposition. Suppose \mathfrak{I} is an ideal in $\mathbb{C}[z_1, z_2]$ with $V(\mathfrak{I}) = \{0\}$. Then the Hilbert modules $[\mathfrak{I}]_{\mathcal{A}^2_{\alpha,\beta,\theta}(\mathbb{B}^2)}$ and $[\mathfrak{I}]_{\mathcal{A}^2_{\alpha',\beta',\theta'}(\mathbb{B}^2)}$ are unitarily equivalent if and only if $\alpha = \alpha', \beta = \beta'$ and $\theta = \theta'$.

Another set of Invariants

Let \mathbb{P}_0 be the orthogonal projection onto the joint kernel $\mathcal{M}/\mathfrak{m}_{w_0}\mathcal{M}$ Lemma. The dimension of ker $\mathbb{P}_0(\mathcal{M}/\mathfrak{m}_w\mathcal{M})$ is constant in a suitably small neighbourhood Ω_0 of $w_0 \in \Omega$.

Thus

 $\mathfrak{P}^{\mathcal{M}}_{w_0} := \{(w, f) \in \Omega \times \mathcal{M} : f \in \ker \mathbb{P}_0 D_{(\mathbf{M}-w)^*}\} \text{ and } \pi(w, f) = w$

may possibly define a holomorphic Hermitian vector bundle on the open set $\ \Omega_0.$

Let \mathbb{P}_0 be the orthogonal projection onto the joint kernel $\mathcal{M}/\mathfrak{m}_{w_0}\mathcal{M}$ Lemma. The dimension of ker $\mathbb{P}_0(\mathcal{M}/\mathfrak{m}_w\mathcal{M})$ is constant in a suitably small neighbourhood Ω_0 of $w_0 \in \Omega$.

Thus

 $\mathcal{P}_{w_0}^{\mathcal{M}} := \{(w, f) \in \Omega \times \mathcal{M} : f \in \ker \mathbb{P}_0 D_{(\mathbf{M}-w)^*}\} \text{ and } \pi(w, f) = w$

may possibly define a holomorphic Hermitian vector bundle on the open set Ω_0 .

Existence of the operator $R_{\mathbf{M}}(w)$ satisfying

$$\begin{aligned} R_{\mathbf{M}}(w)D_{(\mathbf{M}-w)^*} &= I - P_{\ker D_{(\mathbf{M}-w)^*}}\\ D_{(\mathbf{M}-w)^*}R_{\mathbf{M}}(w) &= P_{\operatorname{ran} D_{(\mathbf{M}-w)^*}} \end{aligned}$$

on Ω_0 is established.

(Here, $D_{(\mathbf{M}-w)^*}: \mathfrak{M} \to \mathfrak{M} \oplus \cdots \oplus \mathfrak{M}$ is the operator $f \mapsto \left((M_1 - w_1)^* f, \dots, (M_m - w_m)^* f \right)$)

Then the operator

 $P(\bar{w}, \bar{w}_0) = I - \{I - R_{\mathbf{M}}(w_0) D_{\bar{w} - \bar{w}_0}\}^{-1} R_{\mathbf{M}}(w_0) D_{(\mathbf{M} - w)^*},$

is clearly seen to be well-defined and holomorphic for $w \in B(w_0; \parallel R(w_0) \parallel^{-1})$

Existence of the operator $R_{\mathbf{M}}(w)$ satisfying

$$\begin{aligned} R_{\mathbf{M}}(w)D_{(\mathbf{M}-w)^*} &= I - P_{\ker D_{(\mathbf{M}-w)^*}}\\ D_{(\mathbf{M}-w)^*}R_{\mathbf{M}}(w) &= P_{\operatorname{ran} D_{(\mathbf{M}-w)^*}} \end{aligned}$$

on Ω_0 is established.

(Here, $D_{(\mathbf{M}-w)^*}: \mathcal{M} \to \mathcal{M} \oplus \cdots \oplus \mathcal{M}$ is the operator $f \mapsto ((M_1 - w_1)^* f, \dots, (M_m - w_m)^* f)$)

Then the operator

 $P(\bar{w}, \bar{w}_0) = I - \{I - R_{\mathbf{M}}(w_0) D_{\bar{w} - \bar{w}_0}\}^{-1} R_{\mathbf{M}}(w_0) D_{(\mathbf{M} - w)^*},$

is clearly seen to be well-defined and holomorphic for $w \in B(w_0; \parallel R(w_0) \parallel^{-1})$

Existence of the operator $R_{\mathbf{M}}(w)$ satisfying

$$R_{\mathbf{M}}(w)D_{(\mathbf{M}-w)^*} = I - P_{\ker D_{(\mathbf{M}-w)^*}}$$
$$D_{(\mathbf{M}-w)^*}R_{\mathbf{M}}(w) = P_{\operatorname{ran} D_{(\mathbf{M}-w)^*}}$$

on Ω_0 is established.

(Here, $D_{(\mathbf{M}-w)^*}: \mathcal{M} \to \mathcal{M} \oplus \cdots \oplus \mathcal{M}$ is the operator $f \mapsto ((M_1 - w_1)^* f, \dots, (M_m - w_m)^* f)$)

Then the operator

 $P(\bar{w}, \bar{w}_0) = I - \{I - R_{\mathbf{M}}(w_0) D_{\bar{w} - \bar{w}_0}\}^{-1} R_{\mathbf{M}}(w_0) D_{(\mathbf{M} - w)^*},$

is clearly seen to be well-defined and holomorphic for $w \in B(w_0; \parallel R(w_0) \parallel^{-1})$

Theorem. If any two Hilbert modules \mathcal{M} and $\tilde{\mathcal{M}}$ from $\mathfrak{B}_1(\Omega)$ are equivalent, then the corresponding holomorphic Hermitian vector bundles $\mathcal{P}_{\text{WD}}^{\mathcal{M}}$ and $\mathcal{P}_{\text{WD}}^{\tilde{\mathcal{M}}}$, they determine on Ω_0 are equivalent.

For $\lambda,\mu>0$, let $K^{(\lambda,\mu)}$ denote the positive definite kernel $\frac{1}{(1-z_1\bar{w}_1)^\lambda(1-z_2\bar{w}_2)^\mu},\ z,w\in\mathbb{D}^2$ on the bi-disc. Let $H_0^{(\lambda,\mu)}(\mathbb{D}^2):=\{f\in H^{(\lambda,\mu)}(\mathbb{D}^2):f(0,0)=0\}$ be the corresponding Hilbert module in $\mathfrak{B}_1(\mathbb{D}^2)$. The normalized metric $h_0(w,w)$, which is real analytic, is of the form

$$h_{0}(w,w) = I + \begin{pmatrix} \frac{\lambda+1}{2} |w_{1}|^{2} + \frac{\lambda^{2}\mu}{(\lambda+\mu)^{2}} |w_{2}|^{2} & \frac{1}{\sqrt{\lambda\mu}} (\frac{\lambda\mu}{\lambda+\mu})^{2} w_{1} \bar{w}_{2} \\ \frac{1}{\sqrt{\lambda\mu}} (\frac{\lambda\mu}{\lambda+\mu})^{2} w_{2} \bar{w}_{1} & \frac{\lambda\mu^{2}}{(\lambda+\mu)^{2}} |w_{1}|^{2} + \frac{\mu+1}{2} |w_{2}|^{2} \end{pmatrix} + O(|w|^{3}),$$

where $O(|w|^3)_{i,j}$ is of degree ≥ 3 .

The curvature for $\ {\mathcal P} \$ at $\ (0,0) \$ is given by the $\ 2\times 2 \$ matrices

$$\begin{pmatrix} \frac{\lambda+1}{2} & 0\\ 0 & \frac{\lambda\mu^2}{(\lambda+\mu)^2} \end{pmatrix}, \begin{pmatrix} 0 & \frac{1}{\sqrt{\lambda\mu}} \left(\frac{\lambda\mu}{\lambda+\mu}\right)^2\\ 0 & 0 \end{pmatrix}, \\ \begin{pmatrix} 0 & 0\\ \frac{1}{\sqrt{\lambda\mu}} \left(\frac{\lambda\mu}{\lambda+\mu}\right)^2 & 0 \end{pmatrix}, \begin{pmatrix} \frac{\lambda^2\mu}{(\lambda+\mu)^2} & 0\\ 0 & \frac{\mu+1}{2} \end{pmatrix}.$$

 $H_0^{(\lambda,\mu)}(\mathbb{D}^2)$ and $H_0^{(\lambda',\mu')}(\mathbb{D}^2)$ are equivalent if and only if $\lambda=\lambda'$ and $\mu=\mu'$.

The curvature for $\ {\mathcal P} \$ at $\ (0,0) \$ is given by the $\ 2\times 2 \$ matrices

$$\begin{pmatrix} \frac{\lambda+1}{2} & 0\\ 0 & \frac{\lambda\mu^2}{(\lambda+\mu)^2} \end{pmatrix}, \begin{pmatrix} 0 & \frac{1}{\sqrt{\lambda\mu}} \left(\frac{\lambda\mu}{\lambda+\mu}\right)^2\\ 0 & 0 \end{pmatrix},$$
$$\begin{pmatrix} 0 & 0\\ \frac{1}{\sqrt{\lambda\mu}} \left(\frac{\lambda\mu}{\lambda+\mu}\right)^2 & 0 \end{pmatrix}, \begin{pmatrix} \frac{\lambda^2\mu}{(\lambda+\mu)^2} & 0\\ 0 & \frac{\mu+1}{2} \end{pmatrix}.$$

 $H_0^{(\lambda,\mu)}(\mathbb{D}^2)$ and $H_0^{(\lambda',\mu')}(\mathbb{D}^2)$ are equivalent if and only if $\lambda=\lambda'$ and $\mu=\mu'$.

Thank you!

