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Motivation



The Cowen - Douglas class

A Hilbert module over the polynomial ring C[z] := C[z1, . . . , zm] is a
Hilbert space H which is a C[z] -module with the assumption

∥p · f∥ ≤ Cp∥f∥, f ∈, p ∈ C[z],

for some Cp > 0.

The multiplication Mj by the coordinate functions zj ,

Mjf := zj · f, 1 ≤ j ≤ m, then defines a commutative tuple
M = (M1, ...,Mm) of linear bounded operators acting on ̋ and
vice-versa.

A Hilbert module H over the polynomial ring C[z] is said to be in the
Cowen-Douglas class Bn(Ω) , n ∈ N , if

dimH/mwH = n < ∞ for all w ∈ Ω

∩w∈ΩmwH = {0}, where mw denotes the maximal ideal in C[z] at
w.
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Examples

A Hilbert module M in Bn(Ω) determines a holomorphic Hermitian
vector bundle on Ω.

Cowen and Douglas prove that isomorphic Hilbert modules correspond to
equivalent vector bundles and vice-versa.

Also, they provide a model for the Hilbert modules in Bn(Ω). Cowen
and Douglas (Curto and Salinas, in general) show that these modules can
be realized as a Hilbert space consisting of holomorphic functions on Ω

possessing a reproducing kernel. The module action is then simply the
pointwise multiplication.

Examples are Hardy and the Bergman modules over the ball and the
poly-disc in Cm.
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Not an example!

However, many natural examples of Hilbert modules fail to be in the
class Bn(Ω).

For instance, H2
0 (D2) := {f ∈ H2(D2) : f(0) = 0} is not in Bn(D2).

The problem is that the dimension of the joint kernel

H/mwH ∼= ∩m
j=0Ker(Mj − wj)

∗

is no longer a constant.

Indeed, we have (an easy calculation)

dim
(
H/mwH

)
=

{
1 ifw ̸= (0, 0)

2 if w = (0, 0).

We outline an attempt to systematically study examples like the one
given above using methods of complex analytic geometry.
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What about the kernel?

The computation of the dimension of the joint kernel for the module
H2

0 (D2) serves another purpose as well.

It shows that the module H2
0 (D2) is not equivalent to the usual Hardy

module. The dimension of the joint kernel for the Hardy module is 1

everywhere on the bi-disc.

This is a gennuine multi-variate phenomenon – for the unit disc, the
Hardy module is equivalent to all its sub-modules.

Clearly, the dimension of the joint kernel is an important unitary invaraint
for a module. However, in many instances, calculating this dimension, or
other numerical invariants is possible only after determining the kernel
itself.
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Definitions

A Hilbert module M ⊂ O(Ω) is said to be in the class B1(Ω) if

it possesses a reproducing kernel K ( we don’t rule out the possibility:
K(w,w) = 0 for w in some closed subset X of Ω ) and

The dimension of M/mwM is finite for all w ∈ Ω.

Most of the examples in B1(Ω) are obtained by taking submodules of
Hilbert modules H(⊆ O(Ω)) in the Cowen-Douglas class B1(Ω).

Are there others?
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A couple of questions

Let M ∈ B1(Ω) be a Hilbert module and I ⊆ M be a polynomial
ideal. Assume without loss of generality that 0 ∈ V (I). Now, we ask

if there exists a set of polynomials p1, . . . , pt such that

pi(
∂

∂w̄1
, . . . , ∂

∂w̄m
)K[I](z, w)|w=0, i = 1, . . . , t,

spans the joint kernel of [I] ;

what conditions, if any, will ensure that the polynomials p1, . . . , pt , as
above, is a generating set for I ?
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Relation between B1(Ω) and B1(Ω)

The following Lemma isolates a very large class of elements from B1(Ω)

which belong to B1(Ω0) for some open subset Ω0 ⊆ Ω.

Lemma. Suppose M ∈ B1(Ω) is the closure of a polynomial ideal I.

Then M is in B1(Ω) if the ideal I is singly generated while if it is
generated by the polynomials p1, p2, . . . , pt , then M is in B1(Ω \X)

for X = {z : p1(z) = . . . = pt(z) = 0}.

8



Relation between B1(Ω) and B1(Ω)

The following Lemma isolates a very large class of elements from B1(Ω)

which belong to B1(Ω0) for some open subset Ω0 ⊆ Ω.

Lemma. Suppose M ∈ B1(Ω) is the closure of a polynomial ideal I.

Then M is in B1(Ω) if the ideal I is singly generated while if it is
generated by the polynomials p1, p2, . . . , pt , then M is in B1(Ω \X)

for X = {z : p1(z) = . . . = pt(z) = 0}.

8



The sheaf model



Construction of the sheaf model

Following the correspondence of a vector bundle with a locally free sheaf,
we construct a sheaf SM(Ω) for the Hilbert module M.

The sheaf SM is the subsheaf of the sheaf of holomorphic functions
O(Ω) whose stalk SMw at w ∈ Ω is{

(f1)wOw + · · ·+ (fn)wOw : f1, . . . , fn ∈ M
}

For any Hilbert module M in B1(Ω) , the sheaf SM is coherent.

This is essentially Noether’s stationary lemma!
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The decomposition theorem

Theorem. Suppose g0i , 1 ≤ i ≤ d, be a minimal set of generators for
the stalk SMw0

. Then there exists a open neighborhood Ω0 of w0 such
that

K(·, w) := Kw = g01(w)K
(1)
w + · · ·+ g0n(w)K

(d)
w , w ∈ Ω0

for some choice of anti-holomorphic functions K(1), . . . ,K(d) : Ω0 → M

,

the vectors K
(i)
w , 1 ≤ i ≤ d , are linearly independent in M for w in

Ω0

the vectors {K(i)
w0 | 1 ≤ i ≤ d} are uniquely determined by these

generators g01 , . . . , g
0
d ,
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Outline of the proof of the Theorem

We point out that the linear span of the set of vectors
{K(i)

w0 | 1 ≤ i ≤ d} in M is independent of the generators g01 , . . . , g
0
d ,

and that the vectors K
(i)
w0 , 1 ≤ i ≤ d , are eigenvectors for the adjoint of

the action of C[z] on the Hilbert module M at w0.

Key ingredients in the proof are the following observations.

There is a decomposition for a function in any submodule of Ow0
in

terms of its generators valid over a small neighbourhood of w0.

The coefficients in this decomposition satisfy uniform norm bounds in a
even smaller compact neighbourhood of w0.

Ow0
is a local ring to which Nakayama’s lemma applies.
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The Gleason problem

One easy consequence of the decomposition theorem is the inequality

dimkerD(M−w0)∗ ≥ ♯{minimal generators for SM
w0

}
≥ dim SMw0

/m(Ow0)S
M
w0

.

One of the basic question is to ask if we have equality under additional
hypothesis on the Hilbert module M. Thus assuming M to be an
analytic Hilbert module then Chen and Guo have shown that equality
is forced. We show that this property continues to hold for submodules of
analytic Hilbert modules.

Corollary. If M = [I] be a submodule of an analytic Hilbert module
over C[z] , where I is an ideal in the polynomial ring C[z] and
w ∈ V (I) is a smooth point, then

dimkerD(M−w)∗

=

{
1 for w /∈ V (I) ∩ Ω;
codimension of V(I) for w ∈ V (I) ∩ Ω.
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w0

}
≥ dim SMw0

/m(Ow0)S
M
w0

.

One of the basic question is to ask if we have equality under additional
hypothesis on the Hilbert module M. Thus assuming M to be an
analytic Hilbert module then Chen and Guo have shown that equality
is forced. We show that this property continues to hold for submodules of
analytic Hilbert modules.

Corollary. If M = [I] be a submodule of an analytic Hilbert module
over C[z] , where I is an ideal in the polynomial ring C[z] and
w ∈ V (I) is a smooth point, then

dimkerD(M−w)∗

=

{
1 for w /∈ V (I) ∩ Ω;
codimension of V(I) for w ∈ V (I) ∩ Ω.

12



The Gleason problem

One easy consequence of the decomposition theorem is the inequality

dimkerD(M−w0)∗ ≥ ♯{minimal generators for SM
w0

}
≥ dim SMw0

/m(Ow0)S
M
w0

.

One of the basic question is to ask if we have equality under additional
hypothesis on the Hilbert module M. Thus assuming M to be an
analytic Hilbert module then Chen and Guo have shown that equality
is forced. We show that this property continues to hold for submodules of
analytic Hilbert modules.

Corollary. If M = [I] be a submodule of an analytic Hilbert module
over C[z] , where I is an ideal in the polynomial ring C[z] and
w ∈ V (I) is a smooth point, then

dimkerD(M−w)∗

=

{
1 for w /∈ V (I) ∩ Ω;
codimension of V(I) for w ∈ V (I) ∩ Ω.

12



The Gleason problem

One easy consequence of the decomposition theorem is the inequality

dimkerD(M−w0)∗ ≥ ♯{minimal generators for SM
w0

}
≥ dim SMw0

/m(Ow0)S
M
w0

.

One of the basic question is to ask if we have equality under additional
hypothesis on the Hilbert module M. Thus assuming M to be an
analytic Hilbert module then Chen and Guo have shown that equality
is forced. We show that this property continues to hold for submodules of
analytic Hilbert modules.

Corollary. If M = [I] be a submodule of an analytic Hilbert module
over C[z] , where I is an ideal in the polynomial ring C[z] and
w ∈ V (I) is a smooth point, then

dimkerD(M−w)∗

=

{
1 for w /∈ V (I) ∩ Ω;
codimension of V(I) for w ∈ V (I) ∩ Ω.

12



The joint kernel of a Hilbert
module



The characteristic space

Let I be an ideal in the polynomial ring C[z].

The characteristic space of an ideal I in C[z] at the point w is the
vector space

Vw(I) := {q ∈ C[z] : q(D)p|w = 0, p ∈ I}.

The envolope Iew of the ideal I is

{p ∈ C[z] : q(D)p|w = 0, q ∈ Vw(I)}.

If the zero set of the ideal I is {w} then Iew = Vw(I).

This describes an ideal by prescribing conditions on derivatives. We
stretch this a little more.
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An auxiliary space

Let Ṽw(I) be the auxiliary space Vw(mwI). Then we have

dim∩Ker(Mj − wj)
∗ = dim Ṽw(I)/Vw(I).

Actually, we have something much more substantial.

Lemma. Fix w0 ∈ Ω and polynomials q1, . . . , qt. Let I be a
polynomial ideal and K be the reproducing kernel corresponding the
Hilbert module [I] , which is assumed to be in B1(Ω). Then the
vectors

q1(D̄)K(·, w)|w=w0 , . . . , qt(D̄)K(·, w)|w=w0

form a basis of the joint kernel ∩m
j=1 ker(Mj − w0j)

∗ if and only if the
classes [q∗1 ], . . . , [q

∗
t ] form a basis of Ṽw0

(I)/Vw0
(I).

However, it is not clear if we can choose the polynomials {q1, . . . , qt} to
be a generating set for the ideal I

14



An auxiliary space
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(I)/Vw0
(I).

However, it is not clear if we can choose the polynomials {q1, . . . , qt} to
be a generating set for the ideal I

14



A canonical set of generators

Theorem. Let I ⊂ C[z] be a homogeneous ideal and {p1, . . . , pv}
be a minimal set of generators for I consisting of homogeneous
polynomials. Let K be the reproducing kernel corresponding to the
Hilbert module [I] , which is assumed to be in B1(Ω). Then there
exists a set of generators q1, ..., qv for the ideal I such that the set

{qi(D̄)K(·, w)|w=0 : 1 ≤ i ≤ v}

is a basis for ∩m
j=1 kerM

∗
j .

We note that the new set {q1, . . . , qv} of generators for I is more or
less ``canonical''. It is uniquely determined modulo a linear
transformation as shown below.
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An Example

Let I ⊂ C[z1, z2] be the ideal generated by z1 + z2 and z22 . We have
V (I) = {0}. The reproducing kernel K for [I] ⊆ H2(D2) is

K[I](z, w) =
1

(1 − z1w̄1)(1 − z2w̄2)
−

(z1 − z2)(w̄1 − w̄2)

2
− 1

=
(z1 + z2)(w̄1 + w̄2)

2
+ i + j ≥ 2

∞
z
i
1z

j
2w̄

i
1w̄

j
2.

The vector ∂̄2
2K[I](z, w)|0 = 2z22 is not in the joint kernel of

P[I](M
∗
1 ,M

∗
2 )|[I] since M∗

2 (z
2
2) = z2 and P[I]z2 = (z1 + z2)/2 ̸= 0.
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Example contd.

However, we have q1 = z1 + z2 and q2 = (z1 − z2)
2 and they generate

the ideal I as well. Moreover, {(∂̄1+ ∂̄2)K(·, w)|0, (∂̄1− ∂̄2)
2K(·, w)|0}

forms a basis of the joint kernel.

Let I be the ideal generated by z1 + z2 and z22 and Ĩ be the ideal
generated by z1 and z22 . Since z1 is not a linear combination of
z1 + z2 and z22 , it follows that I ̸= Ĩ.

Indeed, our Theorem provides an effective tool for deciding when an ideal
is a monomial ideal.

Let {q1, . . . , qv} be a canonical set of generators for I. Let Λ be the
collection of monomials in the expressions of {q1, . . . , qv} that are in I.

If the number of algebraically independent monomials in Λ is v , then
I is a monomial ideal.
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generated by z1 and z22 . Since z1 is not a linear combination of
z1 + z2 and z22 , it follows that I ̸= Ĩ.
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Back to H2
0 (D2)

In the example of the module H2
0 (D2) , we have

S
H2

0 (D
2)

w =

{
Ow ifw ̸= (0, 0)

m(0,0)O(0,0) if w = (0, 0).

While the germs of holomorphic function Ow at w ∈ D2 is singly
genarated (even if w = (0, 0) ), the ideal m(0,0)O(0,0) ⊆ O(0,0) is 2 -
generated.

Thus the number of generators match the dimension of the joint
eigenspace, in this case.

The reproducing kernel KH2
0 (D2)(z, w) is easy to compute:

KH2(D2)(z, w)− 1 =
z1w̄1 + z2w̄2 − z1z2w̄1w̄2

(1− z1w̄1)(1− z2w̄2)
.

18
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Back to our favorite example

How do we find the unique pair of vectors K
(1)
0 and K

(2)
0 ?

set w̄1θ1 = w̄2 for w1 ̸= 0 , and take the limit:

lim
(w1,w2)→0

KH2
0 (D2)(z, w)

w̄1
= K

(1)
0 (z) + θ1K

(2)
0 (z) = z1 + θ1z2

to obtain K
(1)
0 and K

(2)
0 by the uniqueness in the Decomposition

Theorem. Similarly, for w̄2θ2 = w̄1 with w2 ̸= 0, we have

lim
(w1,w2)→0

KH2
0 (D2)(z, w)

w̄2
= K

(2)
0 (z) + θ2K

(1)
0 (z) = z2 + θ2z1.
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A resolution of the singularity at 0

Thus we have a Hermitian line bundle on the complex projective space
P1 given by the frame θ1 7→ z1 + θ1z2 and θ2 7→ z2 + θ2z1.

The curvature of this line bundle is then an invariant for the Hilbert
module H2

0 (D2). This curvature is easily calculated and is given by the
formula K(θ) = (1 + |θ|2)−2.

The decomposition theorem yields similar results in many other examples.

20



A resolution of the singularity at 0

Thus we have a Hermitian line bundle on the complex projective space
P1 given by the frame θ1 7→ z1 + θ1z2 and θ2 7→ z2 + θ2z1.

The curvature of this line bundle is then an invariant for the Hilbert
module H2

0 (D2). This curvature is easily calculated and is given by the
formula K(θ) = (1 + |θ|2)−2.

The decomposition theorem yields similar results in many other examples.

20



A resolution of the singularity at 0

Thus we have a Hermitian line bundle on the complex projective space
P1 given by the frame θ1 7→ z1 + θ1z2 and θ2 7→ z2 + θ2z1.

The curvature of this line bundle is then an invariant for the Hilbert
module H2

0 (D2). This curvature is easily calculated and is given by the
formula K(θ) = (1 + |θ|2)−2.

The decomposition theorem yields similar results in many other examples.

20



The isomorphism of Modules

For any two Hilbert module M1 and M2 in the class B1(Ω) and
L : M1 → M2 a module map between them, let
SL : SM1(V ) → SM2(V ) be the map defined by

SL
n∑

i=1

fi|V gi :=
n∑

i=1

Lfi|V gi, for fi ∈ M1, gi ∈ O(V ), n ∈ N.

The map SL is well defined: if
∑n

i=1 fi|V gi =
∑n

i=1 f̂i|V ĝi, then∑n
i=1 Lfi|V gi =

∑n
i=1 Lf̂i|V ĝi.

Suppose M1 is isomorphic to M2 via a unitary module map L. Now,
it is easy to verify that (SL)−1 = SL

∗
. It then follows that SM1 is

isomorphic, as a sheaf of modules over OΩ, to SM2 via the map SL.
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The Rigidity Theorem

For w0 ∈ X, the common zero set of the two modules M1 and M2,

the stalks are not just isomorphic but equal:

SM1
w0

= {i = 1nhigi : gi ∈ M1, hi ∈ mOw0
, 1 ≤ i ≤ n, n ∈ N}

= {i = 1nhiϕfi : fi ∈ M2, hi ∈ mOw0 , 1 ≤ i ≤ n, n ∈ N}
= {i = 1nĥifi : fi ∈ M2, ĥi ∈ mOw0 , 1 ≤ i ≤ n, n ∈ N} = SM2

w0
.

Theorem. Let M ⊆ O(Ω) and M̂ ⊆ O(Ω) be two Hilbert modules of
the form [I] and [Î], respectively, where I, Î are polynomial ideals.
Assume that M, M̂ are in B1(Ω) and that the dimension of the zero
set of these modules is at most m− 2. Furthermore, also assume that
every algebraic component of V (I) and V (Î) intersects Ω. If M and
M̂ are equivalent, then I = Î.
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Applications

Example. For j = 1, 2 , let Ij ⊂ C[z1, . . . , zm] , m > 2, be the ideals
generated by zn1 and z

kj

1 z
n−kj

2 . Let [Ij ] be the submodule in the
Hardy module H2(Dm). Now, from the Theorem proved above, it
follows that [I1] is equivalent to [I2] if and only if I1 = I2. We
conclude that these two ideals are same only if k1 = k2.

Let M be a Hilbert module in B1(Ω), which is the closure, in M, of
some polynomial ideal I. Let K denote the corresponding reproducing
kernel. Let w0 ∈ V (M). Set

t = dim SMw0
/mw0S

M
w0

= dim∩m
j=1 ker(Mj−w0j)

∗ = dim V̂w0(I)/Vw0(I).

By the Decomposition Theorem, there exists a minimal set of generators
g1, · · · , gt of SM1

0 and a r > 0 such that

K(·, w) =
t∑

i=1

gj(w)K
(j)(·, w) for all w ∈ ∆(w0; r)

for some choice of anti-holomorphic functions
K(1), . . . ,K(t) : ∆(w0; r) → M. 23
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New vector bundles

Consider the open set U1 = (∆(w0; r)× {u1 ̸= 0}) ∩ ∆̂(w0; r). Let
uj

u1
= θ1j , 2 ≤ j ≤ t. On this chart gj(w) = θ1j gj(w). From the

decomposition for the K(·, w), we have

K(·, w) = g1(w){K(1)(·, w) +
t∑

j=2

θ̄1jK
(j)(·, w)}.

This decomposition then yields a section on the chart U1, of the line
bundle on the blow-up space ∆̂(w0; r):

s1(w, θ) = K(1)(·, w) +
t∑

j=2

θ̄1jK
(j)(·, w).

The vectors K(j)(·, w) are not uniquely determined. However, there
exists a canonical choice of these vectors starting from a basis,
{v1, . . . , vt}, of the joint kernel ∩n

i=1 ker(Mj − wj)
∗:

K(·, w) =
t∑

j=1

gj(w)P (w̄, w̄0)vj , w ∈ ∆(w0; r)

for some r > 0 and generators g1, . . . , gt of the stalk SMw0
.
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Restriction to the exceptional set

Let L(M) be the line bundle on the blow-up space ∆̂(w0; r)

determined by the section (w, θ) 7→ s1(w, θ), where

s1(w, θ) = P (w̄, w̄0)v1 +

t∑
j=2

θ̄1jP (w̄, w̄0)vj , (w, θ) ∈ U1.

In general, Z need not be a complex manifold. However, the restriction
of s1 to p−1(w0) for w0 ∈ Z determines a holomorphic line bundle
L0(M) on p−1(w0)

∗ which is the set
{(w0, π(ū)) : (w̄0, π(u)) ∈ p−1(w0)}, . Thus s1 = s1(w, θ)|{w0}×{ui ̸=0}

is given by the formula

s1(θ) = K(1)(·, w0) +

t∑
j=2

θ̄1jK
(j)(·, w0).

Since the vectors K(j)(·, w0), 1 ≤ j ≤ t are uniquely determined by the
generators g1, . . . , gt, s1 is well defined.
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many more examples

Theorem. Let M ⊆ O(Ω) and M̂ ⊆ O(Ω) be two Hilbert modules of
the form [I] and [Î], respectively and I, Î ⊆ C[z]. Assume that M, M̂
are in B1(Ω) and that the dimension of the zero set of these modules is
at most m− 2. If the modules M and M̂ are equivalent, then the
corresponding bundles L0(M) and L0(M̂) they determine on the
projective space p−1(w0)

∗ for w0 ∈ Z, are equivalent as Hermitian
holomorphic line bundle.

Example. Let B2 be the unit ball in C2. For −1 < α, β, θ < +∞,

let L2
α,β,θ(B2) be the Hilbert space of functions on B2 satisfying

∥ f ∥2α,β,θ=
∫
B2

|f(z)|2dµ(z1, z2) < +∞,

dµ(z1, z2) = (α+β+θ+2)|z2|2θ(1−|z1|2−|z2|2)α(1−|z2|2)βdA(z1, z2)

and dA(z1, z2) = dA(z1)dA(z2).
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Many more examples

The weighted Bergman space A2
α,β,θ(B2) is the subspace of L2

α,β,θ(B2)

consisting of the holomorphic functions on B2. The Hilbert space
A2

α,β,θ(B2) is non-trivial if we assume that the parameters α, β, θ

satisfy the additional condition: α+ β + θ + 2 > 0.

Proposition. Suppose I is an ideal in C[z1, z2] with V (I) = {0}.
Then the Hilbert modules [I]A2

α,β,θ(B2) and [I]A2
α′,β′,θ′ (B

2) are unitarily
equivalent if and only if α = α′, β = β′ and θ = θ′.
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Another set of Invariants



Local construction of vector bundles

Let P0 be the orthogonal projection onto the joint kernel M/mw0
M

Lemma. The dimension of kerP0

(
M/mwM

)
is constant in a suitably

small neighbourhood Ω0 of w0 ∈ Ω.

Thus

PM
w0

:= {(w, f) ∈ Ω×M : f ∈ kerP0D(M−w)∗} and π(w, f) = w

may possibly define a holomorphic Hermitian vector bundle on the open
set Ω0.
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Existence of holomorphic structure

Existence of the operator RM(w) satisfying

RM(w)D(M−w)∗ = I − PkerD(M−w)∗

D(M−w)∗RM(w) = PranD(M−w)∗

on Ω0 is established.

(Here, D(M−w)∗ : M → M⊕ · · · ⊕M is the operator
f 7→

(
(M1 − w1)

∗f, . . . , (Mm − wm)∗f
)

)

Then the operator

P (w̄, w̄0) = I − {I −RM(w0)Dw̄−w̄0
}−1RM(w0)D(M−w)∗ ,

is clearly seen to be well-defined and holomorphic for
w ∈ B(w0; ∥ R(w0) ∥−1

)
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Main Theorem

Theorem. If any two Hilbert modules M and M̃ from B1(Ω) are
equivalent, then the corresponding holomorphic Hermitian vector bundles
PM
w0

and PM̃
w0

, they determine on Ω0 are equivalent.
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Examples, calculation of the invariant

For λ, µ > 0 , let K(λ,µ) denote the positive definite kernel
1

(1−z1w̄1)λ(1−z2w̄2)µ
, z, w ∈ D2 on the bi-disc. Let

H
(λ,µ)
0 (D2) := {f ∈ H(λ,µ)(D2) : f(0, 0) = 0} be the corresponding

Hilbert module in B1(D2). The normalized metric h0(w,w) , which is
real analytic, is of the form

h0(w,w) = I +

 λ+1
2 |w1|2 + λ2µ

(λ+µ)2
|w2|2 1√

λµ

( λµ
λ+µ

)2w1w̄2

1√
λµ

( λµ
λ+µ

)2w2w̄1
λµ2

(λ+µ)2
|w1|2 + µ+1

2 |w2|2



+O(|w|3),

where O(|w|3)i,j is of degree ≥ 3.
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The final outcome of these calculations

The curvature for P at (0, 0) is given by the 2× 2 matrices(
λ+1
2 0

0 λµ2

(λ+µ)2

)
,

(
0 1√

λµ

(
λµ
λ+µ

)2
0 0

)
,

(
0 0

1√
λµ

(
λµ
λ+µ

)2
0

)
,

(
λ2µ

(λ+µ)2 0

0 µ+1
2

)
.

H
(λ,µ)
0 (D2) and H

(λ′,µ′)
0 (D2) are equivalent if and only if λ = λ′ and

µ = µ′ .
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Thank you!
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