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Introduction Definition and Examples

Let (22, A, P) be a probability space with a filtration F = (F,) where F,
is the o-algebra of events occurring up to time n.

Let (M,) be a sequence of integrable random variables defined on
(Q, A, P) such that, for all n > 0, M, is F,-measurable.

Q@ (M,) is a martingale MG if for all n > 0,
E[Mn+1 ‘fn] = Mn a.s.
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Introduction Definition and Examples

Let (22, A, P) be a probability space with a filtration F = (F,) where F,
is the o-algebra of events occurring up to time n.

Let (M,) be a sequence of integrable random variables defined on
(Q, A, P) such that, for all n > 0, M, is F,-measurable.

Q@ (M) is a martingale MG if for all n > 0,
E[Mn+1 ‘fn] = Mn a.s.

Q (M,) is a submartingale sMG if for all n > 0,
E[M,H_‘] ‘fn] 2 Mn CINSE
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Introduction Definition and Examples

Let (22, A, P) be a probability space with a filtration F = (F,) where F,
is the o-algebra of events occurring up to time n.

Let (M,) be a sequence of integrable random variables defined on
(Q, A, P) such that, for all n > 0, M, is F,-measurable.

Q@ (M) is a martingale MG if for all n > 0,
E[Mn+1 ‘fn] = Mn a.s.

Q (M,) is a submartingale sMG if for all n > 0,
]E[Mn+1 ‘Fn] 2 Mn a.s.

© (M,) is a supermartingale SMG if for all n > 0,
E[Mnpi1 | Fn]l < My a.s.
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Introduction Definition and Examples

Martingales with sums

Example (Sums)

Let (X») be a sequence of integrable and independent random
variables such that, for all n > 1, E[X,] = m. Denote

n
Sn == Z Xk.
k=1
We clearly have
Sn+1 = Sn Sl Xn+1-

Consequently, (Sy) is a sequence of integrable random variables with

E[Sn+1 |-'Fn] = Sn + IE[Xn+1 | :Fn]a
= Sn + IE[/Yn+1]v
= Sp+m
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Introduction Definition and Examples

Martingales with sums

Example (Sums)

]E[Sn+1 |fn] == Sn + m.

@ (Sp) is a martingale if m = 0,
@ (S,) is a submartingale if m > 0,
@ (S) is a supermartingale if m < 0.

— It holds for Rademacher R(p) distribution with 0 < p < 1 where

m=2p—1.
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Introduction Definition and Examples

Martingales with Rademacher sums
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Introduction Definition and Examples

Martingales with products

Example (Products)

Let (X») be a sequence of positive, integrable and independent
random variables such that, for all n > 1, E[X,;)] = m. Denote

n
P, = H Xe.
k=1
We clearly have
Pn+1 = Pan+1-

Consequently, (Pp) is a sequence of integrable random variables with

IE[Pn+1 |:Fn] = PnE[Xn+1 |:Fn]a
= PnE[Xn+1]v
= mPn
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Introduction Definition and Examples

Martingales with products

Example (Products)

E[Pn+1 |.7:n] = mPn.

@ (Pp) is a martingale if m = 1,
@ (Pp,) is a submartingale if m > 1,
@ (Pp) is a supermartingale if m < 1.

—— It holds for Exponential £()\) distribution with A > 0 where

m =

1
T
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Introduction Definition and Examples

Stability

Theorem (Stability)
Q /f(M,) is a SMG, then (—M,) is a sSMG.
Q I/f(My) and (N,) are two sMG and

Sn S SUp(Mn, Nn)

— (Sp) is a sMG.
Q If(M,) and (N,) are two SMG and

ln = |nf(Xn, Yn)

— (In) is a SMG.
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Introduction Definition and Examples

Stability, continued

Theorem (Stability)
Q@ /f(M,) and (N,) are two MG, a,b € R and

Sn E aMn + an

— 4 (Sp) is aMG.

Q If(M,) isaMG and F is a convex real function such that, for all
n>1, F(Mp) € L'(R) and if

Fn=F(Mp)

— (Fp) is a sMG.

Bernard Bercu Asymptotic results for discrete time martingales and stochastic algorithms



Introduction On Doob’s convergence theorem

Doob’s convergence theorem

@ Every bounded above increasing sequence converges to its
supremum,

@ Every bounded bellow decreasing sequence converges to its
infimum.

—— The stochastic analogous of this result is due to Doob.

Theorem (Doob)

Q /f(M,) is asMG bounded above by some constant M, then (Mp)
converges a.s.

Q If(M,) is aSMG bounded below by some constant m, then (Mp,)
converges a.s.
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Introduction On Doob’s convergence theorem

Doob’s convergence theorem, continued

Theorem (Doob)

Let (M) be a MG, sMG, or SMG bounded in." which means
sup E[|My|] < +oc.
n>0

— (M) converges a.s. to an integrable random variable M.
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Introduction On Doob’s convergence theorem

Convergence of martingales

Let (My) be a MG bounded inILP with p > 1, which means that

sup E[|My|P] < +oc.

n>0

Q@ /fp>1,(M,) converges a.s. a random variable M,. The
convergence is also true in ILP.

Q Ifp=1,(M,) converges a.s. to a random variable M,. The
convergence holds in L' as soon as (M) is uniformly integrable
that is

lim sup E [|Ms|L{ja,[>a3] = O.

a—o0 5
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Introduction On Doob’s convergence theorem

Chow’s Theorem

Theorem (Chow)
Let (M) be a MG such that for1 < a< 2 andforalln>1,

E[|Mp]?] < oo.

Denote, for alln > 1, AM, = M, — M,,_4 and assume that

oo
> E[|AMn|?| Fn_1] < oo a.s.

n=1

— (M) converges a.s. to a random variable M.
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Introduction On Doob’s convergence theorem

Exponential Martingale

Example (Exponential Martingale)

Let (X») be a sequence of independent random variable sharing the
same N(0, 1) distribution. For all f € R*, let S, = X; +--- + X, and
denote

Mn(t) = exp(tS,, — nztz)

It is clear that (M, (t)) is a MG which converges a.s. to zero. However,
E[M,(t)] = E[M;(t)] = 1 which means that (M,(t)) does not converge
in L.
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Introduction On Doob’s convergence theorem

Autoregressive Martingale

Example (Autoregressive Martingale)

Let (X,) be the autoregressive process given for all n > 0 by
Xn+1 = 60Xn + (1 - 0)€n+1

where Xy = p with 0 < p < 1 and the parameter 0 < § < 1. Assume
that £(e,1|Fn) is the Bernoulli B(X,) distribution.
We can show that 0 < X, < 1 and (X,) is a MG such that

lim X, = X» a.s.
n—oo

The convergence also holds in IL° for all p > 1. Finally, X, has the
Bernoulli B(p) distribution.
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Introduction On the stopping time theorem

Stopping time theorem

Definition
We shall say that a random variable T is a stopping time if T takes its
values in NU {400} and, for all n > 0, the event

{T =n} € Fpn.

| A

Theorem
Assume that (M) is aMG and let T be a stopping time adapted to
F = (Fn). Then, (Maa1) is also a MG.

\
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Introduction On the stopping time theorem

Proof of the stopping time theorem

Proof.
First of all, it is clear that for all n > 0, (M. 1) is integrable as

Mpat = MrIgr<ny + Mnlir=py-

In addition, {T > n} € F,_1 as its complementary {T < n} € F,_1.
Then, for all n > 0,

EMnitatlFal = EMrIirenity + Moy lirsnge1y | Fnl,

= Mrlircniny + Lronse 1) E[Magq | Fal,

= MTI{T<n+1} + MnI{T>n+1}a

= Mrlircny + Mplir—py + Malir>ny — Mplir—py,
Mrlircny + MaliT>n),
= MnAT'
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Introduction Kolmogorov-Doob martingale inequalities

Kolmogorov’s inequality

Theorem (Kolmogorov’s inequality)
Assume that (My) is a MG. Then, for all a > 0,

-t

P(M# > a) S EE[|MH|I{M#>a}]

where
MZ = max |My].

0<k<n

v

As (Mp) is a MG, we clearly have that (|M,|) is a sMG. The proof relies
on the entry time T, of the sMG (|M,]) into the interval [a, +o0],

Ta=inf{n>0,|M,| > a}.
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Introduction Kolmogorov-Doob martingale inequalities

First of all, we clearly have for all n > 0,

{Ta<n)l = {oT/iX |Mk| > a} = {M} > a}.
Since |Mr,| > a, it leads to
.
P(MF > a) = P(Ta < n) = E[l7,<py] < ;E“MTa|I{Ta<n}]-

However, we have for all k < n, |[Mk| < E[|Mn||Fk| a.s. Therefore,

n
E[Mr L r<m] = D E[IMdllir—] ZE IMal| Fi]L7=19 ]

k=0
n
> E[Mll7,iq] = E[|Mallir,<m ]
k=0
which completes the proof of Kolmogorov’s inequality. Ol
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Introduction Kolmogorov-Doob martingale inequalities

Doob’s inequality

Theorem (Doob’s inequality)
Assume that (M) is a MG bounded in ILP with p > 1. Then, we have

E[|Mn|P] < E[(MF)P] < (pf1)pE[|Mn|P].

In particular, for p = 2,

E[|Ma?] < E[(MF)?] < 4E[|M,[?].

The proof relies on the elementary fact that for any positive random
variable X and forall p > 1,

E[XP] —/ pa’~'P(X > a)da.
0

Bernard Bercu Asymptotic results for discrete time martingales and stochastic algorithms



Introduction Kolmogorov-Doob martingale inequalities

Proof of Doob’s inequality

It follows from Kolmogorov’s inequality and Fubini’s theorem that

E[(MF)P] = /()Oopap1P(M#>a)da,

N

/0 pap_zE[|Mn|I{M#>a}]da,

= E[‘Mn}/o pap‘ZI{M#M}da},

= (529 ElMAIME ).

Finally, via Holder’s inequality,
1/p
E[MaI(MF)P "] < (BIMaP]) " (E[(MF)])

which completes the proof of Doob’s inequality. O]

(p—1)/p
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Asymptotic results Two useful Lemmas

We start with two useful lemmas in stochastic analysis.

Lemma (Toeplitz)

Let (an) be a sequence of positive real numbers satisfying
(0.9}
Z an = +0o0.
n=1

In addition, let (x,) be a sequence of real numbers such that
lim x, = x.

n—o0

Then, we have

n -1 p
lim a agXx = X.
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Asymptotic results Two useful Lemmas

Kronecker’s Lemma

Lemma (Kronecker)
Let (an) be a sequence of positive real numbers strictly increasing to
infinity. Moreover, let (x,) be a sequence of real numbers such that

=X,

o=t

n=1 n
exists and is finite. Then, we have

n
lim a;' X, = 0.
n—oo 1N ; &
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Asymptotic results Square integrable martingales

Increasing process

Let (M,) be a square integrable MG that is for all n > 1,

E[M?] < cc.

The increasing process associated with (M) is given by <M>y=0
and, foralln> 1,

n
<M= EIAME|F 1]
k=1

where AMy = My — Mj_+.

— If (Mp) is a square integrable MG and N, = M? — < M >, then
(Np) is a MG.

Asymptotic results for discrete time martingales and stochastic algorithms
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Asymptotic results Square integrable martingales

Example (Increasing Process)

Let (X,) be a sequence of square integrable and independent random
variables such that, for all n > 1, E[X,] = m and Var(X,) = ¢® > 0.
Denote

n

My = " (Xx — m)

k=1
Then, (M) is a martingale and its increasing process

2

<M>np=o°n.

Moreover, if N, = M2 — o?n, (N,) is a MG.
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Asymptotic results Robbins-Siegmund Theorem

Theorem (Robbins-Siegmund)

Let (Vy), (An) and (By) be three positive sequences adapted to
F = (Fn). Assume that V, is integrable and, for all n > 0,

E[Vn+1 |fn] < Vn + An - Bn a.s.
Denote -
n=0
@ OnT, (V,) converges a.s. to a finite random variable V...

Q@ OnT, we also have

o0
Z B, < +oco a.s.

n=0

— If A, =0and B, =0, then (V) is a positive SMG which
converges a.s. to V,, thanks to Doob’s theorem.

Bernard Bercu Asymptotic results for discrete time martingales and stochastic algorithms



Asymptotic results Robbins-Siegmund Theorem
Proof.

For all n > 1, denote

n—1

My = Vo — > (Ax — By).
k=0

We clearly have, for all n > 0, E[M,1|Fn] < M,. For any positive a, let
T, be the stopping time

n
Ta= inf{n >0, (A - By) > a}.
k=0

We deduce from the stopping time theorem that (M, 7,) is a SMG
bounded below by —a. It follows from Doob’s theorem that (Mya7,)
converges a.s. to M. Consequently, on the set {T; = 400}, (Mp)
converges a.s. to M. In addition, we also have

n+1+zAk— n+1+ZBk ZBK

Asymptotic results for discrete time martingales and stochastic algorithms
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Asymptotic results Robbins-Siegmund Theorem

Proof of Robbins-Siegmund’s theorem, continued

Hence, on the set I N { T, = +o0}, we obtain that

o
Z B, < +o0 a.s.

and (V) converges a.s. to a finite random variable V.. Finally, as (B;)
is a sequence of positive random variables, we have on T,

n
> (Ak— Bx) < ZAk < +o0 Gl
k=0

It means that
[e ] oo
rc [ J{Tp = +oo}, Fr=Jr( {7 = +oo}
p=0 p=0
which completes the proof of Robbins-Siegmund’s theorem. Ol
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Asymptotic results Robbins-Siegmund Theorem

Corollary

Let (Vy), (An) and (B,) be three positive sequences adapted to
F = (Fn). Let (an) be a positive increasing sequence adapted to
F = (Fp). Assume that V, is integrable and, for all n > 0,

E[Vn+1 |Tn] < Vn + An - Bn LS,

Denote
oo An
Q@ Onrn{a, — ax}, (Vp) converges a.s. to V..
Q@ Onrn{a, — +oo}, Vp=0(an) a.s., Vo1 = o(an) a.s. and

i Bk = o(an) a.s.

k=0

— This result is the keystone for the SLLN for martingales.
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Asymptotic results Strong law of large numbers for martingales

Strong law of large numbers for martingales

Theorem (Strong Law of large numbers)
Let (My) be a square integrable MG and denote by <M >, its
increasing process.
Q@ On{<M>,—<M>,}, (M) converges a.s. to a square
integrable random variable M.
Q On{<M>,— +oo}, we have
Mp,

lim =0 a.s.
n—oo < M>n

More precisely, for any positive ~,
(log <M>,)'+7

M,
(cus) =o("B52) e

— If it exists a positive sequence (a,) increasing to infinity such that
<M>p,= O(an), then we have M, = o(ap) a.s.

Asymptotic results for discrete time martingales and stochastic algorithms
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Asymptotic results Strong law of large numbers for martingales

Easy example

Let (Xn) be a sequence of square integrable and independent random
variables such that, for all n > 1, E[X,] = m and Var(X,) = ¢ > 0. We
already saw that

n

My = " (Xx — m)

k=1
is square integrable MG with < M >,= o2n. It follows from the SLLN
for martingales that M, = o(n) a.s. which means that

1 n
lim — Z Xk =m a.s.
k=1

n—soco n

More precisely, for any positive ~,

(Hny? (l;xk —m)’ = (('9>)
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Asymptotic results Strong law of large numbers for martingales

Proof of the strong Law of large numbers

For any positive a, let T, be the stopping time

o — inf{n >0, <M>p 4> a}.

It follows from the stopping time theorem that (M, 7,) is a MG. ltis
bounded in L2 as

sup E[(MnnT,)%] = SUpE[< M>,A7,] < a.
n>0 n>0

We deduce from Doob’s convergence theorem that (M, 1,) converges
a.s. to a square integrable random variable M.,. Hence, on the set
{Ta = +o0}, (Mp) converges a.s. to M,. However,

oo

{<M>< +oo0} = | J{Tp = +oc}
p=1
which completes the proof of the first part of the theorem. O]
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Asymptotic results Strong law of large numbers for martingales
Proof.

Let Vo, = M2, Ay =<M>,. 4 — <M>,and B, = 0. We clearly have

E[Vn+1 |Fn] < Vn + An - Bn =S,
For any positive v, denote
an =<M>py1 (log <M>,4)""7.

On {<M>,— +o0}, (an) is a positive increasing sequence adapted
to F = (Fn), which goes to infinity a.s. Hence, for n large enough,
an > « > 1 and it exists a positive finite random variable 5 such that

> A, o0 1
Zg/ — _ _dx+p8< 400 a.s.
n—o an o X(log x)'+v

Finally, V,,;.1 = o(an) a.s. which achieves the proof of the theorem. [
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Central limit theorem for martingales

Asymptotic results

Central limit theorem for martingales

Theorem (Central Limit Theorem)
Let (My) be a square integrable MG and let (a,) be a sequence of
positive real numbers increasing to infinity. Assume that

@ It exists a deterministic limit ¢ > 0 such that

<M>,
dn

L)

where AMy = Mk — Mj_4.

Asymptotic results for discrete time martingales and stochastic algorithms
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Central limit theorem for martingales

Asymptotic results

Central limit theorem for martingales

Theorem (Central Limit Theorem)
Let (My) be a square integrable MG and let (a,) be a sequence of
positive real numbers increasing to infinity. Assume that

© It exists a deterministic limit ¢ > 0 such that

Wem By
an

© Lindeberg’s condition. For all= > 0,

1 & P
a > ENAMPI A, seyam [ Fk—1] = 0
k=1
where AMx = Mk — Mj_4.
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Asymptotic results Central limit theorem for martingales

Central limit theorem fro martingales, continued

Theorem (Central Limit Theorem)
Then, we have

1
Wes

Moreover, if ¢ > 0, we also have

My 25 N (0, 0).

My
<M>p

\/a_,,< ) £, M, 6.

— Lyapunov’s condition implies Lindeberg’s condition. 3a > 2,

n
S E[AM*|Fk1] = O(an)  as.
k=1

Bernard Bercu
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Statistical applications Autoregressive processes

Stable autoregressive processes

Consider the stable autoregressive process

Xn+1 = 60Xn + €n41, |9| <1

where (g,) is a sequence of iid A(0, 02) random variables. Assume
that Xj is independent of (¢,) with A'(0,02/(1 — 6?)) distribution.

@ (Xy) is a centered stationary Gaussian process,
@ (Xy) is a positive recurrent process.

—— Estimate the unknown parameter 6. \

Asymptotic results for discrete time martingales and stochastic algorithms
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Statistical applications Autoregressive processes

Least squares estimator

Let 6, be the least squares estimator of the unknown parameter 6

n
Z X Xk—1
_ k=1

=
> X
k=1

~

On

We have
- ket XeXm1 = 03 XE
> k=1 XE_4 ’
> opet Xk—1( Xk — 0Xk—1)
> ket Xy ’
> ket Xk—1€k
Sk XE

Bernard Bercu Asymptotic results for discrete time martingales and stochastic algorithms



Statistical applications Autoregressive processes

Least squares estimator

Consequently,

. m,
Op— 6 =o02—"—
<M>p

n n
Mn =" Xx_1k and <M>p=02) " XE 4.
k=1 k=1

The sequence (M) is a square integrable martingale such that

. <M>,
lIim ———=¢ a.s.
n—oo n
where
- 074.
1 —62

Asymptotic results for discrete time martingales and stochastic algorithms
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Statistical applications Autoregressive processes

Stable autoregressive processes

Theorem
We have the almost sure convergence

lim 6,=20 a.s.
n—-oo

In addition, we also have the asymptotic normality

ﬁ(é,, _ 9) £, N(0,1 - 62).

Bernard Bercu Asymptotic results for discrete time martingales and stochastic algorithms



Statistical applications Autoregressive processes

Stable autoregressive processes

Almost sure convergence
T .
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Asymptotic normality
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Statistical applications Stochastic algorithms

Stochastic approximation

'

Herbert Robbins

e
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Statistical applications Stochastic algorithms

Stochastic approximation

&

Jack Kiefer Jacob Wolfowitz
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Statistical applications Stochastic algorithms

Stochastic approximation

— Find the value 6 without any knowledge on the function f.

Bernard Bercu Asymptotic results for discrete time martingales and stochastic algorithms



Statistical applications Stochastic algorithms

Basic Idea

At time n, if you are able to say that f(§,,) > «, then increase the
value of 6.
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Statistical applications Stochastic algorithms

Basic Idea

At time n, if you are able to say that f(§,,) < «, then decrease the
value of 6.
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Statistical applications Stochastic algorithms

Stochastic approximation

Let (v») be a decreasing sequence of positive real numbers

o0 _ e o] 2
n — n .
E Y. +o0 and E 4 < 400
n=1

n=1

For the sake of simplicity, we shall make use of

1
%:E'

Robbins-Monro algorithm

é\n+1 =S §n + Yn+1 (Tn+1 - CV)

where T, is a random variable such that E[ T, 1| Fp] = f(@n).
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Statistical applications Stochastic algorithms

Stochastic approximation

Theorem (Robbins-Monro, 1951)
Assume that f is a decreasing function. Then, we have the almost sure

convergence

lim 6, =0 a.s.
n—-oo

In addition, as soon as —2f'(0) > 1, we also have the asymptotic
normality

Vi(0n— 0) £ N(0,€2(0))

where the asymptotic variance £2(0) can be explicitely calculated.

Asymptotic results for discrete time martingales and stochastic algorithms
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Statistical applications Kernel density estimation

Kernel density estimation

Let (X,) be a sequence of iid random variables with unknown density
function f. Let K be a positive and bounded function, called kernel,
such that

/RK(x)dx=1, /RXK(x)dx=0,

/ K2%(x) dx = o2.
R

— Estimate the unknown density function f. \
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Statistical applications Kernel density estimation

Choice of the Kernel

@ Uniform kernel ]

Ka(x) = Zl{mga},

Asymptotic results for discrete time martingales and stochastic algorithms



Statistical applications Kernel density estimation

Choice of the Kernel

@ Uniform kernel 1

Ka(X) = ?al{|x\<a}a

@ Epanechnikov kernel

3 X2
Kp(X) = b <1 - b2> L{ix|<by
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Choice of the Kernel

@ Uniform kernel 1

Ka(X) = ?al{|x\<a}a

@ Epanechnikov kernel

X2
Kp(X) = 15 (1 - b2> Liix|<b}

@ Gaussian kernel
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The Wolverton-Wagner estimator

We estimate the density function f by

The Wolverton-Wagner estimator

P = > Wi

where

Wi(x) = &K(X"hzx).

The bandwidth (hy) is a sequence of positive real numbers, h, \, 0,
nh, — oo. For 0 < a < 1, we can make use of

1
hn:ﬁ.
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Kernel density estimation

We have

)~ 100 = 3" Wh(x) ~ f(0),
k=1

= LS W0 - B0 + L S EW] - ).
k=1 k=1
Consequently,
n _ Mn(X) Rn(X)
f(X) — f(x) = == + =
where .
Mn(x) = Z(Wk(X) — E[Wk(x)]).
k=1

Bernard Bercu Asymptotic results for discrete time martingales and stochastic algorithms
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Kernel density estimation

We have

n

Ma(x) = D (Wi(x) — E[Wk(x))),
k=1

<M(x)>p = > Var(Wg(x)).
k=1

The sequence (M,(x)) is a square integrable martingale such that

M(x
lim w =/ a.s.
n—oo nlt+a
where
o?f(x)
(=
1+«

Bernard Bercu Asymptotic results for discrete time martingales and stochastic algorithms
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Kernel density estimation

For all x € R, we have the pointwise almost sure convergence

nll[go fa(x) = f(x) a.s.

In addition, as soonas1/5 < o < 1, we have, for all x € R, the
asymptotic normality

Vnhn (?,,(x) _ f(x)) L, N(o, ”2“"))

1+ o

Bernard Bercu Asymptotic results for discrete time martingales and stochastic algorithms
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Kernel density estimation

Almost sure convergence
0.5 T T

0.1 I I I I
0 200 400 600 800 1000

Asymptotic normality
05 T
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