Numerics and Control of PDEs

Lecture 5

IFCAM - lISc Bangalore

July 22 — August 2, 2013

Boundary stabilization of the 1D Heat equation

in the case of full information
Mythily R., Praveen C., Jean-Pierre R.

1/28



2/98

Plan of lecture 5

1. Boundary stabilizability of the 1D Heat equation

2. Open loop stabilization - Infinite time horizon optimal control
problem

3. Finite time horizon optimal control problem

4. Closed loop stabilization - Feedback control - Riccati equation

5. Finite dimensional approximation of the feedback control

6. Bernoulli equation - Numerical approximation of the B.E.
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1. Boundary stabilization of the 1D heat equation
We start with

ot ox?
z(0,t)=0 and z(1,t)=u(t) forte (0, T),
z(x,0) = z(x) 1in(0,1).

We already know that if u = 0, then

=0 in(0,1) x (0, T),
(NHBC)

_ .2
128l 20,1y < €M1 Z0lli2(0,1) = €™ ' Z0]l12(0,1)-

Thus the solution is already stable, and we have nothing to do. If we
look for a faster exponential decay e~“! with w > 0, we can introduce

Z=¢"'z and U=e"lu,
the PDE satisfied by Z is

~ 25
%_%_WE:O in (0,1) x (0, T),

2(0,t)=0 and Z(1,t)=u(t) forte (0, T),
Z(x,0) = zo(x) in(0,1).

(HE)
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Now
1Z(t) 20,1y > €M T Co| = e ™M ¢oq| — 400 a@s t — +oo,

if 0,1 #0and w > 72,

If we choose a control U stabilizing Z, the corresponding control u will
stabilize z with the exponential decay rate e~«!. The heat equation
(HE) may be written as an infinite dimensional system satisfied by
the Fourier coefficients of Z

Gl fetnm 0 TG ~&x(1)
(IDS) |G| =| 0 wtl |G| 4o |~Cx(N],

where &; (1) denotes %i(1).

The stabilizability of (HE) is equivalent to the stabilizability of (/IDS).
We set D(A) = H2(0,1) N H}(0,1), and Az = %2, We notice that

A = A*. We can always choose w > 0 so that —w ¢ o(A). We have

"'<>‘Nw+1 <*w<)\/\/w < e < AT

where \x = —k? 72 are the eigenvalue of A.
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The stabilizability of (/DS) is equivalent to the stabilizability of the
projected unstable system

o~ li o~

G1 w+ A 0 0 ¢ —E1x(1)
¢ 0 wHA ... 0 G| —Eax(1)
. = . : . | +u(® :

n, 0 0 0 w+An] |Gy, e

We can use the Hautus criterion for studying the stabilizability
vie{l,---,N,}, Ker(Al— A" —wl)nKer(B*) = {0}.

or
vie{l,--- Ny}, Ker(\l— Ay u) NKer(B, ,) = {0}.

The eigenvectors belonging to Ker(\;/ — A* — wl) are «¢;. And
B*(a &) = —agjx(1). Thus, if B*(a &) = 0 then o = 0. This means
that the Hautus criterion is satisfied and the system is stabilizable.
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2. Infinite time horizon optimal control problem

We recall the equation satisfied by (Z, U) that, for simplicity, we
denote by (z, u)

0z %z _
ot 0x?
z(0,t)=0 and z(1,t)=u(t) forte (0,00),
z(x,0) = zp(x) in(0,1).

z=0 in(0,1) x (0,00),
(HES®)

We rewrite (HE) in the form
Z =(A4+whz+Bu=A,z+ Bu, z(0)=z.

We introduce the functional
B =5 [ Icxf+y [P,
0 0

where C € £(Z,Y) and Y is another Hilbert space. We look for u
solution to the optimal control problem

(P(?j’zO) inf{J§°(z,u) | (z, u) obeys (HEZ®)}.
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Theorem. For all zy € Z, problem (P57, ) admits a unique solution uz?.

Proof. Since the pair (A, B) is stabilizable, there exists u € L?(0, c0)
such that
I3 (22,0, U) < 0.

The existence of solutions can be proved by using a minimizing
sequence and by passing to the limit.

To determine this optimal control, We approximate the problem (757, )
by a sequence of finite time horizon control problem (Pé(,zo) defined
over the time interval (0, k). We determine the solution u% of (P, ).
We denote by £ the extension of u¥ by zero to (k, o). We show that

Uk — uz in L3(0,00) as k — cc.
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3. Finite time horizon optimal control problem

We approximate the problem (Pg<, ) by a sequence of finite time
horizon control problem. We introduce the functional

J(z,u) = /\Cz B+ = /|u

and the equation
(HE) 2 = A.z+Bu in(0,k), 2(0)=z.
We look for u solution to the optimal control problem

(P§.,) inf{J&(z,u) | (z, u) obeys (HEX)}.
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Theorem. For all zy € Z, problem (P(’,"ZO) admits a unique solution u¥ .
If zX is the solution of (HE) corresponding to u% , then

2y

us = —R~'B*¢, where ¢ is the solution to the adjoint equation
—¢' =A.¢+ C*Czk, ¢(k)=0.
Conversely, the system
7 =A,z—BR'B*¢, z(0) =z,
—¢' =A,90+ C*Cz, ¢(k)=0,
admits a unique solution (z§0, ¢>’Z‘0) and the optimal control is defined
by uf = —R~"B*¢fk .

The infimum value is

. 1
inf(Pg ) = 5 (20, 85 (0) )
2 12(0,1)

The function ¢ € C([0, k]; Z) and the mapping
P(k) = 20— ¢5,(0),
is linear and continuous in Z. Moreover P(k) = P(k)* > 0.




10/28

4. Closed loop stabilization - Feedback control - Riccati equation

Passage to the limit when k — oc.

Convergence of the sequence of controls. We denote by (zﬁo, u§o) the
solution to (P§ ), by (25, U5 ) the extension of (2, uk ) by 0 to
(k,00). We have

U (2K, ) < (2K ) < Uz uz) < U u) < oo
Thus the sequence (% )« is bounded in L2(0, c0). From any
subsequnce, we can extract a subsequence converging weakly in
L2(0,00). We show that the weak limit is uz°, and next we show that
the convergence is strong in L?(0, co).

Convergence of the sequence P(k). The mapping
k — (P(K)zo, 20)12(0,1) is increasing and bounded. We can show that
for all zy € Z, the sequence (P(k)z)x converges to Pz, and that

inf(Pg,) (P20, 20) 20,1y -

_1
T2
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Moreover the operator P is the unique solution of the following Riccati
equation

Per(Z), P=P* >0,
(ARE) PA., + A:, — PBR-'B*P + C*C = 0,
A, — BR™'B*P is stable.

To stabilize the heat equation with the exponential decay rate e~“%, in
the case of full information, we solve the system

0z 0%z .
E—W—O In(0,1)><(0,oo),
(CLS) z(0,t)=0, z(1,t)=-B"Pz= % . for t € (0, 00),
X=

z(x,0) = zo(x) in(0,1),

where P is the solution to the (ARE).



5. Finite dimensional approximation of the feedback control
Using the P; FEM we obtain the system

EZ'(1) = Az(t) + Bu(t), E2(0) = ((20,di)e2)1<icn—1 >

where z = (zy,--- ,zy_1)T and the solution to the approximate heat
equation is

N—1

z=>"z¢i+uon.

i=1

We set
A, = A+ wE,

and to calculate the feedback gain, we can solve the matrix Riccati
equation

Pcc@®V-Y, P=PT>0,
(MRE) PE'A,+A’E-'P-PE-'BR'B'E-'P+C’C =0,
E-'A, —E 'BR'B'E"'P is stable,
where Cz is a discrete approximation of Cz. For example if C = I, we
choose C = E'/2,

12/28
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Let us notice that P is the solution to the (MRE) if and only if
N = E-'PE~" is the solution to the Generalized Matrix Riccati
Equation (GMRE)

Nec@®'V-"), n=n">o,
(GMRE) nNAE~'+E'A/N-NBR'B'MN+E'C'"CE~' =0,
Ez' = (A, — BR™'B'ME)z is stable,
or similarly to the equivalent equation
Nec®'-", n=n">o,
(GMRE) ENA, +A’NE-ENBR'B'NE+C’C =0,
Ez' = (A, — BR'B'ME)z is stable.
The stability condition
Ez = (A, —BR'B'ME)z is stable,
will be written as

(E,A, —BR'B'MNE) is stable.
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The closed loop system (CLS) is approximated by
EZ(f) = (A~ BR'B'ME)z(t), E2(0) = (20, 61)i2)1<icn—1 -
and the optimal control is
u(t) = —R'BTNEz(t).

We are going to compare particular choices for C. When C = 0, the
ARE is called the Bernoulli equation. It gives the control of minimal
norm.
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6.a. Bernoulli equation. C =0

We know consider the problem

(Pe%,)  Inf{J5°(z,u) | (2, u) obeys (HE) and tl_|>rro10 lz(H)]z = 0}.

with
2
%— %—wz:o in (0,1) x (0, 0),
(HE) 2(0,)=0 and z(1,t)=u(t) forte (0,T),
Z(X,O) = ZO(X) in (071)7
with w = 10 and

Bz u) = [ luoP
We look at the solution to the following Bernoulli equation
PeL(Z), P=P >0,
(ABE) PA, + A%, — PBR'B*P = 0,
A, — BR™'B*P s stable.



Representing the system by using the Hilbertian basis (&;);en+, we
have to deal with the infinite dimensional system

Gl ro+n 0 (G —&1.x(1)
(IpS) |G| =] 0 104X G| 4 g(r) | Cex(1)

We introduce the operators

10 4 M 0 —&1.x(1)
/\w — O 10+ )\2 e and B — _527)((1)

Since 10 + )¢ is the only unstable eigenvalue of A, we use a
decomposition by blocks of the form

Aw:{10+)\1 0

«_ 1 S11 S
0 AOWJ and BB _{ },

Soo,1 Soo,oo

with Si.1 = (&.x(1))2.

16/28



17/28

We choose R = 1. We look for the solution to the (ABE) in the form

P Proo
P= |:Poc71 IP>oo7oc:| '

We know that the solution is unique. We look for a solution such that
]P>1,(>C = 07 ]POOJ = 07 Poo,oo =0.

If such a solution exists P 1 € R is the solution to the following
Bernoulli equation in R

P171 > 0, P171(10 + /\1) + (10 + >\1)P1,1 - P1,1(§1,x(1 ))2P1,1 =0.
with &1 (1) = —m/2. Notice that this equation is nothing else than
IP>(,uq,u > Oa Pw7u/\w,u + Aw,upwﬁu - Pw,qu,uB:,quy =0.

We obtain Py 1 = 2097 To verify that
_ P11 O
=[5 )

solves the Bernoulli equation, we have to prove that the operator
A, — BB*PP is stable.
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Before proving that A, — BB*P is stable, we can observe that looking
at the solution P of the form

N ]P)1’1 0
=15l

is equivalent to looking at the feedback stabilization of the first
component.
Indeed the equation satisfied by ¢ is

G = (10 = 7)C — U(t)&r (1) = (10 = 72)Cy + U(t) 7v/2,

C1(0) = (20, &1)i2(0.1)-
The Bernoulli equation for this system is
p>0, 210—72)p—(7vV2)?p? =0.
Thus
_2(10 - 72)
o 272 ’
We notice that p = Py 1 and the closed loop linear system satisfied by
Ciis R IR
G =-(10—7%)G, G(0)=(20,&1)iz(0.1)-
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The closed loop system for Z is

0z 0%z ,
5 9 —10z=0 in(0,1) x (0, 00),

20,)=0 and 2(1,f) = ,M

Z(x,0) = zo(x) in (0,1).

(2(t),€1)12(0,1),  for t € (0,00),

Let us prove that this system is stable. We know that

G(t) = e 1™, and a(t):—Ma(t).

™

For the other components, we have

~,

v = (10 — K27?) G + Uk x (1), &(0) = Cok-
Thus

t
Ek(f):e(m*kzﬂz)tCo,kJr/ (10K (t=9)7( s )k.x(1)ds

JO



Replacing U by its expression in terms of (;, we have

t
[ e i) (1)
0

2 t
_ V(10 — )5“(1)/ e(10-K*)(1-9) g=(10-7)s - i
0

™

V2(10 — 7%) cix(1) o e(10—k2772)t/t o (20-Kx2—Kx?)s
7T 0

 V2(10—7?)

= (K +1)n2 = 20)

\/é 10 _ 7r2 - —n? _ K22
B (k2—|—(1)772—)20k(1)k Co,1 (e (10-72)t _ o(10—k )t>'

Ekx(1) Co.1 (e‘“o—”z)f - 9(10—k27r2)t) .

Notice that
e—(10—7r2)t . e(10—k27r2)t < 2e—(10—7r2)l‘
and
QM Kk < 1
(k2+1)m2—-20 ~ k'
Thus

-~ 2 2 2 a2
- |Ck(t)|2 < e2(‘10—k T )t|<0,k|2 + pe 2(10 )t|<0,1|2,
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and
12(t )||L2(01) < Ce 20— HZOHiZ(OJ)'

Since this system is stable, it means that the solution z to the
equation

0z 8%z

5 o2 =0 in(0,1) x (0,00),

20,)=0 and z(1,1) = ,M

z(x,0) = zp(x) in(0,1),

(2(1),&1) 20,1y, fort € (0, 00),

obeys
12(8)[| 20,1y < C&™ |20l 2(0.1)-

Therefore we have shown that A, — BB*P is stable.
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Exponential decay with w = 40.

In that case the system satisfied by Z = ez and U = e*'u is
ot 0x?
2(0,t)=0 and Z(1,t)=u(t) forte (0, T),
Z(x,0) = zo(x) in(0,1).

—402=0 in(0,1) % (0,T),

We have two unstable eigenvalues 40 — 72 and 40 — 272. The next
one 40 — 972 is negative. As above, to solve the Bernoulli equation
for this system, we can look for a feedback control stabilizing the
projected unstable system.
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Thus, we have to look for a feedback control stabilizing the following
system in R?

Gl _fo+xn o 1[G S1x(1)
[22_ = [ 0 40+)\2] Cz +att )[ Ea.x(1 )]
We set
(404X 0 I S
Mow=|"9 40+AJ r Bow= [—ﬁ;x(ﬂ] - {—2”} ’

and we can find a feedback for this 2 x 2 system by solving the MRE
P,y €R?*2 P, , =P, >0,
Po,ul\w,u + NouPu,u — P uBo, B, Puu =0,
Nou — By B Py .y is stable.

The corresponding control is obtained by solving

C1 — (A _ * ;\1 §1 0) = |:<0,1:|
[CZ] ( w,u BW,UBUJ,UP) [42] ’ lCZ] ( ) CO,Z 9

and by setting

-~ * C()
u(t) = -B, Pﬁ;uﬂ
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The closed loop system is

- lalfl] [Eo-f)

Thus

a (t) e(71-2—40)t<0,1 ]

G(1) el ~40)t¢y , |
and

" _ <1( )

-]

As previously, we can prove that the closed loop system obtained with
this control law is stable:

0z 0%z .
%2 2Z2=0 in(0,1)x(0,00)
200,)=0 and z(1.t)= B P [ggggﬂ for t € (0, %),

z(x,0) = zo(x) in(0,1),

obeys
12(8)[| 20,1y < Ce™*|Z0 ]| 1201y
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6.b. Numerical approximation of the Bernoulli equation

Step 1. We have to find the unstable eigenvalues and the
corresponding eigenvectors. The discrete eigenvalue problem is

Determine A € R and ¢ € RV~ such that
A¢ — AEE.

Since the matrices A and E are symmetric, we only look for real
eigenvalues. We have

AN—1 - S AN+ < —w < An, < < AL

We assume that the space discretization is fine enough so that A, is
a very good approximation of A\, for 1 < k < N, + 1. We have

N >> N, + 1. In particular, we assume that, for 1 < k < N, + 1, the
eigenvalues A\ are simple. For simplicity if one of the eigenvalue less
than Ay, .+ is not simple, we repeat it with its order of multiplicity. We
denote by &, a normalized eigenvector associated with the
eigenvalue Ag.
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We notice that (£, )1<k<n_1 is a basis of RN~ constituted of
eigenvectors of the pair (E, A). This basis obeys

JEE =4;; for1<i,j<N-1.

In the case of a multiple eigenvalue we can always choose the
corresponding eigenvectors so that this orthoganility condition is still
satisfied. We can express the vector
z(t) = (z1(t),- -+, zn_1(1))T € RN~ in this basis. If we denote by
¥ ¢ RIN=1x(N=1) the matrix whose columns are the vectors &, we
have

z=3X¢.

By replacing z by ¥ ¢ in the equation
Ez = A,z +Bu,

we obtain
EXx¢ =A,X¢+Bu.
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With the orthogonality condition 51-TE£,- = ¢;; and the identity
EjTAfl- = 5,‘)1')\,', we have

G=M+w)+&Bu fort <k<N-1.

We set
W+ A 0 0 0
0 w+ Ao .
Nou = . . a[Bny[;],’:éi 7'|<I<NW7
0 0 0 w+Ap, 1/h
and
w4+ Aq 0 0 0
0 w+ Ao ;
Mo = : , [Bli =¢&; ,1<i<N-1



28/28

We have to stabilize the system

¢'=N+Bu, ¢(0)=¢o,

or the projected system
Cz/,u,u = /\w,ucw,u + ]Bw,u u, Cw,u(o) = '/Tw,UCOa

where ¢, , = mw,u¢ and m,,, € L(RV~T, RN-) consists in taking the
first N, components.
To find a feedback gain, we can solve the Bernoulli equation

Pou€ LRY), P,,=P],>0,

]Pw,u/\w,u + /\Lu]P)w,u - IEDw,qu,uI[BZ;,u]P)w,u = 0»

Aoy — By uBl Py s stable.
We find the corresponding P € £(R¥~") such that (E, A, — BB"PE)
is stable by setting

N, N

Plij =Y &k Puulkee

k=1 ¢=1



