Num. \#1: Ordinary differential equations (ODEs)

The aim of this session consists in solving ordinary differential equations (ODEs) of type :

$$
\begin{equation*}
\partial_{t} u=f(t, u) \tag{la}
\end{equation*}
$$

where the unknown is $u:[0, T] \longrightarrow \mathbb{R}^{d}, d \in \mathbb{N} . f:[0, T] \times \mathbb{R}^{d} \longrightarrow \mathbb{R}^{d}$ denotes a given function assumed to be continuous and Lipschitz continuous with respect to the state variable, in order to ensure the hypotheses of Cauchy-Lipschitz Theorem. We complement this equation with a given initial datum :

$$
\begin{equation*}
u(0)=a \in \mathbb{R}^{d} \tag{lb}
\end{equation*}
$$

We discretize the time interval $[0, T]$ with a constant time step Δt and we consider the discrete times :

$$
t^{n}=n \Delta t, n \in\left\{0, \ldots, N_{t}\right\} .
$$

We denote by u^{n} the discrete approximation of the exact solution u at time t_{n}.
We study several methods to discretize equation (1a) with initial condition (1b) :

- Forward Euler method :

$$
u^{n+1}=u^{n}+\Delta t f\left(t^{n}, u^{n}\right) .
$$

- Midpoint (or Runge-Kutta 2) method :

$$
u^{n+1}=u^{n}+\Delta t f\left(t^{n}+\frac{\Delta t}{2}, u^{n}+\frac{\Delta t}{2} f\left(t^{n}, u^{n}\right)\right)
$$

which can also be written as :

$$
\begin{aligned}
& u^{n+1 / 2}=u^{n}+\frac{\Delta t}{2} f\left(t^{n}, u^{n}\right) \\
& u^{n+1}=u^{n}+\Delta t f\left(t^{n}+\frac{\Delta t}{2}, u^{n+1 / 2}\right)
\end{aligned}
$$

- Heun method :

$$
\begin{aligned}
& p_{1}^{n}=f\left(t^{n}, u^{n}\right) \\
& u^{n+1 / 2}=u^{n}+\Delta t p_{1}^{n} \\
& p_{2}^{n}=f\left(t^{n}+\Delta t, u^{n+1 / 2}\right) \\
& u^{n+1}=u^{n}+\frac{\Delta t}{2}\left(p_{1}^{n}+p_{2}^{n}\right) .
\end{aligned}
$$

- Runge-Kutta 4 method :

$$
\begin{aligned}
p_{1}^{n} & =f\left(t^{n}, u^{n}\right) \\
p_{2}^{n} & =f\left(t^{n}+\frac{\Delta t}{2}, u^{n}+\frac{\Delta t}{2} p_{1}^{n}\right) \\
p_{3}^{n} & =f\left(t^{n}+\frac{\Delta t}{2}, u^{n}+\frac{\Delta t}{2} p_{2}^{n}\right) \\
p_{4}^{n} & =f\left(t^{n}+\Delta t, u^{n}+\Delta t p_{3}^{n}\right) \\
u^{n+1} & =u^{n}+\frac{\Delta t}{6}\left(p_{1}^{n}+2 p_{2}^{n}+2 p_{3}^{n}+p_{4}^{n}\right)
\end{aligned}
$$

Exercise

1. Implement (with Matlab) the resolution of the following equation :

$$
\begin{equation*}
\partial_{t} u=1-u^{2} \text { with } u(0)=0 \tag{2}
\end{equation*}
$$

using the four methods presented above and a time step $\Delta t=0.1$ until time $T=1$.
2. Remark that the exact solution of equation (2) can be computed exactly and is equal to :

$$
u(t)=\tanh (t)=\frac{\mathrm{e}^{2 t}-1}{\mathrm{e}^{2 t}+1}
$$

Enhance the convergence property of the Heun method by letting Δt go to 0 .
3. We still consider equation (2). Compare the order of the four methods by plotting a graph in a log-log scale, which represents the evolution of L^{2} error with respect to the time step Δt.
4. Same question using now the following equation

$$
\begin{equation*}
\partial_{t} u=\mathrm{e}^{-u}-1+u \text { with } u(0)=1, \tag{3}
\end{equation*}
$$

for which no exact solution is known. The error will be defined as the L^{2} norm of the difference between the solution computed with a time step Δt and the solution computed with a time step $\frac{\Delta t}{2}$.
5. Implement the resolution of the following system of equations, called the Lorenz system :

$$
\left\{\begin{array}{l}
\partial_{t} x=10(y-x) \tag{4}\\
\partial_{t} y=x(28-z)-y \\
\partial_{t} z=x y-\frac{8}{3} z
\end{array}\right.
$$

using the four methods presented above. The parameters will be : $\left(x_{0}, y_{0}, z_{0}\right)=(1,1,1), T=30$ and $\Delta t=0.001$.

