

Numerics and Control of PDEs

Lecture 2

IFCAM – IISc Bangalore

July 22 – August 2, 2013

Stabilization with full information

Mythily R., Praveen C., Jean-Pierre R.

Plan of Lecture 2

1. Finite dimensional linear systems

1.1. Stability of finite dimensional linear systems

1.2. The Duhamel formula

2. Controllability and Reachability

3. Stabilizability and its characterization

4. Construction of a Feedback

5. Algorithms for solving Riccati equations

1. Finite Dimensional Linear Systems

1.1. Stability of Finite Dimensional Linear Systems

Theorem. Let A belong to $\mathbb{R}^{n \times n}$. The system

$$z' = Az, \quad z(0) = z_0,$$

is exponentially stable if and only if

$$\operatorname{Re} \sigma(A) < 0.$$

Lyapunov equation. Let A belong to $\mathbb{R}^{n \times n}$ and $Q = Q^* \geq 0$ belong to $\mathbb{R}^{n \times n}$. We consider the so-called Lyapunov equation

$$(LE) \quad P = P^* \geq 0, \quad P \in \mathbb{R}^{n \times n}, \quad A^*P + PA + Q = 0.$$

Theorem. If A is exponentially stable, then (LE) admits a unique solution defined by

$$P = \int_0^{\infty} e^{A^*t} Q e^{At} dt.$$

Stability Theorem. The operator A is exponentially stable if and only if, for all $Q \in \mathbb{R}^{n \times n}$ satisfying $Q = Q^* > 0$, the Lyapunov equation (LE) admits a solution.

1.2. The Duhamel formula

When $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, the solution to system

$$z' = Az + Bu, \quad z(0) = z_0,$$

is defined by

$$(E) \quad z_{z_0, u}(t) = z(t) = e^{tA}z_0 + \int_0^t e^{(t-s)A}Bu(s) \, ds.$$

The same formula holds true in \mathbb{C}^n . If $(\lambda_i)_{1 \leq i \leq r}$ are the complex eigenvalues of A , we can define

$$E_{\mathbb{C}}(\lambda_j) = \text{Ker}(A - \lambda_j I), \quad \dim E_{\mathbb{C}}(\lambda_j) = \ell_j = \text{geometric multiplicity of } \lambda_j,$$

$$G_{\mathbb{C}}(\lambda_j) = \text{Ker}((\lambda_j I - A)^{m(\lambda_j)}), \quad \text{the generalized eigenspace ass. to } \lambda_j,$$

$$\dim G_{\mathbb{C}}(\lambda_j) = N(\lambda_j) = \text{algebraic multiplicity of } \lambda_j.$$

We have

$$\mathbb{C}^n = \bigoplus_{j=1}^r G_{\mathbb{C}}(\lambda_j), \quad A = \Sigma \Lambda \Sigma^{-1}, \quad A G_{\mathbb{C}}(\lambda_j) \subset G_{\mathbb{C}}(\lambda_j),$$

$$\Lambda = \begin{pmatrix} \Lambda_1 & & & 0 \\ & \Lambda_2 & & \\ 0 & & \ddots & \\ & & & \Lambda_r \end{pmatrix}, \quad \Lambda_j = \begin{pmatrix} J_j^1 & & & 0 \\ & J_j^2 & & \\ 0 & & \ddots & \\ & & & J_j^{\ell_j} \end{pmatrix},$$

$$\Lambda_j \in \mathbb{C}^{N(\lambda_j) \times N(\lambda_j)}, \quad \text{and}$$

$$e^{tA} = \Sigma e^{t\Lambda} \Sigma^{-1} = \Sigma \begin{pmatrix} e^{t\Lambda_1} & & & 0 \\ & e^{t\Lambda_2} & & \\ 0 & & \ddots & \\ & & & e^{t\Lambda_r} \end{pmatrix} \Sigma^{-1}.$$

In particular

$$e^{tA}G_{\mathbb{C}}(\lambda_j) \subset G_{\mathbb{C}}(\lambda_j).$$

We can rewrite the equation

$$z' = Az + Bu, \quad z(0) = z_0,$$

in the form

$$\Sigma^{-1}z' = \Sigma^{-1}A\Sigma\Sigma^{-1}z + \Sigma^{-1}Bu, \quad \Sigma^{-1}z(0) = \Sigma^{-1}z_0,$$

that is

$$\zeta' = \Lambda\zeta + \mathbb{B}u, \quad \zeta(0) = \zeta_0,$$

where $\zeta = \Sigma^{-1}z$, $\mathbb{B} = \Sigma^{-1}B$, $\zeta_0 = \Sigma^{-1}z_0$.

The vector ζ may be written as

$$\zeta = \bigoplus_{j=1}^r \zeta^j = \begin{pmatrix} \zeta_1 \\ \vdots \\ \zeta_r \end{pmatrix} \quad \text{with} \quad \dim(\zeta_i) = N(\lambda_i) \quad \text{and} \quad \zeta^i = \begin{pmatrix} \vdots \\ 0 \\ \zeta_i \\ 0 \\ \vdots \end{pmatrix}.$$

Setting

$$z = \bigoplus_{j=1, j \neq i}^r \zeta^j = \bigoplus_{j=1, j \neq i}^r z^j,$$

z^i is the projection of z onto $G_{\mathbb{C}}(\lambda_i)$ along $\bigoplus_{j=1, j \neq i}^r G_{\mathbb{C}}(\lambda_j)$.

We can also decompose \mathbb{R}^n into *real generalized eigenspaces*

$$\mathbb{R}^n = \bigoplus_{j=1}^r G_{\mathbb{R}}(\lambda_j), \quad G_{\mathbb{R}}(\lambda_j) = G_{\mathbb{R}}(\bar{\lambda}_j) = \text{vec}\{\text{Re}G_{\mathbb{C}}(\lambda_j), \text{Im}G_{\mathbb{C}}(\lambda_j)\},$$

$$AG_{\mathbb{R}}(\lambda_j) \subset G_{\mathbb{R}}(\lambda_j).$$

The projection onto $G_{\mathbb{R}}(\lambda_i)$ along $\bigoplus_{j=1, j \neq i}^r G_{\mathbb{R}}(\lambda_j)$ can be defined accordingly.

The same analysis can be done for parabolic partial differential equations.

2. Controllability and Reachability of Finite Dimensional Systems

In this part, $Z = \mathbb{R}^n$ or $Z = \mathbb{C}^n$ and $U = \mathbb{R}^m$ or $U = \mathbb{C}^m$. We make the identifications $Z = Z^*$ and $U = U^*$.

The operator $L_T : L^2(0, T; U) \mapsto Z$

$$L_T u = \int_0^T e^{(T-s)A} B u(s) \, ds.$$

The reachable set from z_0 at time T

$$R_T(z_0) = e^{TA} z_0 + \text{Im } L_T.$$

Exact controllability. The pair (A, B) is exactly controllable at time T if $R_T(z_0) = Z$ for all $z_0 \in Z$.

Reachability. A state z_f is reachable from $z_0 = 0$ at time $T < \infty$ if there exists $u \in L^2(0, T; U)$ such that

$$L_T u = z_{0,u}(T) = \int_0^T e^{(T-s)A} B u(s) \, ds = z_f.$$

The system (A, B) is reachable at time $T < \infty$ iff

$$\text{Im } L_T = Z.$$

A finite dimensional system is reachable at time T iff it is controllable at time T .

The system is reachable (or exactly controllable) at time $T < \infty$ iff the matrix (called 'controllability Gramian')

$$W_{A,B}^T = \int_0^T e^{tA} B B^* e^{tA^*} dt$$

is invertible.

Idea of the proof. L_T is surjective iff its **adjoint operator**
 $L_T^* \in \mathcal{L}(Y, L^2(0, T; U))$,

$$(L_T^* \phi)(\cdot) = B^* e^{(T-\cdot)A^*} \phi,$$

is injective. This last condition is equivalent to the existence of $\alpha > 0$ such that

$$\int_0^T \|B^* e^{sA^*} \phi\|_U^2 ds = \|L_T^* \phi\|_{L^2(0, T; U)}^2 \geq \alpha \|\phi\|_Z^2, \quad \forall \phi \in Z.$$

Assume that the system (E) is reachable at time T . For a given $z_f \in Z$, the control

$$\bar{u}(t) = -B^* e^{(T-t)A^*} (W_{A,B}^T)^{-1} e^{TA} z_f$$

is such that

$$z_{0,\bar{u}}(T) = \int_0^T e^{(T-s)A} B \bar{u}(s) ds = z_f.$$

Moreover

$$\|\bar{u}\|_{L^2(0,T;U)}^2 = ((W_{A,B}^T)^{-1} z_f, z_f)_Z$$

and

$$\|\bar{u}\|_{L^2(0,T;U)} \leq \|u\|_{L^2(0,T;U)},$$

for all u such that

$$z_{0,u}(T) = \int_0^T e^{(T-s)A} B u(s) ds = z_f.$$

Applications. Let us calculate the eigenvalues and eigenvectors for the linearized inverted pendulum.

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{mg}{M} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & \frac{g(M+m)}{M\ell} & 0 \end{pmatrix}, \quad A^T = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -\frac{mg}{M} & 0 & \frac{g(M+m)}{M\ell} \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

The eigenvalues are

$$\lambda_1 = \sqrt{\frac{g(M+m)}{M\ell}}, \quad \lambda_2 = \lambda_3 = 0, \quad \lambda_4 = -\sqrt{\frac{g(M+m)}{M\ell}}.$$

The associated eigenvectors and generalized eigenvectors for A are

$$\xi_1 = \left(-\frac{mg}{M}, \frac{M\ell}{g(M+m)}, -\frac{mg}{M} \sqrt{\frac{g(M+m)}{M\ell}}, 1, \sqrt{\frac{g(M+m)}{M\ell}} \right)^T$$

$$A\xi_2 = 0, \quad \xi_2 = (1, 0, 0, 0)^T, \quad A\xi_3 = \xi_2, \quad \xi_3 = (0, 1, 0, 0)^T.$$

$$\xi_4 = \left(-\frac{mg}{M} \frac{M\ell}{g(M+m)}, \frac{mg}{M} \sqrt{\frac{g(M+m)}{M\ell}}, 1, -\sqrt{\frac{g(M+m)}{M\ell}} \right)^T.$$

We can also calculate the eigenvectors and generalized eigenvectors of A^T :

$$\varepsilon_1 = \left(0, 0, \frac{1}{2}, \frac{1}{2} \sqrt{\frac{M\ell}{g(M+m)}} \right)^T,$$

$$A^T \varepsilon_3 = 0, \quad \varepsilon_3 = \left(0, 1, 0, \frac{mg}{M} \frac{M\ell}{g(M+m)} \right)^T,$$

$$A\varepsilon_2 = \varepsilon_3, \quad \varepsilon_2 = \left(1, 0, \frac{mg}{M} \frac{M\ell}{g(M+m)}, 0 \right)^T,$$

$$\varepsilon_4 = \left(0, 0, \frac{1}{2}, -\frac{1}{2} \sqrt{\frac{M\ell}{g(M+m)}} \right)^T.$$

We have chosen $(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)$ to have

$$\varepsilon_i^T \xi_j = \delta_{i,j}.$$

Thanks to that bi-orthogonality property, we can define the projectors on each generalized eigenspace parallel to the sum of the other ones in the following way

$$\pi_1 z = (\varepsilon_1^T z) \xi_1, \quad \pi_4 z = (\varepsilon_4^T z) \xi_4,$$

and the projection π_0 on the generalized eigenspace $G(0)$, associated with $\lambda_2 = \lambda_3 = 0$, parallel to the sum $\text{Ker}(\lambda_1 I - A) \oplus \text{Ker}(\lambda_4 I - A)$ is

$$\pi_0 z = (\varepsilon_2^T z) \xi_2 + (\varepsilon_3^T z) \xi_3.$$

Controllability of Finite Dimensional Systems. The system (A, B) is controllable at time T if and only if one of the following conditions is satisfied.

$$W_{A,B}^* = \int_0^T e^{tA} B B^* e^{tA^*} dt > 0, \quad \forall T > 0,$$

$$\text{rank} [B \mid AB \mid \dots \mid A^{n-1}B] = n,$$

$$\forall \lambda \in \mathbb{C}, \quad \text{rank}[A - \lambda I \mid B] = n,$$

$$\forall \lambda \in \mathbb{C}, \quad A^* \varepsilon = \lambda \varepsilon \quad \text{and} \quad B^* \varepsilon = 0 \Rightarrow \varepsilon = 0,$$

$\exists K \in \mathcal{L}(Z, U), \quad \sigma(A + BK)$ can be freely assign
(with the cond. that complex eigenvalues are in conjugate pairs).

The controllability of the linearized inverted pendulum.

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{mg}{M} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & \frac{g(M+m)}{M\ell} & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ \frac{1}{M} \\ 0 \\ -\frac{1}{M\ell} \end{pmatrix},$$

The controllability matrix is

$$[B \mid AB \mid A^2B \mid A^3B] = \begin{pmatrix} 0 & \frac{1}{M} & 0 & \frac{mg}{M^2\ell} \\ \frac{1}{M} & 0 & \frac{mg}{M^2\ell} & 0 \\ 0 & -\frac{1}{M} & 0 & -\frac{g(M+m)}{M^2\ell^2} \\ -\frac{1}{M} & 0 & -\frac{g(M+m)}{M^2\ell^2} & 0 \end{pmatrix}.$$

Its determinant is

$$\begin{aligned} & \det[B \mid AB \mid A^2B \mid A^3B] \\ &= -\frac{g(M+m)}{M^3\ell^2} \left(-\frac{g(M+m)}{M^3\ell^2} + \frac{mg}{M^3\ell^2} \right) \\ &+ \frac{mg}{M^3\ell^2} \left(-\frac{g(M+m)}{M^3\ell^2} + \frac{mg}{M^3\ell^2} \right) = \frac{g^2}{M^4\ell^4}. \end{aligned}$$

The linearized inverted pendulum is controllable at any time $T > 0$.

Verification of the Hautus criterion.

We have

$$B^* = \begin{pmatrix} 0 & \frac{1}{M} & 0 & -\frac{1}{M\ell} \end{pmatrix},$$

and

$$B^*(\alpha \varepsilon_1) = -\frac{\alpha}{2} \frac{1}{M\ell} \sqrt{\frac{M\ell}{g(M+m)}} = 0 \Rightarrow \alpha = 0,$$

$$B^*(\alpha \varepsilon_3) = \frac{\alpha}{M} - \frac{\alpha}{M\ell} \frac{mg}{M} \frac{M\ell}{g(M+m)} = 0 \Rightarrow \alpha = 0,$$

$$B^*(\alpha \varepsilon_4) = \frac{\alpha}{2} \frac{1}{M\ell} \sqrt{\frac{M\ell}{g(M+m)}} = 0 \Rightarrow \alpha = 0.$$

Thus, we recover that the pair (A, B) is controllable.

3. Stabilizability of F.D.S.

3.i. Open loop stabilizability. System (A, B) is *open loop stabilizable* in Z when for any initial condition $z_0 \in Z$, there exists a control $u \in L^2(0, \infty; U)$ s.t.

$$\int_0^\infty \|z_{z_0, u}(t)\|_Z^2 dt < \infty.$$

Stabilizability by feedback. System (A, B) is *stabilizable by feedback* when there exists an operator $K \in \mathcal{L}(Z, U)$ s. t. $A + BK$ is exponentially stable in Z .

Open loop stabilizability is equivalent to *stabilizability by feedback* for finite dimensional systems or for parabolic systems with Dirichlet boundary conditions like the heat equation, the linearized Burgers equation, the Stokes equation, the linearized Navier-Stokes equations.

3.ii. Characterization of the stabilizability of F.D.S.

The finite dimensional case. System (E) is stabilizable if and only if one of the following conditions is satisfied.

- (i) $\forall \lambda, \operatorname{Re} \lambda \geq 0, \operatorname{rank} [A - \lambda I \mid B] = n,$
- (ii) $\forall \lambda, \operatorname{Re} \lambda \geq 0, A^* \varepsilon = \lambda \varepsilon \text{ and } B^* \varepsilon = 0 \Rightarrow \varepsilon = 0,$
- (iii) $\forall \lambda, \operatorname{Re} \lambda \geq 0, \operatorname{Ker}(\lambda I - A^*) \cap \operatorname{Ker}(B^*) = \{0\},$
- (iv) $\exists K \in \mathcal{L}(Z, U), \sigma(A + BK) \text{ is stable.}$

Conditions (ii), (iii), (iv) are equivalent to the stabilizability of (E) for **Infinite Dimensional Systems** under the previous conditions on (A, B) (analyticity, compactness, degree of unboundness of B).

FDS Example of a stabilizing feedback. The system (A, B) is controllable iff

$$W_{-A,B}^T = \int_0^T e^{-tA} BB^* e^{-tA^*} dt,$$

is invertible for all $T > 0$. Indeed

$$e^{TA} W_{-A,B}^T e^{TA^*} = \int_0^T e^{(T-t)A} BB^* e^{(T-t)A^*} dt = \int_0^T e^{\tau A} BB^* e^{\tau A^*} d\tau = W_{A,B}^T.$$

Assume that (A, B) is controllable, then

$$K = -B^*(W_{-A,B}^T)^{-1}$$

is a stabilizing feedback.

Idea of the proof. The mapping

$$z \longmapsto ((W_{-A,B}^T)^{-1} z, z)_z$$

is a Lyapunov function of the closed loop linear system.

Proof. The closed loop linear system is

$$z' = (A + BK)z, \quad z(0) = z_0.$$

We have

$$((W_{-A,B}^T)^{-1}z(t), z(t))_Z \geq 0 \quad \text{if } z(t) \neq 0,$$

$$\begin{aligned} \frac{d}{dt}((W_{-A,B}^T)^{-1}z(t), z(t))_Z &= 2((W_{-A,B}^T)^{-1}z'(t), z(t))_Z \\ &= 2((W_{-A,B}^T)^{-1}(A + BK)z(t), z(t))_Y < 0. \end{aligned}$$

FDS – Characterization of the stabilizability in terms of Gramians.

We assume that

$$Z = Z_s \oplus Z_u, \quad Z_u = \bigoplus_{j=1}^{N_u} G_{\mathbb{R}}(\lambda_j), \quad Z_s = \bigoplus_{j=N_u+1}^r G_{\mathbb{R}}(\lambda_j),$$

$$\operatorname{Re} \lambda_j > 0 \quad \text{if } 1 \leq j \leq N_u,$$

$$\operatorname{Re} \lambda_j < 0 \quad \text{if } N_u + 1 \leq j \leq r.$$

Recall that

$$e^{tA} Z_u \subset Z_u \quad \text{and} \quad e^{tA} Z_s \subset Z_s.$$

We also have

$$Z = Z^* = Z_s^* \oplus Z_u^*, \quad Z_u^* = \bigoplus_{j=1}^{N_u} G_{\mathbb{R}}^*(\lambda_j), \quad Z_s^* = \bigoplus_{j=N_u+1}^r G_{\mathbb{R}}^*(\lambda_j),$$

$$e^{tA^*} Z_u^* \subset Z_u^* \quad \text{and} \quad e^{tA^*} Z_s^* \subset Z_s^*.$$

Let π_u the projection onto Z_u along Z_s and set $\pi_s = I - \pi_u$. The system

$$\pi_u z' = z'_u = A_u z_u + \pi_u B u, \quad \pi_s z' = z'_s = A_s z_s + \pi_s B u,$$

can be written as a system in $Z \times Z$ of the form (using matrix notation)

$$\begin{pmatrix} z'_u \\ z'_s \end{pmatrix} = \begin{pmatrix} A_u & 0 \\ 0 & A_s \end{pmatrix} \begin{pmatrix} z_u \\ z_s \end{pmatrix} + \begin{pmatrix} \pi_u B u \\ \pi_s B u \end{pmatrix}, \quad \begin{pmatrix} z_u(0) \\ z_s(0) \end{pmatrix} = \begin{pmatrix} \pi_u z_0 \\ \pi_s z_0 \end{pmatrix}.$$

If the system (A, B) is stabilizable then the system $(A_u, B_u) = (\pi_u A, \pi_u B)$ is also stabilizable. The converse is true. Assume that $(A_u, B_u) = (\pi_u A, \pi_u B)$ is stabilizable and let $K \in \mathcal{L}(Z_u, U)$ be a stabilizing feedback. Then the system

$$\begin{pmatrix} z'_u \\ z'_s \end{pmatrix} = \begin{pmatrix} A_u + B_u K & 0 \\ B_s K & A_s \end{pmatrix} \begin{pmatrix} z_u \\ z_s \end{pmatrix}$$

is also stable.

4. Characterization of the stabilizability of F.D.S.

The following conditions are equivalent

- (a) (A, B) is stabilizable,
- (b) $(A_u, B_u) = (\pi_u A, \pi_u B)$ is stabilizable,
- (c) The Gramian

$$W_{-A_u, B_u}^{\infty} = \int_0^{\infty} e^{-tA_u} B_u B_u^* e^{-tA_u^*} dt$$

is invertible.

- (d) There exists $\alpha > 0$ such that for all $\phi \in Z_u^*$,

$$(O.I.) \quad (W_{-A_u, B_u}^{\infty} \phi, \phi)_Z = \int_0^{\infty} \left\| B_u^* e^{-tA_u^*} \phi \right\|_U^2 dt \geq \alpha \|\phi\|_Z^2.$$

The operator

$$P_u = (W_{-A_u, B_u}^{\infty})^{-1} \in \mathcal{L}(Z_u, Z_u^*), \quad P_u = P_u^* \geq 0,$$

provides a stabilizing feedback

$$A_u - B_u B_u^* P_u \quad \text{is exponentially stable.}$$

Recall that

$$B_u = \pi_u B \quad \text{and} \quad B_u^* = B^* \pi_u^*,$$

where π_u^* is the projection onto Z_u^* along Z_s^* .

The operator P_u satisfies the following Algebraic Bernoulli equation (a degenerate Algebraic Riccati equation)

$$P_u A_u + A_u^* P_u - P_u B_u B_u^* P_u = 0.$$

If we set

$$P = \pi_u^* P_u \pi_u.$$

Then $P \in \mathcal{L}(Z)$ is such that $P = P^* \geq 0$ and solves the following (A.B.E.)

$$P \in \mathcal{L}(Z), \quad P = P^* \geq 0,$$

$$A^* P + P A - P B B^* P = 0,$$

A.B.E.

$A - B B^* P$ generates

an exponentially stable semigroup.

Moreover, the feedback $-B^*P$ provides the control of minimal norm in $L^2(0, \infty; U)$

$$u(t) = -B^*P e^{t(A - BB^*P)} z_0,$$

and the spectrum of $A - BB^*P$ is

$$\begin{aligned}\sigma(A - BB^*P) = & \{-\operatorname{Re}\lambda + i\operatorname{Im}\lambda \mid \lambda \in \sigma(A), \operatorname{Re}\lambda > 0\} \\ & \cup \{\lambda \mid \lambda \in \sigma(A), \operatorname{Re}\lambda < 0\}.\end{aligned}$$

To obtain a better exponential decay we can replace A by $A + \omega I$ and determine the corresponding feedback $-B^*P_\omega$. In that case the spectrum of $A - BB^*P_\omega$ is as follows

Spectrum of A and of $A - BB^*P_\omega$

Example 1.

$$A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

with $\lambda_1 > \lambda_2 > 0$. Thus $A = A_u$, and

$$\begin{aligned} W_{-A_u, B_u}^\infty &= \int_0^\infty e^{-tA_u} B_u B_u^* e^{-tA_u^*} dt = \int_0^\infty \begin{pmatrix} e^{-2t\lambda_1} & e^{-t(\lambda_1+\lambda_2)} \\ e^{-t(\lambda_1+\lambda_2)} & e^{-2t\lambda_2} \end{pmatrix} dt \\ &= \begin{pmatrix} \frac{1}{2\lambda_1} & \frac{1}{\lambda_1+\lambda_2} \\ \frac{1}{\lambda_1+\lambda_2} & \frac{1}{2\lambda_2} \end{pmatrix}. \end{aligned}$$

$$(W_{-A_u, B_u}^\infty)^{-1} = \frac{4\lambda_1\lambda_2(\lambda_1+\lambda_2)^2}{(\lambda_1-\lambda_2)^2} \begin{pmatrix} \frac{1}{2\lambda_1^2} & -\frac{1}{\lambda_1+\lambda_2} \\ -\frac{1}{\lambda_1+\lambda_2} & \frac{1}{2\lambda_1} \end{pmatrix}.$$

$$BB^*P = \frac{4\lambda_1\lambda_2(\lambda_1+\lambda_2)^2}{(\lambda_1-\lambda_2)^2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2\lambda_1^2} & -\frac{1}{\lambda_1+\lambda_2} \\ -\frac{1}{\lambda_1+\lambda_2} & \frac{1}{2\lambda_1} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{2\lambda_1(\lambda_1+\lambda_2)}{\lambda_1-\lambda_2} & -\frac{2\lambda_2(\lambda_1+\lambda_2)}{\lambda_1-\lambda_2} \\ \frac{2\lambda_1(\lambda_1+\lambda_2)}{\lambda_1-\lambda_2} & -\frac{2\lambda_2(\lambda_1+\lambda_2)}{\lambda_1-\lambda_2} \end{pmatrix}.$$

$$\begin{aligned}
P^{-1}A^*P &= \frac{4\lambda_1\lambda_2(\lambda_1 + \lambda_2)^2}{(\lambda_1 - \lambda_2)^2} \begin{pmatrix} \frac{1}{2\lambda_1} & \frac{1}{\lambda_1 + \lambda_2} \\ \frac{1}{\lambda_1 + \lambda_2} & \frac{1}{2\lambda_2} \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} -\frac{1}{2\lambda_2} & -\frac{1}{\lambda_1 + \lambda_2} \\ -\frac{1}{\lambda_1 + \lambda_2} & \frac{1}{2\lambda_1} \end{pmatrix} \\
&= \frac{4\lambda_1\lambda_2(\lambda_1 + \lambda_2)^2}{(\lambda_1 - \lambda_2)^2} \begin{pmatrix} \frac{1}{2\lambda_1} & \frac{1}{\lambda_1 + \lambda_2} \\ \frac{1}{\lambda_1 + \lambda_2} & \frac{1}{2\lambda_2} \end{pmatrix} \begin{pmatrix} -\frac{\lambda_1}{2\lambda_2} & -\frac{\lambda_1}{\lambda_1 + \lambda_2} \\ -\frac{\lambda_2}{\lambda_1 + \lambda_2} & \frac{\lambda_2}{2\lambda_1} \end{pmatrix} \\
&= \frac{4\lambda_1\lambda_2(\lambda_1 + \lambda_2)^2}{(\lambda_1 - \lambda_2)^2} \begin{pmatrix} \frac{1}{4\lambda_2} - \frac{\lambda_2}{(\lambda_1 + \lambda_2)^2} & -\frac{1}{2(\lambda_1 + \lambda_2)} + \frac{\lambda_2}{2\lambda_1(\lambda_1 + \lambda_2)} \\ \frac{\lambda_1}{2\lambda_2(\lambda_1 + \lambda_2)} - \frac{1}{2(\lambda_1 + \lambda_2)} & -\frac{\lambda_1}{(\lambda_1 + \lambda_2)^2} + \frac{1}{4\lambda_1} \end{pmatrix} \\
&= \frac{4\lambda_1\lambda_2(\lambda_1 + \lambda_2)^2}{(\lambda_1 - \lambda_2)^2} \begin{pmatrix} \frac{(\lambda_1 - \lambda_2)(\lambda_1 + 3\lambda_2)}{4\lambda_2(\lambda_1 + \lambda_2)^2} & \frac{\lambda_2 - \lambda_1}{2\lambda_1(\lambda_1 + \lambda_2)} \\ \frac{\lambda_1 - \lambda_2}{2\lambda_2(\lambda_1 + \lambda_2)} & \frac{(\lambda_2 - \lambda_1)(3\lambda_1 + \lambda_2)\lambda_1}{4\lambda_1(\lambda_1 + \lambda_2)^2} \end{pmatrix} \\
&= \frac{4\lambda_1\lambda_2(\lambda_1 + \lambda_2)^2}{(\lambda_1 - \lambda_2)^2} \begin{pmatrix} \frac{(\lambda_1 - \lambda_2)(\lambda_1 + 3\lambda_2)}{4\lambda_2(\lambda_1 + \lambda_2)^2} & \frac{\lambda_2 - \lambda_1}{2\lambda_1(\lambda_1 + \lambda_2)} \\ \frac{\lambda_1 - \lambda_2}{2\lambda_2(\lambda_1 + \lambda_2)} & \frac{(\lambda_2 - \lambda_1)(3\lambda_1 + \lambda_2)}{4\lambda_1(\lambda_1 + \lambda_2)^2} \end{pmatrix} \\
&= \begin{pmatrix} \frac{\lambda_1(\lambda_1 + 3\lambda_2)}{(\lambda_1 - \lambda_2)} & \frac{2\lambda_2(\lambda_1 + \lambda_2)}{(\lambda_2 - \lambda_1)} \\ \frac{2\lambda_1(\lambda_1 + \lambda_2)}{(\lambda_1 - \lambda_2)} & \frac{\lambda_2(3\lambda_1 + \lambda_2)}{(\lambda_2 - \lambda_1)} \end{pmatrix}
\end{aligned}$$

and

$$A - BB^*P = \begin{pmatrix} \lambda_1 - \frac{2\lambda_1(\lambda_1 + \lambda_2)}{\lambda_1 - \lambda_2} & -\frac{2\lambda_2(\lambda_1 + \lambda_2)}{\lambda_2 - \lambda_1} \\ -\frac{2\lambda_1(\lambda_1 + \lambda_2)}{\lambda_1 - \lambda_2} & \lambda_2 - \frac{2\lambda_2(\lambda_1 + \lambda_2)}{\lambda_2 - \lambda_1} \end{pmatrix}$$

Since

$$A - BB^*P = -P^{-1}A^*P,$$

the matrix P solves the Bernoulli equation and

$$\text{spec}(A - BB^*P) = \{-\lambda_1, -\lambda_2\}.$$

As expected the symmetry property is satisfied between the spectra of $A - BB^*P$ and A .

Example 2.

$$A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

with $\lambda > 0$. Thus $A = A_u$, and

$$\begin{aligned} W_{-A_u, B_u}^\infty &= \int_0^\infty e^{-tA_u} B_u B_u^* e^{-tA_u^*} dt \\ &= \int_0^\infty \begin{pmatrix} e^{-\lambda t} & -te^{-\lambda t} \\ 0 & e^{-\lambda t} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} e^{-\lambda t} & 0 \\ -te^{-\lambda t} & e^{-\lambda t} \end{pmatrix} dt \\ &= \int_0^\infty \begin{pmatrix} t^2 e^{-2\lambda t} & -t e^{-2\lambda t} \\ -t e^{-2\lambda t} & e^{-2\lambda t} \end{pmatrix} dt = \begin{pmatrix} \frac{1}{4\lambda^3} & -\frac{1}{4\lambda^2} \\ -\frac{1}{4\lambda^2} & \frac{1}{2\lambda} \end{pmatrix} \end{aligned}$$

$$P = (W_{-A_u, B_u}^\infty)^{-1} = \begin{pmatrix} 8\lambda^3 & 4\lambda^2 \\ 4\lambda^2 & 4\lambda \end{pmatrix},$$

$$BB^*P = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 8\lambda^3 & 4\lambda^2 \\ 4\lambda^2 & 4\lambda \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 4\lambda^2 & 4\lambda \end{pmatrix},$$

$$A - BB^*P = \begin{pmatrix} \lambda & 1 \\ -4\lambda^2 & -3\lambda \end{pmatrix}.$$

$$P^{-1}A^*P = \begin{pmatrix} \frac{1}{4\lambda^3} & -\frac{1}{4\lambda^2} \\ -\frac{1}{4\lambda^2} & \frac{1}{2\lambda} \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 1 & \lambda \end{pmatrix} \begin{pmatrix} 8\lambda^3 & 4\lambda^2 \\ 4\lambda^2 & 4\lambda \end{pmatrix} = \begin{pmatrix} 2\lambda - 3\lambda & 1 - 2 \\ -2\lambda^2 + 6\lambda^2 & -\lambda + 4\lambda \end{pmatrix}$$

Since

$$A - BB^*P = -P^{-1}A^*P,$$

the matrix P solves the Bernoulli equation and the symmetry property is satisfied between the spectra of $A - BB^*P$ and A .

Example 3. The reduced linearized inverted pendulum.

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

This system comes from the linearization of the controlled pendulum equation

$$\theta'' - \sin \theta = u.$$

The eigenvalues of A are $\lambda_1 = 1$ and $\lambda_2 = -1$. In order to determine the projection onto the unstable subspace, we have to find the eigenvectors of $A = A^*$.

$$E(\lambda_1) = \{(\theta, \rho) \in \mathbb{R}^2 \mid \theta = \rho\} \quad \text{and} \quad E(\lambda_2) = \{(\theta, \rho) \in \mathbb{R}^2 \mid \theta = -\rho\}.$$

We set

$$\xi_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \quad \text{and} \quad \xi_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

Notice that $\xi_1 \in E(\lambda_1)$, $\xi_2 \in E(\lambda_2)$, and (ξ_1, ξ_2) is an orthonormal basis of \mathbb{R}^2 . Thus, the projection π_u on $E(\lambda_1)$ along $E(\lambda_2)$ is defined by

$$\pi_u z = (\xi_1^T z) \xi_1.$$

In order to find $A_u \in \mathcal{L}(Z_u)$ and $B_u \in \mathcal{L}(U, Z_u)$, it is convenient to introduce the change of variables

$$\begin{pmatrix} z_u \\ z_s \end{pmatrix} = \Sigma^{-1} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}, \quad \text{with} \quad \Sigma = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

The system

$$\Sigma^{-1} z' = \Sigma^{-1} A \Sigma \Sigma^{-1} z + \Sigma^{-1} B u, \quad \Sigma^{-1} z(0) = \Sigma^{-1} z_0,$$

is

$$\begin{pmatrix} z_u \\ z_s \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} z_u \\ z_s \end{pmatrix} + \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} u, \quad \begin{pmatrix} z_u(0) \\ z_s(0) \end{pmatrix} = \begin{pmatrix} z_{0,u} \\ z_{0,s} \end{pmatrix}.$$

Thus

$$z'_u = z_u + \frac{1}{\sqrt{2}} u, \quad z_u(0) = z_{0,u}.$$

The Bernoulli equation for this controlled system is

$$p > 0, \quad 2p - \frac{p^2}{2} = 0.$$

Thus $p = 4$, and the controlled system with feedback is

$$z'_u = z_u - \left(\frac{1}{\sqrt{2}} \right)^2 4z_u = -z_u, \quad z_u(0) = z_{0,u}.$$

The full closed loop system is

$$\begin{pmatrix} z_u \\ z_s \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} z_u \\ z_s \end{pmatrix}, \quad \begin{pmatrix} z_u(0) \\ z_s(0) \end{pmatrix} = \begin{pmatrix} z_{0,u} \\ z_{0,s} \end{pmatrix}.$$

Coming back to the system satisfied by z we have

$$z' = \Sigma \begin{pmatrix} -1 & 0 \\ 2 & -1 \end{pmatrix} \Sigma^{-1} z = \begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix} z, \quad z(0) = z_0.$$

4. Feedback gain minimizing a cost functional

We can find a feedback gain by considering the following optimal control problem (\mathcal{P})

$$\text{Minimize } J(z, u) = \frac{1}{2} \int_0^{\infty} \|Cz(t)\|_Y^2 dt + \frac{R}{2} \int_0^{\infty} \|u(t)\|_U^2 dt$$

$$z' = Az + Bu, \quad z(0) = z_0, \quad \lim_{t \rightarrow \infty} \|z(t)\|_z = 0,$$

$$\text{where } C \in \mathcal{L}(Z, Y), \quad R > 0.$$

We assume that the pair (A, B) is stabilizable, and that there is no eigenvalue of A on the imaginary axis.

We know that this problem admits a unique solution. We would like to find it. We denote by $z_{z_0, u}$ the solution of the state equation and we set $F(u) = J(z_{z_0, u}, u)$.

We would like to characterize the optimal control \bar{u} by setting $F'(\bar{u}) = 0$. This is not possible because we do not know the subspace of controls $U_f \subset U$ for which F is finite.

Method 1. Approximate (\mathcal{P}) by a sequence of control problems stated over a finite time interval $(0, k)$. Write the optimality conditions for this sequence of approximate problems and pass to the limit in the optimality systems.

Method 2. Look for the solution to (\mathcal{P}) in feedback form, that is look for K such that $A + BK$ is stable. Characterize the feedback gain K which minimizes the cost functional.

Theorem. We assume that the pair (A, B) is stabilizable, and that there is no eigenvalue of A on the imaginary axis. Then problem (\mathcal{P}) admits a unique solution defined by

$$u(t) = -K e^{t(A+BK)} z_0,$$

where $K \in \mathcal{L}(Z, U)$, $K = -B^* P$ and P is the solution to the Riccati equation

(A.R.E.)
$$P \in \mathcal{L}(Z), \quad A^* P + P A - P B B^* P + C C^* = 0,$$
$$P = P^* \geq 0, \quad A - B B^* P \text{ is stable.}$$

Proof. We replace $z(t)$ by $e^{t(A+BK)}z_0$ and $u(t)$ by $Ke^{t(A+BK)}z_0$ in the functional J , we get

$$\begin{aligned} J(z, u) &= \frac{1}{2} \int_0^\infty (e^{t(A+BK)^*} C^* C e^{t(A+BK)} z_0, z_0)_Z dt \\ &+ \frac{R}{2} \int_0^\infty (e^{t(A+BK)^*} K^* K e^{t(A+BK)} z_0, z_0)_Z dt = \frac{1}{2} (P z_0, z_0)_Z, \end{aligned}$$

with

$$P = \int_0^\infty e^{t(A+BK)^*} (C^* C + K^* R K) e^{t(A+BK)} dt.$$

It is clear that $P = P^* \geq 0$. Since $A + BK$ is stable, from Lyapunov Stability Theorem, it follows that P is the solution to the following Lyapunov equation

$$(A + BK)^* P + P(A + BK) + C^* C + K^* R K = 0.$$

Now, we want to characterize the feedback gain K which minimizes the cost functional. For that, we assume that K is the minimizer, and we compare the costs obtained with K and $K + \Delta K$, under the conditions $A + BK$ and $A + B(K + \Delta K)$ are stable.

We denote by $P + \Delta P$ the operator

$$P + \Delta P = \int_0^{\infty} e^{t(A+B(K+\Delta K))^*} (C^* C + (K+\Delta K)^* R (K+\Delta K)) e^{t(A+B(K+\Delta K))} dt.$$

We verify that ΔP is the solution to

$$\begin{aligned} & (A + BK)^* \Delta P + \Delta P (A + BK) + (\Delta K)^* (RK + B^* P) \\ & + (RK + B^* P)^* \Delta K + (\Delta K)^* R \Delta K = 0. \end{aligned}$$

If K is optimal, then $\Delta P \geq 0$. Since $A + BK$ is stable, $\Delta P \geq 0$ if and only if

$$(\Delta K)^* (RK + B^* P) + (RK + B^* P)^* \Delta K + (\Delta K)^* R \Delta K \geq 0.$$

Since $(\Delta K)^* R \Delta K \geq 0$ for all ΔK (and $(\Delta K)^* R \Delta K > 0$ for some ΔK), we must have

$$RK + B^* P = 0, \quad \text{that is } K = -R^{-1}B^* P.$$

Replacing K by $-R^{-1}B^* P$ in the previous Lyapunov equation, we prove that P solves the Riccati equation

$$PA + A^* P - PBR^{-1}B^* P + C^* C = 0.$$

5. An algorithm for solving Riccati equations

We consider the A.R.E.

ARE

$$P \in \mathcal{L}(Z), \quad P = P^* \geq 0,$$
$$A^*P + PA - PBR^{-1}B^*P + C^*C = 0,$$

$A - BR^{-1}B^*P$ generates
an exponentially stable semigroup,

where the unknown P belongs to $\mathcal{L}(\mathbb{R}^n)$, $A \in \mathcal{L}(\mathbb{R}^n)$, $B \in \mathcal{L}(\mathbb{R}^m; \mathbb{R}^n)$,
where \mathbb{R}^m is the discrete control space, $C \in \mathcal{L}(\mathbb{R}^n; \mathbb{R}^\ell)$, where \mathbb{R}^ℓ is
the observation space.

We make the following assumption.

- (H_1) The pair (A, B) is stabilizable
- (H_2) The pair (A, C) is detectable or A has no eigenvalue on the
imaginary axis.

The ARE admits a unique solution.

The matrix

$$\mathcal{H} = \begin{bmatrix} A & -BR^{-1}B^* \\ CC^* & -A^* \end{bmatrix}$$

is called the Hamiltonian matrix associated with the ARE.

It is a symplectic matrix

$$\begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}^{-1} \mathcal{H} \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix} = -\mathcal{H}^*.$$

Therefore the matrix \mathcal{H} and $-\mathcal{H}^*$ are similar and they have the same eigenvalues. On the other hand \mathcal{H} and \mathcal{H}^* have also the same set of eigenvalues. Thus if λ is an eigenvalue of H , then $-\lambda$ is also an eigenvalue of \mathcal{H} with the same multiplicity.

Let us denote by $-\lambda_1, -\lambda_2, \dots, -\lambda_n, \lambda_1, \lambda_2, \dots, \lambda_n$, the eigenvalues of \mathcal{H} , where $\operatorname{Re}(\lambda_i) \geq 0$ for $i = 1, \dots, n$. Under assumptions (H_1) and (H_2) , it can be shown that the matrix \mathcal{H} has no pure imaginary eigenvalues, that is $\operatorname{Re}(\lambda_i) > 0$ for $i = 1, \dots, n$.

There exists a matrix V whose columns are eigenvectors, or generalized eigenvectors of \mathcal{H} , such that

$$V^{-1} \mathcal{H} V = \begin{bmatrix} -J & 0 \\ 0 & J \end{bmatrix},$$

where $-J$ is composed of Jordan blocks corresponding to eigenvalues with negative real part, and

$$V = \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{bmatrix},$$

is such that $V_1 = \begin{bmatrix} V_{11} \\ V_{21} \end{bmatrix}$ is a matrix whose columns are eigenvectors corresponding to eigenvalues with negative real parts. It may be proved that V_{11} is nonsingular and the unique positive semidefinite solution of equation (A.R.E.) is given by

$$P = V_{21} V_{11}^{-1}.$$

A very simple example

Set

$$A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

with $\lambda > 0$, $R^{-1} = I$, and $C = 0$. Then

$$\mathcal{H} = \begin{pmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 0 & -1 \\ 0 & 0 & -\lambda & 0 \\ 0 & 0 & -1 & -\lambda \end{pmatrix}.$$

In that case ($C = 0$), we replace the condition '(A, C) is detectable' by the condition ' $A - BB^*P$ is stable'.

We have $\mathcal{H}V_1 = -\lambda V_1$ with

$$V_1 = (-1, 2\lambda, 0, 4\lambda^2)^T.$$

The solution to

$$(\mathcal{H} + \lambda I)V_2 = V_1,$$

is

$$V_2 = (-1/\lambda, 1, -4\lambda^2, 0)^T.$$

We obtain the solution to the (A.B.E.) (the degenerate (A.R.E.))

$$P = \begin{pmatrix} 0 & -4\lambda^2 \\ 4\lambda^2 & 0 \end{pmatrix} \begin{pmatrix} -1 & -1/\lambda \\ 2\lambda & 1 \end{pmatrix}^{-1},$$

$$P = \begin{pmatrix} 0 & -4\lambda^2 \\ 4\lambda^2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1/\lambda \\ -2\lambda & -1 \end{pmatrix} = \begin{pmatrix} 8\lambda^3 & 4\lambda^2 \\ 4\lambda^2 & 4\lambda \end{pmatrix}.$$

Moreover

$$A - BB^*P = \begin{pmatrix} \lambda & 1 \\ -4\lambda^2 & -3\lambda \end{pmatrix}.$$

Another simple example – A reduced inverted pendulum

Instead of studying the equations of the inverted pendulum, we can consider the simple model

$$\theta'' - \sin \theta = u,$$

where θ is the angular displacement from the unstable vertical equilibrium, and u is taken as a control. The linearized system about 0 is

$$z' = Az + Bu, \quad z(0) = z_0,$$

where

$$z = (\theta, \rho)^T, \quad A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \rho = \theta'.$$

We choose $R^{-1} = I$ and $C = 0$. Then

$$\mathcal{H} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{pmatrix}.$$

We can verify the $\lambda = 1$ and $\lambda = -1$ are the two eigenvalues of \mathcal{H} of multiplicity 2

Rather than computing the matrix Riccati equation, we can equivalently determine directly the control of minimal norm stabilizing the system.

The eigenvalues of A are $\lambda_1 = 1$ and $\lambda_2 = -1$. They are both of multiplicity 1. We have

$$E(\lambda_1) = \{(\theta, \rho) \in \mathbb{R}^2 \mid \theta = \rho\} \quad \text{and} \quad E(\lambda_2) = \{(\theta, \rho) \in \mathbb{R}^2 \mid \theta = -\rho\}.$$

We can rewrite the system as follows

$$\begin{aligned} \left(\frac{\theta + \rho}{2}\right)' &= \left(\frac{\theta + \rho}{2}\right) + \frac{1}{2}u, \\ \left(\frac{\rho - \theta}{2}\right)' &= -\left(\frac{\rho - \theta}{2}\right) + \frac{1}{2}u. \end{aligned}$$

The first equation corresponds to the projected system onto the unstable subspace. The feedback of minimal norm stabilizing the unstable system is obtained by solving the one dimensional Riccati equation

$$p > 0, \quad 2p - p^2/4 = 0.$$

Thus $p = 8$ and the feedback law is

$$u(t) = -\frac{1}{2}8 \left(\frac{\theta + \rho}{2} \right) = -2(\theta + \rho).$$

Thus the closed loop linear system is

$$\begin{pmatrix} \theta \\ \rho \end{pmatrix}' = \begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} \theta \\ \rho \end{pmatrix}.$$

We notice that the two eigenvalues of the generator of this system are $\lambda = -1$. We recover the result already obtained previously.