IFCAM SUMMER SCHOOL - BANGALORE

Num. #1: ordinary differential equations (ODEs) - Correction

The programs are written with the MATLAB software.

For the exercise, the following functions are needed

¢ Euler method :

% T is the final time, dt the time step

% uinit is the initial value, f is the function of the ODE

% Euler method

function u=Euler(T,dt,uinit,f)

% Time discretization vector

time=0:dt:T;
Nt=length(time) ;
% Initial datum

u(1)=uinit;

% Euler method

for i=1:Nt-1,

u(i+1)=u(i)+dt*f (u(i));

end
% Plot a graphic
plot(time,u);

* Midpoint (or Runge-Kutta 2) method :

% RK2 method

function[u]=RK2(T,dt,uinit,f)

% Time discretization vector

time=0:dt:T;
Nt=length(time) ;
% Initial datum
u(1l)=uinit;
% RK2 method
for i=1:Nt-1,

v=u(i)+dt*f(u(i))/2;
u(i+1)=u(i)+dt*xf(v);

end
% Plot a graphic
plot(time,u,’r’);

¢ Heun method :

E Coquel, T. Goudon, M. Ribot

1/8

Numerical schemes for hyperbolic equations

IFCAM SUMMER SCHOOL - BANGALORE

% Heun method
function[u]l=Heun(T,dt,uinit,f)
% Time discretization vector
time=0:dt:T;
Nt=length(time) ;
% Initial datum
u(1l)=uinit;
% Heun method
for i=1:Nt-1,
pl=f(u(i));
p2=f (u(i)+dt*pl);

u(i+1)=u(i)+dt*(p1+p2)/2;

end
% Plot a graphic
plot(time,u,’g’);

* Runge-Kutta 4 method

% RK4 method
function[u]=RK4(T,dt,uinit,f)
% Time discretization vector
time=0:dt:T;
Nt=length(time) ;
% Initial datum
u(1l)=uinit;
% Heun method
for i=1:Nt-1,
pl=f(u(i));
p2=f (u(i)+dt*pl1/2);
p3=f (u(i)+dt*p2/2);
p4=f (u(i)+dt*p3);

u(i+1)=u(i)+dt* (pl+2*p2+2*p3+p4d) /6

end
% Plot a graphic
plot(time,u,’k’);

* Forward Euler method for a system :

% T is the final time, dt the time step

% uinit is the initial value, f is the function of the ODE

E Coquel, T. Goudon, M. Ribot

2/8

Numerical schemes for hyperbolic equations

IFCAM SUMMER SCHOOL - BANGALORE

% The output u is a matrix
% Column n corresponds to a vector at a discrete time t"n
% Euler method
function[u]=EulerSystem(T,dt,uinit,f)
% Time discretization vector
time=0:dt:T;
Nt=length(time) ;
% Initial datum
u(:,1)=uinit;
% Euler method
for i=1:Nt-1,
u(:,i+1)=u(:,i)+dt*xf(u(:,1i));

end

* Midpoint (or Runge-Kutta 2) method for a system :

% RK2 method
function[u]=RK2System(T,dt,uinit,f)
% Time discretization vector
time=0:dt:T;
Nt=length(time) ;
% Initial datum
u(:,1)=uinit;
% RK2 method
for i=1:Nt-1,
v=u(:,i)+dt*f(u(:,i))/2;
u(:,i+1)=u(:,i)+dt*f(v);

end

* Heun method for a system :

% Heun method
function[u]=HeunSystem(T,dt,uinit,f)
% Time discretization vector

time=0:dt:T;
Nt=length(time) ;
% Initial datum
u(:,1)=uinit;
% Heun method
for i=1:Nt-1,

E Coquel, T. Goudon, M. Ribot 3/8 Numerical schemes for hyperbolic equations

IFCAM SUMMER SCHOOL - BANGALORE

pl=f(u(:,1));
p2=f (u(:,i)+dt*pl);
u(:,i+1)=u(:,i)+dt*(p1+p2)/2;

end

* Runge-Kutta 4 method for a system :

% RK4 method
function[u]=RK4System(T,dt,uinit,f)
% Time discretization vector

time=0:dt:T;

Nt=length(time) ;

% Initial datum
u(:,1)=uinit;
% Heun method

for i=1:Nt-1,
pi=f(u(:,1));
p2=f (u(:,i)+dt*pl/2);
p3=f(u(:,i)+dt*p2/2);
p4=f (u(:,1i)+dt*p3);
u(:,i+1)=u(:,i)+dt*(pl+2xp2+2+p3+p4)/6;

end

Exercise

1. Implement (with MATLAB) the resolution of the following equation :
0:u=1-u*with u(0) =0 1)
using the four methods presented above and a time step At = 0.1 until time 7 = 1.

% First example
T=1;

dt=0.1;
f=inline(’1-x"27);
uinit=0;
Euler(T,dt,uinit,f)
RK2(T,dt,uinit,f)
Heun(T,dt,uinit,f)
RK4(T,dt,uinit,f)

E Coquel, T. Goudon, M. Ribot 4/8 Numerical schemes for hyperbolic equations

IFCAM SUMMER SCHOOL - BANGALORE

2. Remark that the exact solution of equation (1) can be computed exactly and is equal to :

el -1

u(t) = tanh(t) = m

Enhance the convergence property of the Heun method by letting At go to 0.

clear;
uinit=0;
f=inline(’1-x~2’);
% Different time steps
T=1,;
TimeStep=[0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001];
for k=1:length(TimeStep),
dt=TimeStep(k);
time=0:dt:T;
% Exact solution
uexact=(exp(2*time)-ones(size(time))) ./ (exp(2*time)+ones(size(time)));
% Approximated solution
u=Heun(T,dt,uinit,f);
% error
Error(k)=sqrt(dt)*norm(uexact-u) ;
end
% Display the error
format long;

Error

3. Westill consider equation (1). Compare the order of the four methods by plotting a graph in a log-log

scale, which represents the evolution of L? error with respect to the time step At.

clear;
uinit=0;
f=inline(’1-x"2%);
% Different time steps
T=1;
TimeStep=[0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001];
for k=1:length(TimeStep),
dt=TimeStep (k) ;
time=0:dt:T;
% Exact solution
uexact=(exp(2*time)-ones(size(time))) ./ (exp(2*time)+ones(size(time)));

% Approximated solutions

E Coquel, T. Goudon, M. Ribot 5/8 Numerical schemes for hyperbolic equations

IFCAM SUMMER SCHOOL - BANGALORE

uEuler=Euler(T,dt,uinit,f);
uHeun=Heun(T,dt,uinit,f);
uRK2=RK2(T,dt,uinit,f);
uRK4=RK4(T,dt,uinit,f);
% errors between exact and approximated solutions
ErrorEuler (k)=sqrt (dt)*norm(uexact-uEuler) ;
ErrorHeun (k)=sqrt (dt) *norm(uexact-uHeun) ;
ErrorRK2(k)=sqrt (dt)*norm(uexact-uRK2) ;
ErrorRK4 (k) =sqrt (dt) *norm(uexact-uRK4) ;

end

% Clear the figure

clf;

% Graph of the errors

loglog(TimeStep,ErrorEuler)

hold on;

loglog(TimeStep,ErrorHeun, ’r’)

loglog(TimeStep,ErrorRK2,’g’)

loglog(TimeStep,ErrorRK4, ’k’)

% Legend for the graph

legend (’Euler’,’Heun’, ’RK2’,°RK4’) ;

4. Same question using now the following equation
O;u=e -1+ uwith u(0)=1,)

for which no exact solution is known. The error will be defined as the L? norm of the difference

) At
between the solution computed with a time step A and the solution computed with a time step >

clear;

uinit=1;
f=inline(’exp(-x)-1+x’);

% Different time steps

T=1;
TimeStep=0.1%0.5.7(0:6) ;
NumberStep=length(TimeStep) ;
% Computation for the 1st time step
dt=TimeStep(1);
uEuler=Euler(T,dt,uinit,f);
uHeun=Heun(T,dt,uinit,f);
uRK2=RK2(T,dt,uinit,f);
uRK4=RK4(T,dt,uinit,f);

E Coquel, T. Goudon, M. Ribot 6/8 Numerical schemes for hyperbolic equations

IFCAM SUMMER SCHOOL - BANGALORE

for k=2:NumberStep,
dt=TimeStep (k) ;
% Save previous approximated solutions for dt
uEuler0Old=uEuler;
uHeunOld=uHeun;
uRK201d=uRK2;
uRK401d=uRK4;
% Approximated solutions for dt/2
uEuler=Euler(T,dt,uinit,f);
uHeun=Heun(T,dt,uinit,f);
uRK2=RK2(T,dt,uinit,f);
uRK4=RK4(T,dt,uinit,f);
% errors between approximated solutions
ErrorEuler(k-1)=sqrt(dt)*norm(uEuler0ld-uEuler(1:2:end));
ErrorHeun (k-1)=sqrt (dt)*norm(uHeun0ld-uHeun(1:2:end));
ErrorRK2(k-1)=sqrt (dt)*norm(uRK201d-uRK2(1:2:end)) ;
ErrorRK4 (k-1)=sqrt (dt)*norm(uRK401d-uRK4 (1:2:end));
end
% Clear the figure
clf;
% Graph of the errors
loglog(TimeStep (1:NumberStep-1) ,ErrorEuler’)
hold on;
loglog(TimeStep(1:NumberStep-1) ,ErrorHeun’,’r’)
loglog(TimeStep(1:NumberStep-1) ,ErrorRK2’,’g?)
loglog(TimeStep (1:NumberStep-1) ,ErrorRK4’,’b’)
% Legend for the graph
legend (’Euler’,’Heun’, ’RK2’,’RK4’) ;

5. Implement the resolution of the following system of equations, called the Lorenz system :

0;x=10(y—x)
0;y=x(28—2)—y (3)

8
mz:xy—gz
using the four methods presented above.

clear;
T=30;
dt=0.001;

% Initial datum for a system

E Coquel, T. Goudon, M. Ribot 7/8 Numerical schemes for hyperbolic equations

IFCAM SUMMER SCHOOL - BANGALORE

xinit=1;yinit=1;zinit=1;
uinit=[xinit;yinit;zinit];

% Function for a system
f=inline (’ [10*(u(2)-u(1));u(1)*(28-u(3))-u(2);ul1)*u(2)-8*u(3)/31’,’u’);
u=EulerSystem(T,dt,uinit,f);
%RK2System(T,dt,uinit,f);
#HeunSystem(T,dt,uinit,f);
%RK4System(T,dt,uinit,f);

% Plot a graphic

clf;
plot3(u(1,:),u(2,:),u(3,:))

E Coquel, T. Goudon, M. Ribot 8/8 Numerical schemes for hyperbolic equations

