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1. The Heat equation with Homogeneous Boundary Conditions

We consider the equation

(HHE)

∂z
∂t
− ∂2z
∂x2 = 0 in (0,1)× (0,∞),

z(0, t) = 0 and z(1, t) = 0 for t ∈ (0,∞),

z(x ,0) = z0(x) in (0,1).

We assume that z0 ∈ L2(0,1). The eigenvalues of A = d2/dx2, with
Dirichlet boundary conditions, and the corresponding eigenfunctions
are

λk = −π2 k2, ξk (x) =
√

2 sin(k π x).

The family (ξk )k∈N∗ is a Hilbertian basis in L2(0,1). We can
decompose the intial condition z0 in this basis:

z0 =
∞∑

k=1

ζ0,kξk , with ζ0,k = (z0, ξk )L2(0,1).
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If we look for a solution z to the heat equation in the form

z(x , t) =
∞∑

k=1

ζk (t) ξk (x),

we can show that ζk satisfies the differential equation

ζ ′k = λk ζk , ζk (0) = ζ0,k .

Thus ζk (t) = eλk tζ0,k , and

z(x , t) =
∞∑

k=1

eλk t(z0, ξk
)

L2(0,1)ξk ,

is a candidate to be a solution to (HHE).
We can show that, if z0 ∈ L2(0,1), the above series converges in
C([0,T ]; L2(0,1)), while it converges in C([0,T ]; H1

0 (0,1)) if
z0 ∈ H1

0 (0,1).
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The semigroup of the heat operator

For all t ≥ 0, we define the operator etA ∈ L(L2(0,1)) as follows

etAz0 =
∞∑

k=1

eλk t(z0, ξk
)

L2(0,1)ξk .

We can check that the family of operators (etA)t≥0 obeys the following
properties

• e0A = I,

• For t ≥ 0, s ≥ 0, etAesA = esAetA = e(t+s)A,

• limt↘0 ‖etAz0 − z0‖L2(0,1) = 0, for all z0 ∈ L2(0,1).

Thus, this family of operators has properties similar to those of the
exponential of a matrix. It is called a strongly continuous semigroup
on L2(0,1).
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In addition we have

d
dt

etA = AetA for t > 0,

where

Az =
d2z
dx2 if z ∈ H2(0,1) ∩ H1

0 (0,1).

Notice that
etAz0 ∈ H2(0,1) ∩ H1

0 (0,1) for t > 0,

even if z0 ∈ L2(0,1). Indeed

d2

dx2 etAz0 =
∞∑

k=1

λk eλk t(z0, ξk
)

L2(0,1)ξk ,

and the series converges in L2(0,1) because

∞∑
k=1

∣∣∣λk eλk t(z0, ξk
)

L2(0,1)

∣∣∣2 <∞.
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The nonhomogeneous heat equation

We consider the equation

(NHHE)

∂z
∂t
− ∂2z
∂x2 = f in (0,1)× (0,∞),

z(0, t) = 0 and z(1, t) = 0 for t ∈ (0,∞),

z(x ,0) = z0(x) in (0,1).

We assume that z0 ∈ L2(0,1) and f ∈ L2(0,T ; L2(0,1)).
Arguing as above, and with the variation of constant formula, we can
show that the solution to (NHHE) is

z(t) = etAz0 +

∫ t

0
e(t−s)Af (s) ds.

We shall call it ’the Duhamel formula’.
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2. The heat equation with a nonhomogeneous boundary
condition

We consider the equation

(NHBC)

∂z
∂t
− ∂2z
∂x2 = 0 in (0,1)× (0,T ),

z(0, t) = 0 and z(1, t) = u(t) for t ∈ (0,T ),

z(x ,0) = z0(x) in (0,1).

We assume that z0 ∈ L2(0,1) and u ∈ L2(0,T ).
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Weak formulation (WF) for (NHBC)

In order to take into account the non homogeneous B.C., the most
usual weak formulation is

(WF )

Find z ∈ L2(0,T ; H1
{0}(0,1)) such that

d
dt

(z(t), φ)L2 = −
∫ 1

0

∂z
∂x

(x , t)
dφ
dx

dx ∀φ ∈ H1
0 (0,1),

z(1, t) = u(t),

(z(0), φ)L2 = (z0, φ)L2 ∀φ ∈ H1
0 (0,1).

We shall use that formulation for the numerical approximation of the
equation. But we cannot use that formulation to obtain a controlled
system of the form

z ′ = Az + Bu in (0,∞), z(0) = z0.
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Solutions defined by transposition in the case of (NHBC)

We say that z ∈ L2(0,T ; L2(0,1)) is a weak solution to equation
(NHBC) if and only if for all test functions φ ∈ H2(0,1) ∩ H1

0 (0,1), the
function t 7−→ (z(t), φ)L2 belongs to H1(0,T ), and

d
dt

(z(t), φ)L2 =

∫ 1

0
z(x , t)φxx (x) dx − u(t)φx (1),

(z(0), φ)L2 = (z0, φ)L2 .

Thus
〈Bu(t), φ〉 = (u(t),B∗φ)R = −u(t)φx (1),

that is
B∗φ = −φx (1).
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Lifting of the boundary condition

We look for a solution to (NHBC) in the form

z = y + w ,

where
w(x , t) = x u(t).

We decompose z, y and w in the basis (ξk )j∈N∗

z(x , t) =
∞∑

k=1

ζk (t)ξk (x), y =
∞∑

k=1

yk (t)ξk , w =
∞∑

k=1

wkξk .

We have

wk (t) = u(t)(x , ξk )L2 = u(t)
√

2
∫ 1

0
x sin(kπx)dx = −u(t)

√
2

kπ
(−1)k .

11/28



The equation satisfied by y is

∂y
∂t
− ∂2y
∂x2 = −x u′(t) in (0,1)× (0,T ),

y(0, t) = 0 and y(1, t) = 0 for t ∈ (0,T ),

y(x ,0) = z0(x)− x u(0) in (0,1).

Thus we have

y(t) = etA(z0(x)− x u(0)) +

∫ t

0
e(t−s)A(−x u′(s)) ds.
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We use the decomposition of y in the Duhamel formula

y(x , t) =
∞∑

k=1

yk (t) ξk (x).

Each component yk obeys the Duhamel formula

yk (t) = eλk t (ζ0,k − (x , ξk )L2 u(0)) +

∫ t

0
e(t−s)λk (−x , ξk )L2 u′(s) ds.

In order to find the controlled system satisfied by z, we integrate by
part

yk (t) = eλk tζ0,k + λk

∫ t

0
e(t−s)λk (−x , ξk )L2 u(s)) ds + (−x , ξk )L2 u(t).

Thus

ζk (t) = yk (t)+(x , ξk )L2 u(t) = eλk tζ0,k +λk

∫ t

0
e(t−s)λk (−x , ξk )L2 u(s) ds.

This means that ζk is the solution to the following differential equation

ζ ′k = λkζk + (−λk )wk (t), ζk (0) = ζ0,k .
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By summing

ζk (t)ξk = eλk tζ0,kξk + λk

∫ t

0
e(t−s)λk (−x , ξk )L2 u(s) ξk ds,

we obtain

z(t) = etAz0 + (−A)

∫ t

0
e(t−s)Aw(s) ds.

Thus, we formally have

z ′(t) = Az + (−A)w , z(0) = z0.

This is formal as long as we have not precisely defined (−A)w . We
can say that

(−A)w =
∞∑

k=1

wk (−A)ξk =
∞∑

k=1

wk (−λk )ξk ,

but the series does not converge in L2(0,1). It converges in a weaker
norm.
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Comparison between the variational-transposition method and the
lifting method

By choosing φ = ξk as test function in the variational method, we get

d
dt

(z(t), ξk )L2 =

∫ 1

0
z(x , t)λkξk dx − u(t)ξk,x (1),

(z(0), ξk )L2 = (z0, ξk )L2 ,

where ξ1,x (1) = dξk
dx (1), and

ξk,x (1) = kπ
√

2 (−1)k .

That is
ζ ′k = λkζk − u(t)π k (−1)k

√
2, ζk (0) = ζ0,k .
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We have to compare with

ζ ′k = λkζk + (−λk )wk (t), ζk (0) = ζ0,k .

Since

wk = −u(t)
√

2
kπ

(−1)k and − λk = k2π2,

we have

ζ ′k = λkζk − u(t)π k (−1)k
√

2, ζk (0) = ζ0,k .

We fortunately recover the same result.

When u ∈ H1(0,T ) and z0 ∈ L2(0,1), the solution z to (NHBC)
belongs to C([0,T ]; L2(0,1)). If we only have u ∈ L2(0,T ), the
solution z to (NHBC) belongs to L2(0,T ; L2(0,1)).

16/28



We introduce the operator D : R 7−→ L2(0,1), defined by
Du = w = u x . We have

z ′(t) = Az + (−A)w = Az + (−A)Du = Az + Bu, z(0) = z0.

As mentioned above the meaning of Bu is clear for each component
of z in the basis (ξk )k∈N∗ , that is

〈Bu, ξk 〉 = −u(t)ξk,x (1).

Since we have written the PDE as a controlled system, we may adapt
the results from control theory in the finite dimensional case to this
infinite dimensional model.

We also have
B∗ξk = −ξk,x (1) for all k ∈ N∗.
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3. F.E. approximation of the 1D heat equation

For the numerical approximation of the heat equation with NHBC, we
use the following weak formulation.

(WF )

Find z ∈ L2(0,T ; H1
{0}(0,1)) such that

d
dt

(z(t), φ)L2 = −
∫ 1

0

∂z
∂x

(x , t)
dφ
dx

dx ∀φ ∈ H1
0 (0,1),

z(1, t) = u(t),

(z(0), φ)L2 = (z0, φ)L2 ∀φ ∈ H1
0 (0,1).

We choose a regular subdivision of [0,1]:

0 = x0 < x1 < · · · < xN = 1, h =
1
N
, xk = kh ∀k ∈ {0, · · · ,N}.

We introduce two finite dimensional subspaces of H1(0,1):

Zh = {φ ∈ C([0,1]) | φ|[xi−1,xi ] ∈ P1, φ(0) = 0}

Zh,0 = {φ ∈ C([0,1]) | φ|[xi−1,xi ] ∈ P1, φ(0) = 0, φ(1) = 0}.

We notice that

dimZh = N and dimZh,0 = N − 1.
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A very useful basis of Zh,0 is

{φ1, · · · , φN−1}, with φj (xk ) = δj,k .

The corresponding basis for Zh is

{φ1, · · · , φN}, with φj (xk ) = δj,k .

Any function z ∈ Zh is decomposed as follows

z =
N∑

j=1

zj φj with zj = z(xj ).

We approximate the weak formulation by

(DWF )

Find z ∈ L2(0,T ; Zh) such that

d
dt

(z(t), φ)L2 = −
∫ 1

0

∂z
∂x

(x , t)
dφ
dx

dx ∀φ ∈ Zh,0,

z(1, t) = u(t),

(z(0), φ)L2 = (z0, φ)L2 ∀φ ∈ Zh,0.
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This approximate weak formulation is equivalent to

Find z =
N∑

j=1

zj φj , with zj ∈ L2(0,T ), such that

d
dt

(z(t), φk )L2 = −
∫ 1

0

∂z
∂x

(x , t)
dφk

dx
dx ∀k ∈ {1, · · · ,N − 1},

zN(t) = u(t),

(z(0), φk )L2 = (z0, φk )L2 ∀k ∈ {1, · · · ,N − 1}.

Since zN(t) = u(t) is known, the above system is a differential system
in RN−1 satisfied by z = (z1, · · · , zN−1)T . To write this differential
system we introduce the ’mass matrix’ E ∈ R(N−1)×(N−1) and the
rigidity matrix A ∈ R(N−1)×(N−1):

E = (Ei,j )1≤i, j≤N−1 with Ei,j =

∫ 1

0
φi φj dx ,

A = (Ai,j )1≤i, j≤N−1 with Ai,j = −
∫ 1

0

dφi

dx
dφj

dx
dx .
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If we choose an exact integration formula, we have

E = h



2
3

1
6 0

1
6

2
3

1
6

0 1
6

2
3

. . . . . .

. . . . . . . . .

. . . . . .

2
3

1
6 0

1
6

2
3

1
6

0 1
6

2
3



A =
1
h



−2 1 0
1 −2 1
0 1 −2

. . . . . .

. . . . . . . . .

. . . . . .
−2 1 0
1 −2 1
0 1 −2


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The differential system is

E1,1z ′1(t) + E1,2z ′2(t) = A1,1z1(t) + A1,2z2(t),

E1,1z1(0) + E1,2z2(0) = (z0, φ1)L2 ,

E2,1z ′1(t) + E2,2z ′2(t) + E2,3z ′3(t) = A2,1z1(t) + A2,2z2(t) + A2,3z3(t),

E2,1z1(0) + E2,2z2(0) + E2,3z3(0) = (z0, φ2)L2 ,

...

EN−2,N−3z ′N−3(t) + EN−2,N−2z ′N−2(t) + EN−2,N−1z ′N−1(t)

= AN−2,N−3z ′N−3(t) + AN−2,N−2zN−2(t) + AN−2,N−1zN−1(t),

EN−2,N−3zN−3(0) + EN−2,N−2zN−2(0) + EN−2,N−1zN−1(0) = (z0, φN−2)L2 ,

EN−1,N−2z ′N−2(t) + EN−1,N−1z ′N−1(t) + u′(t)
∫ 1

0
φN φN−1

= AN−1,N−2zN−2(t) + AN−1,N−1zN−1(t)− u(t)
∫ 1

0

dφN

dx
dφN−1

dx
,

EN−1,N−2zN−2(0) + EN−1,N−1zN−1(0) = (z0, φN−1)L2 .
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For simplicity, we do not choose an exact integration formula, but the
trapezoidal formula for the term u′(t)

∫ 1
0 φN φN−1. Thus we

approximate this term by zero since in the trapezoidal formula∫ 1

0
φN φN−1 is approximated by

h
2

((φN φN−1)(xN−1) + (φN φN−1)(xN)) = 0.

The term −u(t)
∫ 1

0
dφN
dx

dφN−1
dx is

−u(t)
∫ 1

0

dφN

dx
dφN−1

dx
= −u(t)

∫ xN

xN−1

1
h

(
−1
h

)
dx =

u(t)
h
.

We introduce the matrix

B =
1
h


0
0
...
0
1

 ∈ RN−1.
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The approximation of the coefficients of the rigidity matrix by the
trapezoidal formula is exact, while the approximation of the mass
matrix by the trapezoidal formula gives

E = h



1 0 0
0 1 0
0 0 1

. . . . . .

. . . . . . . . .

. . . . . .
1 0 0
0 1 0
0 0 1


= h IRN−1 .

Using the the trapezoidal formula for the term
∫ 1

0 φN φN−1, the term u′

disappears and the differential system is

Ez′(t) = Az(t) + Bu(t), Ez(0) = ((z0, φi )L2 )1≤i≤N−1 .

Here E can be either the exact mass matrix, or h IRN−1 .
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4. Time integration scheme
A Backward Differentiation Formule (BDF) is used to solve the initial
value problem

Ez′(t) = Az(t) + Bu(t), Ez(0) = ((z0, φi )L2 )1≤i≤N−1 .

The general BDF for a nonlinear differential equation z ′ = f (z, t),
z(0) = z0 = z(0), can be written as

s∑
k=0

ak z(n+k) = ∆tβf (z(n+s), tn+s), as = 1,

where ∆t denotes the step size and tn = n∆t . The coefficients ak
and β are chosen so that the method achieves order s , which is the
maximum possible. BDF methods are implicit and, as such, require
the solution of nonlinear equations at each step (in our case the
equation is linear).
Here we use the BDF of order 2

E
(

zn+2 − 4
3

zn+1 +
1
3

zn
)

=
2
3

∆t
(
Azn+2 + Bun+2) .
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For t1 = ∆t , the solution can be calculated with an implicit Euler
scheme

E
(
z1 − z0) = ∆t

(
Az1 + Bu1) .

We solve
(E−∆t A) z1 = E z0 + ∆t z1 + ∆t Bu1,

by using a LU decomposition and with z0 as the FEM approximation
of z0.
For t2 = 2∆t , we solve the system

E
(

z2 − 4
3

z1 +
1
3

z0
)

=
2
3

∆t
(
Az2 + Bu2) .

that is (
E− 2

3
∆tA

)
z2 = E

(
4
3

z1 − 1
3

z0
)

+
2
3

∆t Bu2,

and so on.
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5. Approximation of the normal derivative
In the estimation problem, if we measure the flux ∂z

∂x at the extremity
x = 0 of the domain [0,1], we have to approximate it in the numerical
experiments. We denote by ∂h

nz(0), or by −∂h
x z(0), an approximation

of −∂z
∂x (0). The notation ∂h

n refers to an approximate normal derivative
(see the 2D case). The idea is to use the equation satisfied by z.
When z ∈ L2(0,T ; H2(0,1)), we can write∫ 1

0

∂2z
∂x2 (x , t)φ = −∂z

∂x
(0)φ(0)−

∫ 1

0

∂z
∂x

(x , t)
dφ
dx

dx ∀φ ∈ H1
{1}(0,1).

Using the equation satisfied by z, we replace ∂2z
∂x2 (x , t) by ∂z

∂t (x , t).
Thus we have

−∂z
∂x

(0, t)φ(0) =
d
dt

(z(t), φ)L2 +

∫ 1

0

∂z
∂x

(x , t)
dφ
dx

dx ∀φ ∈ H1
{1}(0,1).

27/28



In particular, choosing φ = φ0, we have

−∂z
∂x

(0, t) = −∂z
∂x

(0)φ0(0) =
d
dt

(z(t), φ0)L2 +

∫ 1

0

∂z
∂x

(x , t)
dφ0

dx
dx .

The approximation of the integral (z(t), φ0)L2 by a trapezoidal formula
is zero. We set

−∂h
x z(0, t) =

∫ 1

0

∂z
∂x

(x , t)
dφ0

dx
dx ,

for the solution z to the (DWF ).
Thus the variational approximation of ∂z

∂x (0, t) is

z(h, t)− z(0, t)
h

.

But in 2D or even in 1D if we use another type of finite element
method, the variational approximation of ∂z

∂x (0, t) may be different
from the finite difference quotient.
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