

Numerical schemes for hyperbolic equations

F. Coquel, M. Ribot, T. Goudon

Motivation

Many problems in physics have the form

$$
\text { of Conservation Laws } \quad \partial_{t} U+\nabla_{x} \cdot F(U)=0
$$

where

- U can be a scalar or a vector, thus $F(U)$ a vector or a matrix,
- x can be one- or multi-dimensional

$$
\text { or Balance Laws } \quad \partial_{t} U+\nabla_{x} \cdot F(U)=S(U) \text {. }
$$

Goal: To design a "good and efficient" numerical method

- mathematical and physical criterion
- non linearities
- conservation of equilibria $\left(\nabla_{x} \cdot F\left(U_{\text {eq }}\right)=S\left(U_{\text {eq }}\right)\right)$.

Example cadm

Íniaa

What does "conservation" mean?

Density of a passive tracer immersed in a fluid

- $\rho(t, x)=$ density of "particles":
$\int_{\Omega} \rho(t, y) \mathrm{d} y=$ Mass contained in Ω at time t
- $u(t, x)=$ (God-given) velocity of the fluid
- Mass balance

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega} \rho(t, y) \mathrm{d} y=-\int_{\partial \Omega} \rho(t, y) u(t, y) \cdot \nu(y) \mathrm{d} \sigma(y) .
$$

- Integrating by parts yields the PDE $\partial_{t} \rho+\nabla_{x} \cdot(\rho u)=0$.

[^0]
The cornerstone is the notion of flux

- Given a physical quantity U, its evolution in a domain Ω is driven by gain/loss through the boundaries described by a flux Q so that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega} U(t, y) \mathrm{d} y=\int_{\partial \Omega} Q(t, y) \cdot \nu(y) \mathrm{d} \sigma(y)
$$

- Then, a physical law prescribes how Q depends on U.
- Example: $U=$ temperature, Fourier's law: $Q=-k \nabla_{x} U$. It leads to the Heat Eq. $\partial_{t} U=\nabla_{x} \cdot(k \nabla U)$. But this eq. does not belong to the framework of Hyperbolic problems... Main differences: Infinite Speed of Propagation \& Regularizing Effects

Examples

Transport eq.
$\partial_{t} \rho+\nabla_{x} \cdot(\rho u)=0$
Kinetic eq. (Statistical physics)
Description in phase space $\partial_{t} f+\nabla_{x} \cdot(\xi f)=$ Interaction terms, with $f(t, x, \xi)$ depending on space and velocity.

Non linear models: traffic flows Lighthill-Whitham-Richards' model: $\rho=$ density of vehicles, the velocity is $u(t, x)=V_{0}(1-\rho)$ depends on ρ !

$$
\partial_{t} \rho+\partial_{x}\left(V_{0} \rho(1-\rho)\right)=0, \quad \text { the flux is } V_{0} \rho(1-\rho)
$$

Non linear models: Burgers eq.
A toy model for gas dynamics

$$
\partial_{t} \rho+\partial_{x}\left(\rho^{2} / 2\right)=0
$$

Examples Contn'd

Waves eq. (linear system)
$\partial_{t} u+c \partial_{x} v=0, \quad \partial_{t} v+c \partial_{x} u=0$

- leads to $\partial_{t t}^{2} u-c^{2} \partial_{x x}^{2} u=0$.
- Set $W_{ \pm}=u \pm v$, then $\partial_{t} W_{ \pm} \pm c \partial_{x} W_{ \pm}=0$ that is a system of transport eq. (or a kinetic model with 2 velocities).

Euler system

$$
\partial_{t}\left(\begin{array}{c}
\rho \\
\rho u \\
\rho E
\end{array}\right)+\partial_{x}\left(\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\left(\rho u^{2} / 2+p\right) u
\end{array}\right)=0
$$

with $E=u^{2} / 2+e, p=p(\rho, e)$. (For instance $p=2 \rho e$.)
Moto
A numerical scheme for a complex system should first work on simple equations!

The NON-CONSERVATIVE transport equation

$$
\partial_{t} \rho+u \partial_{x} \rho=0
$$

Define the Characteristics

Assume that $u: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is C^{1} and satisfies
$|u(t, x)| \leq C(1+|x|)$. Then we can apply the Cauchy-Lipschitz theorem and define the Characteristic Curves

$$
\frac{\mathrm{d}}{\mathrm{~d} s} X(s ; t, x)=u(s, X(s ; t, x)), \quad X(t ; t, x)=x
$$

$X(s ; t, x)$ is the position occupied at time s by a particle which starts from position x at time t.

Go back to the PDE

- Chain Rule:

$$
\frac{\mathrm{d}}{\mathrm{~d} s}[\rho(s, X(s ; t, x))]=\left(\partial_{t} \rho+u \cdot \nabla_{x} \rho\right)(s, X(s ; t, x))=0
$$

- Integrate between $s=0$ and $s=t: \rho(t, x)=\rho_{\text {Init }}(X(0 ; t, x))$.

The CONSERVATIVE transport equation

$$
\partial_{t} \rho+\partial_{x}(\rho u)=\partial_{t} \rho+u \partial_{x} \rho+\rho \partial_{x} u=0
$$

becomes $\frac{\mathrm{d}}{\mathrm{ds}}[\rho(s, X(s ; t, x))]=-\rho \partial_{x} u(s, X(s ; t, x))$.
Therefore $\rho(t, x)=\rho_{\text {Init }}(X(0 ; t, x)) J(0 ; t, x)$ with

$$
J(s ; t, x)=\exp \left(-\int_{s}^{t} \partial_{x} u(\sigma, X(\sigma ; t, x)) \mathrm{d} \sigma\right) .
$$

Interpretation: J is the jacobian of $y=X(s ; t, x)$

$$
\left\{\begin{array}{l}
\partial_{s}\left(\partial_{x} X(s ; t, x)\right)=\left(\partial_{x} u\right)(s, X(s ; t, x)) \partial_{x} X(s ; t, x) \\
\partial_{x} X(t ; t, x)=1
\end{array}\right.
$$

We deduce that

$$
\partial_{x} X(s ; t, x)=\exp \left(+\int_{t}^{s} \partial_{x} u(\sigma, X(\sigma ; t, x) \mathrm{d} \sigma)=J(s ; t, x)\right.
$$

Fundamental observations

- Maximum principle: for the non-conservative case if $0 \leq \rho_{\text {Init }}(x) \leq M$, then $0 \leq \rho(t, x) \leq M$; for the conservative case if $\rho_{\text {Init }}(x) \geq 0$ then $\rho(t, x) \geq 0$.
- Mass conservation: for the conservative case

$$
\int_{\mathbb{R}} \rho(t, x) \mathrm{d} x=\int_{\mathbb{R}} \rho_{\text {Init }}(y) \mathrm{d} y .
$$

- For $\rho_{\text {Init }} \in C^{1}$, we get solutions in C^{1} (no gain of regularity)
- The discussion extends to the multi-dimensional framework.
- The formulae generalize to data in $L^{p}(\mathbb{R}), 1 \leq p \leq \infty$: it provides a (unique) solution in $C^{0}\left([0, T], L^{p}(\mathbb{R})\right)$ for $1 \leq p<\infty$, in $C^{0}\left([0, T], L^{\infty}(\mathbb{R})-\right.$ weak $\left.-\star\right)$ for $p=\infty$.

Hints for proving uniqueness (Conservative case)

Weak solution
For any trial function $\phi \in C_{c}^{1}([0, \infty) \times \mathbb{R})$,

$$
-\int_{0}^{\infty} \int_{\mathbb{R}} \rho(t, x)\left(\partial_{t} \phi(t, x)+u(t, x) \partial_{x} \phi(t, x)\right) \mathrm{d} x \mathrm{~d} t-\int_{\mathbb{R}} \rho_{\text {Init }}(x) \phi(0, x) \mathrm{d} x=0
$$

Hölmgren's method
Let $\psi \in C_{c}^{\infty}((0,+\infty) \times \mathbb{R}) . \psi(t, \cdot)=0$ for $t \geq T$. Solve $\partial_{t} \phi+u \partial_{x} \phi=\psi$ with final data $\left.\phi\right|_{t=T}=0$. Precisely, we have

$$
\begin{gathered}
\phi(t, x)=\int_{T}^{t} \psi(\sigma, X(\sigma ; t, x)) \mathrm{d} \sigma \in C_{c}^{1}([0,+\infty) \times \mathbb{R}) \\
\text { thus } \quad \int_{0}^{\infty} \int_{\mathbb{R}} \rho(t, x) \psi(t, x) \mathrm{d} x \mathrm{~d} t=0
\end{gathered}
$$

Fundamental example

Linear Transport with Constant Speed
Let $c \in \mathbb{R}$. Consider the PDE

$$
\partial_{t} \rho+c \partial_{x} \rho=\partial_{t} \rho+\partial_{x}(c \rho)=0
$$

Exact solution is known: $\rho(t, x)=\rho_{\text {Init }}(x-c t)$.

To be compared with the solution of the heat equation $\partial_{t} \rho=k \partial_{x x}^{2} \rho$ which is given by

$$
\rho(t, x)=\frac{1}{\sqrt{4 \pi t / k}} \int_{\mathbb{R}} e^{-k|x-y|^{2} /(4 t)} \rho_{\text {Init }}(y) \mathrm{d} y
$$

(Infinite speed of propagation and regularization of the data.)
Exercise: Find the solution of $\partial_{t} \rho_{\epsilon}+\partial_{x}\left(c \rho_{\epsilon}\right)=\epsilon \partial_{x x}^{2} \rho_{\epsilon}$ and its limit as $\epsilon \rightarrow 0$.

Behavior of different schemes (initial data=step, speed >0)

Nonlinear problems

Linear transport: For C^{k} data, we get a C^{k} solution.
Let us try to reproduce the reasoning for a non linear problem:

$$
\text { Burgers eq. } \quad \partial_{t} \rho+\partial_{x} \rho^{2} / 2=0=\left(\partial_{t}+\rho \partial_{x}\right) \rho
$$

We still get $\rho(t, x)=\rho_{\text {Init }}(X(0 ; t, x))$. BUT now the characteristics depend on the solution itself

$$
\frac{\mathrm{d}}{\mathrm{~d} s} X(s ; t, x)=\rho(s, X(s ; t, x)), \quad X(t ; t, x)=x
$$

Singularities might appear in finite time
Let $v(t, x)=\partial_{x} \rho(t, x):\left(\partial_{t}+\rho \partial_{x}\right) v=-v^{2}$. Along characteristics we recognize the Ricatti eq.

$$
\frac{\mathrm{d}}{\mathrm{~d} s}[v(s, X(s ; t, x))]=-v^{2}(s, X(s ; t, x))
$$

We get $v(t, x)=\left(t+\frac{1}{\partial_{x} \rho_{\text {Init }}(X(0 ; t, x))}\right)^{-1}$. Blow up when

$$
\partial_{x} \rho_{\text {Init }} \leq 0
$$

Loss of regularity for nonlinear problems

- ρ remains bounded but $\partial_{x} \rho$ becomes singular
- Characteristics not well-defined:
Cauchy-Lipschitz th. does not apply

Another way to think of the loss of regularity

- Sol constant along characteristics
- $\frac{\mathrm{d}}{\mathrm{d} t} X(t ; 0, x)=f^{\prime}\left((\rho(t ; X(t ; 0, x)))=f^{\prime}\left(\rho_{\text {Init }}(x)\right)\right.$ hence $X(t ; 0, x)=x+t f^{\prime}\left(\rho_{\text {Init }}(x)\right)=\phi_{t}(x)$
- To find $\rho(t, x)$ by means of $\rho_{\text {Init }}(x)$, one needs to invert $x \mapsto \phi_{t}(x)$. But $\phi_{t}^{\prime}(x)=1+t f^{\prime \prime}\left(\rho_{\text {Init }}(x)\right) \rho_{\text {Init }}^{\prime}(x)$ might
Ínia change sign.

(We need) Weak solution for Scalar Conservation Laws

Definition
For any trial function $\phi \in C_{c}^{1}([0, \infty) \times \mathbb{R})$,
$-\int_{0}^{\infty} \int_{\mathbb{R}}\left(\rho \partial_{t} \phi+f(\rho) \partial_{x} \phi\right)(t, x) \mathrm{d} x \mathrm{~d} t-\int_{\mathbb{R}} \rho_{\text {Init }}(x) \phi(0, x) \mathrm{d} x=0$.

Rankine-Hugoniot conditions
Discontinuities satisfy $\llbracket f(\rho) \rrbracket=\dot{s} \llbracket \rho \rrbracket$.
Non uniqueness
Burgers eq. with $\rho_{\text {Init }}=0: \rho_{1}(t, x)=0$ and $\rho_{2}(t, x)=\mathbf{1}_{0<x<t / 2}-\mathbf{1}_{-t / 2<x<0}$ are both weak solutions!

How to select among weak sol.: entropy criterion Observe that for smooth solutions of $\partial_{t} \rho+\partial_{x} f(\rho)=0$, we have

$$
\partial_{t} \eta(\rho)+\partial_{x} q(\rho)=0, \quad q^{\prime}(z)=\eta^{\prime}(z) f^{\prime}(z) .
$$

But, discontinuous solutions DO NOT verify this relation. Det
Definition
A weak solution ρ is said to be entropic, if, for any convex function η, we have
$-\int_{0}^{\infty} \int_{\mathbb{R}}\left(\eta(\rho) \partial_{t} \phi+q(\rho) \partial_{x} \phi\right)(t, x) \mathrm{d} x \mathrm{~d} t-\int_{\mathbb{R}} \eta\left(\rho_{\text {Init }}\right)(x) \phi(0, x) \mathrm{d} x \leq 0$
for any non negative trial function $\phi \geq 0$. (" $\partial_{t} \eta(\rho)+\partial_{x} q(\rho) \leq 0$ ")
Kruzkov's Theorem
The SCL admits a unique weak-entropic solution with
$\rho \in C^{0}\left([0, T] ; L_{\text {loc }}^{1}(\mathbb{R})\right)$. \subset ExBu

Admissible discontinuities

Go back to the Rankine-Hugoniot condition: $\llbracket q(u) \rrbracket \leq \dot{s} \llbracket \eta(u) \rrbracket$. Use Kruzkhov's entropies

$$
\eta_{k}(u)=|u-k|, \quad q_{k}(u)=(f(u)-f(k)) \operatorname{sgn}(u-k)
$$

- with $k<\min \left(u_{\ell}, u_{r}\right)$, and $k>\max \left(u_{\ell}, u_{r}\right)$: back to RH.
- with $k=\theta u_{\ell}+(1-\theta) u_{r}$ it leads to

$$
\operatorname{sgn}\left(u_{r}-u_{\ell}\right)\left(\theta f\left(u_{\ell}\right)+(1-\theta) f\left(u_{r}\right)-f\left(\theta u_{\ell}+(1-\theta) u_{r}\right)\right) \leq 0
$$

Letting $\theta \rightarrow 0, \theta \rightarrow 1$, it yields the Lax criterion

$$
f^{\prime}\left(u_{r}\right) \leq \dot{s} \leq f^{\prime}\left(u_{\ell}\right)
$$

- In particular, when the flux f is convex, admissible discontinuities satisfy $u_{r} \leq u_{\ell}$. © ExBu

Entropy and vanishing viscosity approach

- Owing to regularizing effects, one can prove the existence of solutions for the regularized problem

$$
\partial_{t} \rho_{\epsilon}+\partial_{x} f\left(\rho_{\epsilon}\right)=\epsilon \partial_{x x}^{2} \rho_{\epsilon}
$$

- Compare Euler and Navier-Stokes: ϵ plays the role of "viscosity". Besides, "good" numerical schemes induce such kind of regularization.
- Entropy estimates

$$
\begin{aligned}
\partial_{t} \eta\left(\rho_{\epsilon}\right)+\partial_{x} q\left(\rho_{\epsilon}\right) & =\epsilon \eta^{\prime}\left(\rho_{\epsilon}\right) \partial_{x \times}^{2} \rho_{\epsilon} \\
& =\epsilon \partial_{x}\left(\eta^{\prime}\left(\rho_{\epsilon}\right) \partial_{x} \rho_{\epsilon}\right)-\epsilon \eta^{\prime \prime}\left(\rho_{\epsilon}\right)\left|\partial_{x} \rho_{\epsilon}\right|^{2}
\end{aligned}
$$

leads to

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int \eta\left(\rho_{\epsilon}\right) \mathrm{d} x+\epsilon \int \eta^{\prime \prime}\left(\rho_{\epsilon}\right)\left|\partial_{x} \rho_{\epsilon}\right|^{2} \mathrm{~d} x=0
$$

- In particular, with $\eta(\rho)=\rho^{2} / 2$, we deduce that ρ_{ϵ} is bounded in $L^{\infty}\left(0, T ; L^{2}(\mathbb{R})\right)$,

Entropy and vanishing viscosity approach, Contn'd

- We know that

$$
\begin{gathered}
\rho_{\epsilon} \text { is bounded in } L^{\infty}\left(0, T ; L^{2}(\mathbb{R})\right) \\
\sqrt{\epsilon} \partial_{\times} \rho_{\epsilon} \text { is bounded in } L^{2}((0, T) \times \mathbb{R})
\end{gathered}
$$

- Similarly we can obtain L^{∞} estimates (use for instance $\left.\eta(\rho)=\left[\rho-\left\|\rho_{\text {Init }}\right\|_{\infty}\right]_{-}^{2}\right)$
- Therefore

$$
\partial_{t} \rho_{\epsilon}+\partial_{x} f\left(\rho_{\epsilon}\right)=\sqrt{\epsilon} \partial_{x}\left(\sqrt{\epsilon} \partial_{x} \rho_{\epsilon}\right) \underset{\epsilon \rightarrow 0}{ } 0
$$

and, on the same token,

$$
\partial_{t} \eta\left(\rho_{\epsilon}\right)+\partial_{x} q\left(\rho_{\epsilon}\right)=\underbrace{\sqrt{\epsilon} \partial_{x}\left(\sqrt{\epsilon} \eta^{\prime}\left(\rho_{\epsilon}\right) \partial_{x} \rho_{\epsilon}\right)}_{{ }_{\epsilon \rightarrow 0}} \underbrace{-\epsilon \eta^{\prime \prime}\left(\rho_{\epsilon}\right)\left|\partial_{x} \rho_{\epsilon}\right|^{2}}_{\leq 0}
$$

Discontinuous solutins and entropies

For discontinuous solutions, we make the following quantity appear (by reproducing the computations that lead to RH relations)

$$
\begin{aligned}
& \llbracket \eta(\rho) \rrbracket \dot{s}-\llbracket q(\rho) \rrbracket=\left(\eta\left(\rho_{r}\right)-\eta\left(\rho_{\ell}\right)\right) \dot{s}-\left(q\left(\rho_{r}\right)-q\left(\rho_{\ell}\right)\right) \\
& =\int_{\rho_{\ell}}^{\rho_{r}} \eta^{\prime}(z) \dot{s} \mathrm{~d} z-\int_{\rho_{\ell}}^{\rho_{r}} q^{\prime}(z) \dot{s} \mathrm{~d} z \\
& =\int_{\rho_{\ell}}^{\rho_{r}} \eta^{\prime}(z) \dot{s} \mathrm{~d} z-\int_{\rho_{\ell}}^{\rho_{r}} \eta^{\prime} f^{\prime}(z) \mathrm{d} z \\
& =-\int_{\rho_{\ell}}^{\rho_{r}} \eta^{\prime \prime}(z)\left(\frac{f\left(\rho_{r}\right)-f\left(\rho_{\ell}\right)}{\rho_{r}-\rho_{\ell}}\left(z-\rho_{\ell}\right)-\left(f(z)-f\left(\rho_{\ell}\right)\right) \mathrm{d} z\right. \\
& =-\int_{\rho_{\ell}}^{\rho_{r}} \eta^{\prime \prime}(z)\left(z-\rho_{\ell}\right)\left(\frac{f\left(\rho_{r}\right)-f\left(\rho_{\ell}\right)}{\rho_{r}-\rho_{\ell}}-\frac{f(z)-f\left(\rho_{\ell}\right)}{z-\rho_{\ell}}\right) \mathrm{d} z
\end{aligned}
$$

Since η is convex, $z \mapsto \eta^{\prime \prime}(z)\left(z-\rho_{\ell}\right)$ has a constant sign on the interval I defined by ρ_{r} and ρ_{ℓ}. Assuming that f is convex or concave on I, the integrand has a constant sign and $\llbracket \eta(\rho) \rrbracket \dot{s}-\llbracket q(\rho) \rrbracket$ vanishes iff $f(z)-f\left(\rho_{\ell}\right)=\frac{f\left(\rho_{r}\right)-f\left(\rho_{\ell}\right)}{\rho_{r}-\rho_{\ell}}\left(z-\rho_{\ell}\right)$ on l. It would mean that f is an affine function on l, a case that we exclude by assumption

[^0]: Moto
 To design numerical schemes by mimicking the physical derivation of the equation (Finite Volume Schemes)

