Num \#6: Kinetic schemes

This work aims at implementing a kinetic scheme, first for Burgers equation: and then for the 1D monoatomic compressible Euler system. In both cases, the equations are considered as the limit of a kinetic equation and to solve it numerically, we will use a splitting scheme.

1 Burgers equation

We consider Burgers equation

$$
\begin{equation*}
\partial_{t} u+\partial_{x} \mathscr{F}(u)=0, \text { with } \mathscr{F}(u)=\frac{u^{2}}{2} \tag{1}
\end{equation*}
$$

as the limit of the following kinetic equation when $\varepsilon \rightarrow 0$:

$$
\begin{equation*}
\partial_{t} f+a(v) \partial_{x} f=\frac{1}{\varepsilon}\left(\chi_{u}(v)-f\right) \tag{2a}
\end{equation*}
$$

with:

$$
\begin{equation*}
a(\nu)=\mathscr{F}^{\prime}(\nu)=v . \tag{2b}
\end{equation*}
$$

The function $\chi_{u}(\nu)$ is defined by:

$$
\chi_{u}(v)= \begin{cases}1 & \text { if } 0<v<u \\ -1 & \text { if } u<v<0 \\ 0 & \text { otherwise }\end{cases}
$$

and the unknows of Equation (1) and System (2) are linked by the relationship:

$$
u(t, x)=\int_{\mathbb{R}} f(t, x, v) \mathrm{d} v .
$$

We use a spliting scheme to approach the solution of System (2):

- Step 1: Linear transport step

$$
\partial_{t} f+a(v) \partial_{x} f=0 .
$$

We consider here an upwind scheme:

$$
\begin{equation*}
f_{i}^{n+\frac{1}{2}}(\nu)=f_{i}^{n}(\nu)-\frac{\Delta t}{\Delta x}\left[a^{+}(\nu)\left(f_{i}^{n}(\nu)-f_{i-1}^{n}(\nu)\right)-a^{-}(\nu)\left(f_{i+1}^{n}(\nu)-f_{i}^{n}(\nu)\right)\right] \tag{3}
\end{equation*}
$$

where $a^{+}(\nu)=\max (a(\nu), 0)$ and $a^{-}(\nu)=\max (-a(\nu), 0)$.

- Step 2: Collision step

$$
\partial_{t} f=\frac{1}{\varepsilon}\left(\chi_{u}-f\right) .
$$

When $\varepsilon \rightarrow 0$, this step reduces to $f=\chi_{u}$ and thus, the second step of the scheme consists in solving:

$$
f_{i}^{n+1}(\nu)=\chi_{u_{i}^{n+\frac{1}{2}}}(\nu)
$$

where $u_{i}^{n+\frac{1}{2}}=\int_{\mathbb{R}} f_{i}^{n+\frac{1}{2}}(\nu) \mathrm{d} \nu$.

Noting that $u_{i}^{n+1}=\int_{\mathbb{R}} f_{i}^{n+1}(\nu) \mathrm{d} \nu=\int_{\mathbb{R}} \chi_{u_{i}^{n+\frac{1}{2}}}(\nu) \mathrm{d} \nu=u_{i}^{n+\frac{1}{2}}$, we can now return to variables of interest, that is u_{i}^{n}. Integrating Eq. (3) with respect to $v \in \mathbb{R}$ yields an equation of the form

$$
u_{i}^{n+1}=u_{i}^{n}-\frac{\Delta t}{\Delta x}\left(F_{i+1 / 2}^{n}-F_{i-1 / 2}^{n}\right)
$$

where the flux $F_{i+1 / 2}^{n}$ is defined by:

$$
F_{i+1 / 2}^{n}=\int_{\mathbb{R}}\left[a^{+}(\nu) \chi_{u_{i}^{n}}(\nu)-a^{-}(\nu) \chi_{u_{i+1}^{n}}(\nu)\right] \mathrm{d} \nu
$$

Exercise

1. Give the expression of fluxes $F_{i+\frac{1}{2}}$. Implement the scheme (with periodic boundary conditions).
2. Perform a test case with the following initial datum on the interval $[0,5]$:

$$
u_{0}(x)=\mathrm{e}^{-(x-2)^{2} / 0.1}
$$

3. Highlight the CFL condition.

2 Compressible Euler system

We now consider the compressible Euler system:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\rho u)=0, \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}+p\right)=0, \\
\partial_{t} E+\partial_{x}(E u+p u)=0 .
\end{array}\right.
$$

and we rewrite it in the (ρ, j, E) - variables as :

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x} j=0, \tag{4}\\
\partial_{t} j+\partial_{x}(2 E)=0, \\
\partial_{t} E+\partial_{x}\left(3 \frac{E j}{\rho}-\frac{j^{3}}{\rho^{2}}\right)=0,
\end{array}\right.
$$

We set this system on $[0,1]$ and for later purpose, we also introduce:

$$
T=2 e=2 \frac{E}{\rho}-u^{2}=2 \frac{E}{\rho}-\frac{j^{2}}{\rho^{2}} .
$$

This system is viewed as the limite $\varepsilon \rightarrow 0$ of the BGK equation:

$$
\partial_{t} f+v \partial_{x} f=\frac{1}{\varepsilon}(M[f]-f)
$$

It holds in the sense that f is expected to converge towards $M[f]$, with macroscopic quantities solutions of system (4).

We follow the same procedure as in the previous section. The scheme is therefore written in two steps:

1. Step 1: Linear transport step:

$$
\partial_{t} f+v \partial_{x} f=0
$$

We adopt an upwind scheme to solve this problem. This yields:

$$
f_{i}^{n+\frac{1}{2}}=f_{i}^{n}-\frac{\Delta t}{\Delta x}\left[\frac{v+|v|}{2}\left(f_{i}^{n}-f_{i-1}^{n}\right)+\frac{v-|v|}{2}\left(f_{i+1}^{n}-f_{i}^{n}\right)\right]
$$

2. Step 2: Collision step :

$$
\partial_{t} f=\frac{1}{\varepsilon}(M[f]-f) .
$$

The first remark is to note that during this step, macroscopic quantities associated to f do not change. This is due to the fact that macroscopic quantities of f and $M[f]$ are the same and consequently their partial derivatives vanish during this step.

When ε goes to zero, this step reduces to:

$$
f_{i}^{n+1}=M_{i}^{n+\frac{1}{2}}\left(=M_{i}^{n+1}\right)
$$

where M_{i}^{n} stands for $M\left[f_{i}^{n}\right]$ and the last equality holds owing to previous remark and the fact that $M[f]$ only depends on macroscopic quantities.

In pratice, we do not resolve the previous scheme: we go back to macroscopic variable by integrating previous equations. Indeed, macroscopic quantities associated to f are defined as follows:

$$
\begin{aligned}
& \rho(t, x)=\int_{\mathbb{R}} f(t, x, v) d v, \\
& \rho u(t, x)=\int_{\mathbb{R}} v f(t, x, v) d v, \\
& E(t, x)=\int_{\mathbb{R}} \frac{v^{2}}{2} f(t, x, v) d v .
\end{aligned}
$$

Hence, intregrating previous scheme with respect to v yields:

$$
U_{i}^{n+1}=U_{i}^{n+\frac{1}{2}}=U_{i}^{n}-\frac{\Delta t}{\Delta x} \int_{R}\left(1, v, \frac{v^{2}}{2}\right)\left[\frac{v+|v|}{2}\left(M_{i}^{n}-M_{i-1}^{n}\right)+\frac{v-|v|}{2}\left(M_{i+1}^{n}-M_{i}^{n}\right)\right] d v
$$

where U_{i}^{n} stands for the vector $\left(\rho_{i}^{n}, j_{i}^{n}, E_{i}^{n}\right)$.
In conclusion, the scheme reads as follows:

$$
U_{i}^{n+1}=U_{i}^{n}-\frac{\Delta t}{\Delta x}\left[F_{i+\frac{1}{2}}-F_{i-\frac{1}{2}}\right]
$$

where the flux $F_{i+\frac{1}{2}}$ is given by:

$$
F_{i+\frac{1}{2}}=\int_{v \leqslant 0} v\left(1, v, \frac{v^{2}}{2}\right) M_{i+1}^{n} d v+\int_{v \geqslant 0} v\left(1, v, \frac{v^{2}}{2}\right) M_{i}^{n} d v .
$$

In the case where the "equilibrium function" $M[f]$ is defined by:

$$
M[f](\nu)=\frac{\rho}{2 \sqrt{3 T}} \mathbb{1}_{|\nu-u| \leqslant \sqrt{3 T}},
$$

(ρ, u and T are macroscopic quantities associated to f), it is possible to derive a simple explicit expression of fluxes $F_{i+\frac{1}{2}}$.

Exercise

1. Give the expression of fluxes $F_{i+\frac{1}{2}}$. Implement the scheme.
2. Perform a test case with the following initial data on the domain $[0,1]$ with Neumann boundary conditions, as in session \#4:

$$
\rho(0, x)=\left\{\begin{array}{lll}
1 & \text { if } & x \leqslant 0.5, \\
0.125 & \text { if } & x>0.5,
\end{array} \quad p(0, x)=\left\{\begin{array}{lll}
1 & \text { if } & x \leqslant 0.5, \\
0.1 & \text { if } & x>0.5,
\end{array} \quad \text { and } \quad u(0, x)=0 .\right.\right.
$$

