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1. The Heat equation with Homogeneous Boundary Conditions
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2. The Duhamel formula with Nonhomogeneous Boundary
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3. Finite Element approximation of the Heat equation
4. Time integration scheme

5. Numerical approximation of the flux at the boundary
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1. The Heat equation with Homogeneous Boundary Conditions
We consider the equation

8z 92z

at  ox2
z(0,t)=0 and z(1,t)=0 forte (0,00),
z(x,0) = zp(x) in(0,1).

=0 in(0,1) x (0,00),
(HHE)

We assume that zy € L2(0,1). The eigenvalues of A = d?/dx?, with
Dirichlet boundary conditions, and the corresponding eigenfunctions
are

A = —712 k2, &(x) = V2sin(k T x).

The family (& )ken- is a Hilbertian basis in L2(0,1). We can
decompose the intial condition z in this basis:

2= Cokk, With Cox = (20, k) 12(0,1)-
pa
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If we look for a solution z to the heat equation in the form
2(x, 1) =Y G(t) & (x),
k=1

we can show that i satisfies the differential equation
Ck = M k> Ck(0) = Cok-
Thus ((t) = e*¢p«, and

2(x, 1) = ) M (20,€K) 120,16k

k=1

is a candidate to be a solution to (HHE).

We can show that, if zy € L2(0, 1), the above series converges in
C([0, T]; L3(0, 1)), while it converges in C([0, T]; H{ (0, 1)) if

zo € H}(0,1).
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The semigroup of the heat operator

For all t > 0, we define the operator e € £(L3(0, 1)) as follows

oo
ez =) eAkt(szk)Lz(oJ)fk-
k=1

We can check that the family of operators (e4);>o obeys the following
properties

o 0 = |

eFort>0,s>0, eheA = eheh = ellT9)4

e limp o [|€"20 — 2o|2(0,1) = O, for all zy € L3(0, 1).

Thus, this family of operators has properties similar to those of the
exponential of a matrix. It is called a strongly continuous semigroup
on L2(0,1).
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In addition we have

%em =Ae” fort>0,
where
d’z . 2 1
Az = ) if ze H7(0,1) N Hy (0, 1).
Notice that

ezy € H?(0,1) N H(0,1) for t > 0,

even if zy € L2(0,1). Indeed

a? >
ﬁemzo = Z )\kekk t(207 gk)LZ(OJ)gk?
k=1

and the series converges in L2(0, 1) because

o 2
Z ‘)\ke)\kT(ZOagk)l_z(oj)‘ < Q.
k=1
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The nonhomogeneous heat equation

We consider the equation

oz 0’z :
ait_ﬁ_f |n(0,1)x(0,00),
z(0,t)=0 and z(1,t)=0 forte (0,c0),

z(x,0) = zp(x) in(0,1).

(NHHE)

We assume that zy € L2(0,1) and f € L2(0, T; L2(0,1)).
Arguing as above, and with the variation of constant formula, we can
show that the solution to (NHHE) is

t
z(t) = ez +/ eI=94f(s) ds.
0

We shall call it the Duhamel formula’.
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2. The heat equation with a nonhomogeneous boundary
condition

We consider the equation

0z 9%z .
5 ez =0 in (0,1) x (0, T),
(NHBC) z(0,t)=0 and z(1,t)=u(t) forte(0,T),

Zz(x,0) = zp(x) in(0,1).

We assume that zy € L2(0,1) and u € L3(0, T).
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Weak formulation (WF) for (NHBC)

In order to take into account the non homogeneous B.C., the most
usual weak formulation is

Find z € L2(0, T; H}y, (0, 1)) such that

d o d
G000 == [ o Glax voeH©.1),

ax
z(1,1) = u(d),
(2(0), )12 = (20, ¢)2 Vo € HI(0,1).

We shall use that formulation for the numerical approximation of the
equation. But we cannot use that formulation to obtain a controlled
system of the form

Z=Az+Bu in(0,0), 2z(0)=z.
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Solutions defined by transposition in the case of (NHBC)

We say that z € L?(0, T; L?(0, 1)) is a weak solution to equation
(NHBC) if and only if for all test functions ¢ € H?(0,1) N H}(0, 1), the
function t — (z(t), )2 belongs to H'(0, T), and

1
%(z(t),qﬁ)L2 :/0 Z(X, 1) pxx(X) dx — u(f)dx(1),

(2(0),9)2 = (20, ) 2-

Thus
(Bu(t), ) = (u(t), B*¢)r = —u(t)ox(1),

that is
B*¢ = *Qﬁx(‘I )
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Lifting of the boundary condition
We look for a solution to (NHBC) in the form
zZ=y+w,

where
w(x,t) = xu(t).

We decompose z, y and w in the basis (&x)jen-

Z(x, ) =Y G(t&(x), ¥y =D w(té, W=7 Wit
k=1 k=1 k=1

We have

wi (1) = u(t)(x, &)z = u(t) \/5/01 xsin(kmx)dx = —u(t) k%?(q)h



The equation satisfied by y is

2
Q _ ﬂ = —X Ul(t) in (071) X (O, T)a

ot 0x?
y(0,)=0 and y(1,t)=0 forte (0, T),
y(x,0) = zp(x) — xu(0) in(0,1).

Thus we have

y(t) = e”(z0(x) — x u(0)) + /t el=94(—x u/(s)) ds.
0
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We use the decomposition of y in the Duhamel formula

o0

YOt = () &(x)-

k=1

Each component y, obeys the Duhamel formula

t
Vi(t) = € (Cox — (X, &)1z u(0)) + /0 =P (x, &)1z U (5) d.

In order to find the controlled system satisfied by z, we integrate by
part

t
Yi(t) = e ok + )\k/o el (—x, &) 2 U(S)) ds + (—X, &) 2 U(1).
Thus
t
Ck(t) = yk(t)+(x, &k )2 u(t) = eAktCO,k+AkA el (—x, &) 2 u(s) ds.

This means that (i is the solution to the following differential equation

Ck = Ml + (M) wk(1),  Ck(0) = Cok-
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By summing

t
Ce(t)ex = eM¢o ek + Ak/o e~ (—x, &) 2 u(S) & ds,

we obtain t
2(t) = 2y + (—A) / e(=9Ay(s) ds.
0

Thus, we formally have
Z'(t)y=Az+ (-A)w, z(0)=z.

This is formal as long as we have not precisely defined (—A)w. We
can say that

o0

(AW =D wi(—A)ek = Y wi(—e)ék,
k=1

k=1

but the series does not converge in L?(0, 1). It converges in a weaker
norm.
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Comparison between the variational-transposition method and the
lifting method

By choosing ¢ = & as test function in the variational method, we get

1
(@060 = [ 2008 I~ u(BE(1),

(2(0),&k) 12 = (20, k) 125
where & (1) = %£(1), and
&x(1) = km V2 (1),

That is
Ch =Mk — u(t) Tk (=1)KvV2,  (0) = Cox.
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We have to compare with

G = Ml + (M) wi(t),  (0) = Cok-

Since
V2

wx = —u(t) k—f(—1)" and — )\ = k%72,

we have
Cho= Mk —u(t) Tk (=) V2, ¢(0) = Cox-

We fortunately recover the same result.

When u € H'(0, T) and z, € L?(0, 1), the solution z to (NHBC)
belongs to C([0, T]; L2(0, 1)). If we only have u € L2(0, T), the
solution z to (NHBC) belongs to L2(0, T; L2(0, 1)).
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We introduce the operator D : R~ L?(0, 1), defined by
Du = w = ux. We have

Z(t)y=Az+ (—A\w =Az+ (—A)Du = Az + Bu, z(0) = z.

As mentioned above the meaning of Bu is clear for each component
of z in the basis (& )ken-, that is

(Bu,&k) = —u(t)sk.x(1)-

Since we have written the PDE as a controlled system, we may adapt
the results from control theory in the finite dimensional case to this
infinite dimensional model.

We also have
B¢ = —&kx(1) forall k € N*.
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3. F.E. approximation of the 1D heat equation

For the numerical approximation of the heat equation with NHBC, we
use the following weak formulation.

Find z € L3(0, T; Hp (0, 1)) such that

d  [loz do ;
o E(0,0)z = - i S oD g ox Ve e H(0,1),

(WF)
z(1,8) = u(t),
(2(0). 0)ie = (20,0)iz Vo € HG (0, 1).
We choose a regular subdivision of [0, 1]:
O=x<x1<---<xy=1, h=1N7 Xx = kh Vk6{07~-~,N}.

We introduce two finite dimensional subspaces of H'(0, 1):
Zh ={¢ € C([0,1]) | Slpy_s.x) € P1, #(0) =0}
Zno ={¢ € C([0,1]) | Slpy_, . € P, ¢(0)=0, ¢(1)=0}.
We notice that
dmZ, =N and dimZy,o=N—-1.



A very useful basis of Zj o is

{61, ,on=1}, with  ¢;(Xk) = 6j k.

The corresponding basis for Zj is

{¢17"' aqu}? with d)](xk): Ji K-
Any function z € Z, is decomposed as follows

N

z= ZngZ)j with  z; = z(x;).
j=1

We approximate the weak formulation by

Find z € L3(0, T; Z,) such that

d 1o d
(DWF) & (Z(t)a¢)L2 = - 0 aﬁi(X, t) Ff ax Vo € Zh707

z(1,t) = u(t),
(2(0),9)12 = (20,0)12 V¢ € Zho.
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This approximate weak formulation is equivalent to

N
Find 2=z ¢;, with z; € L(0, T), such that
=1

& @b = [ Zn %

zy(t) = u(),

(2(0), ¢k)iz = (20, ox)iz VK €{1,--- ,N—1}.
Since zy(t) = u(t) is known, the above system is a differential system
in RN=1 satisfied by z = (z;,--- ,zy_1)". To write this differential

system we introduce the 'mass matrix’ E ¢ RIN-1)x(N=1) gnd the
rigidity matrix A € RIN-1)x(N-1);

o dx VYke{1,--- ,N—-1},

1
E = (Eij)i<ij<n—1 With Ei,j:/ ¢ ¢; dx,
0

' dg; doy

A= (A Vieiin ith A —_ [ 29
(Aij)<ij<n—1 Wit ij s ax ax

ax.
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If we choose an exact integration formula, we have

340 '
12 1
6 3 6
0 5 %
E=h
5§50
12 1
6 3 6
I 0 § 2
2 1 0 T
1 -2 A
0o 1 -2
A=l -
= N
2 1 0
1 -2 A
i 0o 1 -2
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The differential system is

Ei1z1(t) + E1225(t) = A1121(t) + A1 222(t),
E1,121(0) + Eq1 222(0) = (20, ¢1);2,

Ez1z1(t) + Eo2zp(t) + E23z5(t) = Az 121(t) + Ao 22o(t) + A2 325(t),
Ez121(0) + E222(0) + E2323(0) = (20, ¢2) .2,

En—2.n—3Zy_3(t) + En—2,n—22ZN_o(t) + En—2,n—12ZNn_+(1)
= An—2,n—3Zy_3(t) + An—2.N-2ZN—2(t) + An—2,n—12ZN—1 (1),

En—2n-3Zn-3(0) + En—2,Nn—2Zn-2(0) + En—2 n—12Zn-1(0) = (20, dN—2) 2,

1
En—1,N—2ZN_p(t) + En—1,n—12Zn_1(F) + U/(f)/ ON PN—1
0

1
B don don- 1
= An—1,n—2Zn—2(t) + An—1,n—12Zn—1(t) — u(t) | dx ox

En—1N—2Zn-2(0) + En—1,n—1Znv—1(0) = (20, dN—1)2-
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For simplicity, we do not choose an exact integration formula, but the

trapezoidal formula for the term v/ (t) f01 oN Pn_1. Thus we
approximate this term by zero since in the trapezoidal formula

1
/ on dn_1 IS approximated by
0

(6 On—) (=) + (n on1)(xw)) = O.

The term —u(t) f, 9o 9981 jg

B (t)/ dén d¢N 1 :_u(t)/X:N1:;<_h1> dx:@.

We introduce the matrix

>l =
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The approximation of the coefficients of the rigidity matrix by the
trapezoidal formula is exact, while the approximation of the mass
matrix by the trapezoidal formula gives

1 00
010
0 0 1

E=h . :hIRN—L

o o -~
o =+ o |
- o o

Using the the trapezoidal formula for the term f01 oN PN—1, the term U/
disappears and the differential system is

E2/(t) = Az(t) + Bu(t), E2(0) = ((20, #i)12)1<icn-1-

Here E can be either the exact mass matrix, or h fgn—1.
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4. Time integration scheme
A Backward Differentiation Formule (BDF) is used to solve the initial
value problem

E2/(t) = Az(t) + Bu(t), E2(0) = ((20, $i)i2)1<icn-1-

The general BDF for a nonlinear differential equation z/ = f(z, 1),
z(0) = zp = z(9, can be written as

S
> &zt = Atpf(ZM) t10), ag =1,
k=0

where At denotes the step size and t” = nAt. The coefficients ai
and 3 are chosen so that the method achieves order s, which is the
maximum possible. BDF methods are implicit and, as such, require
the solution of nonlinear equations at each step (in our case the
equation is linear).

Here we use the BDF of order 2

4 1 2
E (z”+2 - gz’”r1 + Sz”) = §At (Az"+2 + Bu”+2) )
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For t' = At, the solution can be calculated with an implicit Euler
scheme
E(z' -2° = At (AZ' +BU').

We solve
(E—- AtA)z' = E2° + Atz' + AtBU',

by using a LU decomposition and with z° as the FEM approximation
of z.
For 2 = 2At, we solve the system

E <22 - %z1 + ;z°> = gAt (AZ® + Bu?).

that is 0 4 ] 0
e 2 _ ™ “ 2
<E 3Az‘A)z E<3z 32>+3AtBu ,

and so on.
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5. Approximation of the normal derivative

In the estimation problem, if we measure the flux % at the extremity
x = 0 of the domain [0, 1], we have to approximate it in the numerical
experiments. We denote by 9/z(0), or by —97z(0), an approximation
of ——(0). The notation 97 refers to an approximate normal derivative
(see the 2D case). The idea is to use the equation satisfied by z.
When z € L?(0, T; H?(0, 1)), we can write

182 p) 1a d
[ a9 =~ 00 - [ R0t Gl Vo Hiy(0.1)

Using the equation satisfied by z, we replace %(x, t) by %(X, t).
Thus we have

d ! d
520,090 = GO0+ [ TG

o = dx Vo€ HIy(0,1).



In particular, choosing ¢ = ¢, we have

oz 0z d 1oz doo

~52(0.0) = ~52(0)60(0) = g (2(. o) + [ G t) T2 o

The approximation of the integral (z(t), ¢0),. by a trapezoidal formula
is zero. We set

! 0z d(bo

L ax D g 9%

—01z(0,t) =

for the solution z to the (DWF).
Thus the variational approximation of 22(0, t) is

z(h,t) — z(0,1)
—

But in 2D or even in 1D if we use another type of finite element
method, the variational approximation of %(0, t) may be different
from the finite difference quotient.
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