
IFCAM SUMMER SCHOOL - BANGALORE

Num. #1: ordinary differential equations (ODEs) - Correction

The programs are written with the MATLAB software.

For the exercise, the following functions are needed

• Euler method :

% T is the final time, dt the time step

% uinit is the initial value, f is the function of the ODE

% Euler method

function u=Euler(T,dt,uinit,f)

% Time discretization vector

time=0:dt:T;

Nt=length(time);

% Initial datum

u(1)=uinit;

% Euler method

for i=1:Nt-1,

u(i+1)=u(i)+dt*f(u(i));

end

% Plot a graphic

plot(time,u);

• Midpoint (or Runge-Kutta 2) method :

% RK2 method

function[u]=RK2(T,dt,uinit,f)

% Time discretization vector

time=0:dt:T;

Nt=length(time);

% Initial datum

u(1)=uinit;

% RK2 method

for i=1:Nt-1,

v=u(i)+dt*f(u(i))/2;

u(i+1)=u(i)+dt*f(v);

end

% Plot a graphic

plot(time,u,’r’);

• Heun method :

F. Coquel, T. Goudon, M. Ribot 1/8 Numerical schemes for hyperbolic equations



IFCAM SUMMER SCHOOL - BANGALORE

% Heun method

function[u]=Heun(T,dt,uinit,f)

% Time discretization vector

time=0:dt:T;

Nt=length(time);

% Initial datum

u(1)=uinit;

% Heun method

for i=1:Nt-1,

p1=f(u(i));

p2=f(u(i)+dt*p1);

u(i+1)=u(i)+dt*(p1+p2)/2;

end

% Plot a graphic

plot(time,u,’g’);

• Runge-Kutta 4 method

% RK4 method

function[u]=RK4(T,dt,uinit,f)

% Time discretization vector

time=0:dt:T;

Nt=length(time);

% Initial datum

u(1)=uinit;

% Heun method

for i=1:Nt-1,

p1=f(u(i));

p2=f(u(i)+dt*p1/2);

p3=f(u(i)+dt*p2/2);

p4=f(u(i)+dt*p3);

u(i+1)=u(i)+dt*(p1+2*p2+2*p3+p4)/6;

end

% Plot a graphic

plot(time,u,’k’);

• Forward Euler method for a system :

% T is the final time, dt the time step

% uinit is the initial value, f is the function of the ODE

F. Coquel, T. Goudon, M. Ribot 2/8 Numerical schemes for hyperbolic equations



IFCAM SUMMER SCHOOL - BANGALORE

% The output u is a matrix

% Column n corresponds to a vector at a discrete time t^n

% Euler method

function[u]=EulerSystem(T,dt,uinit,f)

% Time discretization vector

time=0:dt:T;

Nt=length(time);

% Initial datum

u(:,1)=uinit;

% Euler method

for i=1:Nt-1,

u(:,i+1)=u(:,i)+dt*f(u(:,i));

end

• Midpoint (or Runge-Kutta 2) method for a system :

% RK2 method

function[u]=RK2System(T,dt,uinit,f)

% Time discretization vector

time=0:dt:T;

Nt=length(time);

% Initial datum

u(:,1)=uinit;

% RK2 method

for i=1:Nt-1,

v=u(:,i)+dt*f(u(:,i))/2;

u(:,i+1)=u(:,i)+dt*f(v);

end

• Heun method for a system :

% Heun method

function[u]=HeunSystem(T,dt,uinit,f)

% Time discretization vector

time=0:dt:T;

Nt=length(time);

% Initial datum

u(:,1)=uinit;

% Heun method

for i=1:Nt-1,

F. Coquel, T. Goudon, M. Ribot 3/8 Numerical schemes for hyperbolic equations



IFCAM SUMMER SCHOOL - BANGALORE

p1=f(u(:,i));

p2=f(u(:,i)+dt*p1);

u(:,i+1)=u(:,i)+dt*(p1+p2)/2;

end

• Runge-Kutta 4 method for a system :

% RK4 method

function[u]=RK4System(T,dt,uinit,f)

% Time discretization vector

time=0:dt:T;

Nt=length(time);

% Initial datum

u(:,1)=uinit;

% Heun method

for i=1:Nt-1,

p1=f(u(:,i));

p2=f(u(:,i)+dt*p1/2);

p3=f(u(:,i)+dt*p2/2);

p4=f(u(:,i)+dt*p3);

u(:,i+1)=u(:,i)+dt*(p1+2*p2+2*p3+p4)/6;

end

Exercise

1. Implement (with MATLAB) the resolution of the following equation :

∂t u = 1−u2 with u(0) = 0 (1)

using the four methods presented above and a time step ∆t = 0.1 until time T = 1.

% First example

T=1;

dt=0.1;

f=inline(’1-x^2’);

uinit=0;

Euler(T,dt,uinit,f)

RK2(T,dt,uinit,f)

Heun(T,dt,uinit,f)

RK4(T,dt,uinit,f)

F. Coquel, T. Goudon, M. Ribot 4/8 Numerical schemes for hyperbolic equations



IFCAM SUMMER SCHOOL - BANGALORE

2. Remark that the exact solution of equation (1) can be computed exactly and is equal to :

u(t ) = t anh(t ) = e2t −1

e2t +1
.

Enhance the convergence property of the Heun method by letting ∆t go to 0.

clear;

uinit=0;

f=inline(’1-x^2’);

% Different time steps

T=1;

TimeStep=[0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001];

for k=1:length(TimeStep),

dt=TimeStep(k);

time=0:dt:T;

% Exact solution

uexact=(exp(2*time)-ones(size(time)))./(exp(2*time)+ones(size(time)));

% Approximated solution

u=Heun(T,dt,uinit,f);

% error

Error(k)=sqrt(dt)*norm(uexact-u);

end

% Display the error

format long;

Error

3. We still consider equation (1). Compare the order of the four methods by plotting a graph in a log-log

scale, which represents the evolution of L2 error with respect to the time step ∆t .

clear;

uinit=0;

f=inline(’1-x^2’);

% Different time steps

T=1;

TimeStep=[0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001];

for k=1:length(TimeStep),

dt=TimeStep(k);

time=0:dt:T;

% Exact solution

uexact=(exp(2*time)-ones(size(time)))./(exp(2*time)+ones(size(time)));

% Approximated solutions

F. Coquel, T. Goudon, M. Ribot 5/8 Numerical schemes for hyperbolic equations



IFCAM SUMMER SCHOOL - BANGALORE

uEuler=Euler(T,dt,uinit,f);

uHeun=Heun(T,dt,uinit,f);

uRK2=RK2(T,dt,uinit,f);

uRK4=RK4(T,dt,uinit,f);

% errors between exact and approximated solutions

ErrorEuler(k)=sqrt(dt)*norm(uexact-uEuler);

ErrorHeun(k)=sqrt(dt)*norm(uexact-uHeun);

ErrorRK2(k)=sqrt(dt)*norm(uexact-uRK2);

ErrorRK4(k)=sqrt(dt)*norm(uexact-uRK4);

end

% Clear the figure

clf;

% Graph of the errors

loglog(TimeStep,ErrorEuler)

hold on;

loglog(TimeStep,ErrorHeun,’r’)

loglog(TimeStep,ErrorRK2,’g’)

loglog(TimeStep,ErrorRK4,’k’)

% Legend for the graph

legend(’Euler’,’Heun’,’RK2’,’RK4’);

4. Same question using now the following equation

∂t u = e−u −1+u with u(0) = 1, (2)

for which no exact solution is known. The error will be defined as the L2 norm of the difference

between the solution computed with a time step∆t and the solution computed with a time step
∆t

2
.

clear;

uinit=1;

f=inline(’exp(-x)-1+x’);

% Different time steps

T=1;

TimeStep=0.1*0.5.^(0:6);

NumberStep=length(TimeStep);

% Computation for the 1st time step

dt=TimeStep(1);

uEuler=Euler(T,dt,uinit,f);

uHeun=Heun(T,dt,uinit,f);

uRK2=RK2(T,dt,uinit,f);

uRK4=RK4(T,dt,uinit,f);

F. Coquel, T. Goudon, M. Ribot 6/8 Numerical schemes for hyperbolic equations



IFCAM SUMMER SCHOOL - BANGALORE

for k=2:NumberStep,

dt=TimeStep(k);

% Save previous approximated solutions for dt

uEulerOld=uEuler;

uHeunOld=uHeun;

uRK2Old=uRK2;

uRK4Old=uRK4;

% Approximated solutions for dt/2

uEuler=Euler(T,dt,uinit,f);

uHeun=Heun(T,dt,uinit,f);

uRK2=RK2(T,dt,uinit,f);

uRK4=RK4(T,dt,uinit,f);

% errors between approximated solutions

ErrorEuler(k-1)=sqrt(dt)*norm(uEulerOld-uEuler(1:2:end));

ErrorHeun(k-1)=sqrt(dt)*norm(uHeunOld-uHeun(1:2:end));

ErrorRK2(k-1)=sqrt(dt)*norm(uRK2Old-uRK2(1:2:end));

ErrorRK4(k-1)=sqrt(dt)*norm(uRK4Old-uRK4(1:2:end));

end

% Clear the figure

clf;

% Graph of the errors

loglog(TimeStep(1:NumberStep-1),ErrorEuler’)

hold on;

loglog(TimeStep(1:NumberStep-1),ErrorHeun’,’r’)

loglog(TimeStep(1:NumberStep-1),ErrorRK2’,’g’)

loglog(TimeStep(1:NumberStep-1),ErrorRK4’,’b’)

% Legend for the graph

legend(’Euler’,’Heun’,’RK2’,’RK4’);

5. Implement the resolution of the following system of equations, called the Lorenz system :
∂t x = 10(y −x)

∂t y = x(28− z)− y

∂t z = x y − 8

3
z

(3)

using the four methods presented above.

clear;

T=30;

dt=0.001;

% Initial datum for a system

F. Coquel, T. Goudon, M. Ribot 7/8 Numerical schemes for hyperbolic equations



IFCAM SUMMER SCHOOL - BANGALORE

xinit=1;yinit=1;zinit=1;

uinit=[xinit;yinit;zinit];

% Function for a system

f=inline(’[10*(u(2)-u(1));u(1)*(28-u(3))-u(2);u(1)*u(2)-8*u(3)/3]’,’u’);

u=EulerSystem(T,dt,uinit,f);

%RK2System(T,dt,uinit,f);

%HeunSystem(T,dt,uinit,f);

%RK4System(T,dt,uinit,f);

% Plot a graphic

clf;

plot3(u(1,:),u(2,:),u(3,:))

F. Coquel, T. Goudon, M. Ribot 8/8 Numerical schemes for hyperbolic equations


