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ABSTRACT. In this paper, we exploit the theory of dense graph limits to provide a new framework
to study the stability of graph partitioning methods, which we call structural consistency. Both
stability under perturbation as well as asymptotic consistency (i.e., convergence with probability 1 as
the sample size goes to infinity under a fixed probability model) follow from our notion of structural
consistency. By formulating structural consistency as a continuity result on the graphon space,
we obtain robust results that are completely independent of the data generating mechanism. In
particular, our results apply in settings where observations are not independent, thereby significantly
generalizing the common probabilistic approach where data are assumed to be i.i.d.

In order to make precise the notion of structural consistency of graph partitioning, we begin by
extending the theory of graph limits to include vertex colored graphons. We then define continuous
node-level statistics and prove that graph partitioning based on such statistics is consistent. Finally,
we derive the structural consistency of commonly used clustering algorithms in a general model-free
setting. These include clustering based on local graph statistics such as homomorphism densities,
as well as the popular spectral clustering using the normalized Laplacian.

We posit that proving the continuity of clustering algorithms in the graph limit topology can
stand on its own as a more robust form of model-free consistency. We also believe that the mathe-
matical framework developed in this paper goes beyond the study of clustering algorithms, and will
guide the development of similar model-free frameworks to analyze other procedures in the broader
mathematical sciences.
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1. INTRODUCTION

In this paper, we characterize continuity of certain maps from graphon space to colored graphon
space defined by popular graph clustering algorithms such as spectral clustering. Grouping or
clustering objects according to their similarity is a fundamental problem in many areas of modern
science. The objective of clustering is to identify such clusters in data, where objects assigned to
the same cluster look roughly similar, whereas objects belonging to different clusters are different.
Various strategies have been proposed to formulate and solve clustering problems in a rigorous way
(see e.g. [9]). Nevertheless, despite the tremendous importance of this problem, very little is known
about the theoretical properties of many popular clustering techniques. Two such fundamental
properties are: (i) stability under perturbation of the data; and (ii) asymptotic consistency under
specific data generating mechanisms (i.e., convergence with probability 1 as the sample size goes
to infinity under a fixed probability model). Previous attempts to give theoretical justifications for
both of these properties have relied on a choice of a particular probability model.

In the present paper, we address these problems in a model-free way, by recognizing both prob-
lems as following from the continuity of certain maps on graphon space [16]. To elaborate, clustering
data can naturally be formulated as a graph partitioning problem. Indeed, in applications, one gen-
erally uses a similarity function f: X x X — R to construct a similarity matrix W = (w;;) where
wij = f(x4, ;) measures the similarity between two data points x;, z; in a suitable space X'. The
matrix W is naturally identified with a weighted graph. Another common approach is to use W
to build an unweighted graph, where nodes are adjacent if and only if they are similar enough (see
e.g. [22] Section 2.2] for more details). The problem of identifying clusters within data can thus
be reduced to partitioning the vertices of a graph, in such a way that nodes belonging to the same
cluster are well-connected together, whereas different clusters share fewer edges. In particular, all
of the above algorithms are examples of graph partitioning algorithms, that take a finite graph
G = (V(G), E(G)) and yield a partition of the vertices V(G). Formally, we can describe this as a
map from finite graphs (V(G), E(G)) to S-colored graphs (V(G), E(G),cq : V(G) — 5), where S
is a finite set.

Giving theoretical justification for a choice of graph partitioning algorithm is a notoriously ill-
defined problem, and a satisfactory solution has been elusive to the broader mathematics commu-
nity. In this paper we propose that such a graph partitioning algorithm ought to satisfy a form of
model-free structural consistency: if the structures of the input graphs converge then the structures
of the partitioned graphs should also converge. Such structural consistency subsumes both stability
under perturbation as well as asymptotic consistency as special cases. Formally, the aforementioned
map from graphs to S-colored graphs should be continuous under the canonical dense graph limit
topologies, developed over graphs in [5, 6, [7, [I7], and generalized by us to S-colored graphs. We
characterize continuity for a broad class of graph partitioning algorithms, and prove model-free
structural consistency for popular graph partitioning algorithms such as spectral clustering.

To explain how our approach relaxes the assumptions in previous work in the area, consider the
case of spectral clustering. The asymptotic consistency of spectral clustering has been studied in
many papers [1}, 2, [10], 11} 12 13, 23] 24]. As far as we are aware, all of these results assume that the
similarity graph G,, is being generated according to the following general procedure: pick (x;)2,
ii.d. from some probability space (X, i) and then compute the similarity between node i and j to
be f(x;,x;) for some function f : & x X — R. The aforementioned papers have worked to prove
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consistency of spectral clustering for more and more general probability spaces X and similarity
functions f, usually exploiting some underlying geometric structure, and to our knowledge with
the most general results established in [23].

Compared to previous work in the area, our approach provides a way to establish the consis-
tency of clustering algorithms without making any assumption about the exact form of the data
generating mechanism. Our only assumption is that data is provided in a coherent way. More
precisely, we assume the graphs converge structurally in the sense of the theory of dense graph
limits. In particular, when graphs are constructed from an i.i.d. sequence (z;)$°, using a similarity
function as above, it is known that the resulting graphs converge almost surely to a limiting object
(see Remark . Therefore, the present paper extends previous results from the literature. We
remark that the theory of graphons is indispensable to this paper for two reasons: (i) it provides a
language to formulate model-free structural consistency as a continuity result; and (ii) its canonical
topology ensures the broad applicability of the framework, as we now explain.

Replacing the i.i.d. assumption by the significantly weaker paradigm of dense graph convergence,
allows us to provide a novel statistical framework to help handle two common problems in mod-
ern data analysis: lack of a plausible data generating mechanism for complex data, and lack of a
mathematical representation space for inferred objects with no linear structure. For these reasons,
we believe our approach has an important advantage in network analysis. Indeed, finding models
that reflect the complex heterogeneities of massive real-world networks still remains an important
challenge [14]. The assumption that observations are independent is also rarely verified in prac-
tice. In contrast, our model-free approach provides consistency results in a setting that is broadly
applicable.

The rest of the paper is structured as follows. In Section we provide an informal descrip-
tion of our main results. We briefly review the theory of graph limits in Section [2] and show in
Section [3] how the classical theory of graph limits can naturally be extended to study the space
of colored graph sequences and their limit objects. In Section {4} we study a common method of
clustering the vertices of a graph by computing some statistic for each vertex such as its degree.
We term these node-level statistics, and prove a general theorem about the structural consistency
of such clustering algorithms. Finally, in Section [5] we study the structural consistency of spectral
clustering in the graph limit framework. We demonstrate that normalized spectral clustering is
structurally consistent under mild assumptions. We also demonstrate problems with the analogous
unnormalized procedure, as was previously observed in [23]. Proofs of technical results in Section
are provided in Appendix [A] and in Appendix [B] we extend the Riesz—Fischer Theorem to any
complete metric space, as it is required to formulate one of our main results, Theorem [A]

1.1. Informal statements of results. In this subsection, we explain informally the main results
in the present paper. The technical details and the results are discussed in full, in later sections.

We begin by introducing the ingredients used to state and prove the main results. The first
notion is that of graphons, which are limiting objects of graph sequences. Graphons are measurable
functions W : [0,1]? — [0, 1] that are symmetric, i.e., W (z,y) = W(y, z). Every graph is naturally
identified with a graphon (see Equation )

The space of graphons is equipped with a canonical topology. Suppose (Gy,)n>1 is a sequence of
graphs. Let t(K2, Gy,) denote the edge density of Gy, i.e., the proportion of pairs of vertices of G,
that are adjacent. More generally, given a simple graph H, we denote by t(H, G,,) the proportion
of maps H — G, that are edge preserving. We say that a sequence of graphs G, is left-convergent
if t(H,G),) is a convergent sequence of real numbers for every simple graph H. The motivation
behind left-convergence comes from the notion that graphs become more and more similar if their
edge densities, triangle densities, etc., are all convergent. A left-convergent sequence of graphons
(Gn)n>1 is naturally identified with a limit graphon. In order to do so, one first extends the notion
of homomorphism density to graphons (see Equation ), and then show that there exists a
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graphon W € W yj such that t(H,G,) — t(H,W). The resulting topology is metrizable by the
cut-norm (see Equation ) The cut-norm provides a natural way of comparing graphs, even
if they have different numbers of vertices. Moreover, under the cut-norm, the space Wy 1) is a
compact pseudo-metric space.

For more details, the reader is referred to Section [2 and to [6l [I6] for a comprehensive introduc-
tion to the theory of graphons.

In this paper, we introduce a new mathematical framework to study the structural consistency of
clustering algorithms. Given a graph G, we identify a clustering of the vertices of G with a coloring
of G, i.e., a map cg : V(G) — S that assigns a “color” to every vertex of G. We say that the
clustering procedure is structurally consistent if for every left-convergent sequence of graphs G,,,
the resulting sequence of colored graphs is also convergent (under an appropriate topology similar
to the canonical topology in the graphon space). Note that in previous work in the literature,
a clustering procedure is consistent if the graphs G,, with their colorings converge whenever the
graphs G,, are generated i.i.d. from a probability model. By the theory of dense graph limits, one
can show that each such sequence (Gp)n>1 is convergent almost surely (see Remark [2.6). Our
approach thus significantly generalizes previous work by establishing structural consistency in a
“model-free” way, and without assuming independence of the samples.

We now discuss our first main result, a very general clustering recipe. Given a graph, there
are several ways to cluster its nodes based on local statistics. For instance, a simple clustering
procedure involves clustering nodes according to whether their degree (or edge-density) is above
or below a certain threshold value. More generally, one can work with a finite collection of local
statistics such as edge-densities, triangle counts, and other graph homomorphism densities, where
the images of these graph morphisms involve the given node. Now the nodes are clustered based
on the tuple of values of such local statistics; note that such tuples lie in Euclidean space.

In our first main result, we distill the essence of these clustering recipes into the notion of a
node-level statistic. This is a continuous map that sends a pair — a graph(on) and a node on it —
to a tuple in Euclidean space as above, or in full generality, to an arbitrary metric space X. Our
first main result establishes the structural consistency of such general clustering procedures.

Theorem [A] (See Section[d]) Fiz a metric space (X,dx). Clustering according to any continuous
X -valued node-level statistic f is structurally consistent with respect to graph convergence. Namely,
if a sequence of graphs is convergent in the cut-norm, then clustering according to f yields a sequence
of colored graphs that is also convergent.

As a concrete example, Theorem [A]implies the structural consistency of degree-based clustering
as described above — see Theorem for a precise formulation.

We remark here that partitioning a graph according to the degree statistic was previously studied
in the context of nonparametric graphon estimation; see e.g. [4]. In that work, the partitioning of
nodes is an intermediary step towards graphon estimation. In contrast, in the present paper, we are
chiefly concerned with the structural consistency of the graph partitioning step itself. Furthermore,
we do not take the graphon as a nonparametric generating mechanism for graphs, but rather as a
general limit object for graphs in the graphon topology.

Note that Theorem [A] decouples the clustering recipe from any graph generating mechanism,
i.i.d. or not, and assumes only that the graph sequence converges in a canonical topology. Thus,
Theorem [A] provides a very general and broadly applicable recipe for clustering.

As special cases of Theorem |A] we mention two algorithms studied in the paper: (a) the afore-
mentioned instances of clustering according to tuples of homomorphism densities (see Section ;
and (b) spectral clustering according to the normalized Laplacian (see Section . We believe
the result should also be broadly applicable to other popular clustering algorithms, with minimal
assumptions on the graph generation process.
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The remaining two main results of the paper involve the structural consistency of spectral clus-
tering. The spectral clustering procedure involves working with the normalized Laplacian of a
graph, and more generally, of a graphon. Our second main result demonstrates that the normal-
ized Laplacians of a convergent sequence of graphons are also convergent.

Theorem (See Section ) Suppose Wy, is a sequence of graphons that converges in cut-norm
to a graphon Wy, whose degree function do(z) is positive for almost every x € [0, 1]. Let L%/Vn denote
the corresponding normalized Laplacian for n > 0. Then L{,Vn converges to L{,VO.

Theorem [B| extends the corresponding result in [23] without the assumption that the degree
functions are bounded below by a positive constant, and without the assumption that the graphs
G, are generated by an i.i.d. mechanism.

It may be wondered if the assumption that dy(x) > 0 a.e. z, is itself required in Theorem [B| In
Example [5.21] we will show that this is indeed the case in order to obtain a reasonable theory of
consistency of spectral clustering.

Finally, we turn to our last main result, which proves structural consistency of normalized spectral
clustering in the model-free setting of graph limits.

Theorem (See Section ) Under appropriate assumptions, if W, is a convergent sequence
of graphons, and (Wp,cp) is a coloring of W, obtained via normalized spectral clustering, then
(Wh, ¢n) is also convergent.

Theorem [C] establishes the structural consistency of the widely used normalized spectral clus-
tering technique, without making any assumptions on the data generating model. Note that this
implies the classical notion of statistical consistency for normalized spectral clustering.

We believe the approach we provide in this paper can also be applied to other clustering proce-
dures. More generally, it is our hope that the philosophy and framework developed in the paper
will be used as an inspiration to establish model-free consistency results for statistical estimation
and machine learning procedures coming from various areas.

2. REVIEW OF DENSE GRAPH LIMITS

We now briefly review dense graph limit theory [6, 16]. This section serves to set notation, as well
as to motivate the next section on colored graph limit theory. The reader who is already familiar
with the theory of dense graph limits can safely skip this section.

A graphon is a bounded symmetric measurable function f : [0,1]?> — [0,1]. Each finite simple
labelled graph G with vertex set V(G) = {1,2,...,n} can be naturally identified with the following
graphon fC:

FE(@,9) = () my)eB(@) = (2.1)

1, if ([nx], [ny]) is an edge in G,
0, otherwise.

The topology on isomorphism classes of finite simple graphs can be described as follows. The
graphon space W] 1] sits inside W, the vector space of bounded symmetric measurable functions
f:[0,1]2 = R. Recall that W is equipped with a seminorm called the cut-norm

f(z,y) dz dy (2.2)
AxB

[fllo:= sup
A,BC|[0,1]

where the supremum is taken over all Lebesgue measurable subsets A, B C [0,1]. The group of
measure-preserving bijections Sjg 1) acts on W 1j as follows: given o € Sjg g and f € Wy 1), define

fo(z,y) == f(o(x),0(y)). Now define
s o
oo(f,g) = welg[g,u If—g"lo-
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Observe that 6o(f€, fG,) = 0 whenever G, G’ are isomorphic finite simple graphs, so 0 metrizes
convergence of isomorphism classes of finite graphs (up to blowups).

The topology induced by d5 can also be described using homomorphism densities. Given graphs
G = (V(G),E(G)), H= (V(H),E(H)), denote by Hom(H, G) the set of edge-preserving maps
from V(H) into V(G), and define the homomorphism densities as follows:
_ | Hom(H,G)

T v(@) vl

Now a sequence of finite simple graphs (G,,)5° ; is said to left-converge if for all finite simple graphs
H, the sequence t(H, Gy,) converges as n — oco. Intuitively, a graph sequence (G,,) left-converges if
the graphs G,, become more and more similar, in that their edge densities, triangle densities, and

so on, all converge.
Observe that the definition of homomorphism densities extends to arbitrary graphons f as follows:

HH, f) = /W [ fie) do- o, k=|V(H)] (2.4)

(i.j)€E(H)

t(H,G) (2.3)

This is compatible with the graph statistics t(H, G), in that t(H, f¢) = t(H, G) for all finite simple
graphs H,G. An important result in the theory of graphons is that dg metrizes left-convergence [6),
Theorem 3.8]. More precisely, upon identifying graphons W ~ W' whenever oo(W, W') = 0, the
space Wy 1) / ~ of equivalence classes of graphons is a metric space. The following result explains
how graphons are limiting objects for left-convergent dense graph sequences.

Theorem 2.5 (Borgs—Chayes-Lovész—Sés—Vesztergombi, [6]). Let (Wy)52; C W 1) be a sequence
of graphons. Then the following are equivalent:

(1) t(H,W,) converges for all finite simple graphs H, i.e., W, is left-convergent.

(2) Wy, is a Cauchy sequence in the 6o metric.

(3) There exists W € Wy 1) such that t(H, Wy) — t(H,W) for all finite simple graphs H.

Furthermore, t(H,Wy,) — t(H,W) for all finite simple graphs H for some W € Wy 1 if and only
if 5D(Wn> W) — 0.

Sampling. In addition to the cut metric and left-convergence, a third, equivalent way to think of
graph convergence is via sampling. Given a graphon W, let H(n, W) denote a random weighted
graph generated by sampling i.i.d. variables (X;)!"_; uniformly on [0, 1], and then setting W (X;, X;)
to be the weight between nodes i and j. Given a weighted graph H with n vertices, let G(H) denote
the graph G on n vertices where for i > j, (i,7j) € E(G) with probability H(i,j) and G is made
symmetric. Now let G(n, W) := G(H(n,W)). Then the probabilities P(G(n, W) = H) can be
computed from the homomorphism densities ¢(H, W) by inclusion-exclusion formulas [16, Section
5.2.3]. Therefore, the left-convergence of a graphon sequence W, is equivalent to convergence of
the sampling densities G(k, W,,) for all k.

Remark 2.6. The sampling distributions H(n, W) and G(n, W) are used as nonparametric gen-
erative models for networks. Here we remark that both models G(n, W) and H(n, W) concentrate
around W in the cut-distance (see |16, Lemma 10.16]). In particular, G(n, W) and H(n, W) con-
verge almost surely to W. Note that the general data generating mechanism employed in [23]
falls within the class {H(n, W) : W € Wy 11}, because an arbitrary probability distribution on
a compact metric measure space X can always be mapped in a measure-preserving fashion onto
[0, 1] with the Lebesgue measure. Under this mapping, the continuous (symmetric) similarity func-
tion k : X x X — [0,00) defines an associated kernel Wy, € W, bounded above uniformly by
my = maxy yex k(x,y) > 0. Therefore, graphs G,, generated i.i.d. in this model satisfy:

m];lfGn ~ H(?’L, mI;IWk),
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whence the random weighted graph sequence m;lGn converges almost surely to the graphon
mngk € Wyp,1) as n — oo. Thus the framework in the present paper applies to the general
setting of [23].

We conclude with two additional facts about the metric space (W[O,l] / ~,00):

(1) (See [I7].) The countable set of graphons f& (running over all finite simple graphs G) is
dense in (Wg 1}/ ~, do).

(2) As a consequence of the Weak Regularity Lemma in graph theory, Lovédsz and Szegedy
showed in [18] that (W)g1)/ ~,dn) is a compact metric space.

3. COLORED GRAPH LIMIT THEORY

We begin by showing how the theory of dense graph limits can be extended to colored graph
sequences and their limits. The proofs of the results stated in this section are given in Appendix
and leverage the approach of [16].

3.1. Colored graphs. Let S be a finite set. Define an S-colored graph G to be a triple
(V(G), E(G),cq : V(G) = 5),

where V(G) and E(G) C V(G)? are finite sets. (We assume that G does not have multiple edges
or self-loops.) Now let Gg denote the set of S-colored graphs.

Given G € Gg and s € S, we let V4(G) :={v € V(G) : cg(v) = s} denote the set of vertices of G
of color s. For H,G € Gg, we define the colored homomorphism density by:

| Homg(H, G)|
ts(H,G) = W7
where Homg (H, G) denotes the set of edge preserving maps ¢ : V(H) — V(G) such that cg = cgo.

For instance, if H denotes the graph with one vertex, colored s, then ts(H,G) precisely equals
Va(G)I/IV(G)]-

Note that the colored homomorphism densities naturally generalize the usual homomorphism
densities (see Equation (2.3)) in the case where the graphs are uncolored.

3.2. Colored graphons and homomorphism densities. We now come to the limiting objects
of sequences of colored graphs. We define an S-colored graphon to be a pair of measurable maps
(fw,cw) where fir @ [0,1]> — [0,1] is symmetric and cy : [0,1] — S. We denote the set of
S-colored graphons by Wg. Given H € Gg and W € Wg, we let

tS(H, W) = / v H fw(xes, :cet) H ]'CW(JL“U)=CH(v) H d.CEU. (31)
[0,1]V (D ecE(H) veV(H) veV(H)
In other words, the integration is carried out only over the sub-rectangle given by:
Ty € ey (e (v)), Vv e V(H).

The space of S-colored graphs Gg naturally embeds into Wy in the following way. Let k := |S],
and enumerate S = {s1,...,5s;} in some fixed order. Given G € Gs and j € {1,...,k}, let py := 0,
p; = |V, (G)|/|IV(G)|, and let I; denote the interval I; := ( {;&pl, 7_opi]. Now define the
S-colored graphon G ~~ Wg € Wg, via:

ewe (L) = J, ewg (1) =k,
fwa (i % 1y) == 1 jneB(o);
and fy, = 0 otherwise. The graphon W is related to the original graph G as follows.

Lemma 3.2. For all S-colored graphs H,G € Gg, we have ts(H,G) = tg(H,Wg).
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Recall that in the uncolored case, homomorphism densities are used to construct a topology on
the space of graphons (see Equation ([2.3)) and the subsequent paragraph). In a similar way, we use
colored homomorphisms to construct a topology on the space of colored graphons.

Definition 3.3. A sequence of S-colored graphons W,, € Wg is said to left-converge (to a graphon
W € Wyg) if the corresponding sequence of colored homomorphism densities tg(H, W,,) converges
(to tg(H, W)) for every fixed S-colored graph H.

Note that when the nodes of a sequence of graphs all have the same color, the above notion of
left-convergence reduces to the usual uncolored notion of left-convergence.

3.3. Cut metric. Recall that in the uncolored dense limit theory, the topology induced by homo-
morphism densities can be metrized using the cut-norm (see Equation (2.2)). We now extend the
definition of the cut-norm to Ws:

IW = WS = W = Wlo + 3 s (e (5)Acigh (5)), (3.4)
ses
where py, denotes the usual Lebesgue measure. Notice | - ||2 is not an actual norm when |S| > 1;

however, we retain the present notation to maintain consistency with the uncolored case |S| = 1.
Using this definition, we can naturally extend the usual Counting Lemma to Ws.

Lemma 3.5 (Counting Lemma). Let H € Gg and W,W' € Ws. Then

ts(H, W) = ts(H,W)| < [E(H)| - |W = Wllo + Y prley! (5)Acy(s))-
seS

In particular, |ts(H, W) —ts(H,W")| < |E(H)| - |W — W'||3.
Measure preserving maps o € S| 1) naturally act on Wg: if (W, ew) € Wsg, then we let
W (z,y) == W(o(x),o(y)) and ey (@) == ew(o(x)). (3.6)
As in the uncolored case, we define the distance 55 for Wi, Wy, € Wg by the formula

55 (W1, Wa) = i}s,l[f , Wy — WS ||,

gEdg

As usual, we will say Wy ~ Wy if 65(Wy, Wa) = 0. Observe that (Ws/ ~,d3) is a metric space. It
is in fact compact, as in the classical case where the vertices are not colored.

Theorem 3.7. The space (Ws/ ~,82) is compact.

Moreover, the colored cut-distance provides a way to metrize the topology induced by the colored
homomorphism densities.

Theorem 3.8. Let W, be a sequence of S-colored graphons. Then the sequence W, left-converges
(see Definition if and only if it is Cauchy in the 5*5 metric.

Finally, the colored finite graphs are dense in the completion Wg/ ~.
Theorem 3.9. Colored graphs are dense in Wg/ ~.

Using an inclusion-exclusion argument, it is also not hard to show that convergence in this
topology is equivalent to convergence in a sampling topology for S-colored graphs. Therefore, this
topology is the canonical topology for convergence of dense S-colored graphs.
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4. CLUSTERING BY CONTINUOUS NODE-LEVEL STATISTICS

One general class of graph partitioning algorithms proceed as follows: compute a statistic defined
on the set of nodes and then partition the nodes based on the value of that statistic. For example,
this includes clustering based on the degree, local clustering coefficient, and spectral clustering. In
this section, we call such statistics node-level statistics. We introduce the notion of a continuous
node-level statistic, which is broad enough to apply to commonly used node-level statistics (such
as the degree or local clustering coefficient). We then show a general consistency result for graph
partitioning algorithms based on continuous node-level statistics. We also verify continuity of
node-level statistics defined based on local graph statistics, thereby showing structural consistency
of graph partitioning based on such statistics. The same general theorem is applied in Section
to show structural consistency of spectral clustering, though such a result requires additional
machinery.

We begin by defining the notion of a node-level statistic and a continuous node-level statistic.

Definition 4.1. Let G denote the set of labelled finite simple graphs. A node-level statistic in R™
is a collection of maps {f¢ : V(G) - R™, G € G}.

Notice that node-level statistics can be summarized also as a map f : G — L'([0,1],R™), with
the restriction that if we label V(G) := {1,...,n} then

H&)W) = fe(lnyl),  Gegyelo1]
Well-known examples of node-level statistics include the degree of a node, or the local clustering
coefficient, i.e., the proportion of pairs of neighboring nodes that are adjacent.

Definition 4.2. We say that a node-level statistic in R™ is continuous if whenever G,, — Wy in
the cut-norm, the family of functions f(Gy,) € L'([0,1],R™) is convergent in L.

Our notion of continuity above was defined so that natural node-level statistics such as the degree
would be continuous. For example, the degree distribution does not necessarily converge pointwise
as a sequence of graphs converges in the cut-norm, but as we will show later, it converges in L'.
Another candidate notion of convergence for functions f : [0, 1] — R™ could be convergence with
respect to a generalized cut-norm

[ s
B

However, as we now show, convergence in the generalized cut-norm is equivalent to convergence
in the L' norm, since the function is defined on the interval as opposed to a higher dimensional
hypercube. To explain the equivalence, for every tuple ¢ = (c1,...,¢p) € {0,1}™, let Be :=
f_l((—l)cleg X e X (—1)CmR20). Then,

Ifla<iifli= )

ce{0,1}m

[fllo:= sup
BcJo,1]

/ f(y)dyH < 2" fllo,
B

so the cut-norm and the L' norm are equivalent.

Another advantage of using the notion of L! is that it generalizes naturally to node-level statistics
taking values in arbitrary metric spaces (X, dx). In the following definition, L'([0,1], X) is the set
of measurable functions

1
LY(0,1], X) := {g+ ([0,1], jir) = (X, Bx) - /0 dx (20, g(y)) dy < 00}

for any choice of point zy € X, and equipped with the metric

di(g,9') = /0 dx(9(y), 9 (y)) dy.
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Here, ur, stands for Lebesgue measure, and %x for the Borel o-algebra on X. As usual, we identify
functions in L'(]0,1], X) that are equal almost everywhere on [0, 1].

Definition 4.3. Given a metric space (X, dx), a node-level statistic in X is f : G — L'([0, 1], X),
such that f(G)(y) = fa([ny]) for all G € G,y € [0,1]. We say that an X-valued node-level statistic
f:G — LY([0,1],X) is continuous if whenever G,, — Wy in the cut-norm,

i.e., the sequence of functions f(G,) € L'([0,1], X) is Cauchy.

Note that this definition reduces to Definition when X = R™ (equipped with the usual
Euclidean distance). In fact this is true for any complete metric space (X, dx): continuous X-valued
node-level statistics f : G — L'([0,1], X) continuously extend to functions f : Wy 1 — L'([0,1], X).
See Corollary in Appendix [B] for details.

In the remainder of the paper, we will only deal with continuous node-level statistics. Hence,
from now on we take such a statistic to denote a continuous function f : Wiy 1 — L([0,1], X).
With a slight abuse in notation we shall also write f(W,y) instead of f(W)(y).

Our next theorem provides a general consistency result when clustering is performed using a
continuous node-level statistic f : Wy 1 — L*([0,1], X). We use f to color the vertices of W €

Wio,1]- More precisely, suppose there exists a collection of disjoint open sets (Aj)é-vzl C X such that

N
f(W,y) € U A; for ae. y €[0,1].
j=1

Then it is natural to define a coloring ¢y : [0,1] — {1,..., N} by letting cy (y) be the unique j such
that f(W,y) € A;. Note that cy is well-defined for almost every y € [0, 1]. Letting S = {1,..., N},
this operation induces a map F': Wi 1) — Ws defined by

F(W) = (W, cw).

Structural consistency of the above coloring is equivalent to continuity of the map F. Our next
result provides a useful sufficient condition for the map F' to be continuous. In what follows, we
identify functions f : Wy 1j — L*([0,1], X) with functions f : [0,1]* x [0,1] — [0,1] x X.

Theorem A. Let (X,dx) be a metric space, and f: Wy 1) — LY([0,1], X) a continuous node-level
statistic in X. Given a collection of disjoint open sets Ay, ... Ay C X, define

N
D:={WeWpy:fWy) e U A forae. yel0,1]}. (4.4)
j=1

Define S = {1,...,N} and for W € D, let cyy : [0,1] — S be the coloring defined for almost every
y by letting cw(y) = j, where j is the unique color in S such that f(W,y) € Aj. Then the map
F: (D] -|la) = Ws, |- |8) given by F(W) = (W, ew) is continuous.

Note, the theorem has a technical assumption about working with a subset D rather than the
full graphon space Wy ;). In fact this assumption is required, as we explain in Example :4.15

We now show that under a supplementary invariance assumption, a similar result holds on the
quotient graphon spaces.

Definition 4.5. Let (X,dx) be a metric space. We say that a continuous node-level statistic
[+ W — LY([0,1], X) is S 1)-invariant if

f(Wa7y) = f(VV, U(y))a VG € g7 S S[O,l]a a.e.y e [07 1] (46)
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In particular, for a graph G with vertex set {1,...,n}, and a permutation o € S,, we have
f(G7,y) = f(G,o(y)), where o acts on [0, 1] under the usual embedding S,, < 5[071]E|

Corollary 4.7. In the setting of Theorem@ if in addition D 1s Sjg 1)-stable and f is S|y 1j-tnvariant
so that f(W7,y) = f(W,a(y)) for allo € Sjg,1) and almost every y € [0,1], then the map F : (D] ~
,00) = Ws/ ~,02) given by F(W) = (W, cw) is continuous.

We now prove Theorem [A] and using it, Corollary [£.7]
Proof of Theorem[4] Suppose W,, — Wy as n — oo, with W,, € D for alln > 0. For j =1,...,N
and n > 0, let
Emj = {y S [0, 1] : f(Wn,y) S A]}
Fork>1and j=1,...,N, let

1 1

and let A;o = {1: € Aj:dx(z, Af) > 1}, where we denote dx(z,A) := inf{dx(z,a) : a € A}.
Note that A; = U2 Ak since Aj is open. For k£ > 0, define

Fj,k = {y € [0, 1] : f(Wo,y) S Aj7k} .
By the definition of A and assumption [£.4, we have

N oo
Egyj:UUFl,kuZ

=1 k=0
I#j

for some set Z C [0, 1] with ur(Z) = 0. Moreover, the sets Fjj, are disjoint. Thus,

N oo
pL(Bnj \ Eoj) = > > pr(Bnj 0 Fip).
%;1 k=0
J

Now fix k > 0 and distinct colors j # [ € S. For every n > 1, we have by the definitions of E, ;
and Fjj, that

dx (f(Wa,y), f(Wo,9)) = =

Therefore, by the continuity of the node-level statistic f,

1
(B 0 ) < / dx (f (W), £ (Wo, ) dy
+ En jNF g

Vy S Enyj M Fl,k-

< / dx (f(Wary), f(Wo.1)) dy =0
[0,1]

as n — oo. It follows that pur,(Ey, j N Fy i) — 0 as n — oo for each fixed k > 0 and [ # j. Moreover,

o0
pr(Bng OVE) < pr(Frg), DY no(Fie) = po(Ef ;) < oo
145 k=0
Therefore, by the dominated convergence theorem,

o
pL(Bnj\ Eoj) =Y pr(EnjNFy) —0
1£j k=1

ISpecifically, each o € S, acts on [0,1] by fixing 1, and sending y € ((i — 1)/n,i/n] to y + (o(i) — i)/n.
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as n — 0o. By a similar argument, we also obtain pr,(Eo; \ Enj) — 0 as n — oo. Therefore,
pr(En;AE ;) — 0 as n — oo. Since |W,, — Wo||o — 0 as n — oo, this implies ||W,, — Wo||$ — 0.
This concludes the proof of the theorem. O

Proof of Corollary[4.7 Suppose oo(W,, Wp) — 0 as n — oo. Then there exists (o )n>1 C Sio.1)

such that |[W» — Wy|lg — 0 as n — oo. By Theoreml AL (W3, cypon) — (Wo, ewg)[|8 — 0. Now
observe that by the invariance assumption on f, we have

cwen () =J & Wi y) € Aj & f(Wn,0n(y)) € 4 < cw, (0n(y)) = J.

It follows that the coloring defined by f is consistent with the Sjg ;) action on Wy (see (3.6])). We
therefore conclude that 63((W,, ew,, ), (Wo, cwy)) — 0 as n — oc. O

4.1. Structural consistency of clustering by homomorphism densities. Our next goal is to
provide a broad family of functions that satisfy the hypotheses of Theorem[A] Let H be a k-labelled
graph with labelled vertices 1,..., k. Recall that for W € W and z1, ...,z € [0, 1], we define

oy (HL W) = / I Weenee) [ doe

[0V kY v {1,...k}
In particular, if Ko has one labelled vertex, then
2 (Ko, W / W(z,y) dy, x € [0,1].

The following result is a consequence of Lemma [£.10] and Theorem [A]
Theorem 4.8. Fiz 0 < a < 1 and a 1-labelled graph H, and define

D=Dga:={W €Wy :pu{y €[0,1] : t,(H,W) = a}) =0}. (4.9)
Let (Wn)n>1 C D such that Wy, — Wo € Wyg 1), with Wy € D. Let S = {1,2} and let ¢, : [0,1] — S
be defined for n > 0 by

cn(y) = {17 ity (H, Wn) <,

2, ifty(H,W,) >«
Then the sequence (Wy, c,,) converges to (Wy, co) in Wg.

In order to show the result, we first prove a generalization of the usual Counting Lemma (see
[16, Lemma 10.24]).

Lemma 4.10. Fiz a finite simple graph H, graphons W, W! € Wio,1) for all edges e € E(H), and
measurable subsets F,, C [0, 1] for all vertices v € V(H). Now define

W= (Wo)eepry, W' i= Weepay, Fi= X F, 0,1V
veV(H)

as well as the following “generalized homomorphism density”:

r(H,W) / H We(ze,, e, ) - H dz,. (4.11)

ecE(H veV(H
Then,

tp(H,W) —tp(H, W) < S0 | [ o) | min {uo(F)pn(Fe), [We = Wa} . (4.12)
e€E(H) \v#es,et
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Proof. We adapt the proof of [16, Lemma 10.24]. We first claim that for every edge (u,v) € E(H),

/ H Wij(wivxj)(Wuv(xmxv) - quv(xuawv)) dr| < H pr(Fyw) | <
F
wH#U,v

(i) 7 (u,0)
min(pp (Fu)pr(Fy), |[We — W/|0).

Indeed, note that the left-hand side of the expression can be written as

uv(an xv) - quw(xm xv)) dz|,

where
f(z) = H Wij (i, z5), g(z) = Wij (i, ).
(1,4) €V (u)\(u,v) (i,4)EE(H)\V (u)
Here V(u) denotes the set of edges with one endpoint equal to u. Note that f(x) does not depend
on z, and g(z) does not depend on z,,. Thus, by [16, Lemma 8.10],

< min(pg (F)ps(Fo), [[We — Welo).-

/ F(2)9(2) (Wan (s 70) — W (s 20)) diudr
FyuxFy,

The claim follows by integrating with respect to the remaining variables. We immediately obtain
the desired result by writing |tg(H, W) — tgp(H, W’)| as a telescoping sum where each term is as
in the claim. g

We now show that clustering according to homomorphism densities is structurally consistent.

Proof of Theorem[4.8 Let f(W,y) := t,(H,W). By Lemma for every sequence W,, — Wy
and every measurable subset B C [0, 1],

[ 150) = 17o. )] dy‘ < |E(H)| - [W — Wolo

Set By :={y €[0,1] : £(f(Wy,y) — f(Wo,y)) > 0}. Then by the discussion after Definition
1
IUSEFOTE / - 1)) o]+ 5| [ (O = 107000 a
< |[E(H)|- [Wn = Wollo.
It follows that f is a continuous node-level statistic : W1y — L'([0,1],[0,1]). The result now
follows by Theorem [A] with A; = [0, @) and Az = (a, 1]. O
Remark 4.13. Theorem easily extends to any finite set Hq,..., H; of 1-labelled graphs, and
any collection of disjoint open sets A1, ..., Ay in the cube [0, 1]*. Namely, define
N
D= {W € Wy : (ty(Hi, W) € | 4; for ae. y € [0,1]}. (4.14)
j=1

Given W € D, define cy : [0,1] — S := {1,..., N} via: ew(y) = j if (t,(H;, W))¥_; € A;. Then
the clustering map W — (W, cy) is contlnuous on D.

Example 4.15. We briefly explain why the assumption W,, € D is required in Theorem (instead
of allowing all of Wy ;j). Consider the case of edge-density, where H = K> consists of an edge.
Suppose Y C [0, 1] has positive measure, and Wy € Wio,1] is such that

Wo(z,y) € (0,1) Vz,y € [0,1], ty(H,Wp) =a Vy Y.
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Fix any partition Y = Y’ LIY” into sets of positive measure, and € € [0, 1], define Wy € Wig 1
via:

e+ (1 —e)Wo(z,y), if x,y € Y’
WY’7€($7y) - (1 — 6)W0(1’7y)7 if T,y c Y”;
Wo(z,y), otherwise.

For each Y’, note that as € — 07, we have Wy e — Wy in L', hence in cut-norm. On the other
hand, it is easily verified that for the graphon Wy,

deg(y) = a+ e/ (1—Wy(z,y)) de > o, VyeY’,

’

deg(y) =a—e [ Wo(z,y) dz < a VyeY"
Y//

Therefore different choices of Y’ would give inconsistent limit clusters.

4.2. Sensitivity of clustering based on node-level statistics. We conclude this section by
discussing the sensitivity of the clustering in Theorem [A] A more sensitive notion of clustering
would be obtained if one could show that the function F' : W — (W, ew ) is Lipschitz on D, as
doing so would yield a greater understanding of approximation errors. However, the following
simple example shows this is not always true.

Example 4.16. Suppose H is any l-labelled graph with at least one edge, and consider the
clustering procedure in Theorem for some « € (0,1). Now one can choose Erdés—Rényi graphs
Wi = p1, Wa = po where p'lE(H) < a< p|2E(H)|. Then the clustering algorithm shows that all
vertices of W are colored 0, while all vertices of Wy are colored 1, whence &3(W1, W2) = 1. On the
other hand, p1,p2 can be chosen arbitrarily close to one another, whence do(W1, W3) can be made

as small as desired. It follows that W — (W, ¢y ) is not Lipschitz on Dy, (see Equation (4.9)).

We now show that the problem in the previous example lies in the fact that the sets A; are not
necessarily separated. If instead they were separated, in some sense “discretizing” the situation,
then the clustering map F' is Lipschitz, as long as the node-level statistic is. More precisely, we
have:

Theorem 4.17. Fix dyi, > 0, and suppose Ay, ..., Ax are disjoint open sets in a metric space
(X,dx), such that distinct sets A;j are at least dmin distance apart. Also fix a continuous node-level
statistic f: W1 — LY([0,1], X), and define D C Wio,1) and the clustering map F : (D, | - ||o) —
Ws, || - I8) as in Equation (£.4).

Now if the node-level statistic f is Lipschitz, then so is the clustering map F. More generally,
suppose ¢ : [0,00) — [0, 00) satisfies

di(fW), fW)) <o(lW —=W'[n),  YW,W'eD.
v(y)

dmin

Then ||[F(W) = FOW)|§ < o1(IW = W||o), where ¢1(y) ==y +

For certain continuous (even Lipschitz) node-level statistics f, Theorem also has a converse:
the clustering map F' is Lipschitz if and only if the sets A; are separated. This is the case, for
example, for any 1-labelled homomorphism density, for which this converse was shown in Example
4. 16

Proof. Define g : [0,1] — [0, 00) via: g(y) := dx(f(W,y), f(W’,y)). Note that if f(W,y), f(W',y)
belong to distinct sets A;, then their distance is at least dmin. Hence, we compute using Markov’s



MODEL-FREE CONSISTENCY OF GRAPH PARTITIONING 15

inequality:

IE(W) = FOWVIIE = [IW = W lo+ Y prley (9)Acyi(s))
ses

< ”W - W/HD + :U'L{y € [0’ 1] : Q(y) > dmin}

1 1
d
v /O 9(y) dy

< ||W-Wo+

1
= ”W_W/||D+d —dy(f(W), f(W"))
< HW—W’HD+d e(IW = W'la) = e1(|W = W|n),
as desired. OJ

Remark 4.18. The proof also demonstrates that if we merely know f is continuous, then so is F'.
To see why, simply stop the preceding calculation before the final inequality, and take W' — W.
This provides a second, easier proof of the continuity of F' (when f is continuous), in the simpler
setting where the open sets A; are separated in X.

5. SPECTRAL CLUSTERING

One of the most popular algorithms for graph partitioning is spectral clustering (see e.g. [22]).
The algorithm proceeds by constructing the graph Laplacian Lg from a graph G by taking a
diagonal matrix D¢ of the degrees of G and subtracting the adjacency matrix of G from it. This
is known as the unnormalized Laplacian. In practice, it is also common to work with a normalized
version of the Laplacian L/,, which is derived from the unnormalized Laplacian by normalizing

both the rows and columns by Dgyl/ ? and tends to give better results (see [22] for more details).

Note that the Laplacian Lg always has a constant eigenvector of eigenvalue 0. Moreover, the
matrix L¢g is positive semidefinite as it is diagonally dominant. Barring multiplicity issues, the
first m associated eigenvectors of the smallest non-zero eigenvalues of L define an embedding of
V(G) — R™ by their coordinates, and spectral clustering partitions the vertices of G by how they
cluster in R™. The same procedure can be carried out for the normalized Laplacian Ly,. To prove
structural consistency of spectral clustering, we introduce the notion of the Laplacian of a graphon
W. We then determine when the normalized and unnormalized Laplacians Li;,, Ly are continuous
constructions under the cut topology. Finally, we evaluate how the convergence of the spectrum to
that of the limit operators leads to structural consistency. As we will show, in general, normalized
spectral clustering has better consistency properties than unnormalized clustering. Our results thus
confirm previous findings from [23].

As explained in [16] Section 7.5], a graphon W € Wio,1) can be thought of as a self-adjoint integral
operator Ty, where

/ W(z,y)f(y) dy. (5.1)

When we think of Ty as an operator Ty : L*°([0,1]) — Ll([O 1]), then the operator norm of Ty
is equivalent to the cut-norm ([I6, Lemma 8.11]).

IWlo < [Twlloos1 < 4[Wa. (5.2)

We also often see Ty as an operator Ty : L? — L?. In that case, the resulting operator is Hilbert—
Schmidt. In particular, Ty has a countable spectrum, and can only have 0 as an accumulation
point. We can therefore define the eigenvalues of W to be the eigenvalues of the associated Hilbert—
Schmidt operator Ty : L? — L2. We shall denote these eigenvalues by A\ (W), Ao(W), etc., where

AW = [A(W)] = -
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Since W is symmetric, the operator is self-adjoint. Therefore we can choose an orthonormal basis
fi € L? of eigenfunctions associated to \;(W) with appropriate multiplicities so that

W(z,y) = Z Ai(W) fi(x) fi(y), (5.3)

where ||fil|2 = 1, and where (5.3)) converges in the L? sense.

5.1. Convergence of eigenvalues and eigenvectors. We now examine the behavior of the
eigenvalues of a sequence of graphons.

Definition 5.4 ([21}, Definition 1.1]). Let W € W)y ;) have spectral decomposition as in (5.3) with
eigenvalues \; = \;(W). Given A > 0, we define a cutoff graphon [W]y by

Wh(z,y) = > Xfi(@)fily).

{i:|\i|>A}
Notice that for any sequence of graphons such that |W,, — Wy||o — 0 as n — oo, we have
Wo = lim lim [W, ]

n—00 k—o00 k

in L2, whenever a; — 0 as k — oo. The following theorem characterizes the convergence of
graphons in the cut-norm, in terms of the convergence of its cutoffs [W,,].

Theorem 5.5 (see [2I, Proposition 1.1]). Let {Wy}n>1 C Wig 1y and let Wo € Wyg1y. Then the
following are equivalent:
(1) |Wy, — Wollo — 0 as n — oco.
(2) There is a decreasing sequence {oy}r>1 C (0,00) with limg_,o a = 0 such that ||[[Wy]a, —
(Wolagllz = 0 as n — oo for every j.
Furthermore, if (2) holds, then
Wo = lim lim [Wy]q,

k—00 n—00

in the L? sense.

Using the above result, we can now understand the behavior of the eigenvalues and eigenvectors
of a sequence of graphons.

Theorem 5.6. Fiz o > 0. Let (Wy)p>1 C W be uniformly bounded in L*> by o, and suppose
|Wyn, — Wollo — 0 as n — oo. Denote by A1 (W), \a(Wh,), ... the sequence of nonzero eigenvalues
of Wy, in decreasing absolute value. For k > 1, let Py(W,,) : L*([0,1]) — L%([0,1]) denotes the
projection on the eigenspace of Wy, associated to {\,(Wy,), —A\e(Wh)}. Define A\p(Wo) and Pp(Wo)
stmilarly. Then for all k > 1,

(1) Me(Wy) = Ae(Wo) as n — oo;

(2) |1P(Wn) — Pe(Wo)llcz2(o,1)) — 0 as n — oo, where | T|[(z2p0,1) := supjj,=1 T fll2 de-

notes the operator norm of T : L*([0,1]) — L?([0,1]).

In particular, suppose for each k > 1 that A\, (Wy) is a simple eigenvalue with associated eigenvector
fo € L*([0,1)), and let f, € L*([0,1]) be an eigenvector associated to \x(Wy,). Define pp(z,y) =

fn(@) fu(y), and po(z,y) = fo(x)fo(y). Then A\pg(Wy,) is simple for n large enough and ||p, —
pOHLQ([OJP) — 0 as n — oco.

Proof. The first part of the theorem is [16, Theorem 11.54]. To prove the second part, recall that the
only accumulation point of the eigenvalues of a compact self-adjoint operator is 0. Let n; < ngo < ---
be the set of indices such that [\, (Wo)| # [An,, (Wo)|. Define ay := (|An, (Wo)| + [Anys (Wo)l)/2
for k > 1. By part (1) and Theorem which we can apply by the uniform boundedness condition
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on W, we have that P, (W,,) = [Wyla, /A, (Wy) converges to P, (Wy) = [Wolay/An, (Wh) in
operator norm on L?. Similarly, for k > 1,

1

in the operator norm on L? as n — oo. O

Lemma 5.7. Let {f;}i>1 C L*([0,1]) and fix g € L>([0,1]). Suppose fi(x)fi(y) — f(x)f(y) in
L2([0,1]%). Moreover, suppose the f; and f are normalized so that (f;,g) > 0 and (f,g) > 0. Then
fi = fin L2([0,1]).

Pnk (Wn) = ([Wn] - [Wn]ak) - WO]%H - [WO]ak) = Pnk (WO)

Q41

Proof. By Jensen’s inequality,

/0 ( /0 @) fily) — F@) F@)] 9v) dy) dr < /0 /0 (i) fily) — F(2)F ()] g(w))? dudy
< g2 @) fily) — F@) F@):
—0

as ¢ — 0o. Thus,

1 1
/ fi@) fiw)a(y) dy — / F@) F@)gy) dy
0 0
in L2([0,1]). Equivalently,

(fig) filaw) = (f.9)f(x) in L*([0,1]).

Using a similar argument, we conclude that

1,1 1,1
o = [ [ 5@ nw@s) dedy— [ [ 1@ i@ dody = (1.9
Since by assumption (f;, g) > 0 and (f, g) > 0, it follows that f; — f in L%([0,1]). O

5.2. Convergence of Laplacians. Given a graphon W € W) q), let d : [0,1] — R denote its
degree function:

d(z) == /01 W(z,y) dy.
We identify d with a multiplication operator My : L°°([0, 1]) — L([0, 1]) defined by
Mqa(f)(x) = d(x) f ().
Definition 5.8. We define the Laplacian of W € Wg ) to be the operator Ly : L*°([0,1]) —

L*(]0,1]) given by
LW = Md - Tw. (59)

The next lemma shows that the corresponding sequence of Laplacians of a convergent sequence
of graphons is convergent in the L> — L' operator norm.

Lemma 5.10. Let (Wy)n>1 C W1 and Wy € Wygq). Suppose |W, — Wollo — 0 as n — oo.
Then || Lw, — Lw,|lco—s1 — 0 as n — oo.

Proof. We have
| Lw, — Lwlloos1 = [|Ma, — Tw,, — May + T lloo—1

< || Mag, — Mgy lloo—s1 + 1 Twy — Tw, lloo—s1
< || Mg, — Mgy lloo—s1 + 4l Tw, — Tw, [Io-
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It therefore suffices to show that || My, — Mg, |lco—1 — 0 as n — co. Now,

Mg, — Mgy [loos1 = S 1Ma, (f) = Mao (F)1
co=1

1
= su d,(z) — do(x D de
||f||oop1/o |(dn(2) = do(x)) f ()]

= ||dn — do||1
1 1

- / / Wi, y) — Wolz, y)] dy| de
0 0

= (Tw,, — Tw,)(1) |1
< N Tw, — Twp lloo—s1
< AW, — Wollo.

It follows that ||Lw, — Lw,|/co—1 @s n — o0. O

As Theorem shows, if |[W,, — Wy|lg — 0, then the eigenvalues and eigenvectors of W,
converge to those of Wy. However, the same result does not hold in general if T}, : L>® — L!
is an arbitrary sequence of operators such that ||7,, — Tp||lco—1 — 0. In particular, even though
|Lw, — Lw,|lco—s1 — 0 when ||W,, — Wy||o — 0, in general the eigenvalues and eigenvectors of
Ly, may not converge. Such a phenomenon was previously observed in [23], where it is shown
problems can occur with unnormalized clustering in examples which are highly relevant to practical
applications (see Result 3 and the subsequent discussion, as well as Section 8.2, in [23]).

We now provide a family of examples to illustrate some of the problems that can occur in our
framework, when working with the unnormalized Laplacian. We first recall some preliminaries
on the essential spectrum. Let X be a Hilbert space, and denote the spectrum of an operator
T:X — X by

o(T):={\ e C:T — A is not invertible}.
Recall that the discrete spectrum of T, denoted ogiser(T), is the set of isolated eigenvalues of T
of finite multiplicity. Denote by 0ess(T) := 0(T') \ 0diser(T') the essential spectrum of T'; this is a
closed subset of C. Moreover, gess(T 4+ K) = 0ess(T') for any compact operator K, i.e., the essential
spectrum is closed under compact perturbation. Recall that A € o(T) if and only if there exists a
sequence (¢ )g>1 C X such that ||| = 1 for all k, and

lim || Ty — M| = 0.

k—o0
Moreover, X € oes(T') if such a sequence (¢r)r>1 with no convergent subsequence exists. See [§]
for more details on the essential spectrum.
Proposition 5.11. Given a continuous function g : [0,1] — [0, 1], define the graphon Wy by:

Wy(z,y) :==g(z)g(y),  x,yel0,1].
Let Eg := g=1(0). Then the only eigenvalue for Ly, is 0, with eigenspace given by
ker Ly, = {f € L*([0,1]) : f is constant on [0,1] \ Ep}.

However, ocss(Lw,) = d([0,1]) where d(x) := (g, 1)g(x) denotes the degree function of Wj,.

Proof. In this proof, let 1 denote the constant function 1 on [0, 1], and denote by (g, f) the inner
product of g with f € L2([0,1]).

Notice that W, has degree function d(y) = (g,1)g(y). Now if (Lw,f)(y) = Af(y) on [0, 1] for
some eigenfunction f € L2([0,1]), then

fW) g, Vg(y) —A) = (Tw, f)(y) = 9(y){g, f)-
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First notice, if g = 0 then A = 0 (since f # 0) and the result is easily shown. Thus, we assume
henceforth that g # 0, whence (g,1) > 0. Now solve for f to obtain:

{9, f)9(y)

T = 40 19t — (512
Notice that (g, f) # 0 since f # 0.

There are now several cases. If A = 0 then f is constant on [0, 1] \ Ey (and a priori arbitrary on
Ep). In this case the result is not hard to show.

We now show that the remaining values of A cannot be eigenvalues for Ly,. Indeed, first
suppose \/{g, 1) € g([0,1]); then the preceding equation shows that f & L?([0, 1]), since A # 0. For
all other values of A, i.e. A € (g,1)g([0,1]) U {0}, evaluate both sides of Equation against

9(y){g,1)%/{g, f) and compute:

I AR D0 S L Xy
<g,1>2/0 <%1>g(gJ)_Acly/(] ({9 1)g(y) +A) dy+/0 0 Dg(y) — N

Cancel (g, 1)2, and simplify using that A\ # 0, to obtain:

! A dy
b= /0 A= (g, L)g(y)’ (5.13)

There are now three cases. First if A < 0, then since sup, g(y) > 0 and g is continuous, hence
the integrand always lies in [0, 1], and is bounded above by

Al
Al + (g, 1) (sup, g(v)/2)

on a set of positive measure. Therefore it cannot integrate to 1 on [0, 1].

The remaining cases are similar. First suppose A\/(g,1) € (0,inf, g(y)) (assuming g(y) is always
positive on [0,1]). In this case, the integrand in Equation is always negative, which is
impossible. The only other possibility for A is A/(g,1) > sup, g(y), since g([0, 1]) is an interval by
the continuity of g. In this case, the integrand always lies in [1, 00), and is bounded below by

A
A —(g,1)(sup, 9(y)/2)

on a set of positive measure. Therefore it cannot integrate to 1 on [0, 1]. It follows that A = 0 is
the only eigenvalue for the Laplacian of W.

Finally, since Ty, is compact, Oess(Lw,) = 0ess(Mg). Clearly, o(Mg) C d([0,1]). Now, let
A € d([0,1]), say A = d(zp). Since g is continuous, there exists a sequence €, — 0 such that
|d(x) — d(z0)| < € if |x — 29| < 1/k. Now define

€ (0,1)

€ (1,00)

I = Blao, 1/K)N[0,1],  wple) = ,JLl(Ik)l“e”“'

Note that ||1%||2 = 1. Now,

1
| Mgty — Mpr||3 = /0 [(d(z) — d(z0))¥r(2)]? do < €2 - ||l = € — 0

as k — oo. Clearly (1x)g>1 has no convergent subsequence in L?([0, 1]). Therefore, A € gess(My).
O

Proposition above as well as the work in [23] demonstrate that significant problems can
occur when working with the unnormalized Laplacian in clustering applications. We now study
in detail the properties of the normalized Laplacian, and prove the structural consistency of the
resulting clustering algorithm under broad assumptions.
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5.3. The normalized Laplacian. As in the unnormalized Laplacian case, we now extend the
normalized Laplacian of graphs to graphons. Recall that the normalized Laplacian L, of a graph
G with n vertices is given by

Ly =D"?LgD™ V2 =1 — D7 '2AD™/2,

where D = diag(dy,...,dy,) is a diagonal matrix with the degrees of the vertices on the diagonal,
and A is the adjacency matrix of G. The normalized Laplacian naturally arises in spectral clustering
when relaxing the Normalized Cut problem instead of the Ratio Cut problem (see [22, Section 5]
for more details). Akin to the unnormalized Laplacian, we extend the definition of the normalized
Laplacian by viewing it as an operator from L> to L'.

Definition 5.14. Let W € Wjg 1) be a graphon with degree function d. We define the normalized
kernel W’ by

Wy
W' (x,y) = { gy (), d(y) #0,
0,

We define the normalized Laplacian of W to be the operator Li;, : L>=([0,1]) — L*([0, 1]) given by
LQ/V = Mld(z);éo - TW/. (515)

otherwise.

Note that W’ is not necessarily bounded. However, as we now show, if W € Wio,1], then
|W'||o = |[W']]1 is uniformly bounded. We will deduce this from the following technical lemma,
which will also be useful later for analyzing the convergence of normalized Laplacians.

Lemma 5.16. Let W € Wy 1) with degree function d, and let W' denote the associated normalized
kernel as in Definition|5.14. Then for every measurable A, B C [0, 1],

W/($>y) dxdy < ML(A)l/Q ’ ML(B)I/Qv (517)
AxB

and moreover,

o W'(z,y) dedy < 2min(ug(A), pr(B)). (5.18)

Proof. To prove the inequality (5.17), let P := {x € [0,1] : d(x) > 0}. Then

W' (x,y) dedy = / Wy)

dxdy.
(AnP)x(BnP) \/d(z)d(y)

AxB
By the Cauchy—Schwarz inequality,

/Amp)x (BNP) \/L / / \/71 anp (@ \/Wlmp( ) dady
</ / nyl anp(2) dxdy>1/2</ / W:pyl ﬂP()dmdy)l/Q
@ / /
()" (L 22 )”

< pr(A)7? - un(B)'2.
To prove the inequality (5.18)), we may assume without loss of generality that the degree function

d is non-decreasing (otherwise, replace W by W7 for an appropriate o € Sjg)). Note that if
d(z) = 0, then W’(z,y) = 0 for almost every y € [0,1]. Thus,

W'(z,y) dedy = / W'(z,y) dedy = / M
(ANP)x B AnP)xB /d(z)d(y)

dxdy.
AxXB
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where P was defined above. Now,
W(z,y)

/mmw V@) = fon V@

dy

2/y€AmP/yl\/%dm
2/y€Ade(1y)/y W(z,y) dzdy

1 1
2/ / W(z,y) dxdy
yeanp d(y) Jo (@)
=2-p(ANP)

<2-ur(A).

IN

IN

The result follows by carrying out a similar computation using B N P instead of AN P. O

Corollary 5.19. Let W € Wg ) with degree function d, and let W' be the normalized kernel
associated to W as in Definition . Then

Wo <1,
Moreover, the bound is sharp.

Proof. The bound ||W'||g < 1 follows immediately from Equation (5.17). Using W = 1, it follows
that the bound is sharp. O

Corollary 5.20. The operator L}, : L>°([0,1]) — L'([0,1]) is bounded.

Proof. Recall that L}, = M., — Tw and that by Corollary W' € LY(]0,1]?). Thus, by

Fubini’s theorem, Ly, is a well-defined operator from L> to L'. The operator being bounded
follows from from the fact that the operator norm of Ty is equivalent to the cut-norm of W’ (see

Equation (j5.2))). O

In the remainder of this subsection, our goal is to understand when the normalized Laplacians
converge. Doing so will allow us to derive the convergence of the eigenvectors and eigenvalues, and
conclude convergence of the spectral clustering derived from those Laplacians. The only assumption
that we will need is dy > 0; in other words, the limit graphon does not have any isolated sparse
regions. In the case of finite graphs this is just asking for no isolated nodes. The following example
explains why the assumption that dy > 0 is indeed necessary going forward in the paper. However,
once we make this assumption, we are able to show convergence of the normalized Laplacian in full
generality. See Theorem

Example 5.21. Consider first the case Wy = 0. Then any sparse sequence of graphons W),
converges to Wy in cut-norm. For example, let { P;}, be a partition of [0,1]. Let U = Y_/" | 1p,xp,.
Let U? be a small perturbation of U so that it maintains the same block diagonal structure as U
but has m simple eigenvalues in (1 — §,1) with eigenvectors that are small perturbations of 1p,.
Then W, = +U° — Wy in cut-norm. Now, Ly, = Ly, = I — Ty, for all n. Therefore, the limit
coloring will be defined by the partitions { P;}I" ;. As this procedure applies for arbitrary partitions
of the unit interval [0, 1], any partition can be derived from W,, — 0 and spectral clustering fails to
be well-defined in the limit. In addition, the same argument shows that the normalized Laplacians
do not converge when the underlying graphons converge.

More generally, let W, be a general graphon whose degree function dy takes the value 0 on a
set of positive measure. Given Wy, we may permute it by o € Sj,1; and assume without loss of
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generality that do(z) = 0 if and only if x € Ey := [0,a] for some a € [0,1]. Let W, denote the

graphon restricted to Ef x E{; thus the graphon is of the form (8 V[9+>
0
0 0

0wy
that W{ is a symmetric, Hilbert—-Schmidt operator, with a discrete spectrum of real eigenvalues
and only possible accumulation point at 0.

Now let {P;}™, be a partition of [0,a], and define U := >7" 1pyp. Let U’ be a small
perturbation of U so that it maintains the same block diagonal structure as U, but has m simple
eigenvalues in (1—4, 1) with eigenvectors that are small perturbations of 1p,. This time we pick § > 0

Let the normalized kernel be Wy = < > Under the assumption I/VO+ "€ L?, we can say

1770
to be less than the gap between 1 and the next largest eigenvalue of W{. Let W,, = (”g W9+>’
0
then W,, — Wy. Once again, because of the normalization occurring in L] -, we find that the limit

clusters will be defined by the { P}, irrespective of the structure of the dense part W~ of Wy.

Theorem B. Let (W,)p>1 C Wio,) such that IW,, — Wol|lo — 0. Let d,, and dy denote the degree
functions of Wy, and Wy respectively. Assume that do(x) > 0 for almost every x. Define W), and

W as in Definition |5.14. Then
W), — W{llo =0 as n — oo.
Moreover, we have ||Ly, — Ly |lcos1 — 0 as n — oo.
Proof. Let € > 0. Since do(z) > 0 for almost every z, we can pick A € (0,1] be such that
1r(dy([0,2)))) < e. Suppose dn(z) < A. Then either z € dj'([0,2))), or € {w € [0,1] :

|dn(w) — do(w)| > A}. Since d, — dgy in L' (see the proof of Lemma [5.10)), there exists N, such
that for n > N,

pr{x € [0,1] : |dn(x) — do(z)| > A} < e (5.22)
It follows that for n > N,
pr(d; ' ([0,))) < 2e. (5.23)
Now, for n > 0, define
P, :={x €[0,1] : dp(x) > 0},
and let Z :=[0,1]2\ (P, x P,). We claim that for n > N,
(W, = Wo)lzllo < 8e. (5.24)
Indeed, if d,,(xz) = 0, then W/ (x,y) = 0 for almost all y € [0,1] and so, for A C PS and B C [0, 1],

[ W) = Wiy dxdy's [ Wity dedy
AxB P;{><[0,1]

_ / Wol@y) ey,

Pgx[0,1] v/ dn(7)dn(y)

For n > N,, we have by (5.22)) that ur(PS) < 2e. It follows by Equation (5.17) that

[ Wi = Wito.)] dey| < e
AxB

This proves ((5.24)).

We will now prove that ||(W) — W/})1p,«xp,||o < 8¢ for n is large enough. To do so, define:

Qn :=dy ' ((0,\)Ud; ' ((0,)),  Rp:=Py\Qn,
S, =R, X Ry, T, := (P, x P,) \ Sp.
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We will first prove that ||[(W), — W))1r,|o < 16€ if n > N.. Indeed, If A, B C T,,, then

[ Wit 0) = Wi, ) ] =

/ < Wn(:r,y) _ Wo(.’B,y) ) d:cdy
AxB \ V/dn()dn(y) do(x)do(y)

Wn(‘r? y) WO(IE’ y)
< dxdy + dxdy
Tn \/ dn(x)dn(y) Tn do(x)do(y)
< 8¢ + 8 = 16e.

where the last inequality was obtained by Equations (5.18) and (5.23).

Finally, we show that ||(W/, —W{)1s, |0 < €(2/vVA+1) for n large enough. Note that for x € R,,,
we have |d,, (z) "1/ — do(x)~Y/?| < 1/AY2. Since 2~ /2 is Lipschitz in [\, 1] with Lipschitz constant
C for some C' > 0, we have

/ 42 w) = dy P@lde < € [ () —dofa)] <

for n > M, since d,, — dg in L'. Now, for =,y € Py N P,, we have
Wy (z,y) — W(z,y)
__ Walzy) Wo(z, y)
Vdn(x)dn(y)  \/do(x)do(y)
— ( Wn(x7y) Wn($,y) + Wn(x7y) Wo(.%',y)
(

( Wo(m,y) _ WO(xay
Vidn(x)do(y)  \/do(x)do

We will bound the integral of each term separately.

First, for A, B C R,
<
AxXB
1

Wales)  Walww) ),
Juos <¢dn<x>dn<y> \/dn(iﬂ)do(y)> ey
<e-

||~

<

~—
v

11
Vdu(y)  \/do(z)

Wi (z,y)
V()

dxdy

|

For the second term, we have
Wn(xa y) - WO(£7 y) dxd
/AxB (\/dn(x)do(y) \/dn(ﬂ?)do(y)) g
[ Wal9) = Wole) ————— dady
AxB

dn(x)do(y>

1
1. sup / (Wh(z,y) = Wolz,y)) f(x)g(y) dedy
£,g:00,1]—0,1] J[0,1]2
supp f,gCRn

IA

IN

1 1
NIWe = Wo)ls, [lo < L [IWn — Wollo < e

for n > N.
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For the third term, we have
Wol(x, W,
/ o(z,y) o(z,y) dudy
AxB \/dn(ﬂﬁ)do(y) Vdo(x)do(y)
1 1 1

= VA s | V@ o)

<e

Wo(z,y) dxdy

5=

Putting everything together, we conclude that

1
(W, (x,y) — Wo(z,y)1s,llo < 26 —=+¢€

VA

for n > max(N,, M, N!). Finally, combining all the inequalities, we obtain that
Wy, = Willo < (25 +2/VA) -

We conclude that W), — W{ in cut-norm. To complete the proof of the theorem, note that for
n > max(Ne, M, N!),

1L, = Ly lloom1 < 1M1y, (020 = My ayz0lloomst + [Ty — Tiglloos1-
< pr({z = du(x) = 0}) +4|W,, — Wello
< 2e+4[|W; — Wello

by (5.22)), and this approaches 0. O

We conclude this subsection by observing that the usual eigenvalue bounds hold for our gener-
alized version of the normalized Laplacian:

Proposition 5.25. Given W € Wg ) with degree function d, all eigenvalues of the normalized
Laplacian Ly, lie in [0,2].

Proof. We provide a proof-sketch for completeness, as our setting is slightly more general than is
usually found in the literature (although the argument is more or less standard). Define D, :=
{z € [0,1] : d(z) > 0}; now if Lj;;g = Ag for some (nonzero) eigenfunction g, then evaluating
against g yields:

1 1 T
A /0 g(2)? do = /0 9(2)2d(2) Lo da — /D /D gmmg@ dy da.

Define h(z) := g(z)/+/d(x) on D, and 0 otherwise. Then one verifies that the above equation
translates to:

1
s Ca@rar=5 [ ] Wit ~ ) dude o,

whence A > 0. On the other hand,

5[] Wb - hw)? dude <5 [ [ W) eh@? + 2(w)?) dyds
D, JD, Dy JD,

1
= 2/1)+ h(z)?d(z) dz < 2/0 g(x)? dx,

from which it follows that A < 2. OJ
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5.4. Structural consistency of spectral clustering (normalized Laplacian). We now exam-
ine the convergence of the eigenvalues and eigenvectors of the normalized Laplacian of a convergent
sequence of graphons.

Given a graphon W € W), we will denote by p1(W),...,ux(W) the k smallest nonzero
eigenvalues of Ly, (see Proposition , and by fl, ..., f{fV € L%([0,1]) associated eigenvec-
tors/eigenfunctions.

Theorem C. Fiz m > 1, let Dy, o be the set of graphons W such that, W' € L*([0,1]?) is
uniformly bounded above by oo > 0, and (W), ..., pm (W) are all simple. Let (Wy)p>1 C Do
and Wy € Dy such that |[W,, — Wo|lo — 0 as n — co. Assume that

1
/ Wo(z,y) dy >0 for a.e. y €[0,1].
0
Normalize the associated eigenvectors of the smallest m eigenvalues p1 (W), ..., um(Wy) so that

(fiv, h) > 0,...,(fitr,,h) > 0
for some h € L>([0,1]) and all n > 0. Define f: {W,, :n >0} x [0,1] — R™ by

FWasy) = (fv, @) i, ()T

Moreover, let N > 1 and let (Aj)j-v:l C R™ be a collection of disjoint open sets such that for all
n >0,

N
fWy,y) € U A; for a.e. y €[0,1].
j=1

Then we have:

(1) f(W?,y) = f(W,o(y)) for all o € Sig1), W € Do, and almost every y € [0, 1].
(2) Set S :={1,...,N}, and forn > 0, define F(W,,) := (W,, cw,, ), where cy, (y) is the unique
j€{l,...,N} such that f(Wy,y) € A;. Then |[F(W,) — F(Wp)||Z = 0 as n — cc.

Remark 5.26. It is useful to examine how Theorem |C|above compares to the theorems in [23] on
convergence of spectral clustering using normalized Laplacians. Firstly, in that work, the degree
functions d,, satisfy d, > A > 0. We make a more general assumption about the normalized
Laplacians (see Example . Secondly and very importantly, we do not make a specific modeling
assumption about the data generating mechanism for the graphs. We merely assume that the
graphs come to us in a way that is convergent in the graph topology. This subsumes the mechanism
assumed in [23] as a special case and includes many others. As a consequence, our arguments require
different techniques which are suitable to the graphon topology.

Example 5.27. We illustrate with an example how Theorem [C] allows working outside the setting
in [23], in which the degree was assumed to be bounded away from zero. Fix o > 1, and consider
distinct measurable functions g1, ..., gx : [0,1] — [0, 1] such that

1
(g1, s g0)|loo < 1, /0 gi(x) dz > o~ Vi.

Define .
W(x,y) :=>_ gi(2)gi(y) € Wpy)-
i=1

Using the notation (-, -) for the inner product in L?, the degree function is dw (y) = >_;{g:, 1)gi(y),
and this is not necessarily bounded away from 0. Now the normalized kernel is
\/Zi<gi) gi(x) - >2:(9:: 1)gi(y)
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Now note that since ¢;(y) € [0, 1], by choice of a we have
k

Z 2 < Zgz (9i, 1), vy € [0,1].

i=1
Hence by the Cauchy—Schwarz 1nequahty,
2igi@)? | Xielw)?® o
~ Xilgn Vgi(z) Xilgn Daily) —
whence W' (z,y) € [0, al, satisfying the corresponding hypothesis in Theorem

W'(z,y)* <

We now prove Theorem [C]

Proof of Theorem|[(. To verify (1), suppose A is an eigenvalue of Ty for some symmetric W &
L?([0,1]?). Let fw € L*([0,1]) be an associated eigenfunction. Then for o € Sjg 1,

Mw(o /W y) fw (y dy—/WnyfW((»y

Therefore A is also an eigenvalue of Tyy- with associated eigenfunction fyyo(z) = fw(o(x)). This
proves (1).

Now suppose ||W,, — Wy||o — 0. By Theorem., Bl [|W,) —W{|lo — 0, where W, and W, denote the
normalized kernels as in Equation (5.14]). By Proposition [5.25] -, the smallest m nonzero eigenvalues
(W), ooy (W) of Ly, are in leeCtIOIl with the largest eigenvalues \i(W}), ..., Ay (W)) of
W, that are not equal to 1. By Theorem these eigenvalues converge to A (Wé), o Am ().
Moreover, since Wy, € Dy, o Vn, the eigenvectors associated to A (W},), ..., Ay (W},) are the same as
the eigenvectors of Ly, associated to 1 — MWD,y 1=Xp(W)). Now since the W), are uniformly
bounded by «, apply Theorem - ) and Lemma |5.7] - to obtain

Han_fWOH2—>0 as n — o0 (i=1,...,m).

Since [0, 1] has finite measure, by Cauchy—Schwarz it follows that

Hfévn—févoHl—>O as n — 0o (t=1,...,m).
Now since
1F W) = FVO) I < D Wi, = Fiv Il
i=1
it follows that f(W,) — f(Wy) as n — oo. The result now follows by Theorem [A] O

Remark 5.28. The assumption that W), are uniformly bounded guarantees a well behaved spec-
trum in the limit. To illustrate the difficulty of working without some regularity hypothesis, consider
any partition of [0, 1] = |_|]°i1 I; into countably many measurable subsets with positive measures.

Define the graphon
o0
x y) = Z]-IjXIj'
j=1

In this case,
[o.¢]

1 oo
Wé:Zﬁlgxlw so [Wgll3 =) 1=oc.
j=1 1Ay j=1

In particular, W{ is not bounded either. If we now compute the eigenvalues and eigenvectors of W,
we find that the spectrum consists of just 0 and 1, both with infinite multiplicity. In particular,
1;; is an eigenvector of eigenvalue 1 for all j.
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We can now perturb Wy to Wj while preserving the block structure, so that there will be one
eigenvalue of W] in (1 — €;,1) corresponding to one eigenvector which is a small perturbation of
17;. If the €; — O then the eigenvalues of W/ converge to 1. It is no longer clear how to properly
define the clustering for the limit of the corresponding normalized Laplacian sequence in that case.

APPENDIX A. PROOFS FOR DENSE S-COLORED GRAPH LIMIT THEORY

Proof of Theorem (3.5t
Before proving the result, we explain the general idea of the proof on an example. We adapt
the idea in [I5, Lemma 10.24]. Suppose H is a path on 4 vertices, V(H) = {1,2,3,4}, E(H) =
{(1,2),(2,3),(3,4)}. Then,
ts(H,W) —ts(H, W/) =
4

0.1 fw (1, 22) fw (22, 23) fw (23, 24) E Lo (o) =en (i) A
4
- /[0,1}4 fW/ (:L'l’ $2)le(x2’ $3)fW/ (l‘?” :E4) ’ ]_;[1 lcvv’(érz')ZCH(i) dl’i
1
- /[0’1]4 [fw (@1, 22) fw (22, 23) fw (23, 24) — fw (21, 22) fwv (2, 23) f (3, 24)] chw(:rz y=cn (i) ATi

.
—_

1

.z% &»:l"“

+/[0 " [fw (z1, 22) fw (22, 3) fovr (23, 4) — fww (21, 22) fovr (@2, 23) fwr (23, 24)] - o da;

cw (zi)=cu
KA

+/[ | Lfw (1, x2) fw (22, 23) fr (23, 24) — fovr (21, 22) fwr (w2, 23) fovr (23, 24)] - | | Loy (2o)=cur (i) dTi
0,14

=1

~I—/[ ’ fwr (w1, 22) fw (w2, ¥3) fw (23, 74) <chw(z1 )=cr (i) ~ chW, (w:)=cm (i )Hdiﬂz
0,1

Thus, to prove the Counting Lemma, it suffices to obtain a bound for integrals of the form:

4
/[0 " (fw(z1,22) = fwr(m1,22)) [ Wel@es me,) - [ [ Lew i)en o0

e€E(H)\(1,2) i=1

where 0 < We(z,y) < 1 are arbitrary functions, and a bound for

/[01]4 Jwr (1, 22) fwr (2, 23) fwr (23, 24) (chwm) culi chw, (o) =cp (i ) Hdm@

We now provide such bounds.

Proof. As explained above, to prove the lemma, it suffices to provide a bound for
(fw(zar28) — fur(xas ) ] c@ee) [ lewwomenwy [ doo (A1)
[0,1]V (F) eGE(H)\(a,B) veV (H) veV(H)

where 0 < W, < 1 are arbitrary functions, and a bound for

/[01]IV(H) H fw:(@e,, ze,) H 1CW (wo)=cm(v) — H 1cw’(ccv):<:H(v) H dx,. (A.2)

e€cE(H) veV(H veV (H) veV(H)
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Given v € V(H), denote by V(v) := {(es,et) € E(H) : es =v or e; = v}, and let
f(za) = H We(es, et) H dxy,

e€V(a)\(a,B) veV(H)\{o,8}
g(xg) = H We(es, et) H dxy,
e€E(H)\V(a) veV (H)\{a,8}
fl(xa) = lcw(ma):cH(a) H ICW(IU):CH(U)d:L‘v’
’UEV(H)\{avﬁ}

91(28) = Loy (5)=cu (8)-
Using this notation, we obtain the following bound for (A.1)

/[0 W(H)l(fw(xmm)—fo(xa,xﬂ))f(xa)g(xﬂ)fl(xa)gl(mﬁ) I1 d=

veV (H)
S \/
0,11V (H)1—2

</ w-wio J] do
[0,1]IV(H)I-2
’ VeV (H)\{a,8}

/ (fw(wa,2p) — fw(Ta,15)) f(7a)g(ws) f1(za)g1(2s) dradrg |
[0,1]2 veV(H)\{a,8}

=W —=W]g,
since 0 < f(zq)fi(za) < 1and 0 < g(xg)g1(xg) < 1. For (A.2)), we have

/[OI]V(H) H fW’(-Tes71Uet) H ICW(‘TU =cg (v H ICW’ (z0)=crr (v) H dl‘v

ecE(H) veV(H) VeV (H) eV (H)
S/ - H Loy (z)=cn (v H lcw,(xU Y=cp (v) H dx,,
(0.1 veV(H) veEV (H) veV(H

=i (o) (szﬁw )

The result now follows by a telescoping argument as the one provided before the proof. ([l

Proof of Theorem [3.7 Let Wy )n>1 C Ws be a sequence of colored graphons. We will show that
(Whp)n>1 has a convergent subsequence. Note that there exist measure preserving maps oy, : [0, 1] —
[0,1] such that the partitions defined by the CWM( s) for s € S are intervals ordered in a fixed
arbitrary ordering of colors .S. Without loss of generality, we will assume that such transformations
have been applied to the W,, so that the cafi (s) are ordered intervals. Moreover, since the vector
of measures (ML(CI;}H (s)))ses sits on the simplex which is compact, we can also assume that this
vector also converges as n — oo. It follows that the limit co(z) := lim, o cw, () exists almost
everywhere on [0, 1] and HL(CW (s)Acy(s)) — 0 as n — oo for every s € S.

The proof now proceeds as in [16, Theorem 9.23]. Note that the original partitions P, ; can always
be chosen to respect the partition defined by c;Vln(s) for s € S. Since the successive partitions P, j
are refinements of P, 1, they will also respect the coloring. Proceeding as in [16, Theorem 9.23],
we obtain a subsequence W, and Wy € W such that ||W,, — Wy||o — 0. Finally, since ¢, = co
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and uL(c;Vlnk (5)Acgt(s)) — 0, then ||[W,, — Wo|$ — 0 as well. This concludes the proof of the
theorem. 0

Proof of Theorem [3.8, We adapt a proof of L. Schrijver [20] to the colored graphon case.

Let Gg be the set of isomorphism classes of S-colored finite simple graphs with no isolated vertices.
Then there is a map M : (Ws/ ~,05) — [0,1]95 defined by setting the H component of M (W) to
be equal to tg(H, W). This map is continuous and well-defined by the Counting Lemma for colored
graphons (Lemma [3.5). Since (Wg/ ~,83) is compact (Theorem and [0,1]9s is Hausdorff, it
suffices to show that the map M is injective in order to conclude that it is a homeomorphism onto
its image, thereby concluding the proof.

To show the injectivity of M, assume that two colored graphons U,V € Wg have equal homo-
morphism densities for all H € Gg. To show that 63(U,V) = 0 we work with a few sampling
distributions.

Let Hg(n,U) denote a random weighted graph sampled from U by sampling (X;)!" ; i.i.d. from
the uniform distribution on [0,1], and then taking U(X;, X;) to be the weight between nodes ¢
and j. The coloring is defined by cpy(n,11)(7) = cy(X;). Given an S-colored weighted graph H
with n vertices, let Gg(H) denote the finite S-colored graph G on n vertices where for i > j,
(i,7) € E(G) with probability H(i,j) and G is made symmetric. The coloring cg(i) := cg (7).
Lastly, let Gg(n,U) := Gg(Hg(n,U)), so that the Hg(n,U) and Gg(n,U) are coupled in this way.

Note that Gg(n,U) = Gg(n,V) in law for every n, because the probabilities P(Gg(n, W) = H)
can be derived from the homomorphism densities tg(H, W) by inclusion-exclusion.

By the triangle inequality, 62(U, V) < §3(U,Gs(n,U)) + 63(V,Gg(n,U)). Thus,

35U, V) <E(33(U,Gs(n, U))) + E(55(V, Gs(n, U)))

= E(53(U, Gs(n, U))) + E(@3(V, Gs(n, V).
To conclude the proof, it therefore suffices to show that E(63(Gg(n, W), W)) — 0 for any graphon
W € Ws as n — oco. We first show that Hg(n, W) and Gg(n, W) are close when coupled in the
obvious way. Let H be a weighted graph with n vertices. We claim that there exists some fixed
constant C' > 0 so that

P(dS(Gs(H), H) > €) < e=<™/C,
where d3 (W, W') = |[W — W’||S. To bound the cut-norm of a step function W,

[Wlo=sup
A,BC[0,1]

W (, y)dl‘dy' :
AxB

it suffices to consider only the sets A, B which are composed of unions of steps. Therefore we
consider for any subsets A, B C {1,...,n} the random variable

> 1((,4) € E(Gs(H))) — Bi; (H).
i€AjeB

The Chernoff Inequality yields

—e2nh
P Y 1((i,4) € E(Gs(H))) — Bi;(H)| > en® | < 2exp (C\AHM)
i€A,jJEB

for some fixed constant C' > 0. There are only 4™ pairs of sets A, B so our claim follows by the
union bound. We conclude, by picking e = C'///n, that

—Cn

E(d5(Gs(H), H)) < —=+e

sl

which goes to zero as n — oco.
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For graphons W, W’ € Wg, define
&YW, W) = W =W+ prlep! (5) Ach (),
ses
and let 67 (W, W') := infoes,, dS(W W'). Clearly,

(W, W') < &7 (W, W).

We will now show that E(67 (Hg(n, W), W))) — 0. Let P be a finite partition of [0, 1] which is a
refinement of the fibers of the coloring cy. Then define Wp to be the graphon obtained from W
by averaging over the rectangles defined by the partitions P with ¢y, = cy.

The triangle inequality yields

E(57 (W, Hs(n, W))) < 67 (W, Wp) + E(57 (Wp, Hg(n, Wp)))
+ E(67 (Hs(n, W), Hg(n, Wp)))

where Hg(n, W) and Hg(n, Wp) are coupled by the joint choice of X; when sampling.

Note that the first term is small for sufficiently fine P. The second term is small for sufficiently
large n, since we need only count the number of points in each partition in P. For the third term,
we claim that

E(d} (Hg(n, W), Hg(n,V))) = d7 (W, V)

when Hg(n, W) and Hg(n,V) are coupled by the joint choice of X; when sampling. Indeed, let

X1,...,X, be independent random variables uniformly distributed on [0, 1]. Then
E(||Hs(n, W) — Hg(n, V)|1) Z W (X, X;) = V(Xi, X;)]
,j=1
= n2 Z /01 ,IZ,.’EJ V(IZ,.’EJ)’ da?ZdIEJ
2,j=1
=W =Vl

To compute the other terms of df, we examine which color is assigned to each interval ( %, %] of
the two graphons. Indeed, for each s € S,
1 _
Z]P’(X € ey (5)Acy (s))

E (uL(cﬁé(n,W)( 8) Al (1) (5 ))) “n
=1

= (e (5) Dy (5)).

n

We conclude that
E(d} (Hg(n, W), Hg(n, V))) = d7 (W, V).

Finally, by the triangle inequality,
E(5S<G5(n7 W)? W))) < E(5S(Gg(n, W)? HS(”? W))) + E(&lg(VVv Hs(n, W)))?
and both terms on the right converge to zero as shown above. We therefore have that
lim E(63(Gs(n, W), W))) =0,

as desired. This concludes the proof. O
Proof of Theorem[3.9 Without loss of generality, assume S = {1,..., N} and let (W,cw) € Ws.
There exist a partition of [0, 1] into intervals I,..., Iy and a measure preserving bijection o €

Sio,1) such that ey (o(z)) = i for a.e. x € ;. Without loss of generality, we will assume W has
this property (otherwise, replace W by W?). By the density of graphs in Wip,1), there exists a
sequence of graphs (Gp)n>1 such that ||[Wg, — Wl — 0 as n — oo. Let v, := |V(G,)| and
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assume without loss of generality that V(Gy) = {1,...,v,}. We will also assume, without loss
of generality, that v, — oco. Note that for n large enough, almost every point in the interval
((7 — 1) /vn,i/vn] is contained in one of the I;, say in I ;4. Define cg, (1) = J(i). It follows easily
that ||[(Wa,,cwe, ) — (W, ew)||S — 0 as n — oo. O

APPENDIX B. RIESZ-FISCHER THEOREM FOR METRIC SPACE-VALUED MAPS

Recall the Riesz—Fischer theorem, which says that R™-valued LP functions form a complete
(pseudo)metric space. In order to formulate one of the main results of this paper (Theorem
in complete generality, it is of interest to understand if the Riesz—Fischer theorem holds for more
general spaces, such as Banach spaces or even metric spaces. We now show the result holds for any
complete metric space. We provide a proof, as we were unable to find it in the literature.

Theorem B.1 (Riesz—Fischer for metric spaces). Suppose (2, 1) is a finite measure space, and
(X,dx) is a metric space. Given 1 < p < oo, let LP(§, X) denote the Borel-measurable functions
f:Q — X such that for any (equivalently, every) x € X,

/ dx (f(w), )" dp < oo,
Q
and given f,g € LP(Q, X), define

0y(f.g) = ( [ dxtr@) gty du) "

Now if (X, dx) is a complete metric space, then dy, equips LP(Q, X) with the structure of a complete
melric space.

As usual, we identify functions in LP(2, X') that are equal almost everywhere on (2.

Proof. First we reduce the situation to Banach spaces. Fix a point x¢g € X, and recall that the
Kuratowski embedding ®,, : X — Cj(X) given by

Py (2)(y) = dx (2, y) — dx(x0,y)
is an isometric embedding. Therefore, we may identify X with its image inside the Banach space
Cy(X) via ®5,. Now suppose f, is a Cauchy sequence in LP(2, &, (X)) C LP(2,Cp(X)). Note
that the Riesz—Fischer theorem for maps in LP(Q2, Cy(X)) is stated in [3], for instance, and can
be applied to show that f, i f for some f € LP(Q2,Cy(X)). However, it is not immediate that
feLP(Q,®,,(X)), whence we provide a proof for completeness.

The proof follows [19, Theorem 3.11]. Since f,, is Cauchy, there exists a sequence of integers
ny < ng < ---, such that if m,n > ny, then d,(fy, fm) < 2=%_ Now define

ZdX fn7 fn3+1( )) ZdX fn] fn3+1( ))

where we will identify dX(:U,a:) = || Py, () — Py (2)|| =: Ha: —2/|| for z,2’ € X. Now integrating
on 2, we obtain by Minkowski inequality in LP([0,1],R) (and the choice of ny) that ||gx|/, < 1 for
all k. It follows that [|g||, < 1 by Fatou’s Lemma. In particular, g(w) is finite a.e. 1, whence the
series

F@) = for (@) + D (frggr (@) = f (@)
k=1

= xo fn1 +Z zo fnk+1 )) - (I)Io(fnk(w)))
k=1
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converges absolutely a.e. . Set f(w) := 0 = ®,,(z9) on the remaining null set; then f converges
absolutely on all of €, hence converges on all of © in the Banach space Cy(X). Moreover, f(w) is
the pointwise limit of f,,, (w) € @4, (X) C Cp(X). Since X and hence ®,,(X) is complete, it follows
that f has image in ®,,(X).

It remains to show that f, i fand f € LP(Q, ®,,(X)). Fixing € > 0, there exists N such that
| fn = fmllp < € for n,m > N. Hence if m > N, then by Fatou’s Lemma,

J15) = fn@? i< tim i [ (@) = S @)? du <
Q —oo JQ

It follows that f— f,, € LP(Q2, Cp(X)), whence f € LP(2, Cy(X)) (and hence in LP(§2, ®,,(X)) from
above). The preceding computation also shows that ||f — fm|, — 0 as m — oo, which concludes
the proof. O

As an immediate consequence of Theorem we obtain that continuous metric-valued node-
level statistics automatically extend to W 1.

Corollary B.2. Let (X,dx) be a metric space and let f : G — L'([0,1],X) be a continuous
node-level statistic (see Definition . Then f extends to a continuous function f : Wi —
L'([0,1], X).

Note that the proof of Theorem also implies the following result, which may be interesting
in its own right.

Proposition B.3. With (2, 1) and (X, dx) as above, every Cauchy sequence in LP(€2, X') converg-
ing to f € LP(Q, X), has a subsequence that converges a.e. u to f.
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