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The Carathéodory–Fejér interpolation on the polydisc

by

Rajeev Gupta (Kanpur) and Gadadhar Misra (Bangalore)

Abstract. We give an algorithm for finding a solution to the Carathéodory–Fejér
interpolation problem on the polydisc, whenever a solution exists. A necessary condition
for the existence of a solution becomes apparent from this algorithm. A generalization
of the well-known theorem due to Nehari has been obtained. A proof of the Korányi–
Pukánszky theorem also follows from these ideas.

1. Introduction. The unit disc {z ∈ C : |z| < 1} and the unit circle
{z ∈ C : |z| = 1} are denoted by D and T, respectively. For a Banach
space X, let B(X) denote the set of all bounded linear operators on X.
Let C[z1, . . . , zn] be the set of all complex-valued polynomials in variables
z1, . . . , zn. For any set S, let Sn denote the n-fold cartesian product of S.
For n ∈ N = {1, 2, . . .} and z := (z1, . . . , zn) ∈ Cn, define ‖z‖∞ = max{|zi| :
1 ≤ i ≤ n}. Let N0 = {0, 1, 2, . . .}. For every I = (i1, . . . , in) ∈ Nn0 , define
|I| := i1 + · · · + in. For a holomorphic map h : Dn → C, set h(I)(z) =
(∂i11 · · · ∂inn h)(z), z ∈ Dn, I = (i1, . . . , in) ∈ Nn0 .

We recall a version of a well-known interpolation problem.

Carathéodory–Fejér interpolation problem (CF problem (n, d)). Given a
polynomial p in n variables, of degree d, find necessary and sufficient con-
ditions on the coefficients of p to ensure the existence of a holomorphic
function h defined on the polydisc Dn such that f := p+ h maps Dn into D
and h(I)(0) = 0 for any multi-index I with |I| ≤ d.

An explicit solution to this problem for n = 1 has been found in [12,
p. 179]. More recently, several related results (see [7, 2, 6, 16, 9]) have been
obtained for n > 1.
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In this article, we present a reformulation of CF problem (n, d). It in-
volves associating d+ 1 polynomials p0, . . . , pd to the polynomial p appear-
ing in CF problem (n, d) according to a well defined and explicit rule. The
reformulation asks about the existence of a contractive holomorphic function
f : D→ B(L2(Tn−1)) extending the polynomial

P (z) = Mp0 +Mp1z + · · ·+Mpdz
d,

where for each k = 0, . . . , d, Mpk denotes the operator on L2(Tn−1) of mul-
tiplication by pk. Thus the multi-variable interpolation problem is reduced
to a problem in one variable, but at the cost of replacing scalar coefficients
with operator coefficients. The precise statement follows.

Reformulation of the Carathéodory–Fejér interpolation problem (CF pro-
blem (R)). Let P : D → B(L2(Tn−1)) be an operator-valued polynomial of
the form

P (z) = Mp0 +Mp1z + · · ·+Mpdz
d, pk ∈M

(k)
n−1,

where

M
(k)
n−1 := span

{
zα1
1 · · · z

αn−1

n−1 : 0 ≤ α1 ≤ · · · ≤ αn−1,
n−1∑
j=1

αj ≤ (n− 1)k
}
.

Here, for each k = 0, . . . , d, Mpk is multiplication by pk on L2(Tn−1). Find
necessary and sufficient conditions on p0, . . . , pd ensuring the existence of
p` ∈ M

(`)
n−1 for each ` > d such that f(z) :=

∑∞
s=1Mpsz

s maps D into the
unit ball of B(L2(Tn−1)).

We show that the polynomials pk ∈ M
(k)
n−1, 0 ≤ k ≤ d, determine a

unique polynomial p in n variables of degree d and vice versa, making CF
problem (R) a reformulation of CF problem (n, d).

In Section 2.2, an algorithm is developed to solve CF problem (2, 2). It
involves finding, inductively, polynomials pk in M

(k)
1 such that a certain

block Toeplitz operator made up of multiplication operators corresponding
to these polynomials is contractive. A solution to CF problem (2, 2) exists
if and only if this process is completed successfully. Moreover, Theorem 2.5
shows that the algorithm can be executed in certain special circumstances.
The conditions in that theorem might appear stringent but we believe that
the theorem can be extended to cover many other cases.

In Section 3, it is shown that the algorithm developed for solving CF
problem (2, 2), after obvious necessary modifications, solves the general prob-
lem, namely, CF problem (n, d).

Our method, in general, gives an (explicit) necessary condition for the
existence of a solution to CF problem (n, d). The obstruction for it to be suf-
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ficient lies in the failure to solve, in general, a matrix completion problem.
If the latter admits a solution, then we must find one consisting of multipli-
cation operators alone to ensure the existence of a solution to the original
Carathéodory–Fejér interpolation problem on Dn, n ≥ 2. Specifically, let p
be a polynomial in two variables of degree 2 with p(0) = 0. Set

(1.1)
p1(z) =

∂p

∂z1
(0) +

∂p

∂z2
(0)z,

p2(z) =
1

2

∂2p

∂z21
(0) +

∂2p

∂z1∂z2
(0)z +

1

2

∂2p

∂z22
(0)z2.

In this case, we show that |p1(z)|2 + |p2(z)| ≤ 1, z ∈ D, (abbreviated to
|p1|2 + |p2| ≤ 1) is a necessary condition for the existence of a solution to CF
problem (2, 2) for the polynomial p. By means of an example, we show that
this necessary condition is not sufficient. For CF problem (2, 2), we isolate
a class of polynomials for which our necessary condition is also sufficient.
This is verified using a deep theorem of Nehari reproduced below (cf. [17,
Theorem 15.14]).

Let A(Dn) denote the algebra of functions continuous on the closed
polydisc Dn and holomorphic in the interior Dn. The pointwise multipli-
cation mh(f) = hf , f ∈ L2(Tn), defines a bounded operator for each
fixed h ∈ A(Dn). The map m : A(Dn) × L2(Tn) → L2(Tn) defined by
m(h, f) = mh(f) is called the module multiplication. Thus we think of
L2(Tn) as a module over A(Dn). Also, a submodule is a subspace that
is invariant under the operators mh, h ∈ A(Dn). A linear map between
two modules over the same algebra is said to be a module map if it is
bounded between the underlying Hilbert spaces and intertwines the two
module multiplications. In Section 4, for a submodule M ⊆ L2(Tn), we
let A : H2(Tn) → M⊥ ⊆ L2(Tn) be a module map. For ϕ ∈ L∞(Tn), the
Hankel operator with symbol ϕ is the module map HMφ : H2(Tn) → M⊥

defined by setting HMϕ f = PM⊥(φf). For a specific choice of the submod-
uleM, and Hankel operators of the form HMφ with φ ∈ L∞(Tn), we obtain
a generalization of Nehari’s theorem.

Finally, in Section 5, we give a new proof of the Korányi–Pukánszky the-
orem using the spectral theorem. In the PhD thesis [8] of the first named au-
thor, the proof of Theorem 2.4 below was given using the Korányi–Pukánszky
theorem. The proof of Theorem 2.4 in this note does not make use of that
theorem. It then appears that the ideas from that proof lead to a different
proof of the Korányi–Pukánszky theorem.

Since the bi-holomorphic automorphism group of the polydisc Dn acts
transitively on Dn, the existence of a solution to the CF problem is inde-
pendent of the constant term in p. Hence throughout this paper we assume,
without loss of generality, that p(0) = 0.
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Preliminaries. In this subsection, we collect the tools that we use
repeatedly in what follows. The first is a variant of the spectral theorem for
a pair of commuting normal operators. For n ∈ N, fix a non-empty subset
Ω ⊆ Cn and define the supremum norm ‖f‖Ω,∞ of a bounded function f onΩ
taking values in a normed linear space (E, ‖·‖) to be supz∈Ω ‖f(z)‖.Whenever
there is no ambiguity about Ω, we shall write ‖f‖∞ in place of ‖f‖Ω,∞.

Definition 1.1 (Multiplication operator). For φ ∈ L∞(T), the multipli-
cation operator Mφ : L2(T) → L2(T) is defined by the pointwise product:
Mφ(f) = φf , f ∈ L2(T).

Since φf ∈ L2(T) for any φ ∈ L∞(T) and f ∈ L2(T), the operator Mφ

is well defined for all φ ∈ L∞(T). Also ‖Mφ‖ = ‖φ‖∞ (see [17, Theorem
13.14]).

Theorem 1.2. If the power series
∑
α∈N2

0
aαz

α represents a holomorphic
function f on the bidisc D2 then |f(z)| ≤ 1 for all z ∈ D2 if and only if the
operator norm of 

...
...

...
· · · Mp0 Mp1 Mp2 · · ·
· · · 0 Mp0 Mp1 · · ·
· · · 0 0 Mp0 · · ·

...
...

...


is at most 1, where pn(z) =

∑n
k=0 an−k,kz

k is a polynomial of degree n in
one variable for each n ∈ N0.

Proof. Let B∗ denote the adjoint of the bilateral shift on `2(Z) and let
f be as in the statement. The joint spectrum of I ⊗B∗ and B∗ ⊗B∗ is T2.
By the spectral theorem, the spectrum of f(I ⊗B∗, B∗⊗B∗) is the same as
that of f(T2). Therefore, by the maximum modulus principle,

‖f‖D2,∞ = ‖f(I⊗B∗, B∗⊗B∗)‖ = ‖Mp0⊗I+Mp1⊗B∗+Mp2⊗B∗
2 + · · · ‖,

where pn(z) =
∑n

k=0 an−k,kz
k for each n ∈ N0. For the second equality

above, we identify `2(Z) and L2(T) isometrically.

Remark 1.3. We state separately the special case of Theorem 1.2 in one
variable: Suppose f : D→ C is a holomorphic function. Then f maps D into
itself if and only if Mf : L2(T)→ L2(T) is a contraction.

Theorem 1.4 (Parrott’s theorem [15]). For i = 1, 2, let Hi and Ki be
Hilbert spaces and set H = H1 ⊕H2 and K = K1 ⊕K2. If(

A

C

)
: H1 → K and (C D) : H→ K2
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are contractions, then there exists X ∈ B(H2,K1) such that
(
A X
C D

)
: H→ K

is a contraction.

In this theorem, all the possible choices for X are of the form

(I − ZZ∗)1/2V (I − Y ∗Y )1/2 − ZC∗Y,
where V is an arbitrary contraction and Y , Z are determined from

D = (I − CC∗)1/2Y, A = Z(I − C∗C)1/2.

We recall a very useful criterion for contractivity, due to Douglas, Muhly
and Pearcy [5, Prop. 2.2].

Proposition 1.5 (Douglas–Muhly–Pearcy). For i = 1, 2, let Ti be a
contraction on a Hilbert space Hi and let X be an operator from H2 into H1.
A necessary and sufficient condition for the operator on H1 ⊕H2 defined by
the matrix

(
T1 X
0 T2

)
to be a contraction is that there exists a contraction C

mapping H2 into H1 such that

X =
√

1H1 − T1T ∗1 C
√

1H2 − T ∗2 T2.
Let H2(T) denote the Hardy space, a closed subspace of L2(T). Let P−

denote the orthogonal projection of L2(T) onto L2(T)	H2(T).

Definition 1.6 (Hankel operator). A Hankel operator A : H2(T) →
H2(T)⊥ is defined to be any operator A such that P−MzA = AMz|H2(T),
where Mz : L2(T) → L2(T) is the multiplication operator. Clearly, such
an operator A has the structure (relative to the standard basis {zn}n≥0
in H2(T) and {z̄m}m≥1 in H2(T)⊥) of what is known as a Hankel matrix,
namely, 〈Azn, z̄m〉 = 〈A1, z̄n+m〉. Conversely, for such matrices, the defining
equation holds.

Finally, we recall the well known theorem due to Nehari relating the
quotient norm to that of a Hankel operator.

Theorem 1.7 (Nehari’s theorem [11, 12]). An operator A : H2(T) →
H2(T)⊥ is a Hankel operator if and only if there exists ϕ ∈ L∞(T) such that
A = Hϕ, where Hϕf := P−(ϕf), f ∈ H2(T). Moreover, inf{‖φ − g‖T,∞ :
g ∈ H∞(T)} = ‖Hφ‖op.

2. CF problem (2, 2). Several different solutions to the CF problem with
n = 1 are known (see [12, p. 179]). For n > 1, see [2] and [1, Chapter 3] for
a comprehensive survey of recent results. In this article, we shall obtain a
necessary condition for the existence of a solution to the CF problem and
an algorithm to construct a solution if one exists.

2.1. The planar case. Although we state the problem below for poly-
nomials p of degree 2 with p(0) = 0, our methods apply to the general case.
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CF problem (1, 2). Let p(z) = a1z+a2z
2. Find a necessary and sufficient

condition for the existence of a holomorphic function g defined on D with
g(k)(0) = 0, k = 0, 1, 2, such that ‖p+ g‖D,∞ ≤ 1.

Solution. If this problem has a solution, then using Remark 1.3 it can be
deduced that

A2 :=

(
a1 a2

0 a1

)
is a contraction. Thus ‖A2‖ ≤ 1 is a necessary condition. On the other hand,
if ‖A2‖ ≤ 1, then the existence of a3 ∈ C such that

A3 :=

a1 a2 a3

0 a1 a2

0 0 a1


has operator norm less than or equal to 1 follows from Parrott’s theorem.
Repeated use of Parrott’s theorem generates a sequence a3, a4, . . . of complex
numbers such that ‖Mf‖ ≤ 1, where f(z) = a1z + a2z

2 + a3z
3 + · · · . Thus

‖A2‖ ≤ 1 is a necessary and sufficient condition for the existence of a solution
to CF problem (1, 2).

2.2. Carathéodory–Fejér interpolation in two variables. In [2],
the Carathéodory–Fejér interpolation problem for the polydisc is treated.
In the case of two variables, a necessary and sufficient condition for the
existence of a solution is given in [2, Theorem 5.1]. Also, a slightly different
necessary and sufficient condition, again for D2, appears in [6, Theorem 1].
They discuss separately the case n = 2 and state that it is special due to the
dilation theorem of Ando for commuting contractions.

Our investigations, giving somewhat different necessary and sufficient
conditions, not surprisingly, are also special in the case of n = 2.We therefore
discuss this case first.

We note in passing that CF problem (2, 1), where we may assume that
a00 = 0 without loss of generality, as pointed out earlier, is easily settled
using the Schwarz lemma for D2. Hence the first non-trivial instance of the
Carathéodory–Fejér interpolation problem is the one we discuss below.

CF problem (2, 2). Let p in C[z1, z2] be an arbitrary polynomial,
p(z1, z2) = a10z1 +a01z2 +a20z

2
1 +a11z1z2 +a02z

2
2 . Find necessary and suffi-

cient conditions for the existence of a complex-valued holomorphic function
q on D2 with (∂i11 ∂

i2
2 q)(0) = 0, i1 + i2 ≤ 2, such that ‖p+ q‖D2,∞ ≤ 1.

The theorem given below follows from Theorem 1.2 and Proposition 1.5
(compare [5, Proposition 2.2]). As in (1.1), set p1(z) = a10+a01z and p2(z) =
a20 + a11z + a02z

2.
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Theorem 2.1. If p is any complex-valued polynomial in two variables of
degree at most 2 with p(0) = 0, then |p1|2 + |p2| ≤ 1 is a necessary condition
for the existence of a holomorphic function q : D2 → C with q(I)(0) = 0,
|I| ≤ 2, such that ‖p+ q‖D2,∞ ≤ 1.

Proof. Suppose p and q are as in the statement. Then from Theorem 1.2,
we get ∥∥∥∥(Mp1 Mp2

0 Mp1

)∥∥∥∥ ≤ 1.

The contractivity criterion of Proposition 1.5 then implies that |p1|2 + |p2|
≤ 1.

Combining Theorems 1.2 and 2.1, we obtain the following theorem, which
is the reduction to CF problem (R) with n = 2, d = 2.

Theorem 2.2. For any polynomial p of the form

p(z) = a10z1 + a01z2 + a20z
2
1 + a11z1z2 + a02z

2
2 ,

there exists a holomorphic function q on D2 with q(I)(0) = 0 for |I| = 0, 1, 2
such that

‖p+ q‖D2,∞ ≤ 1

if and only if |p2| ≤ 1− |p1|2 and there exists a polynomial pk of degree less
than or equal to k such that f : D→ B(L2(T)), where

f (k)(0)

k!
= Mpk for all k ≥ 0, p0 = 0,

defines a holomorphic function with supz∈D ‖f(z)‖ ≤ 1.

Thus CF problem (2, 2) has been reduced to a one-variable problem except
it now involves holomorphic functions taking values in B(L2(T)). To discuss
this variant of the CF problem, we first introduce the following convenient
notation.

Let H be a separable Hilbert space. Given n operators A1, . . . , An in
B(H), define the operator

T (A1, . . . , An) :=



A1 A2 A3 · · · An

0 A1 A2 · · · An−1

0 0 A1 · · · An−2
...

...
...

. . .
...

0 0 0 · · · A1


,

which is in B(H⊗ Cn).

Definition 2.3 (Completely polynomially extendible). Suppose k is a
natural number and {pj}kj=1 is a sequence of polynomials with deg(pj) ≤ j
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for all j = 1, . . . , k. Then the operator T (Mp1 , . . . ,Mpk) will be called m-
polynomially extendible if it is a contraction and there exists a sequence
{pl}ml=k+1 of polynomials with deg(pl)≤ l such that ‖T (Mp1 , . . . ,Mpm)‖≤1.
Also, T (Mp1 , . . . ,Mpk) will be called completely polynomially extendible if
it is m-polynomially extendible for all m ∈ N.

For p1, p2 ∈ C[z] of degree at most 1 and 2 respectively, let P (z) =
Mp1z+Mp2z

2.We shall say that P is in the CF class if there is a holomorphic
function f : D→ B(L2(T)) with the properties stated in Theorem 2.2. Such
a function f will be called a CF-extension of P . It follows that a solution to
CF problem (2,2) exists if and only if P is in the CF class. We have thus
proved the following theorem.

Theorem 2.4. A solution to CF problem (2, 2) exists if and only if
the corresponding one-variable operator-valued polynomial P is in the CF
class, or equivalently the operator T (Mp1 ,Mp2) is completely polynomially
extendible.

2.3. Algorithm for finding a solution to the CF problem. Now,
we have all the tools to produce an algorithm for finding all the polynomials
P (z) = Mp1z +Mp2z

2 which are in the CF class:

• If ‖T (Mp1 ,Mp2)‖ > 1, that is, if |p2| > 1−|p1|2, then P is not a CF class
polynomial; otherwise go to the next step.
• Parrott’s theorem gives all possible operators T ∈ B(L2(T)) such that

T (Mp1 ,Mp2 , T ) is a contraction. Let C3 be the set of all operators T that
are multiplication by a polynomial of degree at most 3 and T (Mp1 ,Mp2 , T )
is a contraction. If C3 is empty then P is not a CF class polynomial.
• For each k > 3, using Parrott’s theorem we can construct Ck, the set of all

operators T that are multiplication by a polynomial of degree at most k
and T (Mp1 , . . . ,Mpk−1

, T ) is a contraction, whereMpj is an element of Cj
for j = 3, . . . , k − 1.
• If all of the sets Ck are non-empty, then (and only then) P is a CF class

polynomial.

It is clear, from Theorem 2.2, that |p1|2 + |p2| ≤ 1 is a necessary condi-
tion for the existence of a solution to CF problem (2, 2). This condition, via
Parrott’s theorem, is also equivalent to ‖T (Mp1 ,Mp2)‖ ≤ 1.

We now give some instances where this necessary condition is also suf-
ficient for the existence of a solution to CF problem (2, 2). This amounts
to finding conditions for T (Mp1 ,Mp2) to be completely polynomially ex-
tendible.

Theorem 2.5. Let p1(z) = γ + δz and p2(z) = (α + βz)(γ + δz) for
some complex numbers α, β, γ and δ. Assume that |p1|2 + |p2| ≤ 1. If either
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αβγδ = 0 or arg(α)− arg(β) = arg(γ)− arg(δ), then T (Mp1 ,Mp2) is com-
pletely polynomially extendible.

Proof. Throughout this proof, for brevity, for any holomorphic function
f : D→ B(L2(T)), we let ‖f‖ denote the norm sup{‖f(z)‖op : z ∈ D}.

Case 1: β = 0. Then

P (z) = Mp1(z + αz2).

Define a polynomial p in one variable by p(z) = z + αz2. Using Nehari’s
theorem, we extend p to a holomorphic function p̃(z) = z+αz2 +α3z

3 + · · ·
with ‖p̃‖D,∞ = ‖T (1, α)‖. Define f : D→ B(L2(T)) by

f(z) = Mp1 p̃(z) = Mp1z +Mp2z
2 +Mp3z

3 + · · · ,
where pk = αkp1 for k ∈ N with α1 = 1 and α2 = α. Also,

‖f‖ = sup
z∈D
‖Mp1 p̃(z)‖ = ‖Mp1‖ sup

z∈D
|p̃(z)| = ‖Mp1‖ ‖T (1, α)‖.

Thus ‖f‖ = ‖Mp1 ⊗T (1, α)‖ = ‖T (Mp1 ,Mp2)‖ ≤ 1. Hence, f is a required
CF-extension of P .

Case 2: α = 0. Then

P (z) = Mp1(z + βMzz
2).

Define an operator-valued function Q on D as Q(z) = z+ βMzz
2 and define

a polynomial r on D2 as r(z1, z2) = z1(1+βz2). Let s(z2) = 1+βz2. Suppose

s̃(z2) = s(z2) + β2z
2
2 + β3z

3
2 + · · ·

is such that ‖s̃‖D,∞ = ‖T (1, β)‖. If r̃ := z1s̃(z2), then ‖r̃‖ = ‖s̃‖ =
‖T (1, β)‖. If

Q̃(z) = z +Mβzz
2 +Mβ2z2z

2 + · · ·

and f(z) = Mp1Q̃(z), then ‖f‖ = ‖Mp1Q̃‖ ≤ ‖Mp1‖ ‖Q̃‖. Since s̃(Mz)

= Q̃(z), from the von Neumann inequality it follows that ‖Q̃‖ ≤ ‖s̃‖. There-
fore, ‖f‖ ≤ ‖Mp1‖ ‖T (1, β)‖ = ‖T (Mp1 , βMp1)‖. Hence,

‖f‖ ≤
∥∥∥∥(Mz 0

0 I

)(
Mp1 βMp1

0 Mp1

)(
M∗z 0

0 I

)∥∥∥∥ = ‖T (Mp1 ,Mp2)‖ ≤ 1.

Consequently, f is a CF-extension of P.

Case 3: α 6= 0 and β = 0. Then P (z) = Mp1(z+Mα+βzz
2). Let Q(z) :=

z +Mα+βzz
2. Define r(z1, z2) := z1 + αz21 + βz1z2 = z1(1 + αz1 + βz2). Let

λ := |α|/|β| and a := λ/(1 + λ). Define

s(z1, z2) := 1 + αz1 + βz2 = (a+ αz1) + (1− a+ βz2).

If h1(z1) := a + αz1 and h2(z2) := 1 − a + βz2, then there exist h̃1 =
a+αz1+α2z

2
1 + · · · and h̃2 = 1−a+βz2+β2z

2
2 + · · · with ‖h̃1‖ = ‖T (a, α)‖
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and ‖h̃2‖ = ‖T (1− a, β)‖. If

r̃(z1, z2) := z1(h̃1(z1) + h̃2(z2)) = z1 + αz21 + βz1z2 + α2z
3
1 + β2z1z

2
2 + · · · ,

then ‖r̃‖ ≤ ‖h̃1‖+ ‖h̃2‖. Define an operator-valued holomorphic map Q̃ as

Q̃(z) = Iz +Mα+βzz
2 +Mα2+β2z2z

3 + · · ·

and f(z) = Mp1Q̃(z) =
∑

jMpjz
j , where pk+1(z) = (αk + βkz

k)p1 for all
k > 1. Thus, ‖f‖ ≤ ‖Mp1‖ ‖Q̃‖. Since Q̃(z) = r̃(z,Mz), the von Neumann
inequality yields

‖f‖ ≤ ‖Mp1‖ ‖r̃‖ ≤ ‖Mp1‖(‖h̃1‖+ ‖h̃2‖).

As T (a, |α|) = λT (1− a, |β|), we have ‖h̃1‖+ ‖h̃2‖ = ‖T (1, |α|+ |β|)‖ and
hence

‖f‖ ≤ ‖Mp1‖ ‖T (1, |α|+ |β|)‖ =
∥∥T (‖p1‖, (|α|+ |β|)‖p1‖)

∥∥.
Subcase 1: γ 6= 0, δ 6= 0 and arg(α)− arg(β) = arg(γ)− arg(δ). Then

(|α|+ |β|)‖p1‖ = ‖(α+ β)p1‖ = ‖p2‖.

Our hypothesis clearly implies that ‖p2‖∞ + ‖p1‖2∞ ≤ 1. Hence the norm of
f on D is at most 1.

Subcase 2: γ = δ = 0. Then

(|α|+ |β|)‖p1‖ = ‖(α+ β)p1‖ = ‖p2‖.

As in Subcase 1, here also ‖f‖ ≤ 1 can be inferred easily.

Remark 2.6. In CF problem (2, 2), if p1 or p2 is the zero polynomial
and ‖T (Mp1 ,Mp2)‖ ≤ 1, then ‖P‖ ≤ 1 and hence f in Theorem 2.2 can be
taken to be P itself.

Having verified that the necessary condition ‖T (Mp1 ,Mp2)‖ ≤ 1 is also
sufficient for P to be in the CF class in several cases, we expected it to
be sufficient in general. But unfortunately this is not the case. We give an
example of a polynomial P for which ‖T (Mp1 ,Mp2)‖ ≤ 1 but P is not in
the CF class.

Example. If p1(z) = 1/
√

2 and p2(z) = z2/2, then T (Mp1 ,Mp2) is not
even 3-polynomially extendible.

It can be seen that ‖T (Mp1 ,Mp2)‖ ≤ 1. Now suppose there exists a
polynomial p3 of degree at most 3 such that ‖T (Mp1 ,Mp2 ,Mp3)‖ ≤ 1. Then
Parrott’s theorem yields a contraction V ∈ B(L2(T)) such that

Mp3 =
(
I −M|p1|2 −Mp2(I −M|p1|2)−1M∗p2

)
V

−Mp2(I −M|p1|2)−1/2M∗p1(I −M|p1|2)−1/2Mp2 .
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As (1− |p1|2)2 − |p2|2 ≡ 0,

p3 =
−p22p1

1− |p1|2
= − z4

2
√

2
.

Thus p3 is of degree more than 3, a contradiction. Hence T (Mp1 ,Mp2) is not
even 3-polynomially extendible.

We close this subsection with an open problem: Find an explicit strength-
ening of the inequality ‖T (Mp1 ,Mp2)‖ ≤ 1 to ensure that P is in the CF
class.

3. Carathéodory–Fejér interpolation: the general case. First, we
obtain an explicit necessary condition for the existence of a solution to the
CF problem in the case of n variables, n ∈ N. The computations in this case
are analogous to those for two variables but they are somewhat cumbersome.
Nevertheless, we provide the details. Also, an algorithm to determine the set
of all CF class polynomials in n variables analogous to that in the case of
two variables is given.

We state below the Carathéodory–Fejér interpolation problem on the
polydisc Dn for a given polynomial in n variables of degree d:

CF problem (n, d). Fix p ∈ C[z1, . . . , zn] of degree d of the form

(3.1) p(z1, . . . , zn) =

n∑
j=1

aejzj + · · ·+
n∑

i1,...,id=1

aei1+···+eidzi1 · · · zid ,

where ej is the row vector of length n which has 1 at the jth position and
0 elsewhere (e0 denotes the zero vector). Find necessary and sufficient con-
ditions for the existence of a holomorphic function q defined on Dn with
q(I)(0) = 0 for all |I| ≤ d such that ‖p+ q‖Dn,∞ ≤ 1.

Let f be an analytic function on Dn represented by the power series

f(z1, . . . , zn) =

∞∑
k=1

n∑
i1,...,ik=1

aei1+···+eik zi1 · · · zik .

Replacing zj by the operator I⊗(n−j) ⊗B∗⊗j yields

f(I⊗(n−1) ⊗B∗, . . . , B∗⊗n) =

∞∑
k=1

Ak ⊗B∗⊗k,

where

(3.2) Ak =
n∑

i1,...,ik=1

aei1+···+eik

k∏
p=1

(I⊗(n−ip) ⊗B∗⊗(ip−1)).
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In what follows, it will be convenient to replace Ak by the multiplication
operator

(3.3) Mpk : L2(Tn−1)→ L2(Tn−1),

where pk =
∑n

i1,...,ik=1 aei1+···+eik
∏k
p=1 zn−ip+1zn−ip+2 · · · zn−1, with the un-

derstanding that if ip = 1 then the monomial zn−ip+1zn−ip+2 · · · zn−1 is the
constant function 1. Evidently, Ak is unitarily equivalent to Mpk , and there-
fore this makes no difference.

Note that pk ∈M
(`)
n−1 with ` =

∑k
p=1(ip−1) (see Sect. 1). As

∑k
p=1(ip−1)

≤ (n− 1)k, the degree of pk is at most (n− 1)k.

Proposition 3.1. The function f maps Dn into D if and only if

T (Mp1 ,Mp2 , . . .) =



...
...

...
· · · Mp1 Mp2 Mp3 · · ·
· · · 0 Mp1 Mp2 · · ·
· · · 0 0 Mp1 · · ·

...
...

...


is a contraction, where the Mpk are as in (3.3).

Proof. Apply the spectral theorem, in the form of functional calculus for
a commuting tuple of normal operators, to (I⊗(n−1) ⊗B∗, . . . , B∗⊗n).

First, a necessary condition for the existence of a solution to CF problem
(n, d) is now evident.

Theorem 3.2. A solution to CF problem (n, d) exists only if the operator
T (Mp1 , . . . ,Mpd) is a contraction, where the operators Mp1 , . . . ,Mpd are as
in (3.3).

Second, we claim that the polynomial p in (3.1) and p1, . . . , pd in (3.3)
determine each other. Consequently, the reformulation of CF problem (n, d)
announced in the Introduction follows by using Proposition 3.1.

To prove the claim, first note that the constant aei1+···+eik and the
monomial

∏k
p=1 zn−ip+1zn−ip+2 · · · zn−1 are invariant under the permuta-

tion of (i1, . . . , ik). Therefore, to compute the monomial corresponding to
(i1, . . . , ik) we assume without loss of generality that 1 ≤ i1 ≤ · · · ≤ ik ≤ n.
Now, the monomial corresponding to (i1, . . . , ik) is

ik−1∏
l=ik−1

zn−l

ik−1−1∏
l=ik−2

z2n−l · · ·
i1−1∏
l=1

zkn−l.(3.4)

If all i1, . . . , ik are 1, then (3.4) is the constant function 1. Otherwise, there
exists s ≥ 1 such that i1 = · · · = is−1 = 1 and is > 1. In this case, the
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exponent of each of the variables zn−iq+1, . . . , zn−iq−1 in (3.4) is k + 1 − q,
s ≤ q ≤ k, where i0 is assumed to be 1. Thus if (i1, . . . , ik) 6= (i′1, . . . , i

′
k),

1 ≤ i1 ≤ · · · ≤ ik ≤ n and 1 ≤ i′1 ≤ · · · ≤ i′k ≤ n, then it is clear from (3.4)
that the monomials corresponding to (i1, . . . , ik) and (i′1, . . . , i

′
k) are distinct.

To give a necessary and sufficient condition for the existence of a solution
to CF problem (n, d), we need the notion of complete polynomial extendibility
for the operator T (Mp1 , . . . ,Mpd). For each k ∈ {1, . . . , d}, let Mpk be the
operator defined in (3.3), where pk is the homogeneous term of degree k in
(3.1).

Definition 3.3 (Completely polynomially extendible). We say that the
operator T (Mp1 , . . . ,Mpd) with pj ∈ M

(j)
n−1 for j = 1, . . . , d is m-polyno-

mially extendible if there exist pj ∈ M j
n−1 for d + 1 ≤ j ≤ m such that

T (Mp1 , . . . ,Mpm) is a contraction. The operator T (Mp1 , . . . ,Mpd) is called
completely polynomially extendible if it is m-polynomially extendible for
each m.

It is easy to provide a necessary and sufficient condition for the existence
of a solution to CF problem (n, d) using the notion of complete polynomially
extendibility.

Theorem 3.4. A solution to CF problem (n, d) exists if and only if the
operator T (Mp1 , . . . ,Mpd) is completely polynomially extendible.

We give an algorithm to obtain a solution to CF problem (n, d) analogous
to the one in the case of two variables. As in that case, for pk ∈ M

(k)
n−1,

1 ≤ k ≤ d, let P (z) = Mp0 + Mp1z + · · · + Mpdz
d. We shall say that P

is in the CF class if there is a holomorphic function f : D → B(L2(Tn−1))
with the properties stated in CF problem (R). Such an f will be called a
CF-extension of P . It follows that a solution to CF problem (n, d) exists if
and only if P is in the CF class.

3.1. Algorithm for finding a solution to the CF problem. This
algorithm identifies all polynomials p such that CF problem (n, d) admits a
solution.

• If ‖T (Mp1 , . . . ,Mpd)‖ > 1, then P is not a CF class polynomial; otherwise
move to the next step.
• Parrott’s theorem gives all possible operators T for which the operator

T (Mp1 , . . . ,Mpd , T ) is a contraction. Let Cd+1 be the set of all operators
T such that T = Mpd+1

for some pd+1 ∈M
(d+1)
n−1 and T (Mp1 , . . . ,Mpd , T )

is a contraction. If Cd+1 is empty then P is not a CF class polynomial.
• For each s > d + 1, using Parrott’s theorem we can construct Cs, the

set of all operators T such that T = Mps for some ps ∈ M
(s)
n−1 and
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T (Mp1 , . . . ,Mps−1 , T ) is a contraction, where Mpj ∈ Cj for j = d + 1,
. . . , s− 1.
• If all of the sets Cs are non-empty, then (and only then) P is a CF class

polynomial.

4. A generalization of Nehari’s theorem. Let M be a closed sub-
space of a Hilbert space H. For any vector h in H, the distance from h to M
is attained at P (h), where P is the orthogonal projection from H onto M .
A deep result due to Nehari, recalled in Theorem 1.7, shows that the distance
from a vector φ in L∞(T) to the closed subspace H∞(T) is the norm of the
Hankel operator Hφ with symbol φ.

To obtain a multi-variable generalization, one must first consider what
operators might be designated to be Hankel operators. One possibility is
to look for operators A : H2(Tn) → M⊥, where M ⊆ L2(Tn) is any in-
variant subspace for the multiplication operators Mzi : L2(Tn) → L2(Tn),
i = 1, . . . , n. As in Definition 1.6 and following [4, Section 4], we say that
A : H2(Tn) → M⊥ is a Hankel operator if PMziA = AMzi |H2(Tn), i =

1, . . . , n, where P is the projection onto M⊥. An alternative and proba-
bly more pleasing way to state this requirement is to simply say that A
is a module map from H2(Tn) to M⊥ (see [4, Section 4] for the details).
The operators HMϕ : H2(Tn) → M⊥ with symbol ϕ ∈ L∞(Tn), where
HMϕ f = P (ϕf), f ∈ H2(Tn), are bounded and define a module map. In
consequence, they are Hankel operators. However, unlike the case of one
variable, here many “natural” choices for the subspaceM exist. In particu-
lar, the “big” and the “small” Hankel operators have been frequently discussed
in the literature [1, Section 4.4]. We choose, in the case of two variables, the
subspaceM⊆ L2(T2) to be L2(T)⊗ `2(N0) ' L2(T)⊗H2(T). Having made
this choice, we prove a Nehari type theorem for these operators. Of course,
it is not clear what happens if one makes a different choice ofM. Our choice
was dictated by the form of the matrix representation which agrees with an
existing class of Hankel operators possessing operator symbols discussed in
[3, p. 34].

Remark 4.1. We are grateful to one of the reviewers for pointing out
that Theorem 4.6 below follows immediately from [13, Theorem 3.1] (see also
[14, Theorem 4]) by applying it to the case where the coefficient space C is
equal to `2(Z). However, Lemmas 4.4–4.6 below are possibly of independent
interest. In particular, these ideas are used to give the matrix-theoretic proof
of the Korányi–Pukánsky theorem. The reviewer also points out that our
approach fails for the case of the “small” and “big” Hankel operators, making
the theory for these operators much different.
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4.1. Nehari’s theorem for L∞(T2). In this subsection, we present a
possible multivariate generalization of Nehari’s theorem for L∞(T2). This
generalization is most conveniently stated in terms of the D-slice ordering
on Z2.

For k ∈ Z, define Pk := {(x, y) : x + y = k}. The subsets Pk of Z2

are disjoint and
⊔
k∈Z Pk = Z2. An order on Z2, which we call the D-slice

ordering, is defined below. It is obtained from the usual co-lexicographic
ordering by rotating it through an angle of π/4.

Definition 4.2 (D-slice ordering). For (x1, y1) ∈ Pl and (x2, y2) ∈ Pm,

• if l = m, then the order between (x1, y1) and (x2, y2) is determined by the
lexicographic ordering on Pl ⊆ Z2;
• if l < m (resp., if l > m), then (x1, y1) < (x2, y2) (resp., (x1, y1) >

(x2, y2)).

Define

H1 :=
{
f :=

∑
(m,n)∈A1

am,nz
m
1 z

n
2 : f ∈ L∞(T2)

}
,

H2 :=
{
f :=

∑
(m,n)∈A2

am,nz
m
1 z

n
2 : f ∈ L∞(T2)

}
,

where A1 := {(m,n) ∈ Z2 : m + n ≥ 0} and A2 := {(m,n) ∈ Z2 : m + n
< 0}. Then H1 and H2 are disjoint closed subspaces of L∞(T2) satisfying
L∞(T2) = H1+H2. The answer to the following question would be one possi-
ble generalization of Nehari’s theorem. Let dist∞(φ,H1) denote the distance
from φ to the subspace H1.

Question 4.3. For any φ in L∞(T2), what is dist∞(φ,H1)?

To answer this question, it will be convenient to introduce the notion of
a Hankel operator with symbol φ ∈ L∞(T2).

4.2. The Hankel matrix corresponding to φ. Any f ∈ L2(T2) can
be represented as a power series

f(z1, z2) =
∑
m,n∈Z

am,nz
m
1 z

n
2 =

∑
m,n∈A1

am,nz
m
1 z

n
2 +

∑
m,n∈A2

am,nz
m
1 z

n
2 .

Suppose z2 = λz1. Then

f(z1, λz1) =
∑
k≥0

( ∑
m+n=k

am,nλ
n
)
zk1 +

∑
k<0

( ∑
m+n=k

am,nλ
n
)
zk1 .

Setting fk(λ) :=
∑

m+n=k am,nλ
n, we have

(4.1) f(z1, λz1) =
∑
k∈Z

fk(λ)zk1 .
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In this way, L2(T2) is first identified with L2(T) ⊗ L2(T) and then with
L2(T) ⊗ `2(Z), the identifications in both cases being isometric. For any
φ ∈ L∞(T2), define the multiplication operator Mφ : L2(T) ⊗ `2(Z) →
L2(T)⊗ `2(Z) as follows:

Mφ

(∑
j∈Z

gj ⊗ ej
)

:=
∑
k∈Z

(∑
q∈Z

gqφq+k

)
⊗ ek,

where φj satisfies φ(z1, λz1) =
∑

j∈Z φj(λ)zk1 .

Lemma 4.4. For any φ ∈ L∞(T2), we have ‖Mφ‖ = ‖φ‖T2,∞.

Proof. Let φ ∈ L∞(T2). From (4.1), it follows that

φ(z, λz) =
∑
k∈Z

φk(λ)zk

for some φk in L∞(T). Note that {zi ⊗ ej : (i, j) ∈ Z2} is an orthonormal
basis in L2(T)⊗ `2(Z). The matrix of Mφ with respect to this basis and the
D-slice ordering on its index set is of the form

...
...

...
· · · Mφ−1 Mφ0 Mφ1 · · ·
· · · Mφ−2 Mφ−1 Mφ0 · · ·
· · · Mφ−3 Mφ−2 Mφ−1 · · ·

...
...

...


.

We know that ‖φ‖T2,∞ = supλ∈T supz∈T |
∑

k∈Z φk(λ)zk|. Thus

‖φ‖T2,∞ = sup
λ∈T

∥∥∥∥∥∥∥∥∥∥∥∥∥



...
...

...
· · · φ−1(λ) φ0(λ) φ1(λ) · · ·
· · · φ−2(λ) φ−1(λ) φ0(λ) · · ·
· · · φ−3(λ) φ−2(λ) φ−1(λ) · · ·

...
...

...



∥∥∥∥∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥∥∥∥



...
...

...
· · · Mφ−1 Mφ0 Mφ1 · · ·
· · · Mφ−2 Mφ−1 Mφ0 · · ·
· · · Mφ−3 Mφ−2 Mφ−1 · · ·

...
...

...



∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Hence ‖φ‖T2,∞ = ‖Mφ‖.
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The Hilbert space `2(N0) and the normed linear subspace{
(. . . , 0, x0, x1, . . .) :

∑
i≥0
|xi|2 <∞ with x0 at the 0th position

}
of `2(Z) are naturally isometrically isomorphic. Let H := L2(T) ⊗ `2(N0).
Then H is a closed subspace of L2(T)⊗`2(Z). We define the Hankel operator
Hφ with symbol φ ∈ L∞(T2) to be PH⊥ ◦Mφ|H . Writing down the matrix
for Hφ with respect to the bases {zi ⊗ ej : i ∈ Z, j = 0, 1, 2, . . .} and
{zi ⊗ e−j : i ∈ Z, j = 1, 2, . . .} in H and H⊥ respectively, we get

Hφ =


Mφ−1 Mφ−2 Mφ−3 · · ·
Mφ−2 Mφ−3 Mφ−4 · · ·
Mφ−3 Mφ−4 Mφ−5 · · ·

...
...

...

 , φ ∈ L∞(T2).

We note that Hφ is the Hankel operator with symbol φ modulo the signs
of the indices [3, p. 34]. However, it is different from the usual definition
of either the big or small Hankel operator in two variables as defined in [1,
Section 4.4].

Lemma 4.5. For any φ in L∞(T2), we have ‖Hφ‖ ≤ dist∞(φ,H1).

Proof. From the definition of Hφ and Lemma 4.4, it can be seen that

‖Hφ‖ = ‖PH⊥ ◦Mφ|H‖ ≤ ‖Mφ‖ = ‖φ‖T2,∞.

From the matrix representation of Hφ, it is clear that for any g in H1,
Hφ−g = Hφ. Hence ‖Hφ‖ = ‖Hφ−g‖ ≤ ‖φ− g‖T2,∞.

For n ∈ N, a0, a1, . . . , an−1 ∈ C and (bm)m∈N, bm ∈ C, define

Tn((bm), a0, a1, . . . , an−1) :=



a0 a1 · · · an−1

b1 a0 · · · an−2
...

...
. . .

...
bn−1 bn−2 · · · a0
...

...
...


.

Lemma 4.6. Suppose f0, f1, . . . , fn−1∈L∞(T) and (gm)m∈N, gm∈L∞(T),
are such that

sup
λ∈T
‖Tn((gm(λ)), f0(λ), . . . , fn−1(λ))‖ ≤ 1.

Then there exists fn ∈ L∞(T) satisfying

sup
λ∈T
‖Tn+1((gm(λ)), f0(λ), . . . , fn(λ))‖ ≤ 1.
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Proof. Let

Q(λ) = (f0(λ) · · · fn−1(λ)), R(λ) = (fn−1(λ) · · · f0(λ) g1(λ) · · · )t,

S(λ) =



g1(λ) f0(λ) · · · fn−3(λ)

g2(λ) g1(λ) · · · fn−4(λ)
...

...
. . .

...
gn−1(λ) gn−2(λ) · · · g1(λ)

...
...

...


.

All possible choices of fn(λ) for which Tn+1 ((gm(λ)), f0(λ), . . . , fn(λ)) is a
contraction are given, via Parrott’s theorem (cf. [17, Chapter 12, p. 152]),
by the formula

(4.2) fn(λ) = (I − ZZ∗)1/2V (I − Y ∗Y )1/2 − ZS(λ)∗Y,

where V is an arbitrary contraction and the operators Y , Z are obtained from
the formulae R(λ) = (I − S(λ)S(λ)∗)1/2Y , Q(λ) = Z(I − S(λ)∗S(λ))1/2.

We note that every entry of I − S(λ)∗S(λ) is in L∞ as a function of λ.
Thus all entries in (I − S(λ)∗S(λ))1/2 are measurable functions which are
essentially bounded. Consequently, so are all entries of Z. A similar assertion
can be made for Y. Therefore, choosing V = 0 in (4.2), we get fn with the
required property. In fact, one can choose V to be any contraction whose
entries are L∞ functions.

Let H be a Hilbert space. For any (Tn)n∈N, Tn ∈ B(H), define an operator
H(T1, T2, . . .) as follows:

H(T1, T2, . . .) =


T1 T2 T3 · · ·
T2 T3 T4 · · ·
T3 T4 T5 · · ·
...

...
...

 .

Theorem 4.7 (Nehari’s theorem for L∞(T2)). If φ ∈ L∞(T2), then
‖Hφ‖ = dist∞(φ,H1).

Proof. From Lemma 4.5, we know that ‖Hφ‖ ≤ dist∞(φ,H1). Without
loss of generality we assume that ‖Hφ‖ = 1. Using Lemma 4.6, we find φ0 ∈
L∞(T) such that the norm of the operator H(Mφ0 ,Mφ−1 , . . .) is at most 1.
Now, one proves the desired conclusion by repeated use of Lemma 4.6.

4.3. Nehari’s theorem in n variables. The generalization of Nehari’s
theorem to n variables is very similar. Therefore we will be brief. The key is
the D-slice ordering on Zn, defined below.
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For k ∈ Z, define Pk := {(x1, . . . , xn) ∈ Zn : x1 + · · · + xn = k}. The
subsets Pk of Zn are disjoint and

⊔
k∈Z Pk = Zn.

Definition 4.8 (D-slice ordering for Zn). For l,m ∈ Z, and (x1, . . . , xn)
∈ Pl and (y1, . . . , yn) ∈ Pm,

• if l = m, then the order between (x1, . . . , xn) and (y1, . . . , yn) is deter-
mined by the lexicographic ordering on Pl ⊆ Zn,
• if l < m (respectively if l > m), then (x1, . . . , xn) < (y1, . . . , yn) (respec-

tively (x1, . . . , xn) > (y1, . . . , yn)).

Define

H1 :=
{
f :=

∑
(m1,...,mn)∈A1

am1,...,mnz
m1
1 · · · z

mn
n : f ∈ L∞(T2)

}
,

H2 :=
{
f :=

∑
(m1,...,mn)∈A2

am1,...,mnz
m1
1 · · · z

mn
n : f ∈ L∞(T2)

}
,

where A1 := {(m1, . . . ,mn) ∈ Zn : m1 + · · · + mn ≥ 0} and A2 :=
{(m1, . . . ,mn) ∈ Zn : m1 + · · · + mn < 0}. The subspaces H1 and H2 of
L∞(Tn) are closed disjoint, and L∞(Tn) = H1 + H2. Let f ∈ L2(T2) have
power series expansion

f(z1, . . . , zn) =
∑

m1,...,mn∈Z
am1,...,mnz

m1
1 · · · z

mn
n

=
∑

(m1,...,mn)∈A1

am1,...,mnz
m1
1 · · · z

mn
n

+
∑

(m1,...,mn)∈A2

am1,...,mnz
m1
1 · · · z

mn
n .

Suppose zj = λj−1z1 with λj−1 ∈ D for j = 2, . . . , n. Then

f(z1, λ1z1, . . . , λn−1z1) =
∑
k≥0

( ∑
m1+···+mn=k

am1,...,mnλ
m2
1 · · ·λ

mn
n−1

)
zk1

+
∑
k<0

( ∑
m1+···+mn=k

am1,...,mnλ
m2
1 · · ·λ

mn
n−1

)
zk1 .

For each k ∈ Z, we set

fk(λ1, . . . , λn−1) :=
∑

m1+···+mn=k

am1,...,mnλ
m2
1 · · ·λ

mn
n−1.

For any φ ∈ L∞(Tn), define Mφ : L2(Tn−1)⊗ `2(Z)→ L2(Tn−1)⊗ `2(Z) by

Mφ

(∑
j∈Z

gj ⊗ ej
)

:=
∑
k∈Z

(∑
q∈Z

gqφq+k

)
⊗ ek,
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where φ(z1, λ1z1, . . . , λn−1z1) =
∑

j∈Z φj(λ1, . . . , λn−1)z
k
1 . Now, we define

the Hankel operator Hφ corresponding to φ by

Hφ =


Mφ−1 Mφ−2 Mφ−3 · · ·
Mφ−2 Mφ−3 Mφ−4 · · ·
Mφ−3 Mφ−4 Mφ−5 · · ·

...
...

...

 .

The proof of the following theorem is very similar to that of Theorem 4.7;
we omit the details.

Theorem 4.9 (Nehari’s theorem for L∞(Tn)). If φ ∈ L∞(Tn), then
‖Hφ‖ = dist∞(φ,H1).

4.4. CF problem in D2 and Nehari’s theorem for L∞(T2). Fix
p ∈ C[z1, z2] with

p(z1, z2) = a10z1 + a01z2 + a20z
2
1 + a11z1z2 + a02z

2
2 .

Denote

φ(z1, z2) := z31p(z1, z2) = a10z
2
1 + a01z

3
1z2 + a20z1 + a11z

2
1z2 + a02z

3
1z

2
2 .

Suppose p1(λ) = a10 + a01λ and p2(λ) = a20 + a11λ+ a02λ
2. Then ‖Hφ‖ =

dist∞(φ,H1), where

Hφ =


Mp2 Mp1 0 · · ·
Mp1 0 0 · · ·

0 0 0 · · ·
...

...
...


Thus, if there exists a holomorphic function q : D2 → C with q(I)(0) = 0
for |I| ≤ 2 such that ‖p + q‖D2,∞ ≤ 1, then ‖Hφ‖ ≤ ‖p + q‖D2,∞. Hence
‖Hφ‖ ≤ 1 is a necessary condition for such a q to exist. As we have seen
before, this necessary condition, however, is not sufficient.

5. Alternative proof of the Korányi–Pukánszky theorem. We
recall the following theorem of Korányi and Pukánszky [10, Corollary, p. 452].
It gives a necessary and sufficient condition for the range of a holomorphic
function on Dn to be in the right half-plane H+.

Theorem 5.1 (Korányi–Pukánszky theorem). Suppose
∑
α∈Nn

0
aαz

α

represents a holomorphic function f on Dn. Then <(f(z)) ≥ 0 for all z ∈ Dn
if and only if the map φ : Zn → C defined by
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φ(α) =


2<aα if α = 0,

aα if α > 0,

a−α if α < 0,

0 otherwise,

is positive, that is, the k× k matrix (φ(mi −mj))i,j is non-negative definite
for any k ∈ N and m1, . . . ,mk ∈ Zn.

We call φ the Korányi–Pukánszky function corresponding to the coeffi-
cients (aα)α∈Nn

0
.

5.1. The planar case. Suppose f : D → H+ is holomorphic. Without
loss of generality we can assume f(0) = 1. Consider the Cayley map χ :
H+ → D defined by

χ(z) =
1− z
1 + z

,

which is a bi-holomorphism. Suppose χ ◦ f mapping D into D has a power
series expansion

∑∞
n=1 anz

n. Then

(5.1) f(z) =
1 + χ ◦ f(z)

1− χ ◦ f(z)
= 2
(
c0 +

∞∑
n=1

cnz
n
)
,

where 2cn = f (n)(0)/n! for all n ∈ N0. The exact relationship between the
coefficients cn and an is obtained in the lemma below.

Lemma 5.2. For each n ∈ N,

cn = an +

n−1∑
j=1

ajcn−j .

Proof. Consider the expression

f(z) = 2
(
c0 +

∞∑
n=1

cnz
n
)

= 2

(
1

2
+ (χ ◦ f)(z) + (χ ◦ f)(z)2 + (χ ◦ f)(z)3 + · · ·

)
.

Rewriting, we get
1

1− (χ ◦ f)(z)
= 1 +

∞∑
n=1

cnz
n.

Hence, (
1 +

∞∑
n=1

cnz
n
)(

1−
∞∑
n=1

anz
n
)

= 1.

A comparison of the coefficients completes the verification.
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Let φ denote the Korányi–Pukánszky function corresponding to (cn)∞n=0.
The matrix (φ(j − k))j,k is given by

(5.2)



··· −1 0 1 ···
...

...
...

...
−1 · · · 1 c1 c2 · · ·
0 · · · c1 1 c1 · · ·
1 · · · c2 c1 1 · · ·
...

...
...

...

.
For each n ∈ N, let

Cn :=



1 c1 c2 · · · cn

c1 1 c1 · · · cn−1

c2 c1 1 · · · cn−2
...

...
...

. . .
...

cn cn−1 cn−2 · · · 1


, An :=



a1 a2 a3 · · · an

0 a1 a2 · · · an−1

0 0 a1 · · · an−2
...

...
...

. . .
...

0 0 0 · · · a1


,

Pn :=



1 −a1 −a2 · · · −an
0 1 −a1 · · · −an−1
...

...
. . . . . .

...
0 0 0 · · · −a1
0 0 0 · · · 1


.

Lemma 5.3. For all n ∈ N, PnCt
nP
∗
n = (I −AnA∗n)⊕ 1.

Proof. We use induction on n. The case n = 1 is trivial. Assume the
result is valid for n− 1, n > 1. For each n ∈ N, let

P̃n := (−an,−an−1, . . . ,−a1)t and C̃n := (cn, cn−1, . . . , c1)
t.

The verification of the identity

PnC
t
nP
∗
n =

(
Pn−1 P̃n

0 1

)(
Ct
n−1 C̃n

C̃∗n 1

)(
P ∗n−1 0

P̃ ∗n 1

)
is easy. Hence PnCt

nP
∗
n takes the form(

Pn−1C
t
n−1P

∗
n−1 + P̃nC̃

∗
nP
∗
n−1 + P̃ ∗n(Pn−1C̃n + P̃n) Pn−1C̃n + P̃n

(Pn−1C̃n + P̃n)∗ 1

)
.

From Lemma 5.2 we have Pn−1C̃n + P̃n = 0, and therefore

PnC
t
nP
∗
n =

(
Pn−1C

t
n−1P

∗
n−1 + P̃nC̃

∗
nP
∗
n−1 0

0 1

)
.
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Now,

P̃nC̃
∗
nP
∗
n−1 =


−an
...
−a1

(cn − n−1∑
i=1

aicn−i cn−1 −
n−2∑
i=1

aicn−i · · · c1
)
.

From Lemma 5.2, we get

P̃nC̃
∗
nP
∗
n−1 =


−an
...
−a1

 (an · · · a1) = (−an−ian−j)n−1i,j=0.

Since

I −AkA∗k =



1−
k∑
j=1
|aj |2 −

k∑
j=2

ajaj−1 · · · −aka1

−
k∑
j=2

ajaj−1 1−
k−1∑
j=1
|aj |2 · · · −ak−1a1

...
...

. . .
...

−a1ak −a1ak−1 · · · 1− |a1|2


,

we obtain

I −AnA∗n = ((I −An−1A∗n−1)⊕ 1) + (−an−jan−l)1≤j,l≤k−1.

Thus I −AnA∗n = Pn−1C
t
n−1P

∗
n−1 + P̃nC̃nP

∗
n−1, and the proof is complete.

An immediate corollary to Lemma 5.3 is the following proposition.

Proposition 5.4. The matrix Cn is non-negative definite if and only if
‖An‖ ≤ 1.

Since χ ◦ f (= g, say) is a holomorphic map from D to D, the multi-
plication operator Mg on L2(T) has the property that ‖Mg‖ = ‖g‖D,∞ (see
[17, Theorem 13.14]). Writing the matrix for Mg with respect to the basis
{. . . , z−2, z−1, 1, z1, z2, . . .}, we conclude thatMg is a contraction if and only
if An is a contraction for each n ∈ N. Using Proposition 5.4 together with
the equality ‖Mg‖ = ‖g‖D,∞, we see that f maps D into H+ if and only if Cn
is non-negative definite for each n ∈ N. Thus we recover the solution of the
Korányi–Pukánszky problem (solvability criterion in terms of the positivity
of the associated Herglotz matrix) for the single-variable case.

5.2. The case of several variables. In this subsection, all the compu-
tations are given for n = 2 only. These computations are easily seen to work
equally well, using the D-slice ordering on Zn, for any n ∈ N. The details
are briefly indicated in Subsection 5.3.
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Suppose f : D → H+ is holomorphic. Without loss of generality, we
assume that f(0) = 1. As before, let χ : H→ D be the Cayley map and

χ ◦ f(z) =

∞∑
m,n=0

amnz
m
1 z

n
2 .

Thus χ ◦ f maps D2 into D and a00 = 0. With the understanding that
c0 = 1/2, we have

f(z) =
1 + χ ◦ f(z)

1− χ ◦ f(z)
= 2
(
c00 +

∞∑
m,n=1

cmnz
m
1 z

n
2

)
.

Let φ be the Korányi–Pukánszky function corresponding to (cmn). The fol-
lowing theorem describes φ with respect to the D-slice ordering on Z2.

Theorem 5.5. Let (cmn)m,n∈N0 be an infinite array of complex numbers.
The matrix of the Korányi–Pukánszky function φ, in the D-slice ordering,
corresponding to this array is



··· P−1 P0 P1 ···
...

...
...

...
P−1 · · · I C∗1 C∗2 · · ·
P0 · · · C1 I C∗1 · · ·
P1 · · · C2 C1 I · · ·
...

...
...

...

,
where Cn := cn0I + cn−1,1B

∗ + · · · + c0nB
∗n, n ∈ N, and B is the bilateral

shift on `2(Z).

Proof. With respect to the D-slice ordering on Z2, the matrix correspond-
ing to φ is a doubly infinite block matrix. The (k, n) element φ((k,−k+ l)−
(n,−n+m)), in the (l,m) block in this matrix, is computed below separately:

k − n < 0: The quantity φ ((k,−k + l)− (n,−n+m)) is non-zero only
if k − n ≥ l −m. Hence if l ≥ m, then φ ((k,−k + l)− (n,−n+m)) = 0.
Now, assume l < m. In this case, if k − n /∈ {l − m, l − m + 1, . . . ,−1}
then φ ((k,−k + l)− (n,−n+m)) = 0. For p ∈ {0, 1, . . . ,−l + m − 1} and
k − n = l −m+ p, we have

φ((k,−k + l)− (n,−n+m)) = cm−l−p,p.

k − n = 0:

φ(0, l −m) =

{
c0,l−m if l ≥ m,
c0,m−l if l < m.

k − n > 0: The quantity φ((k,−k + l) − (n,−n + m)) is non-zero only
if k − n ≤ l −m. Hence if l ≤ m, then φ ((k,−k + l)− (n,−n+m)) = 0.
Now, assume l > m. In this case, if k − n /∈ {l − m, l − m − 1, . . . , 1}
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then φ((k,−k + l) − (n,−n + m)) = 0. For p ∈ {0, 1, . . . , l − m − 1} and
k − n = l −m− p, we have

φ((k,−k + l)− (n,−n+m)) = cl−m−p,p.

Therefore, the (l,m) block φ(l,m) in the matrix of φ is of the form

φ(l,m) =


C∗m−l if l < m,

I if m = l,

Cl−m if l > m.

Hence the block matrix of the Korányi–Pukánszky function φ, in the D-slice
ordering, corresponding to the array (cmn) takes the form



··· P−1 P0 P1 ···
...

...
...

...
P−1 · · · I C∗1 C∗2 · · ·
P0 · · · C1 I C∗1 · · ·
P1 · · · C2 C1 I · · ·
...

...
...

...

.

Lemma 5.6. For all n ∈ N, setting An := an0I+an−1,1B
∗+ · · ·+a0nB

∗n

and Cn = cn0I + cn−1,1B
∗ + · · ·+ c0nB

∗n, we have

Cn = An +
n−1∑
j=1

AjCn−j .

Proof. Let C(z1, z2) :=
∑∞

i,j=0 cijz
i
1z
j
2. We have

1 + χ ◦ f(z1, z2) + χ ◦ f(z1, z2)
2 + · · · = f(z1, z2)

2
+ c00 = C(z1, z2).

Thus C(z1, z2)(1− χ ◦ f(z1, z2)) = 1, which is the same as

(1 + c10z1 + c01z2 + c20z
2
1 + c11z1z2 + c02z

2
2 + · · · )

× (1− a10z1 − a01z2 − a20z21 − a11z1z2 − a02z22 + · · · ) = 1.

For each k ∈ N, comparing the coefficient of the monomial zn−k1 zk2 , we have

cn−k,k =

k∑
p=0

n∑
j=k

an−j,pcj−k,k−p,

where a00 = 0. The coefficient of B∗k in An +
∑n−1

i=1 AiCn−i is
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an−k,kc00 + an−k,k−1c01 + an−k−1,kc10 + an−k,k−2c02

+ an−k−1,k−1c11 + an−k−2,kc20 + · · ·
= (an−k,kc00 + an−k,k−1c01 + · · ·+ an−k,0c0k)

+ (an−k−1,kc10 + an−k−1,k−1c11 + · · ·+ an−k−1,0c1,k)

+ · · ·+ (a0kcn−k,0 + a0,k−1cn−k,1 + · · ·+ a00cn−k,k)

=
k∑
p=0

n∑
j=k

an−j,pcj−k,k−p,

completing the proof of the lemma.

The relationship between An and Cn is given by the following lemma.

Lemma 5.7. If An and Cn are defined as above, then

I C∗1 C∗2 · · · C∗n

C1 I C∗1 · · · C∗n−1
C2 C1 I · · · C∗n−2
...

...
...

. . .
...

Cn Cn−1 Cn−2 · · · I


is non-negative definite if and only if∥∥∥∥∥∥∥∥∥∥∥∥∥



A1 A2 A3 · · · An

0 A1 A2 · · · An−1

0 0 A1 · · · An−2
...

...
...

. . .
...

0 0 0 · · · A1



∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ 1.

Proof. For each n ∈ N, Cn commutes with Cm and Am for all m ∈ N,
and hence we can adapt the proof of Lemma 5.3 to this case.

An application of the spectral theorem along with Lemma 5.7 gives an
alternative proof of the Korányi–Pukánszky theorem, as shown below.

Proof of the Korányi–Pukánszky theorem. The operators I ⊗ B∗ and
B∗ ⊗ B∗ are commuting unitaries and they have T2 as their joint spec-
trum. Applying the spectral theorem and the maximum modulus principle,
we get

(5.3) ‖χ ◦ f(I ⊗B∗, B∗ ⊗B∗)‖ = ‖χ ◦ f‖D2,∞.

Note that χ ◦ f(I ⊗B∗, B∗⊗B∗) = A1⊗B∗+A2⊗B∗2 + · · · , where An :=
an0I + an−1,1B

∗ + · · ·+ a0nB
∗n as in Lemma 5.7. Since ‖χ ◦ f‖D2,∞ ≤ 1, it
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follows from (5.3) that ‖T (A1, . . . , An)‖ ≤ 1 for all n ∈ N. From Lemma 5.7,
we conclude that

(5.4)



I C∗1 C∗2 · · · C∗n

C1 I C∗1 · · · C∗n−1
C2 C1 I · · · C∗n−2
...

...
...

. . .
...

Cn Cn−1 Cn−2 · · · I


is non-negative definite for all n ∈ N, where Cn := cn0I + cn−1,1B

∗ + · · · +
c0nB

∗n. Hence from Theorem 5.5, we see that the Korányi–Pukánszky func-
tion φ corresponding to the array (cjk) is positive.

Conversely, suppose the Korányi–Pukánszky function φ corresponding to
(cjk) is positive, where c00 is assumed to be 1/2. Then from Theorem 5.5
it follows that the operator in (5.4) is non-negative definite for all n ∈ N.
From Lemma 5.7 and (5.3), we conclude that ‖χ−1 ◦ g‖D2,∞ ≤ 1, where
g(z1, z2) = 2

∑∞
m,n=0 cmnz

m
1 z

n
2 . This is so if and only if g maps D2 into H+.

Hence the theorem is proved.

5.3. The case of n variables. Suppose f : Dn → H+ is holomorphic.
Without loss of generality, we assume that f(0) = 1. Let

χ ◦ f(z) =
∞∑
k=0

n∑
i1,...,ik=1

aei1+···+eik zi1 · · · zik .

As before, χ ◦ f maps Dn into D and a0 = 0. Then with the understanding
that c0 = 1/2, we have

f(z) =
1 + χ ◦ f(z)

1− χ ◦ f(z)
= 2
(
c0 +

∞∑
k=1

n∑
i1,...,ik=1

cei1+···+eik zi1 · · · zik
)
.

For k ∈ N, let

Ck :=

n∑
i1,...,ik=1

cei1+···+eik

k∏
p=1

(I⊗(n−ip) ⊗B∗⊗(ip−1)),

Ak :=
n∑

i1,...,ik=1

aei1+···+eik

k∏
p=1

(I⊗(n−ip) ⊗B∗⊗(ip−1)).

Computations similar to the case of n = 2, using Ak and Ck, k ∈ N, prove a
result analogous to Lemma 5.7. Hence, as before, using the spectral theorem
for the operators I⊗(n−j) ⊗ B∗⊗j , j = 1, . . . , n, we deduce the Korányi–
Pukánszky theorem for the polydisc Dn.
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