IFCAM SUMMER SCHOOL - BANGALORE 1 BURGERS EQUATION

Num #6: Kinetic schemes

This work aims at implementing a kinetic scheme, first for Burgers equation : and then for the 1D monoatomic
compressible Euler system. In both cases, the equations are considered as the limit of a kinetic equation

and to solve it numerically, we will use a splitting scheme.

1 Burgers equation

We consider Burgers equation
2

0,1 +0,F (1) = 0, with F (1) :”7, 1)

as the limit of the following kinetic equation when & — 0:

1
0if +a(w)oyf = E(xu(v)—f), (2a)

with:
aw)=F'(v)=v. (2b)

The function y,(v) is defined by:
1 ifo<v<u,

ru@)=4 -1 ifu<v<0,

0 otherwise,

and the unknows of Equation (1) and System (2) are linked by the relationship:
u(t,x) = f ft,x,v)dv.
R

We use a spliting scheme to approach the solution of System (2):

e Step 1: Linear transport step
0:f +a(v)o f =0.

We consider here an upwind scheme:
n+y n At n n - n n
f; P = (v)—A—x[a W (-1 w)-a ) (i, - 7 )] 3)
where a* (v) = max(a(v),0) and a~ (v) = max(—a(v),0).

* Step 2: Collision step )
0:f = E(Xu_f)

When € — 0, this step reduces to f = y, and thus, the second step of the scheme consists in solving:

1w =X iy ),

1 1
n+; n+;
where u; 2 :ffl 2(v)dv.
R
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. +3 . .
Noting that u;’“ = f fi”“(v) dv = f X ay)dv = uln ?, we can now return to variables of interest,
R R u;

that is u!'. Integrating Eq. (3) with respect to v € R yields an equation of the form

At
n+1 _ n n n
u, =1u; ‘A_x(Fm/z_Fi—uz)

where the flux F"

i11/2 is defined by:

Fin+1/2:fR[ﬂ+(V))(u;l(V)—a_(v)xu;lﬂ(v) dv.

Exercise
1. Give the expression of fluxes F; 1. Implement the scheme (with periodic boundary conditions).
2. Perform a test case with the following initial datum on the interval [0, 5] :

2
u()(.x) — e—(x—2) /01‘

3. Highlight the CFL condition.

2 Compressible Euler system

We now consider the compressible Euler system:
0:p+0x(pu) =0,
0:(pu) +dx(pu? + p) =0,
0:E+0+(Eu+pu)=0.

and we rewrite it in the (p, j, E)- variables as :

a[p +6xj = 0,
0. +0,2E) =0, @
Ei .3
0,E+0,63-L - L) =0,
p P

We set this system on [0, 1] and for later purpose, we also introduce:

E E 2
T:26:2——u2:2——J—2.
P P P

This system is viewed as the limite € — 0 of the BGK equation:

0uf +v0.f = (MIf1- f).
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It holds in the sense that f is expected to converge towards M| f], with macroscopic quantities solutions
of system (4).

We follow the same procedure as in the previous section. The scheme is therefore written in two steps:

1. Step 1: Linear transport step:
O0if +v0xf =0.

We adopt an upwind scheme to solve this problem. This yields:

n+i Atrv+|v| v—|v|
;= - U ) e ()]
2. Step 2: Collision step : )
0cf == (M1f1-1).

The first remark is to note that during this step, macroscopic quantities associated to f do not
change. This is due to the fact that macroscopic quantities of f and M[f] are the same and con-
sequently their partial derivatives vanish during this step.

When ¢ goes to zero, this step reduces to:

f'n+1 — M{“’%(: Mﬂ+1)
i )

14 ]

where M stands for M[f/"] and the last equality holds owing to previous remark and the fact that

M([f] only depends on macroscopic quantities.

In pratice, we do not resolve the previous scheme: we go back to macroscopic variable by integrating

previous equations. Indeed, macroscopic quantities associated to f are defined as follows:

p(t,x) = f ft,x,v) dv,
R

pu(t,x)z[vf(t,x,v)dv,
R
2

E(t,x):f—f(t,x,v)dv.
R 2

Hence, intregrating previous scheme with respect to v yields:

M — M" )+V_—|V|(M.”
2

i i—1 i+1

2

upt =t = up <AL (10,2 2

i i A_XR _Mln)

dv,
where U!" stands for the vector (pl’.l, it El”)
In conclusion, the scheme reads as follows:

At
+1 _
Uln _Uin_A_x
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where the flux F; 1 is given by:

FH% :fvgov(l,v,%)Mi”Hdv+fv>o v(l,v,v;)Mfdv.

=

In the case where the “equilibrium function” M|[f] is defined by:

[y
MW ==t u<var

(p, uand T are macroscopic quantities associated to f), it is possible to derive a simple explicit expression

of fluxes F; 1.
2

Exercise
1. Give the expression of fluxes F, 1. Implement the scheme.
2

2. Perform a test case with the following initial data on the domain [0, 1] with Neumann boundary

conditions, as in session #4:

1 if x<0.5,
p0,x) = and u(0,x) =0.

0.125 if x>0.5,

1 if x<0.5,
p(0,x) =
0.1 if x>0.5,
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