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Plan of lecture 7

1. The nonlinear model

2. Eigenvalues of the linearized operator and of its adjoint
3. Stabilizability and detectability of the linearized model
4. Local feedback stabilization of the continuous model

5. Approximation of the closed loop nonlinear system

6. Explicit determination of unstable steady states



1. A Burgers equation with a Dirichlet boundary control

We consider the equation

ow Pw ow .
E_Vw‘f'Wa—fs |n(0,1)><(0,00),

w(0,t) = us + u(t) and Vaa—w(l, t)=gs forte(0,00),
X
w(-,0) =wp in (0,1).

We assume that f;, g and us are stationary data, and that ws is the
solution to the equation

—V Ws s + Ws Ws x = 5 in (0, 1),

ws(0) = us and v ws (1) = gs.
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We set z = w — ws. The equation satisfied by z is

% 822 w 0z +28W5 282
ot U ox2 Ox Ox Ox

z(0,t) = u(t) and Vg (1,t)=0 forte(0,T),
z(,0)=wp —ws =2 in (0,1).

The linearized model is

@ 82Z+W 82+28WS
ot 8 2 ° Ox Ox

=0 in(0,1) x (0,00),

z(0,t) = u(t) and I/%(l, t)=0 forte(0,T),
z(-,0) =z in (0,1).
The linearized operator in L2(0,1) is defined by
D(A) = {z € H*(0,1) | 2(0) = 0, 2(1) = 0},

AZ =V Zo — Ws Z¢ — Z Ws .
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As in the case of the heat equation, it can be shown that the linearized
controlled system may be written in the form

z' =Az+ Bu, z(0)= z,

with B = (Ao — A)D for some Ao > 0, where the Dirichlet operator D is
defined by Du = w and w is the solution to the stationary equation

AW — U Wy + Ws Wy + wws , =0 in (0,1),

w(0) =u and vwy(l)=0.

The coefficient Ag > 0 is chosen so that the bilinear form

1
a(W7¢) = /O (AOW¢+VWX¢X+WS WX¢+WWS,X¢) dx

is coercive in Hy,, (0,1).



Measurements

We choose either a distributed measurement

1 1
Hyz(t) = —/z(t),--- [ 20)) e vo=rM,
\hl Jy In,| i,

with [; C (0,1) for 1 < j < N,, or a boundary measurement
Hpz(t) = z(1, t).
The adjoint of (A, D(A)) is the operator (A*, D(A*)) defined by

D(A*) = {¢ € H*(0,1) | (0) = 0, (1) + ws(1)¢(1) = 0},
A D = U Pux + Ws .
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2. Eigenvalues of A and A*

To study the stabilizability of the pair (A + w/, B) is stabilizable and the
detectability of the pairs (A + wl, Hy) and (A + wl, Hp), we have to
characterize the spectrum of A and the eigenfunctions of A and A*.
Since A is not selfadjoint, it may admits complex eigenvalues. Let us first
show that the eigenvalues of A are real.

The eigenvalue problem for the linearized model is
—VZu+WsZe +zWsx = Az in (0,1),

z(0)=0 and wvz(l)=0.

Since the operator is not selfadjoint, we make the following change of

unknowns
z(x) = "™y,

We have
z = B 7Py 4 79y,

Ze = P €90y + 2P0y 123, PXy, 4 &Py



Thus, the equation for v is
—U Vax + (=20 By + ws) v + (—Vﬂxx — v 4w B+ Ws7x) v=2Av in (0,1
v(0) =0 and w(1)+ Bcv(1)=0.

We choose Wex

2v

ﬁx: g and ﬂxx:

We have

2
—V Vi + (WZ’X +:V;> v=2Av in(0,1),

v(0)=0 and (1) + W;(Vl) v(1) = 0.

Now, we have a selfadjoint operator. Therefore we have shown that the
eigenvalues of A are real. In addition, if Ay > 0 is chosen so that the
bilinear form

1
a(w,qb):/o (Ao W @ + vwidy + Ws Wy & + W ws « @) dx

is coercive in H%O}(O, 1), we can show that A\g — A is an isomorphism
from D(A) into L2(0,1), and its inverse (Ao — A)~! is a compact
operator in L2(0,1). In that case, it can be shown that the eigenvalues of

A are isolated and of finite multiplicity.
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3. Stabilizability of (A, B) and detectability of (A, H)

Theorem. For any w > 0, the pair (A+ wl, B) is stabilizable and the pair
(A+wl, Hp) is detectable. The family (/;)1<j<n, may be chosen so that
the pair (A+ wl, Hy) is detectable.

To check the stabilizability of the pair (A + wl, B), we have to verify the
Hautus criterion. The adjoint of B is defined on D(A*) by

B*¢ = v¢x(0), Vo € D(AY).
If ¢ € H,,(0,1) satisfies
_V¢xx_ Ws¢x :)\QS in (Oa]-)v
$(0) =0, and v@e(1)+ws(1)p(1) =0, and ¢,(0) =0,

then necessarily ¢ = 0, because ¢ is the solution to a second order
homogeneous differential equation with a zero initial condition.

Thus the pair (A + wl, B) is stabilizable.



Let us check the detectability of (A+ wl, Hp). If £ € H{lo} (0, 1) satisfies

—v & + Ws &x +€Ws,x =A¢{ in (Oa 1)7
£(0) =0, v&(1)=0 and £(1)=0,

then necessarily £ = 0, because £,(1) =0 and &(1) =0. Thus the
pair (A+ wl, Hp) is detectable.
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4, Local feedback stabilization of the continuous model

We choose a feedback gain K € £(Z, U) such that (A+ wl, B) is stable
and a filtering gain L € L(Y,, Z) such that (A+ wl, H) is stable. Here H
stands either for Hy or Hp. It 1 denotes a measurement error, w is a
model error and g is an error in the initial condition, we have to solve
the system

0z 0%z Oz Ows Oz

E—Vﬁ—kwsa—l-zax +za:,u in (0,1) x (0, 00),

z(0,t) = Kze(t) and V%(l, t)=0, forte (0,00),

2(,0) =z +po in (0,1),

0z 5z, 0z ows
Ze
Ox

0z

Ox

ot~ Vax T ox
z(0,t) = Kzo(t) and v

= L(Hze — Hz+7) in (0,1) x (0, c0),

(1,t) =0 for t € (0,00),

ze(-,0) =2z in (0,1).
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Theorem — Local stabilization of the nonlinear system. Let us choose
s € (0,1/2). There exist Cy > 0 and ¢; > 0, such that if 0 < C < (p and

|20l 115 (0,2) Fll 0l s 0,1y Fll € “ 1ell 20,0015 (0, 1)) 1€ “ | 2(0,00:v,) < €1 C,

then the nonlinear system coupling z and z. admits a unique solution in
the space

{(z,2e) € H=/2552((0,1) % (0, 00)) | [1(2, 2e) | pss1/205/2((0,1)x (0,00)) < €




5. Approximation of the closed loop nonlinear system

For the finite dimensional approximate system, we have to solve

Ez, = Az, + BKz. + L(Hz. —Hz — 1), z.(0) = 2o,
Ez' = Az + BKz. + F(z) + 1, z(0) =z + py.
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6. Explicit determination of unstable steady states

We are going to show that there exist steady states of the Burgers
equation for which the linearized operators about these steady states are
unstable in the case of mixed boubdary conditions. We shall also consider
the case of Dirichlet conditions without being able to give a positive
answer.

Case of mixed boundary conditions. We denote by ws a solution to

—V Ws xx + Ws Ws x = fs in (0, 1)7

ws(0) = us and v ws (1) = gs.
The eigenvalue problem for the linearized model is

—VZy + WsZy +Z2Wsx = Az in (0,1),

z(0)=0 and vzJ(l)=0.
As above, we make the following change of unknowns

z(x) = ™y,
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The equation for v is

—U Vix + (WS’X +M/s> v=Av in(0,1),

2 4v
(1
v(0)=0 and wvw(l)+ W2( ) v(1)=0

if we choose W W

ﬂng and ﬁxx: oy
We set

2 we(1)

D(A) ={v € H(0,1) | v(0) =0, (1) + o v(1) = 0},

and

2
W, w,
Av——uvxx+( ;’X+4;>v



Integrating by part, we obtain
1
/ (—1/ Vi + ( s :V> v) v dx
0 14
1 2
:/ (va—i— (V‘/;X—&-:/;) v2> dx — v (v Vx) |x=1
0
1 2
2 Wsx | Ws | 2 ws(1) 5
= —= dx + ——= v<(1).
[ (2 2) ) w8020

We have
/ v2dx < —2/ vZdx forallve H‘%O}(O,l)7
0 ™ Jo

and the equality holds for

v(x) =sin (%) .

Thus for such a function v, it yields

1 2
5 Wsx W, ) we(1) 5
/o(VVXJr(? +4V>V) A

1 2 2
Wsx | Ws T 2 ws(1) ,
= (x0T ) e+ 2220,
/0(2+4y+”16)" ot v ()
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We look for ws such that ws(1) < 0 and
w2 2
Ws x ™
—= — <0.
EERVRLSTES
We look for the solution to the equation

2w 4+ w? 4 21?4 = 127?22 4 £2) /4,

where 0 < € < 1 has to be chosen. We have

2uw! w?

1—0.
2+ 2/a T A o2/a

Thus

2 w’
w(1+e)/2 vr(l+e)/2

2
(1/71'(1:{5)/2) +1
Integrating from 0 to x, we have

=1

w 1%)

ﬂf:aa“m”<wwr+am)wuif)”““<uﬂ1+avz

and

w(x) = _1/77(12—|— ) o (77(1 I x C0> .

)= x



18/23

Forx =1

w(1) = _mr(12+ €) tan <7r(l:— £) N Co) _

Thus, we can choose 0 < € < 1 so that w(1) takes any prescribed value
in the interval (—o0,0).
In particular we would like to have

(1) + W;(Vl) V(1) = 0,
with v(x) = sin (Z¥).
vi(1) = 5 cos (%) = %ﬁ, v(1) = sin (%) - ?
and -
ws(1) = -

We have to solve

that is



For Cy = 0, the equation

o () -3 (s

admits the solution
m(l+e)

= - =0.
4 4
For —m/4 < Gy < 0, we have a solution ¢ such that
m(l+e)
>
4 4
Thus we can find € > 0 for which ws(1) = —7%¢. For such a function ws,

we have

1 2
5 Wex = W2 ) ws(1) 5
: — 1
/O(VVX+<2 +4V>V>dx+ 2 Vi)

_ (e +€?) /1 vdx — (1),
4 0 4
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This means that the linearized Burgers operator has negative eigenvalues.
Indeed, v € D(A), and

1 2,2 2 1
2
/(AVV)dX:_M/ ax— ™ 2(1) < 0.
0 4 0 4

Since A is self-adjoint, this inequality ensures the existence of negative
eigenvalues.

Case of Dirichlet boundary conditions.

In the case of Dirichlet boundary conditions, using the same change of
unknowns as above, the eigenvalue prtoblem for v is

2 4y
v(0)=0 and v(1)=0.

2
—V Vi + (WS’X +V|/S> v=Av in(0,1),
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Integrating by part, we obtain
1 2
Ws W
— e d
/O(Z/VXX—Q—(2+4V>V>VX
1 2
:/ (1/ v+ (WS’X + Ws> v2) dx.
0 4y

1 1

1

/vzdxg—z/ vZdx forall v € H3(0,1),
0 ™ Jo

N

We have

and the equality holds for
v(x) = sin (mx).

We choose v(x) = sin (7x), which is the function giving the best
constant in the above inequality. We have

1 2 1 2
/ v Vf + Woyx + Ws v2) dx = / Wox + Ws + v ) v dx.
0 2 4v 0 2 4y
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2

W;’X + :V—; + v <0,
we shall have negative eigenvalues. We look for the solution to the
equation
2w + w? + 4P = —4Pr?(2e + €?),

where 0 < € < 1 has to be chosen. We have

2uw’ w?

1=0.
W2 (L4 e | mRAnR(ly e |

Thus

’
w

1
w(14¢) 2vn(1+e)

- 5 =-1
(21/7r(1+6)) +1
Integrating from 0 to x, we have
# arctan i — L arctan SR —X
m(1+¢) 2um(l+¢) m(1+¢) un(l+e)) 7

and
w(x) = —2vm(1+¢)tan (7(1 +e)x + G).

We do not obtain a continuous function over [0, 1].
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Explicit expression of w;

We choose (o = —7/8. We have to solve the equation
s s 1
tan (F(14e) = 2) = .
an (4( +e) 8 1+e

e find the approximate solution
¢ = 0.323745909529.

The corresponding ws is defined by

w(x) = _vr(l+e) tan <7r(1 +e)x ow

2 4 8



