IFCAM SUMMER SCHOOL - BANGALORE

Num. #2: Hyperbolic PDE equation : transport equation -
Correction

The programs are written with the MATLAB software.

For the exercise, the following functions are needed

e Upwind method :

% T is the final time, dt the time step
% L is the length of the interval, dx the space step
% uinit is the initial value (column vector),
% a is the velocity of the transport equation
% Upwind method
% Periodic boundary conditions
function[ufinal]=upwind(T,dt,L,dx,uinit,a)
% Time discretization
time=0:dt:T;
Nt=length(time) ;
% Space discretization COLUMN vector
space=(0:dx:L)’;
% Initial datum - We calculate on N-1 points
u=uinit(l:end-1);
% Computation of the velocity at middle points velmid(i)=a(x_{i+1/2})
velmid=a((space(1l:end-1)+space(2:end))/2);
% Computation of the vector velmidm(i)=a(x_{i-1/2})
velmidm=[velmid(end) ;velmid(1l:end-1)];
% upwind method
for i=1:Nt
% Periodic boundary conditions
% Computation of vectors up(i)=u_{i+1}, um(i)=u_(i-1)
up=[u(2:end) ;u(1)1;
um=[u(end) ;u(l:end-1)1;
% computation of flux
Fp=(velmid. * (utup) -abs(velmid) . * (up-u))/2;
Fm=(velmidm.* (um+u) -abs (velmidm) . * (u-um))/2;
u=u-dt/dx* (Fp-Fm) ;
end
ufinal=[u;u(1)];

¢ Lax-Friedrichs method :

% Lax Friedrichs method

E Coquel, T. Goudon, M. Ribot 1/7 Numerical schemes for hyperbolic equations



IFCAM SUMMER SCHOOL - BANGALORE

% Periodic boundary conditions
function[ufinal]=LaxFriedrichs(T,dt,L,dx,uinit,a)
% Time discretization
time=0:dt:T;
Nt=length(time) ;
% Space discretization COLUMN vector
space=(0:dx:L)’;
% Initial datum - We calculate on N-1 points
u=uinit(l:end-1);
% Computation of the velocity vel(i)=a(x_{il})
vel=a(space(1l:end-1));
% Computations of vectors velp(i)=a(x_{i+1}) and velm(i)=a(x_{i-1})
velp=[vel(2:end);vel(1)];
velm=[vel(end) ;vel(l:end-1)];
% Lax-Friedrichs method
for i=1:Nt
% Periodic boundary conditions
% Computation of vectors up(i)=u_{i+1}, um(i)=u_(i-1)
up=[u(2:end);u(1)];
um=[u(end) ;u(l:end-1)1;
% computation of flux
Fp=(vel.*u+velp.*up)/2-dx* (up-u)/2/dt;
Fm=(velm.*um+vel.*u)/2-dx*(u-um)/2/dt;
u=u-dt/dx* (Fp-Fm) ;
end
ufinal=[u;u(1)];

¢ Lax-Wendroff method :

% Lax Wendroff method
% Periodic boundary conditions
function[ufinal]=LaxWendroff(T,dt,L,dx,uinit,a)
% Time discretization
time=0:dt:T;
Nt=length(time);
% Space discretization COLUMN vector
space=(0:dx:L)’;
% Initial datum - We calculate on N-1 points
u=uinit(l:end-1);
% Computation of the velocity and the velocity at middle points
vel=a(space(l:end-1));
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velmid=a((space(l:end-1)+space(2:end))/2);
% Computations of vectors velp(i)=a(x_{i+1}) and velm(i)=a(x_{i-13})
velp=[vel(2:end);vel(1)];
velm=[vel(end) ;vel(l:end-1)];
% Computation of the vector velmidm(i)=a(x_{i-1/2})
velmidm=[velmid(end) ;velmid(1l:end-1)];
% Lax-Wendroff method
for i=1:Nt
% Periodic boundary conditions
% Computation of vectors up(i)=u_{i+1}, um(i)=u_(i-1)
up=[u(2:end) ;u(1)1;
um=[u(end) ;u(l:end-1)];
% computation of flux
Fp=(vel.*ut+velp.*up)/2-dt*velmid.*(velp.*up-vel.*u)/2/dx;
Fm=(velm.*um+vel.*u)/2-dt*velmidm. * (vel.*u-velm.*um)/2/dx;
u=u-dt/dx* (Fp-Fm) ;
end
ufinal=[u;u(1)];

Exercise

1. To begin with, define a vector with the discrete points (x;) which discretize the interval [0, 5] with a

space step Ax = 0.1. Define a discretization of the three following initial data and plot them :

uo(x) :e—(x—2)2/0.1 (la)
1-|x-2| ifl=sx<3
up(x) = ] (1b)
0 otherwise
1 iflsx<2
Up(x) = . (Ic)
0 otherwise

% Space discretization
L=5;
dx=0.1;

space=(0:dx:L)’;
%% space should be a column vector
% Initial datum 1
uinit=exp(-(space-2).72/0.1);
% Initial datum 2
spacel=space(space<1);

space2=space ((space>=1)&(space<=3));

E Coquel, T. Goudon, M. Ribot 3/7 Numerical schemes for hyperbolic equations



IFCAM SUMMER SCHOOL - BANGALORE

space3=space(space>3);

uinit=[zeros(size(spacel));l-abs(space2-2); zeros(size(space3))];

% Initial datum 3

spacel=space (space<1) ;

space2=space((space>=1)&(space<=2));

space3=space (space>2) ;

uinit=[zeros(size(spacel)) ;ones(size(space2)); zeros(size(space3))];
% Plot of the initial datum

plot(space,uinit);

2. Implement the resolution of the following equations :
o;u+0,u=0, (2a)

2
6,u+6x(sin(fnx) u) =0, (2b)

using the three methods presented above and a time step A¢ = 0.04 until time T = 1. We still consider
the interval [0, 5] with a space step Ax = 0.1 and we will use function (1a) as an initial datum. We take

some periodic boundary conditions u(t,0) = u(t, L).

% First example

% Clear variables and clear graphic
clear;

clf;

% Space discretization

L=5;

dx=0.1;

space=(0:dx:L)’;

% Time discretization

T=1;

dt=0.04;

% Initial datum 1
uinit=exp(-(space-2).72/0.1);

% Velocity of the transport equation -- a=1 or a=sin(2*pi*x/L)
a=inline(’ones(size(x))’);
%a=inline (’sin(2*pi*x/5)’);

% Approximated solution
uUp=upwind(T,dt,L,dx,uinit,a);
plot(space,ulp, ’b’);

hold on;
uLF=LaxFriedrichs(T,dt,L,dx,uinit,a);
plot(space,ulF,’r’);

E Coquel, T. Goudon, M. Ribot 4/7 Numerical schemes for hyperbolic equations



IFCAM SUMMER SCHOOL - BANGALORE

uLW=LaxWendroff (T,dt,L,dx,uinit,a);
plot(space,ulW,’g’);

3. Use the previous program for equation (2a) with initial datum (1a) with the following time steps :
At=0.2,0.1,0.09, 0.05. What do you notice ?

clear;

clf;

% Space discretization

L=5;

dx=0.1;

% Time discretization

T=1;

dt=0.2;

%dt=0.1;

%dt=0.09;

% dt=0.05;

space=(0:dx:L)’;

% Initial datum 1
uinit=exp(-(space-2).72/0.1);

% Velocity of the transport equation -- a=1
a=inline(’ones(size(x))’);

% Approximated solution
uUp=upwind(T,dt,L,dx,uinit,a);
plot(space,ulp,’b’);

hold on;
uLF=LaxFriedrichs(T,dt,L,dx,uinit,a);
plot(space,ulF,’r’);
uLW=LaxWendroff (T,dt,L,dx,uinit,a);
plot(space,ulW,’g’);

legend (Pupwind’,’Lax friedrichs’,’Lax Wendroff’)

4. We still consider equation (2a) with initial datum (1a) and the following parameters T =1, L =5, At =
0.95Ax. Compare the order of the three methods by plotting a graph in a log-log scale, which repre-

sents the evolution of L? error with respect to the space step Ax.

clear;

clf;

% Space discretization
L=5;
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% Different space steps
SpaceStep=[0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001];
for k=1:length(SpaceStep),
dx=SpaceStep (k) ;

space=(0:dx:L)’;

% Time discretization

T=1;

dt=0.95%dx;

time=0:dt:T;

Nt=length(time) ;

Tsimu=dt*Nt;

% Velocity of the transport equation -- a=1
a=inline(’ones(size(x))’);

% Initial datum 1
uinit=exp(-(space-2).72/0.1);

% Exact solution 1
uexact=exp (- (space-2-Tsimu).~2/0.1);
% Approximated solution
uUp=upwind(T,dt,L,dx,uinit,a);
ErrorUp (k)=sqrt (dx)*norm(uUp-uexact) ;
uLF=LaxFriedrichs(T,dt,L,dx,uinit,a);
ErrorLF (k)=sqrt (dx) *norm(uLF-uexact) ;
uLW=LaxWendroff (T,dt,L,dx,uinit,a);
ErrorLW(k)=sqrt (dx) *norm(uLW-uexact) ;
end

% Clear the figure

clf;

% Graph of the errors
loglog(SpaceStep,ErrorUp)

hold on;
loglog(SpaceStep,ErrorLF, ’r?)
loglog(SpaceStep,ErrorlW,’g’)

% Legend for the graph

legend (’Upwind’, ’Lax Friedrichs’, ’Lax Wendroff’);

5. Compare the three schemes for equation (2a) in the case of the two other initial data (1b) and (1¢),
with T =1, L=5,Ax=0.01, At = 0.95Ax. . What do you notice ?

clear;
clf;

% Space discretization
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L=5;

dx=0.01;

space=(0:dx:L)’;

% Time discretization

T=1;

dt=0.95*dx;

% Initial datum 2

spacel=space(space<1);
space2=space((space>=1)&(space<=3));
space3=space(space>3) ;
uinit=[zeros(size(spacel));l-abs(space2-2); zeros(size(space3))];
% Initial datum 3

% spacel=space(space<1);

% space2=space((space>=1)&(space<=2));

% space3=space(space>2);

% uinit=[zeros(size(spacel)) ;ones(size(space2)); zeros(size(space3))];
plot(space,uinit,’k’);

% Velocity of the transport equation -- a=1
a=inline(’ones(size(x))’);

% Approximated solution
uUp=upwind(T,dt,L,dx,uinit,a);
plot(space,ulp);

hold on;
uLF=LaxFriedrichs(T,dt,L,dx,uinit,a);
plot(space,ulF,’r’);

uLW=LaxWendroff (T,dt,L,dx,uinit,a);
plot(space,ulW,’g’);

legend(’initial’,’upwind’,’Lax friedrichs’,’Lax Wendroff’)
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