IFCAM SUMMER SCHOOL - BANGALORE

Num. #3: Hyperbolic PDE equation : 1D conservation law -
Correction

The programs are written with the MATLAB software.

For the exercise, the following functions are needed

* Upwind conservative method :

%% Upwind method
% T is the final time, dt the time step
% L is the length of the interval, dx the space step
% uinit is the initial value (column vector),
% a is the velocity of the transport equation
%% Periodic boundary conditions - periodic function a
function[ufinal]=upwind(T,dt,L,dx,uinit,f,a)
%% Time discretization
time=0:dt:T;
Nt=length(time) ;
%% Initial datum - We calculate on N-1 points
u=uinit(l:end-1);
%% upwind method
for i=1:Nt
%% Periodic boundary conditions
%% Computation of vectors up(i)=u_{i+1}, um(i)=u_(i-1)
up=[u(2:end);u(1)];
um=[u(end) ;u(l:end-1)1;
%% computation of the velocities
vel=a((u+up)/2);
velm=a((um+u)/2) ;
%% computation of flux
Fp=zeros(size(u)) ;Fm=zeros(size(u));
Fp(vel>=0)=f (u(vel>=0));
Fp(vel<0)=f (up(vel<0));
Fm(velm>=0)=f (um(velm>=0)) ;
Fm(velm<0)=f (u(velm<0));
u=u-dt/dx* (Fp-Fm) ;
end
ufinal=[u;u(1)];

¢ Roe method :

%% Roe method
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%% Periodic boundary conditions - periodic function a
function[ufinal]l=Roe(T,dt,L,dx,uinit,f,a)
%% Time discretization
time=0:dt:T;
Nt=length(time) ;
%% Initial datum - We calculate on N-1 points
u=uinit(l:end-1);
%% Roe method
for i=1:Nt
%% Periodic boundary conditions
%% Computation of vectors up(i)=u_{i+1}, um(i)=u_(i-1)
up=[u(2:end);u(1)];
um=[u(end) ;u(l:end-1)1;
%% computation of the velocities
vel=a(u);
indices=(u"=up);
vel(indices)=(f (u(indices))-f(up(indices)))./(u(indices)-up(indices));
velm=a(um) ;
indicesm=(um~=u) ;
velm(indicesm)=(f (um(indicesm))-f (u(indicesm))) ./ (um(indicesm)-u(indicesm));
%% computation of flux
Fp=zeros(size(u)) ;Fm=zeros(size(u));
Fp(vel>=0)=f (u(vel>=0));
Fp(vel<0)=f (up(vel<0));
Fm(velm>=0)=f (um(velm>=0)) ;
Fm(velm<0)=f (u(velm<0)) ;
u=u-dt/dx* (Fp-Fm) ;
end
ufinal=[u;u(1)];

* Engquist-Osher method :

%% Engquist Osher method
%% Periodic boundary conditions - periodic function a
%% equation = ’Burgers’
function[ufinal] =EngquistOsher(T,dt,L,dx,uinit,f,a)
%%l For Burgers equation

fpp=inline(’x.*(x+abs(x))/4’);

fmm=inline (’x."2/2-x.*(x+abs(x))/4’);

%% Time discretization

time=0:dt:T;
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Nt=length(time) ;
%% Initial datum - We calculate on N-1 points
u=uinit(1:end-1);
%% Engquist-Osher method
for i=1:Nt
%% Periodic boundary conditions
%% Computation of vectors up(i)=u_{i+1}, um(i)=u_(i-1)
up=[u(2:end);u(1)];
um=[u(end) ;u(l:end-1)1;
%% computation of flux
Fp=fpp (u)+fmm(up) ;
Fm=fpp (um) +fmm (u) ;
u=u-dt/dx* (Fp-Fm) ;
end
ufinal=[u;u(1)];

¢ Lax-Friedrichs method :

%% Lax Friedrichs method
%% Periodic boundary conditions - periodic function a
function[ufinal]=LaxFriedrichs(T,dt,L,dx,uinit,f,a)
%% Time discretization
time=0:dt:T;
Nt=length(time) ;
%% Initial datum - We calculate on N-1 points
u=uinit(1:end-1);
%% Lax-Friedrichs method
for i=1:Nt
%% Periodic boundary conditions
%% Computation of vectors up(i)=u_{i+1}, um(i)=u_(i-1)
up=[u(2:end) ;u(1)];
um=[u(end) ;u(l:end-1)];
%% computation of flux
Fp=(f (u)+f (up)) /2-dx* (up-u) /2/dt;
Fm=(f (um) +f (u) ) /2-dx* (u-um) /2/dt;
u=u-dt/dx* (Fp-Fm) ;
end
ufinal=[u;u(1)];
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¢ Rusanov (or Local Lax-Friedrichs) method :

%% Rusanov method
%/ Periodic boundary conditions - periodic function a
function[ufinal]=Rusanov(T,dt,L,dx,uinit,f,a)
%% Time discretization
time=0:dt:T;
Nt=length(time) ;
%% Initial datum - We calculate on N-1 points
u=uinit(1:end-1);
%% Rusanov method
for i=1:Nt
%% Periodic boundary conditions
%% Computation of vectors up(i)=u_{i+1}, um(i)=u_(i-1)
up=[u(2:end) ;u(1)];
um=[u(end) ;u(l:end-1)1;
%% velocity velp(i)=a_{i+1/2} and velm(i)=a_{i-1/2}
vel=max (abs(a(u)),abs(alup)));
velm=max (abs (a(um)) ,abs(a(u)));
%% computation of flux
Fp=(f (W) +f (up))/2-vel.*(up-u)/2;
Fm=(f (um) +f (u) ) /2-velm.* (u-um) /2;
u=u-dt/dx* (Fp-Fm) ;
end
ufinal=[u;u(1)]

¢ Lax-Wendroff method :

%% Lax Wendroff method
%% Periodic boundary conditions - periodic function a
function[ufinal]=LaxWendroff(T,dt,L,dx,uinit,f,a)
%% Time discretization
time=0:dt:T;
Nt=length(time) ;
%% Initial datum - We calculate on N-1 points
u=uinit(1:end-1);
%% Lax-Wendroff method
for i=1:Nt
%% Periodic boundary conditions
%/ Computation of vectors up(i)=u_{i+1}, um(i)=u_(i-1)

up=[u(2:end) ;u(1)];
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um=[u(end) ;u(l:end-1)1;
h% velocity velp(i)=a_{i+1/2} and velm(i)=a_{i-1/2}
vel=a((up+u)/2);
velm=a((u+um)/2) ;
%% computation of flux
Fp=(f (u)+f (up) ) /2-dt*vel.*(f (up)-f (u))/2/dx;
Fm= (£ (um) +£ (u) ) /2-dt*velm.* (f (u) -£ (um)) /2/dx;
u=u-dt/dx* (Fp-Fm) ;
end
ufinal=[u;u(1)];

¢ Upwind non conservative method :

%% Upwind non-conservative method
%% Periodic boundary conditions - periodic function a
function[ufinal]=upwindNC(T,dt,L,dx,uinit,f,a)
%% Time discretization
time=0:dt:T;
Nt=length(time) ;
%% Initial datum - We calculate on N-1 points
u=uinit(1l:end-1);
%% upwind non conservative method
for i=1:Nt
%% Periodic boundary conditions
%% Computation of vectors up(i)=u_{i+1}, um(i)=u_(i-1)
up=[u(2:end) ;u(1)];
um=[u(end) ;u(l:end-1)1;
%% Computation of the velocity
vel=a(u);
%% COmputation of the solution
u=u-dt/dx* ((u-um) . * (vel+abs(vel))+(up-u) .*(vel-abs(vel)))/2;
end
ufinal=[u;u(1)];

Exercise
1. Compute the functions f* and f~ of the Engquist-Osher flux in the case of equation (2).

2. Implement the resolution of equation (2) using the seven methods (4) presented above, using time
step At = 0.04 until time T = 1. We consider the interval [0,5] with a space step Ax = 0.1 and we will

use function (5¢) as an initial datum.We take periodic boundary conditions.

E Coquel, T. Goudon, M. Ribot 5/22 Numerical schemes for hyperbolic equations



IFCAM SUMMER SCHOOL - BANGALORE

clear;

clf;

% Space discretization

L=5;

dx=0.01;

space=(0:dx:L)’;

% Time discretization

T=1;

dt=dx*0.95;

% initial datum 3

spacel=space (space<1) ;

space2=space ((space>=1)&(space<=2));
space3=space (space>2) ;
uinit=[zeros(size(spacel)) ;ones(size(space2)); zeros(size(space3))];
% flux function 1 and derivative = Burgers
f=inline(’x.72/27);

a=inline(’x’);

% Approximated solution
uUp=upwind(T,dt,L,dx,uinit,f,a);

plot (space,ulp,’k’);

hold on;

uRoe=Roe(T,dt,L,dx,uinit,f,a);
plot(space,uRoe,’m’);
uEO=EngquistOsher(T,dt,L,dx,uinit,f,a);
plot(space,uEQ, ’b’);
uLF=LaxFriedrichs(T,dt,L,dx,uinit,f,a);
plot(space,ulF,’r’);
uRus=Rusanov(T,dt,L,dx,uinit,f,a);
plot(space,uRus,’c’);
uLW=LaxWendroff(T,dt,L,dx,uinit,f,a);
plot(space,ulW,’g’);
uUpNC=upwindNC(T,dt,L,dx,uinit,f,a);
plot (space,uUpNC,’y’);

legend(Pupwind’, ’Roe’, ’Engquist- Osher’, ’Lax Friedrichs’,’Rusanov’, ’Lax Wendroff’,’upw

3. Compare the seven schemes in the case of the two other initial data (5a) and (5b) What is your con-

clusion ? Choose one of these schemes and plot the evolution of the solution with time.

clear;clf,;
% Space discretization

L=5;
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dx=0.01;

space=(0:dx:L)’;

% Time discretization

T=3;

dt=dx*0.95;

% Initial datum 1
%uinit=exp(-(space-2).72/0.1);

%%% Initial datum 3
spacel=space(space<l);

space2=space ((space>=1)&(space<=2));
space3=space (space>2) ;
uinit=[zeros(size(spacel)) ;ones(size(space2)); zeros(size(space3))];
%% flux function 1 and derivative = Burgers
f=inline(’x.~2/27%);

a=inline(’x’);

% Approximated solution
uUp=upwind(T,dt,L,dx,uinit,f,a);
plot(space,ulp,’k’);

hold on;

uRoe=Roe(T,dt,L,dx,uinit,f,a);
plot(space,uRoe,’m’);
uEO=EngquistOsher(T,dt,L,dx,uinit,f,a);
plot(space,uk0, ’b’);
uLF=LaxFriedrichs(T,dt,L,dx,uinit,f,a);
plot(space,ulF,’r’);
uRus=Rusanov(T,dt,L,dx,uinit,f,a);
plot(space,uRus,’c’);
uLW=LaxWendroff(T,dt,L,dx,uinit,f,a);
plot(space,ulW,’g’);
uUpNC=upwindNC(T,dt,L,dx,uinit,f,a);
plot (space,uUpNC,’y’);

legend(Pupwind’, ’Roe’, ’Engquist- Osher’, ’Lax Friedrichs’,’Rusanov’, ’Lax Wendroff’,’upw
clf;
ul=EngquistOsher(0.1,dt,L,dx,uinit,f,a);
u2=EngquistOsher(0.4,dt,L,dx,uinit,f,a);
u3=EngquistOsher(0.8,dt,L,dx,uinit,f,a);
u4=EngquistOsher(1,dt,L,dx,uinit,f,a);
plot(space,ul);

hold on

plot(space,u2);

plot(space,u3);

E Coquel, T. Goudon, M. Ribot 7/22 Numerical schemes for hyperbolic equations



IFCAM SUMMER SCHOOL - BANGALORE

plot(space,ud);
legend(’t=0.17,t=0.4>,t=0.8",’t=1);

4. Show the effect of the CFL condition on the stability of the various schemes.

clear;clf;
% Space discretization
L=5;
dx=0.01;

space=(0:dx:L)’;
% Time discretization
T=1;
%dt=dx*0.95;
% dt=dx*2;

dt=dx*0.5;
% Initial datum 1
uinit=exp(-(space-2).72/0.1);
% flux function 1 and derivative = Burgers
f=inline(’x.72/2°);

a=inline(’°x’);
% Approximated solution
uUp=upwind(T,dt,L,dx,uinit,f,a);
plot(space,ulp, ’k’) ;
hold on;
uRoe=Roe(T,dt,L,dx,uinit,f,a);
plot(space,uRoe,’m’);
uEO=EngquistOsher(T,dt,L,dx,uinit,f,a);
plot(space,uEQ, ’b’);
uLF=LaxFriedrichs(T,dt,L,dx,uinit,f,a);
plot(space,ulF,’r’);
uRus=Rusanov(T,dt,L,dx,uinit,f,a);
plot(space,uRus,’c’);
uLW=LaxWendroff(T,dt,L,dx,uinit,f,a);
plot(space,ulW,’g’);
uUpNC=upwindNC(T,dt,L,dx,uinit,f,a);
plot(space,uUpNC,’y’);

legend (Pupwind’, ’Roe’, ’Engquist- Osher’, ’Lax Friedrichs’,’Rusanov’, ’Lax Wendroff’,’upw

5. Compare upwind conservative and upwind non-conservative scheme for equation (2) with initial

datum (5¢). What do you notice ?

E Coquel, T. Goudon, M. Ribot 8/22 Numerical schemes for hyperbolic equations



IFCAM SUMMER SCHOOL - BANGALORE

clear;clf;

% Space discretization

L=5;

dx=0.01;

space=(0:dx:L)’;

% Time discretization

T=1;

dt=dx*0.95;

% Initial datum 3
spacel=space(space<1);

space2=space ((space>=1)&(space<=2));
space3=space(space>2) ;
uinit=[zeros(size(spacel)) ;ones(size(space2)); zeros(size(space3))];
% flux function 1 and derivative = Burgers
f=inline(’x.72/27);

a=inline(’°x’);

% Approximated solution
uUp=upwind(T,dt,L,dx,uinit,f,a);
plot(space,ulp, ’k’) ;

hold on;
uUpNC=upwindNC(T,dt,L,dx,uinit,f,a);
plot(space,uUpNC,’y’);

legend (’upwind’, ’upwind Non Conservative’)

6. What are the results of Roe scheme with equation (2) and initial datum (5d). What is your interpre-

tation ? Do the other schemes have the same drawback ?

clear;clf;

% Space discretization

L=5;

dx=0.01;

space=(0:dx:L)’;

% Time discretization

T=1;

dt=dx*0.95;

% Initial datum 4

spacel=space (space<1) ;

space2=space ((space>=1)&(space<=2));
space3=space (space>2) ;
uinit=[-ones(size(spacel)) ;ones(size(space2)); -ones(size(space3))];

% flux function 1 and derivative = Burgers
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f=inline(’x.72/27);

a=inline(’x’);

% Approximated solution
uRoe=Roe(T,dt,L,dx,uinit,f,a);
plot(space,uRoe,’m’);

hold on;
uUp=upwind(T,dt,L,dx,uinit,f,a);
plot(space,ulp, ’k’);
uEO=EngquistOsher(T,dt,L,dx,uinit,f,a);
plot(space,uEO, ’b’);
uLF=LaxFriedrichs(T,dt,L,dx,uinit,f,a);
plot(space,ulF,’r?);
uRus=Rusanov(T,dt,L,dx,uinit,f,a);
plot(space,uRus,’c’);

uLW=LaxWendroff (T,dt,L,dx,uinit,f,a);
plot(space,ulW,’g’);
uUpNC=upwindNC(T,dt,L,dx,uinit,f,a);
plot(space,uUpNC,’y’);
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