Asymptotic results discrete time martingales and stochastic algorithms

Bernard Bercu

Bordeaux University, France

IFCAM Summer School

Bangalore, India, July 2015

Bernard Bercu

Asymptotic results for discrete time martingales and stochastic algorithms

Outline

Introduction

- Definition and Examples
- On Doob's convergence theorem
- On the stopping time theorem
- Kolmogorov-Doob martingale inequalities

Asymptotic results

- Two useful Lemmas
- Square integrable martingales
- Robbins-Siegmund Theorem
- Strong law of large numbers for martingales
- Central limit theorem for martingales

Statistical applications

- Autoregressive processes
- Stochastic algorithms
- Kernel density estimation

Outline

Introduction

- Definition and Examples
- On Doob's convergence theorem
- On the stopping time theorem
- Kolmogorov-Doob martingale inequalities

Asymptotic results

- Two useful Lemmas
- Square integrable martingales
- Robbins-Siegmund Theorem
- Strong law of large numbers for martingales
- Central limit theorem for martingales

Statistical applications

- Autoregressive processes
- Stochastic algorithms
- Kernel density estimation

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space with a filtration $\mathbb{F} = (\mathcal{F}_n)$ where \mathcal{F}_n is the σ -algebra of events occurring up to time *n*.

Definition

Let (M_n) be a sequence of integrable random variables defined on $(\Omega, \mathcal{A}, \mathbb{P})$ such that, for all $n \ge 0$, M_n is \mathcal{F}_n -measurable.

• (M_n) is a martingale **MG** if for all $n \ge 0$,

 $\mathbb{E}[M_{n+1} | \mathcal{F}_n] = M_n \qquad \text{a.s.}$

(M_n) is a submartingale **sMG** if for all $n \ge 0$,

 $\mathbb{E}[M_{n+1} \,|\, \mathcal{F}_n] \geqslant M_n \qquad \text{a.s.}$

3 (M_n) is a supermartingale SMG if for all $n \ge 0$,

 $\mathbb{E}[M_{n+1} | \mathcal{F}_n] \leqslant M_n \qquad \text{a.s.}$

ヘロン 人間 とくほ とくほう

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space with a filtration $\mathbb{F} = (\mathcal{F}_n)$ where \mathcal{F}_n is the σ -algebra of events occurring up to time *n*.

Definition

Let (M_n) be a sequence of integrable random variables defined on $(\Omega, \mathcal{A}, \mathbb{P})$ such that, for all $n \ge 0$, M_n is \mathcal{F}_n -measurable.

• (M_n) is a martingale MG if for all $n \ge 0$,

$$\mathbb{E}[M_{n+1} | \mathcal{F}_n] = M_n \qquad \text{a.s.}$$

- (*M_n*) is a submartingale **sMG** if for all $n \ge 0$, $\mathbb{E}[M_{n+1} | \mathcal{F}_n] \ge M_n$ a.s.
- 3 (M_n) is a supermartingale **SMG** if for all $n \ge 0$,

 $\mathbb{E}[M_{n+1} | \mathcal{F}_n] \leqslant M_n \qquad \text{a.s.}$

ヘロト 人間 とくほ とくほ と

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space with a filtration $\mathbb{F} = (\mathcal{F}_n)$ where \mathcal{F}_n is the σ -algebra of events occurring up to time *n*.

Definition

Let (M_n) be a sequence of integrable random variables defined on $(\Omega, \mathcal{A}, \mathbb{P})$ such that, for all $n \ge 0$, M_n is \mathcal{F}_n -measurable.

• (M_n) is a martingale MG if for all $n \ge 0$,

$$\mathbb{E}[M_{n+1} | \mathcal{F}_n] = M_n \qquad \text{a.s.}$$

2 (M_n) is a submartingale **sMG** if for all $n \ge 0$,

$$\mathbb{E}[M_{n+1} | \mathcal{F}_n] \ge M_n \qquad \text{a.s.}$$

(M_n) is a supermartingale **SMG** if for all $n \ge 0$,

 $\mathbb{E}[M_{n+1} | \mathcal{F}_n] \leqslant M_n \qquad \text{a.s.}$

ヘロト 人間ト 人間ト 人間ト

Martingales with sums

Example (Sums)

Let (X_n) be a sequence of integrable and independent random variables such that, for all $n \ge 1$, $\mathbb{E}[X_n] = m$. Denote

$$S_n = \sum_{k=1}^n X_k$$

We clearly have

 $\mathbf{S}_{n+1} = \mathbf{S}_n + \mathbf{X}_{n+1}.$

Consequently, (S_n) is a sequence of integrable random variables with

$$\mathbb{E}[S_{n+1} | \mathcal{F}_n] = S_n + \mathbb{E}[X_{n+1} | \mathcal{F}_n],$$

= $S_n + \mathbb{E}[X_{n+1}],$
= $S_n + m$

Martingales with sums

Example (Sums)

 $\mathbb{E}[\mathbf{S}_{n+1} \mid \mathcal{F}_n] = \mathbf{S}_n + \mathbf{m}.$

- (S_n) is a martingale if m = 0,
- (S_n) is a submartingale if $m \ge 0$,
- (S_n) is a supermartingale if $m \leq 0$.
- \rightarrow It holds for Rademacher $\mathcal{R}(p)$ distribution with 0 where

$$m = 2p - 1$$
.

< ロ > < 同 > < 回 > < 回 >

Introduction

Definition and Examples

Martingales with Rademacher sums

Bernard Bercu

Asymptotic results for discrete time martingales and stochastic algorithms

Martingales with products

Example (Products)

Let (X_n) be a sequence of positive, integrable and independent random variables such that, for all $n \ge 1$, $\mathbb{E}[X_n] = m$. Denote

$$\boldsymbol{P}_n = \prod_{k=1}^n \boldsymbol{X}_k$$

We clearly have

 $\boldsymbol{P}_{n+1} = \boldsymbol{P}_n \boldsymbol{X}_{n+1}.$

Consequently, (P_n) is a sequence of integrable random variables with

$$\mathbb{E}[P_{n+1} | \mathcal{F}_n] = P_n \mathbb{E}[X_{n+1} | \mathcal{F}_n],$$

= $P_n \mathbb{E}[X_{n+1}],$
= mP_n

Martingales with products

Example (Products)

 $\mathbb{E}[\boldsymbol{P}_{n+1} \mid \mathcal{F}_n] = \boldsymbol{m} \boldsymbol{P}_n.$

- (P_n) is a martingale if m = 1,
- (P_n) is a submartingale if $m \ge 1$,
- (P_n) is a supermartingale if $m \leq 1$.

 \rightarrow It holds for Exponential $\mathcal{E}(\lambda)$ distribution with $\lambda > 0$ where

$$m=\frac{1}{\lambda}$$

э

Stability

Theorem (Stability)

- If (M_n) is a SMG, then $(-M_n)$ is a sMG.
- 2 If (M_n) and (N_n) are two sMG and

 $S_n = \sup(M_n, N_n)$

 \longrightarrow (S_n) is a sMG.

If (M_n) and (N_n) are two SMG and

 $I_n = \inf(X_n, Y_n)$

 \longrightarrow (*I_n*) is a SMG.

э

イロト イポト イヨト イヨト

Stability, continued

Theorem (Stability)

1 If (M_n) and (N_n) are two MG, $a, b \in \mathbb{R}$ and

$$S_n = aM_n + bN_n$$

 \longrightarrow (S_n) is a MG.

② If (M_n) is a MG and F is a convex real function such that, for all $n \ge 1$, $F(M_n) \in L^1(\mathbb{R})$ and if

$$F_n = F(M_n)$$

 \longrightarrow (F_n) is a sMG.

Doob's convergence theorem

- Every bounded above increasing sequence converges to its supremum,
- Every bounded bellow decreasing sequence converges to its infimum.
- \rightarrow The stochastic analogous of this result is due to Doob.

Theorem (Doob)

- If (M_n) is a sMG bounded above by some constant M, then (M_n) converges a.s.
- 2 If (M_n) is a SMG bounded below by some constant m, then (M_n) converges a.s.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Doob's convergence theorem, continued

Theorem (Doob)

Let (M_n) be a MG, sMG, or SMG bounded in \mathbb{L}^1 which means

 $\sup_{n\geq 0}\mathbb{E}[|M_n|]<+\infty.$

 \rightarrow (*M_n*) converges a.s. to an integrable random variable *M*_{∞}.

Bernard Bercu

Asymptotic results for discrete time martingales and stochastic algorithms

13 / 60

A B F A B F

Joseph Leo Doob

Bernard Bercu

Asymptotic results for discrete time martingales and stochastic algorithms

æ

・ロト ・四ト ・ヨト ・ヨト

Convergence of martingales

Theorem

Let (M_n) be a MG bounded in \mathbb{L}^p with $p \ge 1$, which means that

 $\sup_{n\geq 0}\mathbb{E}[|M_n|^p]<+\infty.$

- If p > 1, (M_n) converges a.s. a random variable M_∞. The convergence is also true in L^p.
- If p = 1, (M_n) converges a.s. to a random variable M_∞. The convergence holds in L¹ as soon as (M_n) is uniformly integrable that is

$$\lim_{a\to\infty}\sup_{n\geq 0}\mathbb{E}\big[|M_n|I_{\{|M_n|\geq a\}}\big]=0.$$

Chow's Theorem

Theorem (Chow)

Let (M_n) be a MG such that for $1 \leq a \leq 2$ and for all $n \geq 1$,

 $\mathbb{E}[|M_n|^a] < \infty.$

Denote, for all $n \ge 1$, $\Delta M_n = M_n - M_{n-1}$ and assume that

$$\sum_{n=1}^{\infty} \mathbb{E}[|\Delta M_n|^a | \mathcal{F}_{n-1}] < \infty \qquad a.s.$$

 \rightarrow (*M_n*) converges a.s. to a random variable *M*_{∞}.

э.

< 日 > < 同 > < 回 > < 回 > < □ > <

Exponential Martingale

Example (Exponential Martingale)

Let (X_n) be a sequence of independent random variable sharing the same $\mathcal{N}(0, 1)$ distribution. For all $t \in \mathbb{R}^*$, let $S_n = X_1 + \cdots + X_n$ and denote

$$M_n(t) = \exp\Big(tS_n - \frac{nt^2}{2}\Big).$$

It is clear that $(M_n(t))$ is a **MG** which converges a.s. to zero. However, $\mathbb{E}[M_n(t)] = \mathbb{E}[M_1(t)] = 1$ which means that $(M_n(t))$ does not converge in \mathbb{L}^1 .

Bernard Bercu

A (10) A (10)

Autoregressive Martingale

Example (Autoregressive Martingale)

Let (X_n) be the autoregressive process given for all $n \ge 0$ by

$$\boldsymbol{X}_{n+1} = \boldsymbol{\theta} \boldsymbol{X}_n + (1-\boldsymbol{\theta})\boldsymbol{\varepsilon}_{n+1}$$

where $X_0 = p$ with $0 and the parameter <math>0 < \theta < 1$. Assume that $\mathcal{L}(\varepsilon_{n+1}|\mathcal{F}_n)$ is the Bernoulli $\mathcal{B}(X_n)$ distribution. We can show that $0 < X_n < 1$ and (X_n) is a **MG** such that

$$\lim_{n\to\infty}X_n=X_\infty$$
 a.s.

The convergence also holds in \mathbb{L}^p for all $p \ge 1$. Finally, X_{∞} has the Bernoulli $\mathcal{B}(p)$ distribution.

Stopping time theorem

Definition

We shall say that a random variable *T* is a **stopping time** if *T* takes its values in $\mathbb{N} \cup \{+\infty\}$ and, for all $n \ge 0$, the event

$$\{T=n\}\in\mathcal{F}_n.$$

Theorem

Assume that (M_n) is a MG and let T be a stopping time adapted to $\mathbb{F} = (\mathcal{F}_n)$. Then, $(M_{n \wedge T})$ is also a MG.

3

(日)

Proof of the stopping time theorem

Proof.

First of all, it is clear that for all $n \ge 0$, $(M_{n \land T})$ is integrable as

$$M_{n\wedge T} = M_T \mathbf{I}_{\{T < n\}} + M_n \mathbf{I}_{\{T \ge n\}}.$$

In addition, $\{T \ge n\} \in \mathcal{F}_{n-1}$ as its complementary $\{T < n\} \in \mathcal{F}_{n-1}$. Then, for all $n \ge 0$,

$$\begin{split} \mathbb{E}[M_{(n+1)\wedge T}|\mathcal{F}_n] &= \mathbb{E}[M_T I_{\{T < n+1\}} + M_{n+1} I_{\{T \ge n+1\}} |\mathcal{F}_n], \\ &= M_T I_{\{T < n+1\}} + I_{\{T \ge n+1\}} \mathbb{E}[M_{n+1}|\mathcal{F}_n], \\ &= M_T I_{\{T < n+1\}} + M_n I_{\{T \ge n+1\}}, \\ &= M_T I_{\{T < n\}} + M_n I_{\{T = n\}} + M_n I_{\{T \ge n\}} - M_n I_{\{T = n\}}, \\ &= M_T I_{\{T < n\}} + M_n I_{\{T \ge n\}}, \\ &= M_n \wedge T. \end{split}$$

Kolmogorov's inequality

Theorem (Kolmogorov's inequality)

Assume that (M_n) is a MG. Then, for all a > 0,

$$\mathbb{P}(\boldsymbol{M}_{n}^{\#} > \boldsymbol{a}) \leqslant \frac{1}{\boldsymbol{a}} \mathbb{E}[|\boldsymbol{M}_{n}|\mathbf{I}_{\{\boldsymbol{M}_{n}^{\#} > \boldsymbol{a}\}}]$$

where

$$M_n^{\#} = \max_{0 \leqslant k \leqslant n} |M_k|.$$

As (M_n) is a MG, we clearly have that $(|M_n|)$ is a sMG. The proof relies on the entry time T_a of the sMG $(|M_n|)$ into the interval $[a, +\infty[,$

$$T_a = \inf\{n \ge 0, |M_n| \ge a\}.$$

A D A D A D A

Proof.

First of all, we clearly have for all $n \ge 0$,

$$\{T_a \leqslant n\} = \{\max_{0 \leqslant k \leqslant n} |M_k| \geqslant a\} = \{M_n^\# > a\}.$$

Since $|M_{T_a}| \ge a$, it leads to

$$\mathbb{P}(M_n^{\#} > a) = \mathbb{P}(T_a \leqslant n) = \mathbb{E}\big[I_{\{T_a \leqslant n\}}\big] \leqslant \frac{1}{a} \mathbb{E}\big[|M_{T_a}|I_{\{T_a \leqslant n\}}\big].$$

However, we have for all $k \leq n$, $|M_k| \leq \mathbb{E}[|M_n||\mathcal{F}_k]$ a.s. Therefore,

$$\begin{split} \mathbb{E}\big[|M_{T_a}|\mathbf{I}_{\{T_a \leq n\}}\big] &= \sum_{k=0}^{n} \mathbb{E}\big[|M_k|\mathbf{I}_{\{T_a=k\}}\big] \leq \sum_{k=0}^{n} \mathbb{E}\big[\mathbb{E}\big[|M_n||\mathcal{F}_k\big]\mathbf{I}_{\{T_a=k\}}\big], \\ &\leq \sum_{k=0}^{n} \mathbb{E}\big[|M_n|\mathbf{I}_{\{T_a=k\}}\big] = \mathbb{E}\big[|M_n|\mathbf{I}_{\{T_a \leq n\}}\big], \end{split}$$

which completes the proof of Kolmogorov's inequality.

Bernard Bercu

Doob's inequality

Theorem (Doob's inequality)

Assume that (M_n) is a **MG** bounded in \mathbb{L}^p with p > 1. Then, we have

$$\mathbb{E}\big[|M_n|^p\big] \leqslant \mathbb{E}\big[(M_n^{\#})^p\big] \leqslant \Big(\frac{p}{p-1}\Big)^p \mathbb{E}\big[|M_n|^p\big].$$

In particular, for p = 2,

$$\mathbb{E}\big[|M_n|^2\big] \leqslant \mathbb{E}\big[(M_n^{\#})^2\big] \leqslant 4\mathbb{E}\big[|M_n|^2\big].$$

The proof relies on the elementary fact that for any positive random variable *X* and for all $p \ge 1$,

$$\mathbb{E}ig[X^{m{
ho}}ig] = \int_0^\infty m{
ho} a^{m{
ho}-1} \mathbb{P}ig(X > aig) da.$$

3

(日)

Proof of Doob's inequality

F

Proof.

It follows from Kolmogorov's inequality and Fubini's theorem that

$$\begin{split} \left[(M_n^{\#})^p \right] &= \int_0^\infty p a^{p-1} \mathbb{P} \big(M_n^{\#} > a \big) da, \\ &\leqslant \int_0^\infty p a^{p-2} \mathbb{E} \big[|M_n| \mathrm{I}_{\{M_n^{\#} > a\}} \big] da, \\ &= \mathbb{E} \Big[|M_n| \int_0^\infty p a^{p-2} \mathrm{I}_{\{M_n^{\#} > a\}} da \Big], \\ &= \Big(\frac{p}{p-1} \Big) \mathbb{E} \big[|M_n| (M_n^{\#})^{p-1} \big]. \end{split}$$

Finally, via Holder's inequality,

$$\mathbb{E}\big[|M_n|(M_n^{\#})^{\rho-1}\big] \leqslant \Big(\mathbb{E}\big[|M_n|^{\rho}\big]\Big)^{1/\rho} \Big(\mathbb{E}\big[(M_n^{\#})^{\rho}\big]\Big)^{(\rho-1)/\rho}$$

which completes the proof of Doob's inequality.

Bernard Bercu

Outline

Introduction

- Definition and Examples
- On Doob's convergence theorem
- On the stopping time theorem
- Kolmogorov-Doob martingale inequalities

Asymptotic results

- Two useful Lemmas
- Square integrable martingales
- Robbins-Siegmund Theorem
- Strong law of large numbers for martingales
- Central limit theorem for martingales

Statistical applications

- Autoregressive processes
- Stochastic algorithms
- Kernel density estimation

We start with two useful lemmas in stochastic analysis.

Lemma (Toeplitz)

Let (a_n) be a sequence of positive real numbers satisfying

$$\sum_{n=1}^{\infty}a_n=+\infty.$$

In addition, let (x_n) be a sequence of real numbers such that

$$\lim_{n\to\infty}x_n=x.$$

Then, we have

$$\lim_{n\to\infty}\left(\sum_{k=1}^n a_k\right)^{-1}\sum_{k=1}^n a_k x_k = x.$$

Bernard Bercu

э

イロト 不得 トイヨト イヨト

Kronecker's Lemma

Lemma (Kronecker)

Let (a_n) be a sequence of positive real numbers strictly increasing to infinity. Moreover, let (x_n) be a sequence of real numbers such that

$$\sum_{n=1}^{\infty} \frac{x_n}{a_n} = \ell$$

exists and is finite. Then, we have

$$\lim_{n\to\infty}a_n^{-1}\sum_{k=1}^n x_k=0.$$

Bernard Bercu

A B b 4 B b

Increasing process

Definition

Let (M_n) be a square integrable **MG** that is for all $n \ge 1$,

$$\mathbb{E}[M_n^2] < \infty.$$

The **increasing process** associated with (M_n) is given by $\langle M \rangle_0 = 0$ and, for all $n \ge 1$,

$$< M >_n = \sum_{k=1}^n \mathbb{E}[\Delta M_k^2 | \mathcal{F}_{k-1}]$$

where $\Delta M_k = M_k - M_{k-1}$.

 \longrightarrow If (M_n) is a square integrable MG and $N_n = M_n^2 - \langle M \rangle_n$, then (N_n) is a MG.

э.

< 日 > < 同 > < 回 > < 回 > < □ > <

Example (Increasing Process)

Let (X_n) be a sequence of square integrable and independent random variables such that, for all $n \ge 1$, $\mathbb{E}[X_n] = m$ and $Var(X_n) = \sigma^2 > 0$. Denote

$$M_n = \sum_{k=1}^n (X_k - m)$$

Then, (M_n) is a martingale and its increasing process

$$< M >_n = \sigma^2 n.$$

Moreover, if $N_n = M_n^2 - \sigma^2 n$, (N_n) is a MG.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Theorem (Robbins-Siegmund)

Let (V_n) , (A_n) and (B_n) be three positive sequences adapted to $\mathbb{F} = (\mathcal{F}_n)$. Assume that V_0 is integrable and, for all $n \ge 0$,

 $\mathbb{E}[V_{n+1}|\mathcal{F}_n] \leqslant V_n + A_n - B_n \qquad a.s.$

Denote

$$\Gamma = \Big\{\sum_{n=0}^{\infty} A_n < +\infty\Big\}.$$

On Γ, (V_n) converges a.s. to a finite random variable V_∞.
 On Γ, we also have

$$\sum_{n=0}^{\infty} B_n < +\infty \qquad a.s.$$

 \longrightarrow If $A_n = 0$ and $B_n = 0$, then (V_n) is a positive SMG which converges a.s. to V_∞ thanks to Doob's theorem.

Bernard Bercu

Proof.

For all $n \ge 1$, denote

$$M_n = V_n - \sum_{k=0}^{n-1} (A_k - B_k).$$

We clearly have, for all $n \ge 0$, $\mathbb{E}[M_{n+1}|\mathcal{F}_n] \le M_n$. For any positive *a*, let T_a be the stopping time

$$T_a = \inf \Big\{ n \ge 0, \sum_{k=0}^n (A_k - B_k) \ge a \Big\}.$$

We deduce from the stopping time theorem that $(M_{n \wedge T_a})$ is a SMG bounded below by -a. It follows from Doob's theorem that $(M_{n \wedge T_a})$ converges a.s. to M_{∞} . Consequently, on the set $\{T_a = +\infty\}, (M_n)$ converges a.s. to M_{∞} . In addition, we also have

$$M_{n+1} + \sum_{k=0}^{n} A_k = V_{n+1} + \sum_{k=0}^{n} B_k \ge \sum_{k=0}^{n} B_k.$$

Bernard Bercu

Proof of Robbins-Siegmund's theorem, continued

Proof.

Hence, on the set $\Gamma \cap \{T_a = +\infty\}$, we obtain that

$$\sum_{n=0}^{\infty} B_n < +\infty \qquad \text{ a.s.}$$

and (V_n) converges a.s. to a finite random variable V_{∞} . Finally, as (B_n) is a sequence of positive random variables, we have on Γ ,

$$\sum_{k=0}^{n} (A_k - B_k) \leqslant \sum_{k=0}^{n} A_k < +\infty \qquad \text{ a.s.}$$

It means that

$$\Gamma \subset \bigcup_{p=0}^{\infty} \{T_p = +\infty\}, \qquad \Gamma = \bigcup_{p=0}^{\infty} \Gamma \bigcap \{T_p = +\infty\}$$

which completes the proof of Robbins-Siegmund's theorem.

Corollary

Let (V_n) , (A_n) and (B_n) be three positive sequences adapted to $\mathbb{F} = (\mathcal{F}_n)$. Let (a_n) be a positive increasing sequence adapted to $\mathbb{F} = (\mathcal{F}_n)$. Assume that V_0 is integrable and, for all $n \ge 0$,

 $\mathbb{E}[V_{n+1}|\mathcal{F}_n] \leqslant V_n + A_n - B_n \qquad a.s.$

Denote

$$\Lambda = \Big\{\sum_{n=0}^{\infty} \frac{A_n}{a_n} < +\infty\Big\}.$$

• On $\Gamma \cap \{a_n \longrightarrow a_\infty\}$, (V_n) converges a.s. to V_∞ .

3 On $\Gamma \cap \{a_n \longrightarrow +\infty\}$, $V_n = o(a_n)$ a.s., $V_{n+1} = o(a_n)$ a.s. and

$$\sum_{k=0}^{n} B_k = o(a_n) \qquad a.s.$$

 \rightarrow This result is the keystone for the SLLN for martingales.

Bernard Bercu

Asymptotic results for discrete time martingales and stochastic algorithms

Strong law of large numbers for martingales

Theorem (Strong Law of large numbers)

Let (M_n) be a square integrable **MG** and denote by $< M >_n$ its increasing process.

• On $\{ < M >_n \longrightarrow < M >_{\infty} \}$, (M_n) converges a.s. to a square integrable random variable M_{∞} .

2 On
$$\{\langle M \rangle_n \longrightarrow +\infty\}$$
, we have

$$\lim_{n\to\infty}\frac{M_n}{_n}=0 \qquad a.s.$$

More precisely, for any positive γ ,

$$\left(\frac{M_n}{_n}\right)^2 = o\left(\frac{(\log < M>_n)^{1+\gamma}}{_n}\right) \qquad a.s$$

 \longrightarrow If it exists a positive sequence (a_n) increasing to infinity such that $\langle M \rangle_n = O(a_n)$, then we have $M_n = o(a_n)$ a.s.

Easy example

Let (X_n) be a sequence of square integrable and independent random variables such that, for all $n \ge 1$, $\mathbb{E}[X_n] = m$ and $Var(X_n) = \sigma^2 > 0$. We already saw that

$$M_n = \sum_{k=1}^n (X_k - m)$$

is square integrable **MG** with $< M >_n = \sigma^2 n$. It follows from the **SLLN** for martingales that $M_n = o(n)$ a.s. which means that

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n X_k = m \qquad \text{a.s.}$$

More precisely, for any positive γ ,

$$\left(\frac{M_n}{n}\right)^2 = \left(\frac{1}{n}\sum_{k=1}^n X_k - m\right)^2 = o\left(\frac{(\log n)^{1+\gamma}}{n}\right)$$
 a.s.

Proof of the strong Law of large numbers

Proof.

For any positive a, let T_a be the stopping time

$$T_a = \inf \Big\{ n \ge 0, < M >_{n+1} \ge a \Big\}.$$

It follows from the stopping time theorem that $(M_{n \wedge T_a})$ is a MG. It is bounded in \mathbb{L}^2 as

$$\sup_{n\geq 0} \mathbb{E}[(M_{n\wedge T_a})^2] = \sup_{n\geq 0} \mathbb{E}[\langle M \rangle_{n\wedge T_a}] < a.$$

We deduce from Doob's convergence theorem that $(M_{n \wedge T_a})$ converges a.s. to a square integrable random variable M_{∞} . Hence, on the set $\{T_a = +\infty\}, (M_n)$ converges a.s. to M_{∞} . However,

$$\{\langle M \rangle_{\infty} \langle +\infty \rangle = \bigcup_{p=1}^{\infty} \{T_p = +\infty\}$$

which completes the proof of the first part of the theorem.

Bernard Bercu

Asymptotic results for discrete time martingales and stochastic algorithms

Proof.

Let
$$V_n = M_n^2$$
, $A_n = \langle M \rangle_{n+1} - \langle M \rangle_n$ and $B_n = 0$. We clearly have

 $\mathbb{E}[V_{n+1}|\mathcal{F}_n] \leqslant V_n + A_n - B_n \qquad \text{a.s.}$

For any positive γ , denote

$$a_n = _{n+1} (\log _{n+1})^{1+\gamma}.$$

On $\{\langle M \rangle_n \longrightarrow +\infty \rangle\}$, (a_n) is a positive increasing sequence adapted to $\mathbb{F} = (\mathcal{F}_n)$, which goes to infinity a.s. Hence, for *n* large enough, $a_n \ge \alpha > 1$ and it exists a positive finite random variable β such that

$$\sum_{n=0}^{\infty} \frac{A_n}{a_n} \leqslant \int_{\alpha}^{\infty} \frac{1}{x(\log x)^{1+\gamma}} dx + \beta < +\infty \qquad \text{a.s.}$$

Finally, $V_{n+1} = o(a_n)$ a.s. which achieves the proof of the theorem.

Bernard Bercu

イロト イポト イヨト イヨト

Central limit theorem for martingales

Theorem (Central Limit Theorem)

Let (M_n) be a square integrable **MG** and let (a_n) be a sequence of positive real numbers increasing to infinity. Assume that

1 It exists a deterministic limit $\ell \ge 0$ such that

$$\frac{\langle M\rangle_n}{a_n} \stackrel{\mathcal{P}}{\longrightarrow} \ell.$$

2 Lindeberg's condition. For all $\varepsilon > 0$,

$$\frac{1}{a_n}\sum_{k=1}^n \mathbb{E}[|\Delta M_k|^2 \mathrm{I}_{\{|\Delta M_k| \ge \varepsilon \sqrt{a_n}\}} | \mathcal{F}_{k-1}] \xrightarrow{\mathcal{P}} 0$$

where
$$\Delta M_k = M_k - M_{k-1}$$
.

Bernard Bercu

Central limit theorem for martingales

Theorem (Central Limit Theorem)

Let (M_n) be a square integrable **MG** and let (a_n) be a sequence of positive real numbers increasing to infinity. Assume that

1 It exists a deterministic limit $\ell \ge 0$ such that

$$\frac{\langle M\rangle_n}{a_n} \xrightarrow{\mathcal{P}} \ell.$$

2 Lindeberg's condition. For all $\varepsilon > 0$,

$$\frac{1}{a_n}\sum_{k=1}^n \mathbb{E}[|\Delta M_k|^2 \mathrm{I}_{\{|\Delta M_k| \ge \varepsilon \sqrt{a_n}\}}|\mathcal{F}_{k-1}] \stackrel{\mathcal{P}}{\longrightarrow} 0$$

where $\Delta M_k = M_k - M_{k-1}$.

Bernard Bercu

Central limit theorem fro martingales, continued

Theorem (Central Limit Theorem)

Then, we have

$$\frac{1}{\sqrt{a_n}}M_n \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(\mathbf{0}, \ell).$$

Moreover, if $\ell > 0$, we also have

$$\sqrt{a_n}\Big(rac{M_n}{< M>_n}\Big) \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0, \ell^{-1}).$$

 \longrightarrow Lyapunov's condition implies Lindeberg's condition. $\exists \alpha > 2$,

$$\sum_{k=1}^{n} \mathbb{E}[|\Delta M_k|^{\alpha} | \mathcal{F}_{k-1}] = O(a_n) \qquad \text{a.s.}$$

A (10) A (10)

Outline

Definition and Examples
On Doob's convergence theorem
On the stopping time theorem
Kolmogorov-Doob martingale inequalities
Asymptotic results
Two useful Lemmas
Square integrable martingales
Robbins-Siegmund Theorem
Strong law of large numbers for martingales
Central limit theorem for martingales

Statistical applications

- Autoregressive processes
- Stochastic algorithms
- Kernel density estimation

Stable autoregressive processes

Consider the stable autoregressive process

 $X_{n+1} = \theta X_n + \varepsilon_{n+1}, \qquad |\theta| < 1$

where (ε_n) is a sequence of **iid** $\mathcal{N}(0, \sigma^2)$ random variables. Assume that X_0 is independent of (ε_n) with $\mathcal{N}(0, \sigma^2/(1 - \theta^2))$ distribution.

- (X_n) is a centered stationary Gaussian process,
- (X_n) is a positive recurrent process.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Least squares estimator

Let $\hat{\theta}_n$ be the least squares estimator of the unknown parameter θ

$$\widehat{\theta}_n = \frac{\sum_{k=1}^n X_k X_{k-1}}{\sum_{k=1}^n X_{k-1}^2}.$$

We have

$$\hat{\theta}_{n} - \theta = \frac{\sum_{k=1}^{n} X_{k} X_{k-1} - \theta \sum_{k=1}^{n} X_{k-1}^{2}}{\sum_{k=1}^{n} X_{k-1}^{2}},$$

$$= \frac{\sum_{k=1}^{n} X_{k-1} (X_{k} - \theta X_{k-1})}{\sum_{k=1}^{n} X_{k-1}^{2}},$$

$$= \frac{\sum_{k=1}^{n} X_{k-1} \varepsilon_{k}}{\sum_{k=1}^{n} X_{k-1}^{2}}.$$

Bernard Bercu

Asymptotic results for discrete time martingales and stochastic algorithms

42 / 60

ЛЛ

Least squares estimator

Consequently,

$$\widehat{\theta}_n - \theta = \sigma^2 \frac{Mn}{\langle M \rangle_n}$$

$$M_n = \sum_{k=1}^n X_{k-1}\varepsilon_k \quad \text{and} \quad \langle M \rangle_n = \sigma^2 \sum_{k=1}^n X_{k-1}^2.$$

The sequence (M_n) is a square integrable martingale such that

$$\lim_{n\to\infty}\frac{_n}{n}=\ell \qquad \text{a.s.}$$

where

$$\ell = \frac{\sigma^4}{1 - \theta^2}.$$

Bernard Bercu

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Stable autoregressive processes

Theorem

We have the almost sure convergence

$$\lim_{n\to\infty}\widehat{\theta}_n=\theta \qquad \text{a.s.}$$

In addition, we also have the asymptotic normality

$$\sqrt{n} (\widehat{\theta}_n - \theta) \xrightarrow{\mathcal{L}} \mathcal{N}(\mathbf{0}, \mathbf{1} - \theta^2).$$

Bernard Bercu

・日本 ・日本 ・日本

Stable autoregressive processes

Asymptotic results for discrete time martingales and stochastic algorithms

Herbert Robbins

Bernard Bercu

Asymptotic results for discrete time martingales and stochastic algorithms

46 / 60

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Jack Kiefer

Jacob Wolfowitz

< 🗗 ▶

(A) (B) (A) (B)

Bernard Bercu

Asymptotic results for discrete time martingales and stochastic algorithms

47 / 60

Goal

 \rightarrow Find the value θ without any knowledge on the function f.

Bernard Bercu

Asymptotic results for discrete time martingales and stochastic algorithms

48 / 60

2

< 🗗 ▶

Basic Idea

At time *n*, if you are able to say that $f(\hat{\theta}_n) > \alpha$, then increase the value of $\hat{\theta}_n$.

Bernard Bercu

Asymptotic results for discrete time martingales and stochastic algorithms

2

< 一型

Basic Idea

At time *n*, if you are able to say that $f(\hat{\theta}_n) < \alpha$, then decrease the value of $\hat{\theta}_n$.

Bernard Bercu

Asymptotic results for discrete time martingales and stochastic algorithms

50 / 60

э

ヨト イヨト

Let (γ_n) be a decreasing sequence of positive real numbers

For the sake of simplicity, we shall make use of

$$\gamma_n = \frac{1}{n}$$

Robbins-Monro algorithm

$$\widehat{\theta}_{n+1} = \widehat{\theta}_n + \gamma_{n+1} (T_{n+1} - \alpha)$$

where T_{n+1} is a random variable such that $\mathbb{E}[T_{n+1}|\mathcal{F}_n] = f(\widehat{\theta}_n)$.

Bernard Bercu

Asymptotic results for discrete time martingales and stochastic algorithms

Theorem (Robbins-Monro, 1951)

Assume that f is a decreasing function. Then, we have the almost sure convergence

$$\lim_{n\to\infty}\widehat{\theta}_n=\theta \quad \text{a.s.}$$

In addition, as soon as $-2f'(\theta) > 1$, we also have the asymptotic normality

$$\sqrt{n} \left(\widehat{\theta}_n - \theta \right) \xrightarrow{\mathcal{L}} \mathcal{N}(\mathbf{0}, \xi^2(\theta))$$

where the asymptotic variance $\xi^2(\theta)$ can be explicitly calculated.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let (X_n) be a sequence of **iid** random variables with **unknown density** function *f*. Let *K* be a positive and bounded function, called **kernel**, such that

$$\int_{\mathbb{R}} K(x) \, dx = 1, \qquad \int_{\mathbb{R}} x K(x) \, dx = 0,$$
$$\int_{\mathbb{R}} K^2(x) \, dx = \sigma^2.$$

Goal

Estimate the unknown density function f.

Bernard Bercu

53 / 60

3 > 4 3

Choice of the Kernel

• Uniform kernel

$$K_a(x) = \frac{1}{2a} \mathrm{I}_{\{|x| \leqslant a\}},$$

• Epanechnikov kernel

$$K_b(x) = \frac{3}{4b} \left(1 - \frac{x^2}{b^2}\right) I_{\{|x| \le b\}},$$

Gaussian kernel

$$K_c(x) = \frac{1}{c\sqrt{2\pi}} \exp\left(-\frac{x^2}{2c^2}\right).$$

Bernard Bercu

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

Choice of the Kernel

• Uniform kernel

$$\mathcal{K}_{a}(x) = rac{1}{2a} \mathrm{I}_{\{|x|\leqslant a\}},$$

Epanechnikov kernel

$$\mathcal{K}_b(x) = \frac{3}{4b} \left(1 - \frac{x^2}{b^2}\right) \mathrm{I}_{\{|x| \leqslant b\}},$$

Gaussian kernel

$$K_c(x) = \frac{1}{c\sqrt{2\pi}} \exp\left(-\frac{x^2}{2c^2}\right).$$

Bernard Bercu

Asymptotic results for discrete time martingales and stochastic algorithms

æ

・ 回 ト ・ ヨ ト ・ ヨ ト

Choice of the Kernel

• Uniform kernel

$$K_a(x) = rac{1}{2a} \mathrm{I}_{\{|x|\leqslant a\}},$$

• Epanechnikov kernel

$$\mathcal{K}_b(x) = rac{3}{4b} \left(1 - rac{x^2}{b^2}
ight) \mathrm{I}_{\{|x|\leqslant b\}},$$

• Gaussian kernel

$$\mathcal{K}_{c}(x) = rac{1}{c\sqrt{2\pi}} \exp\Bigl(-rac{x^{2}}{2c^{2}}\Bigr).$$

Bernard Bercu

æ

< 17 ▶

The Wolverton-Wagner estimator

We estimate the density function f by

The Wolverton-Wagner estimator

$$\widehat{f}_n(x) = \frac{1}{n} \sum_{k=1}^n W_k(x)$$

where

$$W_k(x) = \frac{1}{h_k} K\Big(\frac{X_k - x}{h_k}\Big).$$

The **bandwidth** (h_n) is a sequence of positive real numbers, $h_n \searrow 0$, $nh_n \rightarrow \infty$. For $0 < \alpha < 1$, we can make use of

$$h_n=rac{1}{n^{lpha}}$$

Bernard Bercu

55 / 60

A (1) > A (2) > A (2) > A

We have

$$\begin{aligned} \widehat{f}_n(x) - f(x) &= \frac{1}{n} \sum_{k=1}^n W_k(x) - f(x), \\ &= \frac{1}{n} \sum_{k=1}^n (W_k(x) - \mathbb{E}[W_k(x)]) + \frac{1}{n} \sum_{k=1}^n (\mathbb{E}[W_k(x)] - f(x)). \end{aligned}$$

Consequently,

$$\widehat{f}_n(x) - f(x) = \frac{M_n(x)}{n} + \frac{R_n(x)}{n}$$

where

$$M_n(x) = \sum_{k=1}^n (W_k(x) - \mathbb{E}[W_k(x)]).$$

Bernard Bercu

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

We have

$$M_n(x) = \sum_{k=1}^n (W_k(x) - \mathbb{E}[W_k(x)]),$$

< $M(x) >_n = \sum_{k=1}^n Var(W_k(x)).$

The sequence $(M_n(x))$ is a square integrable martingale such that

$$\lim_{n\to\infty}\frac{<\boldsymbol{M}(\boldsymbol{x})>_n}{\boldsymbol{n}^{1+\alpha}}=\ell\qquad\text{a.s.}$$

where

$$\ell = \frac{\sigma^2 f(x)}{1+\alpha}.$$

Bernard Bercu

Asymptotic results for discrete time martingales and stochastic algorithms

A (1) > A (2) > A (2) >

Theorem

For all $x \in \mathbb{R}$, we have the pointwise almost sure convergence

$$\lim_{n\to\infty}\widehat{f}_n(x)=f(x) \qquad \text{a.s.}$$

In addition, as soon as $1/5 < \alpha < 1$, we have, for all $x \in \mathbb{R}$, the asymptotic normality

$$\sqrt{nh_n}\left(\widehat{f}_n(\boldsymbol{x})-f(\boldsymbol{x})\right)\overset{\mathcal{L}}{\longrightarrow}\mathcal{N}\left(0,\frac{\sigma^2f(\boldsymbol{x})}{1+lpha}\right).$$

Bernard Bercu

A (10) A (10)

Bernard Bercu

Asymptotic results for discrete time martingales and stochastic algorithms

Bernard Bercu

60 / 60

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・