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Introduction Definition and Examples

Let (Ω,A,P) be a probability space with a filtration F = (Fn) where Fn
is the σ-algebra of events occurring up to time n.

Definition
Let (Mn) be a sequence of integrable random variables defined on
(Ω,A,P) such that, for all n > 0, Mn is Fn-measurable.

1 (Mn) is a martingale MG if for all n > 0,

E[Mn+1 | Fn] = Mn a.s.

2 (Mn) is a submartingale sMG if for all n > 0,

E[Mn+1 | Fn] > Mn a.s.

3 (Mn) is a supermartingale SMG if for all n > 0,

E[Mn+1 | Fn] 6 Mn a.s.
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Introduction Definition and Examples

Martingales with sums
Example (Sums)

Let (Xn) be a sequence of integrable and independent random
variables such that, for all n > 1, E[Xn] = m. Denote

Sn =
n∑

k=1

Xk .

We clearly have

Sn+1 = Sn + Xn+1.

Consequently, (Sn) is a sequence of integrable random variables with

E[Sn+1 | Fn] = Sn + E[Xn+1 | Fn],

= Sn + E[Xn+1],

= Sn + m
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Introduction Definition and Examples

Martingales with sums

Example (Sums)

E[Sn+1 | Fn] = Sn + m.

(Sn) is a martingale if m = 0,
(Sn) is a submartingale if m > 0,
(Sn) is a supermartingale if m 6 0.

−→ It holds for Rademacher R(p) distribution with 0 < p < 1 where

m = 2p − 1.
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Introduction Definition and Examples

Martingales with Rademacher sums
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Introduction Definition and Examples

Martingales with products
Example (Products)

Let (Xn) be a sequence of positive, integrable and independent
random variables such that, for all n > 1, E[Xn] = m. Denote

Pn =
n∏

k=1

Xk .

We clearly have

Pn+1 = PnXn+1.

Consequently, (Pn) is a sequence of integrable random variables with

E[Pn+1 | Fn] = PnE[Xn+1 | Fn],

= PnE[Xn+1],

= mPn
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Introduction Definition and Examples

Martingales with products

Example (Products)

E[Pn+1 | Fn] = mPn.

(Pn) is a martingale if m = 1,
(Pn) is a submartingale if m > 1,
(Pn) is a supermartingale if m 6 1.

−→ It holds for Exponential E(λ) distribution with λ > 0 where

m =
1
λ
.
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Introduction Definition and Examples

Stability

Theorem (Stability)
1 If (Mn) is a SMG, then (−Mn) is a sMG.
2 If (Mn) and (Nn) are two sMG and

Sn = sup(Mn,Nn)

−→ (Sn) is a sMG.
3 If (Mn) and (Nn) are two SMG and

In = inf(Xn,Yn)

−→ (In) is a SMG.
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Introduction Definition and Examples

Stability, continued

Theorem (Stability)
1 If (Mn) and (Nn) are two MG, a,b ∈ R and

Sn = aMn + bNn

−→ (Sn) is a MG.
2 If (Mn) is a MG and F is a convex real function such that, for all

n > 1, F (Mn) ∈ L1(R) and if

Fn = F (Mn)

−→ (Fn) is a sMG.
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Introduction On Doob’s convergence theorem

Doob’s convergence theorem

Every bounded above increasing sequence converges to its
supremum,
Every bounded bellow decreasing sequence converges to its
infimum.

−→ The stochastic analogous of this result is due to Doob.

Theorem (Doob)
1 If (Mn) is a sMG bounded above by some constant M, then (Mn)

converges a.s.
2 If (Mn) is a SMG bounded below by some constant m, then (Mn)

converges a.s.
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Introduction On Doob’s convergence theorem

Doob’s convergence theorem, continued

Theorem (Doob)

Let (Mn) be a MG, sMG, or SMG bounded in L1 which means

sup
n>0

E[|Mn|] < +∞.

−→ (Mn) converges a.s. to an integrable random variable M∞.
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Introduction On Doob’s convergence theorem

Joseph Leo Doob
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Introduction On Doob’s convergence theorem

Convergence of martingales

Theorem
Let (Mn) be a MG bounded in Lp with p > 1, which means that

sup
n>0

E[|Mn|p] < +∞.

1 If p > 1, (Mn) converges a.s. a random variable M∞. The
convergence is also true in Lp.

2 If p = 1, (Mn) converges a.s. to a random variable M∞. The
convergence holds in L1 as soon as (Mn) is uniformly integrable
that is

lim
a→∞

sup
n>0

E
[
|Mn|I{|Mn|>a}

]
= 0.
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Introduction On Doob’s convergence theorem

Chow’s Theorem

Theorem (Chow)

Let (Mn) be a MG such that for 1 6 a 6 2 and for all n > 1,

E[|Mn|a] <∞.

Denote, for all n > 1, ∆Mn = Mn −Mn−1 and assume that

∞∑
n=1

E[|∆Mn|a|Fn−1] <∞ a.s.

−→ (Mn) converges a.s. to a random variable M∞.
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Introduction On Doob’s convergence theorem

Exponential Martingale

Example (Exponential Martingale)

Let (Xn) be a sequence of independent random variable sharing the
same N (0,1) distribution. For all t ∈ R∗, let Sn = X1 + · · ·+ Xn and
denote

Mn(t) = exp
(

tSn −
nt2

2

)
.

It is clear that (Mn(t)) is a MG which converges a.s. to zero. However,
E[Mn(t)] = E[M1(t)] = 1 which means that (Mn(t)) does not converge
in L1.
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Introduction On Doob’s convergence theorem

Autoregressive Martingale

Example (Autoregressive Martingale)

Let (Xn) be the autoregressive process given for all n > 0 by

Xn+1 = θXn + (1− θ)εn+1

where X0 = p with 0 < p < 1 and the parameter 0 < θ < 1. Assume
that L(εn+1|Fn) is the Bernoulli B(Xn) distribution.
We can show that 0 < Xn < 1 and (Xn) is a MG such that

lim
n→∞

Xn = X∞ a.s.

The convergence also holds in Lp for all p > 1. Finally, X∞ has the
Bernoulli B(p) distribution.
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Introduction On the stopping time theorem

Stopping time theorem

Definition
We shall say that a random variable T is a stopping time if T takes its
values in N ∪ {+∞} and, for all n > 0, the event

{T = n} ∈ Fn.

Theorem
Assume that (Mn) is a MG and let T be a stopping time adapted to
F = (Fn). Then, (Mn∧T ) is also a MG.
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Introduction On the stopping time theorem

Proof of the stopping time theorem
Proof.
First of all, it is clear that for all n > 0, (Mn∧T ) is integrable as

Mn∧T = MT I{T<n} + MnI{T>n}.

In addition, {T > n} ∈ Fn−1 as its complementary {T < n} ∈ Fn−1.
Then, for all n > 0,

E[M(n+1)∧T |Fn] = E[MT I{T<n+1} + Mn+1I{T>n+1}|Fn],

= MT I{T<n+1} + I{T>n+1}E[Mn+1|Fn],

= MT I{T<n+1} + MnI{T>n+1},

= MT I{T<n} + MnI{T =n} + MnI{T>n} −MnI{T =n},

= MT I{T<n} + MnI{T>n},

= Mn∧T .
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Introduction Kolmogorov-Doob martingale inequalities

Kolmogorov’s inequality

Theorem (Kolmogorov’s inequality)

Assume that (Mn) is a MG. Then, for all a > 0,

P
(
M#

n > a
)
6

1
a
E
[
|Mn|I{M#

n >a}
]

where
M#

n = max
06k6n

|Mk |.

As (Mn) is a MG, we clearly have that (|Mn|) is a sMG. The proof relies
on the entry time Ta of the sMG (|Mn|) into the interval [a,+∞[,

Ta = inf
{

n > 0, |Mn| > a
}
.
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Introduction Kolmogorov-Doob martingale inequalities

Proof.
First of all, we clearly have for all n > 0,{

Ta 6 n
}

=
{

max
06k6n

|Mk | > a
}

=
{

M#
n > a

}
.

Since |MTa | > a, it leads to

P(M#
n > a) = P(Ta 6 n) = E

[
I{Ta6n}

]
6

1
a
E
[
|MTa |I{Ta6n}

]
.

However, we have for all k 6 n, |Mk | 6 E[|Mn||Fk ] a.s. Therefore,

E
[
|MTa |I{Ta6n}

]
=

n∑
k=0

E
[
|Mk |I{Ta=k}

]
6

n∑
k=0

E
[
E
[
|Mn||Fk

]
I{Ta=k}

]
,

6
n∑

k=0

E
[
|Mn|I{Ta=k}

]
= E

[
|Mn|I{Ta6n}

]
,

which completes the proof of Kolmogorov’s inequality.
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Introduction Kolmogorov-Doob martingale inequalities

Doob’s inequality

Theorem (Doob’s inequality)

Assume that (Mn) is a MG bounded in Lp with p > 1. Then, we have

E
[
|Mn|p

]
6 E

[
(M#

n )p] 6 ( p
p − 1

)p
E
[
|Mn|p

]
.

In particular, for p = 2,

E
[
|Mn|2

]
6 E

[
(M#

n )2] 6 4E
[
|Mn|2

]
.

The proof relies on the elementary fact that for any positive random
variable X and for all p > 1,

E
[
X p] =

∫ ∞
0

pap−1P
(
X > a

)
da.
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Introduction Kolmogorov-Doob martingale inequalities

Proof of Doob’s inequality
Proof.
It follows from Kolmogorov’s inequality and Fubini’s theorem that

E
[
(M#

n )p] =

∫ ∞
0

pap−1P
(
M#

n > a
)
da,

6
∫ ∞

0
pap−2E

[
|Mn|I{M#

n >a}
]
da,

= E
[∣∣Mn

∣∣ ∫ ∞
0

pap−2I{M#
n >a}da

]
,

=
( p

p − 1

)
E
[
|Mn|(M#

n )p−1].
Finally, via Holder’s inequality,

E
[
|Mn|(M#

n )p−1] 6 (E[|Mn|p
])1/p(

E
[
(M#

n )p])(p−1)/p

which completes the proof of Doob’s inequality.
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Asymptotic results Two useful Lemmas

We start with two useful lemmas in stochastic analysis.

Lemma (Toeplitz)

Let (an) be a sequence of positive real numbers satisfying
∞∑

n=1

an = +∞.

In addition, let (xn) be a sequence of real numbers such that

lim
n→∞

xn = x .

Then, we have

lim
n→∞

( n∑
k=1

ak

)−1 n∑
k=1

ak xk = x.
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Asymptotic results Two useful Lemmas

Kronecker’s Lemma

Lemma (Kronecker)

Let (an) be a sequence of positive real numbers strictly increasing to
infinity. Moreover, let (xn) be a sequence of real numbers such that

∞∑
n=1

xn

an
= `

exists and is finite. Then, we have

lim
n→∞

a−1
n

n∑
k=1

xk = 0.
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Asymptotic results Square integrable martingales

Increasing process

Definition
Let (Mn) be a square integrable MG that is for all n > 1,

E[M2
n ] <∞.

The increasing process associated with (Mn) is given by <M>0= 0
and, for all n > 1,

<M>n=
n∑

k=1

E[∆M2
k |Fk−1]

where ∆Mk = Mk −Mk−1.

−→ If (Mn) is a square integrable MG and Nn = M2
n − <M>n, then

(Nn) is a MG.
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Asymptotic results Square integrable martingales

Example (Increasing Process)

Let (Xn) be a sequence of square integrable and independent random
variables such that, for all n > 1, E[Xn] = m and Var(Xn) = σ2 > 0.
Denote

Mn =
n∑

k=1

(Xk −m)

Then, (Mn) is a martingale and its increasing process

<M>n= σ2n.

Moreover, if Nn = M2
n − σ2n, (Nn) is a MG.

Bernard Bercu Asymptotic results for discrete time martingales and stochastic algorithms 29 / 60



Asymptotic results Robbins-Siegmund Theorem

Theorem (Robbins-Siegmund)

Let (Vn), (An) and (Bn) be three positive sequences adapted to
F = (Fn). Assume that V0 is integrable and, for all n > 0,

E[Vn+1|Fn] 6 Vn + An − Bn a.s.

Denote

Γ =
{ ∞∑

n=0

An < +∞
}
.

1 On Γ, (Vn) converges a.s. to a finite random variable V∞.
2 On Γ, we also have

∞∑
n=0

Bn < +∞ a.s.

−→ If An = 0 and Bn = 0, then (Vn) is a positive SMG which
converges a.s. to V∞ thanks to Doob’s theorem.
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Asymptotic results Robbins-Siegmund Theorem

Proof.
For all n > 1, denote

Mn = Vn −
n−1∑
k=0

(Ak − Bk ).

We clearly have, for all n > 0, E[Mn+1|Fn] 6 Mn. For any positive a, let
Ta be the stopping time

Ta = inf
{

n > 0,
n∑

k=0

(Ak − Bk ) > a
}
.

We deduce from the stopping time theorem that (Mn∧Ta) is a SMG
bounded below by −a. It follows from Doob’s theorem that (Mn∧Ta)
converges a.s. to M∞. Consequently, on the set {Ta = +∞}, (Mn)
converges a.s. to M∞. In addition, we also have

Mn+1 +
n∑

k=0

Ak = Vn+1 +
n∑

k=0

Bk >
n∑

k=0

Bk .
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Asymptotic results Robbins-Siegmund Theorem

Proof of Robbins-Siegmund’s theorem, continued
Proof.
Hence, on the set Γ ∩ {Ta = +∞}, we obtain that

∞∑
n=0

Bn < +∞ a.s.

and (Vn) converges a.s. to a finite random variable V∞. Finally, as (Bn)
is a sequence of positive random variables, we have on Γ,

n∑
k=0

(Ak − Bk ) 6
n∑

k=0

Ak < +∞ a.s.

It means that

Γ ⊂
∞⋃

p=0

{Tp = +∞}, Γ =
∞⋃

p=0

Γ
⋂
{Tp = +∞}

which completes the proof of Robbins-Siegmund’s theorem.
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Asymptotic results Robbins-Siegmund Theorem

Corollary

Let (Vn), (An) and (Bn) be three positive sequences adapted to
F = (Fn). Let (an) be a positive increasing sequence adapted to
F = (Fn). Assume that V0 is integrable and, for all n > 0,

E[Vn+1|Fn] 6 Vn + An − Bn a.s.

Denote

Λ =
{ ∞∑

n=0

An

an
< +∞

}
.

1 On Γ ∩ {an −→ a∞}, (Vn) converges a.s. to V∞.
2 On Γ ∩ {an −→ +∞}, Vn = o(an) a.s., Vn+1 = o(an) a.s. and

n∑
k=0

Bk = o(an) a.s.

−→ This result is the keystone for the SLLN for martingales.
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Asymptotic results Strong law of large numbers for martingales

Strong law of large numbers for martingales

Theorem (Strong Law of large numbers)

Let (Mn) be a square integrable MG and denote by <M>n its
increasing process.

1 On {<M>n−→<M>∞}, (Mn) converges a.s. to a square
integrable random variable M∞.

2 On {<M>n−→ +∞}, we have

lim
n→∞

Mn

<M>n
= 0 a.s.

More precisely, for any positive γ,( Mn

<M>n

)2
= o

((log <M>n)1+γ

<M>n

)
a.s.

−→ If it exists a positive sequence (an) increasing to infinity such that
<M>n= O(an), then we have Mn = o(an) a.s.
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Asymptotic results Strong law of large numbers for martingales

Easy example
Let (Xn) be a sequence of square integrable and independent random
variables such that, for all n > 1, E[Xn] = m and Var(Xn) = σ2 > 0. We
already saw that

Mn =
n∑

k=1

(Xk −m)

is square integrable MG with <M>n= σ2n. It follows from the SLLN
for martingales that Mn = o(n) a.s. which means that

lim
n→∞

1
n

n∑
k=1

Xk = m a.s.

More precisely, for any positive γ,(Mn

n

)2
=
(1

n

n∑
k=1

Xk −m
)2

= o
((log n)1+γ

n

)
a.s.
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Asymptotic results Strong law of large numbers for martingales

Proof of the strong Law of large numbers
Proof.
For any positive a, let Ta be the stopping time

Ta = inf
{

n > 0, <M>n+1> a
}
.

It follows from the stopping time theorem that (Mn∧Ta) is a MG. It is
bounded in L2 as

sup
n>0

E[(Mn∧Ta )2] = sup
n>0

E[<M>n∧Ta ] < a.

We deduce from Doob’s convergence theorem that (Mn∧Ta) converges
a.s. to a square integrable random variable M∞. Hence, on the set
{Ta = +∞}, (Mn) converges a.s. to M∞. However,

{<M>∞< +∞} =
∞⋃

p=1

{Tp = +∞}

which completes the proof of the first part of the theorem.
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Asymptotic results Strong law of large numbers for martingales

Proof.

Let Vn = M2
n , An =<M>n+1 − <M>n and Bn = 0. We clearly have

E[Vn+1|Fn] 6 Vn + An − Bn a.s.

For any positive γ, denote

an =<M>n+1 (log <M>n+1)1+γ .

On {<M>n−→ +∞}, (an) is a positive increasing sequence adapted
to F = (Fn), which goes to infinity a.s. Hence, for n large enough,
an > α > 1 and it exists a positive finite random variable β such that

∞∑
n=0

An

an
6
∫ ∞
α

1
x(log x)1+γ

dx + β < +∞ a.s.

Finally, Vn+1 = o(an) a.s. which achieves the proof of the theorem.
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Asymptotic results Central limit theorem for martingales

Central limit theorem for martingales

Theorem (Central Limit Theorem)

Let (Mn) be a square integrable MG and let (an) be a sequence of
positive real numbers increasing to infinity. Assume that

1 It exists a deterministic limit ` > 0 such that

<M>n

an

P−→ `.

2 Lindeberg’s condition. For all ε > 0,

1
an

n∑
k=1

E[|∆Mk |2I{|∆Mk |>ε
√

an}|Fk−1]
P−→ 0

where ∆Mk = Mk −Mk−1.
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Asymptotic results Central limit theorem for martingales

Central limit theorem for martingales

Theorem (Central Limit Theorem)

Let (Mn) be a square integrable MG and let (an) be a sequence of
positive real numbers increasing to infinity. Assume that

1 It exists a deterministic limit ` > 0 such that

<M>n

an

P−→ `.

2 Lindeberg’s condition. For all ε > 0,

1
an

n∑
k=1

E[|∆Mk |2I{|∆Mk |>ε
√

an}|Fk−1]
P−→ 0

where ∆Mk = Mk −Mk−1.
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Asymptotic results Central limit theorem for martingales

Central limit theorem fro martingales, continued

Theorem (Central Limit Theorem)
Then, we have

1
√

an
Mn

L−→ N (0, `).

Moreover, if ` > 0, we also have

√
an

( Mn

<M>n

) L−→ N (0, `−1).

−→ Lyapunov’s condition implies Lindeberg’s condition. ∃α > 2,
n∑

k=1

E[|∆Mk |α|Fk−1] = O(an) a.s.
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Statistical applications Autoregressive processes

Stable autoregressive processes

Consider the stable autoregressive process

Xn+1 = θXn + εn+1, |θ| < 1

where (εn) is a sequence of iid N (0, σ2) random variables. Assume
that X0 is independent of (εn) with N (0, σ2/(1− θ2)) distribution.

(Xn) is a centered stationary Gaussian process,
(Xn) is a positive recurrent process.

Goal
−→ Estimate the unknown parameter θ.
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Least squares estimator

Let θ̂n be the least squares estimator of the unknown parameter θ

θ̂n =

n∑
k=1

Xk Xk−1

n∑
k=1

X 2
k−1

.

We have

θ̂n − θ =

∑n
k=1 XkXk−1 − θ

∑n
k=1 X 2

k−1∑n
k=1 X 2

k−1
,

=

∑n
k=1 Xk−1(Xk − θXk−1)∑n

k=1 X 2
k−1

,

=

∑n
k=1 Xk−1εk∑n

k=1 X 2
k−1

.
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Least squares estimator

Consequently,

θ̂n − θ = σ2 Mn

<M>n

Mn =
n∑

k=1

Xk−1εk and <M>n= σ2
n∑

k=1

X 2
k−1.

The sequence (Mn) is a square integrable martingale such that

lim
n→∞

<M>n

n
= ` a.s.

where

` =
σ4

1− θ2 .
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Stable autoregressive processes

Theorem
We have the almost sure convergence

lim
n→∞

θ̂n = θ a.s.

In addition, we also have the asymptotic normality

√
n
(
θ̂n − θ

) L−→ N (0, 1− θ2).
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Stable autoregressive processes
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Stochastic approximation

Herbert Robbins
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Stochastic approximation

Jack Kiefer Jacob Wolfowitz
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Stochastic approximation
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Goal
−→ Find the value θ without any knowledge on the function f .
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Basic Idea

At time n, if you are able to say that f (θ̂n) > α, then increase the
value of θ̂n.
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Basic Idea

At time n, if you are able to say that f (θ̂n) < α, then decrease the
value of θ̂n.
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Statistical applications Stochastic algorithms

Stochastic approximation

Let (γn) be a decreasing sequence of positive real numbers

∞∑
n=1

γn = +∞ and
∞∑

n=1

γ2
n < +∞.

For the sake of simplicity, we shall make use of

γn =
1
n
.

Robbins-Monro algorithm

θ̂n+1 = θ̂n + γn+1

(
Tn+1 − α

)
where Tn+1 is a random variable such that E[Tn+1|Fn] = f (θ̂n).
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Statistical applications Stochastic algorithms

Stochastic approximation

Theorem (Robbins-Monro, 1951)
Assume that f is a decreasing function. Then, we have the almost sure
convergence

lim
n→∞

θ̂n = θ a.s.

In addition, as soon as −2f ′(θ) > 1, we also have the asymptotic
normality

√
n
(
θ̂n − θ

) L−→ N (0, ξ2(θ))

where the asymptotic variance ξ2(θ) can be explicitely calculated.
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Kernel density estimation

Let (Xn) be a sequence of iid random variables with unknown density
function f . Let K be a positive and bounded function, called kernel,
such that

∫
R

K (x) dx = 1,
∫
R

xK (x) dx = 0,

∫
R

K 2(x) dx = σ2.

Goal
−→ Estimate the unknown density function f .
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Choice of the Kernel

Uniform kernel
Ka(x) =

1
2a

I{|x |6a},

Epanechnikov kernel

Kb(x) =
3

4b

(
1− x2

b2

)
I{|x |6b},

Gaussian kernel

Kc(x) =
1

c
√

2π
exp
(
− x2

2c2

)
.
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Statistical applications Kernel density estimation

The Wolverton-Wagner estimator

We estimate the density function f by

The Wolverton-Wagner estimator

f̂n(x) =
1
n

n∑
k=1

Wk (x)

where

Wk (x) =
1
hk

K
(Xk − x

hk

)
.

The bandwidth (hn) is a sequence of positive real numbers, hn ↘ 0,
nhn →∞. For 0 < α < 1, we can make use of

hn =
1

nα
.
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Kernel density estimation

We have

f̂n(x)− f (x) =
1
n

n∑
k=1

Wk (x)− f (x),

=
1
n

n∑
k=1

(Wk (x)− E[Wk (x)]) +
1
n

n∑
k=1

(E[Wk (x)]− f (x)).

Consequently,

f̂n(x)− f (x) =
Mn(x)

n
+

Rn(x)

n
where

Mn(x) =
n∑

k=1

(Wk (x)− E[Wk (x)]).
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Kernel density estimation

We have

Mn(x) =
n∑

k=1

(Wk (x)− E[Wk (x)]),

<M(x)>n =
n∑

k=1

Var(Wk (x)).

The sequence (Mn(x)) is a square integrable martingale such that

lim
n→∞

<M(x)>n

n1+α
= ` a.s.

where

` =
σ2f (x)

1 + α
.
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Kernel density estimation

Theorem
For all x ∈ R, we have the pointwise almost sure convergence

lim
n→∞

f̂n(x) = f (x) a.s.

In addition, as soon as 1/5 < α < 1, we have, for all x ∈ R, the
asymptotic normality

√
nhn

(
f̂n(x)− f (x)

) L−→ N(0,
σ2f (x)

1 + α

)
.
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Kernel density estimation
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!!!! Many thanks for your attention !!!!
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