Numerics and Control of PDEs

Lecture 5

IFCAM - IISc Bangalore

July 22 - August 2, 2013

Boundary stabilization of the 1D Heat equation in the case of full information

Mythily R., Praveen C., Jean-Pierre R.

Plan of lecture 5

1. Boundary stabilizability of the 1D Heat equation
2. Open loop stabilization - Infinite time horizon optimal control problem
3. Finite time horizon optimal control problem
4. Closed loop stabilization - Feedback control - Riccati equation
5. Finite dimensional approximation of the feedback control
6. Bernoulli equation - Numerical approximation of the B.E.

1. Boundary stabilization of the 1D heat equation

We start with

$$
\frac{\partial z}{\partial t}-\frac{\partial^{2} z}{\partial x^{2}}=0 \quad \text { in }(0,1) \times(0, T)
$$

(NHBC)

$$
\begin{aligned}
& z(0, t)=0 \quad \text { and } \quad z(1, t)=u(t) \text { for } t \in(0, T), \\
& z(x, 0)=z_{0}(x) \text { in }(0,1) .
\end{aligned}
$$

We already know that if $u=0$, then

$$
\|z(t)\|_{L^{2}(0,1)} \leq e^{\lambda_{1} t}\left\|z_{0}\right\|_{L^{2}(0,1)}=e^{-\pi^{2} t}\left\|z_{0}\right\|_{L^{2}(0,1)} .
$$

Thus the solution is already stable, and we have nothing to do. If we look for a faster exponential decay $e^{-\omega t}$ with $\omega>0$, we can introduce

$$
\widehat{z}=e^{\omega t} z \quad \text { and } \quad \widehat{u}=e^{\omega t} u,
$$

the PDE satisfied by \widehat{z} is
(HE)

$$
\begin{aligned}
& \frac{\partial \widehat{z}}{\partial t}-\frac{\partial^{2} \widehat{z}}{\partial x^{2}}-\omega \widehat{z}=0 \quad \text { in }(0,1) \times(0, T), \\
& \widehat{z}(0, t)=0 \quad \text { and } \quad \widehat{z}(1, t)=\widehat{u}(t) \text { for } t \in(0, T), \\
& \widehat{z}(x, 0)=z_{0}(x) \quad \text { in }(0,1) .
\end{aligned}
$$

Now
$\|\widehat{z}(t)\|_{L^{2}(0,1)} \geq e^{\left(\lambda_{1}+\omega\right) t}\left|\zeta_{0,1}\right|=e^{\left(\omega-\pi^{2}\right) t}\left|\zeta_{0,1}\right| \longrightarrow+\infty \quad$ as $\quad t \longrightarrow+\infty$,
if $\zeta_{0,1} \neq 0$ and $\omega>\pi^{2}$.
If we choose a control \widehat{u} stabilizing \widehat{z}, the corresponding control u will stabilize z with the exponential decay rate $e^{-\omega t}$. The heat equation (HE) may be written as an infinite dimensional system satisfied by the Fourier coefficients of \hat{z}
(IDS) $\left[\begin{array}{c}\widehat{\zeta}_{1} \\ \widehat{\zeta}_{2} \\ \vdots\end{array}\right]^{\prime}=\left[\begin{array}{ccc}\omega+\lambda_{1} & 0 & \cdots \\ 0 & \omega+\lambda_{2} & \cdots \\ \vdots & \vdots & \ddots\end{array}\right]\left[\begin{array}{c}\widehat{\zeta}_{1} \\ \widehat{\zeta}_{2} \\ \vdots\end{array}\right]+\widehat{u}(t)\left[\begin{array}{c}-\xi_{1, x}(1) \\ -\xi_{2, x}(1) \\ \vdots\end{array}\right]$,
where $\xi_{i, x}(1)$ denotes $\frac{d \xi_{i}}{d x}(1)$.
The stabilizability of $(H E)$ is equivalent to the stabilizability of (IDS).
We set $D(A)=H^{2}(0,1) \cap H_{0}^{1}(0,1)$, and $A z=\frac{d^{2} z}{d x^{2}}$. We notice that $A=A^{*}$. We can always choose $\omega>0$ so that $-\omega \notin \sigma(A)$. We have

$$
\cdots<\lambda_{N_{\omega}+1}<-\omega<\lambda_{N_{\omega}}<\cdots<\lambda_{1} .
$$

where $\lambda_{k}=-k^{2} \pi^{2}$ are the eigenvalue of A.

The stabilizability of (IDS) is equivalent to the stabilizability of the projected unstable system

$$
\left[\begin{array}{c}
\widehat{\zeta}_{1} \\
\widehat{\zeta}_{2} \\
\vdots \\
\widehat{\zeta}_{N_{\omega}}
\end{array}\right]^{\prime}=\left[\begin{array}{cccc}
\omega+\lambda_{1} & 0 & \cdots & 0 \\
0 & \omega+\lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \\
0 & 0 & 0 & \omega+\lambda_{N_{\omega}}
\end{array}\right]\left[\begin{array}{c}
\widehat{\zeta}_{1} \\
\widehat{\zeta}_{2} \\
\vdots \\
\widehat{\zeta}_{N_{\omega}}
\end{array}\right]+\widehat{u}(t)\left[\begin{array}{c}
-\xi_{1, x}(1) \\
-\xi_{2, x}(1) \\
\vdots \\
-\xi_{N_{\omega}, x}(1)
\end{array}\right]
$$

We can use the Hautus criterion for studying the stabilizability

$$
\forall j \in\left\{1, \cdots, N_{\omega}\right\}, \quad \operatorname{Ker}\left(\lambda_{j} I-A^{*}-\omega I\right) \cap \operatorname{Ker}\left(B^{*}\right)=\{0\} .
$$

or

$$
\forall j \in\left\{1, \cdots, N_{\omega}\right\}, \quad \operatorname{Ker}\left(\lambda_{j} I-\Lambda_{\omega, u}\right) \cap \operatorname{Ker}\left(\mathbb{B}_{\omega, u}^{*}\right)=\{0\} .
$$

The eigenvectors belonging to $\operatorname{Ker}\left(\lambda_{j} I-\boldsymbol{A}^{*}-\omega I\right)$ are $\alpha \xi_{j}$. And $\boldsymbol{B}^{*}\left(\alpha \xi_{j}\right)=-\alpha \xi_{j, x}(1)$. Thus, if $\boldsymbol{B}^{*}\left(\alpha \xi_{j}\right)=0$ then $\alpha=0$. This means that the Hautus criterion is satisfied and the system is stabilizable.

2. Infinite time horizon optimal control problem

We recall the equation satisfied by (\widehat{z}, \widehat{u}) that, for simplicity, we denote by (z, u)

$$
\begin{array}{ll}
& \frac{\partial z}{\partial t}-\frac{\partial^{2} z}{\partial x^{2}}-\omega z=0 \quad \text { in }(0,1) \times(0, \infty) \\
\left(H E_{0}^{\infty}\right) & z(0, t)=0 \quad \text { and } \quad z(1, t)=u(t) \quad \text { for } t \in(0, \infty), \\
& z(x, 0)=z_{0}(x) \quad \text { in }(0,1)
\end{array}
$$

We rewrite ($H E$) in the form

$$
z^{\prime}=(A+\omega I) z+B u=A_{\omega} z+B u, \quad z(0)=z_{0} .
$$

We introduce the functional

$$
J_{0}^{\infty}(z, u)=\frac{1}{2} \int_{0}^{\infty}|C z(t)|_{Y}^{2}+\frac{R}{2} \int_{0}^{\infty}|u(t)|^{2},
$$

where $C \in \mathcal{L}(Z, Y)$ and Y is another Hilbert space. We look for u solution to the optimal control problem
$\left(\mathcal{P}_{0, z_{0}}^{\infty}\right) \quad \inf \left\{J_{0}^{\infty}(z, u) \mid(z, u)\right.$ obeys $\left.\left(H E_{0}^{\infty}\right)\right\}$.

Theorem. For all $z_{0} \in Z$, problem $\left(\mathcal{P}_{0, z_{0}}^{\infty}\right)$ admits a unique solution $u_{z_{0}}^{\infty}$.

Proof. Since the pair (A, B) is stabilizable, there exists $u \in L^{2}(0, \infty)$ such that

$$
J_{0}^{\infty}\left(z_{z_{0}, u}, u\right)<\infty .
$$

The existence of solutions can be proved by using a minimizing sequence and by passing to the limit.

To determine this optimal control, We approximate the problem $\left(\mathcal{P}_{0, z_{0}}^{\infty}\right)$ by a sequence of finite time horizon control problem ($\mathcal{P}_{0, z_{0}}^{k}$) defined over the time interval $(0, k)$. We determine the solution $u_{z_{0}}^{k}$ of $\left(\mathcal{P}_{0, z_{0}}^{k}\right)$. We denote by $\tilde{u}_{z_{0}}^{k}$ the extension of $u_{z_{0}}^{k}$ by zero to (k, ∞). We show that

$$
\tilde{u}_{z_{0}}^{k} \longrightarrow u_{z_{0}} \text { in } L^{2}(0, \infty) \text { as } k \rightarrow \infty .
$$

3. Finite time horizon optimal control problem

We approximate the problem $\left(\mathcal{P}_{0, z_{0}}^{\infty}\right)$ by a sequence of finite time horizon control problem. We introduce the functional

$$
J_{0}^{k}(z, u)=\frac{1}{2} \int_{0}^{k}|C z(t)|_{Y}^{2}+\frac{R}{2} \int_{0}^{k}|u(t)|^{2},
$$

and the equation
$\left(H E_{0}^{k}\right) \quad z^{\prime}=A_{\omega} z+B u \quad$ in $(0, k), \quad z(0)=z_{0}$.
We look for u solution to the optimal control problem
$\left(\mathcal{P}_{0, z_{0}}^{k}\right) \quad \inf \left\{J_{0}^{k}(z, u) \mid(z, u)\right.$ obeys $\left.\left(H E_{0}^{k}\right)\right\}$.

Theorem. For all $z_{0} \in Z$, problem $\left(\mathcal{P}_{0, z_{0}}^{k}\right)$ admits a unique solution $u_{z_{0}}^{k}$. If $z_{z_{0}}^{k}$ is the solution of $(H E)$ corresponding to $u_{z_{0}}^{k}$, then $u_{z_{0}}^{k}=-R^{-1} B^{*} \phi$, where ϕ is the solution to the adjoint equation

$$
-\phi^{\prime}=A_{\omega} \phi+C^{*} C z_{z_{0}}^{k}, \quad \phi(k)=0
$$

Conversely, the system

$$
\begin{aligned}
& z^{\prime}=A_{\omega} z-B R^{-1} B^{*} \phi, \quad z(0)=z_{0}, \\
& -\phi^{\prime}=A_{\omega} \phi+C^{*} C z, \quad \phi(k)=0
\end{aligned}
$$

admits a unique solution $\left(z_{z_{0}}^{k}, \phi_{z_{0}}^{k}\right)$ and the optimal control is defined by $u_{z_{0}}^{k}=-R^{-1} B^{*} \phi_{z_{0}}^{k}$.
The infimum value is

$$
\inf \left(\mathcal{P}_{0, z_{0}}^{k}\right)=\frac{1}{2}\left(z_{0}, \phi_{z_{0}}^{k}(0)\right)_{L^{2}(0,1)} .
$$

The function $\phi_{z_{0}}^{k} \in C([0, k] ; Z)$ and the mapping

$$
P(k): z_{0} \longmapsto \phi_{z_{0}}^{k}(0),
$$

is linear and continuous in Z. Moreover $P(k)=P(k)^{*} \geq 0$.

4. Closed loop stabilization - Feedback control - Riccati equation

Passage to the limit when $k \rightarrow \infty$.
Convergence of the sequence of controls. We denote by $\left(z_{z_{0}}^{k}, u_{z_{0}}^{k}\right)$ the solution to $\left(\mathcal{P}_{0, z_{0}}^{k}\right)$, by $\left(\tilde{z}_{z_{0}}^{k}, \tilde{u}_{z_{0}}^{k}\right)$ the extension of $\left(z_{z_{0}}^{k}, u_{z_{0}}^{k}\right)$ by 0 to (k, ∞). We have

$$
J_{0}^{\infty}\left(\tilde{z}_{z_{0}}^{k}, \tilde{u}_{z_{0}}^{k}\right) \leq J_{0}^{k}\left(z_{z_{0}}^{k}, u_{z_{0}}^{k}\right) \leq J_{0}^{k}\left(z_{z_{0}}^{\infty}, u_{z_{0}}^{\infty}\right) \leq J_{0}^{\infty}\left(z_{z_{0}}^{\infty}, u_{z_{0}}^{\infty}\right)<\infty .
$$

Thus the sequence $\left(\tilde{u}_{z_{0}}^{k}\right)_{k}$ is bounded in $L^{2}(0, \infty)$. From any subsequnce, we can extract a subsequence converging weakly in $L^{2}(0, \infty)$. We show that the weak limit is $u_{z_{0}}^{\infty}$, and next we show that the convergence is strong in $L^{2}(0, \infty)$.
Convergence of the sequence $P(k)$. The mapping $k \mapsto\left(P(k) z_{0}, z_{0}\right)_{L^{2}(0,1)}$ is increasing and bounded. We can show that for all $z_{0} \in Z$, the sequence $\left(P(k) z_{0}\right)_{k}$ converges to $P z_{0}$ and that

$$
\inf \left(\mathcal{P}_{0, z_{0}}^{\infty}\right)=\frac{1}{2}\left(P z_{0}, z_{0}\right)_{L^{2}(0,1)} .
$$

Moreover the operator P is the unique solution of the following Riccati equation

$$
P \in \mathcal{L}(Z), \quad P=P^{*} \geq 0
$$

(ARE)

$$
\begin{aligned}
& P A_{\omega}+A_{\omega}^{*}-P B R^{-1} B^{*} P+C^{*} C=0 \\
& A_{\omega}-B R^{-1} B^{*} P \quad \text { is stable. }
\end{aligned}
$$

To stabilize the heat equation with the exponential decay rate $e^{-\omega t}$, in the case of full information, we solve the system

$$
\frac{\partial z}{\partial t}-\frac{\partial^{2} z}{\partial x^{2}}=0 \quad \text { in }(0,1) \times(0, \infty)
$$

(CLS)

$$
\begin{aligned}
& z(0, t)=0, \quad z(1, t)=-B^{*} P z=\left.\frac{\partial P z}{\partial x}\right|_{x=1}, \quad \text { for } t \in(0, \infty) \\
& z(x, 0)=z_{0}(x) \quad \text { in }(0,1)
\end{aligned}
$$

where P is the solution to the (ARE).

5. Finite dimensional approximation of the feedback control

Using the P_{1} FEM we obtain the system

$$
\mathbf{E z}^{\prime}(t)=\mathbf{A z}(t)+\mathbf{B} u(t), \quad \mathbf{E z}(0)=\left(\left(z_{0}, \phi_{i}\right)_{L^{2}}\right)_{1 \leq i \leq N-1},
$$

where $\mathbf{z}=\left(z_{1}, \cdots, z_{N-1}\right)^{T}$ and the solution to the approximate heat equation is

$$
z=\sum_{i=1}^{N-1} z_{i} \phi_{i}+u \phi_{N}
$$

We set

$$
\mathbf{A}_{\omega}=\mathbf{A}+\omega \mathbf{E},
$$

and to calculate the feedback gain, we can solve the matrix Riccati equation

$$
\mathbf{P} \in \mathcal{L}\left(\mathbb{R}^{N-1}\right), \quad \mathbf{P}=\mathbf{P}^{T} \geq 0
$$

(MRE) $\quad \mathbf{P E}{ }^{-1} \mathbf{A}_{\omega}+\mathbf{A}_{\omega}^{T} \mathbf{E}^{-1} \mathbf{P}-\mathbf{P E} E^{-1} \mathbf{B} R^{-1} \mathbf{B}^{T} \mathbf{E}^{-1} \mathbf{P}+\mathbf{C}^{T} \mathbf{C}=0$,

$$
\mathbf{E}^{-1} \mathbf{A}_{\omega}-\mathbf{E}^{-1} \mathbf{B} R^{-1} \mathbf{B}^{\top} \mathbf{E}^{-1} \mathbf{P} \quad \text { is stable, }
$$

where $\mathbf{C z}$ is a discrete approximation of $C z$. For example if $C=I_{z}$ we choose $\mathbf{C}=\mathbf{E}^{1 / 2}$.

Let us notice that \mathbf{P} is the solution to the (MRE) if and only if $\boldsymbol{\Pi}=\mathbf{E}^{-1} \mathbf{P E} \mathbf{E}^{-1}$ is the solution to the Generalized Matrix Riccati Equation (GMRE)

$$
\boldsymbol{\Pi} \in \mathcal{L}\left(\mathbb{R}^{N-1}\right), \quad \boldsymbol{\Pi}=\boldsymbol{\Pi}^{\top} \geq 0
$$

(GMRE) $\quad \boldsymbol{\Pi} \mathbf{A}_{\omega} \mathbf{E}^{-1}+\mathbf{E}^{-1} \mathbf{A}_{\omega}^{\top} \boldsymbol{\Pi}-\boldsymbol{\Pi} \mathbf{B} \boldsymbol{R}^{-1} \mathbf{B}^{\top} \boldsymbol{\Pi}+\mathbf{E}^{-1} \mathbf{C}^{\top} \mathbf{C E} \mathbf{E}^{-1}=0$,

$$
\mathbf{E z}^{\prime}=\left(\mathbf{A}_{\omega}-\mathbf{B} R^{-1} \mathbf{B}^{\top} \boldsymbol{\Pi E}\right) \mathbf{z} \quad \text { is stable }
$$

or similarly to the equivalent equation

$$
\boldsymbol{\Pi} \in \mathcal{L}\left(\mathbb{R}^{N-1}\right), \quad \boldsymbol{\Pi}=\boldsymbol{\Pi}^{T} \geq 0
$$

(GMRE) $\mathbf{E} \Pi \mathbf{A}_{\omega}+\mathbf{A}_{\omega}^{T} \Pi \mathbf{E}-\mathbf{E} \Pi \mathbf{B} R^{-1} \mathbf{B}^{T} \boldsymbol{} \mathbf{E}+\mathbf{C}^{T} \mathbf{C}=0$,

$$
\mathbf{E z}^{\prime}=\left(\mathbf{A}_{\omega}-\mathbf{B} R^{-1} \mathbf{B}^{\top} \mathbf{M E}\right) \mathbf{z} \quad \text { is stable. }
$$

The stability condition

$$
\mathbf{E z} \mathbf{z}^{\prime}=\left(\mathbf{A}_{\omega}-\mathbf{B} R^{-1} \mathbf{B}^{T} \mathbf{\Pi} \mathbf{E}\right) \mathbf{z} \quad \text { is stable },
$$

will be written as
$\left(\mathbf{E}, \mathbf{A}_{\omega}-\mathbf{B} R^{-1} \mathbf{B}^{T} \boldsymbol{\Pi E}\right) \quad$ is stable.

The closed loop system (CLS) is approximated by

$$
\mathbf{E z}^{\prime}(t)=\left(\mathbf{A}-\mathbf{B} R^{-1} \mathbf{B}^{T} \mathbf{\Pi E}\right) \mathbf{z}(t), \quad \mathbf{E z}(0)=\left(\left(z_{0}, \phi_{i}\right)_{L^{2}}\right)_{1 \leq i \leq N-1},
$$

and the optimal control is

$$
u(t)=-R^{-1} \mathbf{B}^{T} \boldsymbol{\Pi} \mathbf{E z}(t)
$$

We are going to compare particular choices for C. When $C=0$, the $A R E$ is called the Bernoulli equation. It gives the control of minimal norm.

6.a. Bernoulli equation. $\mathbf{C}=0$

We know consider the problem
$\left(\mathcal{P}_{0, z_{0}}^{\infty}\right) \quad \inf \left\{J_{0}^{\infty}(z, u) \mid(z, u)\right.$ obeys $(H E)$ and $\left.\lim _{t \rightarrow \infty}\|z(t)\|_{z}=0\right\}$.
with

$$
\begin{aligned}
& \frac{\partial z}{\partial t}-\frac{\partial^{2} z}{\partial x^{2}}-\omega z=0 \quad \text { in }(0,1) \times(0, \infty) \\
& z(0, t)=0 \quad \text { and } \quad z(1, t)=u(t) \text { for } t \in(0, T), \\
& z(x, 0)=z_{0}(x) \quad \text { in }(0,1)
\end{aligned}
$$

with $\omega=10$ and

$$
J_{0}^{\infty}(z, u)=\frac{1}{2} \int_{0}^{\infty}|u(t)|^{2} .
$$

We look at the solution to the following Bernoulli equation
(ABE)

$$
P \in \mathcal{L}(Z), \quad P=P^{*} \geq 0
$$

$$
P A_{\omega}+A_{\omega}^{*}-P B R^{-1} B^{*} P=0,
$$

$A_{\omega}-B R^{-1} B^{*} P$ is stable.

Representing the system by using the Hilbertian basis $\left(\xi_{i}\right)_{i \in \mathbb{N}^{*}}$, we have to deal with the infinite dimensional system
(IDS) $\left[\begin{array}{c}\widehat{\zeta}_{1} \\ \widehat{\zeta}_{2} \\ \vdots\end{array}\right]^{\prime}=\left[\begin{array}{ccc}10+\lambda_{1} & 0 & \cdots \\ 0 & 10+\lambda_{2} & \cdots \\ \vdots & \vdots & \ddots\end{array}\right]\left[\begin{array}{c}\widehat{\zeta}_{1} \\ \widehat{\zeta}_{2} \\ \vdots\end{array}\right]+\widehat{u}(t)\left[\begin{array}{c}-\xi_{1, x}(1) \\ -\xi_{2, x}(1) \\ \vdots\end{array}\right]$.
We introduce the operators

$$
\Lambda_{\omega}=\left[\begin{array}{ccc}
10+\lambda_{1} & 0 & \cdots \\
0 & 10+\lambda_{2} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right] \quad \text { and } \quad \mathbb{B}=\left[\begin{array}{c}
-\xi_{1, x}(1) \\
-\xi_{2, x}(1) \\
\vdots
\end{array}\right] .
$$

Since $10+\lambda_{1}$ is the only unstable eigenvalue of Λ_{ω}, we use a decomposition by blocks of the form

$$
\Lambda_{\omega}=\left[\begin{array}{cc}
10+\lambda_{1} & 0 \\
0 & \Lambda_{\infty, \infty}
\end{array}\right] \quad \text { and } \quad \mathbb{B} \mathbb{B}^{*}=\left[\begin{array}{cc}
S_{1,1} & S_{1, \infty} \\
S_{\infty, 1} & S_{\infty, \infty}
\end{array}\right]
$$

with $S_{1,1}=\left(\xi_{1, x}(1)\right)^{2}$.

We choose $R=1$. We look for the solution to the $(A B E)$ in the form

$$
\mathbb{P}=\left[\begin{array}{cc}
\mathbb{P}_{1,1} & \mathbb{P}_{1, \infty} \\
\mathbb{P}_{\infty, 1} & \mathbb{P}_{\infty, \infty}
\end{array}\right]
$$

We know that the solution is unique. We look for a solution such that

$$
\mathbb{P}_{1, \infty}=0, \quad \mathbb{P}_{\infty, 1}=0, \quad \mathbb{P}_{\infty, \infty}=0
$$

If such a solution exists $\mathbb{P}_{1,1} \in \mathbb{R}$ is the solution to the following Bernoulli equation in \mathbb{R}

$$
\mathbb{P}_{1,1}>0, \quad \mathbb{P}_{1,1}\left(10+\lambda_{1}\right)+\left(10+\lambda_{1}\right) \mathbb{P}_{1,1}-\mathbb{P}_{1,1}\left(\xi_{1, x}(1)\right)^{2} \mathbb{P}_{1,1}=0
$$

with $\xi_{1, x}(1)=-\pi \sqrt{2}$. Notice that this equation is nothing else than

$$
\mathbb{P}_{\omega, u}>0, \quad \mathbb{P}_{\omega, u} \Lambda_{\omega, u}+\Lambda_{\omega, u} \mathbb{P}_{\omega, u}-\mathbb{P}_{\omega, u} \mathbb{B}_{\omega, u} \mathbb{B}_{\omega, u}^{*} \mathbb{P}_{\omega, u}=0
$$

We obtain $\mathbb{P}_{1,1}=\frac{2\left(10-\pi^{2}\right)}{2 \pi^{2}}$. To verify that

$$
\mathbb{P}=\left[\begin{array}{cc}
\mathbb{P}_{1,1} & 0 \\
0 & 0
\end{array}\right]
$$

solves the Bernoulli equation, we have to prove that the operator $\Lambda_{\omega}-\mathbb{B B}^{*} \mathbb{P}$ is stable.

Before proving that $\Lambda_{\omega}-\mathbb{B} \mathbb{B}^{*} \mathbb{P}$ is stable, we can observe that looking at the solution \mathbb{P} of the form

$$
\mathbb{P}=\left[\begin{array}{cc}
\mathbb{P}_{1,1} & 0 \\
0 & 0
\end{array}\right]
$$

is equivalent to looking at the feedback stabilization of the first component.
Indeed the equation satisfied by ζ_{1} is

$$
\begin{aligned}
& \widehat{\zeta}_{1}^{\prime}=\left(10-\pi^{2}\right) \widehat{\zeta}_{1}-\widehat{u}(t) \xi_{1, x}(1)=\left(10-\pi^{2}\right) \widehat{\zeta}_{1}+\widehat{u}(t) \pi \sqrt{2}, \\
& \widehat{\zeta}_{1}(0)=\left(z_{0}, \xi_{1}\right)_{L^{2}(0,1)} .
\end{aligned}
$$

The Bernoulli equation for this system is

$$
p>0, \quad 2\left(10-\pi^{2}\right) p-(\pi \sqrt{2})^{2} p^{2}=0 .
$$

Thus

$$
p=\frac{2\left(10-\pi^{2}\right)}{2 \pi^{2}} .
$$

We notice that $p=\mathbb{P}_{1,1}$ and the closed loop linear system satisfied by $\widehat{\zeta}_{1}$ is

$$
\widehat{\zeta}_{1}^{\prime}=-\left(10-\pi^{2}\right) \widehat{\zeta}_{1}, \quad \widehat{\zeta}_{1}(0)=\left(z_{0}, \xi_{1}\right)_{L^{2}(0,1)}
$$

The closed loop system for \hat{z} is

$$
\begin{aligned}
& \frac{\partial \widehat{z}}{\partial t}-\frac{\partial^{2} \widehat{z}}{\partial x^{2}}-10 \widehat{z}=0 \quad \text { in }(0,1) \times(0, \infty), \\
& \widehat{z}(0, t)=0 \quad \text { and } \quad \widehat{z}(1, t)=-\frac{\sqrt{2}\left(10-\pi^{2}\right)}{\pi}\left(\widehat{z}(t), \xi_{1}\right)_{L^{2}(0,1)}, \quad \text { for } t \in(0, \infty), \\
& \widehat{z}(x, 0)=z_{0}(x) \quad \text { in }(0,1)
\end{aligned}
$$

Let us prove that this system is stable. We know that

$$
\widehat{\zeta}_{1}(t)=e^{-\left(10-\pi^{2}\right) t} \zeta_{0,1} \quad \text { and } \quad \widehat{u}(t)=-\frac{\sqrt{2}\left(10-\pi^{2}\right)}{\pi} \widehat{\zeta}_{1}(t)
$$

For the other components, we have

$$
\widehat{\zeta}_{k}^{\prime}=\left(10-k^{2} \pi^{2}\right) \widehat{\zeta}_{k}+\widehat{u}(t) \xi_{k, x}(1), \quad \widehat{\zeta}_{k}(0)=\zeta_{0, k} .
$$

Thus

$$
\widehat{\zeta}_{k}(t)=e^{\left(10-k^{2} \pi^{2}\right) t} \zeta_{0, k}+\int_{0}^{t} e^{\left(10-k^{2} \pi^{2}\right)(t-s)} \widehat{u}(s) \xi_{k, x}(1) d s
$$

Replacing \widehat{u} by its expression in terms of $\widehat{\zeta}_{1}$, we have

$$
\begin{aligned}
& \int_{0}^{t} e^{\left(10-k^{2} \pi^{2}\right)(t-s)} \widehat{u}(s) \xi_{k, x}(1) d s \\
& =\frac{\sqrt{2}\left(10-\pi^{2}\right)}{\pi} \xi_{k, x}(1) \int_{0}^{t} e^{\left(10-k^{2} \pi^{2}\right)(t-s)} e^{-\left(10-\pi^{2}\right) s} \zeta_{0,1} d s \\
& =\frac{\sqrt{2}\left(10-\pi^{2}\right)}{\pi} \xi_{k, x}(1) \zeta_{0,1} e^{\left(10-k^{2} \pi^{2}\right) t} \int_{0}^{t} e^{-\left(20-k^{2} \pi^{2}-k^{2} \pi^{2}\right) s} \\
& =\frac{\sqrt{2}\left(10-\pi^{2}\right)}{\pi\left(\left(k^{2}+1\right) \pi^{2}-20\right)} \xi_{k, x}(1) \zeta_{0,1}\left(e^{-\left(10-\pi^{2}\right) t}-e^{\left(10-k^{2} \pi^{2}\right) t}\right) . \\
& =\frac{\sqrt{2}\left(10-\pi^{2}\right)}{\left(k^{2}+1\right) \pi^{2}-20} k(-1)^{k} \zeta_{0,1}\left(e^{-\left(10-\pi^{2}\right) t}-e^{\left(10-k^{2} \pi^{2}\right) t}\right) .
\end{aligned}
$$

Notice that

$$
\left|e^{-\left(10-\pi^{2}\right) t}-e^{\left(10-k^{2} \pi^{2}\right) t}\right| \leq 2 e^{-\left(10-\pi^{2}\right) t}
$$

and

$$
2 \frac{\sqrt{2}\left(10-\pi^{2}\right)}{\left(k^{2}+1\right) \pi^{2}-20} k \leq \frac{1}{k} .
$$

Thus

$$
\left|\widehat{\zeta}_{k}(t)\right|^{2} \leq e^{2\left(10-k^{2} \pi^{2}\right) t}\left|\zeta_{0, k}\right|^{2}+\frac{2}{k^{2}} e^{-2\left(10-\pi^{2}\right) t}\left|\zeta_{0,1}\right|^{2}
$$

and

$$
\|\widehat{z}(t)\|_{L^{2}(0,1)}^{2} \leq C e^{-2\left(10-\pi^{2}\right) t}\left\|z_{0}\right\|_{L^{2}(0,1)}^{2}
$$

Since this system is stable, it means that the solution z to the equation

$$
\begin{aligned}
& \frac{\partial z}{\partial t}-\frac{\partial^{2} z}{\partial x^{2}}=0 \quad \text { in }(0,1) \times(0, \infty) \\
& z(0, t)=0 \quad \text { and } \quad z(1, t)=-\frac{\sqrt{2}\left(10-\pi^{2}\right)}{\pi}\left(z(t), \xi_{1}\right)_{L^{2}(0,1)}, \quad \text { for } t \in(0, \infty) \\
& z(x, 0)=z_{0}(x) \quad \text { in }(0,1)
\end{aligned}
$$

obeys

$$
\|z(t)\|_{L^{2}(0,1)} \leq C e^{-10 t}\left\|z_{0}\right\|_{L^{2}(0,1)} .
$$

Therefore we have shown that $\Lambda_{\omega}-\mathbb{B} \mathbb{B}^{*} \mathbb{P}$ is stable.

Exponential decay with $\omega=40$.
In that case the system satisfied by $\widehat{z}=e^{\omega t} z$ and $\widehat{u}=e^{\omega t} u$ is

$$
\begin{aligned}
& \frac{\partial \widehat{z}}{\partial t}-\frac{\partial^{2} \widehat{z}}{\partial x^{2}}-40 \widehat{z}=0 \quad \text { in }(0,1) \times(0, T) \\
& \widehat{z}(0, t)=0 \quad \text { and } \quad \widehat{z}(1, t)=\widehat{u}(t) \text { for } t \in(0, T), \\
& \widehat{z}(x, 0)=z_{0}(x) \quad \text { in }(0,1)
\end{aligned}
$$

We have two unstable eigenvalues $40-\pi^{2}$ and $40-2 \pi^{2}$. The next one $40-9 \pi^{2}$ is negative. As above, to solve the Bernoulli equation for this system, we can look for a feedback control stabilizing the projected unstable system.

Thus, we have to look for a feedback control stabilizing the following system in \mathbb{R}^{2}

$$
\left[\begin{array}{l}
\widehat{\zeta}_{1} \\
\widehat{\zeta}_{2}
\end{array}\right]^{\prime}=\left[\begin{array}{cc}
40+\lambda_{1} & 0 \\
0 & 40+\lambda_{2}
\end{array}\right]\left[\begin{array}{l}
\widehat{\zeta}_{1} \\
\widehat{\zeta}_{2}
\end{array}\right]+\widehat{u}(t)\left[\begin{array}{l}
-\xi_{1, x}(1) \\
-\xi_{2, x}(1)
\end{array}\right] .
$$

We set

$$
\Lambda_{\omega, u}=\left[\begin{array}{cc}
40+\lambda_{1} & 0 \\
0 & 40+\lambda_{2}
\end{array}\right], \quad \mathbb{B}_{\omega, u}=\left[\begin{array}{l}
-\xi_{1, x}(1) \\
-\xi_{2, x}(1)
\end{array}\right]=\left[\begin{array}{c}
\pi \\
-2 \pi
\end{array}\right],
$$

and we can find a feedback for this 2×2 system by solving the MRE

$$
\begin{aligned}
& \mathbb{P}_{\omega, u} \in \mathbb{R}^{2 \times 2}, \quad \mathbb{P}_{\omega, u}=\mathbb{P}_{\omega, u}^{*}>0 \\
& \mathbb{P}_{\omega, u} \Lambda_{\omega, u}+\Lambda_{\omega, u} \mathbb{P}_{\omega, u}-\mathbb{P}_{\omega, u} \mathbb{B}_{\omega, u} \mathbb{B}_{\omega, u}^{*} \mathbb{P}_{\omega, u}=0, \\
& \Lambda_{\omega, u}-\mathbb{B}_{\omega, u} \mathbb{B}_{\omega, u}^{*} \mathbb{P}_{\omega, u} \text { is stable. }
\end{aligned}
$$

The corresponding control is obtained by solving

$$
\left[\begin{array}{l}
\widehat{\zeta}_{1} \\
\widehat{\zeta}_{2}
\end{array}\right]^{\prime}=\left(\Lambda_{\omega, u}-\mathbb{B}_{\omega, u} \mathbb{B}_{\omega, u}^{*} \mathbb{P}\right)\left[\begin{array}{l}
\widehat{\zeta}_{1} \\
\widehat{\zeta}_{2}
\end{array}\right], \quad\left[\begin{array}{l}
\widehat{\zeta}_{1} \\
\widehat{\zeta}_{2}
\end{array}\right](0)=\left[\begin{array}{l}
\zeta_{0,1} \\
\zeta_{0,2}
\end{array}\right],
$$

and by setting

$$
\widehat{u}(t)=-\mathbb{B}_{\omega, u}^{*} \mathbb{P}^{\left(\begin{array}{l}
\widehat{\zeta}_{1} \\
1
\end{array}\right.}\left[\begin{array}{l}
\widehat{\zeta}_{2}(t)
\end{array}\right]
$$

The closed loop system is

$$
\left[\begin{array}{l}
\widehat{\zeta}_{1} \\
\widehat{\zeta}_{2}
\end{array}\right]^{\prime}=\left[\begin{array}{cc}
-\lambda_{1}-40 & 0 \\
0 & -\lambda_{2}-40
\end{array}\right]\left[\begin{array}{l}
\widehat{\zeta}_{1} \\
\widehat{\zeta}_{2}
\end{array}\right], \quad\left[\begin{array}{l}
\widehat{\zeta}_{1} \\
\widehat{\zeta}_{2}
\end{array}\right](0)=\left[\begin{array}{l}
\zeta_{0,1} \\
\zeta_{0,2}
\end{array}\right] .
$$

Thus

$$
\left[\begin{array}{l}
\widehat{\zeta}_{1}(t) \\
\widehat{\zeta}_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
e^{\left(\pi^{2}-40\right) t} \zeta_{0,1} \\
e^{\left(4 \pi^{2}-40\right) t} \zeta_{0,2}
\end{array}\right]
$$

and

$$
\widehat{u}(t)=-\mathbb{B}_{\omega, u}^{*} \mathbb{P}\left[\begin{array}{l}
\widehat{\zeta}_{1}(t) \\
\widehat{\zeta}_{2}(t)
\end{array}\right] .
$$

As previously, we can prove that the closed loop system obtained with this control law is stable:

$$
\begin{aligned}
& \frac{\partial z}{\partial t}-\frac{\partial^{2} z}{\partial x^{2}}=0 \quad \text { in }(0,1) \times(0, \infty) \\
& z(0, t)=0 \quad \text { and } \quad z(1, t)=-\mathbb{B}_{\omega, u}^{*} \mathbb{P}\left[\begin{array}{l}
\left(z(t), \xi_{1}\right) \\
\left(z(t), \xi_{2}\right)
\end{array}\right], \quad \text { for } t \in(0, \infty), \\
& z(x, 0)=z_{0}(x) \quad \text { in }(0,1)
\end{aligned}
$$

obeys

$$
\|z(t)\|_{L^{2}(0,1)} \leq C e^{-40 t}\left\|z_{0}\right\|_{L^{2}(0,1)}
$$

6.b. Numerical approximation of the Bernoulli equation

Step 1. We have to find the unstable eigenvalues and the corresponding eigenvectors. The discrete eigenvalue problem is

$$
\begin{aligned}
& \text { Determine } \boldsymbol{\lambda} \in \mathbb{R} \text { and } \boldsymbol{\xi} \in \mathbb{R}^{N-1} \text { such that } \\
& \mathbf{A} \boldsymbol{\xi}=\boldsymbol{\lambda} \boldsymbol{E} \boldsymbol{\xi} \text {. }
\end{aligned}
$$

Since the matrices A and E are symmetric, we only look for real eigenvalues. We have

$$
\boldsymbol{\lambda}_{N-1} \cdots \leq \boldsymbol{\lambda}_{N_{\omega}+1}<-\omega<\boldsymbol{\lambda}_{N_{\omega}}<\cdots<\boldsymbol{\lambda}_{1} .
$$

We assume that the space discretization is fine enough so that λ_{k} is a very good approximation of λ_{k} for $1 \leq k \leq N_{\omega}+1$. We have $N \gg N_{\omega}+1$. In particular, we assume that, for $1 \leq k \leq N_{\omega}+1$, the eigenvalues λ_{k} are simple. For simplicity if one of the eigenvalue less than $\lambda_{N_{\omega}+1}$ is not simple, we repeat it with its order of multiplicity. We denote by ξ_{k} a normalized eigenvector associated with the eigenvalue λ_{k}.

We notice that $\left(\xi_{k}\right)_{1 \leq k \leq N-1}$ is a basis of \mathbb{R}^{N-1} constituted of eigenvectors of the pair (\mathbf{E}, \mathbf{A}). This basis obeys

$$
\boldsymbol{\xi}_{j}^{T} \mathbf{E} \boldsymbol{\xi}_{i}=\delta_{i, j} \quad \text { for } 1 \leq i, j \leq N-1 .
$$

In the case of a multiple eigenvalue we can always choose the corresponding eigenvectors so that this orthoganility condition is still satisfied. We can express the vector
$\mathbf{z}(t)=\left(z_{1}(t), \cdots, z_{N-1}(t)\right)^{T} \in \mathbb{R}^{N-1}$ in this basis. If we denote by $\Sigma \in \mathbb{R}^{(N-1) \times(N-1)}$ the matrix whose columns are the vectors ξ_{k}, we have

$$
\mathbf{z}=\Sigma \zeta .
$$

By replacing \mathbf{z} by $\Sigma \boldsymbol{\zeta}$ in the equation

$$
E \mathbf{z}^{\prime}=\mathbf{A}_{\omega} \mathbf{z}+\mathbf{B} u
$$

we obtain

$$
\mathbf{E} \Sigma \zeta^{\prime}=\mathbf{A}_{\omega} \Sigma \zeta+\mathbf{B} u
$$

With the orthogonality condition $\boldsymbol{\xi}_{j}^{\top} \mathbf{E} \boldsymbol{\xi}_{i}=\delta_{i, j}$ and the identity $\boldsymbol{\xi}_{j}^{T} \mathbf{A} \boldsymbol{\xi}_{i}=\delta_{i, j} \boldsymbol{\lambda}_{i}$, we have

$$
\zeta_{k}^{\prime}=\left(\boldsymbol{\lambda}_{k}+\omega\right) \zeta_{k}+\boldsymbol{\xi}_{k}^{T} \mathbf{B} u \text { for } 1 \leq k \leq N-1
$$

We set
$\Lambda_{\omega, u}=\left[\begin{array}{cccc}\omega+\boldsymbol{\lambda}_{1} & 0 & \cdots & 0 \\ 0 & \omega+\boldsymbol{\lambda}_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \\ 0 & 0 & 0 & \omega+\boldsymbol{\lambda}_{N_{\omega}}\end{array}\right],\left[\mathbb{B}_{\omega, u}\right]_{i}=\boldsymbol{\xi}_{i}^{T}\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 1 / h\end{array}\right], 1 \leq i \leq N_{\omega}$,
and
$\Lambda_{\omega}=\left[\begin{array}{cccc}\omega+\lambda_{1} & 0 & \cdots & 0 \\ 0 & \omega+\boldsymbol{\lambda}_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \\ 0 & 0 & 0 & \omega+\boldsymbol{\lambda}_{N-1}\end{array}\right],[\mathbb{B}]_{i}=\boldsymbol{\xi}_{i}^{T}\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 1 / h\end{array}\right], 1 \leq i \leq N-1$.

We have to stabilize the system

$$
\zeta^{\prime}=\Lambda \zeta+\mathbb{B} u, \quad \zeta(0)=\zeta_{0}
$$

or the projected system

$$
\boldsymbol{\zeta}_{\omega, u}^{\prime}=\Lambda_{\omega, u} \boldsymbol{\zeta}_{\omega, u}+\mathbb{B}_{\omega, u} u, \quad \boldsymbol{\zeta}_{\omega, u}(0)=\pi_{\omega, u} \boldsymbol{\zeta}_{0}
$$

where $\zeta_{\omega, u}=\pi_{\omega, u} \zeta$ and $\pi_{\omega, u} \in \mathcal{L}\left(\mathbb{R}^{N-1}, \mathbb{R}^{N_{\omega}}\right)$ consists in taking the first N_{ω} components.
To find a feedback gain, we can solve the Bernoulli equation

$$
\begin{aligned}
& \mathbb{P}_{\omega, u} \in \mathcal{L}\left(\mathbb{R}^{N_{\omega}}\right), \quad \mathbb{P}_{\omega, u}=\mathbb{P}_{\omega, u}^{T} \geq 0 \\
& \mathbb{P}_{\omega, u} \Lambda_{\omega, u}+\Lambda_{\omega, u}^{T} \mathbb{P}_{\omega, u}-\mathbb{P}_{\omega, u} \mathbb{B}_{\omega, u} \mathbb{B}_{\omega, u}^{T} \mathbb{P}_{\omega, u}=0 \\
& \Lambda_{\omega, u}-\mathbb{B}_{\omega, u} \mathbb{B}_{\omega, u}^{T} \mathbb{P}_{\omega, u} \text { is stable. }
\end{aligned}
$$

We find the corresponding $\mathbf{P} \in \mathcal{L}\left(\mathbb{R}^{N-1}\right)$ such that $\left(\mathbf{E}, \mathbf{A}_{\omega}-\mathbf{B B}^{\top} \mathbf{P E}\right)$ is stable by setting

$$
[\mathbf{P}]_{i, j}=\sum_{k=1}^{N_{\omega}} \sum_{\ell=1}^{N_{\omega}} \boldsymbol{\xi}_{i, k}\left[\mathbb{P}_{\omega, u}\right]_{k, \ell} \boldsymbol{\xi}_{j, \ell} .
$$

