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Plan of Lecture 2

1. Finite dimensional linear systems

1.1. Stability of inite dimensional linear systems

1.2. The Duhamel formula

2. Controllability and Reachability

3. Stabilizability and its characterization

4. Construction of a Feedback

5. Algorithms for solving Riccati equations
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1. Finite Dimensional Linear Systems

1.1. Stability of Finite Dimensional Linear Systems

——————————————————————————————–
Theorem. Let A belong to Rn×n. The system

z ′ = Az, z(0) = z0,

is exponentially stable if and only if

Reσ(A) < 0.

——————————————————————————————–

Lyapunov equation. Let A belong to Rn×n and Q = Q∗ ≥ 0 belong to
Rn×n. We consider the so-called Lyapunov equation

(LE) P = P∗ ≥ 0, P ∈ Rn×n, A∗P + PA + Q = 0.

——————————————————————————————–
Theorem. If A is exponentially stable, then (LE) admits a unique
solution defined by

P =

∫ ∞
0

eA∗tQeAtdt .

——————————————————————————————–
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——————————————————————————————–
Stability Theorem. The operator A is exponentially stable if and only
if, for all Q ∈ Rn×n satisfying Q = Q∗ > 0, the Lyapunov equation
(LE) admits a solution.
——————————————————————————————–

4/50



1.2. The Duhamel formula

When A ∈ Rn×n, B ∈ Rn×m, the solution to system

z ′ = Az + Bu, z(0) = z0,

is defined by

(E) zz0,u(t) = z(t) = etAz0 +

∫ t

0
e(t−s)ABu(s) ds.

The same formula holds true in Cn. If (λi )1≤i≤r are the complex
eigenvalues of A, we can define

EC(λj ) = Ker(A− λj I), dim EC(λj ) = `j = geometric multiplicity of λj ,

GC(λj ) = Ker((λj I − A)m(λj )), the generalized eigenspace ass. to λj ,

dim GC(λj ) = N(λj ) = algebraic multiplicity of λj .
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We have

Cn = ⊕r
j=1GC(λj ), A = ΣΛΣ−1, AGC(λj ) ⊂ GC(λj ),

Λ =


Λ1

Λ2 0

0
. . .

Λr

 , Λj =



J1
j

J2
j 0

0
. . .

J`j
j


,

Λj ∈ CN(λj )×N(λj ), and

etA = ΣetΛΣ−1 = Σ


etΛ1

etΛ2 0

0
. . .

etΛr

Σ−1.
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In particular
etAGC(λj ) ⊂ GC(λj ).

We can rewrite the equation

z ′ = Az + Bu, z(0) = z0,

in the form

Σ−1z ′ = Σ−1AΣΣ−1z + Σ−1Bu, Σ−1z(0) = Σ−1z0,

that is
ζ ′ = Λ ζ + Bu, ζ(0) = ζ0,

where ζ = Σ−1z, B = Σ−1B, ζ0 = Σ−1z0.

The vector ζ may be written as

ζ = ⊕r
j=1ζ

i =


ζ1

...

ζr

 with dim(ζi ) = N(λi ) and ζ i =



...
0
ζi
0
...

 .
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Setting
z = ⊕r

j=1, j 6=i Σ ζ i = ⊕r
j=1, j 6=i z i ,

z i is the projection of z onto GC(λi ) along ⊕r
j=1, j 6=iGC(λj ).

We can also decompose Rn into real generalized eigenspaces

Rn = ⊕r
j=1GR(λj ), GR(λj ) = GR(λ̄j ) = vec{ReGC(λj ), ImGC(λj )},

AGR(λj ) ⊂ GR(λj ).

The projection onto GR(λi ) along ⊕r
j=1, j 6=iGR(λj ) can be defined

accordingly.

The same analysis can be done for parabolic partial differential
equations.
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2. Controllability and Reachability of Finite Dimensional
Systems

In this part, Z = Rn or Z = Cn and U = Rm or U = Cm. We make the
identifications Z = Z ∗ and U = U∗.

The operator LT : L2(0,T ; U) 7−→ Z

LT u =

∫ T

0
e(T−s)ABu(s) ds.

The reachable set from z0 at time T

RT (z0) = eTAz0 + Im LT .

Exact controllability. The pair (A,B) is exactly controllable at time T if
RT (z0) = Z for all z0 ∈ Z .

Reachability. A state zf is reachable from z0 = 0 at time T <∞ if
there exists u ∈ L2(0,T ; U) such that

LT u = z0,u(T ) =

∫ T

0
e(T−s)ABu(s) ds = zf .
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The system (A,B) is reachable at time T <∞ iff

Im LT = Z .

A finite dimensional system is reachable at time T iff it is controllable
at time T .

The system is reachable (or exactly controllable) at time T <∞ iff the
matrix (called ’controllability Gramian’)

W T
A,B =

∫ T

0
etABB∗etA∗

dt

is invertible.

Idea of the proof. LT is surjective iff its adjoint operator
L∗T ∈ L(Y ,L2(0,T ; U)),

(L∗Tφ) (·) = B∗e(T−·)A∗
φ,

is injective. This last condition is equivalent to the existence of α > 0
such that∫ T

0
‖B∗esA∗

φ‖2
U ds = ‖L∗Tφ‖2

L2(0,T ;U) ≥ α‖φ‖
2
Z , ∀φ ∈ Z .
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Assume that the system (E) is reachable at time T . For a given
zf ∈ Z , the control

ū(t) = −B∗e(T−t)A∗
(W T

A,B)−1eTAzf

is such that

z0,ū(T ) =

∫ T

0
e(T−s)ABū(s) ds = zf .

Moreover
‖ū‖2

L2(0,T ;U) = ((W T
A,B)−1zf , zf )Z

and
‖ū‖L2(0,T ;U) ≤ ‖u‖L2(0,T ;U),

for all u such that

z0,u(T ) =

∫ T

0
e(T−s)ABu(s) ds = zf .
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Applications. Let us calculate the eigenvalues and eigenvectors for
the linearized inverted pendulum.

A =



0 1 0 0

0 0 −mg
M

0

0 0 0 1

0 0
g(M + m)

M`
0


, AT =



0 0 0 0

1 0 0 0

0 −mg
M

0
g(M + m)

M`

0 0 1 0

 .

The eigenvalues are

λ1 =

√
g(M + m)

M`
, λ2 = λ3 = 0, λ4 = −

√
g(M + m)

M`
.

The associated eigenvectors and generalized eigenvectors for A are

ξ1 =

(
−mg

M
M`

g(M + m)
,−mg

M

√
g(M + m)

M`
,1,

√
g(M + m)

M`

)T
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Aξ2 = 0, ξ2 = (1,0,0,0)T , Aξ3 = ξ2, ξ3 = (0,1,0,0)T .

ξ4 =

(
−mg

M
M`

g(M + m)
,

mg
M

√
g(M + m)

M`
,1,−

√
g(M + m)

M`

)T

.

We can also calculate the eigenvectors and generalized eigenvectors
of AT :

ε1 =

(
0,0,

1
2
,

1
2

√
M`

g(M + m)

)T

,

ATε3 = 0, ε3 =

(
0,1,0,

mg
M

M`

g(M + m)

)T

,

Aε2 = ε3, ε2 = (1,0,
mg
M

M`

g(M + m)
,0)T ,

ε4 =

(
0,0,

1
2
,−1

2

√
M`

g(M + m)

)T

.
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We have chosen (ε1, ε2, ε3, ε4) to have

εT
i ξj = δi,j .

Thanks to that bi-orthogonality property, we can define the projectors
on each generailized eigenspace parallel to the sum of the other ones
in the following way

π1z =
(
εT

1 z
)
ξ1, π4z =

(
εT

4 z
)
ξ4,

and the projection π0 on the generalized eigenspace G(0), associated
with λ2 = λ3 = 0, parallel to the sum Ker(λ1I − A)⊕ Ker(λ4I − A) is

π0z =
(
εT

2 z
)
ξ2 +

(
εT

3 z
)
ξ3.

14/50



Controllability of Finite Dimensional Systems. The system (A,B)
is controllable at time T if and only if one of the following conditions is
satisfied.

W ∗
A,B =

∫ T

0
etABB∗etA∗

dt > 0, ∀T > 0,

rank
[
B |AB | . . . |An−1B

]
= n,

∀λ ∈ C, rank [A− λI |B] = n,

∀λ ∈ C, A∗ ε = λ ε and B∗ε = 0⇒ ε = 0,

∃K ∈ L(Z ,U), σ(A + BK ) can be freely assign

(with the cond. that complex eigenvalues are in conjugate pairs).
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The controllability of the linearized inverted pendulum.

A =



0 1 0 0

0 0 −mg
M

0

0 0 0 1

0 0
g(M + m)

M`
0


, B =



0

1
M
0

− 1
M`


,

The controllability matrix is

[B | AB | A2B | A3B] =



0
1
M

0
mg
M2`

1
M

0
mg
M2`

0

0 − 1
M

0 − g(M+m)
M2`2

− 1
M 0 −g(M + m)

M2`2 0


.
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Its determinent is

det[B | AB | A2B | A3B]

= −g(M + m)

M3`2

(
−g(M + m)

M3`2 +
mg

M3`2

)
+

mg
M3`2

(
−g(M + m)

M3`2 +
mg

M3`2

)
=

g2

M4`4 .

The linearized inverted pendulum is controllable at any time T > 0.
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Verification of the Hautus criterion.

We have

B∗ =

(
0

1
M

0 − 1
M`

)
,

and

B∗(αε1) = −α
2

1
M`

√
M`

g(M + m)
= 0⇒ α = 0,

B∗(αε3) =
α

M
− α

M`

mg
M

M`

g(M + m)
= 0⇒ α = 0,

B∗(αε4) =
α

2
1

M`

√
M`

g(M + m)
= 0⇒ α = 0.

Thus, we recover that the pair (A,B) is controllable.
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3. Stabilizability of F.D.S.

3.i. Open loop stabilizability. System (A,B) is open loop stabilizable
in Z when for any initial condition z0 ∈ Z , there exists a control
u ∈ L2(0,∞; U) s.t. ∫ ∞

0
‖zz0,u(t)‖2

Z dt <∞.

Stabilizability by feedback. System (A,B) is stabilizable by feedback
when there exists an operator K ∈ L(Z ,U) s. t. A + BK is
exponentially stable in Z .

Open loop stabilizability is equivalent to stabilizability by feedback for
finite dimensional systems or for parabolic systems with Dirichlet
boundary conditions like the heat equation, the linearized Burgers
equation, the Stokes equation, the linearized Navier-Stokes
equations.
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3.ii. Characterization of the stabilizability of F.D.S.

The finite dimensional case. System (E) is stabilizable if and only if
one of the following conditions is satisfied.

(i) ∀λ, Reλ ≥ 0, rank [A− λI |B] = n,

(ii) ∀λ, Reλ ≥ 0, A∗ ε = λ ε and B∗ε = 0⇒ ε = 0,

(iii) ∀λ, Reλ ≥ 0, Ker(λI − A∗) ∩ Ker(B∗) = {0},

(iv) ∃K ∈ L(Z ,U), σ(A + BK ) is stable.

Conditions (ii), (iii), (iv) are equivalent to the stabilizability of (E) for
Infinite Dimensional Systems under the previous conditions on (A,B)
(analyticity, compactness, degree of unboundness of B).
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FDS Example of a stabilizing feedback. The system (A,B) is
controllable iff

W T
−A,B =

∫ T

0
e−tABB∗e−tA∗

dt ,

is invertible for all T > 0. Indeed

eTAW T
−A,BeTA∗

=

∫ T

0
e(T−t)ABB∗e(T−t)A∗

dt =

∫ T

0
eτABB∗eτA∗

dτ = W T
A,B.

Assume that (A,B) is controllable, then

K = −B∗(W T
−A,B)−1

is a stabilizing feedback.

Idea of the proof. The mapping

z 7−→ ((W T
−A,B)−1z, z)Z

is a Lyapunov function of the closed loop linear system.
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Proof. The closed loop linear system is

z ′ = (A + BK )z, z(0) = z0.

We have

((W T
−A,B)−1z(t), z(t))Z ≥ 0 if z(t) 6= 0,

d
dt

((W T
−A,B)−1z(t), z(t))Z = 2((W T

−A,B)−1z ′(t), z(t))Z

= 2((W T
−A,B)−1(A + BK )z(t), z(t))Y < 0.
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FDS – Characterization of the stabilizability in terms of Gramians.

We assume that

Z = Zs ⊕ Zu, Zu = ⊕Nu
j=1GR(λj ), Zs = ⊕r

j=Nu+1GR(λj ),

Reλj > 0 if 1 ≤ j ≤ Nu,

Reλj < 0 if Nu + 1 ≤ j ≤ r .

Recall that
etAZu ⊂ Zu and etAZs ⊂ Zs.

We also have

Z = Z ∗ = Z ∗s ⊕ Z ∗u , Z ∗u = ⊕Nu
j=1G∗R(λj ), Z ∗s = ⊕r

j=Nu+1G∗R(λj ),

etA∗
Z ∗u ⊂ Z ∗u and etA∗

Z ∗s ⊂ Z ∗s .
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Let πu the projection onto Zu along Zs and set πs = I − πu. The
system

πuz ′ = z ′u = Auzu + πuBu, πsz ′ = z ′s = Aszs + πsBu,

can be written as a system in Z ×Z of the form (using matrix notation)(
z ′u
z ′s

)
=

(
Au 0

0 As

)(
zu

zs

)
+

(
πuBu

πsBu

)
,

(
zu(0)

zs(0)

)
=

(
πuz0

πsz0

)
.

If the system (A,B) is stabilizable then the system
(Au,Bu) = (πuA, πuB) is also stabilizable. The converse is true.
Assume that (Au,Bu) = (πuA, πuB) is stabilizable and let
K ∈ L(Zu,U) be a stabilizing feedback. Then the system(

z ′u
z ′s

)
=

(
Au + BuK 0

BsK As

)(
zu

zs

)

is also stable.
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4. Characterization of the stabilizability of F.D.S.

The following conditions are equivalent

(a) (A,B) is stabilizable,

(b) (Au,Bu) = (πuA, πuB) is stabilizable,

(c) The Gramian

W∞
−Au ,Bu

=

∫ ∞
0

e−tAu Bu B∗ue−tA∗
u dt

is invertible.

(d) There exists α > 0 such that for all φ ∈ Z ∗u ,

(O.I.) (W∞
−Au ,Bu

φ, φ)Z =

∫ ∞
0

∥∥∥B∗ue−tA∗
u φ
∥∥∥2

U
dt ≥ α‖φ‖2

Z .

The operator

Pu = (W∞
−Au ,Bu

)−1 ∈ L(Zu,Z ∗u ), Pu = P∗u ≥ 0,

provides a stabilizing feedback

Au − BuB∗uPu is exponentially stable.

25/50



Recall that
Bu = πuB and B∗u = B∗π∗u ,

where π∗u is the projection onto Z ∗u along Z ∗s .

The operator Pu satisfies the following Algebraic Bernoulli equation (a
degenerate Algebraic Riccati equation)

PuAu + A∗uPu − Pu BuB∗uPu = 0.

If we set
P = π∗uPuπu.

Then P ∈ L(Z ) is such that P = P∗ ≥ 0 and solves the following
(A.B.E .)

A.B.E .

P ∈ L(Z ), P = P∗ ≥ 0,

A∗P + PA− PBB∗P = 0,

A− BB∗P generates

an exponentially stable semigroup.
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Moreover, the feedback −B∗P provides the control of minimal norm in
L2(0,∞; U)

u(t) = −B∗Pet(A−BB∗P)z0,

and the spectrum of A− BB∗P is

σ(A− BB∗P) = {−Reλ+ i Imλ | λ ∈ σ(A), Reλ > 0}

∪{λ | λ ∈ σ(A), Reλ < 0}.

To obtain a better exponential decay we can replace A by A + ωI and
determine the corresponding feedback −B∗Pω. In that case the
spectrum of A− BB∗Pω is as follows
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Spectrum of A and of A− BB∗Pω

− ω − ω
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Example 1.

A =

(
λ1 0
0 λ2

)
, B =

(
1
1

)
,

with λ1 > λ2 > 0. Thus A = Au, and

W∞
−Au ,Bu

=

∫ ∞
0

e−tAu Bu B∗ue−tA∗
u dt =

∫ ∞
0

(
e−2tλ1 e−t(λ1+λ2)

e−t(λ1+λ2) e−2tλ2

)
dt

=

(
1

2λ1

1
λ1+λ2

1
λ1+λ2

1
2λ2

)
.

(W∞
−Au ,Bu

)−1 =
4λ1λ2(λ1 + λ2)2

(λ1 − λ2)2

(
1

2λ2
− 1
λ1+λ2

− 1
λ1+λ2

1
2λ1

)
.

BB∗P =
4λ1λ2(λ1 + λ2)2

(λ1 − λ2)2

(
1 1
1 1

)( 1
2λ2

− 1
λ1+λ2

− 1
λ1+λ2

1
2λ1

)

=

(
2λ1(λ1+λ2)
λ1−λ2

− 2λ2(λ1+λ2)
λ1−λ2

2λ1(λ1+λ2)
λ1−λ2

− 2λ2(λ1+λ2)
λ1−λ2

)
.
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P−1A∗P =
4λ1λ2(λ1 + λ2)2

(λ1 − λ2)2

(
1

2λ1

1
λ1+λ2

1
λ1+λ2

1
2λ2

)(
λ1 0
0 λ2

)( 1
2λ2

− 1
λ1+λ2

− 1
λ1+λ2

1
2λ1

)

=
4λ1λ2(λ1 + λ2)2

(λ1 − λ2)2

(
1

2λ1

1
λ1+λ2

1
λ1+λ2

1
2λ2

)(
λ1

2λ2
− λ1
λ1+λ2

− λ2
λ1+λ2

λ2
2λ1

)

=
4λ1λ2(λ1 + λ2)2

(λ1 − λ2)2

(
1

4λ2
− λ2

(λ1+λ2)2 − 1
2(λ1+λ2) + λ2

2λ1(λ1+λ2)
λ1

2λ2(λ1+λ2) −
1

2(λ1+λ2) − λ1
(λ1+λ2)2 + 1

4λ1

)

=
4λ1λ2(λ1 + λ2)2

(λ1 − λ2)2

(
(λ1−λ2)(λ1+3λ2)

4λ2(λ1+λ2)2
λ2−λ1

2λ1(λ1+λ2)
λ1−λ2

2λ2(λ1+λ2)
(λ2−λ1)(3λ1+λ2)λ1

4λ1(λ1+λ2)2

)

=
4λ1λ2(λ1 + λ2)2

(λ1 − λ2)2

(
(λ1−λ2)(λ1+3λ2)

4λ2(λ1+λ2)2
λ2−λ1

2λ1(λ1+λ2)
λ1−λ2

2λ2(λ1+λ2)
(λ2−λ1)(3λ1+λ2)

4λ1(λ1+λ2)2

)

=

(
λ1(λ1+3λ2)

(λ1−λ2)
2λ2(λ1+λ2)

(λ2−λ1)
2λ1(λ1+λ2)

(λ1−λ2)
λ2(3λ1+λ2)

(λ2−λ1)

)
and

A− BB∗P =

(
λ1 − 2λ1(λ1+λ2)

λ1−λ2
− 2λ2(λ1+λ2)

λ2−λ1

− 2λ1(λ1+λ2)
λ1−λ2

λ2 − 2λ2(λ1+λ2)
λ2−λ1

.

)
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Since
A− BB∗P = −P−1A∗P,

the matrix P solves the Bernoulli equation and

spec(A− BB∗P) = {−λ1,−λ2}.

As expected the symmetry property is satisfied between the spectra
of A− BB∗P and A.
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Example 2.

A =

(
λ 1
0 λ

)
, B =

(
0
1

)
,

with λ > 0. Thus A = Au, and

W∞
−Au ,Bu

=

∫ ∞
0

e−tAu Bu B∗ue−tA∗
u dt

=

∫ ∞
0

(
e−λt −te−λt

0 e−λt

)(
0 0
0 1

)(
e−λt 0
−te−λt e−λt

)
dt

=

∫ ∞
0

(
t2 e−2λt −t e−2λt

−t e−2λt e−2λt

)
dt =

( 1
4λ3 − 1

4λ2

− 1
4λ2

1
2λ

)

P = (W∞
−Au ,Bu

)−1 =

(
8λ3 4λ2

4λ2 4λ

)
,

BB∗P =

(
0 0
0 1

)(
8λ3 4λ2

4λ2 4λ

)
=

(
0 0

4λ2 4λ

)
,

A− BB∗P =

(
λ 1
−4λ2 −3λ

)
.
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P−1A∗P =

( 1
4λ3 − 1

4λ2

− 1
4λ2

1
2λ

)(
λ 0
1 λ

)(
8λ3 4λ2

4λ2 4λ

)
=

(
2λ− 3λ 1− 2
−2λ2 + 6λ2 −λ+ 4λ

)
.

Since
A− BB∗P = −P−1A∗P,

the matrix P solves the Bernoulli equation and the symmetry property
is satisfied between the spectra of A− BB∗P and A.
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Example 3. The reduced linearized inverted pendulum.

A =

(
0 1
1 0

)
, B =

(
0
1

)
.

This system comes from the linearization of the controlled pendulum
equation

θ′′ − sin θ = u.

The eigenvalues of A are λ1 = 1 and λ2 = −1. In order to determine
the projection onto the unstable subspace, we have to find the
eignevectors of A = A∗.

E(λ1) = {(θ, ρ) ∈ R2 | θ = ρ} and E(λ2) = {(θ, ρ) ∈ R2 | θ = −ρ}.

We set

ξ1 =

(
1√
2

1√
2

)
, and ξ1 =

(
1√
2

− 1√
2

)
.

Notice that ξ1 ∈ E(λ1), ξ2 ∈ E(λ2), and (ξ1, ξ2) is an orthonormal
basis of R2. Thus, the projection πu on E(λ1) along E(λ2) is defined
by

πuz = (ξT
1 z)ξ1.
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In order to find Au ∈ L(Zu) and Bu ∈ L(U,Zu), it is convenient to
introduce the change of variables(

zu
zs

)
= Σ−1

(
z1
z2

)
, with Σ =

(
1√
2

1√
2

1√
2
− 1√

2

)
.

The system

Σ−1z ′ = Σ−1AΣΣ−1z + Σ−1Bu, Σ−1z(0) = Σ−1z0,

is (
zu
zs

)
=

(
1 0
0 −1

)(
zu
zs

)
+

(
1√
2

− 1√
2

)
u,

(
zu(0)
zs(0)

)
=

(
z0,u
z0,s

)
.

Thus
z ′u = zu +

1√
2

u, zu(0) = z0,u.

The Bernoulli equation for this controlled system is

p > 0, 2p − p2

2
= 0.
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Thus p = 4, and the controlled system with feedback is

z ′u = zu −
(

1√
2

)2

4zu = −zu, zu(0) = z0,u.

The full closed loop system is(
zu
zs

)
=

(
−1 0
2 −1

)(
zu
zs

)
,

(
zu(0)
zs(0)

)
=

(
z0,u
z0,s

)
.

Coming back to the system satisfied by z we have

z ′ = Σ

(
−1 0
2 −1

)
Σ−1z =

(
0 1
−1 −2

)
z, z(0) = z0.
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4. Feedback gain minimizing a cost functional

We can find a feedback gain by considering the following optimal
control problem (P)

Minimize J(z,u) =
1
2

∫ ∞
0

∥∥∥Cz(t)
∥∥∥2

Y
dt +

R
2

∫ ∞
0

∥∥∥u(t)
∥∥∥2

U
dt

z ′ = Az + Bu, z(0) = z0, limt→∞ ‖z(t)‖Z = 0,

where C ∈ L(Z ,Y ), R > 0.

We assume that the pair (A,B) is stabilizable, and that there is no
eigenvalue of A on the imaginary axis.
We know that this problem admits a unique solution. We would like to
find it. We denote by zz0,u the solution ot the state equation and we
set F (u) = J(zz0,u,u).
We would like to characterize the optimal control ū by setting
F ′(ū) = 0. This is not possible because we do not know the
subspace of controls Uf ⊂ U for which F is finite.
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Method 1. Approximate (P) by a sequence of control problems stated
over a finite time interval (0, k). Write the optimality conditions for this
sequence of approximate problems and pass to the limit in the
optimality systems.

Method 2. Look for the solution to (P) in feedback form, that is look
for K such that A + BK is stable. Characterize the feedback gain K
which minimizes the cost functional.
——————————————————————————————–
Theorem. We assume that the pair (A,B) is stabilizable, and that
there is no eigenvalue of A on the imaginary axis. Then problem (P)
admits a unique solution defined by

u(t) = −Ket(A+BK )z0,

where K ∈ L(Z ,U), K = −B∗P and P is the solution to the Riccati
equation

(A.R.E .)
P ∈ L(Z ), A∗P + PA− PBB∗P + CC∗ = 0,

P = P∗ ≥ 0, A− BB∗P is stable.

——————————————————————————————–
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Proof. We replace z(t) by et(A+BK )z0 and u(t) by Ket(A+BK )z0 in the
functional J, we get

J(z,u) =
1
2

∫ ∞
0

(et(A+BK )∗C∗Cet(A+BK )z0, z0)Z dt

+
R
2

∫ ∞
0

(et(A+BK )∗K ∗Ket(A+BK )z0, z0)Z dt =
1
2

(Pz0, z0)Z ,

with
P =

∫ ∞
0

et(A+BK )∗(C∗C + K ∗RK )et(A+BK )dt .

It is clear that P = P∗ ≥ 0. Since A + BK is stable, from Lyapunov
Stability Theorem, it follows that P is the solution to the following
Lyapunov equation

(A + BK )∗P + P(A + BK ) + C∗C + K ∗RK = 0.
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Now, we want to characterize the feedback gain K which minimizes
the cost functional. For that, we assume that K is the minimizer, and
we compare the costs obtained with K and K + ∆K , under the
conditions A + BK and A + B(K + ∆K ) are stable.
We denote by P + ∆P the operator

P+∆P =

∫ ∞
0

et(A+B(K +∆K ))∗(C∗C+(K +∆K )∗R(K +∆K ))et(A+B(K +∆K ))dt .

We verify that ∆P is the solution to

(A + BK )∗∆P + ∆P(A + BK ) + (∆K )∗(RK + B∗P)

+(RK + B∗P)∗∆K + (∆K )∗R∆K = 0.

If K is optimal, then ∆P ≥ 0. Since A + BK is stable, ∆P ≥ 0 if and
only if

(∆K )∗(RK + B∗P) + (RK + B∗P)∗∆K + (∆K )∗R∆K ≥ 0.
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Since (∆K )∗R∆K ≥ 0 for all ∆K (and (∆K )∗R∆K > 0 for some
∆K ), we must have

RK + B∗P = 0, that is K = −R−1B∗P.

Replacing K by −R−1B∗P in the previous Lyapunov equation, we
prove that P solves the Riccati equation

PA + A∗P − PBR−1B∗P + C∗C = 0.
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5. An algorithm for solving Riccati equations

We consider the A.R.E.

ARE

P ∈ L(Z ), P = P∗ ≥ 0,
A∗P + PA− PBR−1B∗P + C∗C = 0,
A− BR−1B∗P generates
an exponentially stable semigroup,

where the unknown P belongs to L(Rn), A ∈ L(Rn), B ∈ L(Rm;Rn),
where Rm is the discrete control space, C ∈ L(Rn;R`), where R` is
the observation space.

We make the following assumption.

(H1) The pair (A,B) is stabilizable

(H2) The pair (A,C) is detectable or A has no eigenvalue on the
imaginary axis.

The ARE admits a unique solution.

The matrix

H =

[
A −BR−1B∗

CC∗ −A∗

]
is called the Hamiltonian matrix associated with the ARE .
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It is a symplectic matrix[
0 I
−I 0

]−1

H
[

0 I
−I 0

]
= −H∗.

Therefore the matrix H and −H∗ are similar and they have the same
eigenvalues. On the other hand H and H∗ have also the same set of
eigenvalues. Thus if λ is an eigenvalue of H, then −λ is also an
eigenvalue of H with the same multiplicity.

Let us denote by −λ1,−λ2, . . . ,−λn, λ1, λ2, . . . , λn, the eigenvalues of
H, where Re(λi ) ≥ 0 for i = 1, . . . ,n. Under assumptions (H1) and
(H2), it can be shown that the matrix H has no pure imaginary
eigenvalues, that is Re(λi ) > 0 for i = 1, . . . ,n.

There exists a matrix V whose columns are eigenvectors, or
generalized eigenvectors of H, such that

V−1HV =

[
−J 0
0 J

]
,

43/50



where −J is composed of Jordan blocks corresponding to
eigenvalues with negative real part, and

V =

[
V11 V12
V21 V22

]
,

is such that V1 =

[
V11
V21

]
is a matrix whose columns are

eigenvectors corresponding to eigenvalues with negative real parts. It
may be proved that V11 is nonsingular and the unique positive
semidefinite solution of equation (A.R.E .) is given by

P = V21V−1
11 .
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A very simple example
Set

A =

(
λ 1

0 λ

)
, B =

(
0

1

)
,

with λ > 0, R−1 = I, and C = 0. Then

H =


λ 1 0 0

0 λ 0 −1

0 0 −λ 0

0 0 −1 −λ

 .

In that case (C = 0), we replace the condition ’(A,C) is detectable’ by
the condition ’A− BB∗P is stable’.
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We have HV1 = −λV1 with

V1 = (−1,2λ,0,4λ2)T .

The solution to
(H+ λI)V2 = V1,

is
V2 = (−1/λ,1,−4λ2,0)T .

We obtain the solution to the (A.B.E .) (the degenerate (A.R.E .))

P =

(
0 −4λ2

4λ2 0

)(
−1 −1/λ

2λ 1

)−1

,

P =

(
0 −4λ2

4λ2 0

)(
1 1/λ

−2λ −1

)
=

(
8λ3 4λ2

4λ2 4λ

)
.
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Moreover

A− BB∗P =

(
λ 1

−4λ2 −3λ

)
.
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Another simple example – A reduced inverted pendulum

Instead of studying the equations of the inverted pendulum, we can
consider the simple model

θ′′ − sin θ = u,

where θ is the angular displacement from the unstable vertical
equilibrium, and u is taken as a control. The linearized system about
0 is

z ′ = Az + Bu, z(0) = z0,

where

z = (θ, ρ)T , A =

(
0 1

1 0

)
, B =

(
0

1

)
, ρ = θ′.

We choose R−1 = I and C = 0. Then

H =


0 1 0 0

1 0 0 −1

0 0 0 −1

0 0 −1 0

 .

We can verify the λ = 1 and λ = −1 are the two eigenvalues of H of
multiplicity 2.48/50



Rather than computing the matrix Riccati equation, we can
equivalently determine directly the control of minimal norm stabilizing
the system.

The eigenvalues of A are λ1 = 1 and λ2 = −1. They are both of
multiplicity 1. We have

E(λ1) = {(θ, ρ) ∈ R2 | θ = ρ} and E(λ2) = {(θ, ρ) ∈ R2 | θ = −ρ}.

We can rewrite the system as follows(
θ + ρ

2

)′
=

(
θ + ρ

2

)
+

1
2

u,(
ρ− θ

2

)′
= −

(
ρ− θ

2

)
+

1
2

u.

The first equation corresponds to the projected system onto the
unstable subspace. The feedback of minimal norm stabilizing the
unstable system is obtained by solving the one dimensional Riccati
equation

p > 0, 2p − p2/4 = 0.
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Thus p = 8 and the feedback law is

u(t) = −1
2

8
(
θ + ρ

2

)
= −2(θ + ρ).

Thus the closed loop linear system is(
θ

ρ

)′
=

(
0 1

−1 −2

)(
θ

ρ

)
.

We notice that the two eigenvalues of the generator of this system are
λ = −1. We recover the result already obtained previously.
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