Asymptotic results discrete time martingales and stochastic algorithms

Bernard Bercu

Bordeaux University, France

IFCAM Summer School
Bangalore, India, July 2015

Outline

(1)

Introduction

- Definition and Examples
- On Doob's convergence theorem
- On the stopping time theorem
- Kolmogorov-Doob martingale inequalities
(2) Asymptotic results
- Two useful Lemmas
- Square integrable martingales
- Robbins-Siegmund Theorem
- Strong law of large numbers for martingales
- Central limit theorem for martingales
(3) Statistical applications
- Autoregressive processes
- Stochastic algorithms
- Kernel density estimation

Outline

(1) Introduction

- Definition and Examples
- On Doob's convergence theorem
- On the stopping time theorem
- Kolmogorov-Doob martingale inequalities
(2) Asymptotic results
- Two useful Lemmas
- Square integrable martingales
- Robbins-Siegmund Theorem
- Strong law of large numbers for martingales
- Central limit theorem for martingales

3 Statistical applications

- Autoregressive processes
- Stochastic algorithms
- Kernel density estimation

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space with a filtration $\mathbb{F}=\left(\mathcal{F}_{n}\right)$ where \mathcal{F}_{n} is the σ-algebra of events occurring up to time n.

Definition

Let $\left(M_{n}\right)$ be a sequence of integrable random variables defined on $(\Omega, \mathcal{A}, \mathbb{P})$ such that, for all $n \geqslant 0, M_{n}$ is \mathcal{F}_{n}-measurable.
(1) $\left(M_{n}\right)$ is a martingale MG if for all $n \geqslant 0$,

$$
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]=M_{n} \quad \text { a.s. }
$$

(2) $\left(M_{n}\right)$ is a submartingale sMG if for all $n \geqslant 0$,
$\mathbb{E}\left[M_{n+1} \mid \cdot F_{n}\right] \geqslant M_{n} \quad$ a.s.
(3) $\left(M_{n}\right)$ is a supermartingale SMG if for all $n \geqslant 0$,

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space with a filtration $\mathbb{F}=\left(\mathcal{F}_{n}\right)$ where \mathcal{F}_{n} is the σ-algebra of events occurring up to time n.

Definition

Let $\left(M_{n}\right)$ be a sequence of integrable random variables defined on $(\Omega, \mathcal{A}, \mathbb{P})$ such that, for all $n \geqslant 0, M_{n}$ is \mathcal{F}_{n}-measurable.
(1. $\left(M_{n}\right)$ is a martingale MG if for all $n \geqslant 0$,

$$
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]=M_{n} \quad \text { a.s. }
$$

(2) $\left(M_{n}\right)$ is a submartingale sMG if for all $n \geqslant 0$,

$$
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right] \geqslant M_{n} \quad \text { a.s. }
$$

(3) $\left(M_{n}\right)$ is a supermartingale SMG if for all $n \geqslant 0$,

$$
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right] \leqslant M_{n} \quad \text { a.s. }
$$

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space with a filtration $\mathbb{F}=\left(\mathcal{F}_{n}\right)$ where \mathcal{F}_{n} is the σ-algebra of events occurring up to time n.

Definition

Let $\left(M_{n}\right)$ be a sequence of integrable random variables defined on $(\Omega, \mathcal{A}, \mathbb{P})$ such that, for all $n \geqslant 0, M_{n}$ is \mathcal{F}_{n}-measurable.
(1) $\left(M_{n}\right)$ is a martingale MG if for all $n \geqslant 0$,

$$
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]=M_{n} \quad \text { a.s. }
$$

(2) $\left(M_{n}\right)$ is a submartingale sMG if for all $n \geqslant 0$,

$$
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right] \geqslant M_{n} \quad \text { a.s. }
$$

(3) $\left(M_{n}\right)$ is a supermartingale SMG if for all $n \geqslant 0$,

$$
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right] \leqslant M_{n} \quad \text { a.s. }
$$

Martingales with sums

Example (Sums)

Let $\left(X_{n}\right)$ be a sequence of integrable and independent random variables such that, for all $n \geqslant 1, \mathbb{E}\left[X_{n}\right]=m$. Denote

$$
S_{n}=\sum_{k=1}^{n} X_{k}
$$

We clearly have

$$
S_{n+1}=S_{n}+X_{n+1}
$$

Consequently, $\left(S_{n}\right)$ is a sequence of integrable random variables with

$$
\begin{aligned}
\mathbb{E}\left[S_{n+1} \mid \mathcal{F}_{n}\right] & =S_{n}+\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right] \\
& =S_{n}+\mathbb{E}\left[X_{n+1}\right] \\
& =S_{n}+m
\end{aligned}
$$

Martingales with sums

Example (Sums)

$$
\mathbb{E}\left[S_{n+1} \mid \mathcal{F}_{n}\right]=S_{n}+m .
$$

- $\left(S_{n}\right)$ is a martingale if $m=0$,
- $\left(S_{n}\right)$ is a submartingale if $m \geqslant 0$,
- $\left(S_{n}\right)$ is a supermartingale if $m \leqslant 0$.
\longrightarrow It holds for Rademacher $\mathcal{R}(p)$ distribution with $0<p<1$ where

$$
m=2 p-1 .
$$

Martingales with Rademacher sums

Martingales with products

Example (Products)

Let $\left(X_{n}\right)$ be a sequence of positive, integrable and independent random variables such that, for all $n \geqslant 1, \mathbb{E}\left[X_{n}\right]=m$. Denote

$$
P_{n}=\prod_{k=1}^{n} x_{k}
$$

We clearly have

$$
P_{n+1}=P_{n} X_{n+1} .
$$

Consequently, $\left(P_{n}\right)$ is a sequence of integrable random variables with

$$
\begin{aligned}
\mathbb{E}\left[P_{n+1} \mid \mathcal{F}_{n}\right] & =P_{n} \mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right] \\
& =P_{n} \mathbb{E}\left[X_{n+1}\right] \\
& =m P_{n}
\end{aligned}
$$

Martingales with products

Example (Products)

$$
\mathbb{E}\left[P_{n+1} \mid \mathcal{F}_{n}\right]=m P_{n}
$$

- $\left(P_{n}\right)$ is a martingale if $m=1$,
- $\left(P_{n}\right)$ is a submartingale if $m \geqslant 1$,
- (P_{n}) is a supermartingale if $m \leqslant 1$.
\longrightarrow It holds for Exponential $\mathcal{E}(\lambda)$ distribution with $\lambda>0$ where

$$
m=\frac{1}{\lambda}
$$

Stability

Theorem (Stability)

(1) If $\left(M_{n}\right)$ is a SMG, then $\left(-M_{n}\right)$ is a sMG.
(2) If $\left(M_{n}\right)$ and $\left(N_{n}\right)$ are two sMG and

$$
S_{n}=\sup \left(M_{n}, N_{n}\right)
$$

$\longrightarrow\left(S_{n}\right)$ is a sMG.
(3) If $\left(M_{n}\right)$ and $\left(N_{n}\right)$ are two SMG and

$$
I_{n}=\inf \left(X_{n}, Y_{n}\right)
$$

$\longrightarrow\left(I_{n}\right)$ is a SMG.

Stability, continued

Theorem (Stability)

(1) If $\left(M_{n}\right)$ and $\left(N_{n}\right)$ are two MG, $a, b \in \mathbb{R}$ and

$$
S_{n}=a M_{n}+b N_{n}
$$

$\longrightarrow\left(S_{n}\right)$ is a MG.
(2) If $\left(M_{n}\right)$ is a MG and F is a convex real function such that, for all $n \geqslant 1, F\left(M_{n}\right) \in L^{1}(\mathbb{R})$ and if

$$
F_{n}=F\left(M_{n}\right)
$$

$\longrightarrow\left(F_{n}\right)$ is a sMG.

Doob's convergence theorem

- Every bounded above increasing sequence converges to its supremum,
- Every bounded bellow decreasing sequence converges to its infimum.
\longrightarrow The stochastic analogous of this result is due to Doob.

Theorem (Doob)

(1) If $\left(M_{n}\right)$ is a sMG bounded above by some constant M, then $\left(M_{n}\right)$ converges a.s.
(2) If $\left(M_{n}\right)$ is a SMG bounded below by some constant m, then $\left(M_{n}\right)$ converges a.s.

Doob's convergence theorem, continued

Theorem (Doob)

Let $\left(M_{n}\right)$ be a MG, sMG, or SMG bounded in \mathbb{L}^{1} which means

$$
\sup _{n \geqslant 0} \mathbb{E}\left[\left|M_{n}\right|\right]<+\infty
$$

$\longrightarrow\left(M_{n}\right)$ converges a.s. to an integrable random variable M_{∞}.

Convergence of martingales

Theorem

Let $\left(M_{n}\right)$ be a MG bounded in \mathbb{L}^{p} with $p \geqslant 1$, which means that

$$
\sup _{n \geqslant 0} \mathbb{E}\left[\left|M_{n}\right|^{p}\right]<+\infty .
$$

(1) If $p>1,\left(M_{n}\right)$ converges a.s. a random variable M_{∞}. The convergence is also true in \mathbb{L}^{p}.
(2) If $p=1,\left(M_{n}\right)$ converges a.s. to a random variable M_{∞}. The convergence holds in \mathbb{L}^{1} as soon as $\left(M_{n}\right)$ is uniformly integrable that is

$$
\lim _{a \rightarrow \infty} \sup _{n \geqslant 0} \mathbb{E}\left[\left|M_{n}\right| I_{\left\{\left|M_{n}\right| \geqslant a\right\}}\right]=0 .
$$

Chow's Theorem

Theorem (Chow)

Let $\left(M_{n}\right)$ be a MG such that for $1 \leqslant a \leqslant 2$ and for all $n \geqslant 1$,

$$
\mathbb{E}\left[\left|M_{n}\right|^{a}\right]<\infty .
$$

Denote, for all $n \geqslant 1, \Delta M_{n}=M_{n}-M_{n-1}$ and assume that

$$
\sum_{n=1}^{\infty} \mathbb{E}\left[\left|\Delta M_{n}\right|^{a} \mid \mathcal{F}_{n-1}\right]<\infty
$$

$\longrightarrow\left(M_{n}\right)$ converges a.s. to a random variable M_{∞}.

Exponential Martingale

Example (Exponential Martingale)

Let $\left(X_{n}\right)$ be a sequence of independent random variable sharing the same $\mathcal{N}(0,1)$ distribution. For all $t \in \mathbb{R}^{*}$, let $S_{n}=X_{1}+\cdots+X_{n}$ and denote

$$
M_{n}(t)=\exp \left(t S_{n}-\frac{n t^{2}}{2}\right)
$$

It is clear that $\left(M_{n}(t)\right)$ is a MG which converges a.s. to zero. However, $\mathbb{E}\left[M_{n}(t)\right]=\mathbb{E}\left[M_{1}(t)\right]=1$ which means that $\left(M_{n}(t)\right)$ does not converge in \mathbb{L}^{1}.

Autoregressive Martingale

Example (Autoregressive Martingale)

Let $\left(X_{n}\right)$ be the autoregressive process given for all $n \geqslant 0$ by

$$
X_{n+1}=\theta X_{n}+(1-\theta) \varepsilon_{n+1}
$$

where $X_{0}=p$ with $0<p<1$ and the parameter $0<\theta<1$. Assume that $\mathcal{L}\left(\varepsilon_{n+1} \mid \mathcal{F}_{n}\right)$ is the Bernoulli $\mathcal{B}\left(X_{n}\right)$ distribution. We can show that $0<X_{n}<1$ and $\left(X_{n}\right)$ is a MG such that

$$
\lim _{n \rightarrow \infty} X_{n}=X_{\infty} \quad \text { a.s. }
$$

The convergence also holds in \mathbb{L}^{p} for all $p \geqslant 1$. Finally, X_{∞} has the Bernoulli $\mathcal{B}(p)$ distribution.

Stopping time theorem

Definition

We shall say that a random variable T is a stopping time if T takes its values in $\mathbb{N} \cup\{+\infty\}$ and, for all $n \geqslant 0$, the event

$$
\{T=n\} \in \mathcal{F}_{n}
$$

Theorem

Assume that $\left(M_{n}\right)$ is a MG and let T be a stopping time adapted to $\mathbb{F}=\left(\mathcal{F}_{n}\right)$. Then, $\left(M_{n \wedge T}\right)$ is also a MG.

Proof of the stopping time theorem

Proof.

First of all, it is clear that for all $n \geqslant 0,\left(M_{n \wedge T}\right)$ is integrable as

$$
M_{n \wedge T}=M_{T} \mathbf{I}_{\{T<n\}}+M_{n} \mathbf{I}_{\{T \geqslant n\}} .
$$

In addition, $\{T \geqslant n\} \in \mathcal{F}_{n-1}$ as its complementary $\{T<n\} \in \mathcal{F}_{n-1}$. Then, for all $n \geqslant 0$,

$$
\begin{aligned}
\mathbb{E}\left[M_{(n+1) \wedge T} \mid \mathcal{F}_{n}\right] & =\mathbb{E}\left[M_{T} \mathrm{I}_{\{T<n+1\}}+M_{n+1} \mathrm{I}_{\{T \geqslant n+1\}} \mid \mathcal{F}_{n}\right], \\
& =M_{T} \mathrm{I}_{\{T<n+1\}}+\mathrm{I}_{\{T \geqslant n+1\}} \mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right], \\
& =M_{T} \mathrm{I}_{\{T<n+1\}}+M_{n} \mathrm{I}_{\{T \geqslant n+1\}}, \\
& =M_{T} \mathrm{I}_{\{T<n\}}+M_{n} \mathrm{I}_{\{T=n\}}+M_{n} \mathrm{I}_{\{T \geqslant n\}}-M_{n} \mathrm{I}_{\{T=n\}}, \\
& =M_{T} \mathrm{I}_{\{T<n\}}+M_{n} \mathrm{I}_{\{T \geqslant n\}}, \\
& =M_{n \wedge T} .
\end{aligned}
$$

Kolmogorov's inequality

Theorem (Kolmogorov's inequality)

Assume that $\left(M_{n}\right)$ is a MG. Then, for all $a>0$,

$$
\mathbb{P}\left(M_{n}^{\#}>a\right) \leqslant \frac{1}{a} \mathbb{E}\left[\left|M_{n}\right| \mathbf{I}_{\left\{M_{n}^{\#}>a\right\}}\right]
$$

where

$$
M_{n}^{\#}=\max _{0 \leqslant k \leqslant n}\left|M_{k}\right| .
$$

As $\left(M_{n}\right)$ is a MG, we clearly have that $\left(\left|M_{n}\right|\right)$ is a sMG. The proof relies on the entry time T_{a} of the sMG $\left(\left|M_{n}\right|\right)$ into the interval $[a,+\infty[$,

$$
T_{a}=\inf \left\{n \geqslant 0,\left|M_{n}\right| \geqslant a\right\} .
$$

Proof.

First of all, we clearly have for all $n \geqslant 0$,

$$
\left\{T_{a} \leqslant n\right\}=\left\{\max _{0 \leqslant k \leqslant n}\left|M_{k}\right| \geqslant a\right\}=\left\{M_{n}^{\#}>a\right\} .
$$

Since $\left|M_{T_{a}}\right| \geqslant a$, it leads to

$$
\mathbb{P}\left(M_{n}^{\#}>a\right)=\mathbb{P}\left(T_{a} \leqslant n\right)=\mathbb{E}\left[\mathbf{I}_{\left\{T_{a} \leqslant n\right\}}\right] \leqslant \frac{1}{a} \mathbb{E}\left[\left|M_{T_{a}}\right| \mathbf{I}_{\left\{T_{a} \leqslant n\right\}}\right] .
$$

However, we have for all $k \leqslant n,\left|M_{k}\right| \leqslant \mathbb{E}\left[\left|M_{n}\right| \mid \mathcal{F}_{k}\right]$ a.s. Therefore,

$$
\begin{aligned}
\mathbb{E}\left[\left|M_{T_{a}}\right| \mathrm{I}_{\left\{T_{a} \leqslant n\right\}}\right] & =\sum_{k=0}^{n} \mathbb{E}\left[\left|M_{k}\right| \mathrm{I}_{\left\{T_{a}=k\right\}}\right] \leqslant \sum_{k=0}^{n} \mathbb{E}\left[\mathbb{E}\left[\left|M_{n}\right| \mid \mathcal{F}_{k}\right] \mathrm{I}_{\left\{T_{a}=k\right\}}\right], \\
& \leqslant \sum_{k=0}^{n} \mathbb{E}\left[\left|M_{n}\right| I_{\left\{T_{a}=k\right\}}\right]=\mathbb{E}\left[\left|M_{n}\right| \mathbb{I}_{\left\{T_{a} \leqslant n\right\}}\right],
\end{aligned}
$$

which completes the proof of Kolmogorov's inequality.

Doob's inequality

Theorem (Doob's inequality)

Assume that $\left(M_{n}\right)$ is a MG bounded in \mathbb{L}^{p} with $p>1$. Then, we have

$$
\mathbb{E}\left[\left|\boldsymbol{M}_{\boldsymbol{n}}\right|^{\boldsymbol{p}}\right] \leqslant \mathbb{E}\left[\left(\boldsymbol{M}_{n}^{\#}\right)^{\boldsymbol{p}}\right] \leqslant\left(\frac{\boldsymbol{p}}{\boldsymbol{p}-1}\right)^{\boldsymbol{p}} \mathbb{E}\left[\left|\boldsymbol{M}_{\boldsymbol{n}}\right|^{\boldsymbol{p}}\right]
$$

In particular, for $p=2$,

$$
\mathbb{E}\left[\left|M_{n}\right|^{2}\right] \leqslant \mathbb{E}\left[\left(M_{n}^{\#}\right)^{2}\right] \leqslant 4 \mathbb{E}\left[\left|M_{n}\right|^{2}\right] .
$$

The proof relies on the elementary fact that for any positive random variable X and for all $p \geqslant 1$,

$$
\mathbb{E}\left[X^{p}\right]=\int_{0}^{\infty} p a^{p-1} \mathbb{P}(X>a) d a
$$

Proof of Doob's inequality

Proof.

It follows from Kolmogorov's inequality and Fubini's theorem that

$$
\begin{aligned}
\mathbb{E}\left[\left(M_{n}^{\#}\right)^{p}\right] & =\int_{0}^{\infty} p a^{p-1} \mathbb{P}\left(M_{n}^{\#}>a\right) d a \\
& \leqslant \int_{0}^{\infty} p a^{p-2} \mathbb{E}\left[\left|M_{n}\right| I_{\left\{M_{n}^{\#}>a\right\}}\right] d a \\
& =\mathbb{E}\left[\left|M_{n}\right| \int_{0}^{\infty} p a^{p-2} I_{\left\{M_{n}^{\#}>a\right\}} d a\right] \\
& =\left(\frac{p}{p-1}\right) \mathbb{E}\left[\left|M_{n}\right|\left(M_{n}^{\#}\right)^{p-1}\right]
\end{aligned}
$$

Finally, via Holder's inequality,

$$
\mathbb{E}\left[\left|M_{n}\right|\left(M_{n}^{\#}\right)^{p-1}\right] \leqslant\left(\mathbb{E}\left[\left|M_{n}\right|^{p}\right]\right)^{1 / p}\left(\mathbb{E}\left[\left(M_{n}^{\#}\right)^{p}\right]\right)^{(p-1) / p}
$$

which completes the proof of Doob's inequality.

Outline

(1) Introduction

- Definition and Examples
- On Doob's convergence theorem
- On the stopping time theorem
- Kolmogorov-Doob martingale inequalities
(2) Asymptotic results
- Two useful Lemmas
- Square integrable martingales
- Robbins-Siegmund Theorem
- Strong law of large numbers for martingales
- Central limit theorem for martingales

3 Statistical applications

- Autoregressive processes
- Stochastic algorithms
- Kernel density estimation

We start with two useful lemmas in stochastic analysis.

Lemma (Toeplitz)

Let $\left(a_{n}\right)$ be a sequence of positive real numbers satisfying

$$
\sum_{n=1}^{\infty} a_{n}=+\infty
$$

In addition, let $\left(x_{n}\right)$ be a sequence of real numbers such that

$$
\lim _{n \rightarrow \infty} x_{n}=x
$$

Then, we have

$$
\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} a_{k}\right)^{-1} \sum_{k=1}^{n} a_{k} x_{k}=x
$$

Kronecker's Lemma

Lemma (Kronecker)

Let $\left(a_{n}\right)$ be a sequence of positive real numbers strictly increasing to infinity. Moreover, let $\left(x_{n}\right)$ be a sequence of real numbers such that

$$
\sum_{n=1}^{\infty} \frac{x_{n}}{a_{n}}=\ell
$$

exists and is finite. Then, we have

$$
\lim _{n \rightarrow \infty} a_{n}^{-1} \sum_{k=1}^{n} x_{k}=0
$$

Increasing process

Definition

Let $\left(M_{n}\right)$ be a square integrable MG that is for all $n \geqslant 1$,

$$
\mathbb{E}\left[M_{n}^{2}\right]<\infty .
$$

The increasing process associated with $\left(M_{n}\right)$ is given by $<M>_{0}=0$ and, for all $n \geqslant 1$,

$$
<M>_{n}=\sum_{k=1}^{n} \mathbb{E}\left[\Delta M_{k}^{2} \mid \mathcal{F}_{k-1}\right]
$$

where $\Delta M_{k}=M_{k}-M_{k-1}$.
\longrightarrow If $\left(M_{n}\right)$ is a square integrable $M G$ and $N_{n}=M_{n}^{2}-\langle M\rangle_{n}$, then $\left(N_{n}\right)$ is a MG.

Example (Increasing Process)

Let $\left(X_{n}\right)$ be a sequence of square integrable and independent random variables such that, for all $n \geqslant 1, \mathbb{E}\left[X_{n}\right]=m$ and $\operatorname{Var}\left(X_{n}\right)=\sigma^{2}>0$. Denote

$$
M_{n}=\sum_{k=1}^{n}\left(X_{k}-m\right)
$$

Then, $\left(M_{n}\right)$ is a martingale and its increasing process

$$
<M>_{n}=\sigma^{2} n
$$

Moreover, if $N_{n}=M_{n}^{2}-\sigma^{2} n,\left(N_{n}\right)$ is a MG.

Theorem (Robbins-Siegmund)

Let $\left(V_{n}\right),\left(A_{n}\right)$ and $\left(B_{n}\right)$ be three positive sequences adapted to $\mathbb{F}=\left(\mathcal{F}_{n}\right)$. Assume that V_{0} is integrable and, for all $n \geqslant 0$,

$$
\mathbb{E}\left[V_{n+1} \mid \mathcal{F}_{n}\right] \leqslant V_{n}+A_{n}-B_{n} \quad \text { a.s. }
$$

Denote

$$
\Gamma=\left\{\sum_{n=0}^{\infty} A_{n}<+\infty\right\} .
$$

(1) On $\Gamma,\left(V_{n}\right)$ converges a.s. to a finite random variable V_{∞}.
(2) On Γ, we also have

$$
\sum_{n=0}^{\infty} B_{n}<+\infty \quad \text { a.s. }
$$

\longrightarrow If $A_{n}=0$ and $B_{n}=0$, then $\left(V_{n}\right)$ is a positive SMG which converges a.s. to V_{∞} thanks to Doob's theorem.

Proof.

For all $n \geqslant 1$, denote

$$
M_{n}=V_{n}-\sum_{k=0}^{n-1}\left(A_{k}-B_{k}\right)
$$

We clearly have, for all $n \geqslant 0, \mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right] \leqslant M_{n}$. For any positive a, let T_{a} be the stopping time

$$
T_{a}=\inf \left\{n \geqslant 0, \sum_{k=0}^{n}\left(A_{k}-B_{k}\right) \geqslant a\right\}
$$

We deduce from the stopping time theorem that $\left(M_{n \wedge} T_{a}\right)$ is a SMG bounded below by $-a$. It follows from Doob's theorem that $\left(M_{n \wedge} T_{a}\right)$ converges a.s. to M_{∞}. Consequently, on the set $\left\{T_{a}=+\infty\right\},\left(M_{n}\right)$ converges a.s. to M_{∞}. In addition, we also have

$$
M_{n+1}+\sum_{k=0}^{n} A_{k}=V_{n+1}+\sum_{k=0}^{n} B_{k} \geqslant \sum_{k=0}^{n} B_{k}
$$

Proof of Robbins-Siegmund's theorem, continued

Proof.

Hence, on the set $\Gamma \cap\left\{T_{a}=+\infty\right\}$, we obtain that

$$
\sum_{n=0}^{\infty} B_{n}<+\infty \quad \text { a.s. }
$$

and $\left(V_{n}\right)$ converges a.s. to a finite random variable V_{∞}. Finally, as $\left(B_{n}\right)$ is a sequence of positive random variables, we have on Γ,

$$
\sum_{k=0}^{n}\left(A_{k}-B_{k}\right) \leqslant \sum_{k=0}^{n} A_{k}<+\infty \quad \text { a.s. }
$$

It means that

$$
\Gamma \subset \bigcup_{p=0}^{\infty}\left\{T_{p}=+\infty\right\}, \quad \Gamma=\bigcup_{p=0}^{\infty}\left\ulcorner\bigcap\left\{T_{p}=+\infty\right\}\right.
$$

which completes the proof of Robbins-Siegmund's theorem.

Corollary

Let $\left(V_{n}\right),\left(A_{n}\right)$ and $\left(B_{n}\right)$ be three positive sequences adapted to $\mathbb{F}=\left(\mathcal{F}_{n}\right)$. Let $\left(a_{n}\right)$ be a positive increasing sequence adapted to $\mathbb{F}=\left(\mathcal{F}_{n}\right)$. Assume that V_{0} is integrable and, for all $n \geqslant 0$,

$$
\mathbb{E}\left[V_{n+1} \mid \mathcal{F}_{n}\right] \leqslant V_{n}+A_{n}-B_{n} \quad \text { a.s. }
$$

Denote

$$
\Lambda=\left\{\sum_{n=0}^{\infty} \frac{A_{n}}{a_{n}}<+\infty\right\}
$$

(1) On $\Gamma \cap\left\{a_{n} \longrightarrow a_{\infty}\right\},\left(V_{n}\right)$ converges a.s. to V_{∞}.
(2) On $\Gamma \cap\left\{a_{n} \longrightarrow+\infty\right\}, V_{n}=o\left(a_{n}\right)$ a.s., $V_{n+1}=o\left(a_{n}\right)$ a.s. and

$$
\sum_{k=0}^{n} B_{k}=\boldsymbol{o}\left(a_{n}\right) \quad \text { a.s. }
$$

\longrightarrow This result is the keystone for the SLLN for martingales.

Strong law of large numbers for martingales

Theorem (Strong Law of large numbers)

Let $\left(M_{n}\right)$ be a square integrable MG and denote by $\langle M\rangle_{n}$ its increasing process.
(1) On $\left\{<M>_{n} \longrightarrow<M>_{\infty}\right\}$, $\left(M_{n}\right)$ converges a.s. to a square integrable random variable M_{∞}.
(2) On $\left.\{<M\rangle_{n} \longrightarrow+\infty\right\}$, we have

$$
\lim _{n \rightarrow \infty} \frac{M_{n}}{\langle M\rangle_{n}}=0 \quad \text { a.s. }
$$

More precisely, for any positive γ,

$$
\left(\frac{M_{n}}{\left\langle M>_{n}\right.}\right)^{2}=o\left(\frac{\left(\log <M>_{n}\right)^{1+\gamma}}{\left\langle M>_{n}\right.}\right) \quad \text { a.s. }
$$

\longrightarrow If it exists a positive sequence $\left(a_{n}\right)$ increasing to infinity such that $<M\rangle_{n}=O\left(a_{n}\right)$, then we have $M_{n}=o\left(a_{n}\right)$ a.s.

Easy example

Let $\left(X_{n}\right)$ be a sequence of square integrable and independent random variables such that, for all $n \geqslant 1, \mathbb{E}\left[X_{n}\right]=m$ and $\operatorname{Var}\left(X_{n}\right)=\sigma^{2}>0$. We already saw that

$$
M_{n}=\sum_{k=1}^{n}\left(X_{k}-m\right)
$$

is square integrable $\mathbf{M G}$ with $<M>_{n}=\sigma^{2} n$. It follows from the SLLN for martingales that $M_{n}=O(n)$ a.s. which means that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} x_{k}=m \quad \text { a.s. }
$$

More precisely, for any positive γ,

$$
\left(\frac{M_{n}}{n}\right)^{2}=\left(\frac{1}{n} \sum_{k=1}^{n} x_{k}-m\right)^{2}=o\left(\frac{(\log n)^{1+\gamma}}{n}\right) \quad \text { a.s. }
$$

Proof of the strong Law of large numbers

Proof.

For any positive a, let T_{a} be the stopping time

$$
T_{a}=\inf \left\{n \geqslant 0,<M>_{n+1} \geqslant a\right\} .
$$

It follows from the stopping time theorem that $\left(M_{n \wedge} T_{a}\right)$ is a MG. It is bounded in \mathbb{L}^{2} as

$$
\sup _{n \geqslant 0} \mathbb{E}\left[\left(M_{n \wedge T_{a}}\right)^{2}\right]=\sup _{n \geqslant 0} \mathbb{E}\left[<M>_{n \wedge T_{a}}\right]<a .
$$

We deduce from Doob's convergence theorem that ($M_{n \wedge T_{a}}$) converges a.s. to a square integrable random variable M_{∞}. Hence, on the set $\left\{T_{a}=+\infty\right\},\left(M_{n}\right)$ converges a.s. to M_{∞}. However,

$$
\left\{<\boldsymbol{M}>_{\infty}<+\infty\right\}=\bigcup_{p=1}^{\infty}\left\{\boldsymbol{T}_{p}=+\infty\right\}
$$

which completes the proof of the first part of the theorem.

Proof.

Let $V_{n}=M_{n}^{2}, A_{n}=<M>_{n+1}-<M>_{n}$ and $B_{n}=0$. We clearly have

$$
\mathbb{E}\left[V_{n+1} \mid \mathcal{F}_{n}\right] \leqslant V_{n}+A_{n}-B_{n} \quad \text { a.s. }
$$

For any positive γ, denote

$$
a_{n}=<M>_{n+1}\left(\log <M>_{n+1}\right)^{1+\gamma} .
$$

On $\left\{<M>_{n} \longrightarrow+\infty\right\},\left(a_{n}\right)$ is a positive increasing sequence adapted to $\mathbb{F}=\left(\mathcal{F}_{n}\right)$, which goes to infinity a.s. Hence, for n large enough, $a_{n} \geqslant \alpha>1$ and it exists a positive finite random variable β such that

$$
\sum_{n=0}^{\infty} \frac{A_{n}}{a_{n}} \leqslant \int_{\alpha}^{\infty} \frac{1}{x(\log x)^{1+\gamma}} d x+\beta<+\infty \quad \text { a.s. }
$$

Finally, $V_{n+1}=o\left(a_{n}\right)$ a.s. which achieves the proof of the theorem.

Central limit theorem for martingales

Theorem (Central Limit Theorem)

Let $\left(M_{n}\right)$ be a square integrable MG and let $\left(a_{n}\right)$ be a sequence of positive real numbers increasing to infinity. Assume that
(1) It exists a deterministic limit $\ell \geqslant 0$ such that

$$
\frac{\left\langle M>_{n}\right.}{a_{n}} \xrightarrow{\mathcal{P}} \ell .
$$

(3) Lindeberg's condition. For all $\varepsilon>0$,

where $\Delta M_{k}=M_{k}-M_{k-1}$.

Central limit theorem for martingales

Theorem (Central Limit Theorem)

Let $\left(M_{n}\right)$ be a square integrable MG and let $\left(a_{n}\right)$ be a sequence of positive real numbers increasing to infinity. Assume that
(1) It exists a deterministic limit $\ell \geqslant 0$ such that

$$
\frac{\left\langle M>_{n}\right.}{a_{n}} \xrightarrow{\mathcal{P}} \ell .
$$

(2) Lindeberg's condition. For all $\varepsilon>0$,

$$
\frac{1}{a_{n}} \sum_{k=1}^{n} \mathbb{E}\left[\left|\Delta M_{k}\right|^{2} \mathrm{I}_{\left\{\left|\Delta M_{k}\right| \geq \varepsilon \sqrt{a_{n}} \mid\right.} \mid \mathcal{F}_{k-1}\right] \xrightarrow{\mathcal{P}} 0
$$

where $\Delta M_{k}=M_{k}-M_{k-1}$.

Central limit theorem fro martingales, continued

Theorem (Central Limit Theorem)

Then, we have

$$
\frac{1}{\sqrt{a_{n}}} M_{n} \xrightarrow{\mathcal{L}} \mathcal{N}(0, \ell)
$$

Moreover, if $\ell>0$, we also have

$$
\sqrt{a_{n}}\left(\frac{M_{n}}{\left\langle M>_{n}\right.}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \ell^{-1}\right) .
$$

\longrightarrow Lyapunov's condition implies Lindeberg's condition. $\exists \alpha>2$,

$$
\sum_{k=1}^{n} \mathbb{E}\left[\left|\Delta M_{k}\right|^{\alpha} \mid \mathcal{F}_{k-1}\right]=O\left(a_{n}\right) \quad \text { a.s. }
$$

Outline

(1) Introduction

- Definition and Examples
- On Doob's convergence theorem
- On the stopping time theorem
- Kolmogorov-Doob martingale inequalities
(2) Asymptotic results
- Two useful Lemmas
- Square integrable martingales
- Robbins-Siegmund Theorem
- Strong law of large numbers for martingales
- Central limit theorem for martingales
(3) Statistical applications
- Autoregressive processes
- Stochastic algorithms
- Kernel density estimation

Stable autoregressive processes

Consider the stable autoregressive process

$$
X_{n+1}=\theta X_{n}+\varepsilon_{n+1}, \quad|\theta|<1
$$

where $\left(\varepsilon_{n}\right)$ is a sequence of iid $\mathcal{N}\left(0, \sigma^{2}\right)$ random variables. Assume that X_{0} is independent of $\left(\varepsilon_{n}\right)$ with $\mathcal{N}\left(0, \sigma^{2} /\left(1-\theta^{2}\right)\right)$ distribution.

- $\left(X_{n}\right)$ is a centered stationary Gaussian process,
- $\left(X_{n}\right)$ is a positive recurrent process.

Goal

\longrightarrow Estimate the unknown parameter $\boldsymbol{\theta}$.

Least squares estimator

Let $\widehat{\theta}_{n}$ be the least squares estimator of the unknown parameter θ

$$
\widehat{\theta}_{n}=\frac{\sum_{k=1}^{n} x_{k} x_{k-1}}{\sum_{k=1}^{n} x_{k-1}^{2}}
$$

We have

$$
\begin{aligned}
\widehat{\theta}_{n}-\theta & =\frac{\sum_{k=1}^{n} X_{k} X_{k-1}-\theta \sum_{k=1}^{n} X_{k-1}^{2}}{\sum_{k=1}^{n} X_{k-1}^{2}} \\
& =\frac{\sum_{k=1}^{n} X_{k-1}\left(X_{k}-\theta X_{k-1}\right)}{\sum_{k=1}^{n} X_{k-1}^{2}} \\
& =\frac{\sum_{k=1}^{n} X_{k-1} \varepsilon_{k}}{\sum_{k=1}^{n} X_{k-1}^{2}}
\end{aligned}
$$

Least squares estimator

Consequently,

$$
\begin{gathered}
\hat{\boldsymbol{\theta}}_{\boldsymbol{n}}-\boldsymbol{\theta}=\sigma^{2} \frac{\boldsymbol{M}_{\boldsymbol{n}}}{\left\langle\boldsymbol{M}>_{\boldsymbol{n}}\right.} \\
M_{n}=\sum_{k=1}^{n} X_{k-1} \varepsilon_{k} \quad \text { and } \quad<M_{n}=\sigma^{2} \sum_{k=1}^{n} X_{k-1}^{2} .
\end{gathered}
$$

The sequence $\left(M_{n}\right)$ is a square integrable martingale such that

$$
\lim _{n \rightarrow \infty} \frac{<\boldsymbol{M}>_{n}}{n}=\ell \quad \text { a.s. }
$$

where

$$
\ell=\frac{\sigma^{4}}{1-\theta^{2}}
$$

Stable autoregressive processes

Theorem

We have the almost sure convergence

$$
\lim _{n \rightarrow \infty} \widehat{\theta}_{n}=\theta \quad \text { a.s. }
$$

In addition, we also have the asymptotic normality

$$
\sqrt{n}\left(\widehat{\theta}_{n}-\theta\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0,1-\theta^{2}\right) .
$$

Stable autoregressive processes

Stochastic approximation

Herbert Robbins

Stochastic approximation

Jack Kiefer

Jacob Wolfowitz

Stochastic approximation

Goal

\longrightarrow Find the value θ without any knowledge on the function \boldsymbol{f}.

Basic Idea

At time n, if you are able to say that $\boldsymbol{f}\left(\hat{\boldsymbol{\theta}}_{\boldsymbol{n}}\right)>\boldsymbol{\alpha}$, then increase the value of $\widehat{\boldsymbol{\theta}}_{\boldsymbol{n}}$.

Basic Idea

At time n, if you are able to say that $\boldsymbol{f}\left(\widehat{\boldsymbol{\theta}}_{\boldsymbol{n}}\right)<\boldsymbol{\alpha}$, then decrease the value of $\widehat{\boldsymbol{\theta}}_{\boldsymbol{n}}$.

Stochastic approximation

Let $\left(\gamma_{n}\right)$ be a decreasing sequence of positive real numbers

$$
\sum_{n=1}^{\infty} \gamma_{n}=+\infty \quad \text { and } \quad \sum_{n=1}^{\infty} \gamma_{n}^{2}<+\infty
$$

For the sake of simplicity, we shall make use of

$$
\gamma_{n}=\frac{1}{n}
$$

Robbins-Monro algorithm

$$
\widehat{\theta}_{n+1}=\widehat{\theta}_{n}+\gamma_{n+1}\left(T_{n+1}-\alpha\right)
$$

where T_{n+1} is a random variable such that $\mathbb{E}\left[T_{n+1} \mid \mathcal{F}_{n}\right]=f\left(\widehat{\theta}_{n}\right)$.

Stochastic approximation

Theorem (Robbins-Monro, 1951)

Assume that f is a decreasing function. Then, we have the almost sure convergence

$$
\lim _{n \rightarrow \infty} \widehat{\theta}_{n}=\theta \quad \text { a.s. }
$$

In addition, as soon as $-2 f^{\prime}(\theta)>1$, we also have the asymptotic normality

$$
\sqrt{n}\left(\widehat{\theta}_{n}-\theta\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \xi^{2}(\theta)\right)
$$

where the asymptotic variance $\xi^{2}(\theta)$ can be explicitely calculated.

Kernel density estimation

Let $\left(X_{n}\right)$ be a sequence of iid random variables with unknown density function f. Let K be a positive and bounded function, called kernel, such that

$$
\begin{gathered}
\int_{\mathbb{R}} K(x) d x=1, \quad \int_{\mathbb{R}} x K(x) d x=0 \\
\int_{\mathbb{R}} K^{2}(x) d x=\sigma^{2} .
\end{gathered}
$$

Goal

\longrightarrow Estimate the unknown density function f.

Choice of the Kernel

- Uniform kernel

$$
K_{a}(x)=\frac{1}{2 a} \mathrm{I}_{\{|x| \leqslant a\}},
$$

- Epanechnikov kernel

- Gaussian kernel

Choice of the Kernel

- Uniform kernel

$$
K_{a}(x)=\frac{1}{2 a} \mathrm{I}_{\{|x| \leqslant a\}},
$$

- Epanechnikov kernel

$$
K_{b}(x)=\frac{3}{4 b}\left(1-\frac{x^{2}}{b^{2}}\right) \mathrm{I}_{\{|x| \leqslant b\}}
$$

- Gaussian kernel

Choice of the Kernel

- Uniform kernel

$$
K_{a}(x)=\frac{1}{2 a} \mathrm{I}_{\{|x| \leqslant a\}},
$$

- Epanechnikov kernel

$$
K_{b}(x)=\frac{3}{4 b}\left(1-\frac{x^{2}}{b^{2}}\right) \mathrm{I}_{\{|x| \leqslant b\}}
$$

- Gaussian kernel

$$
K_{c}(x)=\frac{1}{c \sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2 c^{2}}\right)
$$

The Wolverton-Wagner estimator

We estimate the density function f by
The Wolverton-Wagner estimator

$$
\widehat{f}_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} W_{k}(x)
$$

where

$$
W_{k}(x)=\frac{1}{h_{k}} K\left(\frac{X_{k}-x}{h_{k}}\right) .
$$

The bandwidth $\left(h_{n}\right)$ is a sequence of positive real numbers, $h_{n} \searrow 0$, $n h_{n} \rightarrow \infty$. For $0<\alpha<1$, we can make use of

$$
h_{n}=\frac{1}{n^{\alpha}}
$$

Kernel density estimation

We have

$$
\begin{aligned}
\widehat{f}_{n}(x)-f(x) & =\frac{1}{n} \sum_{k=1}^{n} W_{k}(x)-f(x) \\
& =\frac{1}{n} \sum_{k=1}^{n}\left(W_{k}(x)-\mathbb{E}\left[W_{k}(x)\right]\right)+\frac{1}{n} \sum_{k=1}^{n}\left(\mathbb{E}\left[W_{k}(x)\right]-f(x)\right) .
\end{aligned}
$$

Consequently,

$$
\widehat{f}_{n}(x)-f(x)=\frac{M_{n}(x)}{n}+\frac{R_{n}(x)}{n}
$$

where

$$
M_{n}(x)=\sum_{k=1}^{n}\left(W_{k}(x)-\mathbb{E}\left[W_{k}(x)\right]\right)
$$

Kernel density estimation

We have

$$
\begin{aligned}
M_{n}(x) & =\sum_{k=1}^{n}\left(W_{k}(x)-\mathbb{E}\left[W_{k}(x)\right]\right) \\
<M(x)>_{n} & =\sum_{k=1}^{n} \operatorname{Var}\left(W_{k}(x)\right)
\end{aligned}
$$

The sequence $\left(M_{n}(x)\right)$ is a square integrable martingale such that

$$
\lim _{n \rightarrow \infty} \frac{<\boldsymbol{M}(\boldsymbol{x})>_{\boldsymbol{n}}}{\boldsymbol{n}^{1+\alpha}}=\ell \quad \text { a.s. }
$$

where

$$
\ell=\frac{\sigma^{2} f(x)}{1+\alpha}
$$

Kernel density estimation

Theorem

For all $x \in \mathbb{R}$, we have the pointwise almost sure convergence

$$
\lim _{n \rightarrow \infty} \widehat{f}_{n}(x)=f(x) \quad \text { a.s. }
$$

In addition, as soon as $1 / 5<\alpha<1$, we have, for all $x \in \mathbb{R}$, the asymptotic normality

$$
\sqrt{n h_{n}}\left(\hat{f}_{n}(x)-f(x)\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\sigma^{2} f(x)}{1+\alpha}\right) .
$$

Kernel density estimation

Almost sure convergence

