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Num #6: Kinetic schemes

This work aims at implementing a kinetic scheme, first for Burgers equation : and then for the 1D monoatomic

compressible Euler system. In both cases, the equations are considered as the limit of a kinetic equation

and to solve it numerically, we will use a splitting scheme.

1 Burgers equation

We consider Burgers equation

∂t u +∂xF (u) = 0, with F (u) = u2

2
, (1)

as the limit of the following kinetic equation when ε→ 0:

∂t f +a(v)∂x f = 1

ε

(
χu(v)− f

)
, (2a)

with:

a(v) =F ′(v) = v. (2b)

The function χu(v) is defined by:

χu(v) =


1 if 0 < v < u,

−1 if u < v < 0,

0 otherwise,

and the unknows of Equation (1) and System (2) are linked by the relationship:

u(t , x) =
∫
R

f (t , x, v)dv.

We use a spliting scheme to approach the solution of System (2):

• Step 1: Linear transport step

∂t f +a(v)∂x f = 0.

We consider here an upwind scheme:

f
n+ 1

2
i (v) = f n

i (v)− ∆t

∆x

[
a+(v)

(
f n

i (v)− f n
i−1(v)

)−a−(v)
(

f n
i+1(v)− f n

i (v)
)]

(3)

where a+(v) = max(a(v),0) and a−(v) = max(−a(v),0).

• Step 2: Collision step

∂t f = 1

ε

(
χu − f

)
.

When ε→ 0, this step reduces to f =χu and thus, the second step of the scheme consists in solving:

f n+1
i (v) =χ

u
n+ 1

2
i

(v),

where u
n+ 1

2
i =

∫
R

f
n+ 1

2
i (v)dv .
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Noting that un+1
i =

∫
R

f n+1
i (v)dv =

∫
R
χ

u
n+ 1

2
i

(v)dv = u
n+ 1

2
i , we can now return to variables of interest,

that is un
i . Integrating Eq. (3) with respect to v ∈R yields an equation of the form

un+1
i = un

i − ∆t

∆x
(F n

i+1/2 −F n
i−1/2)

where the flux F n
i+1/2 is defined by:

F n
i+1/2 =

∫
R

[
a+(v)χun

i
(v)−a−(v)χun

i+1
(v)

]
dv.

Exercise

1. Give the expression of fluxes Fi+ 1
2

. Implement the scheme (with periodic boundary conditions).

2. Perform a test case with the following initial datum on the interval [0,5] :

u0(x) = e−(x−2)2/0.1.

3. Highlight the CFL condition.

2 Compressible Euler system

We now consider the compressible Euler system:

∂tρ+∂x (ρu) = 0,

∂t (ρu)+∂x (ρu2 +p) = 0,

∂t E +∂x (Eu +pu) = 0.

and we rewrite it in the (ρ, j ,E)- variables as :

∂tρ+∂x j = 0,

∂t j +∂x (2E) = 0,

∂t E +∂x (3
E j

ρ
− j 3

ρ2 ) = 0,

(4)

We set this system on [0,1] and for later purpose, we also introduce:

T = 2e = 2
E

ρ
−u2 = 2

E

ρ
− j 2

ρ2 .

This system is viewed as the limite ε→ 0 of the BGK equation:

∂t f + v∂x f = 1

ε

(
M [ f ]− f

)
.
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It holds in the sense that f is expected to converge towards M [ f ], with macroscopic quantities solutions

of system (4).

We follow the same procedure as in the previous section. The scheme is therefore written in two steps:

1. Step 1: Linear transport step:

∂t f + v∂x f = 0.

We adopt an upwind scheme to solve this problem. This yields:

f
n+ 1

2
i = f n

i − ∆t

∆x

[ v +|v |
2

(
f n

i − f n
i−1

)+ v −|v |
2

(
f n

i+1 − f n
i

)]
2. Step 2: Collision step :

∂t f = 1

ε

(
M [ f ]− f

)
.

The first remark is to note that during this step, macroscopic quantities associated to f do not

change. This is due to the fact that macroscopic quantities of f and M [ f ] are the same and con-

sequently their partial derivatives vanish during this step.

When ε goes to zero, this step reduces to:

f n+1
i = M

n+ 1
2

i

(
= M n+1

i

)
,

where M n
i stands for M [ f n

i ] and the last equality holds owing to previous remark and the fact that

M [ f ] only depends on macroscopic quantities.

In pratice, we do not resolve the previous scheme: we go back to macroscopic variable by integrating

previous equations. Indeed, macroscopic quantities associated to f are defined as follows:

ρ(t , x) =
∫
R

f (t , x, v) d v,

ρu(t , x) =
∫
R

v f (t , x, v) d v,

E(t , x) =
∫
R

v2

2
f (t , x, v) d v.

Hence, intregrating previous scheme with respect to v yields:

U n+1
i =U

n+ 1
2

i =U n
i − ∆t

∆x

∫
R

(
1, v,

v2

2

)[ v +|v |
2

(
M n

i −M n
i−1

)+ v −|v |
2

(
M n

i+1 −M n
i

)]
d v,

where U n
i stands for the vector

(
ρn

i , j n
i , E n

i

)
.

In conclusion, the scheme reads as follows:

U n+1
i =U n

i − ∆t

∆x

[
Fi+ 1

2
−Fi− 1

2

]
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where the flux Fi+ 1
2

is given by:

Fi+ 1
2
=

∫
v60

v
(
1, v,

v2

2

)
M n

i+1d v +
∫

v>0
v
(
1, v,

v2

2

)
M n

i d v.

In the case where the “equilibrium function” M [ f ] is defined by:

M [ f ](v) = ρ

2
p

3T
1|v−u|6p

3T ,

(ρ, u and T are macroscopic quantities associated to f ), it is possible to derive a simple explicit expression

of fluxes Fi+ 1
2

.

Exercise

1. Give the expression of fluxes Fi+ 1
2

. Implement the scheme.

2. Perform a test case with the following initial data on the domain [0,1] with Neumann boundary

conditions, as in session #4:

ρ(0, x) =
{

1 if x 6 0.5,

0.125 if x > 0.5,
p(0, x) =

{
1 if x 6 0.5,

0.1 if x > 0.5,
and u(0, x) = 0.
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