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Concentration inequalities for sums Hoeffding’s inequality

Hoeffding’s inequality

Let X1, . . . ,Xn be a finite sequence of independent random variables.
Denote

Sn =
n∑

k=1

Xk .

Theorem (Hoeffding’s inequality, 1963)

Assume that for all 1 6 k 6 n, ak 6 Xk 6 bk a.s. for some constants
ak < bk . Then, for any positive x,

P(|Sn − E[Sn]| > x) 6 2 exp
(
−

2x2

Dn

)
where

Dn =
n∑

k=1

(bk − ak )2.
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Concentration inequalities for sums Hoeffding’s inequality

A keystone lemma

The proof of Hoeffding’s inequalitiy relies on the following keystone
lemma.

Lemma
Let X be a square integrable random variable with mean zero and
variance σ2. Assume that a 6 X 6 b a.s. for some real constants a
and b. Then,

σ2 6 −ab 6
(b − a)2

4
.

In addition, for any real t,

E
[
exp(tX)

]
6 exp

( t2

8
(
b − a

)2
)
.
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Concentration inequalities for sums Hoeffding’s inequality

Proof.

The convexity of the square function implies that X 2 6 (a + b)X − ab
a.s. By taking the expectation on both sides,

σ2 = E[X 2] 6 −ab 6
(b − a)2

4
.

The convexity of the exponential function also implies that for all t ∈ R,

exp(tX) 6

(
exp(tb)− exp(ta)

)
X

b − a
+

b exp(ta)− a exp(tb)

b − a
a.s.

By taking the expectation on both sides,

E[exp(tX )] 6
b

b − a
exp(ta)− a

b − a
exp(tb),

6 (1− p) exp(−py) + p exp((1− p)y)

where p = −a/(b − a) and y = (b − a)t .
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Concentration inequalities for sums Hoeffding’s inequality

Proof.
One can observe that 0 < p < 1 as a < 0 < b. Therefore, for all t ∈ R,

E[exp(tX)] 6 exp(h(y))

where h(y) = −py + log(1− p + p exp(y)). Furthermore, it follows
from straighforward calculation that

h′(y) = −p +
p

p + (1− p) exp(−y)
,

h′′(y) =
p(1− p) exp(−y)

(p + (1− p) exp(−y))2 6
1
4
.

As h(0) = 0 and h′(0) = 0, Taylor’s formula implies that for all y ∈ R

h(y) 6
y2

8
=

t2

8
(b − a)2,

which completes the proof of the lemma.
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Concentration inequalities for sums Hoeffding’s inequality

Proof of Hoeffding’s inequality
Proof.
It follows from Markov’s inequality that for any positive x and t ,

P(Sn − E[Sn] > x) = P(exp(t(Sn − E[Sn]) > exp(tx)),

6 exp(−tx)E
[
exp(t(Sn − E[Sn]))

]
,

6 exp(−tx)E
[
exp(t

n∑
k=1

Yk )
]

where Yk = Xk − E[Xk ]. One can observe that (Yn) is a sequence of
independent random variables such that, for all 1 6 k 6 n,

ck 6 Yk 6 dk a.s

where ck = ak − E[Xk ] and dk = bk − E[Xk ], dk − ck = bk − ak .
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Concentration inequalities for sums Hoeffding’s inequality

Proof.
Hence, we deduce from the above lemma that

E
[
exp(t

n∑
k=1

Yk )
]

=
n∏

k=1

E
[
exp(tYk )

]
6 exp

( t2

8

n∑
k=1

(bk − ak )2
)
.

Consequently, for any positive x and t ,

P(Sn − E[Sn] > x) 6 exp
(
−tx +

t2

8
Dn

)
,

6 exp
(
−2x2

Dn

)
by taking the optimal value t = 4x/Dn. Replacing Xk by −Xk , we
obtain by the same token that, for any positive x ,

P(Sn − E[Sn] 6 −x) 6 exp
(
−2x2

Dn

)
which completes the proof of Hoeffding’s inequality.
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Concentration inequalities for sums Hoeffding’s inequality

Improvement of Hoeffding’s inequality

Theorem (B-Delyon-Rio, 2015)
Assume that for all 1 6 k 6 n, ak 6 Xk 6 bk a.s. for some constants
ak < bk . Then, for any positive x,

P(|Sn − E[Sn]| > x) 6 2 exp
(
−

3x2

Dn + 2Vn

)
where

Dn =
n∑

k=1

(bk − ak )2 and Vn = Var(Sn).

−→ One can observe that Dn > 4Vn which means that this result
improves Hoeffding’s inequality.
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Concentration inequalities for sums Hoeffding’s inequality

A second keystone lemma
Lemma
Let X be a square integrable random variable with mean zero and
variance σ2 such that σ2 6 v. Assume that X 6 b a.s. for some
positive constant b. Then, for any positive t,

E[exp(tX)] 6 p exp
(
s(1− p)

)
+ (1− p) exp(−sp),

6 exp
( (1− 2p)s2

4 log((1− p)/p)

)
where

p =
v

b2 + v
and s =

tv
bp
.

−→ In the special case |X | 6 b a.s., we clearly have σ2 6 b2, v = b2,

p =
1
2

and s = 2tb.
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Concentration inequalities for sums Hoeffding’s inequality

A second keystone lemma

Moreover, it follows from L’Hospital’s rule that

lim
p→1/2

(1− 2p)

log((1− p)/p)
=

1
2
.

The convexity of the exponential function implies that for all t ∈ R,

exp(tX ) 6
1
2

sinh(tb)X + cosh(tb).

By taking the expectation on both sides, we obtain that for all t ∈ R,

E[exp(tX )] 6 cosh(tb) 6 exp
( t2b2

2

)
which is exactly the second inequality of the lemma.
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Concentration inequalities for sums Hoeffding’s inequality

Proof of the second keystone lemma

Proof.
Using integration by parts, we can prove that for any positive t ,

E[exp(tX)] 6 E[exp(tZ)]

where Z is a two-value random variable with mean zero and variancev

Z =

{
b p

a 1− p

where
p =

v
b2 + v

and a = −v
b
.
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Concentration inequalities for sums Hoeffding’s inequality

Proof of the second keystone lemma, continued
Proof.
It is not hard to see that

E[exp(tZ )] 6 p exp(tb) + (1− p) exp(ta)

= p exp
(
s(1− p)

)
+ (1− p) exp(−sp)

where
s =

tv
bp
.

We can show via the minimax theorem that for any positive s,

p exp
(
s(1− p)

)
+ (1− p) exp(−sp) 6 exp

( (1− 2p)s2

4 log((1− p)/p)

)
which completes the proof of the lemma.
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Concentration inequalities for sums Hoeffding’s inequality

Proof of the improvement of Hoeffding’s inequality

Proof.
We already saw from Markov’s inequality that for any positive x and t ,

P(Sn − E[Sn] > x) = P(exp(t(Sn − E[Sn]) > exp(tx)),

6 exp(−tx)E
[
exp(t(Sn − E[Sn]))

]
,

6 exp(−tx)E
[
exp(t

n∑
k=1

Yk )
]

where Yk = Xk − E[Xk ],

ck 6 Yk 6 dk a.s

with ck = ak − E[Xk ] and dk = bk − E[Xk ], dk − ck = bk − ak .
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Concentration inequalities for sums Hoeffding’s inequality

Proof.
For all 1 6 k 6 n, let vk = Var(Yk ) 6 −ckdk . It follows from the above
lemma that for any positive t ,

E[exp(tYk )] 6 exp
( t2d2

k

4
ϕ
(vk

d2
k

))
where

ϕ(v) =
v2 − 1
log v

.

It is not hard to see that, for any positive v ,

ϕ(v) =
1
3

(1 + 4v + v2).

Consequently,

E
[
exp(t

n∑
k=1

Yk )
]

=
n∏

k=1

E
[
exp(tYk )

]
6 exp

( t2

12

n∑
k=1

d2
k

(
1 + 4

vk

d2
k

+
v2

k

d4
k

))
.
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Concentration inequalities for sums Hoeffding’s inequality

Proof of the improvement of Hoeffding’s inequality
Proof.
Hence, as vk 6 −ckdk and dk − ck = bk − ak , we obtain that

E
[
exp(t

n∑
k=1

Yk )
]

6 exp
( t2

12

n∑
k=1

(
d2

k + 4vk +
v2

k

d2
k

))
,

6 exp
( t2

12

n∑
k=1

(
d2

k + 4vk + c2
k
))
,

6 exp
( t2

12

n∑
k=1

(
d2

k + 2vk − 2ckdk + c2
k
))
,

6 exp
( t2

12

n∑
k=1

(
(dk − ck )2 + 2vk

))
,

6 exp
( t2

12

n∑
k=1

(
(bk − ak )2 + 2vk

))
.
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Concentration inequalities for sums Hoeffding’s inequality

Proof of the improvement of Hoeffding’s inequality

Proof.
Consequently, for any positive x and t ,

P(Sn − E[Sn] > x) 6 exp
(
−tx +

t2

12
(
Dn + 2Vn

))
,

6 exp
(
− 3x2

Dn + 2Vn

)
by taking the optimal value t = 6x/(Dn + 2Vn). Replacing Xk by −Xk ,
we obtain by the same token that, for any positive x ,

P(Sn − E[Sn] 6 −x) 6 exp
(
− 3x2

Dn + 2Vn

)
which completes the proof.
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Concentration inequalities for sums Bernstein’s inequality

Bernstein’s inequality

Let X1, . . . ,Xn be a finite sequence of centered and independent
random variables. Denote

Sn =
n∑

k=1

Xk , Vn = Var(Sn), vn =
Vn

n
.

We shall say that X1, . . . ,Xn satisfy Bernstein’s condition if it exists
some positive constant c such that, for any integer p > 3,

n∑
k=1

E
[
(max(0,Xk ))p] 6 p!cp−2

2
Vn.

Bernard Bercu Concentration inequalities for sums and martingales 19 / 56



logobordeaux1

Concentration inequalities for sums Bernstein’s inequality

Theorem (Bernstein’s inequality)
Under Bernstein’s condition, we have for any positive x,

P(Sn > nx) 6
(

1 +
x2

2(vn + cx)

)n
exp

(
−

nx2

vn + cx

)
6 exp

(
−

nx2

2(vn + cx)

)
.

In addition, we also have for any positive x,

P(Sn > nx) 6 exp
(
− nx2

vn + cx +
√

vn(vn + 2cx)

)
.

−→ The last inequality is due to Bennett while the second inequality in
blue is known as Bernstein’s inequality.
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Concentration inequalities for sums Bernstein’s inequality
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Concentration inequalities for sums Bernstein’s inequality

Proof of Bernstein’s inequalities

Proof.
It follows from Markov’s inequality that for any positive x and t ,

P(Sn > nx) 6 exp(−ntx)E
[
exp(tSn)

]
.

The concavity of the logarithm function implies that

E
[
exp(tSn)

]
6 exp

(
n`(t)

)
where `(t) = log

(1
n

n∑
k=1

E[exp(tXk )]
)
.

However, it is not hard to see that for any real x ,

exp(x) 6 1 + x +
x2

2
+
∞∑

p=3

(max(0, x))p

p!
.
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Concentration inequalities for sums Bernstein’s inequality

Proof.
Hence, it follows from the monotone convergence theorem that for
all 1 6 k 6 n and for any positive t ,

E[exp(tXk )] 6 1 + tE[Xk ] +
t2E[X 2

k ]

2
+
∞∑

p=3

tpE[(max(0,Xk ))p]

p!
.

Consequently, we deduce from Bernstein’s condition that

n∑
k=1

E[exp(tXk )] 6 n +
t2

2
Vn +

Vn

2

∞∑
p=3

cp−2tp = n +
Vn

2

∞∑
p=2

cp−2tp.

Therefore, as soon as 0 < tc < 1,

exp(`(t)) =
1
n

n∑
k=1

E[exp(tXk )] 6 1 +
vnt2

2

∞∑
p=0

(tc)p,

6 1 +
vnt2

2(1− tc)
.
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Concentration inequalities for sums Bernstein’s inequality

Proof of Bernstein’s inequalities
Proof.
It leads to

P(Sn > nx) 6 exp
(
−ntx + n log

(
1 +

vnt2

2(1− tc)

))
,

6 exp
(
− nx2

vn + cx

)(
1 +

x2

2(vn + cx)

)n

by taking the optimal value

t =
x

vn + cx
.

Finally, the elementary inequality 1 + x 6 exp(x) where x is positive,
ensures that

P(Sn > nx) 6 exp
(
− nx2

2(vn + cx)

)
,

which completes the proofs of Bernstein’s inequalities.
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Concentration inequalities for martingales Azuma-Hoeffding’s inequality

Azuma-Hoeffding’s inequality
Let (Mn) be a square integrable martingale adapted to F=(Fn) with
M0 = 0. Its increasing process is defined by

<M>n=
n∑

k=1

E[∆M2
k |Fk−1]

where ∆Mn = Mn −Mn−1.

Theorem (Azuma-Hoeffding’s inequality, 1967)

Assume that for all 1 6 k 6 n, ak 6 ∆Mk 6 bk a.s. for some constants
ak < bk . Then, for any positive x,

P(|Mn| > x) 6 2 exp
(
−

2x2

Dn

)
where

Dn =
n∑

k=1

(bk − ak )2.
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Concentration inequalities for martingales Azuma-Hoeffding’s inequality

Azuma-Hoeffding’s inequality

Theorem (B-Delyon-Rio, 2015)
Assume that for all 1 6 k 6 n,

Ak 6 ∆Mk 6 Bk a.s.

where (Ak ,Bk ) is a couple of bounded and Fk−1-measurable random
variables. Then, for any positive x and y,

P(Mn > x, 2 <M>n +Dn 6 y) 6 exp
(
−

3x2

y

)
where

Dn =
n∑

k=1

(Bk − Ak )2.
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Concentration inequalities for martingales Azuma-Hoeffding’s inequality

Van de Geer’s inequality

The convexity of the square function implies that almost surely

∆M2
k 6 (Ak + Bk )∆Mk − AkBk 6 (Ak + Bk )∆Mk +

1
4

(Bk − Ak )2.

By taking the conditional expectation on both sides,

<M>n=
n∑

k=1

E[∆M2
k |Fk−1] 6

1
4

n∑
k=1

(Bk − Ak )2 =
1
4
Dn.

Consequently, we can deduce Van de Geer’s inequality which says
that, for any positive x and y ,

P(Mn > x ,Dn 6 y) 6 exp
(
−2x2

y

)
.
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Concentration inequalities for martingales Bernstein’s inequality

Theorem (Bernstein’s inequality)
Assume that it exists some positive constant c such that, for any
integer p > 3 and for all 1 6 k 6 n,

E
[
(max(0,∆Mk ))p|Fk−1

]
6

p!cp−2

2
∆ <M>k a.s.

Then, for any positive x and y,

P(Mn > nx, <M>n6 ny) 6
(

1 +
x2

2(y + cx)

)n
exp

(
−

nx2

y + cx

)
6 exp

(
−

nx2

2(y + cx)

)
.

In addition, we also have for any positive x and y,

P(Mn > nx , <M>n6 ny) 6 exp
(
− nx2

y + cx +
√

y(y + 2cx)

)
.
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Concentration inequalities for martingales De la Peña’s inequalities

De la Peña’s inequalities

Definition. We say that (Mn) is conditionally symmetric if, for all
n > 1, L(∆Mn|Fn−1) is symmetric.

Theorem (De la Peña, 1999)

If (Mn) is conditionally symmetric, then for any positive x and y,

P(Mn > x, [M]n 6 y) 6 exp
(
−

x2

2y

)
.

where

[M]n =
n∑

k=1

∆M2
k .
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Concentration inequalities for martingales De la Peña’s inequalities

Self-normalized martingales

Theorem (De la Peña, 1999)

If (Mn) is conditionally symmetric, then for any positive x and y, and for
all a > 0 and b > 0,

P
( Mn

a + b[M]n
> x

)
6

√
E
[
exp
(
−x2

(
ab +

b2

2
[M]n

))]
,

P
( Mn

a + b[M]n
> x , [M]n > y

)
6 exp

(
−x2

(
ab +

b2y
2

))
.

Goal. Self-normalized by <M>n instead of [M]n. In addition, avoid the
symmetric condition on the distribution of Mn.
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Concentration inequalities for martingales De la Peña’s inequalities

Self-normalized martingales

Theorem (De la Peña, 1999)

If (Mn) is conditionally symmetric, then for any positive x and y, and for
all a > 0 and b > 0,

P
( Mn

a + b[M]n
> x

)
6

√
E
[
exp
(
−x2

(
ab +

b2

2
[M]n

))]
,

P
( Mn

a + b[M]n
> x , [M]n > y

)
6 exp

(
−x2

(
ab +

b2y
2

))
.

Goal. Self-normalized by <M>n instead of [M]n. In addition, avoid the
symmetric condition on the distribution of Mn.
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Concentration inequalities for martingales Two-sided exponential inequalities

Theorem (B-Touati, 2008)
For any positive x and y, we always have

P(|Mn| > x, [M]n+<M>n6 y) 6 2 exp
(
−

x2

2y

)
.

Theorem (Delyon, 2009)
For any positive x and y, we always have

P(|Mn| > x, [M]n +2 <M>n6 y) 6 2 exp
(
−

3x2

2y

)
.

Remark. For any positive x and y ,

P
(

Mn > x , [M]n+ <M>n6 y
)

6 P
(

Mn > x , [M]n + 2 <M>n6 2y
)
,

6 exp
(
−3x2

4y

)
6 exp

(
− x2

2y

)
,

which means that Delyon’s inequality improves the previous one.
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Concentration inequalities for martingales Two-sided exponential inequalities

Two elementary inequalities

The proof of the first result relies on the fact that for any real x ,

f (x) = exp
(

x − x2

2

)
6 g(x) = 1 + x +

x2

2
,

whereas that of the second one is based on the fact that for any real x ,

h(x) = exp
(

x − x2

6

)
6 `(x) = 1 + x +

x2

3
.

One can observe that for any real x ,

f (x) 6 h(x) 6 `(x) 6 g(x).
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Concentration inequalities for martingales Two-sided exponential inequalities

Two elementary inequalities
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Concentration inequalities for martingales Two-sided exponential inequalities

Two keystone lemma

Lemma
Let X be a square integrable random variable with mean zero and
variance σ2. Then, for any real t,

L(t) = E
[
exp

(
tX −

t2

6
X 2
)]

6 1 +
t2

3
σ2.

Lemma
For any real t and for all n > 0, denote

Vn(t) = exp
(

tMn −
t2

6
[M]n −

t2

3
<M>n

)
.

Then, (Vn(t)) is a positive supermartingale such that E[Vn(t)] 6 1.
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Concentration inequalities for martingales One-sided exponential inequalities

Heavy on left or right

Definition. Let X be a centered random variable on (Ω,A,P).

X is heavy on left if, for any positive a, E[Ta(X )] 6 0,
X is heavy on right if, for any positive a, E[Ta(X )] > 0.

where

Ta(x) =


a if x > a,

x if −a 6 x 6 a,

−a if x 6 −a.

X is symmetric⇐⇒ X is heavy on left and on right.
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Concentration inequalities for martingales One-sided exponential inequalities

Heavy on left or right

Denote by F the distribution function of X and

H(a) =

∫ a

0
F (−x)− (1− F (x)) dx = −E[Ta(X)].

X is heavy on left if, for any positive a, H(a) > 0,
X is heavy on right if, for any positive a, H(a) 6 0.

X is symmetric⇐⇒ For any positive a, H(a) = 0.
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Centered Bernoulli B(p)
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Centered Binomial B(2,p)
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Centered Geometric G(p)
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Centered Exponential E(λ)
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Centered Pareto P(a, λ)
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Centered Gamma G(a, λ)
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Martingales heavy on left or right

Definition. We say that (Mn) is conditionally heavy on left if, for all
n > 1 and for any positive a,

E[Ta(∆Mn)|Fn−1] 6 0 a.s.

Theorem (B-Touati, 2008)

If (Mn) is conditionally heavy on left, then for any positive x and y,

P(Mn > x, [M]n 6 y) 6 exp
(
−

x2

2y

)
.

−→ De la Peña’s inequality holds true without the assumption that
(Mn) is conditionally symmetric.
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Self-normalized martingales

Theorem (B-Touati, 2008)

If (Mn) is conditionally heavy on left, then for any positive x and y, and
for all a > 0 and b > 0,

P
( Mn

a + b[M]n
> x

)
6

√
E
[
exp
(
−x2

(
ab +

b2

2
[M]n

))]
,

P
( Mn

a + b[M]n
> x , [M]n > y

)
6 exp

(
−x2

(
ab +

b2y
2

))
,

P
( Mn

[M]n
> x

)
6 inf

p>1

(
E
[
exp
(
−(p−1)

x2

2
[M]n

)])1/p

.
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Two keystone lemmas
Lemma
For a random variable X and for any real t, let

L(t) = E
[
exp

(
tX −

t2

2
X 2
)]
.

X is heavy on left =⇒ For any positive t, L(t) 6 1,
X is heavy on right =⇒ For any negative t, L(t) 6 1,
X is symmetric =⇒ For any real t, L(t) 6 1.

Lemma
For any real t and for all n > 0, denote

Wn(t) = exp
(

tMn −
t2

2
[M]n

)
.

Then, (Wn(t)) is a positive supermartingale such that E[Wn(t)] 6 1.
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Statistical applications

Outline

1 Concentration inequalities for sums
Hoeffding’s inequality
Bernstein’s inequality

2 Concentration inequalities for martingales
Azuma-Hoeffding’s inequality
Bernstein’s inequality
De la Peña’s inequalities
Two-sided exponential inequalities
One-sided exponential inequalities

3 Statistical applications
Autoregressive process
Branching process
Random permutations
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Autoregressive process

Consider the stable autoregressive process

Xn+1 = θXn + εn+1, |θ| < 1

where (εn) is iid N (0, σ2) with positive variance σ2 and the initial state
X0 is independent of (εn) with N (0, σ2/(1− θ2)) distribution. Denote by
θ̂n and θ̃n the least squares and the Yule-Walker estimators of θ

θ̂n =

n∑
k=1

Xk Xk−1

n∑
k=1

X 2
k−1

and θ̃n =

n∑
k=1

Xk Xk−1

n∑
k=0

X 2
k

.
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a =
θ −
√
θ2 + 8
4

and b =
θ +
√
θ2 + 8
4

.

Theorem (B-Gamboa-Rouault, 1997)

(θ̂n) satisfies an LDP with rate function

J(x) =


1
2

log
(

1 + θ2 − 2θx
1− x2

)
if x ∈ [a,b],

log |θ − 2x | otherwise.

(θ̃n) satisfies an LDP with rate function

I(x) =


1
2

log
(

1 + θ2 − 2θx
1− x2

)
if x ∈]− 1,1[,

+∞ otherwise.
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Least squares and Yule-Walker
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Corollary (B-Touati, 2008)
For all n > 1 and for any positive x,

P(|θ̂n − θ| > x) 6 2 exp
(
−

nx2

2(1 + yx)

)
where yx is the unique positive solution of

(1 + y) log(1 + y)− y = x2.

−→ For any 0 < x < 1/2, we have yx < 2x , which implies that

P(|θ̂n − θ| > x) 6 2 exp
(
− nx2

2(1 + 2x)

)
.
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Branching process

Consider the Galton-Watson process starting from X0 = 1

Xn+1 =
Xn∑

k=1

Yn,k

where (Yn,k ) is iid taking values in N, with finite mean m > 1 and
positive variance σ2. We assume that the set of extinction of (Xn) is
negligeable. Let m̃n and m̂n be the Lotka-Nagaev and the Harris
estimators of m

m̃n =
Xn

Xn−1
and m̂n =

∑n
k=1 Xk∑n

k=1 Xk−1
.
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Let L be the cumulant generating function

L(t) = logE
[
exp(t(Yn,k −m))

]
and denote by I its Cramér transform

I(x) = sup
−c6t6c

(
xt − L(t)

)
.

Corollary (B-Touati, 2008)

Assume that L is finite on [−c, c] with c > 0. Then, for all n > 1 and for
any positive x, if J(x) = min(I(x), I(−x)),

P(|m̃n −m| > x) 6 2E
[
exp(−J(x)Xn−1)

]
,

P(|m̃n −m| > x) 6 2 inf
p>1

(
E
[
exp(−(p − 1)J(x)Xn−1)

])1/p
.
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Corollary (B-Touati, 2008)

Assume that L is finite on [−c, c] with c > 0. Then, for all n > 1 and for
any positive x,

P(|m̂n −m| > x) 6 2 inf
p>1

(
E
[
exp(−(p − 1)J(x)Sn−1)

])1/p

where Sn =
n∑

k=1

Xk .

−→ If the offspring distribution is Geometric G(p)

P(|m̃n −m| > x) 6
2pn exp(−J(x))

p(1− exp(−J(x)))
.
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Random permutations

Let (an(i , j)) be an n × n array of real numbers from [−ma,ma] where
ma > 0. Let πn be chosen uniformly at random from the set of all
permutations of {1, . . . ,n}. Denote

Sn =
n∑

i=1

an(i, πn(i)).

We clearly have

E[Sn] =
1
n

n∑
i=1

n∑
j=1

an(i , j) and Var(Sn) =
1

n − 1

n∑
i=1

n∑
j=1

d2
n (i , j)

where dn(i , j) = an(i , j)− an(i , ∗)− an(∗, j) + an(∗, ∗). In addition, under
standard conditions,

Sn − E[Sn]√
Var(Sn)

L−→ N (0, 1).
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Random permutations

Theorem (Delyon, 2015)
For any positive x,

P(|Sn − E[Sn]| > x) 6 4 exp
(
−

x2

16(θvn + xma/3)

)
where θ is an explicit constant and

vn =
1
n

n∑
i=1

n∑
j=1

a2
n(i , j).

−→ It was proven by Chatterjee that for any positive x ,

P(|Sn − E [Sn]| > x) 6 2 exp
(
− x2

4maE[Sn] + 2xma

)
.

This upper bound has better constants but vn is replaced with maE[Sn].
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