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Concentration inequalities for sums Hoeffding’s inequality

Hoeffding’s inequality

Let Xj,..., X, be afinite sequence of independent random variables.

Denote 5
Sn - Z Xk
k=1

Theorem (Hoeffding’s inequality, 1963)

Assume that for all 1 < k < n, ax < Xy < by a.s. for some constants
ax < bg. Then, for any positive x,

2

2x
P(|Sn — E[Sh]| > X) < 2exp(—7)
n

where
n

Dy =" (b — ax)?.

k=1
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A keystone lemma

The proof of Hoeffding’s inequalitiy relies on the following keystone
lemma.

Lemma

Let X be a square integrable random variable with mean zero and

variance o2. Assume thata < X < b a.s. for some real constants a
and b. Then,

2

02 < —ab< M

4
In addition, for any real t,

E[exp(tX)] < exp(t;s2 (b— a)2).
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The convexity of the square function implies that X? < (a+ b)X — ab
a.s. By taking the expectation on both sides,

(b-a)y

02 =E[X?] < —ab < T

The convexity of the exponential function also implies that for all t € R,

(exp(tb) — exp(ta)) X 4 b exp(ta) — aexp(tb)

tX) <
exp(tX) b—a b—a

By taking the expectation on both sides,

exp(1b),

a
Elexp(tX)] < b_aexp(ta)— b a

< (1 —p)exp(—py) + pexp((1 —p)y)

where p=—a/(b—a)and y = (b — a)t. -
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Proof.
One can observe that 0 < p < 1 as a < 0 < b. Therefore, for all t € R,

E[exp(tX)] < exp(h(y))

where h(y) = —py + log(1 — p+ pexp(y)). Furthermore, it follows
from straighforward calculation that

p
p+ (1 —p)exp(—y)’
p(1 — p) exp(—y) 1

"0 = BrA-pep-y)) S 4

As h(0) = 0 and A (0) = 0, Taylor’s formula implies that for all y € R

Hly) = —p+

2 2
hy) < % = S(b-ap,

which completes the proof of the lemma.
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Proof of Hoeffding’s inequality

It follows from Markov’s inequality that for any positive x and f,

P(Sh —E[Sn] = x) = P(exp(t(Sn — E[Sn]) > exp(tx)),

< exp(—tx)E [exp(t(Sn - E[Sn]))} ;

N

exp(—tx)E [exp(tz Yk]

where Yy, = Xk — E[Xk]. One can observe that (Y}) is a sequence of
independent random variables such that, for all 1 < k < n,

ck < Yr < dg a.s

where ¢k = ax — E[Xk] and dx = bx — E[Xk], dk — ¢k = bk — ak. L]
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Hence, we deduce from the above lemma that

n n tz n
E[exp(tz Yk)} =1] E[exp(tYk ] exp(g > (bk — ax) )
k=1 k=1 k=1
Consequently, for any positive x and t,
P(S, — E[Sh] > x) < exp(—tx + t;D,,),

=)
S &Pl -5
n

by taking the optimal value t = 4x/D,. Replacing Xx by — X\, we
obtain by the same token that, for any positive x,

2
P(Sh — E[S,] < —x) < exp (—%)
n

which completes the proof of Hoeffding’s inequality.

Bernard Bercu Concentration inequalities for sums and martingales



Concentration inequalities for sums Hoeffding’s inequality

Improvement of Hoeffding’s inequality

Theorem (B-Delyon-Rio, 2015)

Assume that for all 1 < k < n, ax < Xk < bk a.s. for some constants
ay < bg. Then, for any positive x,

3x2
P(|Sn — E[Sh]| = X) < 2eXp<—m)
n n

where

n
Dn =" (bx — a)? and Vo = Var(S,).
k=1

—— One can observe that D, > 4V, which means that this result
improves Hoeffding’s inequality.
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A second keystone lemma

Lemma
Let X be a square integrable random variable with mean zero and
variance o2 such that 02 < v. Assume that X < b a.s. for some

positive constant b. Then, for any positive t,
E[exp(tX)] < pexp(s(1 —p)) + (1 — p) exp(—sp),

(1-2p)s®
*®(2i0g((1 — p)/p))

~

Where 74 d tV
p— m an S = Fp

v

— In the special case |X| < b a.s., we clearly have 02 < b?, v = b?,

p== and s =2tb.
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A second keystone lemma

Moreover, it follows from L'Hospital’s rule that

- (1-20) _1
o2 log((1 —p)/p) ~ 2

The convexity of the exponential function implies that for all € R,
exp(tX) < %sinh(tb)X + cosh(tb).

By taking the expectation on both sides, we obtain that for all t € R,

El[exp(tX)] < cosh(tb) < exp(tzzb2>

which is exactly the second inequality of the lemma.
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Proof of the second keystone lemma

Proof.
Using integration by parts, we can prove that for any positive t,

Efexp(tX)] < E[exp(1Z)]

where Z is a two-value random variable with mean zero and variance v
b p
Z = {

where
v
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Proof of the second keystone lemma, continued

It is not hard to see that

Elexp(tZ)] < pexp(tb) + (1 — p) exp(ta)

= pexp(s(1—p)) + (1 — p)exp(—sp)

where
tv

sS=_—.
bp
We can show via the minimax theorem that for any positive s,

(1 —2p)s? )
4log((1 — p)/P)

which completes the proof of the lemma. O

pexp(s(1 — p)) + (1 — p) exp(—sp) < exp(
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Proof of the improvement of Hoeffding’s inequality

We already saw from Markov’s inequality that for any positive x and f,

P(Sh— E[Sn] = x) = P(exp(t(Sn— E[Sn]) > exp(tx)),
< exp(—tx)E [exp(t(Sn - E[Sn]))] )
< exp(—tx)E [exp(tzn: Yk)]

k=1

where Yy = Xk — E[X4],

ck < Y < di a.s

with cx = ax — E[Xk] and dix = by — E[Xk], dk — ¢k = bk — a- []
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Forall 1 < k < n, let v, = Var(Yx) < —ckdk. It follows from the above
lemma that for any positive t,

E[exp(tYx)] < exp( thd (ﬁ))

4 d2
where 5
ve —1
SD(V) - |Og v .

It is not hard to see that, for any positive v,
1 2
p(v) = g(1 +4v 4 vo).

Consequently,

Efexp(t>" )] - HE[expm()} exp<122dg< ratir %))
k=1
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Proof of the improvement of Hoeffding’s inequality

55 58 s € 1 A6 — 5 = s — G 0 T
E[exp(tki V] < exp(1t22 En:(dk Y Avet dz))
< exp(1t22 ;(d,? + 4y, + c,%)>7
< exp(fz i(d,f +2vi — 20k + &) ),
< exp(i kz;((dk — 6P +2w)),
< exp(fz2 é((bk —aK)® + 2Vk))-
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Proof of the improvement of Hoeffding’s inequality

Consequently, for any positive x and t,

2

P(Sp—E[S > %) < exp(—tx+5(Dat2Vy)),

<ex _37)(2
S P\ "D, 12V,

by taking the optimal value t = 6x/(D, + 2V,). Replacing X by —Xjk,
we obtain by the same token that, for any positive x,

3x?
P(Sp — E[Sp] < —Xx) < exp =
h n

which completes the proof. O
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Bernstein’s inequality

Let Xi,..., X, be a finite sequence of centered and independent
random variables. Denote

Vi

n
Sy = ;Xk’ V, = Var(S,), Vo=—".

We shall say that Xj, ..., X, satisfy Bernstein’s condition if it exists
some positive constant ¢ such that, for any integer p > 3,

zn:IE[(max(O,Xk))p] < p!czp_z V.

k=1

Bernard Bercu Concentration inequalities for sums and martingales



Concentration inequalities for sums Bernstein’s inequality

Theorem (Bernstein’s inequality)
Under Bernstein’s condition, we have for any positive x,

P(Sh > nx) < (1 + 2(an_|2_cx)>" exp<_v,,n+xzcx)
nx?2
< exp(—2(|,n+cx))-

In addition, we also have for any positive x,

2

nx )
Vn 4 X + /Va(vn + 2cx)/

P(Sp > nx) < exp(—

v

— The last inequality is due to Bennett while the second inequality in
blue is known as Bernstein’s inequality.
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Comparisons in Bernstein’s inequalities
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Proof of Bernstein’s inequalities

It follows from Markov’s inequality that for any positive x and t,

P(Sp > nx) < exp(—ntx)E[exp(tSy)].
The concavity of the logarithm function implies that
1 n
E[exp(tSp)| < exp(ni(t)) where ((t) = Iog(E ZE[exp(th)]).
k=1
However, it is not hard to see that for any real x,

exp(x) < 1+x++ZW

Bernard Bercu Concentration inequalities for sums and martingales



Concentration inequalities for sums Bernstein’s inequality

Hence, it follows from the monotone convergence theorem that for
all 1 < k < nand for any positive t,

Elexp(tX)] < 1+ tE[X,] + tzngkzl + i f"E[(ma;(IO,Xk))p]
p=3 '

Consequently, we deduce from Bernstein’s condition that

zn:IE[exp(tX )] < n+ leV + Yo i cP2tP = n+ Ya i cP2¢P
k=1 e 2 ! 2 p=3 2 p=2 .

Therefore, as soonas 0 < fc < 1,

n 5 0
exp(((1)) = %Z}E[exp(txk)]<1—|—v”2t S (te),
k=1 p=0

Bernard Bercu
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Proof of Bernstein’s inequalities

It leads to

P(S, > nx) < exp(—ntx+ nlog<1 + 2(1‘/"tztc))>,

2 2
S exp(— vnn: cx) (1 + 2(an+ cx) )”

by taking the optimal value

X
Vo +Cx’

Finally, the elementary inequality 1 + x < exp(x) where x is positive,

ensures that

nx?

2(vp + Cx))’
which completes the proofs of Bernstein’s inequalities. O

P(Sh > nx) < exp(—
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Concentration inequalities for martingales Azuma-Hoeffding’s inequality

Azuma-Hoeffding’s inequality

Let (M,) be a square integrable martingale adapted to F=(F,) with
My = 0. Its increasing process is defined by

n
<M>p="> "E[AMZ|Fy_1]
k=1

where AM, = M, — M,_4.
Theorem (Azuma-Hoeffding’s inequality, 1967)

Assume that for all1 < k < n, ax < AMy < by a.s. for some constants
ax < bx. Then, for any positive x,

2x2
B(Ma| > x) < 2exp(—3-)
n

where

n
Dp =" (bk — a)>.
k=1
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Concentration inequalities for martingales

Azuma-Hoeffding’s inequality

Theorem (B-Delyon-Rio, 2015)
Assume that for all1 < k < n,

A < AM, < B a.s.

where (Ak, Bi) is a couple of bounded and F_1-measurable random
variables. Then, for any positive x and y,

3x2
P(Mp > x,2 <M>, +Dp < y) < exp<—y>

where
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Van de Geer’s inequality

The convexity of the square function implies that almost surely
AMk (Ak -+ Bk)AMk — AkBk (Ak + Bk)AMk + — (Bk — Ak) .

By taking the conditional expectation on both sides,

n 1 n 1
<M>p= ) B[AM{|Fka]< ;> (Bk — Ak)® =, Dn.
k=1 k=1

Consequently, we can deduce Van de Geer’s inequality which says
that, for any positive x and y,

X2
> <y) < S
P(M, > x,Dp < y) < exp( ) )
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Theorem (Bernstein’s inequality)
Assume that it exists some positive constant ¢ such that, for any

integer p > 3 and for all1 < k < n,

plcP—2
E[(max(0, AM))P|Fx_1] < > A <M>g a.s.
Then, for any positive x and y,
P(Mp > nx,<M>p< n )<(1+ X )nex ( mx®
ne ns NY) S 2(y + cx) o y +cx
2
nx
<expl———— ).
p( 2(y+cx)>

In addition, we also have for any positive x and y,

nx?

¥+ cx + y(y+20x)>'

P(Mn = nx, <M>p< ny) < exp(—

)
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De la Pena’s inequalities

Definition. We say that (M) is conditionally symmetric if, for all
n>1, L(AMy|F,—1) is symmetric.

Theorem (De la Pena, 1999)
If (M) is conditionally symmetric, then for any positive x and y,

X2
P(Mn > x,[M]p < y) <exp(——).
1 . (-5)

where

n
[Mln=>_ AM;.
k=1
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Self-normalized martingales

Theorem (De la Pena, 1999)

If (My,) is conditionally symmetric, then for any positive x and y, and for
alla>0andb >0,

(o> %) < Vel (o (e S )]

Goal. Self-normalized by < M > instead of [M],. In addition, avoid the
symmetric condition on the distribution of M.
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Self-normalized martingales

Theorem (De la Pena, 1999)

If (My,) is conditionally symmetric, then for any positive x and y, and for
alla>0andb >0,

(g > %) < Vel (o (e )]

P(aJ\ZM, > X, [M]p > y) < exp(—xZ(abJr b?))

Goal. Self-normalized by < M > instead of [M],. In addition, avoid the
symmetric condition on the distribution of M.
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Theorem (B-Touati, 2008)
For any positive x and y, we always have

X
P(|Mp| > X, [M]n+ < M>p< y) < 2exp( y).

\

Theorem (Delyon, 2009)

For any positive x and y, we always have ,

3x
P(|Mn| > X, [M]n +2 <M>,< y) < 2exp( 2y)'

Remark. For any positive x and y,

P(My > x, Mo+ <M>n< y) < P(My > x, Mg +2 <M>,< 2y ),

which means that Delyon’s inequality improves the previous one.
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Two elementary inequalities

The proof of the first result relies on the fact that for any real x,
x? x?
= _ )« — 2
f(x) exp(x 2)\g(x) 1+ x+ 5
whereas that of the second one is based on the fact that for any real x,
x? x?
h(x) exp(x 5 ) <UX)=1+x+ 3

One can observe that for any real x,

f(x) < h(x) < 4(x) < g(x).
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Two elementary inequalities

Two elementary inequalities
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5 T T T T
— ~ ~ Function f
4.5 H Function g B
= = = Function h
4 H Function | i
’
351 -
’
4
3t AL g
7
7

25} -

21 4
151 /,"77"~‘ 4

™ ~
N

1 ~

05r == 7. 4
E=zzf=" ") I I I I I
-2 -15 -1 -0.5 0 0.5 1 15 2

n inequalities for sums and martingales



Concentration inequalities for martingales Two-sided exponential inequalities

Two keystone lemma

Lemma

Let X be a square integrable random variable with mean zero and
variance 2. Then, for any real t,

t2

L(t) = Efexp(ex — £x2)] <14 o2

Lemma

For any real t and for all n > 0, denote

2 12

Then, (Vi (1)) is a positive supermartingale such that E[V,(t)] < 1.
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Heavy on left or right

Definition. Let X be a centered random variable on (22, A, P).

@ X is heavy on left if, for any positive a, E[T4(X)] < 0,
@ X is heavy on right if, for any positive a, E[T4(X)] > 0.

where

X is symmetric < X is heavy on left and on right.
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Heavy on left or right

Denote by F the distribution function of X and

H(a) = /0 " F(=x) — (1 — F(x)) dx = —E[Ta(X)].

@ X is heavy on left if, for any positive a, H(a) > 0,
@ X is heavy on right if, for any positive a, H(a) < 0.

X is symmetric <= For any positive a, H(a) = 0.
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Centered Bernoulli B(p)
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p=1/5 p=2/5
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Centered Binomial B(2, p)
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Centered Geometric G(p)
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Centered Exponential £(\)
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Centered Pareto P(a, \)
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Martingales heavy on left or right

Definition. We say that (M,) is conditionally heavy on left if, for all
n > 1 and for any positive a,

Theorem (B-Touati, 2008)

If (M) is conditionally heavy on left, then for any positive x and y,
2
b'¢
P(M, > X, [M]n < y) < exp<——).

— De la Pena’s inequality holds true without the assumption that
(M) is conditionally symmetric.
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Self-normalized martingales

Theorem (B-Touati, 2008)
If (M) is conditionally heavy on left, then for any positive x and y, and
foralla> 0 and b > 0,

(e > %) < VE[oro(—x2(ab+ Ziun))].
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Self-normalized martingales

Theorem (B-Touati, 2008)
If (M) is conditionally heavy on left, then for any positive x and y, and
foralla> 0 and b > 0,

(s > ) < Vel (o (e )]
P(a—i—l\t/)lr[v\/l]n > x, Mo > y) < exp(—x2(ab+ bzy))
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Self-normalized martingales

Theorem (B-Touati, 2008)

If (M) is conditionally heavy on left, then for any positive x and y, and
foralla> 0 and b > 0,

(g, > ) < Elow(-2(e0+ T10,))]

P(‘QJJ\ZM] z X, [M]n > y) < exp(—X2(3b+ b?))

#(f, >) < o (elow (-1 5]

Bernard Bercu Concentration inequalities for sums and martingales



Concentration inequalities for martingales One-sided exponential inequalities

Two keystone lemmas

Lemma

For a random variable X and for any real t, let

L(t) = E[exp(tx - t:x"’)}.

@ X is heavy on left — For any positive t, L(t) < 1,
@ X is heavy on right —> For any negative t, L(t) < 1,
@ X is symmetric = For any real t, L(t) < 1.

Lemma

For any real t and for all n > 0, denote

Wi(t) = exp(tMn - ’:[M]n).

Then, (W, (t)) is a positive supermartingale such that E[ W, (t)] < 1.
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Autoregressive process

Consider the stable autoregressive process

Xn+1 = 60Xn + €n41y |0| <1

where (ep) is iid N(0, o2) with positive variance o2 and the initial state
Xo is independent of () with (0, 0%/(1 — 62)) distribution. Denote by
0, and 6, the least squares and the Yule-Walker estimators of ¢

n n
Z X Xk—1 Z Xy Xk—1
k=1

o~ ~

0, = and 0, = k=1

-  n n
> X > X
k=1 k=0

Bernard Bercu Concentration inequalities for sums and martingales



Statistical applications Autoregressive process

6—+v62+8 0+v6?+8
a=—F and b:T.

Theorem (B-Gamboa-Rouault, 1997)

o (6,) satisfies an LDP with rate function

T iog (1 02 — 20x
Jx)={ 2 E 1—x2
log |6 — 2x| otherwise.

) if x € [a, b],
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6—+v62+8 0+v6?+8
a=—F and b:T.

Theorem (B-Gamboa-Rouault, 1997)
o (6,) satisfies an LDP with rate function
T iog (1 02 — 20x
Jx)={ 2 E 1—x2
log |6 — 2x| otherwise.

) if x € [a, b],

o (0,) satisfies an LDP with rate function

1 14 6% — 20x ,
Zhog (T2 i x e]— 1,1
I(X): 2 Og( 1—X2 ) ! Xe] ’ [’

+o00 otherwise.
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Least squares and Yule-Walker
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Corollary (B-Touati, 2008)
For all n > 1 and for any positive x,

nx2

P(|6, — 0 > Xx) <2exp(————
(100 — 6] > %) < 2exp (=55 )
where yy is the unique positive solution of

(1+y)log(1+y)—y = x%

— Forany 0 < x < 1/2, we have yyx < 2x, which implies that

nx?

P(|0n — 0] > X) < 29Xp<—m>-
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Branching process

Consider the Galton-Watson process starting from Xy = 1

Xn

Xn+1 = Z Yn,k
k=1

where (Y, x) is iid taking values in N, with finite mean m > 1 and
positive variance o2. We assume that the set of extinction of (X;) is
negligeable. Let m, and m,, be the Lotka-Nagaev and the Harris
estimators of m

Xn fn — ZZ=1 Xk

and mp= =7
Xn—1 TSR X

ﬁ1n=
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Let L be the cumulant generating function

L(t) = Iog E[exp(t( Yk — m))]
and denote by / its Cramér transform

I(x) = sup (xt— L(t)).

—c<it<ce

Corollary (B-Touati, 2008)

Assume that L is finite on [—c, c] with ¢ > 0. Then, for all n > 1 and for
any positive x, if J(x) = min(/(x), I(—x)),

P(|n — m| > X) < 2E|exp(—J(X)Xn_1)

B(| ity — m| > x) < 2int (E[exp(—(p - 1)J(x)X,,_1)D1/p.
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Corollary (B-Touati, 2008)

Assume that L is finite on [—c, c] with ¢ > 0. Then, for all n > 1 and for
any positive x,

(| — m| > %) < 2inf (2[exp(~(p ~ IS, 1)])

n
where S, = Z X
k=1

— If the offspring distribution is Geometric G(p)
(

2p" exp(—J(x))
p(1 —exp(—J(x)))

P(|mp — m| > x) <
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Random permutations

Let (an(i,j)) be an n x n array of real numbers from [—mg,, m,] where
m, > 0. Let 7, be chosen uniformly at random from the set of all
permutations of {1,..., n}. Denote

n
Sn - Z an(i9 7Tn(’))
i=1
We clearly have
1 n n 1 n n
P 2 .
E[Sy] = — > an(ij) and  Var(Sp) = 7 DD di(i)

i=1 j=1 i=1 j=1

where dn(i,f) = an(i,j) — an(i, *) — an(*,j) + an(*, *). In addition, under
standard conditions,
Sh—E[Sn] £

Nar(sy) — N(0,1).

Bernard Bercu Concentration inequalities for sums and martingales
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Random permutations

Theorem (Delyon, 2015)

For any positive x,

x2

16(0vn + xma/S))

P(|Sn — E[Sy]| > x) < 4exp(—

where 6 is an explicit constant and

n

=13 a(i.]).

i=1 j=1

— It was proven by Chatterjee that for any positive x,

X2

"~ 4m,E[S,] + 2xma) '
This upper bound has better constants but v;, is replaced with mzE[S,].

P(ISn ~ E[Snll > x) < 2exp(
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