Concentration inequalities for sums and martingales

Bernard Bercu

Bordeaux University, France

IFCAM Summer School
Bangalore, India, July 2015

Outline

(1) Concentration inequalities for sums

- Hoeffding's inequality
- Bernstein's inequality
(2) Concentration inequalities for martingales
- Azuma-Hoeffding's inequality
- Bernstein's inequality
- De la Peña's inequalities
- Two-sided exponential inequalities
- One-sided exponential inequalities
(3) Statistical applications
- Autoregressive process
- Branching process
- Random permutations

Outline

(1) Concentration inequalities for sums

- Hoeffding's inequality
- Bernstein's inequality
(2) Concentration inequalities for martingales
- Azuma-Hoeffding's inequality
- Bernstein's inequality
- De la Peña's inequalities
- Two-sided exponential inequalities
- One-sided exponential inequalities
(3) Statistical applications
- Autoregressive process
- Branching process
- Random permutations

Hoeffding's inequality

Let X_{1}, \ldots, X_{n} be a finite sequence of independent random variables. Denote

$$
S_{n}=\sum_{k=1}^{n} X_{k}
$$

Theorem (Hoeffding's inequality, 1963)

Assume that for all $1 \leqslant k \leqslant n, \boldsymbol{a}_{\boldsymbol{k}} \leqslant \boldsymbol{X}_{\boldsymbol{k}} \leqslant \boldsymbol{b}_{\boldsymbol{k}}$ a.s. for some constants $a_{k}<b_{k}$. Then, for any positive x,

$$
\mathbb{P}\left(\left|S_{n}-\mathbb{E}\left[S_{n}\right]\right| \geqslant x\right) \leqslant 2 \exp \left(-\frac{2 x^{2}}{D_{n}}\right)
$$

where

$$
D_{n}=\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}
$$

A keystone lemma

The proof of Hoeffding's inequalitiy relies on the following keystone lemma.

Lemma

Let X be a square integrable random variable with mean zero and variance σ^{2}. Assume that $\boldsymbol{a} \leqslant \boldsymbol{X} \leqslant \boldsymbol{b}$ a.s. for some real constants a and b. Then,

$$
\sigma^{2} \leqslant-a b \leqslant \frac{(b-a)^{2}}{4} .
$$

In addition, for any real t,

$$
\mathbb{E}[\exp (t X)] \leqslant \exp \left(\frac{t^{2}}{8}(b-a)^{2}\right) .
$$

Proof.

The convexity of the square function implies that $X^{2} \leqslant(a+b) X-a b$ a.s. By taking the expectation on both sides,

$$
\sigma^{2}=\mathbb{E}\left[X^{2}\right] \leqslant-a b \leqslant \frac{(b-a)^{2}}{4}
$$

The convexity of the exponential function also implies that for all $t \in \mathbb{R}$,

$$
\exp (t X) \leqslant \frac{(\exp (t b)-\exp (t a)) X}{b-a}+\frac{b \exp (t a)-a \exp (t b)}{b-a} \quad \text { a.s. }
$$

By taking the expectation on both sides,

$$
\begin{aligned}
\mathbb{E}[\exp (t X)] & \leqslant \frac{b}{b-a} \exp (t a)-\frac{a}{b-a} \exp (t b) \\
& \leqslant(1-p) \exp (-p y)+p \exp ((1-p) y)
\end{aligned}
$$

where $p=-a /(b-a)$ and $y=(b-a) t$.

Proof.

One can observe that $0<p<1$ as $a<0<b$. Therefore, for all $t \in \mathbb{R}$,

$$
\mathbb{E}[\exp (t X)] \leqslant \exp (h(y))
$$

where $h(y)=-p y+\log (1-p+p \exp (y))$. Furthermore, it follows from straighforward calculation that

$$
\begin{aligned}
h^{\prime}(y) & =-p+\frac{p}{p+(1-p) \exp (-y)} \\
h^{\prime \prime}(y) & =\frac{p(1-p) \exp (-y)}{(p+(1-p) \exp (-y))^{2}} \leqslant \frac{1}{4}
\end{aligned}
$$

As $h(0)=0$ and $h^{\prime}(0)=0$, Taylor's formula implies that for all $y \in \mathbb{R}$

$$
h(y) \leqslant \frac{y^{2}}{8}=\frac{t^{2}}{8}(b-a)^{2}
$$

which completes the proof of the lemma.

Proof of Hoeffding's inequality

Proof.

It follows from Markov's inequality that for any positive x and t,

$$
\begin{aligned}
\mathbb{P}\left(S_{n}-\mathbb{E}\left[S_{n}\right] \geqslant x\right) & =\mathbb{P}\left(\exp \left(t\left(S_{n}-\mathbb{E}\left[S_{n}\right]\right) \geqslant \exp (t x)\right)\right. \\
& \leqslant \exp (-t x) \mathbb{E}\left[\exp \left(t\left(S_{n}-\mathbb{E}\left[S_{n}\right]\right)\right)\right] \\
& \leqslant \exp (-t x) \mathbb{E}\left[\exp \left(t \sum_{k=1}^{n} Y_{k}\right)\right]
\end{aligned}
$$

where $Y_{k}=X_{k}-\mathbb{E}\left[X_{k}\right]$. One can observe that $\left(Y_{n}\right)$ is a sequence of independent random variables such that, for all $1 \leqslant k \leqslant n$,

$$
\boldsymbol{c}_{\boldsymbol{k}} \leqslant \boldsymbol{Y}_{\boldsymbol{k}} \leqslant \boldsymbol{d}_{\boldsymbol{k}}
$$

where $c_{k}=a_{k}-\mathbb{E}\left[X_{k}\right]$ and $d_{k}=b_{k}-\mathbb{E}\left[X_{k}\right], d_{k}-c_{k}=b_{k}-a_{k}$.

Proof.

Hence, we deduce from the above lemma that

$$
\mathbb{E}\left[\exp \left(t \sum_{k=1}^{n} Y_{k}\right)\right]=\prod_{k=1}^{n} \mathbb{E}\left[\exp \left(t Y_{k}\right)\right] \leqslant \exp \left(\frac{t^{2}}{8} \sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}\right)
$$

Consequently, for any positive x and t,

$$
\begin{aligned}
\mathbb{P}\left(S_{n}-\mathbb{E}\left[S_{n}\right] \geqslant x\right) & \leqslant \exp \left(-t x+\frac{t^{2}}{8} D_{n}\right) \\
& \leqslant \exp \left(-\frac{2 x^{2}}{D_{n}}\right)
\end{aligned}
$$

by taking the optimal value $t=4 x / D_{n}$. Replacing X_{k} by $-X_{k}$, we obtain by the same token that, for any positive x,

$$
\mathbb{P}\left(S_{n}-\mathbb{E}\left[S_{n}\right] \leqslant-x\right) \leqslant \exp \left(-\frac{2 x^{2}}{D_{n}}\right)
$$

which completes the proof of Hoeffding's inequality.

Improvement of Hoeffding's inequality

Theorem (B-Delyon-Rio, 2015)

Assume that for all $1 \leqslant k \leqslant n$, $a_{k} \leqslant X_{k} \leqslant b_{k}$ a.s. for some constants $a_{k}<b_{k}$. Then, for any positive x,

$$
\mathbb{P}\left(\left|S_{n}-\mathbb{E}\left[S_{n}\right]\right| \geqslant x\right) \leqslant 2 \exp \left(-\frac{3 x^{2}}{D_{n}+2 V_{n}}\right)
$$

where

$$
D_{n}=\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2} \quad \text { and } \quad V_{n}=\operatorname{Var}\left(S_{n}\right)
$$

\longrightarrow One can observe that $D_{n} \geqslant 4 V_{n}$ which means that this result improves Hoeffding's inequality.

A second keystone lemma

Lemma

Let X be a square integrable random variable with mean zero and variance σ^{2} such that $\sigma^{2} \leqslant v$. Assume that $\boldsymbol{X} \leqslant \boldsymbol{b}$ a.s. for some positive constant b. Then, for any positive t,

$$
\begin{aligned}
\mathbb{E}[\exp (t X)] & \leqslant p \exp (s(1-p))+(1-p) \exp (-s p), \\
& \leqslant \exp \left(\frac{(1-2 p) s^{2}}{4 \log ((1-p) / p)}\right)
\end{aligned}
$$

where

$$
p=\frac{v}{b^{2}+v} \quad \text { and } \quad s=\frac{t v}{b p} \text {. }
$$

\longrightarrow In the special case $|\boldsymbol{X}| \leqslant \boldsymbol{b}$ a.s., we clearly have $\sigma^{2} \leqslant b^{2}, v=b^{2}$,

$$
p=\frac{1}{2} \quad \text { and } \quad s=2 t b .
$$

A second keystone lemma

Moreover, it follows from L'Hospital's rule that

$$
\lim _{p \rightarrow 1 / 2} \frac{(1-2 p)}{\log ((1-p) / p)}=\frac{1}{2}
$$

The convexity of the exponential function implies that for all $t \in \mathbb{R}$,

$$
\exp (t X) \leqslant \frac{1}{2} \sinh (t b) X+\cosh (t b)
$$

By taking the expectation on both sides, we obtain that for all $t \in \mathbb{R}$,

$$
\mathbb{E}[\exp (t X)] \leqslant \cosh (t b) \leqslant \exp \left(\frac{t^{2} b^{2}}{2}\right)
$$

which is exactly the second inequality of the lemma.

Proof of the second keystone lemma

Proof.

Using integration by parts, we can prove that for any positive t,

$$
\mathbb{E}[\exp (t X)] \leqslant \mathbb{E}[\exp (t Z)]
$$

where Z is a two-value random variable with mean zero and variance v

$$
Z=\left\{\begin{array}{cc}
b & p \\
a & 1-p
\end{array}\right.
$$

where

$$
p=\frac{v}{b^{2}+v} \quad \text { and } \quad a=-\frac{v}{b} .
$$

Proof of the second keystone lemma, continued

Proof.

It is not hard to see that

$$
\begin{aligned}
\mathbb{E}[\exp (t Z)] & \leqslant p \exp (t b)+(1-p) \exp (t a) \\
& =p \exp (s(1-p))+(1-p) \exp (-s p)
\end{aligned}
$$

where

$$
s=\frac{t v}{b p}
$$

We can show via the minimax theorem that for any positive s,

$$
p \exp (s(1-p))+(1-p) \exp (-s p) \leqslant \exp \left(\frac{(1-2 p) s^{2}}{4 \log ((1-p) / p)}\right)
$$

which completes the proof of the lemma.

Proof of the improvement of Hoeffding's inequality

Proof.

We already saw from Markov's inequality that for any positive x and t,

$$
\begin{aligned}
\mathbb{P}\left(S_{n}-\mathbb{E}\left[S_{n}\right] \geqslant x\right) & =\mathbb{P}\left(\exp \left(t\left(S_{n}-\mathbb{E}\left[S_{n}\right]\right) \geqslant \exp (t x)\right)\right. \\
& \leqslant \exp (-t x) \mathbb{E}\left[\exp \left(t\left(S_{n}-\mathbb{E}\left[S_{n}\right]\right)\right)\right] \\
& \leqslant \exp (-t x) \mathbb{E}\left[\exp \left(t \sum_{k=1}^{n} Y_{k}\right)\right]
\end{aligned}
$$

where $Y_{k}=X_{k}-\mathbb{E}\left[X_{k}\right]$,

$$
\boldsymbol{c}_{\boldsymbol{k}} \leqslant \boldsymbol{Y}_{\boldsymbol{k}} \leqslant \boldsymbol{d}_{\boldsymbol{k}}
$$

with $c_{k}=a_{k}-\mathbb{E}\left[X_{k}\right]$ and $d_{k}=b_{k}-\mathbb{E}\left[X_{k}\right], d_{k}-c_{k}=b_{k}-a_{k}$.

Proof.

For all $1 \leqslant k \leqslant n$, let $v_{k}=\operatorname{Var}\left(Y_{k}\right) \leqslant-c_{k} d_{k}$. It follows from the above lemma that for any positive t,

$$
\mathbb{E}\left[\exp \left(t Y_{k}\right)\right] \leqslant \exp \left(\frac{t^{2} d_{k}^{2}}{4} \varphi\left(\frac{v_{k}}{d_{k}^{2}}\right)\right)
$$

where

$$
\varphi(v)=\frac{v^{2}-1}{\log v}
$$

It is not hard to see that, for any positive v,

$$
\varphi(v)=\frac{1}{3}\left(1+4 v+v^{2}\right)
$$

Consequently,
$\mathbb{E}\left[\exp \left(t \sum_{k=1}^{n} Y_{k}\right)\right]=\prod_{k=1}^{n} \mathbb{E}\left[\exp \left(t Y_{k}\right)\right] \leqslant \exp \left(\frac{t^{2}}{12} \sum_{k=1}^{n} d_{k}^{2}\left(1+4 \frac{v_{k}}{d_{k}^{2}}+\frac{v_{k}^{2}}{d_{k}^{4}}\right)\right)$.

Proof of the improvement of Hoeffding's inequality

Proof.

Hence, as $v_{k} \leqslant-c_{k} d_{k}$ and $d_{k}-c_{k}=b_{k}-a_{k}$, we obtain that

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(t \sum_{k=1}^{n} Y_{k}\right)\right] & \leqslant \exp \left(\frac{t^{2}}{12} \sum_{k=1}^{n}\left(d_{k}^{2}+4 v_{k}+\frac{v_{k}^{2}}{d_{k}^{2}}\right)\right) \\
& \leqslant \exp \left(\frac{t^{2}}{12} \sum_{k=1}^{n}\left(d_{k}^{2}+4 v_{k}+c_{k}^{2}\right)\right) \\
& \leqslant \exp \left(\frac{t^{2}}{12} \sum_{k=1}^{n}\left(d_{k}^{2}+2 v_{k}-2 c_{k} d_{k}+c_{k}^{2}\right)\right) \\
& \leqslant \exp \left(\frac{t^{2}}{12} \sum_{k=1}^{n}\left(\left(d_{k}-c_{k}\right)^{2}+2 v_{k}\right)\right) \\
& \leqslant \exp \left(\frac{t^{2}}{12} \sum_{k=1}^{n}\left(\left(b_{k}-a_{k}\right)^{2}+2 v_{k}\right)\right)
\end{aligned}
$$

Proof of the improvement of Hoeffding's inequality

Proof.

Consequently, for any positive x and t,

$$
\begin{aligned}
\mathbb{P}\left(S_{n}-\mathbb{E}\left[S_{n}\right] \geqslant x\right) & \leqslant \exp \left(-t x+\frac{t^{2}}{12}\left(D_{n}+2 V_{n}\right)\right) \\
& \leqslant \exp \left(-\frac{3 x^{2}}{D_{n}+2 V_{n}}\right)
\end{aligned}
$$

by taking the optimal value $t=6 x /\left(D_{n}+2 V_{n}\right)$. Replacing X_{k} by $-X_{k}$, we obtain by the same token that, for any positive x,

$$
\mathbb{P}\left(S_{n}-\mathbb{E}\left[S_{n}\right] \leqslant-x\right) \leqslant \exp \left(-\frac{3 x^{2}}{D_{n}+2 V_{n}}\right)
$$

which completes the proof.

Bernstein's inequality

Let X_{1}, \ldots, X_{n} be a finite sequence of centered and independent random variables. Denote

$$
S_{n}=\sum_{k=1}^{n} X_{k}, \quad V_{n}=\operatorname{Var}\left(S_{n}\right), \quad v_{n}=\frac{V_{n}}{n} .
$$

We shall say that X_{1}, \ldots, X_{n} satisfy Bernstein's condition if it exists some positive constant c such that, for any integer $p \geqslant 3$,

$$
\sum_{k=1}^{n} \mathbb{E}\left[\left(\max \left(0, X_{k}\right)\right)^{p}\right] \leqslant \frac{p!c^{p-2}}{2} V_{n} .
$$

Theorem (Bernstein's inequality)

Under Bernstein's condition, we have for any positive x,

$$
\begin{aligned}
\mathbb{P}\left(S_{n} \geqslant n x\right) \leqslant & \left(1+\frac{x^{2}}{2\left(v_{n}+c x\right)}\right)^{n} \exp \left(-\frac{n x^{2}}{v_{n}+c x}\right) \\
& \leqslant \exp \left(-\frac{n x^{2}}{2\left(v_{n}+c x\right)}\right)
\end{aligned}
$$

In addition, we also have for any positive x,

$$
\mathbb{P}\left(S_{n} \geqslant n x\right) \leqslant \exp \left(-\frac{n x^{2}}{v_{n}+c x+\sqrt{v_{n}\left(v_{n}+2 c x\right)}}\right) .
$$

\longrightarrow The last inequality is due to Bennett while the second inequality in blue is known as Bernstein's inequality.

Comparisons in Bernstein's inequalities

Proof of Bernstein's inequalities

Proof.

It follows from Markov's inequality that for any positive x and t,

$$
\mathbb{P}\left(S_{n} \geqslant n x\right) \leqslant \exp (-n t x) \mathbb{E}\left[\exp \left(t S_{n}\right)\right]
$$

The concavity of the logarithm function implies that

$$
\mathbb{E}\left[\exp \left(t S_{n}\right)\right] \leqslant \exp (n \ell(t)) \quad \text { where } \quad \ell(t)=\log \left(\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[\exp \left(t X_{k}\right)\right]\right) .
$$

However, it is not hard to see that for any real x,

$$
\exp (x) \leqslant 1+x+\frac{x^{2}}{2}+\sum_{p=3}^{\infty} \frac{(\max (0, x))^{p}}{p!}
$$

Proof.

Hence, it follows from the monotone convergence theorem that for all $1 \leqslant k \leqslant n$ and for any positive t,

$$
\mathbb{E}\left[\exp \left(t X_{k}\right)\right] \leqslant 1+t \mathbb{E}\left[X_{k}\right]+\frac{t^{2} \mathbb{E}\left[X_{k}^{2}\right]}{2}+\sum_{p=3}^{\infty} \frac{t^{p} \mathbb{E}\left[\left(\max \left(0, X_{k}\right)\right)^{p}\right]}{p!}
$$

Consequently, we deduce from Bernstein's condition that

$$
\sum_{k=1}^{n} \mathbb{E}\left[\exp \left(t X_{k}\right)\right] \leqslant n+\frac{t^{2}}{2} V_{n}+\frac{V_{n}}{2} \sum_{p=3}^{\infty} c^{p-2} t^{p}=n+\frac{V_{n}}{2} \sum_{p=2}^{\infty} c^{p-2} t^{p}
$$

Therefore, as soon as $0<t c<1$,

$$
\begin{aligned}
\exp (\ell(t)) & =\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[\exp \left(t X_{k}\right)\right] \leqslant 1+\frac{v_{n} t^{2}}{2} \sum_{p=0}^{\infty}(t c)^{p} \\
& \leqslant 1+\frac{v_{n} t^{2}}{2(1-t c)}
\end{aligned}
$$

Proof of Bernstein's inequalities

Proof.

It leads to

$$
\begin{aligned}
\mathbb{P}\left(S_{n} \geqslant n x\right) & \leqslant \exp \left(-n t x+n \log \left(1+\frac{v_{n} t^{2}}{2(1-t c)}\right)\right) \\
& \leqslant \exp \left(-\frac{n x^{2}}{v_{n}+c x}\right)\left(1+\frac{x^{2}}{2\left(v_{n}+c x\right)}\right)^{n}
\end{aligned}
$$

by taking the optimal value

$$
t=\frac{x}{v_{n}+c x}
$$

Finally, the elementary inequality $1+\boldsymbol{x} \leqslant \exp (x)$ where x is positive, ensures that

$$
\mathbb{P}\left(S_{n} \geqslant n x\right) \leqslant \exp \left(-\frac{n x^{2}}{2\left(v_{n}+c x\right)}\right)
$$

which completes the proofs of Bernstein's inequalities.

Outline

(1) Concentration inequalities for sums

- Hoeffding's inequality
- Bernstein's inequality
(2) Concentration inequalities for martingales
- Azuma-Hoeffding's inequality
- Bernstein's inequality
- De la Peña's inequalities
- Two-sided exponential inequalities
- One-sided exponential inequalities
(3) Statistical applications
- Autoregressive process
- Branching process
- Random permutations

Azuma-Hoeffding's inequality

Let $\left(M_{n}\right)$ be a square integrable martingale adapted to $\mathbb{F}=\left(\mathcal{F}_{n}\right)$ with $M_{0}=0$. Its increasing process is defined by

$$
<M>_{n}=\sum_{k=1}^{n} \mathbb{E}\left[\Delta M_{k}^{2} \mid \mathcal{F}_{k-1}\right]
$$

where $\Delta M_{n}=M_{n}-M_{n-1}$.

Theorem (Azuma-Hoeffding's inequality, 1967)

Assume that for all $1 \leqslant k \leqslant n, a_{k} \leqslant \Delta M_{k} \leqslant b_{k}$ a.s. for some constants $a_{k}<b_{k}$. Then, for any positive x,

$$
\mathbb{P}\left(\left|M_{n}\right| \geqslant x\right) \leqslant 2 \exp \left(-\frac{2 x^{2}}{D_{n}}\right)
$$

where

$$
D_{n}=\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)^{2}
$$

Azuma-Hoeffding's inequality

Theorem (B-Delyon-Rio, 2015)

Assume that for all $1 \leqslant k \leqslant n$,

$$
\boldsymbol{A}_{\boldsymbol{k}} \leqslant \boldsymbol{\Delta} \boldsymbol{M}_{\boldsymbol{k}} \leqslant \boldsymbol{B}_{\boldsymbol{k}} \quad \text { a.s. }
$$

where $\left(A_{k}, B_{k}\right)$ is a couple of bounded and \mathcal{F}_{k-1}-measurable random variables. Then, for any positive x and y,

$$
\mathbb{P}\left(M_{n} \geqslant x, 2<M>_{n}+\mathcal{D}_{n} \leqslant y\right) \leqslant \exp \left(-\frac{3 x^{2}}{y}\right)
$$

where

$$
\mathcal{D}_{n}=\sum_{k=1}^{n}\left(B_{k}-A_{k}\right)^{2}
$$

Van de Geer's inequality

The convexity of the square function implies that almost surely

$$
\Delta M_{k}^{2} \leqslant\left(A_{k}+B_{k}\right) \Delta M_{k}-A_{k} B_{k} \leqslant\left(A_{k}+B_{k}\right) \Delta M_{k}+\frac{1}{4}\left(B_{k}-A_{k}\right)^{2} .
$$

By taking the conditional expectation on both sides,

$$
<M>_{n}=\sum_{k=1}^{n} \mathbb{E}\left[\Delta M_{k}^{2} \mid \mathcal{F}_{k-1}\right] \leqslant \frac{1}{4} \sum_{k=1}^{n}\left(B_{k}-A_{k}\right)^{2}=\frac{1}{4} \mathcal{D}_{n} .
$$

Consequently, we can deduce Van de Geer's inequality which says that, for any positive x and y,

$$
\mathbb{P}\left(M_{n} \geqslant x, \mathcal{D}_{n} \leqslant y\right) \leqslant \exp \left(-\frac{2 x^{2}}{y}\right) .
$$

Theorem (Bernstein's inequality)

Assume that it exists some positive constant c such that, for any integer $p \geqslant 3$ and for all $1 \leqslant k \leqslant n$,

$$
\mathbb{E}\left[\left(\max \left(0, \Delta M_{k}\right)\right)^{p} \mid \mathcal{F}_{k-1}\right] \leqslant \frac{p!c^{p-2}}{2} \Delta<M>_{k}
$$

Then, for any positive x and y,

$$
\begin{aligned}
\mathbb{P}\left(M_{n} \geqslant n x,<M>_{n}\right. & \leqslant n y) \leqslant\left(1+\frac{x^{2}}{2(y+c x)}\right)^{n} \exp \left(-\frac{n x^{2}}{y+c x}\right) \\
& \leqslant \exp \left(-\frac{n x^{2}}{2(y+c x)}\right) .
\end{aligned}
$$

In addition, we also have for any positive x and y,

$$
\mathbb{P}\left(M_{n} \geqslant n x,<M>_{n} \leqslant n y\right) \leqslant \exp \left(-\frac{n x^{2}}{y+c x+\sqrt{y(y+2 c x)}}\right)
$$

De la Peña's inequalities

Definition. We say that $\left(M_{n}\right)$ is conditionally symmetric if, for all $n \geqslant 1, \mathcal{L}\left(\Delta M_{n} \mid \mathcal{F}_{n-1}\right)$ is symmetric.

Theorem (De la Peña, 1999)

If $\left(M_{n}\right)$ is conditionally symmetric, then for any positive x and y,

$$
\mathbb{P}\left(M_{n} \geqslant x,[M]_{n} \leqslant y\right) \leqslant \exp \left(-\frac{x^{2}}{2 y}\right) .
$$

where

$$
[M]_{n}=\sum_{k=1}^{n} \Delta M_{k}^{2}
$$

Self-normalized martingales

Theorem (De la Peña, 1999)

If $\left(M_{n}\right)$ is conditionally symmetric, then for any positive x and y, and for all $a \geqslant 0$ and $b>0$,

$$
\mathbb{P}\left(\frac{M_{n}}{a+b[M]_{n}} \geqslant x\right) \leqslant \sqrt{\mathbb{E}\left[\exp \left(-x^{2}\left(a b+\frac{b^{2}}{2}[M]_{n}\right)\right)\right]}
$$

Goal. Self-normalized by $\left\langle M>_{n}\right.$ instead of $[M]_{n}$. In addition, avoid the symmetric condition on the distribution of M_{n}.

Self-normalized martingales

Theorem (De la Peña, 1999)

If $\left(M_{n}\right)$ is conditionally symmetric, then for any positive x and y, and for all $a \geqslant 0$ and $b>0$,

$$
\begin{aligned}
& \mathbb{P}\left(\frac{M_{n}}{a+b[M]_{n}} \geqslant x\right) \leqslant \sqrt{\mathbb{E}\left[\exp \left(-x^{2}\left(a b+\frac{b^{2}}{2}[M]_{n}\right)\right)\right]} \\
& \mathbb{P}\left(\frac{M_{n}}{a+b[M]_{n}} \geqslant x,[M]_{n} \geqslant y\right) \leqslant \exp \left(-x^{2}\left(a b+\frac{b^{2} y}{2}\right)\right) .
\end{aligned}
$$

Goal. Self-normalized by $\left\langle M>_{n}\right.$ instead of $[M]_{n}$. In addition, avoid the symmetric condition on the distribution of M_{n}.

Theorem (B-Touati, 2008)

For any positive x and y, we always have

$$
\mathbb{P}\left(\left|M_{n}\right| \geqslant x,[M]_{n}+<M>_{n} \leqslant y\right) \leqslant 2 \exp \left(-\frac{x^{2}}{2 y}\right)
$$

Theorem (Delyon, 2009)

For any positive x and y, we always have

$$
\mathbb{P}\left(\left|M_{n}\right| \geqslant x,[M]_{n}+2<M>_{n} \leqslant y\right) \leqslant 2 \exp \left(-\frac{3 x^{2}}{2 y}\right) .
$$

Remark. For any positive x and y,

$$
\begin{aligned}
\mathbb{P}\left(M_{n} \geqslant x,[M]_{n}+<M>_{n} \leqslant y\right) & \leqslant \mathbb{P}\left(M_{n} \geqslant x,[M]_{n}+2<M>_{n} \leqslant 2 y\right), \\
& \leqslant \exp \left(-\frac{3 x^{2}}{4 y}\right) \leqslant \exp \left(-\frac{x^{2}}{2 y}\right)
\end{aligned}
$$

which means that Delyon's inequality improves the previous one.

Two elementary inequalities

The proof of the first result relies on the fact that for any real x,

$$
f(x)=\exp \left(x-\frac{x^{2}}{2}\right) \leqslant g(x)=1+x+\frac{x^{2}}{2},
$$

whereas that of the second one is based on the fact that for any real x,

$$
h(x)=\exp \left(x-\frac{x^{2}}{6}\right) \leqslant \ell(x)=1+x+\frac{x^{2}}{3} .
$$

One can observe that for any real x,

$$
f(x) \leqslant h(x) \leqslant \ell(x) \leqslant g(x) .
$$

Two elementary inequalities

Two keystone lemma

Lemma

Let X be a square integrable random variable with mean zero and variance σ^{2}. Then, for any real t,

$$
L(t)=\mathbb{E}\left[\exp \left(t X-\frac{t^{2}}{6} X^{2}\right)\right] \leqslant 1+\frac{t^{2}}{3} \sigma^{2} .
$$

Lemma

For any real t and for all $n \geqslant 0$, denote

$$
V_{n}(t)=\exp \left(t M_{n}-\frac{t^{2}}{6}[M]_{n}-\frac{t^{2}}{3}<M>_{n}\right) .
$$

Then, $\left(V_{n}(t)\right)$ is a positive supermartingale such that $\mathbb{E}\left[V_{n}(t)\right] \leqslant 1$.

Heavy on left or right

Definition. Let X be a centered random variable on $(\Omega, \mathcal{A}, \mathbb{P})$.

- X is heavy on left if, for any positive a, $\mathbb{E}\left[T_{a}(X)\right] \leqslant 0$,
- X is heavy on right if, for any positive $a, \mathbb{E}\left[T_{a}(X)\right] \geqslant 0$.
where

$$
\boldsymbol{T}_{a}(x)=\left\{\begin{array}{ccl}
a & \text { if } & x \geqslant a \\
\boldsymbol{x} & \text { if } & -a \leqslant \boldsymbol{x} \leqslant a \\
-\boldsymbol{a} & \text { if } & x \leqslant-a
\end{array}\right.
$$

X is symmetric $\Longleftrightarrow X$ is heavy on left and on right.

Heavy on left or right

Denote by F the distribution function of X and

$$
H(a)=\int_{0}^{a} F(-x)-(1-F(x)) d x=-\mathbb{E}\left[T_{a}(X)\right]
$$

- X is heavy on left if, for any positive $a, H(a) \geqslant 0$,
- X is heavy on right if, for any positive $a, H(a) \leqslant 0$.
X is symmetric \Longleftrightarrow For any positive $a, H(a)=0$.

Centered Bernoulli $\mathcal{B}(p)$

Centered Binomial $\mathcal{B}(2, p)$

Centered Binomial $\mathcal{B}(2, p)$

Centered Geometric $\mathcal{G}(p)$

Centered Exponential $\mathcal{E}(\lambda)$

Centered Pareto $\mathcal{P}(a, \lambda)$

Centered Gamma $\mathcal{G}(a, \lambda)$

$a=2$, lambda=1

Martingales heavy on left or right

Definition. We say that (M_{n}) is conditionally heavy on left if, for all $n \geqslant 1$ and for any positive a,

$$
\mathbb{E}\left[T_{a}\left(\Delta M_{n}\right) \mid \mathcal{F}_{n-1}\right] \leqslant 0 \quad \text { a.s. }
$$

Theorem (B-Touati, 2008)

If $\left(M_{n}\right)$ is conditionally heavy on left, then for any positive x and y,

$$
\mathbb{P}\left(M_{n} \geqslant x,[M]_{n} \leqslant y\right) \leqslant \exp \left(-\frac{x^{2}}{2 y}\right) .
$$

\longrightarrow De la Peña's inequality holds true without the assumption that $\left(M_{n}\right)$ is conditionally symmetric.

Self-normalized martingales

Theorem (B-Touati, 2008)

If $\left(M_{n}\right)$ is conditionally heavy on left, then for any positive x and y, and for all $a \geqslant 0$ and $b>0$,

$$
\mathbb{P}\left(\frac{M_{n}}{a+b[M]_{n}} \geqslant x\right) \leqslant \sqrt{\mathbb{E}\left[\exp \left(-x^{2}\left(a b+\frac{b^{2}}{2}[M]_{n}\right)\right)\right]}
$$

Self-normalized martingales

Theorem (B-Touati, 2008)

If $\left(M_{n}\right)$ is conditionally heavy on left, then for any positive x and y, and for all $a \geqslant 0$ and $b>0$,

$$
\begin{aligned}
& \mathbb{P}\left(\frac{M_{n}}{a+b[M]_{n}} \geqslant x\right) \leqslant \sqrt{\mathbb{E}\left[\exp \left(-x^{2}\left(a b+\frac{b^{2}}{2}[M]_{n}\right)\right)\right]} \\
& \mathbb{P}\left(\frac{M_{n}}{a+b[M]_{n}} \geqslant x,[M]_{n} \geqslant y\right) \leqslant \exp \left(-x^{2}\left(a b+\frac{b^{2} y}{2}\right)\right),
\end{aligned}
$$

Self-normalized martingales

Theorem (B-Touati, 2008)

If $\left(M_{n}\right)$ is conditionally heavy on left, then for any positive x and y, and for all $a \geqslant 0$ and $b>0$,

$$
\begin{gathered}
\mathbb{P}\left(\frac{M_{n}}{a+b[M]_{n}} \geqslant x\right) \leqslant \sqrt{\mathbb{E}\left[\exp \left(-x^{2}\left(a b+\frac{b^{2}}{2}[M]_{n}\right)\right)\right]} \\
\mathbb{P}\left(\frac{M_{n}}{a+b[M]_{n}} \geqslant x,[M]_{n} \geqslant y\right) \leqslant \exp \left(-x^{2}\left(a b+\frac{b^{2} y}{2}\right)\right), \\
\mathbb{P}\left(\frac{M_{n}}{[M]_{n}} \geqslant x\right) \leqslant \inf _{p>1}\left(\mathbb{E}\left[\exp \left(-(p-1) \frac{x^{2}}{2}[M]_{n}\right)\right]\right)^{1 / p} .
\end{gathered}
$$

Two keystone lemmas

Lemma

For a random variable X and for any real t, let

$$
L(t)=\mathbb{E}\left[\exp \left(t X-\frac{t^{2}}{2} X^{2}\right)\right]
$$

- X is heavy on left \Longrightarrow For any positive $t, L(t) \leqslant 1$,
- X is heavy on right \Longrightarrow For any negative $t, L(t) \leqslant 1$,
- X is symmetric \Longrightarrow For any real $t, L(t) \leqslant 1$.

Lemma

For any real t and for all $n \geqslant 0$, denote

$$
W_{n}(t)=\exp \left(t M_{n}-\frac{t^{2}}{2}[M]_{n}\right)
$$

Then, $\left(W_{n}(t)\right)$ is a positive supermartingale such that $\mathbb{E}\left[W_{n}(t)\right] \leqslant 1$.

Outline

(1) Concentration inequalities for sums

- Hoeffding's inequality
- Bernstein's inequality
(2) Concentration inequalities for martingales
- Azuma-Hoeffding's inequality
- Bernstein's inequality
- De la Peña's inequalities
- Two-sided exponential inequalities
- One-sided exponential inequalities
(3) Statistical applications
- Autoregressive process
- Branching process
- Random permutations

Autoregressive process

Consider the stable autoregressive process

$$
X_{n+1}=\theta X_{n}+\varepsilon_{n+1}, \quad|\theta|<1
$$

where $\left(\varepsilon_{n}\right)$ is iid $\mathcal{N}\left(0, \sigma^{2}\right)$ with positive variance σ^{2} and the initial state X_{0} is independent of $\left(\varepsilon_{n}\right)$ with $\mathcal{N}\left(0, \sigma^{2} /\left(1-\theta^{2}\right)\right)$ distribution. Denote by $\widehat{\theta}_{n}$ and $\widetilde{\theta}_{n}$ the least squares and the Yule-Walker estimators of θ

$$
\widehat{\theta}_{n}=\frac{\sum_{k=1}^{n} X_{k} X_{k-1}}{\sum_{k=1}^{n} X_{k-1}^{2}} \quad \text { and } \quad \tilde{\theta}_{n}=\frac{\sum_{k=1}^{n} X_{k} X_{k-1}}{\sum_{k=0}^{n} X_{k}^{2}}
$$

$$
a=\frac{\theta-\sqrt{\theta^{2}+8}}{4} \quad \text { and } \quad b=\frac{\theta+\sqrt{\theta^{2}+8}}{4}
$$

Theorem (B-Gamboa-Rouault, 1997)

- $\left(\widehat{\theta}_{n}\right)$ satisfies an LDP with rate function

$$
J(x)= \begin{cases}\frac{1}{2} \log \left(\frac{1+\theta^{2}-2 \theta x}{1-x^{2}}\right) & \text { if } x \in[a, b] \\ \log |\theta-2 x| & \text { otherwise }\end{cases}
$$

- $\left(\tilde{\theta}_{n}\right)$ satisfies an LDP with rate function

$$
a=\frac{\theta-\sqrt{\theta^{2}+8}}{4} \quad \text { and } \quad b=\frac{\theta+\sqrt{\theta^{2}+8}}{4}
$$

Theorem (B-Gamboa-Rouault, 1997)

- $\left(\widehat{\theta}_{n}\right)$ satisfies an LDP with rate function

$$
J(x)= \begin{cases}\frac{1}{2} \log \left(\frac{1+\theta^{2}-2 \theta x}{1-x^{2}}\right) & \text { if } x \in[a, b] \\ \log |\theta-2 x| & \text { otherwise }\end{cases}
$$

- $\left(\widetilde{\theta}_{n}\right)$ satisfies an LDP with rate function

$$
I(x)= \begin{cases}\frac{1}{2} \log \left(\frac{1+\theta^{2}-2 \theta x}{1-x^{2}}\right) & \text { if } x \in]-1,1[\\ +\infty & \text { otherwise }\end{cases}
$$

Statistical applications

Least squares and Yule-Walker

Corollary (B-Touati, 2008)

For all $n \geqslant 1$ and for any positive x,

$$
\mathbb{P}\left(\left|\widehat{\theta}_{n}-\theta\right| \geqslant x\right) \leqslant 2 \exp \left(-\frac{n x^{2}}{2\left(1+y_{x}\right)}\right)
$$

where y_{x} is the unique positive solution of

$$
(1+y) \log (1+y)-y=x^{2}
$$

\longrightarrow For any $0<x<1 / 2$, we have $y_{x}<2 x$, which implies that

$$
\mathbb{P}\left(\left|\widehat{\theta}_{n}-\theta\right| \geqslant x\right) \leqslant 2 \exp \left(-\frac{n x^{2}}{2(1+2 x)}\right)
$$

Branching process

Consider the Galton-Watson process starting from $X_{0}=1$

$$
X_{n+1}=\sum_{k=1}^{X_{n}} Y_{n, k}
$$

where $\left(Y_{n, k}\right)$ is iid taking values in \mathbb{N}, with finite mean $m>1$ and positive variance σ^{2}. We assume that the set of extinction of $\left(X_{n}\right)$ is negligeable. Let \widetilde{m}_{n} and \widehat{m}_{n} be the Lotka-Nagaev and the Harris estimators of m

$$
\tilde{m}_{n}=\frac{X_{n}}{X_{n-1}} \quad \text { and } \quad \widehat{m}_{n}=\frac{\sum_{k=1}^{n} X_{k}}{\sum_{k=1}^{n} X_{k-1}}
$$

Let L be the cumulant generating function

$$
L(t)=\log \mathbb{E}\left[\exp \left(t\left(Y_{n, k}-m\right)\right)\right]
$$

and denote by I its Cramér transform

$$
I(x)=\sup _{-c \leqslant t \leqslant c}(x t-L(t))
$$

Corollary (B-Touati, 2008)

Assume that L is finite on $[-c, c]$ with $c>0$. Then, for all $n \geqslant 1$ and for any positive x, if $J(x)=\min (I(x), I(-x))$,

$$
\begin{gathered}
\mathbb{P}\left(\left|\widetilde{m}_{n}-m\right| \geqslant x\right) \leqslant 2 \mathbb{E}\left[\exp \left(-J(x) X_{n-1}\right)\right] \\
\mathbb{P}\left(\left|\widetilde{m}_{n}-m\right| \geqslant x\right) \leqslant 2 \inf _{p>1}\left(\mathbb{E}\left[\exp \left(-(p-1) J(x) X_{n-1}\right)\right]\right)^{1 / p}
\end{gathered}
$$

Corollary (B-Touati, 2008)

Assume that L is finite on $[-c, c]$ with $c>0$. Then, for all $n \geqslant 1$ and for any positive x,

$$
\mathbb{P}\left(\left|\widehat{m}_{n}-m\right| \geqslant x\right) \leqslant 2 \inf _{p>1}\left(\mathbb{E}\left[\exp \left(-(p-1) J(x) S_{n-1}\right)\right]\right)^{1 / p}
$$

$$
\text { where } S_{n}=\sum_{k=1}^{n} X_{k}
$$

\longrightarrow If the offspring distribution is Geometric $\mathcal{G}(p)$

$$
\mathbb{P}\left(\left|\widetilde{m}_{n}-m\right| \geqslant x\right) \leqslant \frac{2 p^{n} \exp (-J(x))}{p(1-\exp (-J(x)))}
$$

Random permutations

Let $\left(a_{n}(i, j)\right)$ be an $n \times n$ array of real numbers from $\left[-m_{a}, m_{a}\right]$ where $m_{a}>0$. Let π_{n} be chosen uniformly at random from the set of all permutations of $\{1, \ldots, n\}$. Denote

$$
S_{n}=\sum_{i=1}^{n} a_{n}\left(i, \pi_{n}(i)\right) .
$$

We clearly have

$$
\mathbb{E}\left[S_{n}\right]=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{n}(i, j) \quad \text { and } \quad \operatorname{Var}\left(S_{n}\right)=\frac{1}{n-1} \sum_{i=1}^{n} \sum_{j=1}^{n} d_{n}^{2}(i, j)
$$

where $d_{n}(i, j)=a_{n}(i, j)-a_{n}(i, *)-a_{n}(*, j)+a_{n}(*, *)$. In addition, under standard conditions,

$$
\frac{S_{n}-\mathbb{E}\left[S_{n}\right]}{\sqrt{\operatorname{Var}\left(S_{n}\right)}} \xrightarrow{\mathcal{L}} \mathcal{N}(\mathbf{0}, \mathbf{1}) .
$$

Random permutations

Theorem (Delyon, 2015)

For any positive x,

$$
\mathbb{P}\left(\left|S_{n}-\mathbb{E}\left[S_{n}\right]\right| \geqslant x\right) \leqslant 4 \exp \left(-\frac{x^{2}}{16\left(\theta v_{n}+x m_{a} / 3\right)}\right)
$$

where θ is an explicit constant and

$$
v_{n}=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{n}^{2}(i, j)
$$

\longrightarrow It was proven by Chatterjee that for any positive x,

$$
\mathbb{P}\left(\left|S_{n}-E\left[S_{n}\right]\right| \geqslant x\right) \leqslant 2 \exp \left(-\frac{x^{2}}{4 m_{a} \mathbb{E}\left[S_{n}\right]+2 x m_{a}}\right)
$$

This upper bound has better constants but v_{n} is replaced with $m_{a} \mathbb{E}\left[S_{n}\right]$.

