MULTIPLY POSITIVE FUNCTIONS, CRITICAL EXPONENT PHENOMENA,

AND THE JAIN-KARLIN-SCHOENBERG KERNEL

APOORVA KHARE

ABSTRACT. This paper continues the analysis of multiply positive functions, first studied by Schoen-
berg in [Ann. of Math. 1955]. We prove the converse to a result of Karlin [Trans. Amer. Math.
Soc. 1964], and also strengthen his result and two results of Schoenberg [Ann. of Math. 1955].
One of the latter results concerns zeros of Laplace transforms of multiply positive functions. The
other results study which powers «a of two specific kernels are totally non-negative of order p > 2
(denoted TNy); both authors showed this happens for o > p — 2, and Schoenberg proved that it
does not for a < p — 2. We show more strongly that for every p X p submatrix of either kernel,
up to a ‘shift’, its ath power is totally positive of order p (TP,) for every o > p — 2, and is not
TN, for every a € (0,p — 2) \ Z. We also extend Karlin’s result to a larger class of non-smooth
Pélya frequency functions. In particular, these results reveal ‘critical exponent’ phenomena in the
theory of total positivity. We also prove the converse to a 1968 result of Karlin, revealing yet
another critical exponent phenomenon — for Laplace transforms of all Pélya frequency functions.
More strongly, these results reveal Berezin/Gindikin/Wallach-type sets (predating these authors)
in total positivity.

We further classify the powers preserving all Hankel TN,, kernels on intervals, and isolate individ-
ual kernels encoding these powers; the latter strengthens a result in previous joint work in [J. Fur.
Math. Soc., in press]. We then transfer results on preservers by Pélya—Szegd (1925), Loewner/Horn
[Trans. Amer. Math. Soc. 1969], and joint with Tao [Amer. J. Math., in press| from positive
semidefinite matrices to Hankel TN, kernels. An additional application is to construct individual
matrices that encode the Loewner convex powers. This complements Jain’s results [Adv. in Oper.
Th. 2020] for Loewner positivity, which we strengthen to total positivity, with self-contained proofs.
Remarkably, these (strengthened) results of Jain, those of Schoenberg and Karlin, the latter’s con-
verse, and the aforementioned individual Hankel kernels all arise from a single symmetric rank-two
kernel and its powers: max(1 + zy, 0).

In addition, we provide a novel characterization of Pdlya frequency functions and sequences of
order p > 3, following Schoenberg’s result for p = 2 in [J. d’Analyse Math. 1951]. We also correct
a small gap in that same paper, in Schoenberg’s classification of the discontinuous Pélya frequency
functions.
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Notation:

(1) A positive semidefinite matriz is a real symmetric matrix with non-negative eigenvalues.
Given I C R and n > 1, denote the space of such n x n matrices with entries in I by P,,([).

(2) The Loewner ordering on R™*™ is the partial order where M > N if and only if M — N € P,,.

(3) Following Schur [59], a function f : I — R acts entrywise on Py (I) via: f[A] := (f(a;k))} 51

(4) We say that a map f : I — R preserves Loewner positivity on P, (I) if f[A] > 0 for all
AeP,(I),ie., for A>0.

(5) We will adopt the convention 0° := 0, unless otherwise specified.

Definition. Let X, Y be totally ordered sets, and p > 1 an integer.

(1) Define XP' to be the set of all p-tuples x = (x1,...,2,) € X with strictly increasing
coordinates: x1 < --- < x;. (In his book [39], Karlin denotes this open simplex by A,(X).)

(2) A kernel K : X xY — R is totally non-negative of order p, denoted TN, if for all integers
1 <7 <pand tuples x € X"y € Y™, the determinant of the matrix

K% y] = (K (25, Yr))jr=1

is non-negative. We say K is totally non-negative (TN) if K is TN, for all p > 1.
(3) Analogously, one defines TP, and TP kernels. If the domains X,Y are both finite, then
this yields TN,, TN, TP, or TP matrices.

1. INTRODUCTION AND MAIN RESULTS

In recent joint works [5], 3], we explored the preservers of various classes of positive semidefinite,
TN, and TP kernels on infinite domains — as well as the preservers of TN, and TP,, kernels on finite
domains. The present paper studies preservers of TN, kernels, albeit on infinite domains — this
was initiated by Schoenberg in 1955 [58]. In doing so, we end up bringing under this roof, several
old and new results on powers preserving Loewner positivity, monotonicity, and convexity as well.

Positive semidefinite matrices, totally positive (TP) matrices, and operations preserving these
structures have been widely studied in the literature. More generally, the same question applies
to post-composition operators applied to (structured) kernels with the various notions of positiv-
ity. Pélya frequency functions [57] and sequences [16] constitute important classes of totally non-
negative (TN) kernels that have been widely studied in analysis [57, [58], interpolation theory [12],
differential equations and integrable systems [42] [45], probability and statistics [10], 13, [39], and
combinatorics [9] (to name a few areas and a very few sources). More generally, TN and TP matri-
ces occur in multiple areas of mathematics, ranging from the aforementioned fields to representation
theory and flag varieties [46], 52], cluster algebras [0 [I§], interacting particle systems [20} 21], and
Gabor analysis [23, 24]. We refer the reader to the twin surveys [I, 2] and references therein —
specifically, to the comprehensive book of Karlin [39] — for more on TN/TP matrices and kernels.

1.1. The critical exponent n — 2 in positivity. A well-studied theme in the matrix positivity
literature involves entrywise real powers acting on matrices (say with positive entries), to preserve
positive (semi)definiteness or other Loewner properties. This theme owes its origins to Loewner,
who was interested in understanding (in connection with the Bieberbach conjecture) which entry-
wise powers preserve positive semidefiniteness. This was resolved by FitzGerald and Horn:

Theorem 1.1 (FitzGerald and Horn, 1977, [17]). Let n > 2 be an integer and o € R.

(1) The entrywise map x* preserves Loewner positivity on P, ((0,00)) if and only if o € Z7° U
[n — 2, 00).

(2) The entrywise map x preserves Loewner monotonicity on P,((0,00)) if and only if a €
7Z7° U [n — 1,00). Here, we say a map f : I — R is Loewner monotone on P,(I) if
flA] = f[B] whenever A > B in P,(I).
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This phase transition at & = n — 2 for positivity preservers (resp. & = n — 1 for monotonicity
preservers) is known as a critical exponent in the matrix analysis literature. See [37] for a survey
of the early history of this phenomenon. More recently, a plethora of papers have studied Loewner
positive entrywise powers on the domain I = (0,00) or R, and on test sets of positive matrices
constrained by rank and sparsity [8, 25] 26, 28|, 34, [35]. These have yielded similar critical exponents
(including a ‘combinatorial’ one for every graph [26] 27]).

In fact the earliest occurrence of this critical exponent (n — 2) — in the positive semidefiniteness
literature — was in Horn’s 1969 article [32]. Horn began with an important result of Loewner on
continuous maps preserving Loewner positivity on P, ((0,00)) (which remains essentially the only
known necessary condition to date, for such maps in fixed dimension) — see Theorem From
this, Horn deduced the ‘only if” part of Theorem [L.1[1): for a € (0,n —2) \ Z, there exists a matrix
Ay € Pp((0,00)) such that A2® is not positive semidefinite. Horn’s proof was non-constructive;
moreover, such a ‘counterexample’ matrix A, would a priori depend on «, as is also the case in
the proof of Theorem 1),(2). This dependence was recently removed, as we explain presently.

1.2. The critical exponent p — 2 in total positivity. At almost the same timeE] as Horn’s
aforementioned article containing Loewner’s result, Karlin had completed his important and com-
prehensive monograph [39] on total positivity. One can find in it the same set of powers as above —
now acting on a certain Pdlya frequency function. In this case, however, Karlin showed (originally
in his 1964 paper [38]) the ‘reverse’ direction to Horn above:

Theorem 1.2 (Karlin, [38] — see also [39, Ch. 4, §4, p. 211]). Let p > 2 be an integer and o > 0.
Define the Polya frequency function

Qz) = {xex, if >0, (1.3)

0, otherwise.
Ifa € Z7° U [p — 2,00), then the function Q(z)* is TN,,.

In particular, for every integer o > 0, the function ¢ is a Pdlya frequency function — this was
originally shown by Schoenberg in 1951 [57]. We explain the notation used here and in the sequel:

Definition 1.4. Let p > 1 be an integer, and A : R — R a Lebesgue measurable function.

(1) We say A is a Pdlya frequency function if A is Lebesgue integrable on R, the associated

Toeplitz kernel
Th :RxR =R, (z,y) = Az —y)

is totally non-negative, and A does not vanish at least at two points (whence on an interval).

(2) We say A is totally non-negative of order p > 1, again denoted TN, if Ty is TN,. If A is
TN, for all p > 1, then we say A is totally non-negative (TN).

(3) Analogously, one defines TP, and TP functions.

Karlin’s result is at least the second instance of a critical exponent phenomenon, implicit in
the theory of total positivity. Almost a decade earlier, Schoenberg had shown a similar result for
powers of a seemingly unrelated kernel, which he termed Wallis distributions:

Theorem 1.5 (Schoenberg, 1955, [57, Theorems 4 and 5|). Define the map

cos(z), if v € (—7m/2,7/2),

. (1.6)
0, otherwise.

W :R — R, xw{

Also suppose o = 0 and an integer p > 2. Then W (z)* is TN, if and only if « > p — 2.

ln fact, also at the same place (Stanford University); Karlin, Loewner, Pélya, and Szegd had been colleagues,
and FitzGerald and Horn were Loewner’s students.
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(The ‘only if” part implicitly follows from [58, Theorem 4] and was not formulated. For complete-
ness, we write out how this can be achieved, in Remark [6.2]) Thus, Schoenberg’s result shows a
critical exponent phenomenon from total positivity — with the same point p — 2 for a TN,, kernel,
as for positivity preservers on p X p matrices.

In parallel: note that Karlin did not address the non-integer powers below p — 2. We begin by
achieving this task, and showing that o = p — 2 is indeed a ‘critical exponent’ for total positivity:

Theorem 1.7. Let p > 2 be an integer and o € (0,p —2) \ Z. Then Q% is not TN,

One consequence is that there also exists a sequence of Pdlya frequency sequenceﬂ whose ath
powers are not TNy, for a € (0,p —2) \ Z. This follows from the continuity of the kernel Q, via a
discretization argument as in our recent joint work [3]. The assertion can be strengthened to show
the existence of TN Toeplitz kernels on more general domains X x Y than Z x Z. These subsets
X,Y only need to satisfy: for each p > 1, there exist equi-spaced arithmetic progressions x € XP
and y € YPT with 29 — 21 = y» — y1. A similar argument works for Schoenberg’s powers W (x)®.

Thus, Theorems and say that for each o € (0,p — 2) \ Z, one can find tuples x,y € RPT
(or in QT via discretization), for which the Toeplitz matrices Tqa[x;y] and Tyy«[x;y] each contain
a negative minor. Our first main result strengthens both of these conditions, by showing they are
satisfied up to a shift at every pair x,y, and simultaneously for all powers a € (0,p — 2) \ Z:

Theorem A. Fix an integer p > 2 and subsets X,Y C R of size at least p.

(1) There erxists a = a(X,Y) € R such that the restriction of Tq,(z,y)* to X XY (where
Qq(x) = Q(x — a) as in Theorem[1.9), is not TN, for all o € (0,p — 2) \ Z.

(2) There exists m = m(X,Y) € (0,00) such that the restriction of Tw,, (z,y)* to X XY (where
Wi (x) = W(ma) as in Theorem[1.5), is not TN, for all a € (0,p —2) \ Z.

(3) Given tuples x,y € RPT there exist a € R and m > 0 such that the matrices

Qzj —ye—a)") sy, (Wm(z; —ye)*)s iy
are TP if a >p—2, TN if a € {0,1,...,p — 2}, and not TN if « € (0,p — 2) \ Z.

Note that the additive/multiplicative shifts a = a(x,y) and m = m(x,y) are independent of
a € (0,p—2)\ Z. Hence so are a(X,Y),m(X,Y).

Remark 1.8. The first two assertions in Theorem (3) strengthen Karlin’s theorem and one
implication in Schoenberg’s theorem [1.5] on a suitable part of their domains. The final assertion in
Theorem [A|(3) is the aforementioned strengthening of the ‘converse’ Theorem (and of the other
implication in Theorem [L.5)), and follows from parts (1) and (2) by specializing X,Y to the sets of
coordinates of x,y respectively.

Theorems [1.7] and [A] lead to a Pélya frequency function whose non-integer powers are not TN:
Corollary 1.9. If a > 0 and the function Q(z)* is TN, then « is an integer.

This was observed e.g. in [3], where the ‘heavy machinery’ of the bilateral Laplace transform was
used through deep results of Schoenberg [57]E| Our proof of Theorem [A| below is self-contained,
shows a stronger result, and avoids these sophisticated tools.

Thus, our first contribution shows that critical exponents for total non-negativity — more strongly,
‘total positivity’ phenomena — occur in the study of preservers of Pélya frequency functions, Pdélya
frequency sequences, and Toeplitz kernels on more general domains, in the above (strengthened)
results by Schoenberg and Karlin and their converses — and for all submatrices, up to a shift.

2Recall, Pdélya frequency sequences are defined to be real sequences a = (an)nez such that the Toeplitz kernel
Ta : Z X Z — R sending (m,n) — am—n is TN.

3Briefly, the bilateral Laplace transform of Q% is I'(a + 1)/(s + @)®T', and if o & Z>° then its reciprocal is not
analytic in s — not in the Laguerre-Pdlya class. Thus Q% is not a Pélya frequency function by [57], whence not TN.
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Remark 1.10. A direct application of Theorem[A]yields yet another critical exponent phenomenon
in total positivity — this time on on the level of Laplace transforms of Pélya frequency functions.
One implication can be found in Karlin’s book, and the converse follows from our results. See
Corollary which reveals the set Z>° U (p — 1,00) of powers acting on Laplace transforms of
arbitrary one-sided Pélya frequency functions to preserve TN,,.

Remark 1.11. Via the Laplace transform, we also show in Section that Karlin’s result and
Theoremare ‘degenerate’ cases of a more general phenomenon. Namely, if Q(47)(z) is the (unique)
Pélya frequency function with bilateral Laplace transform B{Q@"}(s) = (1 + s/q) " (1 + s/r) "
for ¢ # r positive scalars, then we show that Q") (z)® satisfies the same results as does Q(z)®
above. The ‘degenerate’ case of ¢ = r = 1 precisely yields Q(x) and Theorem

The preceding two remarks, and the results alluded to therein (and proved below), may remind
the reader of similar ensembles inside the real line, consisting of a finite arithmetic progression fol-
lowed by an infinite semi-axis, in other contexts. Indeed, such sets have been studied since the 1970s,
in representation theory and complex geometry (Rossi—Vergne [53], Wallach [63]), symmetric cones
(Gindikin [22], Lassalle [43]), quantization (Berezin [7]), and in subsequent decades in probability
theory owing to the non-central Wishart distribution (see e.g. [15] 44 47, [48]). As mentioned above,
the set of powers entrywise preserving positivity in a fixed dimension (computed by FitzGerald—
Horn in [I7]) is another such example. These occurrences of Berezin/Gindikin/Wallach-type sets
were predated by Karlin’s work in the preceding decade (with the converses proved below).

1.3. Single-matrix encoders; Hankel kernels. As seen above, Schoenberg and Karlin studied
individual kernels, for which all powers > p — 2 preserve TN, and no non-integer power < p — 2
does so — in close analogy with the FitzGerald-Horn theorem In the latter, parallel setting of
entrywise powers preserving positivity, such individual matrices were discovered only recently, by
Jain [34], 35]. Her results are now stated in parallel to Theorem and isolate a smallest possible
test set for Loewner positive and monotone powers:

Theorem 1.12 (Jain, 2020, [35]). Let n € Z,n > 2 and o € R. Suppose x1,...,z, € R are
pairwise distinct, with 1+ xjx, > 0 Vj, k. Let A := (1+ l'jxk?)?,k:l and B := 1,xy,, 50 A> B > 0.
(1) The matriz A°® is positive semidefinite if and only if o € Z7° U [n — 2, 00).
(2) Suppose all x; are non-zero. The matriz A°® > B = B°®, if and only if a € Z7°U[n—1, 00).

In fact Jain does more in [34] [35]: she computes the inertia of the matrices A°* as above, for
all real o > 0. Our main theorem |C| below strengthens Theorem m(l)v and shows that A°* is
not just positive definite for o > n — 2, but totally positive. In particular, as can be shown using
Perron’s theorem [49] and the folklore theorem of Kronecker on eigenvalues of compound matrices,
A°® has simple, positive eigenvalues for o > n — 2, parallel to Jain.

Before proceeding further, we describe two consequences of the first part of Jain’s theorem [1.12

(1) Set x; := cot(jm/(2n)); now A°“ is positive semidefinite if and only if so is the matrix
D°*A°® D = (DAD)**,
where D is the diagonal matrix with (j,j) entry sin(jmw/(2n)). But DAD is the Toeplitz

matrix (cos((j — k)m/(2n)))7,_;, so Jain’s result yields a rank-two positive semidefinite
Toeplitz matrix which encodes the Loewner positive powers on P, ((0,00)). Notice this is a
restriction of Schoenberg’s kernel Ty, from Theorem

(2) Setting x; := u) for ug € (0,00) \ {1}, it follows that A is a rank-two positive semidefinite
Hankel matrix, which encodes the Loewner positive and monotone powers on P, ((0, 00)).

This second consequence leads to our next theorem. Recall that Karlin and Schoenberg’s results

above, together with Theorem [A] studied Toeplitz kernels which encoded the (non-integer) powers

preserving TN,. We next produce a Hankel kernel with this property. Unfortunately, the naive
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guess of K (z,y) = (z+y)e~ ¥ does not work, since this is ‘equivalent’ to To(z, —y), which leads
to ‘row-reversal’ and hence a sign of (—1)7’(”*1)/ 2 in p x p submatrices drawn from K. (As a specific
instance, det To[(3,4); (—2, —1)] < 0.) However, the ‘rank-two’ kernel 1 4 u$ ¥ is TN and exhibits
the same critical exponent phenomenon. More strongly, this kernel encodes the powers preserving
TN, for all Hankel kernels on R x R — in other words, the analogues of Theorems[T.1] and hold
together, for Hankel kernels on R x R. Slightly more strongly, this happens over arbitrary intervals:

Theorem B. Let p > 2 be an integer, and fix scalars co,ug > 0,ug # 1 and « = 0. Also fix an
interval Xo C R with positive measure. The following are equivalent:

(1) If X C R is an interval with positive measure, and H : X x X — R is a continuous TN,
Hankel kernel, then H* is TN,. Here, by a Hankel kernel we mean K : X x X — R such
that there exists a function f: X + X — R satisfying: K(z,y) = f(x +y) for z,y € X.

(2) Define the Hankel kernel

Hy, : Xo x Xg — R, (z,y) = 1+ coud ™.

Then Hy, is TN, on Xo x Xp.
(3) a € 270U [p —2,00).
In particular, every o € Z79 preserves TN Hankel kernels. Moreover, for every x,y € XoPT, the
kernel Hy is TP, if a > p —2, and not TN, if a € (0,p — 2) \ Z.

This strengthens results in recent work [5] [3], which study powers preserving TN Hankel kernels.
Theorem @ studies power preservers of TIN,, Hankel kernels, for each p > 2.

1.4. The Jain—Karlin—Schoenberg kernel. Our next main result again concerns power-preservers
of TN, kernels. We show that remarkably, the multitude of kernels studied above are all related.
More precisely, Karlin’s theorem and our converse, Schoenberg’s theorem the FitzGerald-
Horn theorem Jain’s theorem 1), the aforementioned strengthenings of these, the Hankel
kernels H,,,, and the related critical exponent phenomena all arise from studying a particular sym-
metric kernel having ‘rank two’ (on part of its domain) — restricted to various sub-domains. In
particular, this will explain why the same critical exponent of p — 2 (plus, all powers above p — 2,
and no non-integer power below it) shows up in each of these settings.
We begin by introducing this simple kernel:

Definition 1.13. Define the Jain—Karlin—Schoenberg kernel K sxs as follows:
Kgxs :RxR — R, (z,y) — max(1 + zy,0). (1.14)

The choice of name is because — as we explain in Remark [5.2] - the restrictions of this kernel to
(—00,0] x (0,00), to (0,00) x (0,00), and on the full domain R?, are intimately related to Karlin’s
kernel Q, to Jain’s matrices (1 + z;xy), and to Schoenberg’s cosine-kernel W, respectively.

Our next result studies the powers of K sxs that are TN, on the plane or on the X or Y
half-planes. Remark will then explain how this connects to all of the results stated above.

Theorem C. Fix an integer p = 2, an interval I C R, and let a scalar a > 0.

(1) KGxs is TNy on R xR for a > p—2.

(2) If the power K%yg is TNy, then a € 7Z7% U [p — 2,00). More strongly, given x,y € RP-T
such that 1+ xjy, > 0 Vi, k, the matriz K 7xcs[x;y]°® is:
(a) TP if a > p —2;
(b) TN if « € {0,1,...,p —2}; and
(c) not TN if a € (0,p —2) \ Z.

(8) Suppose I C [0,00) or I C (—00,0]. The kernel KGyg is TN, on I x R (or R x I) if and
only if « € ZZ9U [p — 2,00). (In particular, K%ys is TN on I x R or R x I for a € 72°.)
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As an aside, integer powers of the kernel K 7xs (more precisely, of 1 + xy) have featured in the
statistics and machine learning literature, as non-homogeneous polynomial kernels of dot-product
type. See e.g. [311 [33] 41], 61, 62].

1.5. General TN, functions. Our final two results deal with general T'N, kernels. A closely
related result to Theorem [C|is a 1955 theorem by Schoenberg [58], which implies that no power
a < p — 2 of the kernel W is TN,,. This is a result on arbitrary compactly supported, multiply
positive functions A, and we strengthen it by restricting the domain of A:

Theorem D. Suppose 0 < p < p < 400 and 0 < € < p— p/2 are scalars, with p < co. Suppose
p = 2 is an integer, and the integrable function A : (—p, p) — R is positive on (—p/2, p/2), vanishes
outside [—p/2,p/2|, and induces the TN, kernel

Ta :[0,€) x (=p/2,(p/2) +€) = R, (2,y) = Az —y).
Then the Fourier—Laplace transform
p/2

B{A}(s) := / P e A(z) dz, seC
—p

has no zeros in the strip |3(s)| < pm/p.

Schoenberg proved this result in [58], assuming p = +oo and that Tj : R x R — R is TN,,.
(He also ‘changed variables’ so that p = mw.) This means that all minors of order < p drawn from
A are required to be non-negative. We arrive at the same conclusions as Schoenberg, using far
fewer minors — indeed, the aforementioned domain of T\ means that we only need to work with
the restriction of A to (—(p/2) — €, (p/2) + €) for arbitrarily small € > 0.

Our final result provides a characterization of TN, functions (or Pélya frequency functions of
order p). Recall that such a result was shown for p = 2 by Schoenberg in 1951 [57], and Weinberger
mentioned in 1983 a variant for p = 3 in [64] (which turns out to have a small gap). To our
knowledge, no such characterization is known for p > 4. This is provided by the next result, by
considering only the largest-sized minors:

Theorem E. Let p > 3 be an integer, and a function A : R — [0,00). The following are equivalent.

(1) Either A(x) = et fora,b € R, or: (a) A is Lebesgue measurable; (b) for all scalars xo, yo,
the function A(zo—y)A(y —yo) — 0 as y — oo; and (c) det Ty[x;y] = 0 for all x,y € RPT.
(2) The function A : R — R is TN,

The result also holds for p = 2, in which case it is a tautology. The proof-technique also yields
similar results for ‘Pélya frequency sequences of order p’ — or more generally, for (not necessarily
Toeplitz) TN, kernels on X x Y for general subsets X,Y C R — under similar decay assumptions.
See the final section of the paper.

Organization of the paper. The next section develops a few preliminaries — specifically, novel
homotopy arguments that are used in our proofs. The subsequent five sections of the paper prove
our main theorems, one per section. Four of these sections contain four other features:

(a) After proving Theorem [A] we show akin to Jain’s theorem that the same ‘individual’
matrices (1 + a:jzvk);{k:l and 1,x, also encode the powers preserving Loewner convezity. See
Section for the definition of Loewner convexity as well as the precise result.

(b) After proving Theorem we present results — now for Hankel TN, kernel preservers — parallel
to Loewner’s aforementioned necessary condition in [32], to an old observation of Pdlya—Szegé [51],
and to our recent work with Tao [40] on polynomial preservers of positivity on p X p matrices.

(c) After proving Theorem |C| we explain in Remark how this result for K 7xs subsumes our
results above, as well as results of Karlin, Jain, and Schoenberg.
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(d) Prior to proving Theorern we correct via Theorem a small gap in Schoenberg’s landmark
1951 paper [57], thus completing the classification of continuous Pélya frequency / TN functions.

The Appendix, which may safely be skipped during a first reading, contains proofs of several
results pertaining to power-preservers of TN, and is included for the convenience of the reader.

2. A VARIANT OF DESCARTES’ RULE OF SIGNS, AND HOMOTOPY ARGUMENTS

The proofs of the above results rely on new tools and old. We begin with a variant from [35]
of Descartes’ rule of signs, in which exponentials are replaced by powers (1 4+ uxz;)". To state this
result requires the following notation.

Definition 2.1. Given an integer n > 1 and a tuple x = (z1,...,2,) € R", define
s —00, if max; x; <0, B 00, if min; z; > 0,
x —1/max; xzj, otherwise, x —1/min; z;, otherwise.

Proposition 2.2 (Jain, [35]). Fiz an integer n > 1 and real tuples ¢ = (c1,...,¢n) # 0 and
x = (x1,...,%n), where the x; are pairwise distinct. For a real number r, define the function

n
Px,c,r - (Ax> Bx) — R, U = Z Cj(l + uxj)r'
j=1

Then either pxcr = 0, or it has at most n — 1 zeros, counting multiplicities.
In the interest of keeping this paper self-contained, we sketch this proof in a somewhat vestigial
Appendix, together with proofs of the results from other works that are used in this paper.

The next step is a (novel) homotopy argument for symmetric matrices; a non-symmetric variant
will also be proved and used below.

Proposition 2.3. Fiz an integer n > 2 and real scalars
1< <xy and 0<y <---<yp, with 1+xx >0V k.

There exists 0 > 0 such that for all 0 < € < 0, the ‘linear homotopies’ between x; and ey;, given by

D) = aj +tey; — ), telo1]

satisfy
1+ 202 (1) >0, VI<jk<n, teol].

Remark 2.4. The above result is (implicitly stated, and explicitly) used in [35] with all y; = j, and
without the factor of e. The use of this result is key if one wishes to avoid using Jain’s prior work [34]
in proving Theorem Unfortunately, the factor of € here is crucial, otherwise the result fails to
hold. Here are two explicit examples; in both of them, n =2, e = 1, and (y1,y2) = (1,2). Suppose
first that (z1,z2) = (—199,0); then ‘completing the square’ shows that the above assertion fails to
hold at ‘most’ times in the homotopy:

W (1) 308 1 [3982 308 1 /3082
1 V() <0, Ve [T - 2o g, 22 S [ g
Far Bz (0 <0 < [800 20V 102 00 20V 402

and this interval contains [0.0026,0.9924]. As another example, if (z1,22) = (—8.5,0.1), then

8 —+61 8461
19 7 19

1+ 2V (a8 (1) <0, ve [ > [0.01,0.8321].
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Remark 2.5. Jain has communicated to us [36] a short workaround to the above gap in [35], as
follows: if all z; < 0 then to prove Theorem[1.12(1) one can replace all z; with —z;. If 21 < 0 <
then one lets 0 < y;1 < --- < yp, < xy, and for these specific y;, the homotopy argument works.
However, we then need to show Theorem m(l) in the special case when all x; > 0 — which is a
result in Jain’s prior work; see [34] and the references and results cited therein. These prior results
involve strictly sign regular (SSR) matrices and earlier papers. In this paper we avoid SSR matrices,
and hence our approach additionally serves to provide a shorter, direct proof of Theorem [1.12

We now show the above homotopy result.

Proof of Proposition[2.3. We make three clarifying observations to start the proof, with x;(t) de-

noting xg-e) (t) throughout for a fixed € > 0. First, the assumptions imply z;(t) < --- < x,(t) for all
t e [0,1].
Second, if £1 = x1(0) > 0, then clearly z;(t) > 0 for all ¢ € [0,1] and all 1 < j < n, and in this
case the result follows at once. We will thus assume in the sequel that x; < 0.
Third, suppose there exist integers 1 < j < k < nand atimet € [0, 1] such that 14+-x;(¢)z(t) <0,
then we have x;(t) < 0 < zx(t), and so z1(t) < 0 < x,(t). A straightforward computation shows
Lt a1(Bat) < 1+ a5 (Dan(t) < 0.

Given these observations, suppose we have initial data x;,y;, with 1 < 0 from above. It suffices
to find § > 0 such that

1+29)200) >0,  Vee (0,8], te(0,1).
Depending on the sign of x,, we consider two cases:
Case 1: z, > 0, in which case z, < 1/|z1]|. We claim that ¢ := 1/(]z1|y,) works. Indeed, given
0<e<d,and t € (0,1), compute:
14+ 2902 t) = 1+ (teyr + (1 — t)a1) (teyn + (1 — t)y)

> 14 (1 —t)xi(tey, + (1 —t)xy)

> 1+ (1—t)xi(tey, + (1 —t)/|x1)),
with both inequalities strict because ¢ € (0,1). Now the final expression equals

=1—(1—=t)? +t(1 —theynar =t (2 —t — (1 — t)dyn|21|) =t > 0.
Case 2: 1, < 0. Define the continuous function
€*(zny1 — 21Yn)”

A(eyr — 21)(eyn — ap)’

Since ¢(0) > 0, there exists d > 0 such that g is positive on [0,]. We claim this choice of § works.
Fix 0 < € < 4, and define

gle) =1— €= 0.

tg.e) = —x;/(ey; — xj), Vi € [1,n].

(6 4 _ 4o
i b=

(

It is easy to check that x jE) (t) is positive, zero, or negative when ¢t > t
moreover, since all z; < 0, the above observations imply

,t < tge) respectively;

)

0<t@ <tld <<l <

In particular, if 0 < ¢ < tgf) or tge) <t <1, then xge)(t) and ng) (t) both have the same sign, whence
P

1+ xge)(t)mgf) (t) > 1, so is positive. Otherwise 9 <t < tge), in which case we first note that

2 () = tey; + (1= )y = (t— 1) (ey; — ;). VjelLnl, teo,1]
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But now we compute, using the AM—GM inequality and choice of §:
L (00 = 14 (0= 57) (¢ = 1)) ey — 1) (e — )
> 1 Ll — 02 — ) e — ) = (6) > 0. 0
Our next result is more widely applicable, at the cost of making the homotopy ‘piecewise linear’:

Proposition 2.6. Fizx an integer n > 2 and tuples of real scalars
X,y,p,q € R™"
such that 1+ xjyr > 0 Vj, k and p1,q1 > 0. Then there exists piecewise linear homotopies
zj(t),y;(t) - [0,1] = R, 1<j<n
such that x(t),y(t) € R™" for all times t € [0, 1], with
zj(0) =, (1) =pj,  yi(0) =y, (1) = g5,
and such that 1 4 x;(t)yx(t) > 0 for all t € [0,1].

Proof. Let 61 := if y1 # 0, and 1 otherwise. Define

_1
2ly1lpn

ai(t) ==z 4+ t(d1p; — ), 1<j<n, tel0,1]

We claim that 1+ 2%(t)yr > 0 for all 1 < j,k <n and t € [0,1]. This is true at ¢ = 0 for all j, k;
now suppose it fails for some #o € (0,1] and j, k € [1,n]. If yx > 0 then 0 > (o) > z;, so

0>1 —i—:L’;-(tO)yk >1+xjy; >0,
which is impossible. Thus we must have
yp < 0 < 2(to) < a3, (to) < max(01pn, Tn).
Using this,
0> 1+4a5(to)ye = 1+ 2j(to)y1 = 1+ y1 max(d1py, xn) = min(1 + y12,, 1+ d1y19,) > 0,

which is similarly impossible.

This reasoning shows that one can define a linear homotopy x(t), t € [0,1/3] going from x to d;p
for some 6; > 0, such that 1+ z;(t)y; > 0 for all ¢. Throughout, we define y(t) =y for t € [0,1/3].

In a similar fashion, we let x(¢) = 0;p for ¢ € [1/3,2/3], and write down a linear homotopy y(¢)
from y to d2q for some do > 0, such that 1+ x;(t)yx(t) > 0 for t € [1/3,2/3].

Finally, let x(t) (respectively y(t)) for ¢t € [2/3,1] be the linear homotopy from d;p to p (respec-
tively from doq to q). Since p1,q1 > 0, it is trivially true that 1 +x;(¢)yx(t) > 0 for t € [2/3,1]. O

3. PROOF OF THEOREM [A] AND ITS STRENGTHENING: CRITICAL EXPONENT FOR PF FUNCTIONS
We now show the main results above. The next step is a direct application of Proposition

Proposition 3.1 (Jain, [35]). Suppose x1,...,x, € R are pairwise distinct, as are y1,...,yn € R.
If 1+ zjyr, > 0 for all j,k, and o € R\ {0,1,...,n — 2}, then S°* is non-singular, where S :=
(1+ xjyk)?,k::l' If a € {0,1,...,n — 2}, then S°“ has rank o+ 1.

Once again, the short proof is outlined in the Appendix.

In this and later sections, we provide applications of Proposition to our main theorems, as
well as to Jain’s theorem All of these applications also rely on the (novel) homotopy argument
in Proposition 2.3} this keeps the proofs in this paper self-contained. We begin with Theorem
as it is used in the subsequent proofs.

Proof of Theorem [I.13.
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(1) If a € Z7%U [n — 2,00) then A°® € P, by Theorem [1.1}(1) (the proof of which is outlined in
the Appendix). We will need a refinement of the converse result, so we sketch this argument,
taken from [I7]. The result is easily shown for o < 0, so we suppose a € (0,n —2)\ Z
— in particular, n > 3 now. Let x = x(¢) := ¢(1,2,...,n)" with ¢ > 0, and choose any
vector v € R” that is orthogonal to 1,x,x°2,...,x°leJ+D) but not to x°(le)+2), (Here,
x°™ = ¢m(1,...,n™)T for an integer m.) Now using binomial series, one computes:

'UT(]-an + XXT)OaU _ 62(Lozj+2) (LaJOZ+ 2> (UTXO(LajJrZ))Z + 0(62(LQJ+2)).
Divide by €2(l2)+2) and let € — 07; as the right-hand side has a negative limit, the matrix-
power on the left cannot be positive semidefinite.

With this special case at hand, the general case follows, via a more direct argument
than in [34, B5]. Given pairwise distinct z; such that 1 + z;x; > 0 Vj, k, let y; := €7,
where € > 0 is small enough to satisfy both the argument in the preceding paragraph,
as well as the conclusions of Proposition . Now let z;(t) := z; + t(ej — z;) and let
C(t) == (1 4+ xj(t)zx(t))°*. Then the smallest eigenvalue Ayin(C(1)) < 0 from above, and
C(t) is always non-singular by Proposition It follows by the continuity of eigenvalues
(or a simpler, direct argument) that Ayin(C(0)) < 0, as desired.

(2) We show the ‘if” part of Theorem [L.1[2) from [I7] for self-completeness (and also because
it is used presently). If a € Z7° and C > D > 0 in P,,((0, 00)), then

Co* > Co(a—l) oD > > D,

by the Schur product theoremﬁ If & > n—1, then by the fundamental theorem of calculus,
1
C°% — D°% = a/ (C— D)o (AC + (1 —N)D)°@=1 gy,
0

By Theorem (1) and the Schur product theorem, the integrand is positive semidefinite,
whence we are done.

The ‘only if’ part of Theorem [1.1)(2) follows from Theorem [1.12(2), which is immediate
from the preceding part: Suppose A°* > B = B°*, with A = (1+ xjxk)?,k:l and B=1 as
given. If x' := (x7,0)7 € R"*!, then the matrix

~ A 1
A= 1(n+1)><(n+1) + X,(X,)T = <1T 1)
satisfies the hypotheses of part (1). Using Schur complements and part (1), we thus have:
A > 1,0, <= AeP,, <= acZUn-1x). O

This concludes a self-contained (modulo the Appendix) proof of Theorem avoiding the use
of SSR matrices as in [34, 35] (see Remark . A key corollary, used repeatedly below, now
strengthens Theorem from positive (semi)definiteness to total positivity, as promised above:

Corollary 3.2. Let p > 2 be an integer, and x,y € RP'T be tuples such that 1 + xjyr > 0 for all
jik. Let the matriz C := (14 zjyx)% ) _; -

(1) If « > p — 2 then C°® is TP.

(2) If a € {0,1,...,p— 2}, then C°“ has rank o+ 1.

(3) If « € (0,p—2)\ Z, then C°* is not TN —in fact, it has a principal minor that is negative.

See also Corollary below, for a stronger version with more detailed information. (This
corollary is not required in the present work, but we include it below for completeness.)

4The Schur product theorem [59] says that if A, B € P,,(R), then so is their entrywise product AoB := (aj1bjk)} p=1-
(For self-completeness: This is easily checked using the spectral eigen-decompositions of A, B.)
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Proof. The second part follows from Proposition For the third, fix any tuple q € (0, 0)” ’T,
and use Proposition to construct piecewise linear homotopies x(t),y(t), ¢ € [0,1] from x,y
to q respectively, such that 1 + x;(t)yr(t) > 0 for all 1 < j,k < p and t € [0,1]. Let C(t) :=
1pwp +x(8)y(t)T. Then C(1)°® = (1,x, +aq’)°* is not positive semidefinite by Theorem [1.12(1),
hence has a negative principal minor. Now use Proposition to show that the same principal
minor of C'(0)°® = C°* is negative, again by Proposition

For the first part, let B be any square submatrix of C' of order p’ € [2,p]; then one can repeat
the preceding argument with C' = B for this part. Thus, let q and C(t),x, = B(t) be as in the
previous paragraph. Since now a > p’ — 2, so det B(t)°® does not change sign, by Proposition
But det B(1)°® > 0 by Theorem m(l) This shows that every minor of the original matrix C}g

PXPp
is positive, whence C°* is TP. O

With this and the preceding ingredients at hand, we show our first main result.

Proof of Theorem[4]

(1) We first show the result for X =Y = R. Notice in this case that the result for any a € R
shows the result for any other, so we work with a = 0. Suppose a € (0,p — 2) \ Z, and

O<y < v <y <up <---<u

are fixed scalars. Set x; := u;l and yj, := —wvg; thus z; > 0 and 1+ x;y, > 0 for all j, k. By
(the proof of) Corollary (3), the matrix C' := ((1 + xjyk)a)?kzl has a negative minor,
hence is not TN. Pre- and post-multiply by diagonal matrices with (j, j) entry uie " and
e*¥i respectively. This shows, via applying the order-reversing permutation to the rows and
to the columns, that given

u = (uy,... ,u;), vii=(vl,... ,v;) e RPT,  with U;, < uh,
the matrix Too[u'; v/] = Toa[u' — (v] — 1)1; v/ — (v} — 1)1] has a submatrix with negative
determinant.

This shows the result when X =Y = R, e.g. with a = 0. For arbitrary X,Y C R of

sizes at least p, first choose and fix increasing p-tuples u’ € XPT, v/ € YPT; now choose any
a < uj — v,. By the above proof, the matrix Tq, ()« [u'; V'] = Toa[u’ — al; V'] is not TN,
This shows the result for all X Y.

(2) Choose m > 0 and tuples x € XPT, y € YPT such that |mx;|, |my;| < 7/4 for all j. Now,

Ty, [x;¥]°* = (cos(ma; — myk)®)} _; = Dx(1 + tan(ma;) tan(myy))** Dy,

where Dy for a vector x equals diag(cos(mx;)®);. Now since mx,my have increasing
coordinates, all in (—n/4,7/4), Corollary (3) applies to show that Ty, is not TN,

(3) The previous two parts in fact show the case of & € (0,p —2) \ Z. The other two cases
follow by using similar arguments, via Corollary [3.2{(1),(2). O

With Theorem |A|at hand, we show that the same set of powers (shifted by 1) works to ‘preserve
TN, on Laplace transforms of Pélya frequency functions. Notably, the following result accommo-
dates all PF functions — in the spirit of Theorem [B]— and not just individual ones as in Theorem [A]

Corollary 3.3. Given scalars « > 1 and ag > 0 and an integer p = 2, the following are equivalent.

(1) If A is a one-sided Pdlya frequency function (i.e. one that vanishes on a semi-axis), then
B{A}* is the Laplace transform of a TN, function.
(2) The exponent o € Z7°U (p — 1, 00).

The implication (2) = (1) was proved by Karlin in his book — see [39, Chapter 7, Theorem
12.2], and his (short) proof is included in the Appendix for completeness.
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Proof. In the spirit of this paper, we first reduce the test set in (1) to a single Pdlya frequency
function, and show (2). For the kernel A\o(x) = e"*1,~¢ — which is shown to be a Pdlya frequency
function in Lemma [7.1] below — standard computations reveal:

e(a72)x T a—1
B{\o}(5)® = (3_:1)& = B{A.}(s), where A, (z) = I‘((i() )

Since o > 1, Laplace inversion yields: if B{A}(s) = (s+1)~%, then A = A,. Thus A, is TN,,, whence
so is Q(x)*7! (e.g. see the argument that concludes the proof of Lemma [7.1] . Now Theorem |A .
shows a — 1 € Z7° U [p — 2, 00), which implies (2).

3.1. Non-degenerate extension of Karlin’s result. We next formulate (and prove) the strength-
ening of Karlin’s theorem promised above. Karlin was studying the function Q(z) := xe™*1,5¢.

This function has Laplace transform 1/(1+s)?, and is an example of a non-smooth, one-sided Pélya

frequency function, as shown by Schoenberg in [57]. More generally, given scalars ¢, > 0, define

—qxr _ ,—rx
qr(e ¢ )7 if x >0 and ¢ # r,
(@) () = T
Q (z) := r2pe=T? ifx>0and ¢g=r,

By inspection, Q@) (z) = Q"9 (z) — Q) (z) as ¢ — r. Moreover, for all ¢,7 > 0 the map
Q@) is a probability density function for all ¢,r > 0; and it has bilateral Laplace transform

BRYe) = e

Thus by Schoenberg’s representation theorems [57], Q@) is a Pélya frequency function for all
g, > 0. These functions were studied by Hirschman and Widder [29] [30] in greater generality;
Schoenberg [57] showed that they are not smooth at the origin; and their powers are also studied
in recent joint work [4]. In this paper we restrict ourselves to working with Q(¢7)(z).

Notice that Q") (z) = Q(z) is Karlin’s kernel when the parameters specialize to ¢ = r = 1. The
following result extends Theorems [A] and to all other ¢,r > 0:

Theorem 3.4. Fix an integer p > 2 and subsets X, Y C R of size at least p. Also fix real numbers
q,r > 0.

(1) If « > p — 2, then Q@) (2)* is TN, on X x Y.
(2) There ea:zsts a=aX,Y)eR such that the restriction of T, ) y(z,y)* to X XY (where

Qe )(:c) = Q") (x — a)), is not TN, for all a € (0,p —2)\ Z.
(3) Given tuples x,y € RPT there erist a € R such that the matriz
Q@) (@5 — gk — a)*) oy
is TP ifa>p—2, TN ifa € {0,1,...,p— 2}, and not TN if a € (0,p — 2) \ Z.

Clearly, setting ¢ = r = 1 yields the corresponding assertions for €(z) in Theorem [A| Similarly,
we deduce from this result the following extension of Corollary [L.9

Corollary 3.5. Fiz real scalars q,r > 0 and o > 0. The function Q@ ’")( )* is TN if and only if
« 18 an integer.

Proof. Tf Q@) () is TN, for all p > 2, then the preceding theorem yields a € Z=°. Conversely,
using 0° := 0 we have that Q(q ") () is indeed TN for & = 0, 1. Suppose a > 1 is an integer. Clearly
Q(@7) () is integrable and non-vanishing on (0, %), so it suffices to show it is a TN function. This
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holds for ¢ = r by the same proof as for Theorem for integer powers (see the Appendix). If
instead g # r, then we directly compute its Laplace transform:

5046 = U S () i s =

(r—a)* g \j/)s+jr+(a=ja g(s)

say. Here the polynomial g(s) := H?:O(S + jr 4+ (e —7)q), and f(s) is written by taking common
denominators:
(ar)* <~ (@ :
f(s) := T _ae > <]> (=17 T (s + kr + (o = k)q).
=0 k#j

Clearly, deg(f) < «; but a straightforward computation shows that at the o + 1 points sy =
—(kr+(a—k)q), k=0,1,...,a, we have f(sg) = al(qr)®. Hence f(s) is a constant and g(s)/f(s)
is a polynomial, whence in the Laguerre-Pélya class. It follows that Q(@") (x)* is indeed a Pdlya
frequency function via Schoenberg’s characterization of such functions [57]. O

It remains to prove the above extension of Theorems [A] and [T.2]

Proof of Theorem[3.4 When ¢ = r, the result follows from Theorems [A] and by a change of
scale. Thus we assume henceforth — without loss of generality — that 0 < ¢ < r.

(1) We show the assertion for X =Y = R. Suppose o > p — 2, and let x,y € RPT for p > 1.
Set C := (Q@") (z; — yk)a)ik:l, and define
uj = —ela—)z5 vj = er=v; 1<j<p.

Then u,v € RPT, and a straightforward computation shows that the matrix C' can be
described using the Jain—Karlin—Schoenberg kernel:

C =Toun [xy]** = D**Kgxs[w; v]**Dy?,
where D, D are diagonal matrices

D=1 diag(e™,...,e7%),  D; = diag(e™,...,e%").
r—q

It follows by Theorem |C| (proved below) that C' is TN, as desired.

(2) As in the proof of Theorem |[A] this part follows from the next, by fixing p elements x; € X
and y; € Y.

(3) Choose a < x1 — yp. Using u; := —el0=1)%5 and D, p as in the first part, and setting

vl = T~ Drta), D), = diag(ed®1F9) . edlpta)y

it follows that u, v’ € RPT, that 1 + ujvy, > 0 for all j,k, and furthermore that

C' = Toan X y]™ = D (1 + ujul) )Py (D)™
Now the result follows from Corollary akin to the proof of Theorem (3) u

3.2. Single-matrix encoders of Loewner convexity. As an application of the methods used
above, we provide single-matrix encoders of the entrywise powers preserving Loewner convexity.
Recall for I C R that a function f : I — R preserves Loewner convezity on a set V. C P, (I) if
fIMA+ (1= XN)B] < Af[A] + (1 — X) f[B] whenever A € [0,1] and A > B >0in V.

The powers preserving Loewner convexity were classified by Hiai in 2009:

Theorem 3.6 (Hiai, [28]). Let n > 2 be an integer and o € R. The entrywise map x preserves
Loewner convezity on P, ([0,00)) if and only if a € Z7° U [n, 00).

In the spirit of Theorem [1.12] we provide single-matrix encoders of these powers:
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Theorem 3.7. Let n > 2 be an integer and o € R. Suppose x1,...,x, € R are pairwise distinct,
non-zero scalars such that 1+ xjx, > 0 for all j, k. Let A := (1 +mjxk)?k:1 and B := 1,,«n. Then

x® preserves Loewner convexity on A > B > 0 if and only if a € Z2° U [n, 00).

The proof relies on the following preliminary lemma, which can be shown by an argument of
Hiai — see the Appendix.

Lemma 3.8. Letn > 2 and A > B > 0 in P,(R) be such that A — B = uu’ has rank one and
no non-zero entries. Choose an open interval I C R containing the entries of A, B, and suppose
f: I — R is differentiable. If the entrywise map f[—] preserves Loewner convexity on the interval

[B,A]l:={A + (1 - \NB:xe[0,1]}

then f'[—] preserves Loewner monotonicity on [B,A]. The converse holds for arbitrary matrices
0< B<A.

We now prove Theorem — in the process also proving Hiai’s result:

Proof of Theorems and[3.6. By Lemma and Theorem 2), @ preserves Loewner convex-
ity on IP,,((0, 00)) for a € Z>%U[n, 00), and obviously so for o = 0. The result for P, ([0, c0)) follows
by continuity. Next, if 2% preserves Loewner convexity on P, ([0, c0)), then it does so on the given
matrices A > B > 0. Finally, if the latter condition holds and a ¢ Z>°, then Lemma applies,
so a > n via Theorem [1.12{2). O

4. HANKEL TN, KERNELS: PRESERVERS, CRITICAL EXPONENT, AND THEOREM @

In this section we first prove Theorem (Bl The key tool is a result of Fekete from 1912 [I6],
subsequently strengthened by Schoenberg in 1955 [58]:

Lemma 4.1. Suppose 1 < p < m,n are integers, and A € R™*". Then A is TP, if and only if all
contiguous minors of orders < p are positive. (Here, ‘contiguous’ means that the rows and columns
for the minor are both consecutive.)

The proof is not too long, relying on computational lemmas by Gantmacher and Krein. See [20].

Corollary 4.2. Suppose 1 < p < n are integers and A € R™ " is Hankel. Let AV denote the
truncation of A, i.e. the submatrix with the first row and last column of A removed. Then A is
TN, (respectively TP),) if and only if every contiguous principal minor of A and of AW of size < p
is non-negative (respectively positive).

This result can be found in [50, Chapter 4] for the TP case, and in [14] for the TP,, TN, TN, cases.
These sources do not use the word ‘contiguous’ — the advantage of using contiguous (principal)
minors is that they are all Hankel. We provide a quick proof of Corollary in the Appendix,
for self-completeness. For now, we apply this result to prove Theorem [B] and other results. The
relevant part of this argument is isolated into the following standalone result.

Proposition 4.3. Suppose p > 2 is an integer, X C R is an interval with positive measure, and
H: X xX — R is a continuous Hankel TN, kernel. If f : [0,00) — [0, 00) is continuous at 0", and
preserves positive semidefiniteness when acting entrywise on r x v Hankel matrices for 1 < r < p,
then foH : X x X = R is continuous, Hankel, and TN,

Proof. The first step is to show that f is continuous on (0, 00); this quickly follows e.g. from work
of Hiai [28], and is sketched in the Appendix for completeness. (A longer proof is via using a 1929
result of Ostrowski; see e.g. [5].) Thus f o H is continuous and Hankel on X x X.

Now let 2 < r < p and choose x,y € X"T. We need to show det(f o H)[x;y] > 0. Let
u = (u1,...,Un) denote the ordered tuple whose coordinates are the union of the x;,y; (without
repetitions). We claim that (f o H)[u;u] is TN,; this would suffice to complete the proof.
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To show the claim, approximate the increasing tuple u by tuples u®) e (XN (@)m’T of rational
numbers in X, with u®) — u as k¥ — oo. Choose integers Nj, > 0 such that Nyu®) has integer
coordinates. Now if the matrices

1
(foH)[vg;vk], where vy := (ugk),ugk) + N (k)
k
can be shown to be TN,, then by taking submatrices and the limit as k — oo, it follows that
(f o H)[u;u] is TN, as claimed. We use here that f is continuous.
Since each vy is an arithmetic progression, it is easy to see that the matrices Ay := H[vy; V]
are Hankel, and TN, because H is so. Now observe that all contiguous principal submatrices C' of

Ay, or of A](Cl) of size 2 < r < p are symmetric Hankel positive semidefinite matrices. Thus f[C] is
positive semidefinite by assumption, hence has determinant > 0. It follows by Corollary that
(f o H)[vy; vi) is TNy, for all k, and this completes the proof. O

With Proposition [£.3] and the previous results at hand, our next main result follows.

Proof of Theorem B, The first step is to verify that H,, is TN; this is easy because H,, has ‘rank
two’, being the moment sequence/kernel of the two-point measure d; + cody,, so all » X r minors
vanish for » > 3. We next prove a chain of cyclic implications. Clearly (1) = (2), and
(3) = (1) by Proposition 4.3]and Theorem [L.1[1). Finally, suppose a ¢ {0,1,...,p—2}. Choose
tuples x,y € XoP»' and apply Corollary with z;,y; replaced by \/%ugj , \/Eugj respectively;
we also reverse the rows and columns if ug € (0,1). This yields a TN matrix H,,[x;y], whose
ath entrywise power is not TN, if @ € (0,p —2) \ Z, and is TP if & > p — 2. This shows both
(2) = (3) as well as the remaining assertions. O

For the curious reader, Theorem [B| leads to a question about Toeplitz analogues that may be
of theoretical interest. Omne can ask if this ‘clean’ phenomenon holds for the parallel class of
Toeplitz kernels — namely, if for all integers p > 2, the TN,-preserving powers ¢ are precisely
a € Z7°U [p — 2,00). This is easily verified to hold for p = 2; see e.g. [57] (or Lemma below),
where TN» functions are characterized as exponentials of concave functions. However, such a clean
result fails to hold in general. Specifically, considering the question from the ‘dual’ viewpoint of the
powers o: while z* for a = 0, 1 obviously preserves TN,, for all p, this fails to hold for every other
integer a > 2. Namely, one can find a TN, kernel (for some p > 0), whose ath power is not TN,,.
This can be refined further, to work with a single kernel — which is moreover TN — that provides a
counterexample for all integer powers:

Lemma 4.4. There exists a Pdlya frequency function M : R — R, such that for every integer

power o« = 2, there exists an integer p(a) > 1 satisfying: M® is not TNy () -

Proof. Let M(x) := 2e~1#l — ¢=2#| for 2 € R. It was shown in [3] that M is not TN for any o > 2,
while M is. (See the Appendix for details.) This proves the result. O

In light of Lemma 4.4} one can ask more refined questions, e.g. if all non-integer powers o« > p—2
preserve TN, Toeplitz functions/kernels, with p > 4. A challenge in tackling such questions comes
from the lack of a well-developed theory for Pélya frequency functions of finite order, i.e., integrable
TN,, functions. For instance, to our knowledge there was no known characterization to date of
Pélya frequency functions of order p = 4,5,.... (While Theorem [E| now fulfils this need, it does
not provide enough information to help here.)

Remark 4.5. In light of Lemma [£.4] and the above results, one can also ask about the classifi-
cation of powers — or more generally, arbitrary functions — that preserve the class of TN kernels,
whether Hankel or Toeplitz, upon composing. These characterizations were recently achieved in
joint work [3]: for continuous Hankel kernels, the preservers are precisely the convergent power
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series with non-negative Maclaurin coefficients (see also Lemma |4.8]), while for Toeplitz kernels, the
preservers are precisely constants ¢ or homotheties cx or Heaviside functions ¢l,~q, with ¢ > 0.

4.1. Connection to fixed-dimension results on positivity preservers. Given an integer p >
1 and a subset I C R, let P,(I) denote the set of real symmetric p x p matrices, which are positive
semidefinite and have all entries in I. The critical exponent phenomena studied above suggest that
TN,-preservers are closely related to entrywise functions preserving positive semidefiniteness on
P, ((0,00)) — especially for Hankel kernels, in light of Proposition Although our focus in this
paper is on powers, we briefly digress to point out a few such connections. The first is Loewner’s
necessary condition for preserving positivity on such matrices:

Theorem 4.6 (Loewner / Horn, 1969, [32]). Suppose I = (0,00), f : I — R is continuous, and
p = 3 is an integer such that f[—| applied entrywise to matrices in Pp(I) preserves positivity. Then
fecr3(I), f*=3) is convex on I, and f, f',...,f®=3) >0 on I. If in particular f € CP~(I),
then f®=2) =1 >0 on I as well.

We claim that the same conclusions hold if f preserves the TN,, Hankel kernels — in fact on a far
smaller test set, and without the continuity assumption from [32]:

Theorem 4.7. Suppose I = (0,00), f: I — R, and Xo C R is any interval with positive measure.
Suppose p = 3 is an integer such that the post-composition transform f o — preserves TN, on
Hankel TN kernels corresponding to non-negative measures supported on at most two points. Then
the conclusions of Theorem [4.6 hold.

That this result is sharp — in the number of non-negative derivatives f,..., f*~1 on I — follows
from Theorem [B] by considering a suitable power function f.

Proof. We appeal to results in [5], which assert that if f[—] preserves positivity on the matrices
Jt+k

(a0 + couy )ﬂio, ag, o = 0, ag +co >0,
2
(Z Z)’(gd fg), a,b,c,d>0,a>b>0,c=2d>0

for some fixed ug € (0,1), then f satisfies the conclusions of Theorem [4.6] It thus suffices to embed
these test matrices in TN Hankel kernels. We do so on R x R; the restriction to Xg x X follows
by a linear change of variables that contains an appropriate compact sub-interval of R. The first
class of test matrices above embeds in the Hankel kernels

Hag,Co(l‘v y) =ap + COUngya T,y € R7

for ag, co = 0, while the ‘rank-one’ matrices above embed in the kernel H. if ¢ = d, and in H .

with ug = d/c, if ¢ > d > 0. Recently in [3], the remaining class of matrices Z 2 above was
shown to embed in the following ‘rank-two’ TN Hankel kernel, which completes the proof:
(2a — b)? b\ ba—b) ..
———- 2%y R. O
da—3b \2a—0) Taa—m- TYE

The next connection is to an — even older — observation of Pdlya and Szegé [51] from 1925:

Lemma 4.8. Suppose fy is the restriction to [0,00) of an entire function with non-negative Maclau-
rin coefficients. Then fo o — preserves the class of continuous TN, Hankel kernels on X x X, for
all integers p > 1 and intervals X C R.

Proof. By the Schur product theorem, z* entrywise preserves positivity on P, ([0, o)) for all integers
k > 0; here we set 0° := 1. Since P,(]0,)) is a closed convex cone, it follows that all functions fy
as in the lemma share the same property. We are now done by Proposition O
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Our third connection is to entrywise polynomials that preserve TN,. By the preceding lemma,
all power series with non-negative coefficients preserve TN, on continuous Hankel TN,, kernels. It
is natural to ask is if a wider class of polynomials shares this propertyﬁ We conclude this section
by providing a positive answer, essentially coming from recent joint work with Tao [40]:

Theorem 4.9. Letp >0 and 0 <ng < --- <np_1 < M <ny, <--- < ngy_1 be integers, and let
Cngy - Cnyy_y > 0 be reals. There exists a negative number ¢y such that the polynomial

T Cninno + mem 4+ 4 Cnp,1$np_1 + CMxM + Cnpxnp + .4 Cn2p71$n2p—1’
preserves the continuous Hankel TN, kernels on X x X, for intervals X C R with positive measure.

Via Proposition Theorem follows from [40], because such a polynomial was shown in
loc. cit. to preserve Loewner positivity on Pp([0,00)). Theorem also admits extensions to
power series and more general preservers; we refer the interested reader to [40] for further details.

5. THEOREM [Cl CRITICAL EXPONENT FOR TOTAL POSITIVITY OF THE
JAIN-KARLIN-SCHOENBERG KERNEL

We next show Theorem [C] on the total non-negativity of the powers of the kernel K s, and
explain how it connects to the (total) positivity results stated before it in the opening section.

Proof of Theorem[(. The second part follows from Corollary[3.2] For the first, begin with the basic
trigonometric fact: If —7/2 < ¢ < 0 < /2, then tan(f) tan(p) > —1 if and only if 0 — ¢ < /2.
Now let x,y € RPT and let u; := tan™!(z;), v; := tan"!(y;). Then u,v € (-7/2, 7/2)PT, so:

KJICS(xja yk) - (1 + tan(uj) tan(vk))ltan(Uj)tan(vk)>—1

= (1 + tan(u;) tan(vg)) Lju; —vy | <x/2

= sec(u;) sec(vy) |cos(u; — Uk)].‘uj_vk‘<7r/2

= sec(uj) sec(vg)Tw (uj, vk).
It follows that

Kyislxiyl"™ = DaTyw[w vl "D, Va >0 (5.1)

where Dy, for a vector u € (—7/2,7/2)P" is the diagonal matrix with (j,) entry sec(u;). Theo-
rem now implies that this matrix is TN if a > p — 2, proving the first part.

Finally, we show the third part. Since the kernel K sxs is invariant under the automorphism
group generated by the involutions = <> y and (x,y) < (—x,—y), it suffices to show that the
restriction to [0,00) x R of K%g is TN, if and only if @ € Z*° U[p — 2, 00). This already holds for
a > p — 2 from above; and it does not hold for « € (0,p —2) \ Z by assertion (2)(c) shown above.
The final sub-case is when o € Z7°. Let x € [0, oo)p’T and y € RPT; we need to show that

det C°* >0, where C:= (max(l+z;y;,0))%,_;.
By the continuity of the function K 7xs, we may assume x; > 0. Now,

€ = diag(@) (max(0, 27! — (—yi))*) oy = diag(aSe™s ) (Qa; ! — (i) diag ().

Reversing the rows and the columns, we are done by Theorem |1.2% O

Remark 5.2. We now explain how Theorem [C] implies many of the results in Section

®In the original setting of entrywise polynomials and power series preserving positivity on P, ((0,00)), no examples
were known for p > 3, until recent joint work [40].

6This part of Karlin’s result, for integer powers a > 0, was already shown by Schoenberg in [57]. For the interested
reader, his direct proof is included in the Appendix.
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(1) Givenscalars 0 < z1 < --- < zp and y; < --- < yp, the Karlin-kernel 2 is a specialization of
the Jain—Karlin—Schoenberg kernel, up to multiplying by diagonal matrices and reversing
rows and columns:

(To[x; y]°*)" = D** K gxsly'; x')°* D37, (5.3)
where y' = (—y1,...,—Yp), X' = (1/x1,...,1/xp), and D1, D are diagonal matrices
D, = diag(zpe” *7,...,x1e” "), D = diag(e*, ..., e%),

(2) The proof of Theorem has a similar computation as , with Q replaced by Q(¢7),
(3) Similarly, the proof of Theorem 1) shows how, via the transformation arctan, the Jain—
Karlin—Schoenberg kernel is intimately related to the Schoenberg-kernel Tyy. These obser-
vations show how Theorem |C] . about (the powers of) the Jain—Karlin—-Schoenberg kernel is
related to Theorem [A] and to Theorems [I.5] and [I.2] of Schoenberg and Karlin, respectively.
(4) Given an integer n > 2, the kernel K 7xs clearly specializes on the set of bi-tuples

{(x,y) € R"N2: 1+ zjy, >0V, k=1,...,n}

to Jain’s theorem [1.12)(1) — in fact, to the stronger TN assertion in Theorem [C]2

(5) Restricting the kernel K 7xs to (0,00)? via the transform uf, we see that Theoremimplies
the equivalence (2) <= (3) in Theorem

(6) Our methods have provided an alternate proof above to Karlin’s theorem Indeed, as
discussed during the proof of Theorem (3)7 the result is shown in the Appendix for integer
powers, and for non-integer powers a > p — 2 it is a special case of Schoenberg’s theorem —
transforming the domain from (—7/2,7/2)? to R? via arctan, then restricting to R x [0, c0).
Here we use the identifications of K 7xs with Schoenberg and Karlin’s kernels.

In fact, it is possible to refine the above results even more. Given integers 1 < p < n, matrices
C=(1+ xjyk)?,k:l with positive entries, and powers a > 0, one can show that all p X p minors
of C° have the same sign — which depends only on n,p,a but not on z;,y;. This follows from
above for a € ZZ°U[p—2,00). If a € (0,p —2) \ Z, this follows by using SSR (strictly sign regular)
matrices and kernels, found in Karlin’s book [39] and Jain’s works [34], B5]. In fact, the following

holds, e.g. by Propositions and and [34, Theorem 2.4]:

Corollary 5.4. Given a scalar o > 0, an integern > 2, and tuples x,y € R™ such that I+zjyr >0
for all j, k, the power-matrix C°“ studied above is sign reqular, with signature given as follows:

(( )Lp/zjgpa)p 1 ifag{oala"'an_Q}v

(((—1 )LP/ZJEp,a)ajl 0,...,0), otherwise.

signature((1 + z;yx)")} k=1 = {
p=1>

That is, the sign of any p x p minor of ((1+ :L“jyk)o‘)?kzl depends only on n,p, a; here, €, equals

(—1ler2, ifa>p-2,
) (1P S“ if2s<a<2s+1<p—2, seZ>,
R N zf2s+1<a<23+2 p—2, s>,
0, ifa=0,1,...,p—2.

To conclude this section, note that Theorem @ completely classifies the powers of K sxs pre-
serving TN, on R x [0,00). The same question on the full domain R? of K 7xs remains, but only
for integers a € {0,1,...,p — 2}. This is equivalent to the following

Question 5.5. For an integer a = 0, can the kernel KjICS be shown to not be TNy44+3 on R x R?
More strongly, can it be shown to not be ‘positive semidefinite’, i.e. using x =y € R¥+312
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A complete resolution of Question [5.5] would complete the classification of powers of the Jain—
Karlin—Schoenberg kernel K 7xs that are totally non-negative of each order p > 2. (It would also
complete the remaining sub-case of integer @ < p in Theorem ) Note that this question for
K 7xs has a ‘positive’ answer for o = 0, 1, so that K 7xs is not TNy. Indeed,

1 10
x=y=(-1,01) e R>" —  det Ksks[xy]P=det |1 1 1] =-2
0 1 1
3 2 0 O
o1 47 L 2 3/2 1/2 0 _
x—y—\/i(—Q,—l,l,2)€R = det Kyxs[x;y] = det 0 1/2 3/2 2 = -2,
0 O 2 3

where the o = 0 case uses 0° = 0.

6. THEOREM [D} LAPLACE TRANSFORM OF A COMPACTLY SUPPORTED TN, FUNCTION

We now show Theorem|[D] The first step toward proving the result is to characterize TNy functions
A on a sub-interval I C R, instead of on all of R as is prevalent in the literature. We provide a
proof of this result along the lines of [58], but with a few modifications for more general I:

Lemma 6.1. Suppose J C R is an interval strictly containing the origin, and A : J —J — R 1is
Lebesgue measurable. The following are equivalent:

(1) The nonzero-locus of A is an interval I C J — J, on which A > 0 and log A is concave.
(2) The Toeplitz kernel Ty : J x J — R is TNa.

Thus A is continuous on the interior of I, whence discontinuous on J — J at most at two points.
In particular, this applies to I = (—p/2,p/2) C J = (—p/2,p/2), as in Theorem [D}]

Proof. The result is straightforward if A does not vanish at most at one point, so we suppose
henceforth that A # 0 at least at two points.

(1) = (2): Given scalars a <  and v < § in J, note that « — v, —d € (o« — 9,5 — ). If
a—y or B—4 lie outside I, the matrix M := <A(a —7) Aa- 5)> has a zero row or zero column

! | T\AB ) AB-9) |
Else « — v,8 — § € I; if now one of a« — §,3 — v is not in I then M is triangular, whence again
det(M) > 0. Else M has all positive entries; now the concavity of log A implies det(M) > 0.

(2) = (1): Since A is TNg, we have A > 0 on J — J. Fix § > 0 such that J contains either
[0,6) or (—0,0]. Suppose A(zg) > 0. We claim that if 1 > z¢ in J — J and A(z1) = 0, then A
vanishes on (J — J) N [z1,00); and similarly for x; < z¢ in J — J. It suffices to show that A(y) =0
fory e (J—J)N(z1,21+9). If J D (—6,0], this is because

0 < det Ta[(wo, 21); (21 — y,0)] = det (A(CEO 1:(;:)1 +) ﬁg?g) = —A(zo)A(y);

here, g — x1 +y € (xg,y) C J — J. Similarly, if J D [0,0), then we instead use

Azo — 21 +y) A(%))
0 < detTh[(xo —x1+vy,y); (0,y —x1)] = det = —A(zo)A(y).
o = o1+ 9)s 0y = )] = et (A0 L0 M) gy
This produces the interval I; now given points y — e < y < y + € of I, we show that A(y) >
VA(y + €)A(y — €) using discrete-time, finite state-space Markov chains. Let ng := 2[€/d], so that
e/ng € (0,0). Let zx := A(y + ke/ng) for —ng < k < ng; then z; > 0. Now if J D (=6, 0], then

0 < det Ta[(y — (k + 1)e/no,y — ke/no); (—€/n0,0)] = 23 — 2p—12k+1, vV —ng < k < no.
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If instead J D [0,d) then we use 0 < det Ta[(y — ke/no,y — (k — 1)e/ng); (0,€¢/np)] for the same
values of k, to obtain the same conclusions. From each case, it follows inductively that
10 (m0) /o
202 (12-)V? 2 (20282 0) /A > > Q(jl)n/o s
§=0

At each step, no power of z4,, is changed, while the remaining powers Z;-Y are lower-bounded by

(zj_lzj+1)7/2. The exponents of the z; give probability distributions on S := {—ng,...,0,1,...,n0}
corresponding to the symmetric gambler’s ruin, i.e. a simple random walk on the state space S
with absorbing barriers z4,,. The transition probabilities here for all other states z; are 1/2 for
Zj + zj+1. Since at each stage we moreover have equal powers of z4,,, it follows by Markov chain
theory (or one can show via a direct argument)m that zo > \/Zng2—n,- Hence —log A is midpoint-
convex and measurable on I. It follows by Sierpinisky’s well-known result [60] that —logA is
continuous on the interior of I, whence convex, and so A is also continuous on the interior of I.

Finally, to show —logA is convex on I, it suffices to show for a,b € I and A € (0,1) that
log A(Aa+ (1 = A)b) > AA(a) + (1 — A)A(b). But this can be shown by approximating A by dyadic
rationals A\, € (0,1) for all n > 1. For each of these, the above mid-convexity implies:

log A(A\pa+ (1 — A\p)b) = AplogAa) + (1 — \y,) log A(b), Vn > 1.

Letting n — oo, since A is continuous on the interior of I, it follows that —log A is convex on I.
This completes the proof of (2) = (1). O

Proof of Theorem[D, Let 0 < € < p/2 < p— p/2, and work with integers m > (p —1)p/e. Then the
following increasing, equi-spaced arithmetic progressions fall in the specified domains:

p 2p (p—1)p 1
= (0 0,¢e)”
x:= 0, =g ) €09
—-mp —(m—2)p m+2p—2)p
yie ( m-2p 1 ) & (—p/2,(p/2) + ™71,

2m+2° 2m+2 2m + 2
Hence the matrix T [x;y] is TN; reversing the order of the rows and columns, the matrix

ag ap - . am 0 0 o0
0 ayg - e a1 am 0 o0
A, =
0 0 - a0 -+ Gm-pt1 Am—pt2 Gm-pt3 “°° am

pX(m+p)

is TN, where we define a, := A (%) >0forv=0,1,...,m.

Once this matrix is constructed, repeat the proof of [58, Theorem 1]E| This shows the polynomial

R y
p(2) 1= oty D Ay~ mp/am +):

has no roots in the sector |arg(z)| < pw/(m +p —1).
Now given s € C and m > 1, let z = e~**/(m*1) and consider the holomorphic function

m

Fu(s) i= —E0 37 e Cromnl O (20 — m)p/(2m +2)) = e/ p,,(2), s € C.
v=0
7Indeed, if ¢; denotes the sum of the exponents for z_(n,—1),...,20,21,...,2n0—1 at ‘time’ ¢, then one shows via

the AM-GM inequality that ¢y (2,,—1) < ct(1 — 2" ™). Now let ¢t = m(2no — 1), with m — oo.
8This proof can be found in Karlin’s book — see [39, Chap. 8, Theorem 3.1] — and uses the variation-diminishing
property of the TN matrix A, as shown by Schoenberg [54].
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From above, F,(s) has no zeros in the strip

1 -2

N e T T
plm+p—1) p m+p—1

for all m sufficiently large. If p = 2 then this concludes the proof; else fixing § € (0,p7/p), F,, has

no zeros s satisfying: |3(s)| < (pm/p) — 9. By Lemma the holomorphic Riemann sums F,(s)

converge to B{A}(s) uniformly on each bounded domain, so by Hurwitz’s theorem, B{A} # 0 also

has no root s with |S(s)| < (pm/p) —0. As this holds for all § € (0, pm/p), the proof is complete. [

Remark 6.2. As noted following Theorem D] the hypotheses therein require using that the restric-
tion of A to the interval I(e) := (—(p/2) —¢€, (p/2) +€) is TN,,. If this can be strengthened to using
only I(0) = (—p/2,p/2), then this would answer Question in the affirmative, by specializing
to A = W, p = 7, and translating from Ty to K yxs via arctan as above. Indeed, the above
strengthening would imply that the following function has no roots s with |S(s)| < p:

/2

B{W}(s) = / e **cos(x)* dx.

—7/2
Since « € [0,00) here, the right-hand side can be computed using a well-known, classical formula
of Cauchy [IT], pp. 40], or directly as in [58, §10], to yield:

ml(a+1)
B{W}(s) = ,
e s) 20T (3 (o + 2 4 si))T(3 (o + 2 — s1))
and this has roots at s = +(a + 2)i. It follows that o + 2 = | + 2| > p. This also explains how
Schoenberg’s work [57, 58] implies that Ty« is not TNy, for a € (0,p — 2).

7. THEOREM : CHARACTERIZING TN, FUNCTIONS; CLASSIFYING DISCONTINUOUS PF /TN
FUNCTIONS

Finally, we come to Theorem [E| and a few related variants, which characterize not only TN,
functions A : R — R, but also TN, kernels K : X x Y — (0,00) for general X,Y C R.

7.1. Clarifications in the literature: discontinuous PF functions. We begin by addressing
some gaps found in the literature, vis-a-vis TN3 functions and discontinuous Pélya frequency func-
tions. Recall that a characterization of TN, functions is known for p = 2 by Schoenberg [57] (see
Lemma . For p = 3 an analogous result can be found in Weinberger’s work [64], but it turns
out to have a small gap, owing to the following lemma.

Lemma 7.1. For all d € [0,1], the following ‘Heaviside’ function is TN, whence TN3:

0, z <0,
Hy(x)={d, z=0, (7.2)
1, x> 0.

In particular, the function Ag(z) := e " Hg(x) is a Pdlya frequency function.

Weinberger’s result [64, Theorem 1] asserts in particular that if f : R — R is TNgs, then either
f(z) = Hi(ax + b)e®t¢ for suitable scalars a,b, ¢, € R, or the nonzero-locus of f is an open
interval. However, Hg, \; are nonzero on [0,00) and are TN for d € (0, 1) as well.

Remark 7.3. In fact, this gap in [64] stems from earlier works. In the 1947-48 announcements [55,
50] of his forthcoming results on Pélya frequency functions, Schoenberg asserts that A\; is the only
discontinuous PF function, up to changes in scale and origin. In his full paper, in [57, Corollary
2], Schoenberg repeats this, by remarking that the only discontinuous Pélya frequency function is
“essentially equivalent to” A(x) = e *1,>¢. In particular, it seems Schoenberg was not aware of \y
for d € (0, 1); similarly, we could not find Hy, Ay in the text of Karlin [39].



MULTIPLY POSITIVE FUNCTIONS, CRITICAL EXPONENTS, JAIN-KARLIN-SCHOENBERG KERNEL 23

To our knowledge, the functions Ay were very recently observed to be Pdlya frequency functions
— in joint work [3], where Lemma was stated and used without a proof. Thus, in the interest of
future clarity, we quickly record a proof.

Proof of Lemma[7.1]. Let p > 1 and x,y € RP-T; define M = Tr,[x;y]. We prove that det M > 0
by induction on p. The base case p = 1 is clear; for the induction step, assume p > 2 and consider
various sub-cases:

(1) If 21 < yo, then all entries in the first row vanish, except at most the first entry. Hence,
det Ty, [x;y] = Ha(z1 — y1) det T, [x5y'], where X' = (z2,...,2p), ¥ = (Y2, .-, Yp)-

Now the induction hypothesis implies det Ty, [x;y] > 0.

(2) Otherwise, suppose henceforth that y; < ya < 1. First suppose y2 = x1; subtracting the
second row of the matrix M from the first yields a matrix with first column (1—d,0,...,0).
Now expand along the first column and use the induction hypothesis.

(3) Finally, if y1 < y2 < 1, then the first two columns of T, [x;y]| are identical, so det M = 0.

Finally, given any TN,, function f(z) for p > 1, and scalars a,b € R, the function e®**?f(z) is also
TN, since for all 1 <r <pand x,y € R™T, the matrix

Toavsvy[x;y] = D - Ti[x;y] - D,

where D, D" are diagonal 7 x r matrices with (7, j) entries e?®i+® and e~ respectively. In partic-

ular, the matrix on the left again has non-negative determinant. Hence \; is also TN. O
We next fix the aforementioned results of Schoenberg on discontinuous Pélya frequency functions:

Theorem 7.4 (Classification of discontinuous Pélya frequency and TN functions).

A Pdlya frequency function is discontinuous if and only if, up to a change in scale and origin, it
is of the form Aq, where d € [0, 1].

More generally, a TN function A : R — R is discontinuous if and only if it is the Dirac function
1,—0, or it is of the form e®**®)\y(z) for a,b € R and d € [0,1] — once again, up to a change in
scale and origin.

Proof. This is shown using two results of Schoenberg from [57]:

e His classification of the non-smooth Pdlya frequency functions, as those one-sided PF func-
tions A whose bilateral Laplace transform has reciprocal (1 + a1s)--- (1 4 ans)e®® with
am, 6 = 0and § + >, a; >0 (and m > 0). Schoenberg also shows that if m > 1 then A is
continuous. Thus, it reduces to understanding the inverse Laplace transforms of 1/(1 + s).
This determines A via the property that a PF function is continuous on the interior of the
interval where it is positive (via Lemma[6.1). Thus A = 0 on (—00,0) and A(z) = e~ on
(0,00). The value at the origin can be d € [0, 1], by Lemma it cannot be negative; and
it is at most 1 by considering the 2 X 2 minor

0 < det Ty [(1,2); (0,1)] = det <z; ﬁ(f)l)

) = A(0) < 1.
e Schoenberg also shows that every TN function is either a Dirac function or a Pdlya frequency
function, up to an exponential factor e®**? with a,b € R. O

We now make a brief digression into another assertion by Weinberger: he used his proposed
characterization of TN3 functions to show that every power xz® for @ > 1 preserves the TNg
functions, just as every power « > 0 preservers the TNy functions. (This latter assertion is obvious
from Lemmal6.1] and on any interval, not just R.) In light of the above gap in [64], we provide an
alternate proof of this latter result:
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Proposition 7.5. Suppose o € R. Then x® preserves the class of TNs functions if and only if
a>1. (Here we use 0° := 0.)

If we instead use 0° := 1, then clearly 2 preserves the class of TN3 functions.

Proof. First recall that the Gaussian kernel Gy (z) := e is a Pélya frequency function, whence
TN3. (In fact it is TP; see the proof of Corollary in the Appendix.) Examining any ‘principal
2 x 2 submatrix’ of the associated kernel TG? shows that v > 0 if Tg«lx is TNy. Now say « € [0,1).
By Theorem W (x) is TN3, but W< is not TN3 (as can be directly inspected by looking at the
principal submatrix drawn at (—7/4,0,7/4), with 0° := 0).

This shows one implication. Conversely, suppose o > 1, and f is TN3. Fix x,y € R>T; then the
matrix T¢[x;y] is TN. By Whitney’s density theorem [65], there is a sequence of 3 x 3 TP matrices
Ay, converging entrywise to T¢[x;y]. By [14, Theorem 5.2], A7* is TP for all £ > 1 (since o > 1);
now taking limits, T« [x;y] is TN as desired. O

7.2. Characterizing TN, functions and kernels. Returning to the above attempt by Wein-
berger to characterize TN3 functions, and the preceding result by Schoenberg for TNy functions:
we now prove the aforementioned Theorem @, characterizing TN,, functions for all p > 3. To our
knowledge there are no other such results for TN, functions in the literature, prior to Theorem @
This result will follow from a more general formulation:

Proposition 7.6. Let t,,p € R and fix a subset Y C R that is not bounded above. Suppose X C R
contains t, +y forallp<y €Y. Let A: X =Y — [0,00) be such that A(ty) > 0 and

lim Azxo —y)A(ts +y — yo) — 0, Vg e X, yp €Y.
yeY, p<y—oo

If det Ta[x;y] = 0 for all x € XPTy € YPT, then the kernel Ty is TN,,.

Proposition extends a recent result of Forster—Kieburg—Kosters [19] in two ways: first, it
works over a large class of domains X,Y C R, whereas the result in [19] requires X =Y = R.
Second, even assuming X = Y = R, the result in [I9] requires A to be integrable; however,
Proposition is strictly more general as it works for all TN, functions, such as (via Remark

B(xz—=0) if r <
Aw—{ce ’ B 0, where — oo < a < f < +oo, ¢> 0. (7.7)

ce(@=z0) if x > xo,
If now af > 0, then A is not integrable, but the hypotheses in Proposition are satisfied.

Proof of Proposition[7.6. We show by downward induction on 1 < r < p that all » x r minors of
Ty on X X Y are non-negative. The r = p case is obvious, and it suffices to deduce from it the
r =p—1 case. Thus, fix x’ € XP~LT and y’ € YP~LT, We are to show that

Y(xp, yp) = det Ta[(X', )5 (v, 9p)] = 0 Vap > 2p1,yp > yp1 = detTh[x;y] > 0.

We now refine the argument in [19]. Begin by defining the (p—1) x (p—1) matrix A := TH[x';y’],
and let AUF) denote the submatrix obtained by removing the jth row and kth column of A. (Since
p = 3, these matrices are at least 1 x 1.) Now the following scalar does not depend on z,, yp:

L:= max |det AUF|>0. (7.8)
1<,k<p—1

Next, define t,,, € Y for all m > 1 such that ¢, > max{z,—1 — t.,yp—1,p} and

Mzj — t) At +ty —yp) < 1/m, YO <jk<p.
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With these choices made, we turn to the proof. Begin by expanding v (z,,y,) along the final
row, and excluding the cofactor for (p, p), expand all other cofactors along the final column, to get:

p—1
b(ap, yp) = My — yp) det(A) + > (=1 A (25 — yp) Ay — yi) det AUH),
Gk=1
Define yj(,m) = t,, and xém) := t, + t,,, with ¢, ¢, as above. Then

zgV € X, aM >ap, g ey, yir >y

Moreover, since w(xém), y;,()m) ) = 0, we compute for m > 1:

p—1 2
m m m m (p — 1)
Aty) det(A) = p(al™ 5ty — L ';IA(,@]- — gy NA @I — ) > _LT'
J’ g
Now taking m — oo concludes the proof, since A(t,) > 0 by assumption. O

Remark 7.9. Proposition specializes to X =Y = @G, an arbitrary additive subgroup of (R, +).
E.g. for G = Z, we obtain a result — whence a characterization, akin to Theorem [E| and results
below — for ‘Pdlya frequency sequences of order p’ that vanish at +00. Here, t, would be an integer.

With Proposition |[7.6] at hand, the final outstanding proof follows.

Proof of Theorem[B. If A = 0 then the result is immediate. If A(x) = e®*" then the result is
again easy, since by the argument to show Lemma it suffices to show the case of a = b = 0,
which is obvious. Now suppose A is not of the form ce®® for a € R and ¢ > 0. Then (2) follows by
Proposition with arbitrary p € R.

Conversely, suppose A is not of the form ce® for a € R and ¢ > 0. Since it is TN, clearly
(1)(a),(c) follow. In particular, since A is also TNy, g(x) := log A(x) is concave on R (in the
generalized sense, i.e., it is allowed to take the value —oc0), by Lemma Now let I be the
nonzero-locus of A. If I is not all of R, then (1)(b) is immediate. If instead A(z) > 0 for all
x € R, then since A is not an exponential, g(z) is not linear from above. Hence a short argument
of Schoenberg [57] shows that there exist 5,7 € R and § > 0 such thatﬂ

e TA(z) < 70 as r — Fo0.
From this, the decay property (1)(b) immediately follows. O
We conclude by extending the above result to arbitrary positive-valued kernels on X x Y:

Proposition 7.10. Let X, Y C R be non-empty, and K : X x Y — (0,00) a kernel satisfying any
of the following decay conditions:

supY €Y, lim K(z9,y) =0, Vg € X,
yeY, y—(supY)—
infY €7, lim K(zo,y) =0, Vo € X,
yeY, y—(inf V)t
sup X ng lim K(l’,yo) =0, Vyo €Y,
z€X, z—(sup X)~
inf X ¢ X, lim K(z,y0) =0, Vyo €Y.

z€X, z—(inf X)*

Given an integer p > 2, the kernel K is TN, on X XY, if and only if every p x p minor of K 1is
non-negative.

9Since g is concave, ¢’ exists and is non-increasing on a co-countable subset of R. Since ¢’ is not constant, there
exist scalars z_ < x4 and cy such that ¢'(z—) > ¢'(z4) and log A(z) < ¢'(z+)z + c+. Choose 7,8 € R such that
g (x4) <y—38<v+68<g(z-). Then log A(z) — vyx is bounded above by (¢'(z+) — v)x + cx, for +z > 0.
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For instance, this can be specialized to kernels over X =Y = G, an additive subgroup of (R, +).

Proof. One implication is immediate. Conversely, as in the preceding proofs it suffices to show
that K[x';y'] > 0 for all tuples x’ € XP~LT y/ € YP~LT We show this under the fourth decay
condition; the other cases are similar to this proof and the proofs above. Fix increasing tuples

x' = (z9,...,xp) € XPU v i=(ya,...,yp) € YPII

as well as y; € (—o0,y2) NY. Let A = K[x;y] and define L > 0 as in (7.8) above. Also choose
for each m > 1 an element l'gm) € X, such that mgm) < x9 and K(:Egm),yk) < 1/mfor 2 <k <p.
Now compute as in the proof of Proposition this time expanding the determinant along the

first row and column:

p
K(2{™ y1)det(4) > det K[\ ,x); (y1,y)] L Y K(zj,y)K (™, )
J
m Lp—1) &
> det K[, %) (51, y)] — 221 S e (a0).

As det K[(;rgm),x/); (y1,y’)] = 0 and K(xgm), y1) > 0, the result follows by letting m — oo. O

Remark 7.11. We have tried to keep the proofs of the results in our main theme self-contained
(modulo the Appendix) — specifically, for the results related to powers preserving TN,. The only
four such proofs that use prior results are those of Corollary Theorems Theor(l); and
Theorem |D| which use Schoenberg’s characterization of PF functions [57]; Lemma (Fekete);
Theorem (Schoenberg); and Schoenberg’s [58, Theorem 1] plus Sierpirisky’s result [60], respec-
tively.
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APPENDIX A. PROOFS FROM PREVIOUS PAPERS

In the interest of keeping this paper as self-contained as possible, this Appendix contains short

proofs (from the original papers) of the results which are stated above and are used in proving our
main theorems. The reader is welcome to skip these proofs (certainly in a first reading).

Proof of Theorem, ( 1). We show the ‘if’ part; the converse was shown in the proof of Theo-
rem [1.12(1). If o € Z7° then 2® preserves Loewner positivity by the Schur product theorem [59].
If a > n—2, we show the result by induction on n > 2, with the n = 2 case obvious. Suppose n > 3

an

d A€ P,((0,00)). Let ¢ denote the last column of A, and B := a,,!¢¢*. Then B > 0; moreover,

A — B has last row and column zero, and is itself positive semidefinite via Schur complements. Now
FitzGerald—-Horn employ a useful ‘integration trick’: by the Fundamental Theorem of Calculus,

1
A% = B 4 a/ (A—B)o (M + (1—A)B)°@D gx,
0
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But A — B has last row/column zero, and the leading principal (n — 1) x (n — 1) submatrix of the
integrand is in P,,_;(R) by the induction hypothesis. We are done by induction. O

Proof of Theorem for integer powers. For integers o > 0, the proof that x%e~**1,>¢ is a Pélya
frequency function is in steps. We first show that the kernel K (z,y) := 1,5, is TN on R x R. This
is a direct calculation; e.g., Karlin [39, pp. 16] checks for the ‘transpose’ kernel K (z,y) := 1<,

det K[x;y] = 1(z1 Sy1 <@ <ya < - < < Yp)s

for all p > 1 and tuples x,y € RPT. (Alternately, use Lemma ) Now pre- and post-multiplying
with diagonal matrices with (k, k) entries e~# and e¥* respectively, shows that the kernel Qg (x) :=
e T1,>0 is a Pdlya frequency function. Next, the ‘Basic Composition Formula’ of Pdlya—Szego (see
e.g. [39, pp. 17]) shows that the class of Pélya frequency functions is closed under convolution. But
for any integer o > 1, the a-fold convolution of Qq(x) with itself, yields precisely 2% 'e™*1,5.
Finally, multiplying with a suitable exponential function shows Q¢ is still integrable, so also a Pélya
frequency function. O

Remark A.1l. Let A(z) be as in (7.7). If || or |3| is infinite, A equals Ag or A (up to a linear
change of variables), hence is TN. Else if & = 3 then A is an exponential — up to rescaling — so any
submatrix drawn from has rank one, whence A is TN. Finally, suppose a@ < 8 € R. As explained
in Lemma A1(x) = e F1,>0 is TN, whence so is A1(—x). As in the preceding proof, the Basic
Composition Formula implies that A;(z) * A\;(—z) = e 1*1/2 is also TN. By a linear change of
variables, the function e(®=1z1/2 js TN. Multiplying by e(@t#*/2 the function in is also TN.

Proof of Proposition [2.3. This Descartes-type result is proved in the spirit of Laguerre and Poulain’s
classical arguments, via Rolle’s theorem. In this proof-sketch, we also address a small gap in [35].
The first step is to observe that 1 + ux; > 0 for all j if and only if v € (Ax, Bx). Also note that

A_y=—-By, and Ay <0 < By, Vx € R™. (A.2)

We now sketch the proof in [35]. If » = 0 then the result is immediate, so we suppose henceforth
that  # 0. Denote by s < n—1 the number of sign changes in c after removing the zero coordinates.
We then claim that the number of zeros is at most s; the proof is by induction on n > 1 and then
on s > 0. The base cases of n = 1, and s = 0 for any n > 1, are easy to show. For the induction
step, we may suppose all ¢; are non-zero, and the x; are in increasing order.

The first case is that whenever there is a sign change in c, i.e. ¢x_1cx < 0, we always have xp < 0.
(This is a small clarification that was not addressed in [35]; on a related note, does not appear
there.) In this case we simply replace x by —x and ¢ by ¢’ := (¢p,...,¢1). So the assertion for
Y_xcr: (—Bx,—Ax) = R (via ) would show the result for ¢y ¢ .

Thus there exists k& with c,_1c; < 0 < z. In turn, there exists v > 0 with 1—vz, < 0 < 1—vxp_1,
so that the sequence ¢j(1 —vx;), j = 1,...,n has one less sign change than c. Now define

P(u) = ch(l —vx;) (1 4 ux;) 1, h(u) == (u+v) "ox.cr(u), u € (Ax, Bx),
j=1

so the induction hypothesis applies to . But a straightforward computation yields
_(U + U)T+1
Y(u) = —————

r
so by the induction hypothesis, h’ has at most s — 1 zeros. We are done by Rolle’s theorem. O

Proof-sketch of Proposition[3.1l Suppose a € R\ {0,1,...,n — 2}, and S°®c? = 0 for a tuple
c=(c1,...,¢,) #0. Rewriting this in the language of Proposition yields:

h'(u), and u-+v >0, Vu € (Ax, Bx),

n
Pxealye) = > cj(l+yz)* =0,  VI<k<n
7=1
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By assumption, y; € (Ax, Bx) for all k (see the line preceding (A.2))), so Proposition implies
¥xca = 0 on (Ax, Bx). By (A.2), @5(]?.)37&(0) =0, VO < k <n—1. This system can be written as

1 1 ... 1
_ xr1 X9 PPN x
W,({n 1)DCT =0, where W,((T) = ) . ,n , T E 720

and D is the diagonal matrix with diagonal entries 1,a, a(a — 1),...,a(a—1)--- (e —n + 2). By
assumption on «, the matrix D is non-singular, as is the (usual) Vandermonde matrix W,En_l).
Hence ¢ = 0, and so S°% is non-singular.

Finally, if « € {0,...,n — 2}, then S°* = (W}(,a))TDW,((a), where W,Ea) was defined above, and
D is a diagonal (o + 1) x (o + 1) matrix with (k, k) entry (}). Since these matrices are each of
maximal possible rank, the result follows. ]

Proof of Corollary[3.3 Here we reproduce Karlin’s proof of the assertion (2) = (1). Since A(z)
is a one-sided Pdlya frequency function if and only if A(—z) is, we may assume without loss of
generality that A(z) = 0 for sufficiently small < 0. Now B{A}(s) is of the form

oo
B{A}(s) = 7% H(l +a;js)”!, wherea; >0, § €R, Zaj < 00, (A.3)
j=1 J
by foundational results of Schoenberg [57]. If o € Z”% U (p — 1,00), and a; > 0, then

e(a;1+a—l):r:

I'(a)af

(1+ajs)"* = B{Aja}(s), where Aj o (z) = Q)21

where Q(z) is Karlin’s kernel from [38]. By choice of a, we have o — 1 € Z7° U [p — 2,00), so

Q(z)* is TN,, whence so is A o(x) by the concluding argument in the proof of Lemma Now

the convolution of finitely many of the one-sided integrable TN, functions A;,, j > 1 is still an

integrable TN,, function, by the Basic Composition Formula (see above in this Appendix).
Finally, suppose all a; > 0. Since Karlin’s proof of [39, Chapter 7, Theorem 12.2] does not address

this case explicitly, we add a few lines for completeness. Since 1+ ajs < e%® and ) jaj < 00, we

have Hj>1 11+ ajs| < Hj>1(1 + ajls]) < elfl 221 < oo, Hence,

—ds —0s

e e
H?:1(1 + a;s)® Hj>1(1 + a;s)”

1. Moreover, for z € R the functions ¢, (iz) are bounded above —

On(s) =

converges to  ¢(s) :=

on the strip R(s) > max; —a;

uniformly for all n > 2/a — by an integrable function of the form 1/(1 4 a?z?). More precisely,

[2/c]
. . _ —a-[2/a]
< [ 11 +iaal < V1 2~ <————  VzeR, n>2/a,
|pn (i) 1 |1+ ia;z| + (az) 1+ (az)? x n e
where a = min{ay, ... ,af2 /o[\} > 0. Now apply the Lebesgue dominated convergence theorem and

repeat the argument on [39, pp. 334], to show that the Fourier—Mellin integrals of ¢,,, which are
TN,, functions vanishing on (—oo, d), converge to that of ¢, which function therefore possesses the
same properties. ]

Proof of Lemma([3.8 First suppose 0 < B < A are as claimed. For A € (0,1), the Loewner
convexity condition can be reformulated in two ways:
fIB+ XA - B)|] - f[B]
A
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fIA+ (A =NB-A4)] - flA] _

)& < f1B) - f14
Now let A — 07 and A — 17, respectively. We obtain:
(A= B)o f[BI< fIA] = f[B],  (B—A)o f'[A] < f[B] - f[Al

Summing these inequalities gives (A—B)o(f'[A]— f'[B]) = 0. Since A— B has only non-zero entries,
it has a positive semidefinite ‘Schur-inverse’. Take the Schur product with this matrix to obtain
f'[A] = f'[B], as claimed. Adapting the same argument shows that f/[A,] > f/[A,]V0 < p <A <1,
where Ay :=AA + (1 - \)B.

Conversely, suppose 0 < B < A in P,((0,00)) are arbitrary, and f’ preserves Loewner mono-
tonicity on [B, A]. In the spirit of previous proofs for powers preserving Loewner positivity and
monotonicity (see above), another ‘integration trick’ yields:

ﬁm+va—ﬂm=;/‘ ofPA+B N8| ax
A B O 1/t (A-4)
f[]—;f[]—f[B] _ fAI= A8 / FIM 4 (1—\)B] dA
0

Using the Schur product theorem and the hypotheses on f’,
A+ B
2

(A—B)of [/\ +(1—)\)B} <(A=B)o f'M+(1-NB].
Together with (A-4), this yields f[(A+ B)/2] < 3(f[A] + f[B]). Now an easy induction argument,
first on m > 1 and then on k € [1,2™], yields

k k k k .

Finally, given A € (0,1) we approximate A by a sequence of dyadic rationals of the form k/2™.
Now the preceding inequality and the continuity of f allows us to deduce that f preserves Loewner
convexity on {A, B}. The same arguments can be adapted, as in the preceding half of this proof,
to show that f preserves Loewner convexity on {Ay, A,} for 0 <pu <A< L O

Proof of Corollary[4.3 For the ‘if’ part, note that every contiguous minor of a Hankel matrix A is a
contiguous principal minor of either A or AWM This shows the result for TP, by Fekete’s lemma
For TN, first let B be a matrix drawn from the Gaussian kernel, say B = (e~ (2 k) ) k=1, With
x,y € R*%!. Then B = DxV Dy, where Dy for a vector x is the diagonal matrix with (k: k) entry
e, and V is the generalized Vandermonde matrix with (j,k) entry 2% = (¢2% )V whence
non-singular. As every submatrix of B is of this form, it follows that B is TP.

Now given A,x, Hankel as specified, we have that all contiguous minors of A of order < p are
non-negative. Since the corresponding submatrices are symmetric (and Hankel), it follows that
they are all positive semidefinite. Let B := (e*(j*k)Q);?,k:l; then B is TP from above. It follows
for € > 0 that every contiguous submatrix of A + e€B of order < p is positive definite. By Fekete’s
result, A + eB is TP,. Letting ¢ — 0%, A is TN,,. The ‘only if’ part follows by definition. ([l

Proof of continuity in Proposition [{.3 We claim that f =0 or f > 0 on (0,00). Indeed, suppose
f(xg) = 0 for some xo > (0. Choose 0 < z < xg < y, apply f entrywise to the Hankel TN matrices

<Q;O ;0> ) <3;0 yg Jz ), and take determinants. It follows that f(z) = f(y) = 0, as desired.

Using the first of the above test matrices also shows that f is non-decreasing on (0, 00).
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Now suppose f > 0 on (0,00), and fix ¢t > 0. We present Hiai’s argument from [28] to show f is
continuous at t. For € € (0,t/5), we have 0 < t + € < \/(t + 4¢€)(t — €). It follows that

)
ft+ e < f(VE+a( =) < VIE+aefiE—o),
where the second inequality follows by taking the determinant, after applying f entrywise to the

matrix
t+ 4e (t +4e)(t —¢)
(t+ 4e)(t —¢€) t—e '
Now take € — 07; then continuity follows, since f is positive and non-decreasing on (0, co):

0< f(t) <[ <fE)<f),  VE>0. O
Proof of Lemmal[{.4). Let the function M (z) = 2e 17l — e=2I7l for € R. For all integers n > 1,

"l(g) = Y _1\k+1 n 2n_k(n+k) :pn(S)
B{M"}(s) 2,;)( Y <k>52—(n+k>2 an(s)’

say, is the bilateral Laplace transform of M (z)". Here the polynomial g, (s) = [[1_o(s* — (n+k)?)
has all simple roots, and degree 2n + 2. It is easy to check that deg(p,) < 2n.

Now for n = 1 this yields 12/((s2—1)(s?>—4)), whose reciprocal is a polynomial, so classical results
of Schoenberg [57] imply that M (x) is a Pélya frequency function. Also note that deg(p,) < 2n,
and one checks by direct evaluation that p,(x(n + k)) is non-zero for 0 < k£ < n, so p, does not
vanish at any root +(n + k) of ¢,. Finally, p,(n)/pn(2n) is also checked to be > 1. Hence the
rational function g, /py, is not a polynomial for n > 1 —in fact, not in the Laguerre-Pélya class. The
aforementioned results of Schoenberg now imply that M (x)™ is not a Pdlya frequency function. As
M (z)™ is integrable and non-vanishing at two points, it follows that M (z)" is not TN forn > 1. O
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