A REMARK ON CHARACTERIZING INNER PRODUCT SPACES VIA
STRONG THREE-POINT HOMOGENEITY
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ABSTRACT. We show that a normed linear space is isometrically isomorphic to an inner product
space if and only if it is a strongly n-point homogeneous metric space for any (or every) n > 3. The
counterpart for n = 2 is the Banach—-Mazur problem.

Normed linear spaces and inner product spaces are central to much of mathematics, in particular
analysis and probability. The goal of this short note is to provide a “metric” characterization that
we were unable to find in the literature, of when the norm in a linear space arises from an inner
product. This characterization is classical in spirit, is in terms of a “strong” 3-point homogeneity
property that holds in all inner product spaces, and is adjacent to a well-known open question.

Two prevalent themes in the early 20th century involved exploring metric geometry — e.g. when
a (finite or) separable metric space isometrically embeds into the Hilbert space of square-summable
sequences ¢ := ¢*(N) — and exploring when a normed linear space (B, || - ||) is Hilbert, i.e. || - ||
arises from an inner product on B. See e.g. [3], [9], [II]-[12], [14]-[18], [20], [25]; additional works
on the latter theme can be found cited in [I5]. There have also been books — see e.g. [5l 8, 10, 13]
— as well as later works. This note, while squarely in the latter theme, is strongly inspired by
the former theme — in which it is worth mentioning the Mathematics Kolloquium [23] of Karl
Menger and others in Vienna, from 1928-36. This long-running lecture series saw contributions in
metric geometry and related areas by Menger, Godel, von Neumann, and others, and led to new
developments in metric embeddings, metric convexity, fixed point theory, and more. The goal of
our work is to provide such a distance-geometric characterization of an inner product.

We begin with some results from the latter theme. Jordan and von Neumann showed in [16]
that the norm in a real or complex linear space B comes from an inner product if and only if the
parallelogram law holds in B; they also showed the (real and) complex polarization identity in loc.
cit. We collect this and other equivalent conditions for the norm || - || in a real or complex linear
space B to arise from an inner product:

Theorem 1. Suppose (B, || -||) is a real or complex inner product space. Its norm arises from an
inner product if and only if any of the following equivalent conditions holds (for the last two, we
work only over R):

(IP1) (Jordan and von Neumann, [16].) || f + gl|* + If — glI* = 2([|f* + llgl|*) for all f,g € B.
(The parallelogram law; it originally appears in the authors’ work with Wigner, see [17,
p. 32].)

(IP2) (Ficken, [T1).) If £, € B with |[£] = gl then lf + gl = |55 + ag]l for all real o, B.

(1P3) (Day, [9.) If f.g € B with | £] = llgll = 1, then |/ +g|> -1/ ~gl? = 4. (The parallelogram
law, but only for rhombi.)

(IP4) (James, [15], when dimB > 3.) For all f,g € B, ||f + ag|| = ||f|| for all scalars «, if and
only if ||g + af|| = |lg|| for all scalars o. (Symmetry of Birkhoff-James orthogonality.)
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(IP5) (Lorch, [20], over R.) There exists a fized constant ' € R\ {O,:I:l}E| such that whenever
f',9" € B with ||f']] = |lg'll, we have [[f'+ gl = llg" + ' f'l.

(IP6) (Lorch, [20], over R.) There ezists a fized constant v € R\ {0,£1} such that whenever
frg € B with [|f +gll = |If — gll, we have [|f +~vgll = [If = vgll-

Indeed, that every inner product space satisfies these properties is immediate, while the implica-
tions (IP5) <= (IP6) = (IP2) were shown by Lorch; and that (IP1), (IP2), (IP3), (IP4) imply
that || - ||? arises from an inner product were shown by the respectively named authors above.

All of these characterizations of an inner product use the norm and the vector space structure
(over R or C) on B. The goal of this note is to isolate the inner product using the metric in B but
avoiding both the additive structure and the (real or complex) scalar multiplication. Thus, our
result is in the spirit of both of the aforementioned classical themes: characterizing inner products
in normed linear spaces, while using metric geometry alone.

1. THE MAIN RESULT AND ITS PROOF

To state our result, first recall from [27] or even [4, p. 470] that for an integer n > 1, a metric
space (X,d) is n-point homogeneous if given two finite subsets V)Y’ C X with |Y| = |Y/| < n,
any isometry T : Y — Y’ extends to an isometry : X — X. We will require a somewhat more
restrictive notion:

Definition 2. A metric space (X, d) will be termed strongly n-point homogeneous if given subsets
Y, Y/ C X with |Y| = |Y’| < n, each isometry T : Y — Y’ can be extended to an onto isometry
X —» X.

We now motivate our main result (and the above definition via onto isometries). It seems to be
folklore that the Euclidean space R¥ is n-point homogeneous for all n — and more strongly, satisfies
that every isometry between finite subsets Y, Y’ C R¥, upon pre- and post- composing with suitable
translations in order to send 0 to 0, extends to an orthogonal linear map : R¥ — R”.

Remark 3. While not central to our main result, we will explain below why this property also
holds for infinite subsets of (R¥, || - ||2); a weakening of it was termed the free mobility postulate
by Birkhoff [4, pp. 469-470]. However, this postulate is not satisfied by any infinite-dimensional
Hilbert space for infinite subsets. This was already pointed out in 1944 by Birkhoff in loc. cit.;
for a specific counterexample, see e.g. the proof of [28, Theorem 11.4] in ¢, where the left-shift
operator sending Y := {(z,)n>0 € £% : 1 = 0} onto Y’ := £? is an isometry that does not extend
to (1,0,0,...).

Returning to our motivation: in fact all inner product spaces satisfy this “orthogonal extension
property” for all pairs of isometric finite subsets Y, Y”, as we explain below. Here we are interested
in the converse question, i.e.,

(a) if this “orthogonal extension property” (with Y,Y” finite) characterizes inner product spaces
(among normed linear spaces); and
(b) if yes, then how much can this property be weakened without disturbing the characterization
— and if it can in fact be weakened to use metric geometry alone. (In an arbitrary normed
linear space, we necessarily cannot use orthogonality or inner products; but we also want
to not use the vector space operations either.)
This note shows that indeed (a) holds. Moreover, (b) we can indeed weaken the orthogonal

extension property to (i) replacing the orthogonal linear map by merely an onto isometry — not
necessarily linear a priori — and (ii) working with 3-point subsets Y, Y’. More precisely:

IWe correct a small typo in Lorch’s (IP5) in [20]: he stated 7" # 0, 1 but omitted excluding —1; but clearly 4" = —1
“works” for every normed linear space B and all vectors f', ¢’ € B, since ||f' — ¢’ = llg' — F'|-
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Theorem 4. Suppose (B, || - ||) is a nonzero real or complex normed linear space. Then | - ||
arises from an inner product — real or complex, respectively — if and only if B is strongly n-point
homogeneous for any (equivalently, every) n > 3.

Remark 5. Below, we will provide additional equivalent — and a priori weaker — conditions to add
to Theorem [4] in characterizing an inner product. See Theorems [I2] and

To the best of our ability — and that of a dozen experts — we were unable to find such a result
proved in the literature. Before proceeding to its proof, we discuss the assertion for n = 1,2.
If n = 1 then Theorem [ fails to hold, since every normed linear space B is strongly one-point
homogeneous: given z,y € B, the translation z — z + y — z is an onto isometry sending x to y.

If instead n = 2 then one is asking if there exists a (real) linear space (B, || - ||) with || - ||* not
arising from an inner product, such that given any f, f’,g,¢' € B with [|f" — f|| = |l¢’ — gl|, every
isometry sending f, f’ to g, ¢’ respectively extends to an onto isometry of B. By pre- and post-
composing with translations, one can assume f = g = 0 and ||f'|| = ||¢’||; now one is asking if
every real normed linear space with transitive group of onto-isometries fixing 0 (these are called
rotations) is isometrically isomorphic to an inner product space. Thus we come to the well-known
Banach-Mazur problem [2] — which was affirmatively answered by Mazur for finite-dimensional
B [21], has counterexamples among non-separable B [24], and remains open for infinite-dimensional
separable B. (This is also called the Mazur rotations problem; see the recent survey [6].) This is
when n = 2; and the n > 3 case is Theorem @

Remark 6. Given the preceding paragraph, one can assume in Theorem [ that B is infinite-
dimensional, since if dimB < oo then strong 3-point homogeneity implies strong 2-point homo-
geneity, which by Mazur’s solution [2I] to the Banach—-Mazur problem implies B is Euclidean.
That said, our proof of Theorem 4] works uniformly over all normed linear spaces, and we believe
is simpler than using the Banach—-Mazur problem (which moreover cannot be applied for all B).

Proof of Theorem [}l We begin by proving the real case. We first explain the forward implication,
starting with B = (R¥,|| - ||2) for an integer k > 1. As is asserted (without proof) on [4, p. 470],
R* is n-point homogeneous for every n > 1; we now show that it is moreover strongly n-point
homogeneous — in fact, that it satisfies the “orthogonal extension property” above:

LetY,Y' CR* andletT:Y — Y’ be an isometry. By translating Y andY', assume 0 € Y NY’
and T(0) = 0. Then T extends to an orthogonal self-isometry T of (R*,|| - ||2).

This claim can be proved from first principles and is likely folklore (e.g. see a skeleton argument
in [, Section 38]). However, for self-completeness, we present a detailed sketch via a “lurking
isometry” argument, along with some supplementary remarks. For full details, see [19, Theorem
22.3] and its proof.

The first step is to note that vectors yg, ..., ¥y, in an inner product space are linearly dependent
if and only if their Gram matrix G := ((y;, yj>)2j:0 is singular, since

n
v ::chyj =0 = Gc=0 = c'Gc=0 = |p]?=0. (1.1)
=0

This simple fact yields several noteworthy consequences; we mention two here, without proof.
The first is an 1841 result by Cayley [7] (during his undergraduate days):

Lemma 7. Let (X = {x0,...,2,},d) be a finite metric space, and ¥ : X — (% an isometry. Then
the vectors U(X) are affine linearly-dependent (i.e. lie in an (n — 1)-dimensional affine subspace)
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if and only if the Cayley—Menger matrix of X is singular:

(2) d%l d§2 ttt dg),n 1
dijp 0 dip -+ di, 1
g d3 0 - d3, 1
CM(X)(nt2)x(n+2) = | | : : ‘ .| s where dij = dx (i, 7;). (1.2)
duo oy g - 01
1 1 1 -1 0

The second consequence is used below, but also underlies the Global Positioning System (GPS)
“trilateration” — i.e. that every point on say a Euclidean plane P is uniquely determined by its
distances from three non-collinear points in P. More generally:

Proposition 8. Fizyy =0,...,y, € 2. The following are equivalent for y € (2:
(1) y is (uniquely) determined by its distances from yo, ..., Yn.
(2) y is in the span of y1,...,Yn.

(See e.g. [19, Proposition 22.7].) Returning to the proof of the orthogonal extension property for R:
fix a maximal linearly independent subset {y1,...,y,} in Y. Then we claim, sois {T'(y1),...,T(yr)}-
Indeed, by polarization we have

2(yi, y5) = llyi — Ol + llys — Ol13 — llyi — w3 (1.3)
= 1T (y:) = TO)3 + 1T (y;) = TO)3 = IT(w:) = T(;)lI3 = 2T (), T(y))

for 1 < 4,j < r. Thus the Gram matrix of the T'(y;) equals that of the y;, and hence is invertible as
well; so by the T'(y;) are linearly independent too. Moreover, for any other y € Y, the Gram
matrix of y,y1,...,¥y, is singular by , hence so is the Gram matrix of T'(y), T(y1),...,T(yr)
by . N

Next, we claim that the linear extension 7" of T from {y; ..., y, } to spang(Y’) (hence mapping into
spang(Y”)) agrees with 7' on Y. Indeed, by maximality one writes y € spang(Y) as >°"_; ¢;(y)y;
and T'(y) € spanRgY’) as y iy ¢i(y)T(y;); then and Proposition (8| show that ¢; = ¢ on V
(for all j). Hence T=T on Y.

It also follows from that T preserves lengths, hence is injective. Finally, choose orthonormal
bases of the orthocomplements in R* of spang(Y) and of T (spang(Y)), and map the first of these
bases (within spang(Y)+) bijectively onto the second; then extend T to all of R¥ by linearity.
Direct-summing these two orthogonal linear maps yields the desired extension of T' to a linear
self-isometry T of (RF,| - ||2)

This linear orthogonal map T is necessarily injective on R, hence surjective as well. This shows
the orthogonal extension property for all (possibly infinite) isometric subsets Y, Y’ C R¥, and hence
the forward implication in the main result for B = R”.

If instead B is an infinite-dimensional inner product space, and T an isometry between Y, Y’ C B
of common size at most n, first pre- and post- compose by translations to assume 0 € Y N Y’ and
T(0) = 0. Now let By = (R¥, || - ||2) be the span of Y UY’. By the above analysis, T : Y — Y’
extends to an orthogonal operator on By, which we still denote by T'; as By is a complete subspace
of B, by the “projection theorem” (or from first principles) we get B = By ® Bg. Now the bijective
orthogonal map T'|p, & IthOL completes the proof of the forward implication — for any n > 1.

We next come to the reverse implication; now n > 3. From the definitions, it suffices to work
with n = 3. Moreover, the cases of dimB = 0, 1 are trivial since B is then an inner product space,
so the reader may also assume dim B € [2, o] in the sequel, if required.

We work via contradiction: let (B, | -||) be a nonzero 3-point homogeneous normed linear space,
with || - || not induced by an inner product. Then Lorch’s condition (IP5) fails to hold for any
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7 € R\ {0,£1}. Fix such a scalar 7/; then there exist vectors f’, ¢’ € B with ||f'|| = |¢'|| but
N+~ # g +~f|l. In particular, 0, f',¢" are distinct. Now let Y =Y’ = {0, f/,¢'}, and
consider the isometry T': Y — Y’ which fixes 0 and interchanges f’,¢’. By hypothesis, T' extends
to an onto isometry : B — B, which we also denote by 7. But then T is affine-linear by the
Mazur—Ulam theorem [22], hence is a linear isometry as 7'(0) = 0. This yields

L+ =11 = (=N =T =T = llg" +~ f.
which provides the desired contradiction, and proves the reverse implication.

Remark 9. An alternate argument to the one provided above (for the reverse implication) goes
as follows. By the parallelogram law (IP1), it suffices to show every plane P C B is Euclidean.
Suppose 0 # f,g € P with ||f|| = ||g||; then the isometry of {0, f,g} that fizes O and exchanges
f.g extends to an onto isometry of B. By Mazur—Ulam [22], T is affine-linear (hence linear as
T(0) =0), and thus sends P onto itself. But then ||af + Bg|| = |T(af + Bg)|| = ||Bf + ag|| for all
a, B € R. By Ficken’s result (IP2) for P, P is Euclidean. We note that this argument is somewhat
more involved than the one above, as it makes use of (i) Ficken’s characterization (IP2), which as
Lorch wrote [20] is a priori more involved than Lorch’s (IP5); and (ii) the parallelogram law (IP1),
which our argument does not use (nor did Lorch)ﬂ

The above analysis proves the real case; now suppose (B, ||-||) is a nonzero complex normed linear
space. The forward implication follows from the real case, since (B, ||-||) is also a real normed space
— which we denote by B|g. For the same reason, in the reverse direction we obtain that B|g is
isometrically isomorphic to a real inner product space: ||f|| = +/(f, f)r for a real inner product
(-,-)r on B|g and all f € B|g. Now the complex polarization trick of Jordan-von Neumann [16]
gives that

(f,9) = (f,9r —i(if, 9)r (1.4)
is indeed a complex inner product on B satisfying: || f|| = \/(f, f) for all f. O

2. A SECOND PROOF; LORCH’S CHARACTERIZATIONS FOR COMPLEX LINEAR SPACES

We next provide a second proof of the “reverse implication” of Theorem {4 for complex linear
spaces B = B|c, which requires the complex version of Lorch’s condition (IP5) above. Note that
the above argument over R cannot immediately proceed verbatim over C for two reasons:

(a) Lorch’s condition (IP5) needs to be verified as characterizing a complex inner product.
(b) The Mazur—Ulam theorem does not go through over C — e.g., the isometry 7 : (z,w) — (Z,w)
of the Hilbert space (C2, || - ||2) sends (0, 0) to itself, but is neither C-linear nor C-antilinear.

However, since 7 is R-linear on C2, this reveals how to potentially fix (b) for a second proof of
the reverse implication: it suffices to use Lorch’s condition (IP5) for + still real — and avoiding
0,41 as above — now for all vectors f’, ¢’ € B|c. If this still characterizes a complex inner product,
then one could continue the above proof verbatim, using the Mazur—Ulam theorem for real normed
linear spaces and replacing the word “linear” twice by “R-linear” in the proof.

Thus we need to verify if Lorch’s condition (IP5) characterizes a complex inner product. More
broadly, one can ask which of Lorch’s conditions (I1)—(ls) and (I7) = (IP5) in [20] — which charac-
terized an inner product in a real normed linear space — now do the same over C:

Theorem 10 (Lorch, [20]). Suppose B is a real normed linear space. Then the norm is induced by
an inner product if and only if any of the following equivalent conditions hold:

20ne can also see [8) (2.8)], where Dan mentions the flip map of an isosceles triangle. However, Dan requires
the isometry 7' to be linear, which is strictly stronger than our characterization-hypothesis of strong homogeneity.
Moreover, this linearity assumption is indeed required by Dan, since he mentions in the very next line that linearity
can be dropped if B is assumed to be strictly convex (see Theorem. In contrast, Theorem makes no assumption
either about the isometry T (other than surjectivity), nor about the normed linear space B.
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(I1) (Stated above as (IP6).) There exists a fized constant v € R\ {0,%1} such that whenever
fr9 € B with ||f + gll = [|f = gll, we have || f +~gll = |f = v9ll-

(I7) (Stated above as (IP5).) There exists a fized constant ' € R\ {0, %1} such that whenever
f',9" € B with ||| = |lg'll, we have [[f"+ "¢l = llg" + " fl.

(I2) A triangle is isosceles if and only if two medians are equal:

fHg+h=0,|fll=1lgl = Nf=nhll=llg=nl,  VfgheB.
(I3) For all f,g,h,k € B,
fHrg+h+k=0,\fl=lgll, Irll =&l = I[If =&l =Illg—Fkl and |lg—hl = |If — k|

(I4) For all fi, fo € B, the expression

o(fi.fr9) =+ ftalP+IAa+fo—gl’—1A-Ffo—gl*—Ifi—f2+9l?

is independent of g € B.
(Is) If f,9 € B and |[£]| = gl then lof + o~ g]l > |If + gl for all0 £ a € R.
(Ig) For a fixed integer n > 3, and vectors f1,..., fn € B, we have

n

fitet =0 = Y lfi=fIP=2n) Al

i<j i=1

In fact, these characterizations have since been cited and applied in many papers that work over
real linear spaces. The need to work over complex normed linear spaces — as well as the fact that
several characterizations in [9] [IT) [I6] before Lorch held uniformly over both R and C — provide
natural additional reasons to ask if Lorch’s conditions also characterize complex inner products.

We quickly explain why this does hold. Indeed, Lorch’s characterizations themselves involve real
scalars, so even if one starts with a complex normed linear space B, one still obtains a real inner
product (-,-)g on B = B|g. Now the discussion around recovers the complex inner product
from (-, -)g. This yields

Theorem 11 (“Complex Lorch”). A complex nonzero normed linear space (B, ||-||) is isometrically
isomorphic to a complex inner product space if and only if any of the following conditions of Lorch
[20] holds: (I) = (IP6), (I}) = (IP5), or (I2),...,(Is) — now stated verbatim in B, with the
constants v,v, a still being real.

In particular, this provides a second proof of one implication in Theorem [4] over C.

3. ISOSCELES TRIANGLE CHARACTERIZATION; WEAKER NOTIONS OF HOMOGENEITY

Note that the arguments in Section [I]in fact show a strengthening of Theorem |4 Namely: con-
tinuing the discussion preceding Theorem |4, the “orthogonal extension property” can be weakened
to strong 3-point homogeneity, and even weaker — wherein one only works with Y = Y’ the vertices
of an isosceles triangle in B (with the two equal sides of specified length).

Theorem 12. The following are equivalent for a nonzero real/complex normed linear space (B, ||-||).

(1) || - ||* arises from an (real or complex) inner product on B.

(2) If Y,Y' C B are finite subsets, with |Y| = |Y'|, then any isometry : Y — Y’ — up to pre-
and post- composing by translations — extends to an R-linear onto isometry : B — B.

(3) B is strongly n-point homogeneous for any (equivalently, every) n > 3.

(4) Given an isosceles triangle in B with vertex set Y =Y’ = {0, f',¢'} such that ||f'|| = ||¢'|] =
1, the isometry : Y — Y’ that fizes 0 and flips f', g extends to an onto isometry of B.
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Indeed, we showed above that (4) = (1) = (2) (as the f’, ¢’ in Lorch’s condition (IP5) can
be simultaneously rescaled), while (2) = (3) = (4) is trivial. To see why one cannot assert
C-linearity in the second statement, let

B= (C2v|| ) H2)7 Y:{(070)7(170)7(i70)}7 Y/:{(070)7(170)7(071)}7

and let T: Y — Y’ fix (0,0) and (1,0), and send (7,0) to (0,1). Then T necessarily cannot extend
to a C-linear map. Also note that akin to Theorem [4] here too the final three assertions each
characterize inner products using (isosceles) metric geometry alone, and without appealing to the
vector space structure in B.

We conclude by exploring two weakenings of the notion of “strong” m-point homogeneity that
was used to characterize when B is an inner product space. The first question is to ask if one can
work with “usual” n-point homogeneity, i.e. if one can remove the “onto” part of that definition.
Note that in the literature, the requirement of extending subset-isometries to onto-isometries of the
whole (metric) space is perhaps more natural than merely into-isometries, given their appearance
in well-known results and open problems in the Banach space literature — the Mazur—Ulam theorem
[22], the Banach-Mazur problem [2, 21], and Tingley’s problem [26] among others — and also given
the folklore fact that this holds for all inner product spaces and in our results above. Now having
studied the “onto” picture in detail, the first question (above) is natural.

To answer it, note that the proof of Theorem [ required the “onto” hypothesis solely to invoke
the Mazur—Ulam theorem. This hypothesis can thus be bypassed, at a cost:

Theorem 13. Suppose (B, || -||) is a nonzero real or complex normed linear space that is moreover
strictly convex:

la+b|| =|la|| +|b]] == a,b€B are linearly dependent.

Then || - ||? arises from a (real or complex, respectively) inner product if and only if B is n-point
homogeneous for any (every) n > 3 — equivalently, if the flip map on the vertices of each isosceles
triangle extends to a self-isometry of B.

In particular, this reveals yet another equivalent condition to the inner product property: B is
strictly convex and (“usual”) 3-point homogeneous.

Proof. The reverse implication over R follows from the corresponding part of Theorem [ using
Baker’s result [I] that the Mazur—Ulam theorem does not require the surjectivity hypothesis if B
is strictly convex. The reverse implication over C is now shown as in Theorem [@ and the forward
implication follows from Theorem [] O

We formulate the natural question corresponding to the remaining case.

Question 14. Suppose B is a (real) normed linear space that is not strictly convex (in particular,
not strongly 3-point homogeneous or equivalently an inner product space). Can B be 3-point
homogeneous? (To start, one can assume B separable and complete.)

We end by answering a natural question that arises from Theorem [12|4). Note that (strong)
n-point homogeneity concerns subsets Y, Y’ of size at most n. However, Theorem (4) shows that
one can work with subsets of size exactly n = 3. Given Theorem [4] one can ask if subsets of size
exactly 4, or any fixed integer > 4, will suffice to isolate an inner product. Our final result provides
an affirmative answer, thereby adding to Theorem

Theorem 15. The conditions in Theorem [ are further equivalent to:

(5) For any fired 3 < n < 0o, every isometry T :' Y — Y of n-point subsets YY" C X extends
to an onto isometry of B.
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Proof. Clearly (2) = (5). Conversely, it suffices to assume (5) and show Theorem [12[(1). We
follow the proof of Theorem [4} if ||-|| is not induced by an inner product, there exist v/ € R\ {0, +1}
and f',¢" € B with [|f']| = [[¢'l], but [[f" +"¢'| # |lg’ ++'f'll. Thus, 0, f',¢" are distinct.

There are now two cases. First if ¢ = —f’ then the flip map extends to the onto isometry

= —idg. Else f’,¢" are R-linearly independent, so their R-span is a real normed plane P C B,
say. As all norms on R? are equivalent, (P, || - ||) is linearly bi-Lipschitz — hence homeomorphic —
to (B2, [ - 2)-

We now claim that the “equidistant locus in P” — i.e., the locus Zy o :={h € P : |h — f'| =
|h—¢'||} is uncountable. Indeed, if this is not true then Zp , is at most countable, so P\ Zy 4 is
homeomorphic to a countably-punctured Euclidean plane, hence is path-connected. As the function

p:P =Ry he|lh—f = k-4

is continuous on P\ Zy 4, and switches signs from f’ to ¢/, it must vanish at an “intermediate”
point in P\ Zy . This contradiction shows the claim.
Finally, as n > 3, choose distinct points h,...,hn—3 € Zp o \ {0}, and define Y, Y’ via:

Y=Y := {Oaflagla hy, .. ~ahn73}'

Let T : Y — Y’ interchange f’, ¢’ and fix all other points in Y. By hypothesis, T extends to an
onto isometry of B. Now repeating the proof of Theorem [4] it follows that B is a real inner product
space. Finally, if B was a complex linear space then the discussion around reveals the complex
inner product structure. U
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