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Abstract. We study Toeplitz operators on Hilbert spaces of holomorphic functions on symmetric

domains, and more generally on certain algebraic subvarieties, determined by integration over bound-

ary orbits of the underlying domain. The main result classifies the irreducible representations of the

Toeplitz C∗-algebra generated by Toeplitz operators with continuous symbol. This relies on the limit

behavior of ”hypergeometric” measures under certain peaking functions.

0. Introduction

Toeplitz operators and Toeplitz C∗-algebras on Hilbert spaces over bounded symmetric domains

Ω = G/K, for a semisimple Lie group G and a maximal compact subgroup K, are a deep and interest-

ing part of multi-variable operator theory [27, 28, 29], closely related to harmonic analysis (holomorphic

discrete series of representations of G) and index theory. In this paper we study Hilbert spaces over

non-symmetric G-orbits contained in the boundary of Ω. These Hilbert spaces do not belong to the

holomorphic discrete series, but the associated Toeplitz operators are still G-homogeneous in the sense

of [20]. We study the C∗-algebra generated by these Toeplitz operators on boundary orbits and con-

struct its irreducible representations, similar as in the symmetric case, via a refined analysis of the

boundary faces of these orbits. The most interesting discovery is that for the boundary Toeplitz C∗-

algebra, the irreducible representations do not always belong to boundary orbits, but comprise also

some distinguished parameters in the discrete series (relative to the face).

Recently, certain algebraic varieties in symmetric domains, called Jordan-Kepler varieties, have

been studied from various points of view [8, 29]. Although these varieties are not homogeneous, there

exist natural K-invariant measures giving rise to Hilbert spaces of holomorphic functions and associated

Toeplitz operators. In [30] the corresponding Toeplitz C∗-algebra and its representations have been

investigated using asymptotic properties of hypergeometric functions. As a second main result of this

paper, we combine both settings and treat Kepler-type varieties related to boundary orbits. The

associated Toeplitz operators are subnormal, but the explicit description of the underlying boundary

measure requires some effort. It seems that our setting is the natural level of generality, where methods

of harmonic analysis based on Jordan algebraic concepts still yield a complete structure theory of

Toeplitz C∗-algebras.

Compared to the paper [30], to which we frequently refer, the main new result concerns the de-

scription of the measures and inner product for the underlying Hilbert space, and the expression of

the reproducing kernel in terms of generalized hypergeometric series. For boundary orbits this is not

straightforward. Also, the concept of “hypergeometric measure” introduced in Section 3 serves to clarify

and streamline the exposition, especially in the proof of Theorem 5.2.
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1. Subnormal and homogeneous operator tuples

To put the results of this paper in perspective, recall that a commuting n-tuple of operators S =

(S1, . . . , Sn) is said to be subnormal if it is the restriction of a commuting tuple of normal operators

N, acting on a Hilbert space H, to an invariant subspace H0 ⊂ H. There are several intrinsic char-

acterizations of subnormality; the one closest to the spirit of this paper is the following C∗-algebraic

characterization. Let C∗[S] be the C∗-algebra generated by {Id, S1, . . . , Sn}

Theorem 1.1 ([19, Theorem 2]). A commuting n-tuple of operators S is subnormal if and only if for

every subset {TI : I ∈ F} of C∗[S], F finite, it follows that∑
I,J∈F

T ∗I S
J∗SITJ ≥ 0,

where TI = Ti1 · · ·Tin and SI = Si11 · · ·Sinn .

An immediate corollary is that if S is a subnormal commuting n-tuple and π is a ∗-representation of

the C∗-algebra C∗[S], then π(S) is also subnormal. For n = 1, these results were obtained by Bunce and

Deddens [6]. Natural examples of subnormal operators are obtained by restricting the multiplication

by the coordinate functions on the Hilbert space L2(Ω,m) to the subspace of holomorphic functions

H2(Ω,m), where Ω ⊂ Cd is a bounded domain and m is a finite measure supported in the closure Ω

of Ω. Determining when a commuting tuple of operators is subnormal, in general, is not easy. For

instance, let Ω be a bounded symmetric domain of genus p, and let B be the Bergman kernel of Ω.

Then the set of positive real ν for which Bν/p remains a positive definite kernel is known (cf. [9]) and

is designated the Wallach set of Ω. For a fixed but arbitrary ν in the Wallach set, let H(ν) denote the

Hilbert space determined by Bν/p. The biholomorphic functions of the domain Ω form a group, say G.

Thus g ∈ G acts on Ω via the map (g, z) 7→ g(z). This action lifts (g 7→ Ug, g ∈ G) to the Hilbert space

Hν : (
U

(ν)
g−1f

)
(z) = Jg(z)ν/p

(
f(g(z)

)
, g ∈ G, z ∈ Ω, f ∈ H(ν),

where Jg(z) := det(Dg(z)). It is easy to verify, using the transformation rule for the Bergman ker-

nel, that Ug is unitary. The map g → U
(ν)
g is not a homomorphism, in general, however U

(ν)
gh =

c(g, h)U
(ν)
g U

(ν)
h , where c : G × G → T is a Borel multiplier. Thus U defines a projective unitary

representation of the group on H(ν).

The automorphism group G admits the structure of a Lie group. Consider the bounded symmetric

domain Ω in its Harish-Chandra realization (cf. [12, Section 2.1]). The construction of the discrete

series representations due to Harish-Chandra is well known, see [14, Theorem 6.6]. The (scalar

holomorphic) discrete series representations (when realized as sections of homogeneous holomorphic line

bundles) occur among the projective unitary representations U (ν). Harish-Chandra had determined a

cut-off ν1 such that for all ν > ν1, the representation U (ν) is in the discrete series and the Hilbert space

H(ν) is realized as the space H2(Ω, dmν), where dmν(z) = B(z, z)1−ν/p dv(z), clearly, supp(m) = Ω.

However, we also have the so-called limit discrete series representations and their analytic continuation.

It is therefore natural to ask if there are other values of ν for which the inner product in the Hilbert

space H(ν) is given by an integral with respect to a measure supported on possibly some other G-

invariant closed subset of Ω. The answer to this question involves the G-invariant boundary strata

of Ω introduced below, namely, Ωk,r, 1 ≤ k ≤ r, where r is the rank of the bounded symmetric domain

Ω. In this notation, Ωr,r is the Shilov boundary and Ω0,r = Ω. For ν in {ν1, . . . , νr}, where

νi = d
r + a

2 (r − i),

there exists a quasi-invariant measure

dmi(gz) = |Jg(z)|
2νi
p dmi(z), z ∈ Ω, supp(mi) = Ωi,r, 1 ≤ i ≤ r,
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such that L2(Ωi,r, dmi) contains the representation space H(ν) as a closed subspace. (Here, with a

slight abuse of notation, we let Ω0,r = Ω.) The representation U (ν) lifts to Û (ν) on L2(Ωi,r, dmi), again,

as a multiplier representation, see [2, theorem 6.1]. The existence of the quasi-invariant measure (in

the unbounded realization of G/K) is in [23, 16], see also [3, Lemma 5.1]. (The generalization to the

case of vector valued holomorphic functions appears in [12, Theorem 4.49].) However, the fact that

these are the only quasi-invariant measures with support in Ω was proved for the domains Ω of type

In,m, m ≥ n ≥ 1, in [3] and was extended to all bounded symmetric domains in [2]. Furthermore, it

can be shown that these are the only commuting tuples of “homogeneous” subnormal operators in the

Cowen-Douglas class of rank 1 on Ω.

Thus the commuting tuple M(ν) := (M
(ν)
1 , . . . ,M

(ν)
d ) of multiplication by the coordinate functions

on the Hilbert space H(ν) is subnormal if and only if ν is in the set

Wsub := {ν : ν = d
r + a

2 (r − j), 1 ≤ j ≤ r} ∪ {ν : ν > p− 1}.

For ν as above, this is evident since the Hilbert space H(ν) is a closed subspace of the Hilbert space

L2(dmν) for some quasi-invariant measure mν . The converse is Theorem 3.1 of [3] for tube type domains

and Theorem 5.1 of [2] in general.

The commuting tuple M̂ of multiplication by the coordinate functions on the Hilbert space L2(dmν)

induces a ∗ - homomorphism Φ̂ν : C(Ωi,r) → L(L2(dmν)), namely, Φ̂ν(f) = f(M̂), f ∈ C(Ωi,r), the

space of continuous functions on Ωi,r and ν ∈ Wsub. The quasi-invariance of the measure mν ensures

that Û (ν) is unitary and therefore the triple (L2(dmν), Û (ν), Φ̂ν) is a system of imprimitivity in the

sense of Mackey [31, chapter 6]:

(1.1) (Û (ν)
g )∗Φ̂ν Û

(ν) = g · Φ̂ν , g ∈ G,

where ((g · Φ̂ν)f)(z) = f(g · z). Since the representation Û (ν) leaves the subspace H(ν) invariant as well,

we see that

(H(ν), U (ν),Φν) = (L2(dmν), Û (ν)
g , Φ̂ν)|H(ν) , ν ∈Wsub,

is the restriction of an imprimitivity.

Recall that the ∗-homomorphism Φ̂ must be given by the formula Φ̂(f) = M̂f = f(M̂), f ∈ C(Ωi,r),
0 ≤ i ≤ r, via the usual functional calculus. The group G acts on the space of continuous functions via

(g−1 · f)(z) = f(g · z) = (f ◦ g)(z). Therefore,

Φ̂(g · f) = M̂f◦g = (f ◦ g)(M̂).

Choosing f to be the coordinate functions, we see that the imprimitivity condition (1.1) of Mackey is

equivalent to the homogeneity of the commuting tuple M, relative to the group G, of the commuting

tuple M̂, namely,

(1.2) UgMU∗g := (UgM1U
∗
g , . . . , U

∗
gMdUg) = g ·M, g ∈ G,

where g ·M = (g1(M), . . . , gd(M)). Here gi, 1 ≤ i ≤ d, are the components of g in G, when it is

thought of as an injective biholomorphic map on Ω. This notion for a single operator is from [20] and

for a commuting tuple is from [21], see also [3, 4]. For ν in the Wallach set, the multiplication by the

coordinate functions acting on the Hilbert space of holomorphic functions H(ν) are bounded if and only

if ν ∈ (a2 (r− 1),∞), the continuous part of the Wallach set, see [2, Theorem 4.1] and [3, Theorem 1.1].

Since the kernel function of the Hilbert space H(ν) is a power of the Bergman kernel, it also transforms

like the Bergman kernel ensuring that the the operator M on this Hilbert space is G-homogeneous for

all ν in the continuous part of the Wallach set. A simple computation involving the curvature shows

that these are the only G-homogeneous operators in the Cowen-Douglas class B1(Ω). The details are

in [21] for the case of rank r = 1. The proofs in the general case can be obtained using [2, Proposition

4.4] and spectral mapping properties of the Taylor spectrum of the commuting tuple M.

It is clearly of interest to study homogeneity, or equivalently, imprimitivity relative to subgroups of

the group G. This already occurs in the study of spherically balanced tuples of operators [7, Definition
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1.1]. In this case, the domain is the Euclidean unit ball Bd and the group is the maximal compact

subgroup K of the automorphism group G of Bd. The group K can be identified with the unitary group

U(d), it acts on Bd by the rule: (U, z) 7→ U(z), z ∈ Bd, U ∈ U(d). Let T be a commuting d-tuple of

operators acting on a complex separable Hilbert space H. The usual functional calculus gives

U ·T =
( d∑
j=1

U1jTj , . . . ,

d∑
j=1

Ud,jTj

)
, U ∈ K.

The commuting d-tuple of operators T is said to be “spherically symmetric”, or equivalently, K-

homogeneous if Γ∗UTΓU = U · T for each U in K and some unitary ΓU on H. In general, Γ need

not be a unitary representation. However, we will assume that a choice of ΓU exists such that the map

U → ΓU is a unitary homomorphism. What we have said about the Euclidean ball applies equally well

to the case of a bounded symmetric domain. So, we speak freely of K-homogeneous operators, where

Ω = G/K. To describe this more general situation, we recall some basic notions from the representation

theory of the group K.

Let m ∈ Nr
+ be a partition of length r. Let Pm denote the space of irreducible K-invariant

homogeneous polynomials of isotypic type m, having total degree |m|. These are mutually inequivalent

as K-modules and P =
∑

m∈Nr
+

Pm is the Peter-Weyl decomposition of the polynomials P under the

action of the group K. Now, equip the submodules Pm with the Fischer-Fock inner product (p|q)m =

(q∗(∂)(p))(0), where q∗(z) = q(z). Let Em be the reproducing kernel of the finite dimensional space

Pm. Then the Faraut-Korányi formula for the reproducing kernel K(ν) of the Hilbert space H(ν) is

(1.3) K(ν) =
∑

m∈Nr
+

(ν)mE
m,

where (ν)m :=
r∏
j=1

(ν − a
2 (j − 1))mj are the generalized Pochhammer symbols. We have pointed out

that the commuting tuple of multiplication operators M on the Hilbert space H(ν) is G-homogeneous,

therefore, it is also K-homogeneous. What are the other K-homogeneous operators? Since Pm is a K

irreducible module, it follows that the Hilbert space H(a), obtained by setting K(a) =
∑

m∈Nr
+

amE
m for

an arbitrary choice of positive numbers am is a weighted direct sum of the K modules Pm. Hence the

commuting tuple of multiplication operators M on H(a) is K-homogeneous. It is shown in [11], under

some additional hypothesis, that these are the only K - homogeneous operators.

If the rank r = 1, then a full description of all multi-shifts within the class of spherically symmetric

operators is given in [7, Theorem 2.5]. In the present set-up, this characterization amounts to saying

that a multi-shift on a Hilbert space H with reproducing kernel K : Bd × Bd → C is spherically

symmetric if and only if the kernel is of the form∑
n

an〈z,w〉n

for z,w ∈ Bd. It then follows that several properties of the commuting tuple of multiplication operators

M on the Hilbert space are determined by the ordinary shift with weight sequence
{(

an
an+1

)1/2}
, n ≥ 0,

see [7, Theorem 5.1].

2. Spectral varieties and boundary orbits

In this section we describe the Jordan theoretic background needed for the rest of the paper. For

details, cf. [10, 18]. Let V be an irreducible hermitian Jordan triple of rank r. Every element z ∈ V
has a spectral decomposition

z =

r∑
i=1

λici
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where the singular values λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0 are uniquely determined by z, and c1, . . . , cr is a

frame of minimal orthogonal tripotents. The largest singular value ‖z‖ := λ1 defines a (spectral) norm

on V and the (open) unit ball

Ω = {z ∈ V : ‖z‖ < 1}
is a bounded symmetric domain. It is a fundamental fact [18] that, conversely, every hermitian bounded

symmetric domain can be realized, in an essentially unique way, as the spectral unit ball of a hermitian

Jordan triple. In this paper we use the Jordan algebraic approach to study analysis on symmetric

domains and related geometric structures.

The compact group K acts transitively on the set of frames. Hence, for fixed λ = (λ1, λ2, . . . , λr),

the level set

(2.1) V (λ) := {z =

r∑
i=1

λici : (ci) frame}

is a compact K-orbit. As a special case we obtain the compact manifold

Sk := V (1k, 0r−k)

of all tripotents of rank k, where 0 ≤ k ≤ r. Every union of such level sets (2.1) is K-invariant but

may be an orbit of a larger group. As an example, for 0 ≤ ` ≤ r, the Jordan-Kepler manifold

V̊` =
⋃

λ1≥...≥λ`>0

V (λ1, . . . , λ`, 0
r−`),

consisting of all elements of rank `, is a complex manifold which is an orbit under the complexified

group KC. Its closure

V` =
⋃

λ1≥···≥λ`≥0

V (λ1, . . . , λ`, 0
r−`) =

⋃
0≤j≤`

V̊j

consists of all elements of rank ≤ ` and is called the Jordan-Kepler variety. Its regular (smooth)

part coincides with V̊`. For ` = r we have Vr = V and V̊r = V̊ is an open dense subset, consisting of all

elements of maximal rank. As another example the set

Ωk,r =
⋃

1>λk+1≥...≥λr≥0

V (1k, λk+1, . . . , λr)

is an orbit under the identity component G of the biholomorphic automorphism group of Ω. For k = 0,

we have Ω0,r = Ω. For k > 0 we obtain a boundary orbit which is not a complex submanifold. It has

the closure

Ωk,r =
⋃

1≥λk+1≥...≥λr≥0

V (1k, λk+1, . . . , λr) =

r⋃
i=k

Ωi,r.

The intersection

Sk = V̊k ∩ Ωk,r

is the common center of V̊k and Ωk,r. In particular, S0 = {0} is the center of Ω. The triple

V̊k ⊃ Sk ⊂ Ωk,r

is a special case of Matsuki duality, which gives a 1-1 correspondence between G-orbits and KC-orbits

in a flag manifold (which in our case is the so-called conformal hull of V ), determined by the condition

that the intersection is a K-orbit. For k = r we obtain the Shilov boundary

Ωr,r = Sr =: S

which is the only closed stratum of ∂Ω and is its own center. Generalizing both the Jordan-Kepler

varieties and the boundary orbits, we define for 0 ≤ k ≤ ` ≤ r the K-invariant set

Ω̊k,` := V̊` ∩ Ωk,r =
⋃

1>λk+1≥...≥λ`>0

V (1k, λk+1, . . . , λ`, 0
r−`).
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It has the closure

Ωk,` = V` ∩ Ωk,r =
⋃

1≥λk+1≥...≥λ`≥0

V (1k, λk+1, . . . , λ`, 0
r−`) =

⋃
k≤i≤j≤`

Ω̊i,j .

We also use the ’partial closure’

Ωk,` := V` ∩ Ωk =
⋃

1>λk+1≥...≥λ`≥0

V (1k, λk+1, . . . , λ`, 0
r−`) =

⋃̀
j=k

Ω̊k,j .

Then

Ω` := Ω0,` = V` ∩ Ω

is the so-called Kepler ball.

Our first goal is to describe a facial decomposition of the K-invariant sets Ωk,`. For a tripotent c

we consider the Peirce decomposition [17, 18]

V = V c2 ⊕ V c1 ⊕ V c0 .

Define V c := V c0 and Ωc := Ω ∩ V c. This is itself a bounded symmetric domain of rank r − k, when

c ∈ Sk.

Proposition 2.1. There exist fibrations (disjoint union)

(2.2) Ω̊k,` =
⋃
c∈Sk

c+ Ω̊c`−k ⊂ Ωk,` =
⋃
c∈Sk

c+ Ωc`−k =
⋃̀
i=k

Ω̊k,i

Proof. If z ∈ Ω̊k,` then

z = c1 + . . .+ ck +
∑
k<i≤`

λici

for some frame (ci) and 1 > λk+1 ≥ . . . ≥ λ` > 0. It follows that c := c1 + . . .+ ck ∈ Sk and

w :=
∑
k<i≤`

λici ∈ Ωc ∩ V̊`−k = Ω̊c`−k.

For different tripotents c, c′ ∈ Sk the boundary components c+ Ωc and c′+ Ωc
′

are disjoint [18, Section

6]. This proves the first assertion. If z ∈ Ωk,` then we require only λ` ≥ 0. Therefore

w ∈ Ωc ∩ V`−k = Ωc`−k =
⋃̀
i=k

Ω̊ci−k.

It follows that

Ωk,` =
⋃
c∈Sk

c+ Ωc`−k =
⋃
c∈Sk

⋃̀
i=k

c+ Ω̊ci−k =
⋃̀
i=k

⋃
c∈Sk

c+ Ω̊ci−k =
⋃̀
i=k

Ω̊k,i.

�

For k ≤ i ≤ ` the set Ω̊k,i is called the i-th stratum of Ωk,`. In the special case ` = r we obtain a

stratification

Ωk,r =
⋃
c∈Sk

c+ Ωcr−k =

r⋃
i=k

Ω̊k,i

of the boundary G-orbit.
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3. Hypergeometric measures

If V is an irreducible hermitian Jordan triple of rank r, with automorphism group K, define the

K-average

f \(t) :=

∫
K

dk f(kt)

for t ∈ Rr
++ := {t ∈ Rr : t1 ≥ . . . ≥ tr ≥ 0}. Any K-invariant measure µ on V (or a K-invariant

subset) has a polar decomposition∫
µ(dz) f(z) =

∫
µ̃(dt1, . . . , dtr) f

\(
√
t1, . . . ,

√
tr)

for a uniquely defined measure µ̃ on Rr
++ (or a suitable subset), called the radial part of µ. In the

following we use various unspecified constants, all of which are explicitly known.

Proposition 3.1. The Lebesgue measure dz =: λr(dz), for the normalized K-invariant inner product

on V, has the radial part

(3.1) λ̃r(dt1, . . . , dtr) = const.

r∏
i=1

dti t
b
i

∏
1≤i<j≤r

(ti − tj)a

on Rr
++. Here a, b denote the so-called characteristic multiplicities of V [17, Section 17].

Proof. We start with the well known formula

(3.2)

∫
X

dx f(x) = const.

∫
Rr

+

dt1 · · · dtr
∏

1≤i<j≤r

(ti − tj)a
∫
L

dh f(ht)

for a euclidean Jordan algebra X with automorphism group L [10, Theorem VI.2.3]. Let Λe be the

symmetric cone of the Peirce 2-space V e2 for some maximal tripotent e ∈ Sr [10]. Then

(3.3)

∫
V

dz f(z) = const.

∫
Λe

dx Ne(x)b
∫
K

dk f(k
√
x)

by [10, Proposition X.3.4] (for the tube domain case b = 0) and [1, (2.1.1)] (for the general case).

Applying (3.2) to the right hand side of (3.3) we obtain∫
V

dz f(z) = const.

∫
Rr

++

r∏
i=1

dti t
b
i

∏
1≤i<j≤r

(ti − tj)a f \(
√
t).

�

Proposition 3.2. For ` ≤ r, consider the map

α : R`
++ → Rr

++, α(t1, . . . , t`) := (t1, . . . , t`, 0
r−`).

Then the Riemann measure λ` on the Kepler variety V̊`, induced by the inner product (z|w), has the

radial part λ̃` = α∗M̂`, where

(3.4) M̂`(dt1, . . . , dt`) := const.
∏̀
i=1

dti t
dc1/`
i

∏
1≤i<j≤`

(ti − tj)a

and dc1/` = b+ a(r − `). If ` = r, then de1 = rb and (3.4) reduces to (3.1).

Proof. By [8, Theorem 3.4] we have∫
V̊`

λ`(dz) f(z) = const.

∫
Λ2
c

dx Nc(x)d
c
1/` f \(

√
x) = const.

∫
R`

++

∏̀
i=1

dti t
dc1/`
i

∏
1≤i<j≤`

(ti − tj)a f \(
√
t)

by applying (3.2) to the Peirce 2-space V c2 and its positive cone Λc. �
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Let P(V ) denote the polynomial algebra of a hermitian Jordan triple V, endowed with the Fischer-

Fock inner product (p|q)V for the normalized K-invariant inner product (z|w) on V. Let

P(V ) =
∑
m

Pm(V )

be the Peter-Weyl decomposition of P(V ) under the group K [9, Theorem 2.1]. Here m runs over

the set Nr
+ of all integer partitions

m = (m1 ≥ . . . ≥ mr)

of length ≤ r. For a complex parameter ν let

(ν)m =

r∏
j=1

(ν − a

2
(j − 1))mj

denote the multivariate Pochhammer symbol. Then the identity

(3.5) (ν)m+n = (ν + n)m (ν)n

holds for any integer n ≥ 0.

Let x1, . . . xh, y0, . . . yh be positive parameters. We say that a K-invariant measure µ supported on

Ω (or a K-invariant subset) is hypergeometric of type
(
y0,..., yh
x1,..., xh

)
if

(3.6) (p|q)µ :=

∫
µ(dz) p(z) q(z) =

h∏
i=1

(xi)m

h∏
i=0

(yi)m

(p|q)V

for all m ∈ Nr
+ and p, q ∈ Pm(V ). More generally, for ` ≤ r, a K-invariant measure µ supported on Ω`

(or a K-invariant subset) is `-hypergeometric if (3.6) holds for all partitions m ∈ N`
+ of length ≤ `.

By the Stone-Weierstrass approximation theorem and K-invariance, the condition (3.6) determines the

measure µ uniquely, but not every choice of parameters defines such a measure (a kind of multi-variate

moment problem).

Let ∆(z, w) be the Jordan triple determinant [9].

Proposition 3.3. Let p := 2 + a(r − 1) + b be the genus of Ω, and let ν > p− 1. Then the probability

measure Mν on Ω, defined by

(3.7)

∫
Ω

Mν(dz) f(z) = const.

∫
Ω

dζ ∆(ζ, ζ)ν−p f(ζ)

is hypergeometric of type
(
ν
)
.

Proof. This follows from the Faraut-Korányi binomial formula (1.3) proved in [9]. �

Proposition 3.4. For 1 ≤ k ≤ r let pk := 2 + a(r − k − 1) + b be the genus for rank r − k, and put

(3.8) νk :=
d

r
+
a

2
(r − k) = p− 1− a

2
(k − 1) = 1 + b+

a

2
(2r − k − 1) = pk +

a

2
(k + 1)− 1.

Then the probability measure Mk,r on the k-th boundary orbit Ωk,r, defined in terms of the fibration

(2.2) by

(3.9)

∫
Ωk,r

Mk,r(dz) f(z) = const.

∫
Sk

dc

∫
Ωc

dζ ∆(ζ, ζ)νk−pk f(c+ ζ)

is hypergeometric of type
(
νk
)
.

Proof. For the special case a = 2, corresponding to the matrix Jordan triple V = Cr×s, this is proved

in [3] using combinatorial properties of Schur polynomials. The general case [1, Theorems 6.7 and 6.8]

uses transformation properties under certain non-unimodular groups acting on the boundary. �
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For the Shilov boundary k = r Mr,r(dz) is the unique K-invariant probability measure on Ωr,r = S,

since c + Ωc = {c} is a singleton for each c ∈ S = Sr. For k = 0 we have Ω0,r = Ω and p0 = p. In

this case (3.9) reduces to (3.7) for ν0 = p − 1 + a
2 . However, in this case we may take any parameter

ν > p− 1. Given a frame of minimal orthogonal tripotents e1, . . . , er of V put

ck := e1 + . . .+ ek.

The explicit realization (3.9) of Mk,r implies

Define

Ir+ := {s ∈ Rr : 1 ≥ s1 ≥ . . . ≥ sr ≥ 0}.

Proposition 3.5. For 1 ≤ k ≤ r consider the map

β : Ir−k+ → Ir+, β(tk+1, . . . , tr) := (1k, tk+1, . . . , tr).

Then the K-invariant measure Mk,r on Ωk has the radial part M̃k,r = β∗M̃
ck
νk
, where

(3.10) M̃ ck
νk

(dtk+1, . . . , dtr) = const.

r∏
i=k+1

tbi (1− ti)νk−pk dti
∏

k<i<j≤r

(ti − tj)a

is the radial part, relative to the Peirce 0-space V ck of rank r − k, of the weighted Bergman measure

M ck
νk

for parameter νk. Thus∫
Ωk,r

Mk,r(dz) f(z) =

∫
Ir+

M̃k,r(dt1, . . . , dtr) f
\(
√
t1, . . . ,

√
tr) =

∫
Ir+

(β∗M̃
ck
νk

)(dt1, . . . , dtr) f
\(
√
t1, . . . ,

√
tr)

=

∫
Ir−k+

M̃ ck
νk

(dtk+1, . . . , dtr) f
\(1k,

√
tk+1, . . . ,

√
tr)

= const.

∫
Ir−k+

r∏
i=k+1

tbi (1− ti)νk−pk dti
∏

k<i<j≤r

(ti − tj)a f \(1k,
√
tk+1, . . . ,

√
tr).

Now let ` ≤ r. For ν > p− 1 define the probability measure

(3.11) Mν,`(dz) := const. ∆(z, z)ν−p λ`(dz)

on the Kepler ball Ω`. For ` = r we have Ωr = Ω and recover the “full” measure Mν,r = Mν . Finally,

combining boundary orbits and Kepler varieties, we define the probability measure

(3.12)∫
Ωk,`

Mk,`(dz) f(z) =

∫
Sk

dc

∫
Ωc`−k

M c
νk,`−k(dζ) f(c+ ζ) = const.

∫
Sk

dc

∫
Ωc`−k

λc`−k(dζ) ∆(ζ, ζ)νk−pk f(c+ ζ)

on Ωk,`, written in terms of the fibration (2.2). Here λc`−k is the Riemann measure on the ’little’ Kepler

ball Ωc`−k = Ωc ∩ V`−k induced by the hermitian metric (z|w) restricted to V c.

Consider the commuting diagram

I`−k+

β′ //

α′

��

γ

  

I`+

α

��
Ir−k+ β

// Ir+

where

α′(tk+1, . . . , t`) := (1k, tk+1, . . . , t`)

β′(tk+1, . . . , t`) := (tk+1, . . . , t`, 0
r−`)

γ(tk+1, . . . , t`) = (1k, tk+1, . . . , t`, 0
r−`).
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Proposition 3.6. The K-invariant measure Mk,` on Ωk,` has the radial part M̃k,` = γ∗M̂k,`, for the

measure

(3.13) M̂k,`(dtk+1, . . . , dt`) := const.
∏̀
i=1

dti (1− ti)νk−pk t
dc1/`
i

∏
1≤i<j≤`

(ti − tj)a

on I`−k+ . Thus ∫
Ωk,`

Mk,`(dz) f(z) =

∫
Ir+

M̃k,`(dt) f
\(
√
t) =

∫
Ir+

(γ∗M̂k,`)(dt) f
\(
√
t)

=

∫
I`−k+

M̂k,`(dtk+1, . . . , dt`) f
\(1k,

√
tk+1, . . . ,

√
t`, 0

r−`)

= const.

∫
I`−k+

∏̀
i=k+1

dti (1− ti)νk−pk t
dc1/`
i

∏
k<i<j≤`

(ti − tj)a f \(1k,
√
tk+1, . . . ,

√
t`, 0

r−`)

Consider the Fischer-Fock kernel Em(z, w) = Em
w (z) of Pm(V ). Then

(Em
z |Em

w )V = Em(z, w).

Define dm = dimPm(V ).

Lemma 3.7. For all t ∈ ∆r and w ∈ V we have

(|Em
w |2)\(

√
t) =

Em(w,w)

dm
Em
e (t).

Proof. Schur orthogonality implies

(|Em
w |2)\(

√
t) =

∫
K

dk |Em(k
√
t, w)|2 =

∫
K

dk |(Em
k
√
t
|Em
w )V |2 =

∫
K

dk |(k·Em√
t
|Em
w )V |2 =

‖Em
w ‖2V ‖Em√

t
‖2V

dm

Since ‖Em
w ‖2V = Em(w,w) and ‖Em√

t
‖2V = Em(

√
t,
√
t) = Em(t, e), the assertion follows. �

Proposition 3.8.

(3.14)

∫
∆r−k

r∏
i=k+1

tbi (1− ti)νk−pk dti
∏

k<i<j≤r

(ti − tj)a Em
e (1k, tk+1, . . . , tr) =

dm
(νk)m

.

Proof. From (3.10) it follows that∫
Ir−k+

r∏
i=k+1

tbi (1− ti)νk−pk dti
∏

k<i<j≤r

(ti − tj)a Em
e (1k, tk+1, . . . , tr) =

∫
Ir+

M̃k,r(dt) E
m(t, e)

=
dm

Em(e, e)

∫
Ir+

M̃k,r(dt) (|Em
e |2)\(

√
t) =

dm
Em(e, e)

∫
Ωk

Mk,r(dz) |Em
e (z)|2 =

dm
‖Em

e ‖2V
‖Em

e ‖2νk =
dm

(νk)m
.

�

Remark 3.9. In the special case V = Cr×s the polynomials Em
e are proportional to the Schur poly-

nomials, and the identity (3.14) was shown directly in [3]. A direct proof of (3.14) in the general case

would be of interest.

The following theorem is our first main result.

Theorem 3.10. For 1 ≤ k ≤ ` ≤ r the probability measure Mk,` on Ωk,` is `-hypergeometric of type( d
r , r

a
2 , νk

` a2 , ν`

)
.
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Proof. Let c = c`. Put h := dc1/` = b+ a(r− `). Applying (3.14) to the Jordan triple V c2 (of tube type)

we obtain for m ∈ N`
+, putting dcm = dimPm(V c2 ),

const.

∫
∆`−k

∏̀
i=k+1

(1−ti)νk−pk dti
∏

k<i<j≤`

(ti−tj)a Em
c`

(1k, tk+1, . . . , t`) =
dcm

(1 + a
2 (2`− k − 1))m

=
dcm

(νk − h)m

since

1 +
a

2
(2`− k − 1) + h = 1 +

a

2
(2`− k − 1) + b+ a(r − `) = 1 + b+

a

2
(2−̊k − 1) = νk

For z ∈ V c2 we have Em
c (z) = Em(c, c) Φcm(z), where Φcm ∈ Pm(V c2 ) is the spherical polynomial

normalized by Φcm(c) = 1. Therefore

Nc(z)
h Em

c (z) = Em(c, c) Nc(z)
h Φcm(z) = Em(c, c) Φcm+h(z) =

Em(c, c)

Em+h(c, c)
Em+h
c (z).

We have

Em(c, c) =
dcm

(1 + a
2 (`− 1))m

and, similarly,

Em+h(c, c) =
dcm+h

(1 + a
2 (`− 1))m+h

=
dcm

(ν` − h)m+h
,

since

1 +
a

2
(`− 1) + h = 1 +

a

2
(`− 1) + b+ a(r − `) = 1 + b+

a

2
(2−̊l − 1) = ν`.

It follows that∏̀
i=k+1

thi (|Em
c |2)\(1k,

√
tk+1, . . . ,

√
t`, 0

r−`) =
Em(c, c)

dm
Nc(1

k, tk+1, . . . , t`)
h Em

c (1k, tk+1, . . . , t`)

=
Em(c, c)

dm

Em(c, c)

Em+h(c, c)
Em+h
c (1k, tk+1, . . . , t`) =

Em(c, c)

dm

(ν` − h)m+h

(ν` − h)m
Em+h
c (1k, tk+1, . . . , t`).

Applying (3.14) to m + h ∈ N`
+ we obtain

1

const.
‖Em

c ‖2νk,` =
1

const.

∫
Ωk,`

Mk,`(dz) |Em
c (z)|2

=

∫
I`−k+

∏̀
i=k+1

thi (1− ti)νk−pk dti
∏

k<i<j≤`

(ti − tj)a (|Em
c |2)\(1k,

√
tk+1, . . . ,

√
t`, 0

r−`)

=
Em(c, c)

dm

(ν` − h)m+h

(ν` − h)m

∫
∆`−k

∏̀
i=k+1

(1− ti)νk−pk dti
∏

k<i<j≤`

(ti − tj)a Em+h
c (1k, tk+1, . . . , t`)

=
Em(c, c)

dm

(ν` − h)m+h

(ν` − h)m

dcm+h

(νk − h)m+h
=

Em(c, c)

(νk − h)m+h

(ν` − h)m+h

(ν` − h)m

(a`/2)m
(ar/2)m

(ν` − h)m
(d/r)m

using the identity

dcm+h

dm
=
dcm
dm

=
(a`/2)m
(ar/2)m

(1 + a
2 (`− 1))m

(d/r)m
=

(a`/2)m
(ar/2)m

(ν` − h)m
(d/r)m

as computed in the proof of [8, Theorem 5.1]. Simplifying and using (3.5) we finally obtain

‖Em
c ‖2k,` = Em(c, c)

(ν`)m
(νk)m (d/r)m

(a`/2)m
(ar/2)m

since Mk,` is a probability measure. It follows that for m ∈ N`
+ and p, q ∈ Pm(V ) we have

(p|q)k,` :=

∫
Ωk,`

Mk,`(dz) p(z) q(z) = (p|q)V
(ν`)m

(νk)m (d/r)m

(a`/2)m
(ar/2)m

.

�
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4. Holomorphic Function Spaces and Toeplitz Operators

We now define Hilbert spaces of holomorphic functions and Toeplitz type operators associated with

hypergeometric measures of rank ` ≤ r, keeping in mind the examples Mk,` on Ωk,` constructed above.

For ` ≤ r define

P`(V ) =
∑

m∈N`
+

Pm(V ),

involving only partitions of length ≤ `. Then the restriction map p 7→ p|V` is injective and yields a linear

isomorphism between P`(V ) and the regular functions on the Kepler variety V`. For a K-invariant `-

hypergeometric measure µ on Ωk,` let Hµ,` denote the Hilbert space of all holomorphic functions on

the Kepler ball Ω` which are square-integrable under the measure µ. This is the completion of P`(V ),

restricted to Ω`, for the measure µ.

This general definition covers all classical examples. Consider first the “full” case ` = r. For a discrete

series Wallach parameter ν > p − 1, the weighted Bergman space Hν consists of all holomorphic

functions on Ω which are square-integrable under the measure Mν . For 1 ≤ k ≤ r the embedded

Wallach parameters νk defined in (3.8) belong to the continuous Wallach set

(4.1) ν >
a

2
(r − 1)

but not to the discrete series since k ≥ 1 implies νk ≤ 1 + b+ a
2 (2r− 2) = p− 1. The associated Hardy

type spaces Hk,r consist of all holomorphic functions on Ω which are square-integrable under the

measure Mk,r. Then νr = d
r is the “true” Hardy space parameter, corresponding to the Shilov boundary

S = Ωr,r. The left endpoint ν1 = p− 1 of the holomorphic discrete series corresponds to the probability

measure M1,r on the dense open boundary orbit Ω1,r. As explained in Section 2, the parameters νk
are of special importance for subnormal G-homogeneous Toeplitz operators. By Proposition 3.3 and

Proposition 3.4, these measures are of hypergeometric type.

Now consider the “partial” case ` ≤ r. If ν > p − 1, the partial weighted Bergman space

Hν,` consists of all holomorphic functions on the Kepler ball Ω` which are square-integrable for the

probability measure Mν,`. The inner product is

(φ|ψ)ν,` :=

∫
Ω`

Mν,`(dz) φ(z) ψ(z) = const.

∫
Ω`

λ`(dz) ∆(z, z)ν−p φ(z) ψ(z).

For ` = r we have Ωr = Ω and Mν,r = Mν . Thus we recover the ’full’ weighted Bergman space

Hν,r = Hν . For 1 ≤ k ≤ ` ≤ r, the partial Hardy type space Hk,` consists of all holomorphic

functions on the Kepler ball Ω` which are square-integrable for the probability measure Mk,`. The inner

product is

(φ|ψ)k,` :=

∫
Ωk,`

Mk,`(dz) φ(z) ψ(z) =

∫
Sk

dc

∫
Ωc`−k

λc`−k(dζ) ∆(ζ, ζ)νk−pk (φψ)(c+ ζ).

Putting ` = r we recover the inner product (3.14) since Ωcr−k = Ωc and M c
r−k(dζ) = dζ is the Lebesgue

measure on V c. For k = 0 we have c = 0, V 0 = V, Ω0
` = Ω` = Ω ∩ V`, M0

` = M` and p0 = p. Thus we

recover the M`-inner product.

In summary, we obtain examples of type
( d
r , r

a
2 , νk

` a2 , ν`

)
for 0 ≤ k ≤ ` ≤ r. For fixed ` we have as special

cases the partial weighted Bergman spaces of type
( d
r , r

a
2 , ν

` a2 , ν`

)
, corresponding to k = 0, and the partial

Hardy space of type
( d
r , r

a
2

ν`

)
corresponding to maximal k = `. For ` = r we obtain the full type

(
νk
)
,

since νr = d
r , specializing to the full weighted Bergman spaces of type

(
ν
)

if k = 0 and the full Hardy

space of type
( d
r
)

if k = r. It would be interesting to construct natural examples of more complicated

hypergeometric type.
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We now introduce Toeplitz operators in our setting. For the ’full’ Hilbert space Hµ over Ω we denote

by Pµ : L2(Ω, µ) → Hµ the orthogonal projection and define the “full” Toeplitz operator Tµ(f), with

symbol function f ∈ L∞(Ω), by

Tµ(f) = Pµ f Pµ.

Restricting to continuous symbols we obtain the “full” Toeplitz C∗-algebra

Tµ = C∗(Tµ(f) : f ∈ C(Ω)).

As special cases, we obtain the “full” Bergman-Toeplitz operators Tν,r(f) (ν > p − 1) and the “full”

Hardy type Toeplitz operators Tk,r(f) (1 ≤ k ≤ r) associated with the hypergeometric measures Mν,r

on Ω and Mk,r on Ωk,r, respectively. The corresponding Toeplitz C∗-algebras are denoted by Tν,r and

Tk,r, respectively.

In the more general setting of the “partial” Hilbert space Hµ,` over Ω`, associated with a K-invariant

`-hypergeometric measure µ (` ≤ r), denote by Pµ,` : L2(Ω`, µ) → Hµ,` the orthogonal projection and

define the “partial” Toeplitz operator Tµ,`(f), with symbol function f ∈ L∞(Ω`), by

Tµ,`(f) = Pµ,` f Pµ,`.

Restricting to continuous symbols we obtain the “partial” Toeplitz C∗-algebra

Tµ,` = C∗(Tµ,`(f) : f ∈ C(Ω`)).

As special cases, we obtain the “partial” Bergman-Toeplitz operators Tν,`(f) (ν > p − 1) and the

“partial” Hardy type Toeplitz operators Tk,`(f) (1 ≤ k ≤ `) associated with the `-hypergeometric

measures Mν,` on Ω` and Mk,` on Ωk,`, respectively. The corresponding Toeplitz C∗-algebras are

denoted by Tν,` and Tk,`, respectively.

Lemma 4.1. Let p, q ∈ P(V ). Then the Toeplitz type operators satisfy

Tµ,`(p) Tµ,`(q) = Tµ,`(pq).

Proof. Since P`(V )⊥ is an ideal in P(V ) it follows that

Tµ,`(pq)φ = Pµ,`(pqφ) = Pµ,`(p(Pµ,` + P⊥µ,`)(qφ))

= Pµ,`(p Pµ,`(qφ)) + Pµ,`(p P
⊥
µ,`(qφ)) = Pµ,`(p Tµ,`(q)φ) = Tµ,`(p)(Tµ,`(q)φ).

�

It follows that Tµ,` is generated by Toeplitz type operators with linear symbols and their adjoints.

Remark 4.2. A standard reproducing kernel argument (carried out in [30, Proposition 4.2]) shows,

at least for the ’concrete’ hypergeometric measures described above (where the support is connected),

that the C∗-algebra Tµ,` acts irreducibly on Hµ,`.

For any v ∈ V let

v∗(z) := (z|v)

denote the associated linear form. Its conjugate is v∗(z) = (z|v) = (v|z). Let ∂vp(z) := p′(z)v denote

the directional derivative. Put

εj := (0, . . . , 0, 1, 0, . . . , 0)

with 1 at the j-th place. It is shown in [27, Corollary 2.10] that

(4.2) v∗p ∈
r∑
j=1

Pm+εj (V ), ∂vp ∈
r∑
j=1

Pm−εj (V )

for all p ∈ Pm(V ), with zero-component if m± εj is not a partition. Let q 7→ qm ∈ Pm(V ) denote the

m-th isotypic projection.

The next result determines the fine structure of the adjoint Toeplitz type operator Tµ,`(v
∗)∗ =

Tµ,`(v
∗).
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Proposition 4.3. Let µ be a `-hypergeometric measure on Ω`. Let v ∈ V. Then

Tµ,`(v
∗)p =

∑̀
j=1

h∏
i=1

(xi − a
2 (j − 1) +mj − 1)

h∏
i=0

(yi − a
2 (j − 1) +mj − 1)

(∂vp)m−εj

for all m ∈ N`
+ and p ∈ Pm(V ).

Proof. Let q ∈ Pn(V ), n ∈ N`
+, satisfy (Tµ,`(v

∗)p|q)µ,` 6= 0. Then

(p|v∗q)µ,` = (Tµ,`(v
∗)p|q)µ,` 6= 0.

With (4.2) it follows that m = n+εj for some j ≤ ` and hence n = m−εj . Since µ is `-hypergeometric,

it follows that

(4.3)

(Tµ,`(v
∗)p|q)µ = (p|v∗q)µ =

h∏
i=1

(xi)m

h∏
i=0

(yi)m

(p|v∗q)V =

h∏
i=1

(xi)m

h∏
i=0

(yi)m

(∂vp|q)V =

h∏
i=1

(xi)m/(xi)m−εj

h∏
i=0

(yi)m/(yi)m−εj

(∂vp|q)µ.

Since q is arbitrary, it follows that

T `µ(v∗)p =
∑̀
j=1

h∏
i=1

(xi)m/(xi)m−εj

h∏
i=0

(yi)m/(yi)m−εj

(∂vp)m−εj .

Now the assertion follows from

(λ)m
(λ)m−εj

=
(λ− a

2 (j − 1))mj
(λ− a

2 (j − 1))mj−1
= λ− a

2
(j − 1) +mj − 1.

�

5. Limit measures

The basic result concerning Toeplitz C∗-algebras on bounded symmetric domains states that every

irreducible representation is realized on a unique boundary component Ωc, for any tripotent c. This was

carried out in full detail for the Hardy space in [27, 28] and its generalization to weighted Bergman spaces

was described in [29]. Here a crucial step, which was indicated in [29] and proved in detail in the recent

paper [30], is the limit behavior of the underlying measures under certain peaking functions. In the

present paper, this crucial result will be generalized to the boundary orbits Ωk,`, and their intersection

with Kepler varieties. This is not completely straightforward, since the assignment f (c)(ζ) := f(c+ ζ)

is not compatible with the Peter-Weyl decomposition of P(V ).

Let c ∈ Si with i ≤ `. Since V c2 = P c2V has rank i ≤ ` and (z|c)n = (P c2 z|c)n, where P c2 denotes the

Peirce 2-projection, it follows that

(z|c)n ∈ P(V c2 ) ⊂ Pi(V ) ⊂ P`(V ).

Restricting (injectively) to Ω`, the holomorphic function

(5.1) Hc(z) := exp(z|c) =

∞∑
n=0

(z|c)n

n!

on Ω` can be regarded as an element of the Hilbert completion Hµ,` of P`(V ) under µ. This applies in

particular to i = 1.

Let 0 ≤ i ≤ ` ≤ r and c ∈ Si. Then c+ Ω
c ⊂ Ω. For functions f ∈ C(Ω`) we define f (c) ∈ C(Ωc`−i) by

(5.2) f (c)(ζ) := f(c+ ζ) (ζ ∈ Ω
c

`−i).
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Lemma 5.1. Let µ be an `-hypergeometric measure on Ω`. Let 0 ≤ i ≤ ` and c ∈ Si. Then

lim
n→∞

∫
Ω`

µ(dz)
|Hn

c (z)|2

‖Hn
c ‖2µ

f(z) = 0

for all f ∈ C(Ω`) satisfying f (c) = 0.

Proof. By assumption, for every ε > 0 there is an open neighborhood U ⊂ Ω` of c + Ωc`−i satisfying

sup |f(U)| ≤ ε. By [18, Lemma 6.2] we have |(z|c)| < (c|c) for all z ∈ Ω \ Ω
c
. Peirce orthogonality

implies (z|c) = (c|c) for all z ∈ c+ Ω
c
. Therefore |Hc| < Hc(c) on Ω` \ U, and a compactness argument

shows that there exists an open neighborhood V ⊂ U ⊂ Ω` of c+ Ω
c

`−i such that

q :=
supΩ`\U |Hc|

infV |Hc|
< 1.

Therefore ∫
Ω`

µ(dz)
|Hn

c (z)|2

‖Hn
c ‖2µ

f(z) =

∫
U

µ(dz)
|Hn

c (z)|2

‖Hn
c ‖2µ

f(z) +

∫
Ω`\U

µ(dz)
|Hn

c (z)|2

‖Hn
c ‖2µ

f(z)

≤ sup
U
|f |+ sup

Ω`

|f | ·

∫
Ω`\U

µ(dz) |Hn
c (z)|2∫

V

µ(dz) |Hn
c (z)|2

≤ ε+ sup
Ω`

|f | · q2n Volµ(Ω` \ U)

Volµ(V )
.

Since q2n → 0 it follows that

lim sup
n→∞

∫
Ω`

µ(dz)
|Hn

c (z)|2

‖Hn
c ‖2µ

f(z) ≤ ε.

�

Now consider the special case i = 1. For c = e1 ∈ S1, let α := (α1, . . . , α`−1) ∈ N`−1
+ be a partition

of length `− 1. Define

(5.3) α+ := (α1, α) ∈ N`
+

and consider the conical function

Nα+ = Nα1−α2
2 Nα2−α3

3 · · ·Nα`−1

` ,

where N1, . . . , Nr are the Jordan theoretic minors [26]. Then the conical function N c
α relative to V c for

the partition α satisfies

N
(c)
α+ = N c

α.

The asymptotic expansion of generalized hypergeometric series

(5.4) Fp q (z) =

∞∑
n=0

p∏
r=1

Γ(n+ βr)

q∏
r=1

Γ(n+ µr)

zn

n!

in one variable z has been determined in [33]. Put κ := 1 + q − p and

ϑ :=
q − p

2
+ β1 + . . .+ βp − µ1 − . . .− µq.

As a special case M = 1 of [33, Theorem 1], using [33, Lemma 1], one obtains

lim
x→+∞

X−ϑ e−X Fp q (x) = A0 = (2π)(p−q)/2 κ
1
2−ϑ,
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whereX := κ x1/κ. If q = p+1, this simplifies to κ = 2, X = 2
√
x and A0 = (2π)−1/2 2

1
2−ϑ = π−1/2 2−ϑ.

Therefore

(5.5) lim
x→∞

x−ϑ/2 e−2
√
x Fp q (x) =

1√
π
.

Theorem 5.2. Let µ be a K-invariant `-hypergeometric probability measure of type
(
y0,...,yh
x1;...,xh

)
on Ω`.

Then for each c ∈ S1 there exists a unique Kc-invariant (`− 1)-hypergeometric probability measure µ(c)

of type
(y0− a2 ,...,yh− a2
x1− a2 ,...,xh−

a
2

)
on Ω

c

`−1 such that for all continuous functions f we have

(5.6) lim
n→∞

∫
Ω`

µ(dz)
|Hn

c (z)|2

‖Hn
c ‖2µ

f(z) =

∫
Ω
c
`−1

µ(c)(dζ) f (c)(ζ).

Proof. By K-invariance, we may assume that c = e1. By Lemma 5.1 each weak cluster point µ′ of the

sequence of probability measures on the left of (5.6) is supported on the closure Ω
c

`−1 and is invariant

under Kc. Thus it suffices to compute the µ′-inner product for α-homogeneous polynomials on V c,

where α ∈ N`−1
+ is arbitrary. By irreducibility, it is enough to consider the conical functions N c

α relative

to V c. Defining α+ ∈ N`
+ as in (5.3), we consider for any s ∈ N the conical function

(z|e1)s Nα+ = Ns
1 Nα+ = Nm,

where m = (m1, α1, . . . , α`−1, 0
r−`) and m1 = s + α1. In the proof of [30, Theorem 5.5] it was shown

that the respective Fock inner products are related by

‖Nm‖2V
‖N c

α‖2V c
=

(1 + a
2 (`− 1))m

(1 + a
2 (`− 2))α

∏
1≤j<`

(1 + a
2 (j − 1))m1−αj

(1 + a
2 j)m1−αj

= (1 +
a

2
(`− 1))m1

∏
1≤j<`

(1 + a
2 (j − 1))m1−αj

(1 + a
2 j)m1−αj

.

For any λ ∈ C we have

(λ)m
(λ− a

2 )α
= (λ)m1

∏
1<j≤`

(λ− a
2 (j − 1))mj

(λ− a
2 −

a
2 (j − 2))αj−1

= (λ)m1
.

It follows that

‖Nm‖2µ
‖N c

α‖2V c
=
‖Nm‖2V
‖N c

α‖2V c

h∏
i=1

(xi)m

h∏
i=0

(yi)m

=

h∏
i=1

(xi)m

h∏
i=0

(yi)m

(1 +
a

2
(`− 1))m1

∏
1≤j<`

(1 + a
2 (j − 1))m1−αj

(1 + a
2 j)m1−αj

=

h∏
i=1

(xi − a
2 )α

h∏
i=0

(yi − a
2 )α

(1 + a
2 (`− 1))m1

h∏
i=1

(xi)m1

h∏
i=0

(yi)m1

∏
1≤j<`

(1 + a
2 (j − 1))m1−αj

(1 + a
2 j)m1−αj

= A

h∏
i=1

(xi − a
2 )α

h∏
i=0

(yi − a
2 )α

B(m1),

where A is independent of α and s, and

B(t) :=

Γ(t+ 1 + a
2 (`− 1))

h∏
i=1

Γ(t+ xi)

h∏
i=0

Γ(t+ yi)

∏
1≤j<`

Γ(t+ 1 + a
2 (j − 1)− αj)

Γ(t+ 1 + a
2 j − αj)

.

For (e(z|e1))n = en(z|e1) we obtain by orthogonality

1

‖N c
α‖2V c

∫
Ω
`

µ(dz) |e(z|e1)|2n |Nα+(z)|2 =
∑
s≥0

n2s

(s!)2

1

‖N c
α‖2V c

∫
Ω
`

µ(dz) |(z|e1)|2s |Nα+(z)|2

=
∑
s≥0

n2s

(s!)2

‖Nm‖2µ
‖N c

α‖2V c
= A

h∏
i=1

(xi − a
2 )α

h∏
i=0

(yi − a
2 )α

∑
s≥0

n2s

(s!)2
B(α1 + s) = A

h∏
i=1

(xi − a
2 )α

h∏
i=0

(yi − a
2 )α

Fα(n2),
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where Fα(X) is a hypergeometric series in the sense of (5.4), with parameters

α1 + x1, . . . , α1 + xh, α1 + 1 +
a

2
(`− 1), α1 − α2 + 1 +

a

2
, . . . , α1 − α`−1 + 1 +

a

2
(`− 2)

in the numerator and

α1 + y0, . . . α1 + yh, 1 +
a

2
, α1 − α2 + 1 +

a

2
2, . . . , α1 − α`−1 + 1 +

a

2
(`− 1)

in the denominator. One power of s! cancels against the numerator term Γ(1+ a
2 (j−2)+α1−αj−1 +s)

for j = 2. The crucial parameter ϑ in (5.5) is computed as

ϑ =
1

2
+

h∑
i=1

(α1 + xi) +
(
α1 + 1 +

a

2
(`− 1)

)
+
(
α1 − α2 + 1 +

a

2

)
+ . . .+

(
α1 − α`−1 + 1 +

a

2
(`− 2)

)

−
h∑
i=0

(α1 + yi)−
(

1 +
a

2

)
−
(
α1 − α2 + 1 +

a

2
2
)
− . . .−

(
α1 − α`−1 + 1 +

a

2
(`− 1)

)
=

1

2
+

h∑
i=1

xi −
h∑
i=0

yi +
(

1 +
a

2
(`− 1)

)
−
(

1 +
a

2

)
− a

2
(`− 2) =

1

2
+

h∑
i=1

xi −
h∑
i=0

yi.

Putting x = n2, (5.5) implies

lim
n→∞

n−ϑ e−2n Fα(n2) =
1√
π
.

Since ϑ is independent of α, the same limit holds for α = 0. Thus we obtain

lim
n→∞

Fα(n2)

F0(n2)
= 1.

Passing to the probability measure cancels the constant A and we obtain

1

‖N c
α‖2V c

∫
Ω`

µ(dz)
|e(z|e1)|2n

‖(e(z|e1))n‖2µ
|Nα+(z)|2 →

h∏
i=1

(xi − a
2 )α

h∏
i=0

(yi − a
2 )α

.

Hence any cluster point µ′ is an (`−1)-hypergeometric probability measure of the same type
(y0− a2 ,...,yh− a2
x1− a2 ,...,xh−

a
2

)
on Ω

c

`−1. In view of Lemma 5.1 this determines the limit measure on each irreducible Kc-type, which,

as explained above, implies the assertion. �

Remark 5.3. For the “concrete” `-hypergeometric measures Mν,` (k = 0) and Mk,` (k > 0) constructed

in Section 3 we obtain as limit measures

M
(c)
ν,` = M c

ν− a2 ,`−1

M
(c)
k,` = M c

k−1,`−1,

where the superscript c refers to the Peirce 0-space V c. In the second case this follows from

νk −
a

2
= νck−1.

If k = 0 then ν > p− 1 is any parameter in the discrete series, in which case ν − a
2 > p(c) − 1 belongs

to the discrete series of Ωc. As special cases (` = r) we have

M (c)
ν = M c

ν− a2

M
(c)
k,r = M c

k−1,r−1

for the “full” measures. Here for k ≥ 2 and rank Ωc = r − 1 the value

νck−1 = 1 + b+
a

2
(2(r − 1)− (k − 1)− 1) = 1 + b+

a

2
(2r − k − 1)− a

2
= νrk −

a

2

is again a boundary parameter for Ωc, whereas for k = 1 the parameter

ν0 = ν1 −
a

2
= p− 1− a

2
= 1 + b+ a(r − 1)− a

2
> 1 + b+ a(r − 2) = pr−1 − 1
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belongs to the discrete series of Ωc. Understanding this “disappearing boundary orbit” in the limit was

one of the original motivations for the current paper.

6. Boundary representations

The (unital) Toeplitz C∗-algebra T associated with a bounded domain Ω ⊂ Cd can be regarded

as a deformation of C(Ω) in the sense of “non-commutative geometry”. Thus the spectrum of T ,
consisting of all irreducible ∗-representations, is a ’non-commutative’ (non-Hausdorff) compactification

of Ω, involving the geometry of the boundary. In this section we carry out this program for Toeplitz

operators over boundary orbits and algebraic varieties, using the boundary stratification described in

Proposition 2.1. For each 0 ≤ j < k the partial closures satisfy

Ωk,r =
⋃
c∈Sj

c+ Ωck−j,r−j .

as a non-disjoint union.

For two sequences (fn), (gn) in Hµ,` we put

fn ∼ gn

if limn→∞ ‖fn − gn‖µ,` = 0. For any c ∈ Si put

hnc (z) := Hn
c (z)/‖Hn

c ‖µ,`.

In the following we embed P(V c) ⊂ P(V ) via the Peirce projection V → V c.

Lemma 6.1. Let p ∈ P`(V ) and q ∈ P`−1(V c) ⊂ P`(V ). Then

Tµ,`(p)(h
n
c q) ∼ hnc Tµc,`−1(p(c))q

for all c ∈ S1

Proof. Since p− p(c) vanishes on c+ Ωc`−1, Lemma 5.1 implies

‖ Hn
c

‖Hn
c ‖µ,`

p− Hn
c

‖Hn
c ‖µ,`

p(c)‖2µ,` =

∫
Ω`

µ(dz)
|Hn

c (z)|2

‖Hn
c ‖2µ,`

|p(z)− p(c)(z)|2 → 0.

It follows that

Tµ,`(p)(h
n
c q) = p(hnc q) ∼ hns (p(c) q) ∼ hnc T cµc,`−1(p(c))q.

�

The adjoint operators Tµ,`(p) are more difficult to handle. For a partition α = (α1, . . . , α`−1) ∈ N`−1
+

consider the orthogonal projection

π`α : P`(V )→
∑

m1≥α1

Pm1,α(V ) ⊂ P`(V ),

with (m1, α) ∈ N`
+ ⊂ Nr

+. Then
∑

α∈N`−1
+

π`α = Id on P`(V ).

Lemma 6.2. Let p ∈ P(V c2 ) ⊂ P`(V ) and v ∈ V c, where c = e1. Then we have for every α ∈ N`−1
+

(6.1) p Nα+ ∈ Ran(π`α)

(6.2) Tµ,`(v
∗)(p Nα+) =

`−1∑
j=1

h∏
i=1

(xi − a
2 −

a
2 (j − 1) + αj − 1)

h∏
i=0

(yi − a
2 −

a
2 (j − 1) + αj − 1)

π`α−εj (p · ∂vNα+).
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Proof. The first assertion is proved in [27, Lemma 3.5]. By [27, Lemma 2.9] we have

∂vNm ∈
∑̀
j=2

Pm−εj (V ).

Since v ∈ V c implies ∂vp = 0, we have ∂vNm = p · ∂vNα+ , and Proposition 4.3 yields

Tµ,`(v
∗)(p Nα+) = Tµ,`(v

∗) Nm =
∑̀
j=2

h∏
i=1

(xi − a
2 (j − 1) +mj − 1)

h∏
i=0

(yi − a
2 (j − 1) +mj − 1)

(∂vNm)m−εj

=
∑̀
j=2

h∏
i=1

(xi − a
2 (j − 1) + α+

j − 1)

h∏
i=0

(yi − a
2 (j − 1) + α+

j − 1)

(p · ∂vNα+)m−εj .

Shifting j 7→ j − 1 and using Pm−εj (V ) ⊂ Ran(π`α−εj−1
) for all 1 < j ≤ `, the assertion follows. �

Lemma 6.3. Let q ∈ P`−1(V c) and α ∈ N`−1
+ . Then

π`α(hnc q) ∼ hnc qα.

Proof. We may assume that q ∈ Pβ(V c) for some partition β ∈ N`−1
+ . Every γ ∈ Kc has an extension

g ∈ K satisfying gc = c (see the proof of [30, Lemma 6.2]). Since hnc is fixed under the action of g, we

may assume that q = N ′β is the conical polynomial in V c of type β. Then Nβ+ − q vanishes on c+ Ωc`−1,

and Lemma 5.1 implies

(6.3) hnc q ∼ hnc Nβ+ .

Since the projection π`α has a continuous extension to Hµ,` it follows that

π`α(hnc q) ∼ π`α(hnc Nβ+).

Since hnc belongs to the closure of P(V c2 ) in Hµ,`, (6.1) implies hnc Nβ+ ∈ Ran(π`β). Therefore orthogo-

nality implies

π`α(hnc Nβ+) = δα,β h
n
c Nβ+ ∼ δα,β hnc q = hnc qα.

�

Proposition 6.4. Let p ∈ P`(V ) and q ∈ P`−1(V c) ⊂ P`(V ). Then the adjoint Toeplitz operators

satisfy

Tµ,`(p)(h
n
c q) ∼ hnc T cµ(c),`−1(p(c))q

for all c ∈ S1.

Proof. Assume first that p(z) = (z|v) is linear. If v ∈ V c2 ⊕ V c1 , then p(c) is constant and Lemma 6.1

implies

Tµ,`(p)(h
n
c q) = Pµ,`(p h

n
c q) ∼ Pµ,`(p(c) hnc q) = p(c) hnc q = hnc T

c
µ(c),`−1(p(c))q

since the orthogonal projection Pµ,` is continuous. If v ∈ V c, we may assume as in the proof of Lemma

6.3 that q = N ′α is the conical polynomial in Pα(V c) for some partition α ∈ N`−1
+ . Then Nα+ − q

vanishes on c + Ωc`−1. Since v is tangent to V c it follows that (∂vNα+)c = ∂vN
c
α. Hence ∂v(Nα+ − q)

vanishes on c+ Ωc`−1 as well. Applying (6.3), Lemma 6.2 and Lemma 6.3, we obtain

Tµ,`(v
∗)(hnc q) ∼ Tµ,`(v∗)(hnc Nα+) =

∑̀
j=2

h∏
i=1

(xi − a
2 −

a
2 (j − 1) + αj − 1)

h∏
i=0

(yi − a
2 −

a
2 (j − 1) + αj − 1)

π`α−εj−1
(hnc · ∂vNα+)
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∼
∑̀
j=2

h∏
i=1

(xi − a
2 −

a
2 (j − 1) + αj − 1)

h∏
i=0

(yi − a
2 −

a
2 (j − 1) + αj − 1)

π`α−εj−1
(hnc · ∂vq)

∼ hnc
∑̀
j=2

h∏
i=1

(xi − a
2 −

a
2 (j − 1) + αj − 1)

h∏
i=0

(yi − a
2 −

a
2 (j − 1) + αj − 1)

(∂vq)α−εj−1 = hnc T
c
µ(c),`−1(p(c))(q),

since r − j = (r − 1)− (j − 1) and `− j = (`− 1)− (j − 1). The last identity follows from Proposition

4.3 and the fact that p(c) = p if v ∈ V c. This proves the assertion for linear symbol functions.

Now suppose that the assertion holds for polynomials φ, ψ up to a certain degree. Since µc is again

a (` − 1)-hypergeometric measure for V c and φ(c) has degree ≤ deg φ, we may apply this assumption

to q and T cµc,`−1(φ
(c)

)q ∈ P`−1(V c) to obtain

Tµ,`(φψ)(hnc q) = Tµ,`(ψ) Tµ,`(φ)(hnc q) ∼ Tµ,`(ψ)(hnc T
c
µ(c),`−1(φ

(c)
)q)

∼ hnc T cµc,`−1(ψ
s
) T cµ(c),`−1(φ

(c)
)q = hnc T

c
µ(c),`−1(φψ

c
)q.

Thus the assertion holds for φψ. Since the assertion holds for linear forms, the proof is complete. �

The following is our main result.

Theorem 6.5. Let 0 ≤ i ≤ ` and let c ∈ Si be arbitrary. Then the Toeplitz C∗-algebra Tk,` has an

irreducible ∗-representation

σ
(c)
k,` : Tk,` → T ck\i,`−i

which is uniquely determined by the property

(6.4) σ
(c)
k,`Tk,`(f) = T ck\i,`−i(f

(c))

for all f ∈ C(Ωk,`), with f (c) ∈ C(Ωck\i,`−i) defined by (5.2). Here we define

k \ i :=

{
k − i i < k

0 k ≤ i ≤ `
.

In the first case the Toeplitz operator T ck−i,`−i acts on a boundary orbit of the “little” Kepler ball Ωc`−i. In

the second case the Toeplitz operator T c0,`−i = T c`−i acts on Ωc`−i = Ωc0,`−i with discrete series parameter

νk − ia2 .

Proof. For orthogonal tripotents c ∈ Si, d ∈ Scj , the defining property (6.4) yields a commuting diagram

T ck\i,`−i

(σc)
(d)

k\i,`−i

��

Tk,`

σ
(c)
k,`

88

σ
(c+d)
k,` %%
T c+dk\(i+j),`−(i+j)

.

Since every tripotent is the orthogonal sum of minimal tripotents, it therefore suffices to consider

minimal tripotents c ∈ S1. We may also assume k ≥ 1, since the Kepler ball case k = 0 has been proven

in [30].

Let A denote the set of all operators A in the ∗-subalgebra T0 ⊂ Tk,` generated by polynomial

symbols, such that there exists an operator Ac acting on P(V c) which satisfies

(6.5) lim
n→∞

‖A(hnc q)− hnc (Acq)‖k,` = 0
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for all q ∈ P(V c) ⊂ P`(V ). Theorem 5.2 implies that Ac is uniquely determined by A and

(6.6) ‖Ac‖ ≤ ‖A‖

for the respective operator norms. By definition, A is an algebra and (6.6) implies that A 7→ Ac has

an extension A → B(Hck−1,`−1) (bounded operators) which is an algebra homomorphism. For every

p ∈ P(V ), it follows from Lemma 6.1 that Tk,`(p) ∈ A and (Tk,`p)c = T ck−1,`−1p
(c). The corresponding

statement Tk,`(p) ∈ A and (Tk,`p)c = T ck−1,`−1p
(c) for the adjoint operator follows from the deeper

Proposition 6.4. Thus we have A = T0 and, by (6.6), A 7→ Ac has a unique C∗-extension, denoted

by σ
(c)
k,` to the closure Tk,` of T0. This extension satisfies (6.5) for all continuous symbols f, since this

property holds for polynomials and their conjugates. Thus we obtain a C∗-homomorphism

σ
(c)
k,` : Tk,` → T ck−1,`−1.

As mentioned above, the case for arbitrary tripotents follows by iteration. The irreducibility of these

representations follows from Remark 5.1 applied to M c
k\i,`−i. �

Remark 6.6. For different tripotents c ∈ Si and d ∈ Sj the representations σ(c) and σ(d) are inequiva-

lent. This follows from Urysohn’s Lemma since there exists f ∈ C(Ωk,`) which vanishes on c+ Ωck\i,`−i
but not on d+ Ωdk\j,`−j . Hence Tk,`(f) belongs to Ker(σ(c)) but not to Ker(σ(d)). With more effort one

can show that the full spectrum of Tk,` is given by the representations constructed above.
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