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Plan of lecture 6

1. Detectability of the 1D Heat equation

2. Approximation of the estimator

3. Coupling between a feedback control law and an estimator
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1. Detectability of the 1D heat equation with different types of
measurements

We assume that we have a noisy model

∂z
∂t
− ∂2z
∂x2 = µ in (0,1)× (0,T ),

z(0, t) = 0 and z(1, t) = u(t) for t ∈ (0,T ),

z(·,0) = z0 + µ0 in (0,1).

In this setting, u and z0 are known, but µ and µ0 are not known. We
would like to estimate z(t) by using measurements.

Boundary measurements

We choose the measure operator H defined by

Hz(t) = zx (0, t) ∈ Yo = R.

Thus H ∈ L(H2(0,1),Yo). We set D(A) = H2(0,1) ∩ H1
0 (0,1), and

Az = d2z
dx2 . The pair (A,H) is detectable. Indeed A is stable and

A + LH is stable with L = 0.
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To increase the quality of the estimation we look for L ∈ L(R; L2(0,1))
such that A + ωI + LH is stable for ω > 0.

To study the detectability of the pair (A + ωI,H), we can use the
Hautus criterion

∀λ, Reλ ≥ 0, Ker(λI − A− ωI) ∩ Ker(H) = {0}.

Assume that

· · · < λNω+1 < −ω < λNω < · · · < λ1.

Thus we have to show that if

1 ≤ k ≤ Nω, (A + ωI)ξ = (λk + ω)ξ and Hξ = 0,

then ξ = 0. Such a function ξ is of the form ξ = αξk , and
Hξ = α ξk,x (0) = απ k . Thus Hξ = 0 implies α = 0 and ξ = 0.
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Distributed measurements

We choose the measure operator H defined by

Hz =

(
1
|I1|

∫
I1

z, · · · 1
|INo |

∫
INo

z

)
∈ Yo = RNo .

Thus H ∈ L(L2(0,1),Yo).

To prove that the pair (A +ωI,H) is detectable, we have to show that if

1 ≤ k ≤ Nω, (A + ωI)ξ = (λk + ω)ξ and Hξ = 0,

then ξ = 0. Such a function ξ is of the form ξ = αξk , and

Hξ = α

(
1
|I1|

∫
I1
ξk , · · · ,

1
|INo |

∫
INo

ξk

)
. Thus, we have to choose the

intervals I1,...,INo so that
∫

INk

ξk 6= 0 at least for one interval Nk .
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Detectability for distributed measurements with one interval

If we choose No = 1 and I1 = (0,1). The eigenfunction ξ1 is
observable, while the eigenfunctions ξ2, · · · , ξ2k , · · · are not
observable. Thus the pair (A + ωI,H) is detectable if 0 < ω < 4π2.

If we choose No = 1 and I1 = (0,1/2). The eigenfunctions ξ1, ξ2, ξ3
are observable, while the eigenfunctions ξ4, ξ8 · · · , ξ4k , · · · are not
observable. Thus the pair (A + ωI,H) is detectable if 0 < ω < 16π2.
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For a noisy observation

yobs(t) = Hz(t) + η,

The estimator will be of the form

z ′e = Aze + Bu + L(Hze − yobs), ze(0) = z0,

with L = −PeH∗Rη, Pe is the solution to

Pe = P∗e ≥ 0, Pe(A∗ + ωI) + Pe(A + ωI)− PeH∗R−1
η HPe + Qµ = 0,

Qµ ∈ L(L2(0,1)), Rη ∈ L(Yo), Qµ = Q∗µ ≥ 0 and Rη = R∗η > 0. The
operators Qµ and Rη are chosen according to the ’a priori’ knowledge
we have on the model noise and the measurement noise.

This is an infinite dimensional Riccati equation which has to be
approximated.
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2. Approximation of the estimator

We observe the system

z ′ = Az + Bu + µ, z(0) = z0 + µ0.

The solution z to the continuous model is approximated by

z(t) =
N−1∑
i=1

zi (t)φi + u(t)φN , with z(t) = (z1, · · · , zN−1)T .

The approximate state equation is

Ez′ = Az + Bu + µ, z(0) = z0 + µ0.

We would like to deduce from yobs(t) = Hz(t) + η an observation for z.
The measure of the approximate state z(t) is

Hz(t) =
N−1∑
i=1

zi (t)Hφi + u(t)HφN .
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Let us consider the case of a boundary observation or a distributed
observation for which HφN = 0. In that case we can set

Hz(t) =
N−1∑
i=1

zi (t)Hφi and yobs(t) = Hz(t) + η(t),

where η is a discrete approximation of η.
If we have a numerical approximation Hhz(t) of Hz(t) for which

Hhz(t) 6=
N−1∑
i=1

zi (t)Hφi ,

and which gives a better accuracy of the measure of the exact state,
we can use it in the definition of Hz(t).
We assume now that Hz(t) = Hh

(∑N
i=1 zi (t)φi

)
= Hhz(t) and

yobs(t) = Hz(t) + η are given.
To find the filtering gain, we have to solve

(GMRE)e

Pe ∈ L(RN−1), Pe = PT
e ≥ 0,

EPeAT
ω + AT

ωPeE− EPeHT R−1
η HPeE + Qµ = 0,

(E,Aω − EPeHT R−1
η H) is stable.
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The estimator is

Ez′e = Aze + Bu − EPeHT R−1
η (Hze − yobs), ze(0) = z0,

Ez′ = Az + Bu + µ, z(0) = z0 + µ0,

yobs(t) = Hz(t) + η.

We solve the state equation to generate the measures yobs(t). Next
we calculate ze.
The operator Pe belongs to RNz×Nz . If Nz is too large, we have to look
at an estimator of smaller dimeension.
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Estimator of small dimension

As for the calculation of the feedback gain, rather than estimating the
solution to the equation

Ez′ = Az + Bu + µ, z(0) = z0 + µ0,

we can work with the system

ζ′ = Λζ + Bu + Σ−1µ, ζ(0) = ζ0 + Σ−1µ0,

or with the projected system

ζ′ω,u = Λω,uζω,u +Bω,u u +πω,uΣ−1µ, ζω,u(0) = πω,uζ0 +πω,uΣ
−1µ0,

where ζω,u = πω,uζ and πω,u ∈ L(RN−1,RNω ). The notation are the
ones of the previous lecture. Since we make the change of variable

z = Σζ,

we introduce H defined by

Hζ = Hz.

When we work with ζω,u = πω,uζ, it is convenient to set

Hω,u = Hπω,u.
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It is convenient to estimate ζω,u rather than ζ since Nω is much
smaller than N − 1.
To find a filtering gain, we can solve the Riccati equation

Pe ∈ L(RNω ), Pe = PT
e ≥ 0,

PeΛT
ω,u + Λω,uPe − PeHT

ω,uR−1
η Hω,uPe + Qµ = 0,

Λω,u − PeHT
ω,uR−1

η Hω,u is stable,

where Qµ stands for the covariance operator of Σ−1µ.
We find the corresponding Pe ∈ L(RN−1) such that
(E,Aω − EPeHT R−1

η H) is stable by setting

[Pe]i,j =
Nω∑
k=1

Nω∑
`=1

ξi,k [Pe]k,` ξj,`.

The estimation equation will be the same one as above.
Since we have solved the Riccati equation for the pair (Λω,u,Hω,u)
rather than (Λω,H), this means that we have neglected the measure

H
N−1∑

k=Nω+1

ζkξk .
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Since, for Nω + 1 ≤ k ≤ N − 1, ζk is rapidly decreasing the error that
we introduce is small and the accuracy is good.

3. Coupling between a feedback control law and an estimator

We assume that we have a noisy model

∂z
∂t
− ∂2z
∂x2 = µ in (0,1)× (0,T ),

z(0, t) = 0 and z(1, t) = u(t) for t ∈ (0,T ),

z(·,0) = z0 + µ0 in (0,1),

and a noisy observation

yobs(t) = Hz(t) + η.
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We choose some ω > 0, such that

· · · < λNω+1 < −ω < λNω < · · · < λ1.

where λk = −k2 π2 are the eigenvalue of A. We introduce the
projected system
ζ̂1

ζ̂2
...
ζ̂Nω


′

=


ω + λ1 0 . . . 0

0 ω + λ2 . . . 0
...

...
. . .

0 0 0 ω + λNω



ζ̂1

ζ̂2
...
ζ̂Nω

+û(t)


−ξ1,x (1)
−ξ2,x (1)

...
−ξNω,x (1)

 .
We set

Λω,u =


ω + λ1 0 . . . 0

0 ω + λ2 . . . 0
...

...
. . .

0 0 0 ω + λNω

 and Bω,u =


−ξ1,x (1)
−ξ2,x (1)

...
−ξNω,x (1)

 .
We solve the matrix Riccati equation

Pω,u ∈ RNω×Nω , Pω,u = PT
ω,u,

Pω,uΛω,u + Λω,uPω,u − Pω,uBω,uB∗ω,uPω,u + δIRNω = 0, with δ ≥ 0,

Λω,u − Bω,uB∗ω,uPω,u is stable.
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The system coupling the feedback gain and the estimator is

∂z
∂t
− ∂2z
∂x2 = µ in (0,1)× (0,T ),

z(0, t) = 0 and z(1, t) = −B∗ω,uPω,u


(ze(t), ξ1)
(ze(t), ξ2)

...
(ze(t), ξNω )

 for t ∈ (0,T ),

z(·,0) = z0 + µ0 in (0,1),

∂ze

∂t
− ∂2ze

∂x2 = L(Hze − yobs(t)) in (0,1)× (0,T ),

ze(0, t) = 0 and ze(1, t) = −B∗ω,uPω,u


(ze(t), ξ1)
(ze(t), ξ2)

...
(ze(t), ξNω )

 for t ∈ (0,T ),

ze(·,0) = z0 in (0,1),

yobs(t) = Hz(t) + η,

where L = −PeH∗Rη is the filtering gain.
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To prove the exponential decay of z, we write the system satisfied by
ẑ = eωtz and ê = ẑ − ẑe:

∂ẑ
∂t
− ∂2ẑ
∂x2 − ωẑ = µ̂ in (0,1)× (0,∞), ẑ(0, t) = 0

ẑ(1, t) = −B∗ω,uPω,u


(ẑ(t), ξ1)
(ẑ(t), ξ2)

...
(ẑ(t), ξNω )

+ B∗ω,uPω,u


(ê(t), ξ1)
(ê(t), ξ2)

...
(ê(t), ξNω )


for t ∈ (0,∞),

ẑ(·,0) = z0 + µ0 in (0,1),

∂ê
∂t
− ∂2ê
∂x2 − ωê = LHê − Lη̂ in (0,1)× (0,∞),

ê(0, t) = 0 and ê(1, t) = 0 for t ∈ (0,∞),

ê(·,0) = µ0 in (0,1).
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We know that A + LH is exponentially stable, that is
‖et(A+LH)‖ ≤ Ce−δo t for some δo > 0. Thus if e−δη η̂ ∈ L2(0,∞; L2(Yo))
for some 0 < δη < δo, we can prove that

‖ê(t)‖Z ≤ Ce−δe t for some 0 < δe < δη.

Next, we use ‖et(A+BK )‖ ≤ Ce−δc t for some δc > 0. If
e−δµ µ̂ ∈ L2(0,∞; L2(Z )) for some δµ > 0, using the estimate of ê in
the equation satisfied by ẑ we prove that

‖ẑ(t)‖Z ≤ Ce−δz t with 0 < δz < min(δc , δµ, δe).
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For the discrete model, the system coupling the estimator and the
feedback gain is

Ez′e = Aze − BBT PEze − EPeHT R−1
η (Hze − yobs), ze(0) = z0,

Ez′ = Az− BBT PEze + µ, z(0) = z0 + µ0,

yobs(t) = Hz(t) + η.

This is a coupled system for (z, ze)T . We solve it with the Backward
Differentiation Formula of order 2.
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Let us summarize the different steps for finding the matrices
P ∈ R(N−1)×(N−1) and Pe ∈ R(N−1)×(N−1) of the previous system.

•We first determine the pairs (λk , ξk )1≤Nω of eigenvalues and
eigenvectors of (E,A).

• Next, we build the matrices Aω,u, Bω,u and Hω,u.

•We determine Pω,u by solving the Riccati equation associated with
the pair (Aω,u,Bω,u).

•We determine Pe by solving the Riccati equation associated with
the pair (Aω,u,Hω,u).

•We calculate P from Pω,u and Pe from Pe.
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