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1. Estimation problem

We consider
z ′ = Az + f + µ, z(0) = z0 + µ0.

The data f and z0 are assumed to be known, while µ and η are model
errors. We would like to estimate z thanks to some measurements

yobs(t) = Hz(t) + η(t) ∈ Yo .

Here, Yo is the space of observations, η(t) is a measure error and yobs(t)
is the noisy observation.

Without measurements the only estimation of the state is made by
solving the equation

z ′e = Aze + f , ze(0) = z0.

The error e = z − ze is

e(t) = etAµ0 +

∫ t

0

e(t−s)Aµ(s) ds.

The goal is to use the measure yobs(t) to improve the estimation of z .
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Example – The simplified linearized inverted pendulum

As in lecture 2, we consider the ’theoretical model’

θ′′ = θ + u, θ(0) = θ0, θ′(0) = θ1,

and the ’noisy model’

θ′′ = θ + u + µ, θ(0) = θ0 + µ0, θ′(0) = θ1 + µ1.

Setting ρ = θ′, we rewrite this system in the form(
θ
ρ

)′
=

(
0 1
1 0

)(
θ
ρ

)
+ u

(
0
1

)
+ µ

(
0
1

)
.

Assume that u is given by the feedback law determined in lecture 2

u = −2(θ + ρ).

The next step consists in using an estimation (θe , ρe) of (θ, ρ) in the
feedback law.
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We measure θ

H

(
θ
ρ

)
= θ.

Case 1. If the measure of θ is exact, we can evaluate θ′ by taking the
derivative of the measure, and we do not need the model to estimate the
state. We are in the case of a full information coming from the measure.

Case 2. If the model

θ′′ = θ + u, θ(0) = θ0, θ′(0) = θ1,

is exact, we can use the closed loop system

θ′′ = θ − 2(θ + θ′), θ(0) = θ0, θ′(0) = θ1,

to determine the control. In that case we do not use the measure to
estimate the state.

Case 3. If the observation is θobs = θ + η, where η is a noise. We
measure θ but the feedback law depends on θ and ρ = θ′. If we apply the
same strategy as in case 1, we are going to use θobs and θ′obs in the
feedback law. The noise is not necessarily differentiable and this naive
approach introduces huge errors.
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Another approach consists in using an asymptotic state estimation of the
form

z ′e = Aze + f + L(Hze − yobs), ze(0) = z0.

The term L(Hze − yobs) is called a filtering gain and L ∈ L(Yo ,Z ). The
filtering gain is a corrector taking into account the measures.

We look for L ∈ (Yo ,Z ) such that(
et(A+LH)

)
t≥0

is exponentially stable on Z .

When the semigroup
(
et(A+LH)

)
t≥0 is exponentially stable on Z , a

dynamical system of the form

z ′e = Aze + f + L(Hze − yobs), ze(0) = z0, with L ∈ (Yo ,Z ),

is called a Luenberger observer.
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The equation for the error e = z − ze is

e′ = (A + LH)e + µ− Lη, e(0) = µ0.

Theorem. Assume that

‖et(A+LH)‖L(Z) ≤ Ce−tω, with ω > 0.

If etω η ∈ L2(0,∞;Yo) and etω µ ∈ L2(0,∞;Z ), then

‖e‖L2(0,∞;Z) ≤ Ce−tω1
(
‖µ0‖Z + ‖etω η‖L2(0,∞;Yo) + ‖etω µ‖L2(0,∞;Z)

)
,

with 0 < ω1 < ω.
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2. Observability and Detectability of finite dimensional systems.
Observability.

An initial condition z0 ∈ Z is unobservable for the pair (A,H) when

H etA z0 = 0 for all t ≥ 0.

For finite dimensional systems, an initial condition z0 ∈ Z is unobservable
for the pair (A,H) if and only if it is not reachable for the pair (A∗,H∗).
Indeed, if z0 ∈ Z is unobservable, then

0 =

∫ T

0

(
y(t),H etA z0

)
Yo

dt =

∫ T

0

(
etA

∗
H∗y(t), z0

)
Z
dt

for all y ∈ L2(0,T ;Yo). The converse is obvious.

A system (A,H) of finite dimension is observable when the set of
unobservable state is reduced to {0}.

The pair (A,H) is observable iff the pair (A∗,H∗) is controllable.
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Detectability.
The dual notion of stabilizability is the notion of detectability. We say
that the pair (A,H) is detectable iff there exists L ∈ (Yo ,Z ) such that(

et(A+LH)
)
t≥0

is exponentially stable on Z .

The semigroup generated by A + LH is exponentially stable on Z iff the
semigroup generated by A∗ + H∗L∗ is exponentially stable on Z∗ ≡ Z .

This means that the pair (A,H) is detectable iff the pair (A∗,H∗) is
stabilizable. One way to find L∗ such that A∗ + H∗L∗ is exponentially
stable consists in using a stabilizing feedback control by solving the
Riccati equation

Pe = P∗e ≥ 0, PeA
∗ + APe − PeH

∗HPe + I = 0.

Taking into account the knowledge of covariance noises, we can solve a
Riccati equation of the form

Pe = P∗e ≥ 0, PeA
∗ + APe − PeH

∗ R−1η HPe + Qµ = 0,

where Rη ∈ L(Yo) and Qµ ∈ L(Z ) are two symmetric and semidefinite
positive operators (the covariance operators of the noises).

10/30



Detectability of finite dimensional systems

Example 1(
z1
z2

)′
=

(
λ 0
0 λ

)(
z1
z2

)
+ f + µ, z(0) = z0 + µ0.

Let us take
H1z = z1 + z2.

The state z0 = (1,−1)T is not observable. But if λ < 0, then (A,H1) is
detectable. If λ > 0, the pair (A,H1) is not detectable.

If H2z = (z1 + z2, z1 − z2), then (A,H2) is detectable. (We have a full
’noisy’ information.)

Example 2(
z1
z2

)′
=

(
λ1 0
0 λ2

)(
z1
z2

)
+ f + µ, z(0) = z0 + µ0.

Let us take
H1z = z1 + z2.

If λ1 6= λ2, the pair (A,H1) is detectable and observable.
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• The pair (A,H) is detectable iff there exists α > 0 such that∫ ∞
0

∥∥H πu e
−tAuz

∥∥2
Yo

dt ≥ α‖z‖2Z .

• The best constant α > 0 can be taken as an evaluation of a degree of
detectability.

• The pair (A,H) is detectable iff, for each ’unstable’ eigenvalue λj of A,
the corresponding family of eigenvectors (eigenfunctions) (ekj )1≤k≤`j is
such that the family

(He1j ,He
2
j , · · · ,He

`j
j )

is linearly independent.

Example 3

z ′ = Az + f + µ, z(0) = z0 + µ0, z(t) ∈ RN , A = diag(λ1, · · · , λN),

Hz(t) =
∑N

i=1 zi (t) ∈ R and yobs(t) = Hz(t) + η(t).
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We are going to see that if the eigenvalues are two by two distinct, then
the measure Hz is enough to estimate z .

Assume that all the eigenvalues are unstable and of multiplicity equal to
1. We have

H = (1, · · · , 1).

The eigenvectors are the basis vectors ei , 1 ≤ i ≤ N. We have

Hei = 1.

Thus the detectability condition is trivially satisfied. However, we have

e−tA
∗
u H∗He−tAu = diag(e−λ1t , · · · , e−λN t)H∗H diag(e−λ1t , · · · , e−λN t),

H∗H =

 1 · · · 1
...

. . .
...

1 · · · 1

 ,
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and ∫ ∞
0

e−tA
∗
u H∗He−tAudt =

=



1
2λ1

· · · 1
λ1+λj

· · · 1
λ1+λN

...
...

...
...

...
1

λi+λ1
· · · 1

2λi
· · · 1

λi+λN

...
...

...
...

...
1

λN+λ1
· · · 1

λN+λj
· · · 1

2λN


.

In the case when N = 2,

det

∫ ∞
0

e−tA
∗
u H∗He−tAudt =

(
1

λ1
− 1

λ2

)2

.

Thus if two eigenvalues are very close, the pair (A,H) is ’weakly’
detectable.
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Example 4 – The linearized inverted pendulum

We measure θ and x . We have

A =



0 1 0 0

0 0 −mg

M
0

0 0 0 1

0 0
g(M + m)

M`
0


and H1 =

(
1 0 0 0

0 0 1 0

)
.

The controllability matrix of (A∗,H∗1 ) is

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 −mg
M

g(M+m)
M` 0 0

0 0 0 1 0 0 −mg
M

g(M+m)
M`

 .

Thus (A∗,H∗1 ) is stabilizable and (A,H1) is detectable.
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If we choose the measure operator

H2 =
(

1 0 0 0
)
,

the controllability matrix of (A∗,H∗2 ) is
1 0 0 0

0 1 0 0

0 0 −mg
M 0

0 0 0 −mg
M

 .

Thus (A∗,H∗2 ) is also stabilizable and (A,H2) is detectable.
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3. Calculation of filtering gains L

The deterministic approach to find L

Assume that µ0 = 0. When µ is a white Gaussian noise with mean value
zero and with covariance Qµ (Qµ = Q∗µ ≥ 0), and when η is a white
Gaussian noise with mean value zero and with covariance Rη
(Rη = R∗η > 0), it can be shown that the best linear estimator of z ,
without bias, knowing yobs , is the solution to the problem

(EP)

inf J(z , µ, η), (z , µ, η) obeys

z ′ = Az + f + µ, z(0) = z0,

yobs(t) = Hz(t) + η(t) ∈ Yo ,

and

J(z , µ, η) =
1

2

∫ ∞
0

(
R−1η (Hz − yobs),Hz − yobs

)
Yo

+
1

2

∫ ∞
0

(Q−1µ µ, µ)Z .

The weights R−1η and Q−1µ are used to obtain the best ponderation
between the model error and the measure error.
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When Qµ = 0, then µ = 0. The model error is equal to zero and the best
estimation (which is also the exact one) is given by

z ′ = Az + f , z(0) = z0.

At the opposite, if Rη = 0, then η = 0 and we have to use the equations
yobs(t) = Hz(t) and z ′ = Az + f + µ, z(0) = z0 to identify µ.

Does (EP) admit a solution ? How to characterize it ?

The existence of solutions to (EP) is related to what is called the
detectability of the pair (A,H). Let us explain why.

Let us denote by zz0,f the solution to

z ′z0,f = Azz0,f + f , zz0,f (0) = z0,

set ζ = z − zz0,f , ȳobs = yobs − Hzz0,f and

I (ζ, µ, η) =
1

2

∫ ∞
0

(
R−1η (Hζ − ȳobs),Hζ − ȳobs

)
Yo

+
1

2

∫ ∞
0

(Q−1µ µ, µ)Z .
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Problem (EP) is transformed as follows

(NEP)

inf I (ζ, µ, η), (ζ, µ, η) obeys

ζ ′ = Aζ + µ, ζ(0) = 0,

ȳobs(t) = Hζ(t) + η(t) ∈ Yo .

Assume that this problem admits a unique solution and let us write
formally the optimality system

ζ ′ = Aζ − Qµφ, ζ(0) = 0,

−φ′ = A∗φ+ H∗R−1η (Hζ − ȳobs), φ(∞) = 0.

In this primal formulation, ζ is the state variable and φ the adjoint state.
We can look for a dual problem in which φ will be the state variable and

ζ the adjoint state. For that, we set ψ = R
−1/2
η Hζ and we rewrite the

above system as follows

ζ ′ = Aζ − Q1/2
µ Q1/2

µ φ, ζ(0) = 0,

−φ′ = A∗φ+ H∗R
−1/2
η ψ − H∗R−1η ȳobs , φ(∞) = 0.
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We can verify that this system is the O.S. of the dual problem

(DP)
inf F (φ, ψ), (φ, ψ) obeys

−φ′ = A∗φ+ H∗R
−1/2
η ψ − H∗R−1η ȳobs , φ(∞) = 0,

where

F (φ, ψ) =
1

2

∫ ∞
0

(
Qµφ, φ

)
Z

+
1

2

∫ ∞
0

‖ψ‖2Yo
.

For the well posedness of the state equation of (DP), we need that
(A∗,H∗) is stabilizable. This is exactly equivalent to the definition of the
detectability of the pair (A,H). The Riccati equation for (DP) is

Pe = P∗e ≥ 0, PeA
∗ + APe − PeH

∗ R−1η HPe + Qµ = 0.

This Riccati equation enable us to define a Luenberger observer by setting

L = −PeH
∗R−1η .

Then A∗ + H∗L∗ and A + LH are exponentially stable.
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The stochastic approach to find L

We assume that µ is a Gaussian stationary white noise with mean value
zero and covarinace Qµ, η is a Gaussian stationary white noise with mean
value zero and covariance Rη. Moreover we assume that µ and η are
independent.

The Kalman filtering consists in choosing the estimation ze of z in such a
way that the covariance of the error e = z − ze is minimized.
Let us look for an estimation of the form

z ′e = Aze + f + L(Hze − yobs), ze(0) = z0.

Let us look for L which minimzes the covariance of the error. The
equation for the error e is

e′ = (A + LH)e + µ+ Lη, e(0) = µ0.

The mean value of the error is

E [e(t)] = et(A+LH)E [µ0].

If A + LH is stable then limt→∞ E [e(t)] = 0.
The covariance of estimation error is

E [e(t)e(t)T ] = Pe .
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In the case when E [µ0] = 0 (or if we look for the asymptotic regime), the
covariance Pe satisfies the Lyapunov equation

(A + LH)Pe + Pe(A + LH)T + Qµ + LRηL
T = 0.

As in the calculation of the minimizing feedback control, it can be shown
that the filtering gain minimizing the covariance of the error is

L = −Pe H
T R−1η .

The corresponding covariance is the solution to the Riccati equation

Pe = P∗e ≥ 0, PeA
∗ + APe − PeH

∗ R−1η HPe + Qµ = 0.

Thus, we recover the same filtering gain as in the deterministic approach.
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The simplified linearized inverted pendulum revisited

We have (
θ
ρ

)′
=

(
0 1
1 0

)(
θ
ρ

)
+ u

(
0
1

)
+ µ

(
0
1

)
,

θobs = θ + η.

We assume that a, the variance of η, is positive and b, the variance of µ
is also positive. We have

A =

(
0 1
1 0

)
and H = (1 0).

The pair (A∗,H∗) is stabilizable and the pair (A,H) is detectable. The
minimization problem giving the best estimator is

inf
1

2a

∫ ∞
0

(θ − θobs)2dt +
1

2b

∫ ∞
0

µ2dt,

θ′′ = θ + u + µ, θ(0) = θ0, θ′(0) = θ1.
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The Riccati equation for the filtering operator is

PeA
∗ + AP − 1

a
PeH

∗HPe +

(
0 0
0 b

)
=

(
0 0
0 0

)
.

We obtain

p12 + p21 −
1

a
p211 = 0, p11 + p22 −

1

a
p11p12 = 0,

p11 + p22 −
1

a
p11p21 = 0, p21 + p12 −

1

a
p21p12 + b = 0.

Since p12 = p21, we obtain

2p12 −
1

a
p211 = 0, p11 + p22 −

1

a
p11p12 = 0,

−2a p12 + p212 − ab = 0.

Which gives p12 = a +
√
a2 + ab and

p11 =

√
2a2 + 2a

√
a2 + ab, p22 =

√
2a + 2

√
a2 + ab

√
a2 + b.
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4. Coupling between control and estimation

The stabilization problem with full information. Consider a noisy control
system

z ′ = Az + Bu + µ, z(0) = z0 + µ0.

Assume that (A,B) is stabilizable, we can find K ∈ L(Z ,U), such that
A + BK is exponentially stable on Z , by solving an Algebraic Riccati
Equation of the form

P = P∗ ≥ 0, A∗P + PA− PBR−1B∗P + Q = 0,

with R = R∗ > 0 and Q = Q∗ ≥ 0, and by choosing

K = −R−1B∗P.

The estimation problem. We solve the following A.R.E.

Pe = P∗e ≥ 0, APe + PeA
∗ − PeH

∗R−1η HPe + Qµ = 0,

and we choose L = −PeH
∗R−1η .
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When we compare the Riccati equation for Pe and the Riccati equation
used to define the control law

P = P∗ ≥ 0, A∗P + PA− PBR−1B∗P + Q = 0,

we notice that the roles of A and A∗ are interchanged.

Next we use the filtering equation to determine the control by solving

z ′e = Aze + BKze + L(Hze − yobs), ze(0) = z0.
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After that we prove that the original system with the feedback coming
from the estimator

z ′ = Az + BKze + µ, z(0) = z0 + µ0,

is stable. Indeed the system satisfied by (z , ze)T is(
z
ze

)′
=

(
A BK
−LH A + BK + LH

)(
z
ze

)
+

(
µ
0

)
.

Theorem. If (et(A+BK))t≥0 is exponentially stable and if (et(A+LH))t≥0 is
exponentially stable, then the semigroup generated by

A =

[
A BK
−LH A + BK + LH

]
is also exponentially stable on Z × Z .
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Proof. If e = z − ze , we have(
z
e

)′
=

(
A + BK −BK

0 A + LH

)(
z
e

)
+

(
µ
Lη

)
.
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5. Local stabilization of nonlinear systems

Let us recall that we want to stabilize the nonlinear system

z ′ = Az + Bu + N(z) + R(z)u + µ, z(0) = z0 + µ0,

where z = (x , x ′, θ, θ′)T ,

A =



0 1 0 0

0 0 −mg

M
0

0 0 0 1

0 0
g(M + m)

M`
0


, B =



0

1

M

0

− 1

M`


,

z0 = (x0, x1, θ0, θ1)T

with the measure

yobs(t) = Hz(t) + η(t), H =

(
1 0 0 0

0 0 1 0

)
.

The two nonlinear terms N and R obey N(0) = 0 and R(0) = 0.
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We use the feedback and the filtering gains K and L determined for the
linearized model, and we solve

z ′ = Az + Bu + N(z) + R(z)u + µ, z(0) = z0 + µ0,

z ′e = Aze + BKze + L(Hze − yobs), ze(0) = z0,

yobs(t) = Hz(t) + η(t).

We show, and we verify numerically, that this system is locally stable.
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