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1. A Burgers equation with a Dirichlet boundary control

We consider the equation

∂w

∂t
− ν ∂

2w

∂x2
+ w

∂w

∂x
= fs in (0, 1)× (0,∞),

w(0, t) = us + u(t) and ν
∂w

∂x
(1, t) = gs for t ∈ (0,∞),

w(·, 0) = w0 in (0, 1).

We assume that fs , gs and us are stationary data, and that ws is the
solution to the equation

−ν ws,xx + ws ws,x = fs in (0, 1),

ws(0) = us and ν ws,x(1) = gs .
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We set z = w − ws . The equation satisfied by z is

∂z

∂t
− ν ∂

2z

∂x2
+ ws

∂z

∂x
+ z

∂ws

∂x
+ z

∂z

∂x
= 0 in (0, 1)× (0,∞),

z(0, t) = u(t) and ν
∂z

∂x
(1, t) = 0 for t ∈ (0,T ),

z(·, 0) = w0 − ws = z0 in (0, 1).

The linearized model is

∂z

∂t
− ν ∂

2z

∂x2
+ ws

∂z

∂x
+ z

∂ws

∂x
= 0 in (0, 1)× (0,∞),

z(0, t) = u(t) and ν
∂z

∂x
(1, t) = 0 for t ∈ (0,T ),

z(·, 0) = z0 in (0, 1).

The linearized operator in L2(0, 1) is defined by

D(A) = {z ∈ H2(0, 1) | z(0) = 0, zx(1) = 0},

Az = ν zxx − ws zx − z ws,x .
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As in the case of the heat equation, it can be shown that the linearized
controlled system may be written in the form

z ′ = Az + Bu, z(0) = z0,

with B = (λ0 − A)D for some λ0 > 0, where the Dirichlet operator D is
defined by Du = w and w is the solution to the stationary equation

λ0w − ν wxx + ws wx + w ws,x = 0 in (0, 1),

w(0) = u and ν wx(1) = 0.

The coefficient λ0 > 0 is chosen so that the bilinear form

a(w , φ) =

∫ 1

0

(λ0 w φ+ νwxφx + ws wx φ+ w ws,x φ) dx

is coercive in H1
{0}(0, 1).
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Measurements

We choose either a distributed measurement

Hdz(t) =

(
1

|I1|

∫
I1

z(t), · · · , 1

|INo |

∫
INo

z(t)

)
∈ Yo = RNo ,

with Ij ⊂ (0, 1) for 1 ≤ j ≤ No , or a boundary measurement

Hbz(t) = z(1, t).

The adjoint of (A,D(A)) is the operator (A∗,D(A∗)) defined by

D(A∗) = {φ ∈ H2(0, 1) | φ(0) = 0, φx(1) + ws(1)φ(1) = 0},

A∗φ = ν φxx + ws φx .
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2. Eigenvalues of A and A∗

To study the stabilizability of the pair (A + ωI ,B) is stabilizable and the
detectability of the pairs (A + ωI ,Hd) and (A + ωI ,Hb), we have to
characterize the spectrum of A and the eigenfunctions of A and A∗.
Since A is not selfadjoint, it may admits complex eigenvalues. Let us first
show that the eigenvalues of A are real.

The eigenvalue problem for the linearized model is

−ν zxx + ws zx + z ws,x = λ z in (0, 1),

z(0) = 0 and ν zx(1) = 0.

Since the operator is not selfadjoint, we make the following change of
unknowns

z(x) = eβ(x)v .

We have

zx = βx eβ(x)v + eβ(x)vx

zxx = βxx eβ(x)v + β2
x eβ(x)v + 2βx eβ(x)vx + eβ(x)vxx .
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Thus, the equation for v is

−ν vxx + (−2ν βx + ws) vx +
(
−ν βxx − ν β2

x + ws βx + ws,x

)
v = λ v in (0, 1),

v(0) = 0 and vx(1) + βx v(1) = 0.

We choose
βx =

ws

2ν
and βxx =

ws,x

2ν
.

We have

−ν vxx +

(
ws,x

2
+

w2
s

4ν

)
v = λ v in (0, 1),

v(0) = 0 and vx(1) +
ws(1)

2ν
v(1) = 0.

Now, we have a selfadjoint operator. Therefore we have shown that the
eigenvalues of A are real. In addition, if λ0 > 0 is chosen so that the
bilinear form

a(w , φ) =

∫ 1

0

(λ0 w φ+ νwxφx + ws wx φ+ w ws,x φ) dx

is coercive in H1
{0}(0, 1), we can show that λ0 − A is an isomorphism

from D(A) into L2(0, 1), and its inverse (λ0 − A)−1 is a compact
operator in L2(0, 1). In that case, it can be shown that the eigenvalues of
A are isolated and of finite multiplicity.
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3. Stabilizability of (A,B) and detectability of (A,H)

——————————————————————————————–
Theorem. For any ω > 0, the pair (A + ωI ,B) is stabilizable and the pair
(A + ωI ,Hb) is detectable. The family (Ij)1≤j≤No may be chosen so that
the pair (A + ωI ,Hd) is detectable.
——————————————————————————————–

To check the stabilizability of the pair (A + ωI ,B), we have to verify the
Hautus criterion. The adjoint of B is defined on D(A∗) by

B∗φ = νφx(0), ∀φ ∈ D(A∗).

If φ ∈ H1
{0}(0, 1) satisfies

−ν φxx − ws φx = λφ in (0, 1),

φ(0) = 0, and ν φx(1) + ws(1)φ(1) = 0, and φx(0) = 0,

then necessarily φ = 0, because φ is the solution to a second order
homogeneous differential equation with a zero initial condition.

Thus the pair (A + ωI ,B) is stabilizable.
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Let us check the detectability of (A + ωI ,Hb). If ξ ∈ H1
{0}(0, 1) satisfies

−ν ξxx + ws ξx + ξ ws,x = λ ξ in (0, 1),

ξ(0) = 0, ν ξx(1) = 0 and ξ(1) = 0,

then necessarily ξ = 0, because ξx(1) = 0 and ξ(1) = 0. Thus the
pair (A + ωI ,Hb) is detectable.
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4. Local feedback stabilization of the continuous model

We choose a feedback gain K ∈ L(Z ,U) such that (A + ωI ,B) is stable
and a filtering gain L ∈ L(Yo ,Z ) such that (A + ωI ,H) is stable. Here H
stands either for Hd or Hb. It η denotes a measurement error, µ is a
model error and µ0 is an error in the initial condition, we have to solve
the system

∂z

∂t
− ν ∂

2z

∂x2
+ ws

∂z

∂x
+ z

∂ws

∂x
+ z

∂z

∂x
= µ in (0, 1)× (0,∞),

z(0, t) = Kze(t) and ν
∂z

∂x
(1, t) = 0, for t ∈ (0,∞),

z(·, 0) = z0 + µ0 in (0, 1),

∂ze

∂t
− ν ∂

2ze

∂x2
+ ws

∂ze

∂x
+ ze

∂ws

∂x
= L(Hze − Hz + η) in (0, 1)× (0,∞),

ze(0, t) = Kze(t) and ν
∂ze

∂x
(1, t) = 0 for t ∈ (0,∞),

ze(·, 0) = z0 in (0, 1).
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——————————————————————————————–
Theorem – Local stabilization of the nonlinear system. Let us choose
s ∈ (0, 1/2). There exist C0 > 0 and c1 > 0, such that if 0 < C ≤ C0 and

‖z0‖Hs (0,1)+‖µ0‖Hs (0,1)+‖e·ωµ‖L2(0,∞;H−1+s (0,1))+‖e·ωη‖L2(0,∞;Yo) ≤ c1 C ,

then the nonlinear system coupling z and ze admits a unique solution in
the space

{(z , ze) ∈ H1+s,1/2+s/2((0, 1)×(0,∞)) | ‖(z , ze)‖H1+s,1/2+s/2((0,1)×(0,∞)) ≤ C}.

——————————————————————————————–
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5. Approximation of the closed loop nonlinear system

For the finite dimensional approximate system, we have to solve

Ez′e = Aze + BKze + L(Hze −Hz− η), ze(0) = z0,

Ez′ = Az + BKze + F (z) + µ, z(0) = z0 + µ0.
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6. Explicit determination of unstable steady states

We are going to show that there exist steady states of the Burgers
equation for which the linearized operators about these steady states are
unstable in the case of mixed boubdary conditions. We shall also consider
the case of Dirichlet conditions without being able to give a positive
answer.

Case of mixed boundary conditions. We denote by ws a solution to

−ν ws,xx + ws ws,x = fs in (0, 1),

ws(0) = us and ν ws,x(1) = gs .

The eigenvalue problem for the linearized model is

−ν zxx + ws zx + z ws,x = λ z in (0, 1),

z(0) = 0 and ν zx(1) = 0.

As above, we make the following change of unknowns

z(x) = eβ(x)v .
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The equation for v is

−ν vxx +

(
ws,x

2
+

w2
s

4ν

)
v = λ v in (0, 1),

v(0) = 0 and ν vx(1) +
ws(1)

2
v(1) = 0.

if we choose
βx =

ws

2ν
and βxx =

ws,x

2ν
.

We set

D(A) = {v ∈ H2(0, 1) | v(0) = 0, vx(1) +
ws(1)

2ν
v(1) = 0},

and

Av = −ν vxx +

(
ws,x

2
+

w2
s

4ν

)
v .
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Integrating by part, we obtain∫ 1

0

(
−ν vxx +

(
ws

2
+

w2
s

4ν

)
v

)
v dx

=

∫ 1

0

(
ν v2

x +

(
ws,x

2
+

w2
s

4ν

)
v2

)
dx − ν (v vx) |x=1

=

∫ 1

0

(
ν v2

x +

(
ws,x

2
+

w2
s

4ν

)
v2

)
dx +

ws(1)

2
v2(1).

We have ∫ 1

0

v2 dx ≤ 16

π2

∫ 1

0

v2
x dx for all v ∈ H1

{0}(0, 1),

and the equality holds for

v(x) = sin
(πx

4

)
.

Thus for such a function v , it yields∫ 1

0

(
ν v2

x +

(
ws,x

2
+

w2
s

4ν

)
v2

)
dx +

ws(1)

2
v2(1)

=

∫ 1

0

(
ws,x

2
+

w2
s

4ν
+ ν

π2

16

)
v2 dx +

ws(1)

2
v2(1).
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We look for ws such that ws(1) < 0 and

ws,x

2
+

w2
s

4ν
+ ν

π2

16
< 0.

We look for the solution to the equation

2ν w ′ + w2 + ν2π2/4 = −ν2π2(2ε+ ε2)/4,

where 0 < ε < 1 has to be chosen. We have

2ν w ′

ν2π2(1 + ε)2/4
+

w2

ν2π2(1 + ε)2/4
+ 1 = 0.

Thus
2

π(1+ε)/2
w ′

νπ(1+ε)/2(
w

νπ(1+ε)/2

)2

+ 1
= −1.

Integrating from 0 to x , we have

4

π(1 + ε)
arctan

(
w

νπ(1 + ε)/2

)
− 4

π(1 + ε)
arctan

(
w0

νπ(1 + ε)/2

)
= −x ,

and

w(x) = −νπ(1 + ε)

2
tan

(
π(1 + ε)x

4
+ C0

)
.
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For x = 1

w(1) = −νπ(1 + ε)

2
tan

(
π(1 + ε)

4
+ C0

)
.

Thus, we can choose 0 < ε < 1 so that w(1) takes any prescribed value
in the interval (−∞, 0).
In particular we would like to have

vx(1) +
ws(1)

2ν
v(1) = 0,

with v(x) = sin
(
πx
4

)
.

vx(1) =
π

4
cos
(π

4

)
=
π
√

2

8
, v(1) = sin

(π
4

)
=

√
2

2
,

and
ws(1) = −πν

2
.

We have to solve

νπ(1 + ε)

2
tan

(
π(1 + ε)

4
+ C0

)
=
πν

2
,

that is

tan

(
π(1 + ε)

4
+ C0

)
=
π

4

(
4

π(1 + ε)

)
.
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For C0 = 0, the equation

tan

(
π(1 + ε)

4

)
=
π

4

(
4

π(1 + ε)

)
admits the solution

π(1 + ε)

4
=
π

4
, ε = 0.

For −π/4 < C0 < 0, we have a solution ε such that

π(1 + ε)

4
>
π

4
.

Thus we can find ε > 0 for which ws(1) = −πν2 . For such a function ws ,
we have ∫ 1

0

(
ν v2

x +

(
ws,x

2
+

w2
s

4ν

)
v2

)
dx +

ws(1)

2
v2(1)

= −ν
2π2(2ε+ ε2)

4

∫ 1

0

v2 dx − πν

4
v2(1).
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This means that the linearized Burgers operator has negative eigenvalues.
Indeed, v ∈ D(A), and∫ 1

0

(Av v) dx = −ν
2π2(2ε+ ε2)

4

∫ 1

0

v2 dx − πν

4
v2(1) < 0.

Since A is self-adjoint, this inequality ensures the existence of negative
eigenvalues.

Case of Dirichlet boundary conditions.

In the case of Dirichlet boundary conditions, using the same change of
unknowns as above, the eigenvalue prtoblem for v is

−ν vxx +

(
ws,x

2
+

w2
s

4ν

)
v = λ v in (0, 1),

v(0) = 0 and v(1) = 0.

20/23



Integrating by part, we obtain∫ 1

0

(
−ν vxx +

(
ws

2
+

w2
s

4ν

)
v

)
v dx

=

∫ 1

0

(
ν v2

x +

(
ws,x

2
+

w2
s

4ν

)
v2

)
dx .

We have ∫ 1

0

v2 dx ≤ 1

π2

∫ 1

0

v2
x dx for all v ∈ H1

0 (0, 1),

and the equality holds for

v(x) = sin (πx) .

We choose v(x) = sin (πx), which is the function giving the best
constant in the above inequality. We have∫ 1

0

(
ν v2

x +

(
ws,x

2
+

w2
s

4ν

)
v2

)
dx =

∫ 1

0

(
ws,x

2
+

w2
s

4ν
+ νπ2

)
v2 dx .
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If
ws,x

2
+

w2
s

4ν
+ νπ2 < 0,

we shall have negative eigenvalues. We look for the solution to the
equation

2ν w ′ + w2 + 4ν2π2 = −4ν2π2(2ε+ ε2),

where 0 < ε < 1 has to be chosen. We have

2ν w ′

4ν2π2(1 + ε)2
+

w2

4ν2π2(1 + ε)2
+ 1 = 0.

Thus
1

π(1+ε)
w ′

2νπ(1+ε)(
w

2νπ(1+ε)

)2

+ 1
= −1.

Integrating from 0 to x , we have

1

π(1 + ε)
arctan

(
w

2νπ(1 + ε)

)
− 1

π(1 + ε)
arctan

(
w0

2νπ(1 + ε)

)
= −x ,

and
w(x) = −2νπ(1 + ε) tan (π(1 + ε)x + C0) .

We do not obtain a continuous function over [0, 1].
22/23



Explicit expression of ws

We choose C0 = −π/8. We have to solve the equation

tan
(π

4
(1 + ε)− π

8

)
=

1

1 + ε
.

e find the approximate solution

ε = 0.323745909529.

The corresponding ws is defined by

w(x) = −νπ(1 + ε)

2
tan

(
π(1 + ε)x

4
− π

8

)
.
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