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Num. #3: Hyperbolic PDE equation : 1D conservation law -
Correction

The programs are written with the MATLAB software.

For the exercise, the following functions are needed

• Upwind conservative method :

%% Upwind method

% T is the final time, dt the time step

% L is the length of the interval, dx the space step

% uinit is the initial value (column vector),

% a is the velocity of the transport equation

%% Periodic boundary conditions - periodic function a

function[ufinal]=upwind(T,dt,L,dx,uinit,f,a)

%% Time discretization

time=0:dt:T;

Nt=length(time);

%% Initial datum - We calculate on N-1 points

u=uinit(1:end-1);

%% upwind method

for i=1:Nt

%% Periodic boundary conditions

%% Computation of vectors up(i)=u_{i+1}, um(i)=u_(i-1)

up=[u(2:end);u(1)];

um=[u(end);u(1:end-1)];

%% computation of the velocities

vel=a((u+up)/2);

velm=a((um+u)/2);

%% computation of flux

Fp=zeros(size(u));Fm=zeros(size(u));

Fp(vel>=0)=f(u(vel>=0));

Fp(vel<0)=f(up(vel<0));

Fm(velm>=0)=f(um(velm>=0));

Fm(velm<0)=f(u(velm<0));

u=u-dt/dx*(Fp-Fm);

end

ufinal=[u;u(1)];

• Roe method :

%% Roe method
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%% Periodic boundary conditions - periodic function a

function[ufinal]=Roe(T,dt,L,dx,uinit,f,a)

%% Time discretization

time=0:dt:T;

Nt=length(time);

%% Initial datum - We calculate on N-1 points

u=uinit(1:end-1);

%% Roe method

for i=1:Nt

%% Periodic boundary conditions

%% Computation of vectors up(i)=u_{i+1}, um(i)=u_(i-1)

up=[u(2:end);u(1)];

um=[u(end);u(1:end-1)];

%% computation of the velocities

vel=a(u);

indices=(u~=up);

vel(indices)=(f(u(indices))-f(up(indices)))./(u(indices)-up(indices));

velm=a(um);

indicesm=(um~=u);

velm(indicesm)=(f(um(indicesm))-f(u(indicesm)))./(um(indicesm)-u(indicesm));

%% computation of flux

Fp=zeros(size(u));Fm=zeros(size(u));

Fp(vel>=0)=f(u(vel>=0));

Fp(vel<0)=f(up(vel<0));

Fm(velm>=0)=f(um(velm>=0));

Fm(velm<0)=f(u(velm<0));

u=u-dt/dx*(Fp-Fm);

end

ufinal=[u;u(1)];

• Engquist-Osher method :

%% Engquist Osher method

%% Periodic boundary conditions - periodic function a

%% equation = ’Burgers’

function[ufinal]=EngquistOsher(T,dt,L,dx,uinit,f,a)

%%% For Burgers equation

fpp=inline(’x.*(x+abs(x))/4’);

fmm=inline(’x.^2/2-x.*(x+abs(x))/4’);

%% Time discretization

time=0:dt:T;
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Nt=length(time);

%% Initial datum - We calculate on N-1 points

u=uinit(1:end-1);

%% Engquist-Osher method

for i=1:Nt

%% Periodic boundary conditions

%% Computation of vectors up(i)=u_{i+1}, um(i)=u_(i-1)

up=[u(2:end);u(1)];

um=[u(end);u(1:end-1)];

%% computation of flux

Fp=fpp(u)+fmm(up);

Fm=fpp(um)+fmm(u);

u=u-dt/dx*(Fp-Fm);

end

ufinal=[u;u(1)];

• Lax-Friedrichs method :

%% Lax Friedrichs method

%% Periodic boundary conditions - periodic function a

function[ufinal]=LaxFriedrichs(T,dt,L,dx,uinit,f,a)

%% Time discretization

time=0:dt:T;

Nt=length(time);

%% Initial datum - We calculate on N-1 points

u=uinit(1:end-1);

%% Lax-Friedrichs method

for i=1:Nt

%% Periodic boundary conditions

%% Computation of vectors up(i)=u_{i+1}, um(i)=u_(i-1)

up=[u(2:end);u(1)];

um=[u(end);u(1:end-1)];

%% computation of flux

Fp=(f(u)+f(up))/2-dx*(up-u)/2/dt;

Fm=(f(um)+f(u))/2-dx*(u-um)/2/dt;

u=u-dt/dx*(Fp-Fm);

end

ufinal=[u;u(1)];
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• Rusanov (or Local Lax-Friedrichs) method :

%% Rusanov method

%% Periodic boundary conditions - periodic function a

function[ufinal]=Rusanov(T,dt,L,dx,uinit,f,a)

%% Time discretization

time=0:dt:T;

Nt=length(time);

%% Initial datum - We calculate on N-1 points

u=uinit(1:end-1);

%% Rusanov method

for i=1:Nt

%% Periodic boundary conditions

%% Computation of vectors up(i)=u_{i+1}, um(i)=u_(i-1)

up=[u(2:end);u(1)];

um=[u(end);u(1:end-1)];

%% velocity velp(i)=a_{i+1/2} and velm(i)=a_{i-1/2}

vel=max(abs(a(u)),abs(a(up)));

velm=max(abs(a(um)),abs(a(u)));

%% computation of flux

Fp=(f(u)+f(up))/2-vel.*(up-u)/2;

Fm=(f(um)+f(u))/2-velm.*(u-um)/2;

u=u-dt/dx*(Fp-Fm);

end

ufinal=[u;u(1)]

• Lax-Wendroff method :

%% Lax Wendroff method

%% Periodic boundary conditions - periodic function a

function[ufinal]=LaxWendroff(T,dt,L,dx,uinit,f,a)

%% Time discretization

time=0:dt:T;

Nt=length(time);

%% Initial datum - We calculate on N-1 points

u=uinit(1:end-1);

%% Lax-Wendroff method

for i=1:Nt

%% Periodic boundary conditions

%% Computation of vectors up(i)=u_{i+1}, um(i)=u_(i-1)

up=[u(2:end);u(1)];
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um=[u(end);u(1:end-1)];

%% velocity velp(i)=a_{i+1/2} and velm(i)=a_{i-1/2}

vel=a((up+u)/2);

velm=a((u+um)/2);

%% computation of flux

Fp=(f(u)+f(up))/2-dt*vel.*(f(up)-f(u))/2/dx;

Fm=(f(um)+f(u))/2-dt*velm.*(f(u)-f(um))/2/dx;

u=u-dt/dx*(Fp-Fm);

end

ufinal=[u;u(1)];

• Upwind non conservative method :

%% Upwind non-conservative method

%% Periodic boundary conditions - periodic function a

function[ufinal]=upwindNC(T,dt,L,dx,uinit,f,a)

%% Time discretization

time=0:dt:T;

Nt=length(time);

%% Initial datum - We calculate on N-1 points

u=uinit(1:end-1);

%% upwind non conservative method

for i=1:Nt

%% Periodic boundary conditions

%% Computation of vectors up(i)=u_{i+1}, um(i)=u_(i-1)

up=[u(2:end);u(1)];

um=[u(end);u(1:end-1)];

%% Computation of the velocity

vel=a(u);

%% COmputation of the solution

u=u-dt/dx*((u-um).*(vel+abs(vel))+(up-u).*(vel-abs(vel)))/2;

end

ufinal=[u;u(1)];

Exercise

1. Compute the functions f + and f − of the Engquist-Osher flux in the case of equation (2).

2. Implement the resolution of equation (2) using the seven methods (4) presented above, using time

step ∆t = 0.04 until time T = 1. We consider the interval [0,5] with a space step ∆x = 0.1 and we will

use function (5c) as an initial datum.We take periodic boundary conditions.
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clear;

clf;

% Space discretization

L=5;

dx=0.01;

space=(0:dx:L)’;

% Time discretization

T=1;

dt=dx*0.95;

% initial datum 3

space1=space(space<1);

space2=space((space>=1)&(space<=2));

space3=space(space>2);

uinit=[zeros(size(space1));ones(size(space2)); zeros(size(space3))];

% flux function 1 and derivative = Burgers

f=inline(’x.^2/2’);

a=inline(’x’);

% Approximated solution

uUp=upwind(T,dt,L,dx,uinit,f,a);

plot(space,uUp,’k’);

hold on;

uRoe=Roe(T,dt,L,dx,uinit,f,a);

plot(space,uRoe,’m’);

uEO=EngquistOsher(T,dt,L,dx,uinit,f,a);

plot(space,uEO,’b’);

uLF=LaxFriedrichs(T,dt,L,dx,uinit,f,a);

plot(space,uLF,’r’);

uRus=Rusanov(T,dt,L,dx,uinit,f,a);

plot(space,uRus,’c’);

uLW=LaxWendroff(T,dt,L,dx,uinit,f,a);

plot(space,uLW,’g’);

uUpNC=upwindNC(T,dt,L,dx,uinit,f,a);

plot(space,uUpNC,’y’);

legend(’upwind’, ’Roe’, ’Engquist- Osher’, ’Lax Friedrichs’,’Rusanov’, ’Lax Wendroff’,’upwind Non Conservative’)

3. Compare the seven schemes in the case of the two other initial data (5a) and (5b) What is your con-

clusion ? Choose one of these schemes and plot the evolution of the solution with time.

clear;clf;

% Space discretization

L=5;

F. Coquel, T. Goudon, M. Ribot 6/?? Numerical schemes for hyperbolic equations



IFCAM SUMMER SCHOOL - BANGALORE

dx=0.01;

space=(0:dx:L)’;

% Time discretization

T=3;

dt=dx*0.95;

% Initial datum 1

%uinit=exp(-(space-2).^2/0.1);

%%% Initial datum 3

space1=space(space<1);

space2=space((space>=1)&(space<=2));

space3=space(space>2);

uinit=[zeros(size(space1));ones(size(space2)); zeros(size(space3))];

%% flux function 1 and derivative = Burgers

f=inline(’x.^2/2’);

a=inline(’x’);

% Approximated solution

uUp=upwind(T,dt,L,dx,uinit,f,a);

plot(space,uUp,’k’);

hold on;

uRoe=Roe(T,dt,L,dx,uinit,f,a);

plot(space,uRoe,’m’);

uEO=EngquistOsher(T,dt,L,dx,uinit,f,a);

plot(space,uEO,’b’);

uLF=LaxFriedrichs(T,dt,L,dx,uinit,f,a);

plot(space,uLF,’r’);

uRus=Rusanov(T,dt,L,dx,uinit,f,a);

plot(space,uRus,’c’);

uLW=LaxWendroff(T,dt,L,dx,uinit,f,a);

plot(space,uLW,’g’);

uUpNC=upwindNC(T,dt,L,dx,uinit,f,a);

plot(space,uUpNC,’y’);

legend(’upwind’, ’Roe’, ’Engquist- Osher’, ’Lax Friedrichs’,’Rusanov’, ’Lax Wendroff’,’upwind Non Conservative’)

clf;

u1=EngquistOsher(0.1,dt,L,dx,uinit,f,a);

u2=EngquistOsher(0.4,dt,L,dx,uinit,f,a);

u3=EngquistOsher(0.8,dt,L,dx,uinit,f,a);

u4=EngquistOsher(1,dt,L,dx,uinit,f,a);

plot(space,u1);

hold on

plot(space,u2);

plot(space,u3);
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plot(space,u4);

legend(’t=0.1’,’t=0.4’,’t=0.8’,’t=1’);

4. Show the effect of the CFL condition on the stability of the various schemes.

clear;clf;

% Space discretization

L=5;

dx=0.01;

space=(0:dx:L)’;

% Time discretization

T=1;

%dt=dx*0.95;

% dt=dx*2;

dt=dx*0.5;

% Initial datum 1

uinit=exp(-(space-2).^2/0.1);

% flux function 1 and derivative = Burgers

f=inline(’x.^2/2’);

a=inline(’x’);

% Approximated solution

uUp=upwind(T,dt,L,dx,uinit,f,a);

plot(space,uUp,’k’);

hold on;

uRoe=Roe(T,dt,L,dx,uinit,f,a);

plot(space,uRoe,’m’);

uEO=EngquistOsher(T,dt,L,dx,uinit,f,a);

plot(space,uEO,’b’);

uLF=LaxFriedrichs(T,dt,L,dx,uinit,f,a);

plot(space,uLF,’r’);

uRus=Rusanov(T,dt,L,dx,uinit,f,a);

plot(space,uRus,’c’);

uLW=LaxWendroff(T,dt,L,dx,uinit,f,a);

plot(space,uLW,’g’);

uUpNC=upwindNC(T,dt,L,dx,uinit,f,a);

plot(space,uUpNC,’y’);

legend(’upwind’, ’Roe’, ’Engquist- Osher’, ’Lax Friedrichs’,’Rusanov’, ’Lax Wendroff’,’upwind Non Conservative’)

5. Compare upwind conservative and upwind non-conservative scheme for equation (2) with initial

datum (5c). What do you notice ?
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clear;clf;

% Space discretization

L=5;

dx=0.01;

space=(0:dx:L)’;

% Time discretization

T=1;

dt=dx*0.95;

% Initial datum 3

space1=space(space<1);

space2=space((space>=1)&(space<=2));

space3=space(space>2);

uinit=[zeros(size(space1));ones(size(space2)); zeros(size(space3))];

% flux function 1 and derivative = Burgers

f=inline(’x.^2/2’);

a=inline(’x’);

% Approximated solution

uUp=upwind(T,dt,L,dx,uinit,f,a);

plot(space,uUp,’k’);

hold on;

uUpNC=upwindNC(T,dt,L,dx,uinit,f,a);

plot(space,uUpNC,’y’);

legend(’upwind’,’upwind Non Conservative’)

6. What are the results of Roe scheme with equation (2) and initial datum (5d). What is your interpre-

tation ? Do the other schemes have the same drawback ?

clear;clf;

% Space discretization

L=5;

dx=0.01;

space=(0:dx:L)’;

% Time discretization

T=1;

dt=dx*0.95;

% Initial datum 4

space1=space(space<1);

space2=space((space>=1)&(space<=2));

space3=space(space>2);

uinit=[-ones(size(space1));ones(size(space2)); -ones(size(space3))];

% flux function 1 and derivative = Burgers
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f=inline(’x.^2/2’);

a=inline(’x’);

% Approximated solution

uRoe=Roe(T,dt,L,dx,uinit,f,a);

plot(space,uRoe,’m’);

hold on;

uUp=upwind(T,dt,L,dx,uinit,f,a);

plot(space,uUp,’k’);

uEO=EngquistOsher(T,dt,L,dx,uinit,f,a);

plot(space,uEO,’b’);

uLF=LaxFriedrichs(T,dt,L,dx,uinit,f,a);

plot(space,uLF,’r’);

uRus=Rusanov(T,dt,L,dx,uinit,f,a);

plot(space,uRus,’c’);

uLW=LaxWendroff(T,dt,L,dx,uinit,f,a);

plot(space,uLW,’g’);

uUpNC=upwindNC(T,dt,L,dx,uinit,f,a);

plot(space,uUpNC,’y’);
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