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1. Boundary stabilization of the 1D heat equation

We start with

(NHBC)

∂z
∂t
− ∂2z
∂x2 = 0 in (0,1)× (0,T ),

z(0, t) = 0 and z(1, t) = u(t) for t ∈ (0,T ),

z(x ,0) = z0(x) in (0,1).

We already know that if u = 0, then

‖z(t)‖L2(0,1) ≤ eλ1t‖z0‖L2(0,1) = e−π
2t‖z0‖L2(0,1).

Thus the solution is already stable, and we have nothing to do. If we
look for a faster exponential decay e−ωt with ω > 0, we can introduce

ẑ = eωtz and û = eωtu,

the PDE satisfied by ẑ is

(HE)

∂ẑ
∂t
− ∂2ẑ
∂x2 − ωẑ = 0 in (0,1)× (0,T ),

ẑ(0, t) = 0 and ẑ(1, t) = û(t) for t ∈ (0,T ),

ẑ(x ,0) = z0(x) in (0,1).
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Now

‖ẑ(t)‖L2(0,1) ≥ e(λ1+ω)t |ζ0,1| = e(ω−π2)t |ζ0,1| −→ +∞ as t −→ +∞,

if ζ0,1 6= 0 and ω > π2.

If we choose a control û stabilizing ẑ, the corresponding control u will
stabilize z with the exponential decay rate e−ωt . The heat equation
(HE) may be written as an infinite dimensional system satisfied by
the Fourier coefficients of ẑ

(IDS)

ζ̂1

ζ̂2
...


′

=

ω + λ1 0 . . .
0 ω + λ2 . . .
...

...
. . .


ζ̂1

ζ̂2
...

+ û(t)

−ξ1,x (1)
−ξ2,x (1)

...

 ,
where ξi,x (1) denotes dξi

dx (1).
The stabilizability of (HE) is equivalent to the stabilizability of (IDS).
We set D(A) = H2(0,1) ∩ H1

0 (0,1), and Az = d2z
dx2 . We notice that

A = A∗. We can always choose ω > 0 so that −ω 6∈ σ(A). We have

· · · < λNω+1 < −ω < λNω
< · · · < λ1.

where λk = −k2 π2 are the eigenvalue of A.
4/28



The stabilizability of (IDS) is equivalent to the stabilizability of the
projected unstable system
ζ̂1

ζ̂2
...
ζ̂Nω


′

=


ω + λ1 0 . . . 0

0 ω + λ2 . . . 0
...

...
. . .

0 0 0 ω + λNω



ζ̂1

ζ̂2
...
ζ̂Nω

+û(t)


−ξ1,x (1)
−ξ2,x (1)

...
−ξNω,x (1)

 .
We can use the Hautus criterion for studying the stabilizability

∀j ∈ {1, · · · ,Nω}, Ker(λj I − A∗ − ωI) ∩ Ker(B∗) = {0}.

or
∀j ∈ {1, · · · ,Nω}, Ker(λj I − Λω,u) ∩ Ker(B∗ω,u) = {0}.

The eigenvectors belonging to Ker(λj I − A∗ − ωI) are α ξj . And
B∗(α ξj ) = −α ξj,x (1). Thus, if B∗(α ξj ) = 0 then α = 0. This means
that the Hautus criterion is satisfied and the system is stabilizable.
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2. Infinite time horizon optimal control problem

We recall the equation satisfied by (ẑ, û) that, for simplicity, we
denote by (z,u)

(HE∞0 )

∂z
∂t
− ∂2z
∂x2 − ωz = 0 in (0,1)× (0,∞),

z(0, t) = 0 and z(1, t) = u(t) for t ∈ (0,∞),

z(x ,0) = z0(x) in (0,1).

We rewrite (HE) in the form

z ′ = (A + ωI)z + Bu = Aωz + Bu, z(0) = z0.

We introduce the functional

J∞0 (z,u) =
1
2

∫ ∞
0
|Cz(t)|2Y +

R
2

∫ ∞
0
|u(t)|2,

where C ∈ L(Z ,Y ) and Y is another Hilbert space. We look for u
solution to the optimal control problem

(P∞0,z0
) inf{J∞0 (z,u) | (z,u) obeys (HE∞0 )}.
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——————————————————————————————–
Theorem. For all z0 ∈ Z , problem (P∞0,z0

) admits a unique solution u∞z0
.

——————————————————————————————–

Proof. Since the pair (A,B) is stabilizable, there exists u ∈ L2(0,∞)
such that

J∞0 (zz0,u,u) <∞.

The existence of solutions can be proved by using a minimizing
sequence and by passing to the limit.

To determine this optimal control, We approximate the problem (P∞0,z0
)

by a sequence of finite time horizon control problem (Pk
0,z0

) defined
over the time interval (0, k). We determine the solution uk

z0
of (Pk

0,z0
).

We denote by ũk
z0

the extension of uk
z0

by zero to (k ,∞). We show that

ũk
z0
−→ uz0 in L2(0,∞) as k →∞.
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3. Finite time horizon optimal control problem

We approximate the problem (P∞0,z0
) by a sequence of finite time

horizon control problem. We introduce the functional

Jk
0 (z,u) =

1
2

∫ k

0
|Cz(t)|2Y +

R
2

∫ k

0
|u(t)|2,

and the equation

(HEk
0 ) z ′ = Aωz + Bu in (0, k), z(0) = z0.

We look for u solution to the optimal control problem

(Pk
0,z0

) inf{Jk
0 (z,u) | (z,u) obeys (HEk

0 )}.
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——————————————————————————————–
Theorem. For all z0 ∈ Z , problem (Pk

0,z0
) admits a unique solution uk

z0
.

If zk
z0

is the solution of (HE) corresponding to uk
z0

, then
uk

z0
= −R−1B∗φ, where φ is the solution to the adjoint equation

−φ′ = Aωφ+ C∗Czk
z0
, φ(k) = 0.

Conversely, the system

z ′ = Aωz − BR−1B∗φ, z(0) = z0,

−φ′ = Aωφ+ C∗Cz, φ(k) = 0,

admits a unique solution (zk
z0
, φk

z0
) and the optimal control is defined

by uk
z0

= −R−1B∗φk
z0

.

The infimum value is

inf(Pk
0,z0

) =
1
2

(
z0, φ

k
z0

(0)
)

L2(0,1)
.

The function φk
z0
∈ C([0, k ]; Z ) and the mapping

P(k) : z0 7−→ φk
z0

(0),

is linear and continuous in Z . Moreover P(k) = P(k)∗ ≥ 0.
——————————————————————————————–
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4. Closed loop stabilization - Feedback control - Riccati equation

Passage to the limit when k →∞.

Convergence of the sequence of controls. We denote by (zk
z0
,uk

z0
) the

solution to (Pk
0,z0

), by (z̃k
z0
, ũk

z0
) the extension of (zk

z0
,uk

z0
) by 0 to

(k ,∞). We have

J∞0 (z̃k
z0
, ũk

z0
) ≤ Jk

0 (zk
z0
,uk

z0
) ≤ Jk

0 (z∞z0
,u∞z0

) ≤ J∞0 (z∞z0
,u∞z0

) <∞.

Thus the sequence (ũk
z0

)k is bounded in L2(0,∞). From any
subsequnce, we can extract a subsequence converging weakly in
L2(0,∞). We show that the weak limit is u∞z0

, and next we show that
the convergence is strong in L2(0,∞).

Convergence of the sequence P(k). The mapping
k 7→ (P(k)z0, z0)L2(0,1) is increasing and bounded. We can show that
for all z0 ∈ Z , the sequence (P(k)z0)k converges to Pz0 and that

inf(P∞0,z0
) =

1
2

(Pz0, z0)L2(0,1) .
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Moreover the operator P is the unique solution of the following Riccati
equation

(ARE)

P ∈ L(Z ), P = P∗ ≥ 0,

PAω + A∗ω − PBR−1B∗P + C∗C = 0,

Aω − BR−1B∗P is stable.

To stabilize the heat equation with the exponential decay rate e−ωt , in
the case of full information, we solve the system

(CLS)

∂z
∂t
− ∂2z
∂x2 = 0 in (0,1)× (0,∞),

z(0, t) = 0, z(1, t) = −B∗Pz =
∂Pz
∂x

∣∣∣
x=1

, for t ∈ (0,∞),

z(x ,0) = z0(x) in (0,1),

where P is the solution to the (ARE).
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5. Finite dimensional approximation of the feedback control

Using the P1 FEM we obtain the system

Ez′(t) = Az(t) + Bu(t), Ez(0) = ((z0, φi )L2 )1≤i≤N−1 ,

where z = (z1, · · · , zN−1)T and the solution to the approximate heat
equation is

z =
N−1∑
i=1

zi φi + u φN .

We set
Aω = A + ωE,

and to calculate the feedback gain, we can solve the matrix Riccati
equation

(MRE)

P ∈ L(RN−1), P = PT ≥ 0,

PE−1Aω + AT
ωE−1P− PE−1BR−1BT E−1P + CT C = 0,

E−1Aω − E−1BR−1BT E−1P is stable,

where Cz is a discrete approximation of Cz. For example if C = Iz we
choose C = E1/2.
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Let us notice that P is the solution to the (MRE) if and only if
Π = E−1PE−1 is the solution to the Generalized Matrix Riccati
Equation (GMRE)

(GMRE)

Π ∈ L(RN−1), Π = ΠT ≥ 0,

ΠAωE−1 + E−1AT
ωΠ−ΠBR−1BTΠ + E−1CT CE−1 = 0,

Ez′ = (Aω − BR−1BTΠE)z is stable,

or similarly to the equivalent equation

(GMRE)

Π ∈ L(RN−1), Π = ΠT ≥ 0,

EΠAω + AT
ωΠE− EΠBR−1BTΠE + CT C = 0,

Ez′ = (Aω − BR−1BTΠE)z is stable.

The stability condition

Ez′ = (Aω − BR−1BTΠE)z is stable,

will be written as

(E,Aω − BR−1BTΠE) is stable.
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The closed loop system (CLS) is approximated by

Ez′(t) = (A− BR−1BTΠE)z(t), Ez(0) = ((z0, φi )L2 )1≤i≤N−1 ,

and the optimal control is

u(t) = −R−1BTΠEz(t).

We are going to compare particular choices for C. When C = 0, the
ARE is called the Bernoulli equation. It gives the control of minimal
norm.
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6.a. Bernoulli equation. C = 0

We know consider the problem

(P∞0,z0
) inf{J∞0 (z,u) | (z,u) obeys (HE) and lim

t→∞
‖z(t)‖Z = 0}.

with

(HE)

∂z
∂t
− ∂2z
∂x2 − ωz = 0 in (0,1)× (0,∞),

z(0, t) = 0 and z(1, t) = u(t) for t ∈ (0,T ),

z(x ,0) = z0(x) in (0,1),

with ω = 10 and
J∞0 (z,u) =

1
2

∫ ∞
0
|u(t)|2.

We look at the solution to the following Bernoulli equation

(ABE)

P ∈ L(Z ), P = P∗ ≥ 0,

PAω + A∗ω − PBR−1B∗P = 0,

Aω − BR−1B∗P is stable.
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Representing the system by using the Hilbertian basis (ξi )i∈N∗ , we
have to deal with the infinite dimensional system

(IDS)

ζ̂1

ζ̂2
...


′

=

10 + λ1 0 . . .
0 10 + λ2 . . .
...

...
. . .


ζ̂1

ζ̂2
...

+ û(t)

−ξ1,x (1)
−ξ2,x (1)

...

 .
We introduce the operators

Λω =

10 + λ1 0 . . .
0 10 + λ2 . . .
...

...
. . .

 and B =

−ξ1,x (1)
−ξ2,x (1)

...

 .
Since 10 + λ1 is the only unstable eigenvalue of Λω, we use a
decomposition by blocks of the form

Λω =

[
10 + λ1 0

0 Λ∞,∞

]
and BB∗ =

[
S1,1 S1,∞
S∞,1 S∞,∞

]
,

with S1,1 = (ξ1,x (1))2.
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We choose R = 1. We look for the solution to the (ABE) in the form

P =

[
P1,1 P1,∞
P∞,1 P∞,∞

]
.

We know that the solution is unique. We look for a solution such that

P1,∞ = 0, P∞,1 = 0, P∞,∞ = 0.

If such a solution exists P1,1 ∈ R is the solution to the following
Bernoulli equation in R

P1,1 > 0, P1,1(10 + λ1) + (10 + λ1)P1,1 − P1,1(ξ1,x (1))2P1,1 = 0.

with ξ1,x (1) = −π
√

2. Notice that this equation is nothing else than

Pω,u > 0, Pω,uΛω,u + Λω,uPω,u − Pω,uBω,uB∗ω,uPω,u = 0.

We obtain P1,1 = 2(10−π2)
2π2 . To verify that

P =

[
P1,1 0

0 0

]
,

solves the Bernoulli equation, we have to prove that the operator
Λω − BB∗P is stable.
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Before proving that Λω − BB∗P is stable, we can observe that looking
at the solution P of the form

P =

[
P1,1 0

0 0

]
,

is equivalent to looking at the feedback stabilization of the first
component.
Indeed the equation satisfied by ζ1 is

ζ̂ ′1 = (10− π2)ζ̂1 − û(t)ξ1,x (1) = (10− π2)ζ̂1 + û(t)π
√

2,

ζ̂1(0) = (z0, ξ1)L2(0,1).

The Bernoulli equation for this system is

p > 0, 2(10− π2)p − (π
√

2)2p2 = 0.

Thus

p =
2(10− π2)

2π2 .

We notice that p = P1,1 and the closed loop linear system satisfied by
ζ̂1 is

ζ̂ ′1 = −(10− π2)ζ̂1, ζ̂1(0) = (z0, ξ1)L2(0,1).
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The closed loop system for ẑ is

∂ẑ
∂t
− ∂2ẑ
∂x2 − 10ẑ = 0 in (0,1)× (0,∞),

ẑ(0, t) = 0 and ẑ(1, t) = −
√

2(10− π2)

π
(ẑ(t), ξ1)L2(0,1), for t ∈ (0,∞),

ẑ(x ,0) = z0(x) in (0,1).

Let us prove that this system is stable. We know that

ζ̂1(t) = e−(10−π2)tζ0,1 and û(t) = −
√

2(10− π2)

π
ζ̂1(t).

For the other components, we have

ζ̂ ′k = (10− k2π2)ζ̂k + û(t)ξk,x (1), ζ̂k (0) = ζ0,k .

Thus

ζ̂k (t) = e(10−k2π2)tζ0,k +

∫ t

0
e(10−k2π2)(t−s)û(s)ξk,x (1)ds.
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Replacing û by its expression in terms of ζ̂1, we have∫ t

0
e(10−k2π2)(t−s) û(s) ξk,x (1)ds

=

√
2(10− π2)

π
ξk,x (1)

∫ t

0
e(10−k2π2)(t−s)e−(10−π2)sζ0,1ds

=

√
2(10− π2)

π
ξk,x (1) ζ0,1 e(10−k2π2)t

∫ t

0
e−(20−k2π2−k2π2)s

=

√
2(10− π2)

π((k2 + 1)π2 − 20)
ξk,x (1) ζ0,1

(
e−(10−π2)t − e(10−k2π2)t

)
.

=

√
2(10− π2)

(k2 + 1)π2 − 20
k(−1)k ζ0,1

(
e−(10−π2)t − e(10−k2π2)t

)
.

Notice that ∣∣∣e−(10−π2)t − e(10−k2π2)t
∣∣∣ ≤ 2e−(10−π2)t

and

2
√

2(10− π2)

(k2 + 1)π2 − 20
k ≤ 1

k
.

Thus
|ζ̂k (t)|2 ≤ e2(10−k2π2)t |ζ0,k |2 +

2
k2 e−2(10−π2)t |ζ0,1|2,
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and
‖ẑ(t)‖2

L2(0,1) ≤ C e−2(10−π2)t‖z0‖2
L2(0,1).

Since this system is stable, it means that the solution z to the
equation

∂z
∂t
− ∂2z
∂x2 = 0 in (0,1)× (0,∞),

z(0, t) = 0 and z(1, t) = −
√

2(10− π2)

π
(z(t), ξ1)L2(0,1), for t ∈ (0,∞),

z(x ,0) = z0(x) in (0,1),

obeys
‖z(t)‖L2(0,1) ≤ Ce−10t‖z0‖L2(0,1).

Therefore we have shown that Λω − BB∗P is stable.
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Exponential decay with ω = 40.

In that case the system satisfied by ẑ = eωtz and û = eωtu is

∂ẑ
∂t
− ∂2ẑ
∂x2 − 40ẑ = 0 in (0,1)× (0,T ),

ẑ(0, t) = 0 and ẑ(1, t) = û(t) for t ∈ (0,T ),

ẑ(x ,0) = z0(x) in (0,1).

We have two unstable eigenvalues 40− π2 and 40− 2π2. The next
one 40− 9π2 is negative. As above, to solve the Bernoulli equation
for this system, we can look for a feedback control stabilizing the
projected unstable system.
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Thus, we have to look for a feedback control stabilizing the following
system in R2[

ζ̂1

ζ̂2

]′
=

[
40 + λ1 0

0 40 + λ2

][
ζ̂1

ζ̂2

]
+ û(t)

[
−ξ1,x (1)
−ξ2,x (1)

]
.

We set

Λω,u =

[
40 + λ1 0

0 40 + λ2

]
, Bω,u =

[
−ξ1,x (1)
−ξ2,x (1)

]
=

[
π
−2π

]
,

and we can find a feedback for this 2× 2 system by solving the MRE

Pω,u ∈ R2×2, Pω,u = P∗ω,u > 0,

Pω,uΛω,u + Λω,uPω,u − Pω,uBω,uB∗ω,uPω,u = 0,

Λω,u − Bω,uB∗ω,uPω,u is stable.

The corresponding control is obtained by solving[
ζ̂1

ζ̂2

]′
= (Λω,u − Bω,uB∗ω,uP)

[
ζ̂1

ζ̂2

]
,

[
ζ̂1

ζ̂2

]
(0) =

[
ζ0,1
ζ0,2

]
,

and by setting

û(t) = −B∗ω,uP

[
ζ̂1(t)
ζ̂2(t)

]
.
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The closed loop system is[
ζ̂1

ζ̂2

]′
=

[
−λ1 − 40 0

0 −λ2 − 40

][
ζ̂1

ζ̂2

]
,

[
ζ̂1

ζ̂2

]
(0) =

[
ζ0,1
ζ0,2

]
.

Thus [
ζ̂1(t)
ζ̂2(t)

]
=

[
e(π2−40)tζ0,1

e(4π2−40)tζ0,2

]
and

û(t) = −B∗ω,uP

[
ζ̂1(t)
ζ̂2(t)

]
.

As previously, we can prove that the closed loop system obtained with
this control law is stable:

∂z
∂t
− ∂2z
∂x2 = 0 in (0,1)× (0,∞),

z(0, t) = 0 and z(1, t) = −B∗ω,uP
[

(z(t), ξ1)
(z(t), ξ2)

]
, for t ∈ (0,∞),

z(x ,0) = z0(x) in (0,1),

obeys
‖z(t)‖L2(0,1) ≤ Ce−40t‖z0‖L2(0,1).
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6.b. Numerical approximation of the Bernoulli equation

Step 1. We have to find the unstable eigenvalues and the
corresponding eigenvectors. The discrete eigenvalue problem is

Determine λ ∈ R and ξ ∈ RN−1 such that

Aξ = λEξ.

Since the matrices A and E are symmetric, we only look for real
eigenvalues. We have

λN−1 · · · ≤ λNω+1 < −ω < λNω
< · · · < λ1.

We assume that the space discretization is fine enough so that λk is
a very good approximation of λk for 1 ≤ k ≤ Nω + 1. We have
N >> Nω + 1. In particular, we assume that, for 1 ≤ k ≤ Nω + 1, the
eigenvalues λk are simple. For simplicity if one of the eigenvalue less
than λNω+1 is not simple, we repeat it with its order of multiplicity. We
denote by ξk a normalized eigenvector associated with the
eigenvalue λk .
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We notice that (ξk )1≤k≤N−1 is a basis of RN−1 constituted of
eigenvectors of the pair (E,A). This basis obeys

ξT
j Eξi = δi,j for 1 ≤ i , j ≤ N − 1.

In the case of a multiple eigenvalue we can always choose the
corresponding eigenvectors so that this orthoganility condition is still
satisfied. We can express the vector
z(t) = (z1(t), · · · , zN−1(t))T ∈ RN−1 in this basis. If we denote by
Σ ∈ R(N−1)×(N−1) the matrix whose columns are the vectors ξk , we
have

z = Σ ζ.

By replacing z by Σ ζ in the equation

Ez′ = Aωz + Bu,

we obtain
EΣ ζ′ = AωΣ ζ + Bu.
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With the orthogonality condition ξT
j Eξi = δi,j and the identity

ξT
j Aξi = δi,jλi , we have

ζ ′k = (λk + ω) ζk + ξT
k Bu for 1 ≤ k ≤ N − 1.

We set

Λω,u =


ω + λ1 0 . . . 0

0 ω + λ2 . . . 0
...

...
. . .

0 0 0 ω + λNω

 , [Bω,u]i = ξT
i


0
0
...

1/h

 , 1 ≤ i ≤ Nω,

and

Λω =


ω + λ1 0 . . . 0

0 ω + λ2 . . . 0
...

...
. . .

0 0 0 ω + λN−1

 , [B]i = ξT
i


0
0
...

1/h

 , 1 ≤ i ≤ N−1.
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We have to stabilize the system

ζ′ = Λζ + Bu, ζ(0) = ζ0,

or the projected system

ζ′ω,u = Λω,uζω,u + Bω,u u, ζω,u(0) = πω,uζ0,

where ζω,u = πω,uζ and πω,u ∈ L(RN−1,RNω ) consists in taking the
first Nω components.
To find a feedback gain, we can solve the Bernoulli equation

Pω,u ∈ L(RNω ), Pω,u = PT
ω,u ≥ 0,

Pω,uΛω,u + ΛT
ω,uPω,u − Pω,uBω,uBT

ω,uPω,u = 0,

Λω,u − Bω,uBT
ω,uPω,u is stable.

We find the corresponding P ∈ L(RN−1) such that (E,Aω − BBT PE)
is stable by setting

[P]i,j =
Nω∑
k=1

Nω∑
`=1

ξi,k [Pω,u]k,` ξj,`.
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