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Num. #2: Hyperbolic PDE equation : transport equation -
Correction

The programs are written with the MATLAB software.

For the exercise, the following functions are needed

• Upwind method :

% T is the final time, dt the time step

% L is the length of the interval, dx the space step

% uinit is the initial value (column vector),

% a is the velocity of the transport equation

% Upwind method

% Periodic boundary conditions

function[ufinal]=upwind(T,dt,L,dx,uinit,a)

% Time discretization

time=0:dt:T;

Nt=length(time);

% Space discretization COLUMN vector

space=(0:dx:L)’;

% Initial datum - We calculate on N-1 points

u=uinit(1:end-1);

% Computation of the velocity at middle points velmid(i)=a(x_{i+1/2})

velmid=a((space(1:end-1)+space(2:end))/2);

% Computation of the vector velmidm(i)=a(x_{i-1/2})

velmidm=[velmid(end);velmid(1:end-1)];

% upwind method

for i=1:Nt

% Periodic boundary conditions

% Computation of vectors up(i)=u_{i+1}, um(i)=u_(i-1)

up=[u(2:end);u(1)];

um=[u(end);u(1:end-1)];

% computation of flux

Fp=(velmid.*(u+up)-abs(velmid).*(up-u))/2;

Fm=(velmidm.*(um+u)-abs(velmidm).*(u-um))/2;

u=u-dt/dx*(Fp-Fm);

end

ufinal=[u;u(1)];

• Lax-Friedrichs method :

% Lax Friedrichs method
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% Periodic boundary conditions

function[ufinal]=LaxFriedrichs(T,dt,L,dx,uinit,a)

% Time discretization

time=0:dt:T;

Nt=length(time);

% Space discretization COLUMN vector

space=(0:dx:L)’;

% Initial datum - We calculate on N-1 points

u=uinit(1:end-1);

% Computation of the velocity vel(i)=a(x_{i})

vel=a(space(1:end-1));

% Computations of vectors velp(i)=a(x_{i+1}) and velm(i)=a(x_{i-1})

velp=[vel(2:end);vel(1)];

velm=[vel(end);vel(1:end-1)];

% Lax-Friedrichs method

for i=1:Nt

% Periodic boundary conditions

% Computation of vectors up(i)=u_{i+1}, um(i)=u_(i-1)

up=[u(2:end);u(1)];

um=[u(end);u(1:end-1)];

% computation of flux

Fp=(vel.*u+velp.*up)/2-dx*(up-u)/2/dt;

Fm=(velm.*um+vel.*u)/2-dx*(u-um)/2/dt;

u=u-dt/dx*(Fp-Fm);

end

ufinal=[u;u(1)];

• Lax-Wendroff method :

% Lax Wendroff method

% Periodic boundary conditions

function[ufinal]=LaxWendroff(T,dt,L,dx,uinit,a)

% Time discretization

time=0:dt:T;

Nt=length(time);

% Space discretization COLUMN vector

space=(0:dx:L)’;

% Initial datum - We calculate on N-1 points

u=uinit(1:end-1);

% Computation of the velocity and the velocity at middle points

vel=a(space(1:end-1));
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velmid=a((space(1:end-1)+space(2:end))/2);

% Computations of vectors velp(i)=a(x_{i+1}) and velm(i)=a(x_{i-1})

velp=[vel(2:end);vel(1)];

velm=[vel(end);vel(1:end-1)];

% Computation of the vector velmidm(i)=a(x_{i-1/2})

velmidm=[velmid(end);velmid(1:end-1)];

% Lax-Wendroff method

for i=1:Nt

% Periodic boundary conditions

% Computation of vectors up(i)=u_{i+1}, um(i)=u_(i-1)

up=[u(2:end);u(1)];

um=[u(end);u(1:end-1)];

% computation of flux

Fp=(vel.*u+velp.*up)/2-dt*velmid.*(velp.*up-vel.*u)/2/dx;

Fm=(velm.*um+vel.*u)/2-dt*velmidm.*(vel.*u-velm.*um)/2/dx;

u=u-dt/dx*(Fp-Fm);

end

ufinal=[u;u(1)];

Exercise

1. To begin with, define a vector with the discrete points (xi ) which discretize the interval [0,5] with a

space step ∆x = 0.1. Define a discretization of the three following initial data and plot them :

u0(x) = e−(x−2)2/0.1 (1a)

u0(x) =
{

1−|x −2| if 1 ≤ x ≤ 3

0 otherwise
(1b)

u0(x) =
{

1 if 1 ≤ x ≤ 2

0 otherwise
(1c)

% Space discretization

L=5;

dx=0.1;

space=(0:dx:L)’;

%% space should be a column vector

% Initial datum 1

uinit=exp(-(space-2).^2/0.1);

% Initial datum 2

space1=space(space<1);

space2=space((space>=1)&(space<=3));
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space3=space(space>3);

uinit=[zeros(size(space1));1-abs(space2-2); zeros(size(space3))];

% Initial datum 3

space1=space(space<1);

space2=space((space>=1)&(space<=2));

space3=space(space>2);

uinit=[zeros(size(space1));ones(size(space2)); zeros(size(space3))];

% Plot of the initial datum

plot(space,uinit);

2. Implement the resolution of the following equations :

∂t u +∂x u = 0, (2a)

∂t u +∂x (sin(
2π

L
x)u) = 0, (2b)

using the three methods presented above and a time step∆t = 0.04 until time T = 1. We still consider

the interval [0,5] with a space step∆x = 0.1 and we will use function (1a) as an initial datum. We take

some periodic boundary conditions u(t ,0) = u(t ,L).

% First example

% Clear variables and clear graphic

clear;

clf;

% Space discretization

L=5;

dx=0.1;

space=(0:dx:L)’;

% Time discretization

T=1;

dt=0.04;

% Initial datum 1

uinit=exp(-(space-2).^2/0.1);

% Velocity of the transport equation -- a=1 or a=sin(2*pi*x/L)

a=inline(’ones(size(x))’);

%a=inline(’sin(2*pi*x/5)’);

% Approximated solution

uUp=upwind(T,dt,L,dx,uinit,a);

plot(space,uUp,’b’);

hold on;

uLF=LaxFriedrichs(T,dt,L,dx,uinit,a);

plot(space,uLF,’r’);
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uLW=LaxWendroff(T,dt,L,dx,uinit,a);

plot(space,uLW,’g’);

3. Use the previous program for equation (2a) with initial datum (1a) with the following time steps :

∆t = 0.2, 0.1, 0.09, 0.05. What do you notice ?

clear;

clf;

% Space discretization

L=5;

dx=0.1;

% Time discretization

T=1;

dt=0.2;

%dt=0.1;

%dt=0.09;

% dt=0.05;

space=(0:dx:L)’;

% Initial datum 1

uinit=exp(-(space-2).^2/0.1);

% Velocity of the transport equation -- a=1

a=inline(’ones(size(x))’);

% Approximated solution

uUp=upwind(T,dt,L,dx,uinit,a);

plot(space,uUp,’b’);

hold on;

uLF=LaxFriedrichs(T,dt,L,dx,uinit,a);

plot(space,uLF,’r’);

uLW=LaxWendroff(T,dt,L,dx,uinit,a);

plot(space,uLW,’g’);

legend(’upwind’,’Lax friedrichs’,’Lax Wendroff’)

4. We still consider equation (2a) with initial datum (1a) and the following parameters T = 1, L = 5,∆t =
0.95∆x. Compare the order of the three methods by plotting a graph in a log-log scale, which repre-

sents the evolution of L2 error with respect to the space step ∆x.

clear;

clf;

% Space discretization

L=5;
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% Different space steps

SpaceStep=[0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001];

for k=1:length(SpaceStep),

dx=SpaceStep(k);

space=(0:dx:L)’;

% Time discretization

T=1;

dt=0.95*dx;

time=0:dt:T;

Nt=length(time);

Tsimu=dt*Nt;

% Velocity of the transport equation -- a=1

a=inline(’ones(size(x))’);

% Initial datum 1

uinit=exp(-(space-2).^2/0.1);

% Exact solution 1

uexact=exp(-(space-2-Tsimu).^2/0.1);

% Approximated solution

uUp=upwind(T,dt,L,dx,uinit,a);

ErrorUp(k)=sqrt(dx)*norm(uUp-uexact);

uLF=LaxFriedrichs(T,dt,L,dx,uinit,a);

ErrorLF(k)=sqrt(dx)*norm(uLF-uexact);

uLW=LaxWendroff(T,dt,L,dx,uinit,a);

ErrorLW(k)=sqrt(dx)*norm(uLW-uexact);

end

% Clear the figure

clf;

% Graph of the errors

loglog(SpaceStep,ErrorUp)

hold on;

loglog(SpaceStep,ErrorLF,’r’)

loglog(SpaceStep,ErrorLW,’g’)

% Legend for the graph

legend(’Upwind’, ’Lax Friedrichs’, ’Lax Wendroff’);

5. Compare the three schemes for equation (2a) in the case of the two other initial data (1b) and (1c),

with T = 1, L = 5,∆x = 0.01,∆t = 0.95∆x. . What do you notice ?

clear;

clf;

% Space discretization
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L=5;

dx=0.01;

space=(0:dx:L)’;

% Time discretization

T=1;

dt=0.95*dx;

% Initial datum 2

space1=space(space<1);

space2=space((space>=1)&(space<=3));

space3=space(space>3);

uinit=[zeros(size(space1));1-abs(space2-2); zeros(size(space3))];

% Initial datum 3

% space1=space(space<1);

% space2=space((space>=1)&(space<=2));

% space3=space(space>2);

% uinit=[zeros(size(space1));ones(size(space2)); zeros(size(space3))];

plot(space,uinit,’k’);

% Velocity of the transport equation -- a=1

a=inline(’ones(size(x))’);

% Approximated solution

uUp=upwind(T,dt,L,dx,uinit,a);

plot(space,uUp);

hold on;

uLF=LaxFriedrichs(T,dt,L,dx,uinit,a);

plot(space,uLF,’r’);

uLW=LaxWendroff(T,dt,L,dx,uinit,a);

plot(space,uLW,’g’);

legend(’initial’,’upwind’,’Lax friedrichs’,’Lax Wendroff’)

F. Coquel, T. Goudon, M. Ribot 7/7 Numerical schemes for hyperbolic equations


