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Plan of Lecture 2

1. Finite dimensional linear systems
1.1. Stability of inite dimensional linear systems

1.2. The Duhamel formula

2. Controllability and Reachability

3. Stabilizability and its characterization
4. Construction of a Feedback

5. Algorithms for solving Riccati equations
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1. Finite Dimensional Linear Systems
1.1. Stability of Finite Dimensional Linear Systems

Theorem. Let A belong to R"*". The system
Z =Az, z(0)=z,
is exponentially stable if and only if
Reo(A) < 0.

Lyapunov equation. Let A belong to R™" and Q = Q* > 0 belong to
R™" We consider the so-called Lyapunov equation

(LE) P=P* >0, PcR™, AP+PA+Q=0.

Theorem. If A is exponentially stable, then (LE) admits a unique
solution defined by

P:/ ettQettat.
0




Stability Theorem. The operator A is exponentially stable if and only
if, for all Q € R™" satisfying Q = Q* > 0, the Lyapunov equation
(LE) admits a solution.
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1.2. The Duhamel formula
When A € R™" B € R™™ the solution to system

Z =Az+Bu, z(0)= z,

is defined by

t
(E) Zou(t) = z(t) = P2y + / e('=94Bu(s) ds.
0

The same formula holds true in C". If (\;)1<;<, are the complex
eigenvalues of A, we can define

Ec()\j) = Ker(A— \;l), dim Ec();) = ¢; = geometric multiplicity of );,
Ge(N) = Ker((\] — A)™),  the generalized eigenspace ass. to ),

dim Gc () = N();) = algebraic multiplicity of A;.



We have

Ccn = @;:1 G(C()\/)7 A= Z/\Z_1, AG([;()\/) C G(j()\/'),

Ay Jj

Ar

Aj c (CN()‘/')XN(/\/)’ and
ef/\1

gthe 0

eh=Yelhy-1=% y-1.

et/\,
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In particular
efAG@(A,-) C G@()\j).

We can rewrite the equation
Z =Az+Bu, z(0)=z,
in the form
Y Z =Y ALY 24+ Y7 'Bu, T712(0) = =7z,

that is
¢"=NC+Bu, ¢(0)= (o,

where (=X 12 B=X""B,(, =¥ 2.
The vector ¢ may be written as
| Gt | 0
¢ = @;:1CI =1 : with dim(¢;)) = N(\;) and (' = | ¢
0
Cr
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Settin
g _ r 5 i r i
2= Bjer, i LG = Bjt ji 2

7' is the projection of z onto G¢()\;) along iy, j2iGc(N)-

We can also decompose R" into real generalized eigenspaces
R" = ®f_Gr(), Gr(¥)= Ge(}) = vec{ReGc (%), ImGc())},
AGr () C Gr(N)-

The projection onto Gr () along &;_; ;,;Gr(};) can be defined
accordingly.

The same analysis can be done for parabolic partial differential
equations.



2. Controllability and Reachability of Finite Dimensional
Systems

Inthispart, Z=R"or Z =C"and U =R™ or U = C™. We make the
identifications Z = Z* and U = U*.

The operator L1 : L2(0,T;U) — Z

.
LTU:/ elT=94Bu(s) ds.
0

The reachable set from zy at time T
Rr(z0) = €™z + Im Lt.

Exact controllability. The pair (A, B) is exactly controllable at time T if
Rr(zo) =Zforall zp € Z.

Reachability. A state z; is reachable from zo = 0 attime T < o if
there exists u € L2(0, T; U) such that

)
Lru= 20,4(T) = / eT-94By(s) ds = z;.
0
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The system (A, B) is reachable at time T < oc iff
ImLr =Z.

A finite dimensional system is reachable at time T iff it is controllable
attime T.

The system is reachable (or exactly controllable) at time T < o iff the
matrix (called 'controllability Gramian’)

-
Wig= / e"BB*e" dt
0

is invertible.

Idea of the proof. Lt is surjective iff its adjoint operator
Lx e L(Y,L3(0, T; V)),

(Ly9) () = B T,

is injective. This last condition is equivalent to the existence of o > 0
such that

)
/0 1B e 6l ds = (L6120, .0y = all6]2, Vo € Z.
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Assume that the system (E) is reachable at time T. For a given
zs € Z, the control

El(t)I*B eT tA* (WT ) 1eTAZf

is such that ;
205(T) = / elT=94Bi(s) ds = z.
0
Moreover
||’:’Hf2(o,r;u) = ((W,L\T,B)_1Zf72f)z
and

Ul 20,70y < lUlle2(o,7:0)5
for all u such that

.
20.4(T) = / eT=94By(s) ds = z.
0
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Applications. Let us calculate the eigenvalues and eigenvectors for
the linearized inverted pendulum.

0 1 0 0 o o0 0 0
oo -M™M o 1 0 o0 0
A= M AT
“loo 0 1| o 2m9 o 9M+m)
oM+ m) M M
g+ m 0o 0 1 0
00 0

The eigenvalues are

A\ = M, M=X=0 M=-—

g(M+m)
M¢ ’

Me

The associated eigenvectors and generalized eigenvectors for A are

= (-m9 M. mg gM+m \/gM+m
T\ MogMtm)y M
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A5 =0, &=(1,0,0,0", A& =6, 53—0,1,00)

€ = mg Mt mg /gM+m /g M+m
T\ Mg my

We can also calculate the eigenvectors and generalized eigenvectors

of AT:
11 My !
’5‘(0’0’2’2 g(M+m)> ’
-
T B mg M¢
Alez =0, <O1O’Mg(M+m)) ,
mg M T
A€2—€3, €2 (1 07 M g(M+m) 0) s
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We have chosen (e1, 2, €3, €4) to have
E,T fj = 5,'7/'.
Thanks to that bi-orthogonality property, we can define the projectors

on each generailized eigenspace parallel to the sum of the other ones
in the following way

T T
mTZ = <€1 Z) 51, T4 Z = <€4 Z) 54,

and the projection o on the generalized eigenspace G(0), associated
with Ay = A3 = 0, parallel to the sum Ker(\/ — A) @ Ker(A\q/ — A) is

T0Z = (827 z) & + (sg z) &s.



Controllability of Finite Dimensional Systems. The system (A, B)
is controllable at time T if and only if one of the following conditions is

satisfied.

.
Wjp= / e”BB*e" dt >0, VT >0,
0

rank [B|AB| ... |A""'B] = n,
VA e C, rank[A—\|B]=n,
VAeC, A*e=Xe and B*«s=0=¢e¢=0,

dK € £(Z,U), o(A+ BK) can be freely assign
(with the cond. that complex eigenvalues are in conjugate pairs).
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The controllability of the linearized inverted pendulum.

0 1 0 0 0
mg 1
0 0 —— —
A= M oB=| M |
00 0 1 0
g(M+ m) 1
00 Mi 0 - Mr
The controllability matrix is
1 mg
O w 0 e
1 mg
— 0 — 0
2
B|AB| 4B | 48— | M Mz¢
0 0 _ g(Mim)
M Mz g2
g(M+ m)
-0 0

M2 2
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Its determinent is
det[B | AB| A°B | A%B]
__gM+m) (_g(M+m) L >

MS €2 Ms 62 MB 52
mg ([ gM+m) mg\ g
AR

The linearized inverted pendulum is controllable at any time T > 0.
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Verification of the Hautus criterion.

We have ; ]
B_(OMO_W>’
and
y a1l M¢ _
B(O[E1) EW W—Oéa—o,
(ae) = X _ e mg_ M _
Blocs) =~ mgmem 27~ 0

" a1l M B B
B(O[€4)—§W W—Oéa—o

Thus, we recover that the pair (A, B) is controllable.
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3. Stabilizability of F.D.S.

3.i. Open loop stabilizability. System (A, B) is open loop stabilizable
in Z when for any initial condition zy € Z, there exists a control
u € L3(0,00; U) s.t.

oo
/ ”Zzo,u(t)H%dt < 0.
0

Stabilizability by feedback. System (A, B) is stabilizable by feedback
when there exists an operator K € £(Z,U) s. t. A+ BK is
exponentially stable in Z.

Open loop stabilizability is equivalent to stabilizability by feedback for
finite dimensional systems or for parabolic systems with Dirichlet
boundary conditions like the heat equation, the linearized Burgers
equation, the Stokes equation, the linearized Navier-Stokes
equations.



3.ii. Characterization of the stabilizability of F.D.S.

The finite dimensional case. System (E) is stabilizable if and only if
one of the following conditions is satisfied.

(HvA\, ReA>0, rank[A—\/|B]=n,
(iVA, ReA>0, A*e=Xe and B*e=0=¢=0,
(i) VA, ReA >0, Ker(Al— A*)nKer(B*) = {0},
(iv)3IK € L(Z,U), o(A+ BK) is stable.
Conditions (ii), (iii), (iv) are equivalent to the stabilizability of (E) for

Infinite Dimensional Systems under the previous conditions on (A, B)
(analyticity, compactness, degree of unboundness of B).
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FDS Example of a stabilizing feedback. The system (A, B) is
controllable iff

T
WIA,B = / e_tABB)k e_tA* dt,

0

is invertible for all T > 0. Indeed

T T
e"WT, ge™ = / elT-0ABB* el T-0A" g — / e”BB e dr = W],
JO 0

Assume that (A, B) is controllable, then
K=-B"(Wl,p)"

is a stabilizing feedback.
Idea of the proof. The mapping

Zr— ((WIA,B)_127 2)z

is a Lyapunov function of the closed loop linear system.
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Proof. The closed loop linear system is
Z =(A+BK)z, 2z(0)=z.
We have
((WIAVB)”z(t),z(t))Z >0 ifz(t) #0,

d

a((WIA,B)71Z(t)vZ(t))Z = 2((WIA,B)71ZI(t)vZ(t))Z

=2((WT,5) "(A+ BK)z(t), 2(1))y < 0.
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FDS — Characterization of the stabilizability in terms of Gramians.

We assume that
Z=Z02Z, Zi=oG(V), Zs=®_p,1Ge(Y),
Rel >0 if1<j< N,
Re)\j <0 ifN,+1<j<r.

Recall that
e®z,cz, and e"Z c Z.

We also have

Z=Z'=Z0Z, Zj=oGN), Z =0Ly.G:N)

e"zrcz: and e Z:c Z:.
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Let 7, the projection onto Z, along Z; and set 7 = | — w,. The
system

muZ = ZL/, =Auzy + mBu, msz' = Z; = AsZs + msBu,

can be written as a system in Z x Z of the form (using matrix notation)

z, A, O Zy myBu z,(0) TuZo
= + B - .
Z‘; 0 As Zs 'lTsBu Zs(o) 71—320
If the system (A, B) is stabilizable then the system
(Au, By) = (A, myB) is also stabilizable. The converse is true.

Assume that (Ay, By) = (m,A, 7,B) is stabilizable and let
K € L£(Z,, U) be a stabilizing feedback. Then the system

z], A, +B,K 0 Zy
Z; B BsK As Zs

is also stable.
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4. Characterization of the stabilizability of F.D.S.
The following conditions are equivalent

(a) (A, B) is stabilizable,

(b) (Ay, Bu) = (m,A, myB) is stabilizable,

(c) The Gramian

[ee]
A,y :/ e "B, Bje~" df
0

is invertible.

(d) There exists « > 0 such that for all ¢ € Z,

[} L2
©1)  (Weodlz= [ [Bie o] ot > allol3.

The operator
Py=(W,5,)" € L(Zs,Z;), Pu=P;20,
provides a stabilizing feedback

A, — ByB;P, is exponentially stable.
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Recall that
B,=mB and Bj =B},

where 7, is the projection onto Z; along Z;.

The operator P, satisfies the following Algebraic Bernoulli equation (a
degenerate Algebraic Riccati equation)

P,A,+ A:P, — P, B,B;P, = 0.

If we set
P = 7w Pymy,.

Then P € £(Z) is such that P = P* > 0 and solves the following
(A.B.E.)

PerL(Z2), P=P >0,
A*P+ PA— PBB*P = 0,
A — BB*P generates

an exponentially stable semigroup.

AB.E.
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Moreover, the feedback —B* P provides the control of minimal norm in
L2(0, oo; U) )
u(t) = —B*Pe!A=B8"P) 7z,

and the spectrum of A— BB*P is
o(A—BB*P) ={—ReX +ilmX| X € 6(A), ReX > 0}
U{A | A € o(A), ReX < 0}.

To obtain a better exponential decay we can replace Aby A+ w/ and
determine the corresponding feedback —B*P,,. In that case the
spectrum of A— BB*P,, is as follows



Spectrum of Aand of A— BB*P,
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Example 1.

(M0 (1
(5 %) =)

with Ay > Ao > 0. Thus A= A,, and
- < . 00 o2t e—tA+X2)
08 = /0 e ™B,Bje" o :/o (ewwe) ot

e72t)\2
1 1
— 2\ A1+
[ (. 1 )
A+A2 2

(W, )t = Pdelh + o) ;T% “xw |
—Au,Bu ()\1 7A2)2 7)\1+k2 m

RS V5 V6 VNI Ve L S T =y
A s SR VIR VA G
A+A2 Aq

2A1(A1+X2) 2X2(Ai+A2)
_ A —A2 A1 —A2
Tl 224 (atA2) 2x(M+Ae) |
A1—A2 A1 —A2
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o 4M(A+A>(

(A1 — A2)?

(M —A2)?

1 1

1
N iR ()“ 0 ) 2
x 0 X BPYEDY

1 Mo M
Y E3Y A1+
1 2 o )\22 & 2
A1tz 2\

A1+
N N
M+l 2k
e
()\1+>\2)§
1 —
2e(MA2)  2(NFA2)

1

A2

- 2(>\1+>\€\) T 25

_ Bdai P (g -
(M = A2)? :

A2)(A1+3X2)

A=A

2= A1) (BA1+A2) A

(M = A2)?

(M=
_ ke + Xg)? ( e

2X2(N+X2)

)\27/\1
22x1(A1+X2)

4)\1 ()\1 +k2)2

(A1 —=X2)(A1+3X2) Ao—)
_ 4)\1)\2()\1 + )\2)2 ( 11,,\2(2)\1_,)_\1)\2)2 2 (}\ 2)\/1\(2?(13&1/\?'—))\ ))
Y _ _
()\1 - )\2) 2)\2(1/\1 +2)\2) 24)\1(1A1+/\12)2 :
AM(A143X2) 2 (Mi4A2)
— ( (A —Az) (A2—A1) )
2A1(A1+X2)  A2(BAi+A2)
(AM=22) (A2—A1)
and
A — 2>\1(>\1+>\2) _2>\f\(>\1j\-/\2)
A—-BB'P = _22q( >\1+>\22) Ao — 2>\22(>\11+>\2)
N — 2 o— Ny

>\11+)\2)

— A _—
(M+X2)? + 4

)




Since
A-BB*P=—-P AP,

the matrix P solves the Bernoulli equation and
spec(A — BB*P) = {1, =2}

As expected the symmetry property is satisfied between the spectra
of A— BB*P and A.
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Example 2.

(D) )

with A > 0. Thus A= A,, and

Jo
[T (e —te™ M\ (0 0) [ e M 0\ 4
“Jo 0 e J\0 1) \—te e
B o0 t2 672)\1‘ —t 672)\1 B & _%
“h Crew ")o=(5 F)
oo 1 (8N 4x?
P_( —Au,Bu) _<4>\2 4\
co (0 0 [8X 4X\ /0 0
BBP_(O 1> <4)\2 4)\)_<4)\2 4)\>’

o (A1
A—BBP(_4A2 —3)\)'
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Ao LN /A 0) /8N 4)2 2\ — 3\ 1-2
—1Axp __ 43 2 o
PrATP = (—12 % > (1 )\> <4)\2 4/\) - <—2>\2+6)\2 —A+4)

Since
A—BB*P=—P AP,

the matrix P solves the Bernoulli equation and the symmetry property
is satisfied between the spectra of A— BB*P and A.
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Example 3. The reduced linearized inverted pendulum.

) )

This system comes from the linearization of the controlled pendulum
equation
0" —sinf = u.

The eigenvalues of Aare A\ =1 and A\, = —1. In order to determine
the projection onto the unstable subspace, we have to find the
eignevectors of A = A*.

E(M)={(6,p) eR? |9 =p} and E(\2)={(6,p) eR?|6=—p}.

. a
§1=<‘4§>7 and £1=<\/%>~
V2 V2

Notice that & € E(\1), & € E()\2), and (&1, &) is an orthonormal
basis of R2. Thus, the projection 7, on E(\y) along E()\) is defined
by

We set

TyZ = (§1T 2)51-



In order to find A, € £(Z,) and B, € L(U, Z,), it is convenient to
introduce the change of variables

1 1
(z“) =y (z‘> . with T=(V2 V2|,
% 2 i v

The system

Y =AY 24 7By, ¥712(0) = X7 4,

is
E)-6 %)@ (3)» G-
Thus
zZ,=z,+ ﬁu, z,(0) =z 4.

The Bernoulli equation for this controlled system is
2
p>0, 2p- % —0.
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Thus p = 4, and the controlled system with feedback is

12
z,=2z,— (ﬂ) 4z, = —z,, z4(0) =z .

The full closed loop system is

-0 2)E) G9)-G)

Coming back to the system satisfied by z we have

R ) S G PR
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4. Feedback gain minimizing a cost functional

We can find a feedback gain by considering the following optimal
control problem (P)

Minimize J(z,u) = ;/Ooo HCz(t)HZY dt + ER /OOO Hu(t)szt

z' = Az + Bu, z(0) = zp, limio ||2()]|z = O,
where C € £(Z,Y), R>0.

We assume that the pair (A, B) is stabilizable, and that there is no
eigenvalue of A on the imaginary axis.

We know that this problem admits a unique solution. We would like to
find it. We denote by z,, , the solution ot the state equation and we
set F(u) = J(zz,u, U).

We would like to characterize the optimal control U by setting

F’(u) = 0. This is not possible because we do not know the
subspace of controls Us c U for which F is finite.

27/50



28/50

Method 1. Approximate (P) by a sequence of control problems stated
over a finite time interval (0, k). Write the optimality conditions for this
sequence of approximate problems and pass to the limit in the
optimality systems.

Method 2. Look for the solution to (P) in feedback form, that is look
for K such that A+ BK is stable. Characterize the feedback gain K
which minimizes the cost functional.

Theorem. We assume that the pair (A, B) is stabilizable, and that
there is no eigenvalue of A on the imaginary axis. Then problem (P)
admits a unique solution defined by

U(t) — —Ket(A+BK)ZO,

where K € L(Z,U), K = —B*P and P is the solution to the Riccati
equation
PeL(Z), A*P+PA-PBB*P+CC* =0,

(A.R.E) .
P=P*>0, A-BB*Pisstable.
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Proof. We replace z(t) by e'(*+8K) z5 and u(t) by Kel(A+BK) z; in the
functional J, we get

1 [ »
J(Z, U) — é A (e[(A+BK) c* Cet(A+BK)ZO,ZO)Z dt

o[
2 Jo

. 1
| (0450 kK48 20, 73) it = 3 (P, )z
with -
P [ e (Gt KA et
0

It is clear that P = P* > 0. Since A + BK is stable, from Lyapunov
Stability Theorem, it follows that P is the solution to the following
Lyapunov equation

(A+ BK)*P+ P(A+BK) + C*C + K*RK = 0.
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Now, we want to characterize the feedback gain K which minimizes
the cost functional. For that, we assume that K is the minimizer, and
we compare the costs obtained with K and K + AK, under the
conditions A+ BK and A + B(K + AK) are stable.

We denote by P + AP the operator

P+AP = / et(A+B(K+AK))*(C* C+(K+AK)* R(K+AK))et(A+B(K+AK))dt.
0

We verify that AP is the solution to
(A+ BK)*AP + AP(A+ BK) + (AK)*(RK + B*P)
+(RK + B*P)*AK + (AK)*RAK = 0.

If K is optimal, then AP > 0. Since A+ BK is stable, AP > 0 if and
only if

(AK)*(RK + B*P) + (RK + B*P)*AK + (AK)*RAK > 0.
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Since (AK)*RAK > 0 for all AK (and (AK)*RAK > 0 for some
AK), we must have

RK +B*P =0, thatisK=—-R'B*P.

Replacing K by —R~"B*P in the previous Lyapunov equation, we
prove that P solves the Riccati equation

PA+ A*P - PBR™'B*P+ C*C =0.
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5. An algorithm for solving Riccati equations

We consider the A.R.E.

PerL(Z2), P=P >0,

A*P+4+ PA— PBR™'B*P + C*C =0,
A — BR~'B*P generates

an exponentially stable semigroup,

ARE

where the unknown P belongs to £(R"), A € L(R"), B € L(R™;R"),
where R™ is the discrete control space, C € £L(R"; R?), where R’ is
the observation space.

We make the following assumption.
(H41) The pair (A, B) is stabilizable

(H2) The pair (A, C) is detectable or A has no eigenvalue on the
imaginary axis.

The ARE admits a unique solution.

The matrix
_ A —BR'B*
| CcC* —A*

is called the Hamiltonian matrix associated with the ARE.

H
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It is a symplectic matrix

—1
0o |/ 0o | .
o] [ 5o
Therefore the matrix # and —#H* are similar and they have the same
eigenvalues. On the other hand # and H* have also the same set of

eigenvalues. Thus if A is an eigenvalue of H, then —\ is also an
eigenvalue of H with the same multiplicity.

Let us denote by — A1, — Ao, ..., —An, A1, A2, ..., Ap, the eigenvalues of
H, where Re(\;) > 0fori=1,...,n. Under assumptions (H;) and
(H2), it can be shown that the matrix # has no pure imaginary
eigenvalues, thatis Re(\;) > 0fori=1,...,n.

There exists a matrix V whose columns are eigenvectors, or
generalized eigenvectors of #, such that

i, [=J 0O
v [$0)



where —J is composed of Jordan blocks corresponding to
eigenvalues with negative real part, and

Vit Va2
V f—
{ Vor Voo } ’

is such that V4 = [ g; } is a matrix whose columns are

eigenvectors corresponding to eigenvalues with negative real parts. It
may be proved that Vy4 is nonsingular and the unique positive
semidefinite solution of equation (A.R.E.) is given by

P= Vv
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A very simple example

Set
A 0
A= , B= ,
0 X 1

with A >0, R~'=1,and C =0. Then

A1 0 O

0 x 0 -1
’H =

0 0 —x O

0 0 —1 =X

In that case (C = 0), we replace the condition ’(A, C) is detectable’ by
the condition ’A — BB* P is stable’.
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We have HV; = —\V; with
Vi = (—1,2X,0,4X2)7.

The solution to
(H+)\I)VQ =V,
is
Vo= (-1/A,1,-4X2,0)7.
We obtain the solution to the (A.B.E.) (the degenerate (A.R.E.))

0 —4x2 1 1\
P = ,
42 0 on 1
, 0 —4)\2 1 1/ 8A3  4)2
S \l4x o 2 -1 ) \axz a4y )
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Moreover

A 1
A—-BB*P = .
—4)2 -3\

47/50
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Another simple example — A reduced inverted pendulum

Instead of studying the equations of the inverted pendulum, we can
consider the simple model
0" —sinf = u,

where 6 is the angular displacement from the unstable vertical
equilibrium, and u is taken as a control. The linearized system about
Ois

Z =Az+Bu, z(0)= 2z,
where

) 0 1 0 ,
Z:(a,p), A= 10 5 B= 1 ’ PZQ

We choose R~' =/and C = 0. Then

01 0 o0
10 0 -1
“loo o -1
00 -1 0

We can verify the A = 1 and A = —1 are the two eigenvalues of H of

miiltinlicityy 2
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Rather than computing the matrix Riccati equation, we can
equivalently determine directly the control of minimal norm stabilizing
the system.

The eigenvalues of Aare Ay =1 and A\, = —1. They are both of
multiplicity 1. We have

E(m)={(6.p) €R?|60=p} and E(\2)={(6.p) €R?| 6= —p}.
We can rewrite the system as follows
040\ _(0+p 1
(2) - (2 et
/
PO\ _ _(p=0)_ 1
(27) ()2
The first equation corresponds to the projected system onto the
unstable subspace. The feedback of minimal norm stabilizing the
unstable system is obtained by solving the one dimensional Riccati

equation
p>0, 2p—p?/4=0.
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Thus p = 8 and the feedback law is

u(t):—28(9;p> —2(0+ p).

Thus the closed loop linear system is

(-5 5)0)

We notice that the two eigenvalues of the generator of this system are
A = —1. We recover the result already obtained previously.



