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Abstract. Let g be a complex Kac–Moody algebra, with Cartan subalgebra h. Also fix a weight
λ ∈ h∗. For M(λ) � V an arbitrary highest weight g-module, we provide a cancellation-free, non-
recursive formula for the weights of V . This is novel even in finite type, and is obtained from λ and
a collection H = HV of independent sets in the Dynkin diagram of g that are associated to V .

Our proofs use and reveal a finite family (for each λ) of “higher order Verma modules” M(λ,H)
– these are all of the universal modules for weight-considerations. They (i) generalize and subsume
parabolic Verma modules M(λ, J), and (ii) have pairwise distinct weight-sets, which exhaust the
weight-sets of all modules M(λ) � V . As an application, we explain the sense in which the
modules M(λ) of Verma and M(λ, JV ) of Lepowsky are respectively the zeroth and first order
upper-approximations of every V , and continue to higher order upper-approximations Mk(λ,HV )
(and to lower-approximations). We also determine the kth order integrability of V , for all k > 0.

We then introduce the category OH ⊆ O, which is a higher order parabolic analogue that
contains the higher order Verma modules M(λ,H). We show that OH has enough projectives,
and also initiate the study of BGG reciprocity, by proving it for all OH over g = sl⊕n2 . Finally, we
provide a BGG resolution for the universal modules M(λ,H) in certain cases; this yields a Weyl-type
character formula for them, and involves the action of a parabolic Weyl semigroup.
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1. Introduction

Throughout this paper, and unless otherwise specified, we work over C, with g denoting an arbi-
trary Kac–Moody algebra,1 Ug its universal enveloping algebra, h ⊆ g a fixed Cartan subalgebra,
and λ ∈ h∗ an arbitrary (highest) weight. As further notation: denote by ∆ the root system,
Π = {αi : i ∈ I} a base of simple roots indexed by nodes I, {ei, fi, α∨i : i ∈ I} a set of Chevalley
generators, and W the Weyl group generated by the simple reflections {si : i ∈ I}. We will identify
subsets J ⊆ I with the corresponding Dynkin sub-diagrams of the diagram on I for g.

The reader immediately interested in the main results can skip directly to Section 2.
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1More precisely, we work with any Lie algebra g̃ � g � g for a given generalized Cartan matrix. Thus g lies in
between g̃ generated purely by the Chevalley–Serre relations, and the quotient g of g̃ by the maximal ideal trivially
intersecting h. Our results hold over all such intermediate Lie algebras g.
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1.1. Characters. The study of semisimple, affine, and Kac–Moody Lie algebras g and their rep-
resentations is a prominent theme in mathematics, from early work by Cartan, Killing, and Weyl
to the Langlands program in recent times, with numerous other connections and applications. A
central question involves understanding the structure of (simple) highest weight g-modules. In this
work we focus on their characters and associated information.

We begin when g is simple and finite-dimensional. If the highest weight λ ∈ h∗ is dominant
integral – denoted λ ∈ P+ – the character of the corresponding simple module L(λ) is given by the
celebrated formula of Weyl [40] (and variants by Freudenthal and others). In standard notation:

λ ∈ P+ =⇒ chL(λ) =
∑
w∈W

(−1)`(w)ew•λ∏
α∈∆+(1− e−α)

, (1.1)

with • the dot-action. In contrast, when λ is “generic”, the module itself is a Verma module M(λ)
[39], with a transparent character formula (related to the Kostant partition function [26]):

λ ∈ h∗ =⇒ chM(λ) =
eλ∏

α∈∆+(1− e−α)
. (1.2)

For arbitrary highest weights, one uses Kazhdan–Lusztig theory [3, 8, 22, 33] to write down the
character. For instance, if λ is dominant integral and w ∈W , then we have the simple character

chL(ww◦ • λ) =
∑
x6w

(−1)`(w)−`(x)Px,w(1) chM(xw◦ • λ), (1.3)

where Px,w denotes the relevant Kazhdan–Lusztig polynomial. Notice that computing weight mul-
tiplicities – or even the easier question of which weights occur – using these formulas for L(λ) is
hard for two reasons: (a) the presence of signs, leading to cancellations, and (b) furthermore for
non-integrable modules, the recursive nature of Kazhdan–Lusztig polynomials.

If g is of infinite type, less is known. For symmetrizable g, one uses the Weyl–Kac character
formula, but character formulas are not known for all highest weights in affine type – and indeed,
simple modules with highest weight λ at critical level behave very differently from those with λ at
non-critical level (see e.g. [17]). For non-symmetrizable g, even the first step above is challenging,
i.e. it remains open if the maximal integrable module (for λ dominant integral) is simple.

Clearly, understanding arbitrary highest weight modules (i.e., quotients of Verma modules) is
harder – even for g of finite type, hence for arbitrary Kac–Moody g.

1.2. Weights. We now turn to the theme of the present work. Closely associated to the “quanti-
tative” Weyl character formula is a “qualitative” picture, which was known from the outset – the
easier question of determining the weights (i.e. ignoring multiplicities). As is folklore: the set of
weights of a simple finite-dimensional highest weight module L(λ) is W -invariant with convex hull
the polytope with vertices W (λ), and the weights are recovered by intersecting with the λ-translate
of the root lattice. A similar statement holds for integrable L(λ) over Kac–Moody g.

The uniformity of this description turns out to hold more generally. Recently in [16, 15, 23],
Dhillon and Khare proved several positive formulas for the weights of L(λ) for arbitrary (including
non-integrable) simple modules over all Kac–Moody g. In contrast to the above story for characters,
these weight-formulas hold uniformly, for all highest weights and across all types (for g). One of
these formulas exactly generalizes the above result in terms of convex hulls (always in h∗): now one
works with a WJ -invariant polyhedral shape rather than a W -invariant one, corresponding to the
partial integrability J ⊆ I of (the not necessarily fully-integrable module) L(λ).

We now present one of these formulas; this serves to motivate our main result, as well as to
introduce some of the necessary notation. As this result – and our paper – makes extensive use of
parabolic Verma modules [18, 29], we begin by setting notation for them.
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Definition 1.1. Given a subset S ⊆ R and subsets X,Y of a real vector space, SX will denote the
set of finite S-linear combinations of elements of X, with the empty sum denoting 0. Moreover,

X ± Y := {x± y : x ∈ X, y ∈ Y }, X \ Y := {x ∈ X : x 6∈ Y }

will denote the Minkowski sum and difference, and set difference, respectively.
For J ⊆ I, define ΠJ := {αj : j ∈ J} and ∆J = ∆+

J t ∆−J to be ∆ ∩ ZΠJ . Now let the Levi

subalgebra lJ := h +
⊕
α∈∆J

gα, and let gJ := g(AJ×J), where A = AI×I is the generalized Cartan

matrix for g. Also fix a (non-canonical) realization of gJ as a subalgebra of g. Next, for an h-module
V , denote by wtV := {µ ∈ h∗ : Vµ 6= 0} its set of weights, where Vµ := {v ∈ V : h · v = µ(h)v ∀h ∈
h}. E.g. for a = g, gJ , lJ (over ad h) and α ∈ ∆, aα denotes the α-root space.

Given λ ∈ h∗, define its integrability Jλ to be:

Jλ := {i ∈ I | 〈λ, α∨i 〉 ∈ Z>0}, (1.4)

where 〈·, ·〉 denotes the evaluation map : h∗ × h → C. For J ⊆ Jλ, define the parabolic Verma
module M(λ, J) := Indg

pJL
max
J (λ), where pJ := lJ + n+ is a parabolic subalgebra of g, and Lmax

J (λ)
is the maximal integrable highest weight lJ -module, which is given a pJ -module structure via
(pJ)α · Lmax

J (λ) = 0 for α 6∈ ∆J . Note that M(λ, J) ∼= Ug⊗UpJ L
max
J (λ).

Both the “quantitative” and “qualitative” pictures are well known for parabolic Verma modules.
For the former, we mention a variant (see e.g. [16]) that extends the Atiyah–Bott version of the
Weyl–Kac character formula [1] and hence subsumes Equations (1.1) and (1.2). Namely, for an
arbitrary parabolic Verma module over Kac–Moody g, one has

chM(λ, J) =
∑
w∈WJ

(−1)`(w)ew•λ∏
α∈∆+(1− e−α)dim gα

, ∀λ ∈ h∗, J ⊆ Jλ, (1.5)

where WJ is the corresponding parabolic Weyl subgroup.
For the latter picture, one has Minkowski difference formulas obtained from parabolic induction:

wtM(λ, J) = wtLmax
J (λ)− Z>0(∆+ \∆+

J )

= ((λ− Z>0∆+) ∩ convWJ(λ))− Z>0(∆+ \∆+
J ).

(1.6)

Resuming the above discussion, we write a positive weight-formula for simple modules:

Theorem 1.2 (Khare [23], Dhillon–Khare [16]). Let g and λ ∈ h∗ be arbitrary. Then,

wtL(λ) = wtM(λ, Jλ). (1.7)

Given the uniformity of these weight-formulas for L(λ), λ ∈ h∗ (via (1.6)), our original goal in
this work was a more challenging result: a positive formula for the weights of an arbitrary highest
weight module V . We make a few remarks here, addressing the treatment and proofs below.

First, a weight-formula for V was unknown beyond simple and parabolic Verma modules, even
in finite type. We provide a uniform, positive formula for all highest weight modules over all g.
Perhaps one “miracle” here is that such a formula exists in the first place, and it uses simply the
Dynkin diagram and the images in V of some lines in M(λ) killed by n+! See Theorem A.

Second is the “next” question, of characters. Our quest for a formula for wtV also yields rewards
on this side. Even more: we discovered a novel (to our knowledge) family of “higher order Verma
modules” M(λ,H) which “cover” all highest weight modules – with the same weights – and subsume
parabolic Verma modules M(λ, J). (Over sl⊕n2 , these modules M(λ,H) comprise all highest weight
modules.) A question of future interest is to study the family M(λ,H), starting with their characters
and BGG-type resolutions (we begin this study by obtaining such a resolution in certain cases, in
Section 7), as well as their geometric counterparts via localization.
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A curious byproduct of our weight-based approach is a family of Minkowski difference formulas
for all parabolic Verma modules. These subsume (1.6) as a special case, and interestingly, do not
hold in general on the level of representations via parabolic induction (except (1.6)).

1.3. Holes. We lead up to our main results by introducing – by example – another key ingredient.
As mentioned above, Dhillon and Khare [16, 23] showed that for all λ ∈ h∗, the convex hull

of weights of a simple highest weight g-module L(λ) recovers wtL(λ), by intersecting a suitable
WJλ-invariant shape with the root lattice-translate λ + Z∆. However, the same does not hold for
all highest weight modules V . For the simplest example, if g = sl2 ⊕ sl2, then

V00 := M(0, 0)/M(−2,−2) (1.8)

has a “hole” inside the hull: its weights are precisely the lattice points along the boundary of
conv(wtV00), i.e., −Z>0α1 ∪ −Z>0α2, and all interior lattice points (−2Z>0)2 lie in conv(wtV00)
but not in wtV00. This simple example is at the heart of progress in multiple directions, below.

More generally, holes can occur in a g-module M(λ)� V as follows. Suppose {αh : h ∈ H} is a
set of pairwise “orthogonal” roots such that 〈λ, α∨h 〉 ∈ Z>0 for all h – i.e., H is an independent subset
of Jλ. If fh ∈ g−αh denotes a Chevalley generator, then applying the lowering operator-product∏

h∈H
f
〈λ,α∨h 〉+1

h

to the highest weight line Vλ can sometimes yield zero.2 Whenever this happens, letting lH :=
sl⊕H2 + h denote the corresponding Levi, the set wtU(lH)Vλ comprises the λ-shifted root-lattice
points along a “thickening” of the boundary of its convex hull – i.e., there is a hole in the interior
of the convex hull. Clearly, whether or not this happens depends on (a) the highest weight module
V , and (b) the independent subset H ⊆ Jλ of nodes. The latter also shows that there are at
most finitely many holes in V , each corresponding to a one-dimensional weight space of M(λ) that
consists of maximal vectors (i.e., vectors annihilated by all raising operators ei).

2. Main results

In all results below, V denotes a general nonzero highest weight g-module over an arbitrary
Kac–Moody algebra g, with a general (fixed) highest weight λ ∈ h∗. The reader can go through the
entire work assuming g = sln+1, or g semisimple, without losing (most of) the novelty in the work.

With the motivation and background given above, we begin by formalizing the above notion of
holes. In what follows, recall Jλ := {i ∈ I | 〈λ, α∨i 〉 ∈ Z>0}.

Definition 2.1. For a module M(λ)� V over Kac–Moody g, define the “set of holes” in wtV as:

HV :=

{
H ⊆ Jλ

∣∣∣∣ the Dynkin subdiagram on H has no edge and

(∏
h∈H

f
〈λ,α∨h 〉+1

h

)
Vλ = 0

}
.

(2.1)

We take the empty product to be 1 ∈ Ug here, so that ∅ ∈ HV if and only if V = 0.

Remark 2.2. Explicitly, the set of holes HV in V consists of precisely those independent sets
H ⊆ Jλ, for which defining λH = λ−

∑
h∈H(〈λ, α∨h 〉+ 1)αh =

∏
h∈H sh • λ, one has: (i) the weight

space M(λ)λH is one-dimensional (via Kostant’s function, this is equivalent to H having no edge),
(ii) this weight space consists of maximal vectors (via sl2-theory), and (iii) the same weight space
in V is VλH = 0.

Now our first result is a positive formula for wtV . Recall, M(λ, J) is a parabolic Verma module.

2We will index simple roots in such “holes” by h ∈ H ⊆ I. This index should not be confused with elements of h.
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Theorem A. Fix a complex Kac–Moody Lie algebra g, and h, ∆,Π = {αi : i ∈ I} as above. Let
λ ∈ h∗ and let M(λ)� V be nonzero. Then

wtV =
⋃

J⊆Jλ : J∩H 6=∅ ∀H∈HV

wtM(λ, J) (2.2)

if HV is nonempty. Otherwise, wtV = wtM(λ).

An immediate consequence of Theorem A is the following “geometric combinatorial” formula:

Corollary 2.3. For all λ ∈ h∗ and nonzero modules M(λ)� V with HV nonempty,

wtV =
⋃

J⊆Jλ : J∩H 6=∅ ∀H∈HV

wtLmax
J (λ)− Z>0(∆+ \∆+

J ). (2.3)

Remark 2.4. We provide some intuition behind the formula (2.2). Suppose wtM(λ, J) ⊆ wtV for
some J ⊆ Jλ. Then one has an inclusion of holes (i.e., of the lack of one-dimensional weight spaces

killed by n+ – or highest weight lines): HV ⊆ HM(λ,J). By the universality – or the U
(
n−

∆−\∆−J

)
-

freeness – of M(λ, J), the line
∏
h∈H f

〈λ,α∨h 〉+1

h ·M(λ)λ being quotiented out of M(λ, J) implies
some h ∈ J . Therefore J ∩H 6= ∅ ∀H ∈ HV – which explains the necessity of this condition in the
union in (2.2). Theorem A says that firstly, this condition also guarantees wtM(λ, J) ⊆ wtV ; and
secondly, such considerations recover all weights of V .

Remark 2.5 (Alternate formulas). For computational purposes, one can work with the subset
Hmin
V consisting of the minimal sets in HV under inclusion – i.e., replace respectively in (2.2):

HV  Hmin
V , Jλ  ∪H∈Hmin

V
H.

Indeed, we work with Hmin
V in Sections 6 and 7; for now, observe that if V = M(λ, J0), then

working with minimal holes yields exactly one term on the right-hand side in (2.2): J = J0.
Section 5.3 also provides two “kth order” weight-formulas for wtV (for all g, λ, V , and k > 1), which
extend Theorem A above and Theorem B below. Furthermore, there is yet another formulation of
Equation (2.2) in terms of the “higher order parabolic category” OHV – see (6.4).

We make two observations before proceeding further. First, the formula in Theorem A is clearly
uniform across all types for g and all highest weights λ. Second, in each such case, the formula is
visibly positive as well as non-recursive. These are in contrast to the situation for characters, in
which case one does not even have conjectural formulas in all cases, or weight multiplicities even
for all integrable simple highest weight modules L(λ) if g is non-symmetrizable.

Our second result shows the existence of a finite collection of “uniform” highest weight modules
M(0)�Mt, such that for every pair – λ ∈ h∗ and a module M(λ)� V – there exists t such that

wtV = wtLmax
Jλ

(λ) + wtMt.

In particular, wtV combines wtLmax
Jλ

(λ) (which is a fundamental object – in fact, a parabolic

Verma lJλ-module) with the weights of some Mt from a finite collection that works for all λ ∈ h∗

and all V . (That said, which Mt to use does depend on (λ, V ), as we explain.)
To define these modules Mt and state our result, additional notation is required.

Definition 2.6.

(1) Given a subset of simple roots (indexed by) J ⊆ I, define Indep(J) to comprise the collection
of independent subsets H ⊆ J , i.e. whose induced Dynkin subgraph in the Dynkin diagram
of g has no edges. Note that ∅ and {j} are in Indep(J) for all J ⊆ I and j ∈ J .
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(2) Given J ⊆ I and a subset H of Indep(I), define the highest weight g-module

M(H) :=
M(0)∑

H∈H
Ug

(∏
h∈H

fh

)
M(0)0

, (2.4)

where M(0)0 is the highest weight line in the Verma module M(0). If H = ∅, define the
empty product

∏
h∈H fh to be 1. (Thus, if H = ∅ ∈ H then M(H) = 0.)

(3) Recall, a subset H of a poset (P,�) is upper-closed if H ∈ H, H � H ′ in P imply H ′ ∈ H.

The modules M(H) are studied in the next section; they comprise the sought-for finite set {Mt}t:

Theorem B. Fix λ ∈ h∗. Let M(λ)� V be nonzero, and HV be as in Theorem A. Then HV is a
proper, upper-closed subset of Indep(Jλ), and

wtV = wtLmax
Jλ

(λ) + wtM(HV ). (2.5)

Moreover, the finite collection of upper-closed subsets of Indep(Jλ) is in bijection with the set
{wtV : M(λ)� V }, via Ψλ : H 7→ wtLmax

Jλ
(λ) + wtM(H). In particular, for M(0)� V we have:

wtV = wtM(HV ). (2.6)

In fact, we extend (2.6) to all modules M(λ)� V (for all λ ∈ h∗) in the next section. Thus, (2.6)
and its extension reveal a second “miracle” about the sets wtV (cf. a few lines below Theorem 1.2):
the “obvious” (by Remark 3.8) holes HV in the weight-set obtained from the top – i.e. the line Vλ
– are the only ones, for every highest weight module over every Kac–Moody algebra.

Remark 2.7. Akin to the explicit weight-formula in Theorem A, the finite number of weight-sets
for each λ ∈ h∗ (in Theorem B) is also in stark contrast to the situation for characters. For instance,
let g be of infinite type, and consider any sequence of increasing words in the Weyl group:

w1 := si1 , w2 := si2si1 , . . . ; `(wn) = n ∀n > 1.

Then the modules M(0)/M(wn•0) have pairwise distinct characters. Theorem B nevertheless shows
that they – and all other modules M(0) � V – collectively yield only finitely many weight-sets,
wtM(H). (In particular, the weight-sets of M(0)/M(wn • 0) eventually stabilize.)

Remark 2.8. It is natural to ask if (2.5) specializes to the Minkowski difference formula (1.6) for
V a parabolic Verma module. This is not true on the nose; rather, in Proposition 4.1 we exhibit
a family of Minkowski difference formulas for each parabolic Verma module, of which (1.6) is one
extreme. An interesting feature is: these formulas (except (1.6)) hold for weights, but do not lift
in general to the level of parabolic induction. Following this family of formulas in Proposition 4.1,
we explain how (2.5) generalizes the Minkowski difference formula at the other extreme to (1.6).

Our next result is an application.

Theorem C. Fix a nonzero g-module M(λ)� V and set S := wtV . There exist unique maximum
and minimum modules V max(S), V min(S) with highest weight λ, which satisfy the property:

A module M(λ)� V ′ has wtV ′ = S, if and only if V max(S)� V ′ � V min(S).
In particular, wtV max(S) = wtV min(S) = S.

Theorem C has several consequences that are explored in Section 5:

(1) We define the kth order upper- and lower-approximations Mk(λ,HV ) and Lk(λ,HV ) of
every highest weight module M(λ)� V . See Definition 5.7.

(2) We isolate the common universal property of these two approximations, i.e. the kth order
integrability of V . See Proposition 5.11 and Definition 5.12.

(3) This leads to a “repeated-stratification” of the poset (under quotienting) of all highest
weight g-modules – not just of their sets of weights. See Remark 5.13.



WEIGHT-FORMULA FOR HIGHEST WEIGHT MODULES, HIGHER ORDER PARABOLIC CATEGORY O 7

Remark 2.9 (Working over quotient Kac–Moody algebras). Our results until Section 6 are valid
independent of which Kac–Moody quotient algebra g̃� g� g (all associated to a given generalized
Cartan matrix) is used. This is because (see e.g. [16]) wtM(λ, J), hence wtL(λ) ∀λ ∈ h∗, does not
change across all such g. Note, this extends the folklore result that wtL(λ) does not change across
all g, for λ ∈ P+. Theorem A extends these facts to say that wtM(λ,H) does not change across all
such g, for every H. (Section 6 works in finite type, and for results in Section 7, see Remark 7.2.)
Similarly, the computation of weights of highest weight modules over lJ ⊆ g and over g(AJ×J) yield
the same results modulo identifying g(AJ×J) ∼= gJ ⊆ lJ .

Having discussed weights in detail, in the final two sections we initiate the study of two facets
on the representation side. First, we introduce and study “higher order versions” of the parabolic
category OpJ , corresponding to hole-sets H with higher order holes:

Definition 2.10. Given a complex semisimple Lie algebra g with simple roots Π = {αi : i ∈ I},
and a subset H ⊆ Indep(I), the higher order parabolic category OH is the full subcategory of objects
in O on which the following lowering operator-products all act locally nilpotently:

fH = f
(0)
H :=

∏
h∈H

fh, H ∈ H.

Zeroth and first order special cases are O and OpJ , respectively.
Now for the next main result. Notice, Theorem 1.2 says that the weights of a simple module

L(λ) agree with those of its universal highest weight cover M(λ, Jλ) in the parabolic category OpJλ .
We extend this to every highest weight module V , inside the higher order parabolic category OHV .
We also show each OH has enough projectives, and in a special case, a variant of BGG reciprocity.

Theorem D. Fix a complex semisimple Lie algebra g and a subset H ⊆ Indep(I).

(1) With notation from Definition 2.10, the category OH is an abelian subcategory of O, which
has enough projectives and enough injectives.

(2) The weights of every highest weight module in O, say M(λ) � V , agree with those of the
universal highest weight cover of L(λ) in OHV .

(3) If g = sl⊕n2 , then every projective module in OH has a “standard filtration”, and a variant
of BGG reciprocity holds. See Theorem 6.17 for the details.

That said, over g = sl⊕2
2 and over every g of rank > 3, we show that the category OH is not

always a highest weight category [10]. The reason is that filtrations for different projectives can
feature multiple standard objects with the same highest weight. See Section 6.3.

Second, in Section 7 we initiate the study of the characters of “higher order Verma modules”.
These include parabolic Verma modules and the family M(H) above, for which we provide a BGG-
type resolution and its Weyl character formula – over any Kac–Moody g – in two “dual” settings:

(1) for λ with arbitrary integrable roots Jλ, and pairwise orthogonal minimal holes in Hmin;
(2) for λ with pairwise orthogonal integrable roots Jλ, and arbitrary minimal holes in Hmin.

The latter case includes (a BGG resolution of) every highest weight module over sl⊕n2 .

Theorem E. In the two settings just above, there exists a parabolic Weyl semigroup (WH, `H), and
a BGG resolution of the module M(H) of the form

0 −→Mk
dk−→Mk−1

dk−1−→ · · · d2−→M1
d1−→M0

d0−→M(H)→ 0, (2.7)

with Mt
∼=
⊕

w∈WH : `H(w)=tM(w • 0) ∀t. This implies the Weyl–Kac character formula

chM(H) =
∑
w∈WH

(−1)`H(w)ew•0∏
α∈∆+(1− e−α)dim gα

, (2.8)

formulated in the spirit of the classical character formulas above.
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In particular, if the holes in Hmin are pairwise orthogonal, then the character of M(H) is “WH-
invariant”:

w(chM(H)) = (−1)`(w)−`H(w) chM(H), ∀w ∈WH. (2.9)

While this is for highest weight λ = 0, we show analogous results for all λ ∈ h∗. See Section 7.
We conclude this section on a philosophical note. The recent papers [16, 15, 23, 24, 37] obtained

information about (i) the weights of simple modules L(λ) (for all λ ∈ h∗), and (ii) the convex
hull of wtV and its face lattice for all highest weight modules, using the “first order information”
associated to every module V – namely, its integrability, defined as:

JV := {h ∈ Jλ | f
〈λ,α∨h 〉+1

h Vλ = 0}. (2.10)

This first order information corresponds to precisely the “singleton holes” in HV . Moreover, our
results on wtV specialize to their analogues in the above works when HV is the upper-closure of
its singleton elements. However, a general module M(λ) � V can involve “higher order holes”.
That is: the above papers operated using integrability, i.e., sl2-theory. In contrast, we use higher
order integrability – see Definition 5.12 – and “sl2 ⊕ · · · ⊕ sl2” theory (in that each hole H ∈ HV
corresponds to a line in the Verma submodule UgH ·M(λ)λ killed by n+, and gH ' sl⊕H2 ). For
another, “higher level” use of this theory, see the character formulas in Section 7.

2.1. Organization. In each of the next sections, we prove one of the theorems above. In Section 3
we show Theorem A as well as (2.6), and introduce the higher order Verma modules M(λ,H).

Section 4 proves Theorem B and a set of Minkowski differences for each parabolic Verma module.
Section 5 shows Theorem C and provides formulas for the kth order upper- and lower-approximations

Mk(λ,HV ) and Lk(λ,HV ) of each highest weight module V – these include the Verma module M(λ)
and simple module L(λ) when k = 0, and the parabolic Verma cover M(λ, JV ) when k = 1. We also
identify in Section 5.2 the “higher order integrability” that is preserved by the interval of modules
[Lk(λ,HV ),Mk(λ,HV )] for each k > 0 and each V . We end with two “kth order” weight-formulas
in Section 5.3, which specialize to Theorems A and B for k = 1,∞ respectively.

In Section 6, which is over g of finite type, we study the higher order parabolic categories OH.
We identify the simples and their standard covers in OH, and show OH has enough projectives.
We also prove BGG reciprocity in all OH over g = sl⊕n2 – leading to a potential formula in general

– and explain why OH is not always a highest weight category, over sl⊕2
2 and each higher rank g.

In Section 7, we provide a BGG resolution and Weyl character formula for the higher order
Verma modules M(λ,H) in two special situations. That is, we prove the extension to general
λ ∈ h∗ of Theorem E. We end by discussing a speculative BGG resolution over a dihedral group,
and formulating a few avenues of future study.

2.2. Acknowledgments. We thank Akaki Tikaradze and Jugal K. Verma for useful conversations
regarding Koszul resolutions, and Gurbir Dhillon for many valuable discussions. This work is
partially supported by Ramanujan Fellowship SB/S2/RJN-121/2017 and SwarnaJayanti Fellowship
grants SB/SJF/2019-20/14 and DST/SJF/MS/2019/3 from SERB and DST (Govt. of India).

3. Theorem A: The weight-formula, and higher order Verma modules

3.1. Higher order Verma modules: examples. We first show Theorem A. Begin with The-
orem B, which says the weight-sets of all M(λ) � V are of the form wtLmax

Jλ
(λ) + wtM(HV ).

Associated to this formula, there is a universal module of highest weight λ that we now introduce.

Definition 3.1. Given λ ∈ h∗ and a subset H ⊆ Indep(Jλ), define the module

M(λ,H) :=
M(λ)∑

H∈H
Ug

(∏
h∈H

f
〈λ,α∨h 〉+1

h

)
M(λ)λ

. (3.1)
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We term these objects higher order Verma modules. These are fundamental objects which include
all M(λ) and M(λ, J), see below – and they are indispensable to understanding all highest weight
modules, for several reasons: (a) In Theorem A, we show that wtV = M(λ,HV ). (b) In Theorem B,
we show wtM(λ,H) = wtLmax

Jλ
(λ) + wtM(HV ), and these exhaust all weight-sets wtV . (c) In

Theorem C, given V , M(λ,HV ) turns out to be the maximum module V max(wtV ) (shown below).
Despite these attractive properties – and notwithstanding Example 3.5 over sl⊕n2 – to the best of
our knowledge the nontrivial among these modules have not been studied in the literature. The
only ones that have been studied are the “easy” case – parabolic Verma modules M(λ, J) – and
the original inspiration for these modules: M(0, 0)/M(−2,−2) over sl⊕2

2 (in e.g. previous work
[23, 16]). Thus we seek to understand these modules – their characters, resolutions, etc. – before
general highest weight modules and others in O. We begin their study in this paper.

Remark 3.2. Some clarifying observations: (1) M(λ,H) is unchanged if one replaces H by its
upper-closure in Indep(Jλ), or by any set in between. (2) In “reverse”, replacing H by its “minimal”
elements Hmin does not change M(λ,H). Thus the modules M(λ,H) subsume the usual parabolic
Verma modules M(λ, J), in the special case that H is the upper-closure of the singleton sets in
it. (3) The modules M(λ,H) specialize to M(H) in (2.4) via λ  0. (4) The extreme cases are:
(i) M(λ,H) = 0⇐⇒ H = ∅ ∈ H, (ii) M(λ,H) = M(λ)⇐⇒ H = ∅. (iii) As the simple module L(λ)
has maximum possible integrability Jλ, similarly it has maximum possible H-set, Indep(Jλ) \ {∅}.
Remark 3.3 (Weak Minkowski decomposition). Like their first order versions M(λ, J), the mod-
ules M(λ,H) have a freeness property over UaH, for a Lie subalgebra aH ⊆ n−. Namely, define

aH :=
⊕
α 6∈∆

H̃

n−α , where H̃ :=
⋃

H∈Hmin

H ⊆ I.

Also define f
(λ)
H :=

∏
h∈H f

〈λ,α∨h 〉+1

h for H ∈ Indep(Jλ). Then by the PBW theorem,

M(λ,H) ∼=aH

UaH ⊗C Un−∆
H̃

UaH ⊗C
∑

H∈Hmin

Un−∆
H̃
· f (λ)
H

∼=aH UaH ⊗C
Un−∆

H̃∑
H∈Hmin

Un−∆
H̃
· f (λ)
H

.

Hence by Theorem A, the weights of every highest weight g-module M(λ)� V satisfy:

wtV = wtJ V − Z>0(∆+ \∆+
J ), ∀J ⊇

⋃
H∈Hmin

V

H. (3.2)

Note that the special case J = Jλ was one of the main results in previous work [37, Theorem C].

Next, here are some examples of highest weight modules, including M(λ,H) (beyond the “obvi-
ous” cases M(λ, J) in Remark 3.2(2)), in order to build more intuition.

Example 3.4. As above: the first nontrivial example is in (1.8). (This was originally used in [23] by
the first author to observe that the convex hull of wtV does not always yield wtV .) In this example,
g = sl2 ⊕ sl2 and λ = (0, 0). Setting H = {{1, 2}} = {Jλ} yields M(λ,H) = M(0, 0)/M(−2,−2).
This is the “simplest” module whose weights are not determined by their convex hull. It is also the
prototypical module for all such cases; see Theorem 5.10 and the subsequent lines. By Theorem A,

wtM(0, 0)/M(−2,−2) = wtM((0, 0), {1}) ∪ wtM((0, 0), {2}) = −Z>0α2 ∪ −Z>0α1.

Example 3.5 (All highest weight modules over sl⊕n2 ). Let g = sl⊕n2 . For n = 1, every highest
weight g-module is either Verma or finite-dimensional – i.e. a parabolic Verma module. What about
higher n? We claim, every module M(λ) � V equals M(λ,H) for some H ⊆ Indep(Jλ) = 2Jλ –
adding to the fundamental nature of these modules. The claim follows by noting that if 0→ N →
M(λ) → V → 0, then N is generated by weight spaces (since g = sl⊕n2 ), and hence by maximal

weight vectors. By sl⊕n2 -theory, these are precisely
∏
h∈H f

〈λ,α∨h 〉+1

h ·M(λ)λ for H ⊆ Jλ.
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Example 3.6 (Some rank-4 examples). Let g = sl5, I = {1, 2, 3, 4}, and λ = $1−$4, with $i the
fundamental weights. Note that Jλ = {1, 2, 3} and Indep(Jλ) = {{1}, {2}, {3}, {1, 3}}. Consider

M (λ, {{2}, {1, 3}}) =
M(λ)

U(g)f2 ·M(λ)λ + U(g)f2
1 f3 ·M(λ)λ

.

Notice, H = {{2}, {1, 3}} is upper-closed in Indep(Jλ), and M(λ,H) is a quotient of the parabolic
Verma module M(λ, {2}). Now Theorem A yields:

wtM (λ, {{2}, {1, 3}}) = wtM(λ, {1, 2}) ∪ wtM(λ, {2, 3}) ∪ wtM(λ, {1, 2, 3}),
where we can omit the final set as it lies in the first two terms; see Remark 3.9.

Similarly, consider the following two modules:

V1 =
M(λ)

U(g)f2
2 f3 ·M(λ)λ

, V2 =
M(λ)

U(g)f2
1 ·M(λ)λ + U(g)f2

2 f3 ·M(λ)λ
.

Then JV1 = ∅, JV2 = {1}, and the sets HV1 = ∅, HV2 = {{1}, {1, 3}} are upper-closed in Indep(Jλ).
As the nodes 2, 3 are adjacent in the Dynkin diagram, {2, 3} does not contribute to a hole in HV1

and HV2 . Hence by Theorem A, wtV1 = wtM(λ) and wtV2 = wtM(λ, {1}). �

Following these examples, we add to the intuition behind Theorem A in Remark 2.4. First note
an elementary lemma, which follows by considering the Kostant partition function.

Lemma 3.7. Fix Kac–Moody g and λ ∈ h∗. The weight space M(λ)µ of the Verma module is
one-dimensional if and only if µ = λ−

∑
h∈H nhαh, where H ⊆ I is independent and all nh ∈ Z>0.

Remark 3.8. Returning to Theorem A, suppose 0 → N → M(λ) → V → 0. It is not clear if
weights are lost upon quotienting M(λ) by maximal vectors in N corresponding to non-independent
nodes – e.g. they are not lost in Example 3.6 with f2

2 f3M(λ)λ (modulo proving Theorem A).
However, 1-dimensional weight spaces M(λ)µ ⊆ N are clearly sensitive for wtV , since then Vµ = 0
and weights are lost, by sl⊕n2 -theory. In proving Theorem A, we show that wtV = wtM(λ,HV )
(see (3.1)). This shows the converse to the above application of sl⊕n2 -theory (and extends (2.6)):
weights are lost when passing from M(λ) to V (i.e. now, when passing to M(λ,HV )) only if one
proceeds as in Example 3.5. That is, only if one quotients out 1-dimensional weight spaces in M(λ)

spanned by maximal vectors for sl⊕H2 , for some independent set/hole – by Lemma 3.7 – H ∈ HV .

We continue with a “computational” remark and some examples.

Remark 3.9. One can work with fewer sets J ⊆ Jλ in (2.2), as M(λ, J)�M(λ, J ′) for J ⊆ J ′ ⊆
Jλ. Also, J only needs to intersect the minimal holes H ∈ Hmin

V , so one can just use the subsets
J ⊆ ∪H∈Hmin

V
H. Next, if the holes in Hmin

V are pairwise disjoint, one uses exactly
∏
H∈Hmin

V
|H|-

many transversal sets J in (2.2) – as in the previous two examples – by selecting one node from each
H in J . Of course, this does not always hold – e.g. for g = sl⊕3

2 and Hmin
V = {{1, 2}, {2, 3}, {1, 3}},

the three sets J = {1, 2}, {2, 3}, {1, 3} suffice. (This example also features below, see (7.15).)

Example 3.10. Suppose V = L(λ) is simple. Then for each integrable direction j ∈ Jλ, {j} ∈
HL(λ) since f

〈λ,α∨j 〉+1

j ·L(λ)λ = 0 (as its preimage generates a proper submodule of M(λ)). Moreover,

every hole H ⊆ Jλ. Thus there is a unique set J in the union in (2.2) for V = L(λ), namely, J = Jλ.
Hence Theorem 1.2 is an immediate consequence of Theorem A: wtL(λ) = wtM(λ, Jλ).

Example 3.11 (Multiplicity-free character formula for M(λ,H)). Let g = sl⊕n2 , λ ∈ h∗, and let
∅ 6= H ⊆ Indep(Jλ) = 2Jλ . We compute chM(λ,H), or simply the weights of M(λ,H), since all
highest weight sl⊕n2 -modules have one-dimensional weight spaces. Enumerate the subsets of Jλ that
intersect all holes in H as {J1, . . . , Jl}. (We may consider only the minimal such subsets.) Then

wtM(λ,H) =

l⋃
i=1

(wtLmax
Ji (λ)− Z>0(∆+ \∆+

Ji
)) =

l⋃
i=1

(wtLmax
Ji (λ)− Z>0ΠJci

)



WEIGHT-FORMULA FOR HIGHEST WEIGHT MODULES, HIGHER ORDER PARABOLIC CATEGORY O 11

by Theorem A. Over sl⊕n2 , it is not hard to show that(
wtLmax

Ji (λ)− Z>0ΠJci

)
∩
(

wtLmax
Jj (λ)− Z>0ΠJcj

)
=
(

wtLmax
Ji∪Jj (λ)− Z>0Π(Ji∪Jj)c

)
.

By the inclusion-exclusion principle, and since all weight spaces of M(λ,H) are one-dimensional,

chM(λ,H) =
∑

∅6=S⊆{1,...,l}

(−1)|S|−1 chM(λ,∪i∈SJi), H 6= ∅. (3.3)

This provides an alternating formula for chM(λ,H) in terms of the sets Ji that are transversing the
holes in H (equivalently, in Hmin) – over g = sl⊕n2 . This picture is “orthogonal” to the alternating
formula (7.19) that we obtain below – that formula is alternating in terms of the holes in Hmin,
and follows from the BGG-type resolution (7.18) for the same module M(λ,H) over g = sl⊕n2 .

3.2. Proof of Theorem A: reverse inclusion. We now turn to the proof of Theorem A. It is
clear that for any highest weight module V , the universal module M(λ,HV ) � V , implying an
inclusion of their weight-sets. We will show this inclusion is in fact an equality (extending (2.6)),
so that M(λ,HV ) is the “universal highest weight cover” of V . First, an observation useful below:

Lemma 3.12. Fix λ and H ⊆ Indep(Jλ), and let M := M(λ,H). Then HM equals the upper-closure
of H. In particular, for all nonzero modules M(λ)� V , one has HV = HN for N = M(λ,HV ).

Returning to our present goal, in the course of proving Theorem A we study three sets of weights:

wtM(λ,HV ), wtV, and S(λ,HV ), (3.4)

where for convenience we define for any subset H ⊆ Indep(Jλ):

S(λ,H) :=


wtM(λ), if H = ∅,
∅, if ∅ ∈ H,⋃
J⊆Jλ : J∩H 6=∅ ∀H∈H

wtM(λ, J), if H 6= ∅ and ∅ /∈ H.
(3.5)

Theorem A asserts that the final two sets of weights in (3.4) coincide, but here we also claim the
added equality wtV = wtM(λ,HV ) for all nonzero modules M(λ) � V (which extends (2.6) and
generalizes (1.7), and) which is repeatedly used in later sections. Since M(λ,HV ) � V , the first
set in (3.4) contains the second. The next step is:

Proposition 3.13. If λ ∈ h∗ and M(λ)� V is nonzero, then wtV ⊇ S(λ,HV ).

The proof appeals to a result from previous work, which is the special caseHV = ∅ of Theorem A:

Theorem 3.14 ([37, Proposition 2.7]). Let λ ∈ h∗, and M(λ)� V . Suppose there are no holes in
wtV , i.e., HV = ∅. Then wtV = wtM(λ).

Proof of Proposition 3.13. Notice ∅ /∈ HV since V 6= 0. If HV = ∅, the result follows from Theo-
rem 3.14. Thus, assume henceforth that ∅ /∈ HV and ∅ 6= HV . Pick J ⊆ Jλ with the property that
J ∩H 6= ∅ ∀ H ∈ HV ; thus Jc 6⊇ H ∀H ∈ HV . Hence by Theorem 3.14 over gJc ,

λ− Z>0ΠJc = wtU(gJc)Vλ ⊆ wtV.

Next for any ξ ∈ Z>0ΠJc , every nonzero vector x ∈ Vλ−ξ is a maximal vector for the action of
the Levi lJ , so it generates the highest weight lJ -module U(lJ)x of highest weight λ − ξ. Hence
wtLmax

J (λ−ξ) ⊆ wt (U(lJ)x) ⊆ wtV . Now by the integrable slice decomposition (see Lemma 3.16),

wtM(λ, J) =
⊔

ξ∈Z>0ΠJc

wtLmax
J (λ− ξ) ⊆ wtV.

As J is arbitrary, this yields S(λ,HV ) ⊆ wtV . �
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3.3. Proof of Theorem A: forward inclusion. Returning to the discussion preceding Proposi-
tion 3.13, the proof of Theorem A is completed by showing the other inclusion:

Theorem 3.15. For all g, weights λ, and nonzero modules M(λ)� V , wtV ⊆ S(λ,HV ).

Recall that HV and S(λ,HV ) were defined in Definition 2.1 and Equation (3.5), respectively.
Theorem 3.15 not only implies Theorem A (given Proposition 3.13), but together with Lemma 3.12

it also implies the remaining sought-for inclusion in (3.4):

wtM ⊆ S(λ,HM ) = S(λ,HV ), for M = M(λ,HV ).

In the rest of this section, we show Theorem 3.15. The proof uses a fundamental result from [16]:

Lemma 3.16 (Integrable slice decomposition, Dhillon–Khare [16]). If J ⊆ Jλ, then

wtM(λ, J) = wtLmax
J (λ)− Z>0(∆+ \∆+

J ) =
⊔

ξ∈Z>0ΠI\J

wtLmax
J (λ− ξ). (3.6)

We will also need the following application of sl3- (or rank-2) theory, aka the Serre relations:

Lemma 3.17. Fix Kac–Moody g, integers k,M,N > 0, and pairwise distinct nodes h1, . . . , hk, h, i ∈
I, such that h is adjacent to i but not to h1, . . . , hk. Say Y ∈ Un− is a linear combination of words
in the Chevalley generators fi, fh1 , . . . , fhk , with N occurrences of fi in each word. Then

f
M−N〈αi,α∨h 〉
h · Y = X · fMh ,

for X ∈ Un− again a linear combination of words with N occurrences of fi in each word.

Proof. It suffices to work with Y a single word in the given alphabet. The next calculation (found
in textbooks) holds in any associative algebra, and is specialized here to U(n−):

f lhfi =

−〈αi,α∨h 〉∑
j=0

(
l

j

)
(ad fh)j(fi)f

l−j
h = X1f

l+〈αi,α∨h 〉
h , for all l > −〈αi, α∨h 〉. (3.7)

Here X1 ∈ U(n−) is a linear combination of words in {fl : l ∈ I}, each containing just one fi – and
the sum stops where it does due to the Serre relations. Now suppose Y = Y1fiY2fi · · · fiYN+1, with
each Yj a word in the fht . Successively applying (3.7) with l = M−(N−j)〈αi, α∨h 〉 for j = 0, 1, . . . ,

f
M−N〈αi,α∨h 〉
h · Y = Y1 ·X1f

M−(N−1)〈αi,α∨h 〉
h · Y2fi · · · fiYN+1

= Y1X1Y2 ·X2f
M−(N−2)〈αi,α∨h 〉
h · Y3fi · · · fiYN+1

= · · ·
= Y1X1 · · ·YN ·XNf

M
h · YN+1.

Setting X := Y1X1 · · ·YNXNYN+1, we are done, since each Xt contains exactly one fi. �

With Lemmas 3.16 and 3.17 in hand, we complete the proof of the remaining half of Theorem A.

Proof of Theorem 3.15. When HV = ∅, Theorem 3.14 implies wtV = wtM(λ) = S(λ,HV ). We
now assume HV 6= ∅, and also ∅ /∈ HV (else the result is trivial). Notice, for each H ∈ Indep(Jλ)

the vector

( ∏
h∈H

f
〈λ,α∨h 〉+1

h

)
mλ is a maximal vector in the

(∏
h∈H sh

)
• λ-weight space of M(λ).

We now turn to the proof, with HV 6= ∅, ∅ /∈ HV . The idea is to work with all triples (λ′, V ′, µ′),
where λ′ ∈ h∗, M(λ′)� V ′ (with holes HV ′), and µ′ ∈ wtV ′ are arbitrary. We make the following

Claim. For every triple (λ′, V ′, µ′) as above, µ′ ∈ S(λ′,HV ′).
This claim – which implies the theorem – is now shown by induction on ht(λ′ − µ′) > 0. In the

base case, µ′ = λ′, and so the claim holds trivially.
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Induction step: Fix an arbitrary (λ, V, µ) as above, with ht(λ − µ) > 0 (and assume the result
is true for all triples (λ′, V ′, µ′) with smaller ht(λ′ − µ′)). We introduce notation for a set in the
union in S(λ,HV ) in (3.5):

J(V ) := {J ⊆ Jλ | J ∩H 6= ∅ ∀H ∈ HV }. (3.8)

Thus the goal is to find J ∈ J(V ) such that µ ∈ wtM(λ, J). This would imply µ ∈ S(λ,HV )
and hence show the induction step.

We now break up the remainder of the induction step into (sub-)steps, in the interest of clarity.
The reader may find it helpful to first read the plan for all steps, before reading the details.

Step 1: First choose an arbitrary element K ∈ J(V ) – for instance, K = Jλ. We produce a PBW

monomial F1 ∈ U(n−K) such that µ 6 ν 6 λ, where ν := λ+ wt(F1) ∈ wtV .

To do so, write n− as the direct sum of the two Lie subalgebras n′ :=
⊕

α∈∆−\∆−K

n−α and n−K . Via

the PBW theorem, fix a basis for U(n−) consisting of monomials in negative root vectors such that
in each monomial, elements from n′ always occur to the left of those from n−K . Now fix a nonzero
highest weight vector vλ ∈ Vλ, and pick a nonzero weight vector

z := F2 · F1 · vλ ∈ Vµ, for PBW monomials F1 ∈ U(n−K) and F2 ∈ U(n′)

with λ + wt(F1) + wt(F2) = µ. Note that wt(F1) ∈ −Z>0ΠK and wt(F2) ∈ Z>0

(
∆− \∆−K

)
. Now

set ν := λ+ wt(F1), and note that F1vλ ∈ (VK)ν = Vν , where VK := U(gK)vλ.

Step 2: There are now two cases. If ν ∈ wtLmax
K (λ), then µ ∈ S(λ,HV ).

Indeed, µ = ν + wt(F2) ∈ wtM(λ,K) (by (1.6)), and this is in S(λ,HV ) since K ∈ J(V ).

Step 3: Thus, henceforth ν 6∈ wtLmax
K (λ). We claim there exists i ∈ K ⊆ Jλ such that (i) Vsi•λ =

fmii Vλ 6= 0, where mi := 〈λ, α∨i 〉+ 1, and (ii) V ′ := U(g) · Vsi•λ has a nonzero µ-weight space.

To see why, choose and fix the highest weight vector mλ ∈ M(λ)λ which maps to vλ under
M(λ)� V . Also let MK(λ) ∼= U(n−K) be the Verma gK-module. Since

ν 6∈ wtLmax
K (λ) = wt

 MK(λ)∑
t∈K

U(n−K)fmtt mλ

 ,
the ν-weight space of MK(λ) equals that of its submodule

∑
t∈K U(n−K)fmtt mλ. Hence the ν-weight

space of VK = U(gK)vλ equals that of
∑

t∈K U(n−K)fmtt vλ. Now F1vλ ∈ Vν = (VK)ν is a linear

combination of vectors Xtf
mt
t vλ, with Xt ∈ U(n−K). Since F2F1 · vλ 6= 0, it follows that there exist

a node i ∈ K and a PBW monomial F3 in U(n−K) such that

z′ := F2 · F3 · fmii vλ ∈ Vµ
is nonzero. Defining V ′ := U(g) · fmii vλ, this proves both assertions (i) and (ii), since z′ ∈ V ′µ.

Step 4: If H ∈ HV is a hole, then ∅ 6= H \ {i} ∈ HV ′, where V ′ 6= 0 is as in Step 3.

The previous three steps helped us arrive at V ′ = U(g)fmii Vλ, to which we now apply the
induction hypothesis. The present step does not use the previous three steps, except the definition
of V ′. We begin with the definition of HV ′ , using the description of the highest weight line V ′si•λ:

HV ′ =

{
H ′ ∈ Indep(Jsi•λ)

∣∣∣∣
( ∏
h∈H′

f
〈si•λ,α∨h 〉+1

h

)
fmii · Vλ = 0

}
.

Fix a hole H ∈ HV . Since V ′ (or its highest weight line) is nonzero, {i} 6∈ HV , and hence
H \ {i} 6= ∅. Clearly, H \ {i} is also independent, and it is easy to verify that

H \ {i} ⊆ Jλ \ {i} ⊆ Jsi•λ.
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It remains to verify the final defining condition for HV ′ (above), for H ′ := H \ {i}. If all nodes
in H ′ are disconnected from i – which includes the case i ∈ H – then all fh commute with fi and
〈si • λ, α∨h 〉 = 〈λ, α∨h 〉, and the desired equality follows from the definition of HV :( ∏

h∈H′
f
〈si•λ,α∨h 〉+1

h

)
fmii · Vλ = 0 (3.9)

Otherwise, i 6∈ H (so H ′ = H) and at least one node h ∈ H ′ is adjacent to i in the Dynkin
diagram of g. In this case, it suffices to show that( ∏

h∈H′
f
〈si•λ,α∨h 〉+1

h

)
fmii · Vλ ∈ U(n−)

∏
h∈H′

f
〈λ,α∨h 〉+1

h · Vλ.

In what follows, define and use

ch := 〈si • λ, α∨h 〉+ 1, ∀h ∈ H ′ = H \ {i} = H.

(Recall, mh := 〈λ, α∨h 〉+ 1.) Since i 6∈ H, one has

ch = 〈λ, α∨h 〉+ 1−mi〈αi, α∨h 〉 = mh +mi|〈αi, α∨h 〉|. (3.10)

Now fix any ordering of H ′ = H, say H ′ = {h1, . . . , hk}, and apply Lemma 3.17, with M = mh1

and N = mi. Then via (3.10),

f
ch1
h1

fmii · Vλ = X1f
mh1
h1
· Vλ,

with X1 ∈ U(n−) a linear combination of words, each with exactly mi occurrences of fi. Next,

f
ch2
h2

f
ch1
h1

fmii · Vλ = f
ch2
h2

X1f
mh1
h1
· Vλ = X2f

mh2
h2

f
mh1
h1
· Vλ,

for some X2 ∈ U(n−) as above – again applying Lemma 3.17. Repeating this procedure,( ∏
h∈H′

f
〈si•λ,α∨h 〉+1

h

)
fmii · Vλ ∈ U(n−)

k∏
t=1

f
mht
ht
· Vλ,

and this vanishes, by the definition of H = H ′ ∈ HV .

Step 5: Concluding the proof.

By Step 3(ii) and the induction hypothesis for (si • λ, V ′, µ), there exists J ′ ∈ J(V ′) such that
µ ∈ wtM(si • λ, J ′). Define J := J ′ ∩ Jλ; then i 6∈ J since i 6∈ Jsi•λ. Now using the integrable slice
decomposition (3.6) twice,

wtM(λ, J) =
⊔

ξ∈Z>0ΠI\J

wtLmax
J (λ− ξ) ⊇

⊔
miαi6ξ∈Z>0ΠI\J

wtLmax
J (λ− ξ)

=
⊔

ξ′∈Z>0ΠI\J

wtLmax
J ((λ−miαi)− ξ′)

= wtM(si • λ, J) ⊇ wtM(si • λ, J ′),

noting that J ⊆ J ′ ⊆ Jsi•λ. Thus µ ∈ wtM(si •λ, J ′) ⊆ wtM(λ, J). We now assert that J ∈ J(V ),
which concludes the proof of the induction step in the claim at the beginning. Indeed, if H ∈ HV ,

∅ ( J ′ ∩ (H \ {i}) ⊆ J ′ ∩H = J ′ ∩ (Jλ ∩H) = J ∩H,
where the first inclusion follows from Step 4, since J ′ ∈ J(V ′). �

Remark 3.18. In the spirit of Remark 2.9, the above proof should have worked with quadruples
(g, λ′, V ′, µ′), where g̃ � g � g for a fixed generalized Cartan matrix. We have suppressed the
additional variable g, since the proof only uses weight-sets of parabolic Verma modules in the proof
(and in the formula for S(λ,H)), and these remain invariant across g.
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4. Theorem B: Minkowski difference formula for highest weight modules

Following the proof of Theorem A, this short section quickly shows Theorem B. We begin by
isolating a key step in the proof, which is interesting in its own right: a family of Minkowski
difference formulas for parabolic Verma modules M(λ, J), of which (1.6) is one extremal case.

Proposition 4.1. Suppose λ ∈ h∗ and J ⊆ Jλ. Then for all subsets J ′ between J and Jλ,

wtM(λ, J) = wtLmax
J ′ (λ)− Z>0(∆+ \∆+

J ). (4.1)

Before proving (4.1), notice that if Lmax
J ′ (λ) 6∼= Lmax

J (λ) then (4.1) does not extend to the level of
representations via parabolic induction. For instance, in the simplest case of g = sl2(C), 0 6= λ ∈ P+

(so Jλ = I = {α1} by abuse of notation), J = ∅, and J ′ = Jλ, one has

Ug⊗UpJ L
max
J (λ) = M(λ) ∼= M(0)⊗ Cλ,

where Cλ is a one-dimensional h-module with eigenvalue λ. In contrast,

Ug⊗UpJ L
max
Jλ

(λ) = M(0)⊗ L(λ),

and this has a strictly larger character than M(λ). Thus, the family (4.1) of Minkowski difference
formulas appears to be a novel one, and is valid on the level of weights but not for characters.

Proof of Proposition 4.1. The formula for all J ′ follows from the ones for J ′ = J in (1.6) and for
J ′ = Jλ, by sandwiching. Thus it suffices to prove (4.1) for J ′ = Jλ, i.e. that

wtLmax
J (λ)− Z>0(∆+ \∆+

J ) = wtLmax
Jλ

(λ)− Z>0(∆+ \∆+
J ).

The forward inclusion is obvious, since J ⊆ Jλ. Next, the parabolic Verma module over gJλ for
(λ, J) surjects onto the maximal integrable gJλ-module Lmax

Jλ
(λ). Hence by (1.6),

wtLmax
Jλ

(λ) ⊆ wtLmax
J (λ)− Z>0(∆+

Jλ
\∆+

J ) ⊆ wtLmax
J (λ)− Z>0(∆+ \∆+

J ).

Subtracting Z>0(∆+ \∆+
J ) from both sides proves the reverse inclusion. �

Remark 4.2. We take a moment to explain how Theorem B generalizes one case in Proposition 4.1.
Let V = M(λ, J) in Theorem A. Then HV is the upper-closure in Indep(Jλ) of {{j} : j ∈ J}. Hence
M(HV ) = M(0, J) in Theorem B, and so by (1.6) we recover the J ′ = Jλ case of (4.1):

wtM(λ, J) = wtV = wtLmax
Jλ

(λ) + wtM(0, J) = wtLmax
Jλ

(λ)− Z>0(∆+ \∆+
J ).

Proof of Theorem B. By Theorem A, and Proposition 4.1 for J ′ = Jλ, and recalling J(V ) from (3.8),

wtV =
⋃

J∈J(V )

(
wtLmax

Jλ
(λ)− Z>0(∆+ \∆+

J )
)

= wtLmax
Jλ

(λ) +
⋃

J∈J(V )

−Z>0(∆+ \∆+
J ).

Next, consider the highest weight module M = M(HV ). Here λ = 0, and HM = HV by
Lemma 3.12. Again applying Theorem A, this time to the right-hand side of (2.5),

wtLmax
Jλ

(λ) + wtM(HV ) = wtLmax
Jλ

(λ) +
⋃

J∈J(V )

wtM(0, J), (4.2)

and via (1.6), this equals the final expression in the previous computation.
This shows (2.5). For the penultimate assertion, Theorem A yields wtM(λ,HV ) = wtV (which

also implies the final assertion of course), so the map Ψλ is surjective. Also by Remark 3.2(4), the
upper-closed subset H ⊆ Indep(Jλ) is proper, if and only if ∅ 6∈ H, if and only if M(λ,H) 6= 0.
Now to show injectivity, suppose H1 6= H2 are proper upper-closed subsets of Indep(Jλ). Choose a
minimal set H in their symmetric difference, say H ∈ H1. Then the one-dimensional weight space∏

h∈H
f
〈λ,α∨h 〉+1

h ·M(λ)λ
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is easily seen to be quotiented in M(λ,H1) but not in M(λ,H2). Thus (e.g. by Remark 2.2),

λ−
∑
h∈H

(〈λ, α∨h 〉+ 1)αh ∈ wtM(λ,H2) \ wtM(λ,H1),

and so the map Ψλ is injective as well. �

5. Theorem C; higher order approximations, integrability, and weight-formulas

This section begins by proving our next main result in somewhat greater detail than may be nec-
essary, to help understand the subsequent examples. Following the examples, the three subsections
discuss the other parts of the section-title, for every highest weight g-module.

Proof of Theorem C. Given two highest weight modules V, V ′ with common highest weight λ, The-
orem B asserts: (1) wtV = wtV ′ if and only if HV = HV ′ ; and (2) M(λ,HV )� V , with equality
of weights. This reasoning implies that V max(wtV ) = M(λ,HV ).

To construct V min, we adopt a more “natural” notation. By Theorem B, instead of S = wtV , one
can equivalently work via Ψ−1

λ with proper upper-closed subsetsH′ of Indep(Jλ). (Thus V max(H′) =

M(λ,H′).) Now the construction of V min(H′) is a familiar one: first define N(λ,H′) ⊆M(λ) to be
the sum of all submodules N of M(λ) for which the weight space

NλH = 0, where λH = λ−
∑
h∈H

(〈λ, α∨h 〉+ 1)αh, ∀H ∈ Indep(Jλ) \ H′. (5.1)

Next, define the highest weight module

L(λ,H′) := M(λ)/N(λ,H′). (5.2)

We claim this is precisely V min(H′). Indeed, note HL(λ,H′) = H′, which shows via Ψλ that
wtL(λ,H′) = wtM(λ,H′), proving one implication in the desired property. Next, if wtV =
wtM(λ,H′), consider the exact sequence 0 → NV → M(λ) → V → 0. Since HV = H′ (via Ψλ),
the definition of HV implies (5.1) for N = NV . But then NV ⊆ N(λ,H′), so V � L(λ,H′). �

Remark 5.1. Since wtL(λ,HV ) = wtV = wtM(λ,HV ), the finite collection {wtL(λ,HV )}V =
{wtL(λ,H)}H also exhausts all weight-sets of highest weight modules M(λ)� V .

Example 5.2. As a special case of Remark 5.1: say g = sl⊕n2 for some n > 1. Then for every
highest weight module M(λ) � V , we have M(λ,HV ) = V = L(λ,HV ), since their weights agree
and all weight spaces are 1-dimensional. (In particular, M(λ,H) = L(λ,H) for all λ ∈ h∗ and H.)

As mentioned in the proof, the construction of L(λ,H′) should sound familiar to the reader. We
illustrate with three special cases from previous literature, classical and modern; the third provides
an alternate proof/solution to a question (unpublished) posed by Lepowsky, as we explain below.

Example 5.3. The original “zeroth order” construction (as is explained presently) along these
lines is that of the simple module L(λ). Indeed, that is the special case where one quotients M(λ)
by the sum of all proper submodules N , i.e. submodules N for which Nλ = 0. Thus,

L(λ) = L(λ,H′), where H′ = Indep(Jλ) \ {∅}. (5.3)

Example 5.4. The second-named author recently showed in [37, Theorem B] the existence of
V max(S), V min(S) for S = wtM(λ, J). Clearly, this is a special case of Theorem C.

The third example is slightly different in flavor (and motivates the next two subsections); it comes
from [16]. The authors first explain that associated to every module is its first order information:

Theorem 5.5 (Dhillon–Khare, [16]). Given λ ∈ h∗ and a highest weight g-module M(λ)� V , the
following “first order data” are equivalent, i.e., can each be recovered from the others:

(1) The integrability, JV := {i ∈ Jλ | f
〈λ,α∨i 〉+1
i Vλ = 0} (as in (2.10)).
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(2) The Weyl group symmetry of wtV .
(3) The convex hull conv(wtV ).

Thus the parabolic Verma module M(λ, JV )� V , and they have the same convex hull of weights.
Moreover, for simple or parabolic Verma modules V , these data are further equivalent to (4) the

weights of V .

Dhillon–Khare next write down what is our third example. Notice in the definition of HV in
Theorem A, the highest weight λ is the “0th order hole” in V . Given Theorem 5.5, we would
similarly like to call the integrable simple directions JV the “1st order holes”. This is supported by

Example 5.6. Dhillon–Khare [16] (following Khare [23] in some cases) showed the existence of
unique largest and smallest modules M(λ, J) and L(λ, J), respectively, with a prescribed integra-
bility J ⊆ Jλ – or by Theorem 5.5, with a prescribed shape of the convex hull of weights. The
construction is as above: M(λ, J) = M(λ, {{j} : j ∈ J}) = M(λ, {H ∈ HM(λ,J) : |H| 6 1}), and
the authors introduced L(λ, J). In the language of this paper,

L(λ, J) = L(λ,H′), where H′ = Indep(Jλ) \ ({∅} t {{i} : i ∈ Jλ \ J}) . (5.4)

Note that H′ is indeed upper-closed in Indep(Jλ).

5.1. Universal modules approximating a highest weight module. Example 5.6 refines the
familiar chain of surjections M(λ)� V � L(λ) to

M(λ)�M(λ, JV )� V � L(λ, JV )� L(λ).

The “zeroth”/outermost boundary-terms share the same highest weight as V , while the “first”/next
inner terms share the same integrability as well. Above, we have now produced a refinement of this
chain, by replacing the innermost V by the surjections

· · ·�M(λ,HV )� V � L(λ,HV )� · · ·
These refinements, and the comments after Theorem 5.5, motivate us to define the following chain
of highest weight modules:

Definition 5.7. Fix g, λ, and an upper-closed subset H ⊆ Indep(Jλ), and denote by Hc its com-
plement. Given an integer 0 6 k 6∞, define the universal “upper” and “lower” modules

Mk(λ,H) := M(λ, {H ∈ H : |H| 6 k}), (5.5)

Lk(λ,H) := L(λ, {H ∈ Hc : |H| 6 k}c). (5.6)

(Note, the H-set on the right in (5.6) is upper-closed.) Now given a module M(λ)� V , define its
kth order upper- and lower-approximations to be Mk(λ,HV ) and Lk(λ,HV ), respectively.

Once the definitions are in place, the following is straightforward.

Proposition 5.8. For any nonzero module M(λ)� V ,

M0(λ,HV ) = M(λ), M1(λ,HV ) = M(λ, JV ), (5.7)

L0(λ,HV ) = L(λ), L1(λ,HV ) = L(λ, JV ). (5.8)

This explains the precise sense in which Verma modules and parabolic Verma modules are the
0th and 1st order upper-approximations, respectively, of every highest weight module.

Remark 5.9. The modules Mk,Lk clearly refine the above chain of surjections, since the H-sets
in (5.5) are increasing in k, and in (5.6) are decreasing in k. That is, the H-sets in all terms in

M(λ)�M(λ, JV )� · · ·�M(λ,HV )� V � L(λ,HV )� · · ·� L(λ, JV )� L(λ)

(except the central V ) increase from ∅ at the left, to Indep(Jλ) \ {∅} at the right. Moreover, the
above chain of the Mk stabilizes, in that M(λ,HV ) = M∞(λ,HV ) = MK(λ,HV ), where K is the
size of any largest (in size) independent set in Jλ. Similarly for the chain of Lk.
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As an application of these modules, we (re-)solve when the integrability of a highest weight
module determines its weights. Here is one of the main results of Dhillon–Khare [16]:

Theorem 5.10. Fix (g and) a highest weight λ. The integrability J ⊆ Jλ of a highest weight
module determines its weights, if and only if the Dynkin diagram of Jλ \ J is a complete graph.

This affirmatively answers a question asked by Lepowsky [30] (to Khare) in connection with
Theorem 5.5. Namely, Lepowsky asked (in the language of this paper) whether or not the holes in
the weight-sets obtained from “potential integrability” as in Example 3.4, are the only obstructions
to determining the set of weights. Theorem 5.10 is now transparent from our main results and
higher order Verma modules – indeed, the calculation now reduces to one of set-theory:

Proof. By the construction of L(λ, J) (in [16], or see (5.4)), it suffices to understand if wtM(λ, J) =
wtL(λ, J) (or from above, when wtM1(λ,H) = wtL1(λ,H)). Via Theorem B and Ψ−1

λ , this is if
and only if the upper-closure of the singleton sets in J equals the right-hand side of (5.4), i.e.,

Indep(Jλ) \ Indep(Jλ \ J) = Indep(Jλ) \ ({∅} t {{i} : i ∈ Jλ \ J}) .
Taking complements, this happens if and only if Jλ \ J is complete. �

5.2. Higher order integrability, and stratification of the set of highest weight modules.
The vigilant reader may have noticed that for the titular “universal” modules Mk(λ,H),Lk(λ,H),
while Theorem C describes how they are individually universal, we have not mentioned the sense
in which (for each fixed k) they are jointly so! (And indeed, the individual universalities disagree,
since the upper-closed – equivalently, minimal – H-sets for Mk(λ,H) and Lk(λ,H) are unequal.)

We now explain the sought-for common universality, for each k > 0 (for k = 0 it is simply the
identification of the highest weight). The next result shows in particular that this universality
refines the common universal property for the equal-weighted modules M(λ,H),L(λ,H).

Proposition 5.11 (kth order universal property). Fix Kac–Moody g, a weight λ ∈ h∗, and an
integer k > 1. For a subset X ⊆ Indep(Jλ), write X6k for the subset {H ∈ X : |H| 6 k}.

(1) Given an upper-closed subset H ⊆ Indep(Jλ), there exist unique smallest and largest upper-
closed subsets H,H respectively, such that H6k = H6k = H6k.

Moreover, these sets are precisely the upper-closures of the ones occurring in the defini-
tions of the modules Mk(λ,H),Lk(λ,H) respectively, i.e. in Equations (5.5) and (5.6).

(2) In particular, for each upper-closed subset H, Mk(λ,H) and Lk(λ,H) are the unique largest
and smallest highest weight modules with “kth order integrability data” H6k. For |Jλ| 6 k 6
∞, this specializes to Theorem C, i.e. the common universal property for M(λ,H),L(λ,H).

(3) Any two intervals [Lk(λ,H),Mk(λ,H)] and [Lk(λ,H′),Mk(λ,H′)] are disjoint or equal.

Proof. Briefly: once there is a claimed formula for the sets H6k,H6k, it is easily verified. This
shows (1). The first claim in (2) is now the common universal property of the pair (Mk(λ,H),Lk(λ,H)),
and follows from Theorem C. The second claim follows from the definitions, since H6k = H6k = H
if k > |Jλ|. Finally, (3) is immediate: if M(λ)� V is such that (HV )6k = H6k = H′6k, then

Mk(λ,H) = M(λ,H6k) = M(λ,H′6k) = Mk(λ,H′)
where H,H′ are upper-closed without loss of generality. A similar proof works for the Lk. �

If the restriction of upper-closedness is removed from Proposition 5.11(1), then H6k remains
unchanged. Moreover, the Mk-module would remain unchanged even if H6k is reduced to the

subsets of Hmin of size 6 k, where Hmin denotes the subset of H of minimal (hence pairwise
incomparable) elements. As a consequence of this and Proposition 5.11, we now introduce

Definition 5.12. Given g, λ, and a module M(λ)� V , define the kth order integrability of V for
an integer k > 0, to be (Hmin

V )6k if k > 0 and λ if k = 0.
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This is precisely what is captured by the Verma module M(λ) when k = 0, and by the parabolic
Verma module M(λ, JV ) when k = 1.

Remark 5.13. The modules Mk,Lk serve to “stratify” the poset (under surjection) X := HW(g)
of highest weight g-modules with all highest weights. Clearly, Ug/

∑
i∈I(Ug)ei is the “infinity”

element, surjecting onto all of X. At the zeroth level, X =
⊔
λ∈h∗ Xλ, with Xλ = [L(λ),M(λ)] the

interval of modules with highest weight λ. (Moreover, Theorem B shows passing to weights yields
a finite set from each Xλ.) At the next level, the modules in Xλ are partitioned by integrability:

Xλ =
⊔
J⊆Jλ

[L(λ, J),M(λ, J)] =
⋃

H⊆ Indep(Jλ)
upper closed

[L1(λ,H),M1(λ,H)]

One can continue sub-stratifying each stratum, via Proposition 5.11, with the following results.
(i) At each stage, one obtains a partition into intervals [Lk(λ,H),Mk(λ,H)]. (ii) One sub-stratifies
Xλ only K-many times, with K the size of any largest (in size) independent set in Jλ. (iii) At the
final, innermost level, every partitioned set [L(λ,H),M(λ,H)] comprises highest weight modules
with the same set of weights (and hence, the same apex λ, convex hull/integrability (Hmin

V )61, . . . ).

Remark 5.13 leads to the following concrete recipe. To successively better approximate the set
wtV = wtM(λ,HV ) = wtM∞(λ,HV ), one starts with Ug/

∑
i∈I(Ug)ei. The 0th order hole, i.e.

λ, uniquely fixes the apex of the highest weight cone containing wtV . Next, the 1st order upper-
approximation refines the dimension 1 faces, i.e. edges, of the 0th order shape conv(wtM(λ)) by
truncating the semi-infinite rays at λ along the JV directions. And so on.

Viewed representation-theoretically, the integrability refines the weights of some of the rank-
1 highest weight submodules {Ugi · M(λ)λ : i ∈ JV }. Similarly, the kth order approxima-
tion/integrability refines the submodules {UgH · M(λ)λ : H ∈ (Hmin

V )6k} for minimal holes H
of size at most k, by truncating an interior portion of the corresponding faces of conv(wtV ) con-
taining λ (and more from the interior of conv(wtV )). This refining is transferred to other vertices
/ faces of conv(wtV ) via the Weyl group symmetries of wtV .

5.3. kth order weight-formulas. In the above spirit, we end this section with “kth order weight-
formulas” that specialize to Theorems A and B. First recall from the proof of Theorem A that

wtV =
⋃

J⊆Jλ : J∩H 6=∅ ∀H∈HV

wtM(λ, J) = wtM(λ,HV ). (5.9)

Given the above discussion in this section, the first equality shows wtV to be a union of weights
of many “first order Verma modules”, i.e. parabolic Vermas M(λ, J) = M(λ, {{j} : j ∈ J}). The
second shows wtV to be the weight-set of exactly one “∞-order Verma module”, i.e. M(λ,HV ).

Remark 5.14. Just as a 0th order Verma module M(λ) is also a 1st order Verma module M(λ, J),
we adopt the convention that M(λ,H) is a kth order Verma module (for 0 6 k 6∞) if |H| 6 k for
all H ∈ Hmin. This is compatible with the kth order approximations Mk,Lk earlier in this section.

Given these weight-formulas and remarks, it is natural to ask if there exist “intermediate” kth
order formulas for each k > 1. Namely, formulas that show wtV is a finite union of sets of the

form wtM(λ,H(k)
i ), i > 1 where each hole in each H(k)

i ⊆ Indep(Jλ) has size at most k.
Our next result provides a positive answer for each k. These are positive weight-formulas for

wtV that naturally interpolate from only singletons in each H(1)
i (i.e. parabolic Vermas wtM(λ, J)

in (2.2)) to the unique set H(∞) = HV (i.e. wtV = wtM(λ,HV )). We need the following notion.

Definition 5.15. Enumerate a subset H0 = {H1, . . . ,HN} ⊆ Indep(I). Given an integer 1 6 k 6
∞, we say a set H(k) ⊆ Indep(I) is H0-admissible of order k if there are subsets H ′t ⊆ Ht of size

min(k, |Ht|), such that H(k) consists of the distinct sets among H ′1, . . . ,H
′
N .
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Example 5.16. Here are two examples where H0 = HV for a highest weight g-module M(λ)� V .

First, if k = 1 then an order 1 HV -admissible set H(1) consists of singleton sets {j} for j ∈ Jλ, such
that every hole in HV contains one or more of these j, and every j is in at least one H ∈ HV . The
universal module for this first order hole-set is indeed the “first order” parabolic Verma module:
M(λ,H(1)) = M(λ, J), where J = {j : {j} ∈ H(1)}.

The second example is when k = ∞ (or k � 0). Then there is only one HV -admissible set of

order k: H(∞) = HV itself. The corresponding higher order Verma module is M(λ,HV ).

Proposition 5.17. Given a g-module M(λ)� V (for arbitrary g, λ), and an integer 1 6 k 6∞,

wtV =
⋃
H(k)

wtM(λ,H(k)), (5.10)

where the union runs over all HV -admissible sets of order k.

Notice that the weight-formulas (5.9) in (the proof of) Theorem A are the k = 1,∞ special cases
of Proposition 5.17, in light of Example 5.16.

Proof. Denote by Ψ(k) the right-hand side of (5.10), which the result claims is independent of k:

Ψ(k) :=
⋃
H(k)

wtM(λ,H(k)), 1 6 k 6∞. (5.11)

We now claim the inclusions Ψ(1) ⊆ Ψ(2) ⊆ · · · ⊆ Ψ(∞). The result then follows from (5.9)
(shown while proving Theorem A), which says: Ψ(∞) = wtV = Ψ(1). To be precise, (5.9) does not
explicitly say wtV = Ψ(1), but one then notes that defining suppHV :=

⋃
H∈HV H, the set of J in

the union in (5.9) may be reduced to only the J ⊆ suppHV – equivalently, every J may be replaced
by J ∩ suppHV , since wtM(λ, J) ⊆ wtM(λ, J ∩ suppHV ). From this one checks: wtV = Ψ(1).

To show the claim, fix k′ < k′′ in [1,∞], and list all order k′ and order k′′ HV -admissible sets as

H(k′)
1 , . . . ,H(k′)

m′ ; respectively, H(k′′)
1 , . . . ,H(k′′)

m′′ .

Also list H(∞) = HV = {H1, . . . ,HN}. Now given i′ ∈ [1,m′], use Definition 5.15 to write the

elements of H(k′)
i′ as a multiset, H(k′)

i′ ←→ H ′1, . . . ,H
′
N with H ′t ⊆ Ht ∀t ∈ [1, N ]. Now arbitrarily

choose H ′′t of size min(k′′, |Ht|) such that H ′t ⊆ H ′′t ⊆ Ht ∀t ∈ [1, N ]. Then the distinct sets among

the H ′′t comprise H(k′′)
ϕ(i′) for some function ϕ : [1,m′]→ [1,m′′]. This implies

M(λ,H(k′′)
ϕ(i′))�M(λ,H(k′)

i′ ) =⇒ wtM(λ,H(k′)
i′ ) ⊆ wtM(λ,H(k′′)

ϕ(i′)).

As this holds for all 1 6 k′ < k′′ 6∞ and i′ ∈ [1,m′],

Ψ(k′) =

m′⋃
i′=1

wtM(λ,H(k′)
i′ ) ⊆

m′⋃
i′=1

wtM(λ,H(k′′)
ϕ(i′)) ⊆

m′′⋃
i′′=1

wtM(λ,H(k′′)
i′′ ) = Ψ(k′′).

This shows the claim, and completes the proof. �

A consequence of Proposition 5.17 is a family of weight-formulas that generalizes Theorem B.
We begin with the extreme cases, which were shown in (4.2):

wtV = wtLmax
Jλ

(λ) + wtM(0,HV ) = wtLmax
Jλ

(λ) +
⋃

J⊆Jλ : J∩H 6=∅ ∀H∈HV

wtM(0, J). (5.12)

These turn out to be the k =∞ and k = 1 cases of the following result:

Corollary 5.18. Given a g-module M(λ)� V (for arbitrary g, λ), and an integer 1 6 k 6∞,

wtV = wtLmax
Jλ

(λ) +
⋃
H(k)

wtM(0,H(k)), (5.13)
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where the union runs over all HV -admissible sets of order k.

This follows from (5.12) and Proposition 5.17, using (λ, V ) (0,M(0,HV )) (via e.g. Lemma 3.12).

6. Theorem D: Higher order parabolic category O, enough projectives, and BGG
reciprocity

We next discuss refinements of the BGG Category O [6]. In keeping with the perspective of
higher order approximations and integrability, we begin by noting how the usual Category O and
the parabolic Category OpJ are zeroth and first order special cases of the categories

OH, H ⊆ Indep(I)

which we introduced in Definition 2.10: the objects in O on which all fH , H ∈ H act locally
nilpotently. As mentioned there, in this section g is assumed to be of finite type.

Indeed, Definition 2.10 of OH specializes to the usual and parabolic categories as follows:

(1) If H is empty, then O∅ is just Category O, and contains all Verma modules M(λ, ∅) = M(λ).
(2) More generally, if HJ = {{j} : j ∈ J} for J ⊆ I, then (see e.g. [20, Section 9.3] and use that

g is semisimple, to show that) OHJ is precisely the parabolic Category OpJ , and it contains
the parabolic Verma modules M(λ, J) = M(λ,HJ) for all J-dominant integral weights λ.

To the best of our knowledge, these subcategories ofO have not been studied beyond the parabolic
categories OpJ . Yet, they naturally generalize OpJ , and are intimately linked with higher order
Verma modules – having higher order holes/integrability. This section initiates their study.

6.1. Enough projectives. We show the first half of Theorem D – OH has enough projectives –
following several intermediate results. In this section and the next, Remark 3.2(2) is useful: we will
often work not with H, but instead with Hmin, the collection of minimal holes in H, which form a
pairwise incomparable collection. Thus, e.g. the final assertion in Theorem B says that the finite
collection of “sets of incomparable subsets of Indep(Jλ)” is in bijection with {wtV : M(λ)� V }.

Coming to properties of OH, a first “sanity check” is that Definition 2.10 of OH fits well with
minimal elements and upper-closures, just like the modules M(λ,H) do (see Remark 3.2):

Lemma 6.1. If H ⊆ Indep(I), OH = OHmin
= OH, where H is the upper-closure of H in Indep(I).

Proof. Here is a proof for completeness. From the definitions, OH ⊆ OH ⊆ OHmin
. Now it suffices

to show the reverse inclusion to the second one, since (H)min = Hmin. Let M ∈ OHmin
, H ∈ H, and

let v be a weight vector in M . It suffices to show that fH acts nilpotently on v. Choose a minimal
hole H0 ⊆ H with H0 ∈ Hmin; now fnH0

v = 0 for some n. But then fnHv = 0. �

Next, these generalizations of the parabolic category OpJ share the same basic properties as it:

Lemma 6.2. Fix a subset H ⊆ Indep(I). Then OH is an abelian subcategory of O ⊆ g-Mod
that is closed under: taking submodules, quotients, finite direct sums, extensions in O, restricted
duals, and tensor products with finite dimensional g-modules. In particular, if M ∈ OH splits in O
according to the action of the center Z(Ug) into M =

⊕
χM

χ, then each Mχ also lies in OH.

Proof. We only outline the proof for restricted duals M 7→ M∨ and tensoring M 7→ M ⊗ L(λ) for
λ dominant integral, assuming the closure of OH under the other operations is shown.

First, duals. Since g is of finite type, every module M ∈ OH has finite length, and via the
other operations listed, every simple subquotient is in OH. Construct M∨ ∈ O by dualizing a
Jordan–Hölder series for M ; every simple factor is L(µ)∨ ∼= L(µ). Now if fH acts locally finitely on
each such factor, then it does so on extensions in O between them, and hence on M∨ as desired.
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Next, tensoring. Given weights µ, ν ∈ h∗ and nonzero weight vectors mµ ∈ Mµ, vν ∈ L(λ)ν , it
suffices to show that fH acts nilpotently on mµ ⊗ vν for every hole H ∈ H. By definition, there
exists K > 0 such that fKHmµ = 0; similarly, there exists N > 0 such that fNh vν = 0 ∀h ∈ H. Now,

fnH(mµ ⊗ vν) =
∑

kh∈[0,n] ∀h∈H

∏
h∈H

(
n

kh

)
·
(∏

h∈H f
kh
h ·mµ ⊗

∏
h∈H f

n−kh
h · vν

)
, ∀n > 0.

Hence, every term on the right vanishes if n > K +N − 1. �

We next identify the highest weight modules, simple objects and their universal covers in OH.

Definition 6.3. Given λ ∈ h∗ and H ⊆ Indep(I), extend Definition 3.1 and define H′λ as follows:

M(λ,H) :=
M(λ)∑

H∈Hmin

Ug

 ∏
h∈Jλ∩H

f
〈λ,α∨h 〉+1

h

M(λ)λ

, H′λ := {Jλ ∩H : H ∈ Hmin}. (6.1)

Thus M(λ,H) = M(λ,H′λ) for all λ and H; we use this fact below without reference. In particular,
if Jλ does not intersect some H ∈ Hmin, then M(λ,H) = 0.

Proposition 6.4. Fix a nonempty subset H ⊆ Indep(I) and a weight λ ∈ h∗.

(1) The module L(λ) ∈ OH if and only if Jλ ∩H 6= ∅ ∀H ∈ Hmin, if and only if M(λ,H) 6= 0.
(2) In this case, the universal highest weight cover in OH of L(λ) is M(λ,H) = M(λ,H′λ).

(3) Suppose L(λ) ∈ OH. A highest weight module M(λ) � V belongs to OH if and only if
H′λ ⊆ HV , if and only if M(λ,HV ) ∈ OH.

Note that the condition in part (1) is reminiscent of the set J(V ) used in proving Theorem A.
This is made precise in Equation (6.4).

As a special case, recall that the simples in OpJ are L(λ) for λ J-dominant integral; and their
universal covers are the parabolic Verma modules M(λ, J). This follows from Proposition 6.4: set

H = HJ = {{j} : j ∈ J} = Hmin,

in which case H′λ = HJ as well, and so M(λ,H′λ) = M(λ, J).

Definition 6.5. Given a subset H ⊆ Indep(I), and a weight λ such that L(λ) ∈ OH, define its
universal cover in OH to be M(λ,H′λ) (see Proposition 6.4(2)). Also define standard objects to be

all modules M(λ,H0) ∈ OH.

The proof of Proposition 6.4 requires one last lemma, in addition to the two above:

Lemma 6.6. Suppose λ ∈ h∗, H ∈ Indep(Jλ), and M(λ)� V is a nonzero highest weight module.
If fH is nilpotent on the highest weight line Vλ, then H ∈ HV .

This result and Proposition 6.4 repeatedly use the following fact, as useful in each OH as it was
in O. Namely, if vλ is a maximal vector for a raising operator eh, with weight λ, then

enh · fnh vλ ∈ C×vλ, whenever 〈λ, α∨h 〉 6∈ Z>0 3 n or 0 6 n 6 〈λ, α∨h 〉 ∈ Z. (6.2)

Proof. Let n > 0 denote the smallest power such that fnH · vλ = 0, where we fix a nonzero highest
weight vector vλ ∈ Vλ. Also define mh := 〈λ, α∨h 〉 + 1 ∈ Z>0 for h ∈ Jλ. Now if n < mh ∀h ∈ H,
then applying enh for all h to the equation fnHvλ = 0 yields vλ = 0, which is false. Thus H1 := {h ∈
H : n > mh} is nonempty. Applying

∏
h∈H1

en−mhh

∏
h∈H\H1

enh to fnHVλ = 0 – via (6.2) – yields∏
h∈H1

fmhh · Vλ = 0. Thus H1 lies in the upper-closed set HV , hence so does H. �

Proof of Proposition 6.4.
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(1) First suppose Jλ intersects every hole in Hmin. Then fH = fJλ∩HfH\Jλ ∀H ∈ H, where
the two factors on the right commute and fJλ∩H acts nilpotently on the highest weight line
L(λ)λ. Hence it acts nilpotently on other vectors in L(λ) as well, using arguments similar
to the proof of Lemma 3.17. But then so does fH . Hence L(λ) ∈ OH.

Conversely, suppose L(λ) ∈ OH, and say there exists H ∈ Hmin which is disjoint from
Jλ. If fnH · L(λ)λ = 0, then applying

∏
h∈H e

n
h via (6.2) yields: L(λ)λ = 0, a contradiction.

(2) We claim the upper-closure of H′λ – defined in (6.1) – is the smallest upper-closed subset

H0 ⊆ Indep(I) such that M(λ,H0) ∈ OH. To see why, first fix a nonzero highest weight
vector vλ ∈M(λ,H′λ)λ. For H ∈ Hmin, write fH = fJλ∩HfH\Jλ as above. Then Jλ∩H ∈ H′λ,

so fH acts nilpotently on vλ, hence acts locally nilpotently on M(λ,H′λ) – for all H ∈ Hmin.

Thus, M(λ,H′λ) ∈ OHmin
= OH (by Lemma 6.1).

Now suppose M(λ,H0) ∈ OH, and assume henceforth that H0 is upper-closed. We claim
that H′λ ⊆ H0. To see why, fix a nonzero highest weight vector vλ ∈ M(λ,H0)λ, and let
H ∈ Hmin. Then fH = fJλ∩HfH\Jλ acts nilpotently on vλ. Say its nth power annihilates
vλ. Applying

∏
h∈H\Jλ e

n
h as above via (6.2), fJλ∩H acts nilpotently on vλ. Now applying

Lemma 6.6 with Jλ ∩ H in place of H shows that Jλ ∩ H ∈ H0. As this holds for all
H ∈ Hmin, the desired conclusion follows: H′λ ⊆ H0.

(3) If H′λ ⊆ HV then by the definitions, M(λ,H′λ) � M(λ,HV ) � V , and the first of these

lies in OH, which is closed under quotienting. Conversely, say V ∈ OH, and H ∈ Hmin (so
Jλ ∩ H 6= ∅ by part (1)). Now fH is nilpotent on the highest weight line Vλ, hence so is
fJλ∩H by (6.2). By Lemma 6.6, Jλ∩H ∈ HV for all H ∈ Hmin, which finishes the proof. �

With these results now shown, we begin proving our next main theorem, on OH.

Proof of Theorem D, first part. The third assertion – involving BGG reciprocity – is shown in The-
orem 6.17. Here we prove the rest, starting by showing that OH has enough projectives. Recall
that the BGG Category O decomposes as a direct sum over twisted W -orbits: O =

⊕
OW•λ, using

central characters and Harish-Chandra’s theorem. Hence so does the subcategory OH ⊆ O, via
Lemma 6.2. It suffices to work in one such intersection

A := OH ∩ OW•λ, (6.3)

where we fix λ ∈ h∗ satisfying: L(λ) ∈ OH. Indeed, if we show there exist enough projectives P in
each such category, and run over all dot-orbits W •λ, then all such P are in fact projectives in OH.

Now one shows – using Proposition 6.4 – that A has enough projectives. This is via the sufficient
criterion in [4, Theorem 3.2.1], wherein one verifies five conditions (not six, by Ringel’s subsequent
remark in [4]). As the verification is mostly standard, it is deferred to Appendix A – we do include
it because for some simples, there are multiple standard objects that get used in BGG reciprocity
– and because the proof of BGG reciprocity also uses similar arguments, see Section 6.4.

This proves the first assertion; we now turn to the second. We claim the following equalities for
every highest weight module M(λ)� V :

wtM(λ, (HV )′λ) = wtV =
⋃

K⊆Jλ :L(wJλ\K•λ)∈OHV

wtM(λ,K), (6.4)

where wJ is the longest element of WJ for any J ⊆ I. Note that the second equality yields an
alternate weight-formula to Theorem A.

We begin with the first equality, which proves the second assertion in the theorem via Propo-
sition 6.4(2). This equality follows because as shown above, wtV = wtM(λ,HV ); now apply
Proposition 6.4(3) using that V ∈ OHV .
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This completes the proof of Theorem D(2). We conclude with the proof of the second equality
in (6.4); this follows from the claim that

J(V ) = {K ⊆ Jλ | L(wJλ\K • λ) ∈ OHV },

where J(V ) is as in (3.8). To see the claim, first note that H ⊆ Jλ if H ∈ Hmin
V . By this and

Proposition 6.4(1), L(wJλ\K • λ) ∈ OHV if and only if JwJλ\K•λ
∩ (Jλ ∩H) 6= ∅ for all H ∈ Hmin

V .

Now by (3.8), it suffices to show for K ⊆ Jλ that JwJλ\K•λ
∩ Jλ = K. One inclusion is because λ

is Jλ \K-dominant integral, so −wJλ\K • λ is strictly dominant integral for Jλ \K. The reverse
inclusion follows from writing wJλ\K • λ = λ −

∑
j∈Jλ\K l

′
jαj for some l′j ∈ Z>0, and evaluating

against 〈−, α∨k 〉 for k ∈ K. �

We conclude with a well known consequence of standard facts on finite length abelian categories
A with finitely many simple objects and enough projectives.

Corollary 6.7. Every simple object L(λ) ∈ OH has a projective cover PH(λ) ∈ OH, and so

PH(λ)�M(λ,H′λ)� L(λ).

Moreover, for all objects M ∈ OH, one has dim HomOH(PH(λ),M) = [M : L(λ)], the number of
Jordan–Hölder factors of M isomorphic to L(λ).

6.2. Properties of standard filtrations. Having proved that the categories OH all have enough
projectives, it is natural to ask if these projectives have “standard filtrations”; and if they do, then
does BGG reciprocity hold in some form. We begin by defining the former notion.

Definition 6.8. Fix a subsetH ⊆ Indep(I). An object M ∈ OH is said to have a standard filtration

in OH if there exists a subcategory OH′ of OH that contains M , and a finite filtration

0 = M0 ⊆M1 ⊆ · · · ⊆Mk = M,

with each subquotient Mi/Mi−1
∼= M(λi,H′) = M(λi,H′λi) for some λi ∈ h∗ (by Proposition 6.4(2)).

Remark 6.9. It is also possible to define a weaker notion: an object M ∈ OH has a weakly
standard filtration in OH if there exists a finite filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mk = M , with
each subquotient Mi/Mi−1

∼= M(λi,Hi) for some λi ∈ h∗, Hi ⊆ Indep(Jλi). However, we work with
the above, stronger notion – which we prove holds for all projectives in OH, over g = sl⊕n2 below.

The result in this part that will be useful in showing BGG reciprocity, is the natural one:

Proposition 6.10. Suppose g is semisimple and H ⊆ Indep(I). Given objects M ′,M ′′ ∈ OH, their
direct sum M ′ ⊕M ′′ has a standard filtration in OH, if and only if both M ′ and M ′′ do.

That said, this result, and indeed the treatment of category OH for general H, differ from its
“zeroth order” and “first order” (parabolic) special cases in the literature, in that now one is no
longer working with Un′-free modules (for a nonzero Lie subalgebra n′ ⊆ n−) if H is more general.
In particular, “standard objects” M(λ,H) are not always obtained by induction from Un′ to Un−.
E.g. over g = sl⊕2

2 (see (1.8)), the universal cover

V00 = M(0, 0)/M(−2,−2) = M((0, 0), {{1, 2}}) ∼= C[f1, f2]/(f1f2).

This is due to non-singleton sets in H, and it makes the proofs in this section diverge from the
literature – including for the next lemma.

Lemma 6.11. Suppose H ⊆ Indep(I) is such that 0 → N → M → M(λ,H) → 0 is a short exact
sequence in the category OH. If λ is maximal in wtM , then the extension M splits.
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Proof. Note that Mλ 6= 0, so L(λ) ∈ OH, so M(λ,H) = M(λ,H′λ) 6= 0 by Proposition 6.4. Pick

a weight vector 0 6= vλ ∈ M(λ,H)λ and its preimage mλ ∈ Mλ. Then V := Ug ·mλ ∈ OH, and
M(λ) � V because n+mλ = 0 by assumption. We claim that M = V ⊕ N . Indeed, by Proposi-
tion 6.4(3), H′λ ⊆ HV , which gives a sequence of surjections whose composite is an isomorphism:

M(λ,H′λ)�M(λ,HV )� V �M(λ,H) = M(λ,H′λ).

Thus the final map is an isomorphism, so V ∩N = 0, yielding the desired splitting. �

Lemma 6.12. Suppose H ⊆ Indep(I), and M ∈ OH has a standard filtration in OH. If λ is
maximal in wtM , then there exists a submodule M ′ of M satisfying: (i) M ′ ∼= M(λ,H), and
(ii) M/M ′ has a standard filtration in OH.

Lemma 6.12 is proved using Lemma 6.11 and similar arguments to the classical case of O. In
turn, it implies Proposition 6.10. The proofs are similar to e.g. those in [20, Section 3.7].

6.3. BGG reciprocity – subtlety in the higher order case, over all g of rank > 3. With
the above machinery and results at hand, we turn to the remainder of Theorem D – i.e., BGG
reciprocity (6.6) in all categories OH over g = sl⊕n2 . That BGG reciprocity holds in the zeroth/first
order cases (i.e., the usual/parabolic categories O) is well known, see [6], [32], [20, Chapters 3, 9].

Before working over sl⊕n2 , we first show that the situation in OH has a subtlety when H has
higher order holes – over any g of rank at least 3. This is because multiple “standard objects”
V = M(λ,H0) exist over a given L(λ) ∈ OH (for certain H) – recall, these were classified in
Proposition 6.4(3). It turns out that standard filtrations for different projectives in a block can
feature more than one such standard object M(λ,H0), but only one of these is the universal cover
M(λ,H′λ) (see Proposition 6.4 and Definition 6.5). This is already a break from the parabolic case
[32, Theorem 6.1]. We begin by illustrating this in an even simpler case – in rank two. The key
object is again V00 = M(0, 0)/M(−2,−2) from (1.8), and its generalization M(λ, {{1, 2}}).

Example 6.13 (g = sl2 ⊕ sl2). We present the complete picture over this algebra g, to provide
familiarity before tackling the case of sl⊕n2 for general n. By Lemma 6.1, one needs to consider the
subcategories OH, with H from among the following five upper-closed subsets of Indep(I) = 2I :

H = ∅, {{1}, {1, 2}}, {{2}, {1, 2}}, {{1}, {2}, {1, 2}}, {{1, 2}}.
The first case is that of the usual category O, and the next three cases are of its parabolic subcat-
egories. These were addressed in [6] and [32], respectively.

Thus, henceforth fix H = {{1, 2}} = Hmin. If Jλ = {1} and 〈λ, α∨2 〉 + 1 is either zero or a
non-integer, then the linkage class is {λ > s1 • λ}, and L(s1 • λ) 6∈ OH, so the block of OH ∩OW•λ
containing L(λ) has only one simple object – which is also parabolic Verma and projective in that
block. (The analogous story for Jλ = {2} and 〈λ, α∨1 〉+ 1 as above, also holds.)

The only remaining case is when H = {{1, 2}} = Hmin and λ lies in a block with a dominant
integral element – which we can set to be λ. Then the block OH ∩ OW•λ has three simples: L(λ),
L(s1 • λ), L(s2 • λ). Their universal covers in OH are, respectively:

M(λ, {{1, 2}}) =
M(λ)

M(s1s2 • λ)
� L(λ), M(s1•λ, {{2}}) = L(s1•λ), M(s2•λ, {{1}}) = L(s2•λ).

In particular, there is a unique standard object of highest weight si • λ for i = 1, 2. However, there
are four standard objects in OH ∩ OW•λ of highest weight λ: M(λ, {J}) for ∅ 6= J ⊆ {1, 2}, and
L(λ) ∼= M(λ, {{1}, {2}}). Moreover, the projective cover of the “highest” simple L(λ) is its “Verma
cover” M(λ, {{1, 2}}) – which has length 3 – while those of the other two simple modules turn out
to be their projective covers in smaller categories – in fact, in parabolic categories OpJ = OHJ :

0→M(λ, {1})→ PH{1}(s2 • λ)→M(s2 • λ, {1})→ 0

0→M(λ, {2})→ PH{2}(s1 • λ)→M(s1 • λ, {2})→ 0
(6.5)
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(this follows from Theorem 6.17 below). Now one can easily verify “BGG-type” reciprocity in OH.

Remark 6.14. Thus, BGG reciprocity is more subtle even in rank 2, when H = {{1, 2}}. Specif-
ically, using multiple standard objects for some of the weights in the block is now necessary, as
can already be seen here via our original motivating example (1.8). Namely, in Example 6.13,
the standard filtrations for the projectives involve three standard objects with highest weight λ:
M(λ, {J}) for ∅ 6= J ⊆ {1, 2} (even for λ = (0, 0)).

The previous sentence suggests OH is not a highest weight category forH = {{1, 2}}. To see why,
we discuss if any of the three standard objects M(λ, {J}) for ∅ 6= J ⊆ {1, 2} can be “avoided”, via

alternate standard filtrations for the projective objects in O{{1,2}}. However, this is not possible:

(1) First, M(λ,H′λ) = M(λ, {{1, 2}}) cannot occur in any filtration of PH(si • λ) in (6.5) –

because even the simpler statement wtM(λ,H′λ) ⊆ wtPH(si • λ) is false.
(2) One can ask if the above notion of standard filtration could be broadened to require the top

quotient to merely be a standard object M(ν,H′) rather than the universal cover M(ν,H′ν).
By Proposition 6.4(3), such a set H′ could be an upper-closed subset containing H′ν . This
weakening could enable using M(λ,H′′) for H′′ 6= H′λ, in the standard filtration for PH(λ).

Unfortunately, this hope is also in vain, in that even in the above example with H =
{{1, 2}}, it leads to violating the requirement that the remaining standard factors in the
filtration of PH(ν) should have highest weights µ > ν. Indeed, set µ = ν = λ; now there
are four upper-closed subsets H′ containing H′λ = {{1, 2}}:

H′ = {{1, 2}}, {{1}, {1, 2}}, {{2}, {1, 2}}, {{1}, {2}, {1, 2}}.
So if any other module M(λ,H′′) is used in the standard filtration for PH(λ) = M(λ,H′λ),

then as λ is maximal in its dot-orbit, the kernel of PH(λ)�M(λ,H′′) has all factors with
highest weight µ < λ – but highest weight categories and BGG reciprocity require µ > λ.

Remark 6.15. The above discussion shows that OH is not a highest weight category for general
H in the sense of Cline–Parshall–Scott [10] – as early as g = sl⊕2

2 and H = {{1, 2}}. In this sense,
the category OH diverges in higher order, from the zeroth and first order (parabolic) category O.

We end this part by showing the same fact over every g of higher rank, as promised above.

Proposition 6.16. Suppose g is semisimple of rank at least 3. Then there exist λ ∈ h∗ and an
upper-closed set H ⊆ Indep(I) such that OH ∩ OW•λ is not a highest weight category.

Proof. Since the Dynkin diagram contains at least two leaves (in particular, it is not complete),
choose two “orthogonal” simple roots and label them by α1, α2. Let J := I \{1, 2} and fix a generic
weight λ ∈ spanC{$j : j ∈ J} such that W • λ ∩ (λ + ZΠ) = W{1,2} • λ; here $j denotes the
fundamental weight corresponding to j 6= 1, 2. Now the integrabilities are computed as:

Jλ = {1, 2}, Js1•λ = {2}, Js2•λ = {1}, Js1s2•λ = ∅.
Let H = {{1, 2}}; then there are only three simple objects in the block OH ∩ OW•λ, and this
reduces to the above situation over sl2 ⊕ sl2. �

6.4. Proof of BGG reciprocity over sl⊕n2 . The above remarks explain why one needs to refine
the “usual” notion of BGG reciprocity. We now do so over g = sl⊕n2 for all n, thereby completing
the proof of Theorem D.

Theorem 6.17. Suppose g = sl⊕n2 for some n > 1, and λ ∈ h∗. Define wK :=
∏
k∈K sk for

K ⊆ I = {1, . . . , n} and also fix H ⊆ Indep(I) = 2I .

(1) If L(wK • λ) ∈ OH for K ⊆ Jλ, its projective cover PH(wK • λ) has a “standard filtration”
by objects M(µ,H′wK•λ), with topmost quotient the “maximal” standard object M(wK •
λ,H′wK•λ) over L(wK • λ), and all other subquotients of highest weight µ ∈ (W • λ)>wK•λ.
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(2) For all highest weights µ “in” this filtration, a modified form of BGG reciprocity holds:∑
H0⊇H′µ,

H0 upper-closed
in Indep(Jµ)

[PH(wK • λ) : M(µ,H0)] = [PH(wK • λ) : M(µ,H′wK•λ)] = [M(µ,H′µ) : L(wK • λ)].

(6.6)

Note the presence of the summation on the left side in (6.6), in contrast to the BGG reciprocity
formulas in the zeroth and first order parabolic categories. This summation – i.e. using multiple
standard objects over a given simple object – is indeed needed when discussing BGG reciprocity
for general OH, as was explained above over g = sl2 ⊕ sl2 and all higher rank g.

The proof of Theorem 6.17 will require computing the integrability of the highest weights of
the simples in the block Oλ. This is achieved by the following lemma, which also bounds the
integrabilities of all weights in the interval [wK • λ, λ], in greater generality than sl⊕n2 .

Lemma 6.18. Fix semisimple g, a subset H ⊆ Indep(I), and a weight λ ∈ h∗ that is maximal in
its block in O. Suppose (a) the integrability Jλ is an independent set of nodes, that further satisfies
(b) the integrability of wJλ • λ is empty, where wK =

∏
k∈K sk for K ⊆ Jλ.

(1) For all K ⊆ Jλ one has JwK•λ = Jλ \K.
(2) For all subsets K ′ ⊆ K ⊆ Jλ and weights wK • λ 6 µ 6 wK′ • λ, one has the inclusion of

integrabilities: JwK•λ ⊆ Jµ ⊆ JwK′•λ. In particular, if L(wK • λ) ∈ OH then L(µ) ∈ OH.

(3) Suppose L(wK • λ) ∈ OH for some K ⊆ Jλ. Then M(wK • λ,H′wK•λ) has a subquotient

L(wK′ • λ) for some K ′ ⊆ Jλ, if and only if (i) L(wK′ • λ) ∈ OH and (ii) K ′ ⊇ K.

Here and below, we use f
(λ)
H′ :=

∏
h∈H′ f

〈λ,α∨h 〉+1

h for λ ∈ h∗ and H ′ ⊆ Jλ an independent subset.
Also note that the hypothesis “wJλ •λ has empty integrability” does not follow from the remaining
hypotheses in the lemma – consider e.g. g = sl3, λ = α2.

Proof. Recall the hypothesis JwJλ•λ = ∅, which is now used extensively without further reference.

Also note that WJλ • λ is in bijection with WJλ .

(1) If k ∈ K, then 〈wK • λ, α∨k 〉 = 〈(wKsk) • (sk • λ), α∨k 〉 = 〈sk • λ, α∨k 〉 = −〈λ, α∨k 〉 − 2 < 0.
Now write wK • λ = wJλ • λ+

∑
j∈Jλ\K ljαj , with all lj ∈ Z>0. Given i ∈ I \ Jλ,

〈wK • λ, α∨i 〉 = 〈wJλ • λ, α
∨
i 〉+

∑
j∈Jλ\K

lj〈αj , α∨i 〉 6∈ Z>0.

This shows one inclusion; the reverse inclusion is shown similarly.
(2) Begin by writing: µ = wK • λ +

∑
k∈K\K′ lkαk = λ −

∑
k∈K l

′
kαk, where lk, l

′
k ∈ Z>0. Now

suppose i 6∈ JwK′•λ, so i 6∈ JwK•λ by (1). Then

〈µ, α∨i 〉 = 〈wK • λ, α∨i 〉+
∑

k∈K\K′
lk〈αk, α∨i 〉 /∈ Z>0.

This shows one inclusion. Next if i ∈ Jλ \K, then 〈µ, α∨i 〉 = 〈λ, α∨i 〉 −
∑

k∈K l
′
k〈αk, α∨i 〉 ∈

Z>0. This shows the other inclusion – and also implies that ifH ∈ Hmin and L(wK•λ) ∈ OH,
then Jµ ∩H ⊇ JwK•λ ∩H 6= ∅, so L(µ) ∈ OH by Proposition 6.4(1).

(3) The result is straightforward ifH = ∅, since one now works in the Verma module M(wK •λ).
Thus, assume henceforth that H 6= ∅. Set M := M(wK • λ,H′wK•λ). The necessity of (i),

(ii) easily follows from Lemma 6.1 and the H = ∅ case. Conversely, if K ′ satisfies (i), (ii)

then it suffices to show the weight space L := f
(wK•λ)
K′\K MwK•λ is nonzero. As the preimage

in M(wK • λ) ∼= Un− of L is a line, it suffices to show that f
(wK•λ)
K′\K is not in the left-ideal

f
(wK•λ)
K′\K 6∈ U(n−) · 〈f (wK•λ)

(Jλ\K)∩H : H ∈ Hmin〉. (6.7)
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To show this, work with a “PBW basis” of n− in which fk, k ∈ K occur to the right,
preceded by fj , j ∈ Jλ \K, then preceded by all other root vectors in n−. Since the roots
indexed by K ′ \K are pairwise orthogonal, no nontrivial Lie brackets among them exist.

Thus if (6.7) is false, then f
(wK•λ)
(K′\K)∩H = f

(wK•λ)
(Jλ\K)∩H for some H ∈ Hmin. Hence by part (1),

JwK′•λ∩H = (Jλ\K ′)∩H = ∅, which contradicts L(wK′•λ) ∈ OH by Proposition 6.4(1). �

With Lemma 6.18 at hand, we now have:

Proof of Theorem 6.17. It suffices to work with the objects in a block / linkage class [λ] = W • λ∩
(λ+ ZΠ) that moreover lie in OH. Note that we may take λ ∈ h∗ to be maximal in the block [λ];
now the simples in [λ] (in O, not OH) are indexed by WJλ • λ. Define

[λ]H := {µ ∈ [λ] : L(µ) ∈ OH}. (6.8)

(Thus, [λ] = [λ]∅.) Throughout the rest of this proof, we will work in the category

OH,[λ] := O[λ]H = OH ∩ O[λ] ⊆ OH ∩ OW•λ. (6.9)

We also use without reference that the hypotheses of Lemma 6.18 hold over g = sl⊕n2 for all λ ∈ h∗.
We first show BGG reciprocity at λ, by claiming that the projective cover of L(λ) in the block

OH,[λ] is PH(λ) = M(λ,H′λ), where

H′λ = {Jλ ∩H : H ∈ Hmin}

as in Proposition 6.4(2). Indeed, this object in OH,[λ] is indecomposable and surjects onto L(λ),

and a relatively standard argument (see e.g. the proof of Step 4 in showing that OH,[λ] has enough
projectives, in the Appendix) shows the functorial isomorphism

HomOH(M(λ,H′λ),M) ∼= Mλ, ∀M ∈ OH,[λ],

i.e., that HomOH(M(λ,H′λ),−) co-represents the λ-weight space in OH,[λ]. This proves the claim,

and BGG reciprocity (6.6) involving PH(λ), L(λ) now follows e.g. by Lemma 6.18(3).

BGG reciprocity at wK • λ, for ∅ ( K ⊆ Jλ:

Next, we work with every other simple in [λ] that occurs in OH. From above, we call it L(wK •λ),
where ∅ ( K ⊆ Jλ is fixed and wK =

∏
k∈sk . Proving reciprocity requires working with those

simples in OH ∩OW•λ which lie above wK • λ in the standard ordering. These simples are indexed

by WK •λ. We identify WK
ψ
' (Z/2Z)⊕K ' {0, 1}K , and so list WK = {wK′ =

∏
k∈K′ sk : K ′ ⊆ K}.

We now prove BGG reciprocity at the weight λK := wK • λ. For ease of reading, the remainder
of this proof is split into steps.

Step 1: The BGG construction of a cyclic module, and its standard filtration. Recalling that mi =

〈λ, α∨i 〉+ 1, we first define and study – akin to [6] for O – the cyclic module P := Ug/IK , where

IK := Ug ·
(
{h− λK(h) : h ∈ h}, {emk+1

αk
: k ∈ K}, {eα : α ∈ ∆+ \∆+

K}, {f
(λK)
JλK∩H

: H ∈ Hmin}
)
.

(6.10)
(Note that ∆+ \∆+

K = ΠI\K .) Let p = pλK denote the image of 1Ug in P . Then there is a lattice
of
∏
k∈K(mk + 1)-many submodules of P , indexed by integer tuples l = (lk)k∈K :

P = P0 := Ug ·p ⊇ Pl := Ug ·
∏
k∈K

elkαk ·p ⊇ Pm := Ug ·
∏
k∈K

emkαk ·p ⊇ 0, 0 6 lk 6 mk ∀k.

(6.11)
This yields

∏
k∈K(mk + 1)-many subquotients, each of the form

Ql :=
Ug ·

∏
k∈K e

lk
αk
· p∑

k′∈K Ug · eαk′
∏
k∈K e

lk
αk · p

, l ∈ ×k∈K [0,mk], i.e., 0 6 l 6m,
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where the inequalities are coordinatewise. Each subquotient Ql is generated by a maximal vector∏
k∈K

elkαk · p, of weight µl := wK • λ+
∑
k∈K

lkαk,

so Ql is a highest weight module. We now show that the filtration by the Ql is indeed standard:

Lemma 6.19. Given a tuple l ∈ [0,m], with µl as above, Ql
∼= M(µl,H′wK•λ) ∈ OH.

In particular, by Lemma 6.2, the cyclic module P ∈ OH, and this lemma provides a “standard
filtration” for it, albeit in OH and not in a single block OH,[λ].

Proof. Note that Ql has highest weight µl := wK • λ +
∑

k∈K lkαk, and so by Lemma 6.18(2), its

integrability Jµl ⊇ JwK•λ. It follows that M(µl,H′wK•λ) ∈ OH, by applying Proposition 6.4(3) with

λ µl and HV  the upper-closure of H′wK•λ.

We now show Ql
∼= M(µl,H′wK•λ), starting with an upper bound on Ql, via the generator-coset

p = 1 + spanUg{h− (wK • λ)(h), emk+1
αk

, eα, f
(wK•λ)
JwK•λ∩H

}

(see (6.10) and Lemma 6.18(2)). Now note that elkk (for k ∈ K) commutes with all f
(wK•λ)
JwK•λ∩H

, and

elkαk(h− ν(h)) = (h− (ν + lkαk)(h))elkαk , ∀h ∈ h, ν ∈ h∗.

Using these relations and that

f
(µl)
JwK•λ∩H

= f
(wK•λ)
JwK•λ∩H

, ∀0 6 l 6m (6.12)

which follows from the independence of the set Jλ, it follows that Ql is a quotient of

Ug

Ug
(
{h− µl(h) : h ∈ h}, {ei : i ∈ I}, {f (wK•λ)

JwK•λ∩H
: H ∈ Hmin}

) .
But this is precisely M(µl,H′wK•λ).

This provides an upper bound on (the character of) Ql; we now show it is also a lower bound,
which will prove the lemma.

Claim. Fix an ordering on I, hence the ordered basis {fi : i ∈ I} of n−, and denote by B the
corresponding PBW / monomial basis of Un− ' C[fi : i ∈ I]. Now let B′ denote the subset of

monomials which are not divisible by f
(wK•λ)
JwK•λ∩H

for any H ∈ Hmin. Then the vectors {b′ ·
∏
k∈Ke

lk
αk
·

p | b′ ∈ B′} are independent in Ql.

(By (6.12), B′ is in bijection with a basis of M(µl,H′wK•λ), yielding the desired lower bound on Ql.)

The claim will follow via the filtration of P by the Ql (so we no longer fix l in the proof of this
lemma), from the statement that:

B̃ := {b′ ·
∏
k∈K

elkαk · p : 0 6 lk 6 mk, k ∈ K, b′ ∈ B′}

is a basis of the module P = Ug/IK (where the left ideal IK was defined in (6.10)).

To show this statement, write using the PBW theorem and changing variables:

Ug ' C[fi : i ∈ I]⊗ C[ei : i ∈ I]⊗ C[α∨i : i ∈ I].

Quotient by IK in stages: first quotienting by the relations {α∨i − 〈wK • λ, α∨i 〉 : i ∈ I} yields

Ug/(α∨i : i ∈ I) ' C[fi : i ∈ I]⊗ C[ei : i ∈ I]. (6.13)
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Next, further quotienting this by all emk+1
αk

and eαi for k ∈ K, i 6∈ K yields

C[fi : i ∈ I]⊗ spanC{
∏
k∈K

elkαk · 1Ug}. (6.14)

More precisely, one needs to quotient (6.13), by the image in it of the space of vectors∑
k∈K

Xk · emk+1
αk

+
∑
i 6∈K

X ′i · eαi , Xk, X
′
i ∈ Ug.

Writing each Xk, X
′
i as linear combinations of PBW monomials in the above ordered basis of

fi, ei, α
∨
i , one obtains (6.14).

Finally, one obtains P = Ug/IK by quotienting (6.14) by the image in it of the space of vectors∑
H∈Hmin

XH · f (wK•λ)
JwK•λ∩H

, XH ∈ Ug. (6.15)

Write XH =
∑

t pH,t({fi})·qH,t({ei})·rH,t({α∨i }), and note that the polynomial rH,t({α∨i }) “goes

past” f
(wK•λ)
JwK•λ∩H

yielding scalars, in the quotient space (6.14). Thus, we may suppose all rH,t ∈ C.

Next, use a standard sl2-calculation with m′i := 〈wK • λ, α∨i 〉+ 1 ∈ Z>0 for i ∈ JwK•λ ∩H:

eif
m′i
i = f

m′i
i ei +m′if

m′i−1
i (α∨i − 〈wK • λ, α∨i 〉) = f

m′i
i ei +m′if

m′i−1
i (α∨i − 〈λ, α∨i 〉), (6.16)

where the final equality is because i ∈ JwK•λ ∩H = (Jλ ∩H) \K.
It follows from (6.16) that if eαi divides any qH,t for i ∈ JwK•λ∩H, then that monomial vanishes

in (6.14). The same happens if ei|qH,t for some i 6∈ JwK•λ ∩H and i ∈ I \K, or if emk+1
αk

|qH,t for
some k ∈ K. Thus, we reduce to computing the quotient of (6.14) by the subspace of vectors∑

H∈Hmin

XH · f (wK•λ)
JwK•λ∩H

, XH =
∑

06l6m

pH,l({fi}) ·
∏
k∈K

elkαk · 1Ug.

As the second tensor factors in XH and (6.14) coincide, and since f
(wK•λ)
JwK•λ∩H

commutes with all

eαk , this yields precisely spanC(B′)⊗ spanC{
∏
k∈K e

lk
αk
· 1Ug}, which is indeed spanned by B̃. �

Step 2: The cyclic module is projective, and its [λ]H-summand co-represents the (wK • λ)-weight

space. The previous step shows that the module P = Ug/IK ∈ OH has a standard filtration by the
modules Ql

∼= M(µl,H′wK•λ) ∈ OH for 0 6 l 6m. Moreover, since K 6= ∅ here, wK • λ has strictly

smaller integrability than λ by Lemma 6.18(2) (and L(wK • λ) ∈ OH). Thus the upper-closure in
Indep(I) of H is contained in that of H′wK•λ, which we denote henceforth as H′ for convenience.

Now P ∈ OH′ ⊆ OH. We claim that P is projective in the truncated subcategory of objects
with all weights 6 λ, which we denote by OH6λ. The claim is shown (as above) by noting that
HomOH6λ

(P,−) co-represents the (wK • λ)-weight space. Now use the block decomposition to write

P = ⊕[µ]P
[µ], with P [µ] ∈ OH′,[µ] ⊆ OH,[µ].

Then P [λ] is projective in OH,[λ] ⊆ OH6λ, and it co-represents in OH,[λ] the (wK • λ)-weight space.

Step 3: The projective cover is the [λ]H-summand – hence, BGG reciprocity at wK • λ. Given the

standard filtration (above) of the module P = ⊕[µ]P
[µ] in OH′ , Proposition 6.10 now applies (with

H  H′) to show that P [λ] has a standard filtration in OH′ ⊆ OH. Moreover, the subquotients
occur from among the Ql, hence each have highest weight > wK • λ; and the “topmost” quotient
is indeed Q0

∼= M(wK • λ,H′wK•λ).

This concludes the proof of the assertions on the standard filtration of P [λ]. We now turn to the
proof of BGG reciprocity at wK •λ. Note that the subquotient Ql belongs to the block O[λ], if and
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only if every lk is either 0 or mk, in which case one obtains a highest weight of wK′ • λ for some
∅ ⊆ K ′ ⊆ K – moreover, for each such K ′ it is the highest weight of a unique subquotient Ql.

We now claim that the summand P [λ] of P is precisely the (indecomposable) projective cover of

L(wK • λ) in OH′, hence in the larger category OH. Now BGG reciprocity follows, because∑
H0 upper-closed

[PH(wK • λ) : M(wK′ • λ,H0)] = 1K⊇K′ = [M(wK′ • λ,H′wK′•λ) : L(wK • λ)].

(The first equality is from the claim just above, and the second is by Lemma 6.18(3).)
Thus, it remains to prove the claim. The following argument is due to Gurbir Dhillon. As

explained above, the summand P [λ] co-represents the (wK • λ)-weight space in OH′,[λ]. On the

other hand, the projective cover P ′ := PH
′
(wK • λ) is characterized by the equation

dim HomOH′,[λ](P
′, L(ν)) = δwK•λ, ν , ∀ν ∈ [λ]H.

It is also standard that P [λ] � P ′, and that the kernel is a sum of (copies of) PH
′
(ν) for ν > wK •λ.

Thus, P [λ] ∼= P ′ if and only if no other indecomposable projective summands occur, i.e. if and only
if L(ν) has no (wK • λ)-weight space if ν ∈ [λ]>wK•λ (the contrapositive of this may be easier to

see). This indeed holds by sl⊕K2 -theory in [λ]H, and shows BGG reciprocity at wK • λ. �

6.5. Kazhdan–Lusztig combinatorics in OH. As a related discussion, we study a quotient space
of the regular representation of the Iwahori–Hecke algebra H (W ), which relates naturally to the
Grothendieck group of OH. To begin, consider the regular block OH,W•0 over g = sl⊕n2 .

We adopt standard convention, found e.g. in Equation (1.3). Thus, the Weyl group is W =
{wK : K ⊆ {1, . . . , n}} ' Sn2 , and the simples in the block are L(wKw◦ • 0). Here w◦ is the longest
element in W and wK =

∏
k∈K sk as above. Also note that

H (W ) ∼= ⊗ni=1H (〈1, si〉) = ⊗ni=1(R1⊕RTi)

for a suitable Laurent polynomial ring R over Z. In particular, there is a monomial basis:

H (W ) = spanR

{
TK :=

∏
k∈K

Tk

∣∣∣∣ K ⊆ {1, . . . , n}
}
. (6.17)

Moreover, each factor Hecke algebra has a Kazhdan–Lusztig basis {1, Ci}, so H (W ) has the
corresponding Kazhdan–Lusztig basis

H (W ) = spanR

{
CK :=

∏
k∈K

Ck

∣∣∣∣ K ⊆ {1, . . . , n}
}
. (6.18)

As is well known, in O one can specialize to q = 1 and interpret the change-of-basis relations
between the CK and TK′ in the Grothendieck group K0(OW•λ), via:

CK  [L(wKw◦ • 0)], TK  [M(wKw◦ • 0)]. (6.19)

These relations are precisely the ones in (1.3) with λ  0; since one is working over sl⊕n2 , all
Kazhdan–Lusztig polynomials Px,w ≡ 1x6w, with 6 the Bruhat order.

Our goal here is to explain that this decategorification phenomenon holds more generally, in OH
for all H over sl⊕n2 . We first illustrate this in the special case of Example 6.13 (above) over sl⊕2

2 .

Example 6.20. Let g = sl2 ⊕ sl2 and H = {{1, 2}}. The block OH,W•0 has three simple objects
L(wKw◦ • 0) for K 6= ∅, and their universal covers M(wKw◦ • 0,H′wKw◦•0) were worked out in

Example 6.13. We now write down the characters of the simple objects in K0(O{{1,2}}) via (6.19):

C{1} = T1, C{2} = T2, C{1,2} = T1T2 − T1 − T2.
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Notice, these relations are not correct on the nose in H (W ), since there are no coefficients of the
unit 1 = T∅ in any of them. However, these relations are the images of the usual Kazhdan–Lusztig
relations (1.3) in the quotient free R-module H (W )/(R · T∅) – which reflects in K0(OH,W•0). �

The story is similar over sl⊕n2 . One can compute the character of M(λ,H) ∈ OH in two ways:

(1) Via a BGG-type resolution in terms of Verma modules in the usual Category O. This is
worked out in slightly greater generality in the next section – see Theorem 7.12.

(2) Alternately, one works internally inside OH itself. In this case, one needs to compute the
character (or the image in K0) of M(λ,H) = M(λ,H′λ), whenever L(λ) ∈ OH. This is
worked out in the next result.

Proposition 6.21. Fix g = sl⊕n2 and a nonempty subset H ⊆ Indep(I) = 2I . Given λ ∈ h∗, define
K∗ := {i ∈ I : 〈λ, α∨i 〉 ∈ Z}, and suppose λ is K∗-dominant integral. Let [λ]H ⊆ [λ] = WK∗ • λ
index the set of simples in OH as in (6.9). Define

H H(WK∗) :=
H (WK∗)∑
J 6∈[λ]H

R · TJ
, CHK := [L(wKw◦ • λ)], THK := [M(wKw◦ • λ,H′wKw◦•λ)]

(6.20)
(the last two definitions extend (6.19)), where w◦ = wK∗ and K ∈ [λ]H. Then the “truncated”
Kazhdan–Lusztig relations over WK∗ hold in K0(OH), i.e. in the space H H(WK∗) with q = 1:

THK =
∑

K′⊆K :wK′w◦•λ∈[λ]H

CHK′ , CHK =
∑

K′⊆K :wK′w◦•λ∈[λ]H

(−1)|K|−|K
′|THK′ . (6.21)

Proof. The first equation follows directly from Lemma 6.18(3). The subtlety here is that one is

now working in the finite poset [λ]H rather than the full block [λ]. Set WK∗ ' SK∗2 to be the Weyl
group of the block [λ], where one identifies

K ⊆ K∗ ←→ wK =
∏
k∈K

sk ←→ wKw◦ • λ.

As the regular representation of H (WK∗) is the Grothendieck ring of the full block O[λ] = O∅,[λ],
as above one works in the quotient space H H(WK∗) in (6.20).

With this modification in place, the rest is standard. The incidence algebra of functions f :
[λ]H × [λ]H → Z (with f(x,w) = 0 if x 66 w) acts on the space of functions Fun([λ]H,K0(OH,[λ]))
via convolution. To show the second equation in (6.21), note that the first says: idC ∗ ζ = idT , with

idC(K) := CHK , idT (K) := THK ,

and ζ(K ′,K) = 1K′⊆K the zeta function of the incidence algebra (whose convolution-inverse is
precisely the Möbius function). The second equation in (6.21) now follows by Möbius inversion,

noting that since [λ]H ⊆ [λ] is upper-closed, it inherits the Möbius function (−1)|K|−|K
′| of [λ]. �

7. Theorem E: Characters and BGG resolutions via the parabolic Weyl semigroup

In this concluding section, we initiate the study of characters of some of the modules in this
work. Given that the characters of M(λ) and M(λ, J) are well understood – in fact, at the level of
BGG resolutions – it is natural to seek the same for the more general class of higher order Verma
modules M(λ,H). We obtain such resolutions in two settings.

Fix a Kac–Moody g and a (highest) weight λ ∈ h∗ for this section. Given an independent

subset H ⊆ Jλ, recall the weight λH and the lowering operator-product f
(λ)
H defined above:

λH := λ−
∑
h∈H

(〈λ, α∨h 〉+ 1)αh = (
∏
h∈Hsh) • λ, f

(λ)
H :=

∏
h∈H f

〈λ,α∨h 〉+1

h . (7.1)



WEIGHT-FORMULA FOR HIGHEST WEIGHT MODULES, HIGHER ORDER PARABOLIC CATEGORY O 33

7.1. Setting 1: Pairwise orthogonal holes, “parabolic” Weyl group. We now turn to the
first setting in which we compute chM(λ,H): when the elements of Hmin are pairwise orthogonal.

Theorem 7.1. Fix Kac–Moody g, a weight λ ∈ h∗, and an upper-closed set H ⊆ Indep(Jλ) such
that Hmin ⊆ Indep(Jλ) consists of pairwise orthogonal subsets, say H1, . . . ,Hk. Then the module
M(λ,H) = M(λ,Hmin) has a BGG resolution

0 −→Mk
dk−→Mk−1

dk−1−→ · · · d2−→M1
d1−→M0

d0−→M(λ,H)→ 0. (7.2)

Here, Mk = M(λH1t···tHk) and M0 = M(λ) (so λ∅ = λ), and more generally, Mt is the direct sum
of the Verma modules M(λHi1t···tHit ) over all t-tuples of indices 1 6 i1 < · · · < it 6 k.

As a consequence, the character of M(λ,H) is given by the “Weyl character formula”

chM(λ,H) =
∑

S⊆{1,...,k}

(−1)|S| chM(λti∈SHi). (7.3)

Remark 7.2. In the spirit of Remark 2.9, note that Section 6 worked over g of finite type, while
the results before it were independent of which Kac–Moody quotient algebra g̃ � g � g (fixing
a generalized Cartan matrix) was used. The formulas in this section, while true for each quotient
g, do not necessarily give the same answers across varying g. This is because the character of the
Verma module can depend on g, whereas its weights do not.

Example 7.3. In the fundamental example in this regard, V00 = M(0, 0)/M(−2,−2) as in (1.8),
the resolution (7.2) specializes to

0→M(−2,−2)→M(0, 0)→ V00 → 0. �

As the proof of Theorem 7.1 reveals, the complex in (7.2) is a BGG resolution [5, 27], in which

one is working with the finite type Weyl group W (sl⊕k2 ) = (Z/2Z)⊕k. In fact the differentials dt
are defined (below) using the Bruhat order in this group. Moreover, if one considers the words

sHj :=
∏
h∈Hj

sh, 1 6 j 6 k (7.4)

as “order 2 Coxeter generators”, then the dot-action of the “parabolic” Weyl subgroup

WH := 〈sH1 , . . . , sHk〉 ' (Z/2Z)⊕k (with “natural” length function `H : WH � {0, . . . , k})
(7.5)

on λ yields precisely the highest weights λH that occur in the BGG resolution (7.2). And indeed,
the final equation (7.5) above, brings us back full circle to the first equations in this paper – the
Weyl–Kac character formulas (1.1) (1.2), (1.5) – via their WH-analogue:

Corollary 7.4. Given Kac–Moody g, λ ∈ h∗, and an upper-closed subset H ⊆ Indep(Jλ), suppose
Hmin = {H1, . . . ,Hk} consists of pairwise orthogonal independent subsets of Jλ. Then

chM(λ,H) =
∑
w∈WH

(−1)`H(w)ew•λ∏
α∈∆+(1− e−α)dim gα

. (7.6)

Proof of Theorem 7.1. Briefly, (7.2) is the BGG resolution in the restricted (simpler) case of g =

sl⊕k2 , and so is the Koszul resolution ofR/(Ry1+· · ·+Ryk) forR = C[y1, . . . , yk] – where yj := f
(λ)
Hj
∀j

– subsequently tensored with the free R-module M = Un−. (Notice, this case is therefore easier
than the proof for arbitrary Weyl groups in [5, 27], given the simpler underlying Weyl group).

We give details for the interested reader. Let WH = (Z/2Z)⊕k
ψ
' 2{1,...,k}, and via ψ write

WH = {wJ :=
∏
j∈JsHj | J ⊆ {1, . . . , k}}, wJwK = wJ∆K .
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Next, we note the unique (up to scalar) embeddings ι(J ′, J) of the various Verma modules in
the resolution above, according to the poset structure of the subsets of {1, . . . , k} under inclusion.
Namely, if J ⊆ J ′ ⊆ {1, . . . , k}, and if we denote HJ := tj∈JHj , then

M(λHJ′ ) ↪→M(λHJ ) ↪→M(λ)

with λH in (7.1). Concretely, choosing a highest weight vector mλ ∈M(λ)λ, these embeddings are:

ι(J ′, J) : Ug
(
f

(λ)
HJ′\HJ

· f (λ)
HJ
·mλ

)
↪→ Ug

(
f

(λ)
HJ
·mλ

)
= Ug(mλHJ

) ↪→ Ug(mλ), (7.7)

where we define mλHJ
:= f

(λ)
HJ
·mλ for all J ⊆ {1, . . . , k}. (Thus, wJ • λHK = λHJ∆K

for J,K ⊆
{1, . . . , k}.) Moreover, the above Verma submodules have the expected intersection:

J,K ⊆ {1, . . . , k} =⇒ M(λHJ ) ∩M(λHK ) = M(λHJ∪K ) (7.8)

as submodules of M(λ), by using weight space decompositions and the PBW theorem. The elements

yj := f
(λ)
Hj

commute pairwise, and will be used to define – via the formulas as in the Koszul resolution

for R/(Ry1 + · · ·+Ryk) above – the differentials dt, or more precisely, their coordinates. Namely,

d1

 k∑
j=1

XjmλHj

 :=

k∑
j=1

Xjf
(λ)
Hj
·mλ =

k∑
j=1

Xjyj ·mλ, Xj ∈ Un−. (7.9)

Next if t > 1, then dt(J
′, J) : M(λHJ′ )→M(λHJ ) is zero unless J ⊆ J ′ with t = |J ′| = |J |+ 1, in

which case

J ′ = {i1, . . . , it : 1 6 i1 < · · · < it 6 k}, X ∈ Un−

=⇒ dt

(
XmλHJ′

)
:= X

t∑
j=1

(−1)j−1f
(λ)
Hij

mλHJ′\{ij}
= X

t∑
j=1

(−1)j−1yijmλHJ′\{ij}
. (7.10)

Observe that (7.9), (7.10) are precisely the formulas for the differentials in the Koszul complex

0 −→ R
dk−→ R( k

k−1) dk−1−→ · · · d3−→ R(k2) d2−→ Rk
d1−→ R −→ 0, (7.11)

with R = C[y1, . . . , yk], and under the identification wherein the free module R(kt) has basis{
mλHJ′

: J ′ = {i1, . . . , it : 1 6 i1 < · · · < it 6 k}
}
.

Also note the same intersection property as (7.8):

J,K ⊆ {1, . . . , k} =⇒ R
∏
t∈J yt

⋂
R
∏
t∈K yt = R

∏
t∈J∪K yt.

Finally, transfer the Koszul complex from (7.11) to (7.2), in the usual manner. Define the
R-module M := Un−; by the PBW theorem this is free over the polynomial algebra C[{fh : h ∈
tjHj}], which is in turn free over R = C[{f (λ)

Hj
: 1 6 j 6 k}]. Thus, one tensors the resolution (7.11)

with M to obtain the BGG complex in (7.2), with the specified differential maps. (Strictly speaking,
one obtains (7.11) with R replaced by M = Un−, and this is isomorphic as free Un−-modules to the
complex in (7.2).) The R-freeness implies that (7.2) is indeed the desired resolution for M(λ,H). �

7.2. Higher order Weyl group action on characters. As is well known, in a parabolic category
OpJ , the character of any object is WJ -invariant – or as we now understand in the language of
holes, invariant under the minimal hole reflections sj , j ∈ J . We now explain a sense in which this
phenomenon generalizes to all holes – when applied to the higher order Verma modules M(λ,H).

We begin by first explaining not the invariance, but the partial action of the Weyl group on the
weights of a highest weight module over Kac–Moody g. Consider once again the basic example
V00 = M(0, 0)/M(−2,−2) over g = sl2 ⊕ sl2. This is a length 3 highest weight module, and the
unique hole here is H = {1, 2}. Now s1s2 fixes the weight 0, but takes every other weight of
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V00 to a non-weight. What does hold is that W stabilizes the weights of L(0, 0); W{1} = {1, s1}
stabilizes the weights of L(s2 • 0) = M(s2 • 0, {1}); and similarly for L(s1 • 0). Viewed differently,
wtV00 = wtM(λ, {1}) ∪ wtM(λ, {2}), and these are stable under the action of W{1} and W{2},
respectively. (Hence their intersection wtL(0, 0) is W -stable.)

The situation is similar in general, via Theorem A. Let g be a Kac–Moody algebra, and M an
object in O. Then M has a finite filtration by highest weight modules, say M(λi)� Vi, and so

wtM =
⋃
i>0

wtVi =
⋃
i>0

⋃
J⊆Jλi : J∩H 6=∅ ∀H∈HVi

wtM(λi, J)

by Theorem A. The partial action now says that part of W acts on part of wtM . Namely, given
µ ∈ wtM , the orbit WJ(µ) ⊆M still, whenever µ ∈ wtM(λi, J) for some (i, J).

As a special case, if M ∈ OpJ′ for some J ′ ⊆ I, then in the above union every J satisfies:
J ∩ {j′} 6= ∅ for j′ ∈ J ′, and so J ⊇ J ′ – which implies that wtM is WJ ′-stable. In contrast,
there need not be any global symmetries in the higher order case. E.g. for g = sl2 ⊕ sl2 one has
M := L(s1 • 0)⊕L(s2 • 0) ∈ O{{1,2}} – but wtM is stable only under W{1} ∩W{2}, i.e. the identity.

Having discussed weights, we turn to characters. We return to the opening paragraph of this
subsection, and attempt to generalize it to higher order holes. Begin once again with the above
example V00 over sl⊕2

2 . In this case, the unique hole is {1, 2}, and one seeks to understand if
(and how) s1s2 preserves the character of V00. The immediate approach would be to evaluate

s1s2

(
e(0,0) +

∑
n>0(e−nα1 + e−nα2)

)
, and it is easy to check this does not leave the character un-

changed. Instead, one needs to rewrite the character as

chV00 =
e(0,0)

(1− e−α1)(1− e−α2)
− e(−2,−2)

(1− e−α1)(1− e−α2)
.

Now acting on both numerators and both denominators by s1s2 leaves this expression unchanged.
This happens due to the “correct” way of expanding both ratios (after applying s1s2) – via their
“highest weight expansions”. As an illustration, if α is a positive root in a Kac–Moody algebra,
then (1− e−α)−1 equals 1 + e−α + e−2α + · · · , whereas (1− eα)−1 is expanded differently:

1

1− eα
=

e−α

e−α − 1
= −e−α(1 + e−α + e−2α + · · · ).

This is originally due to Brion [7] (for rational polytopes) and Khovanskii–Pukhlikov [25], Lawrence
[28], and Varchenko [38] – see Postnikov [31] for deformation arguments for generic nodes.

The invariance of the character of the higher (2nd) order Verma module V00 under the subgroup
{1, s1s2} is a “higher order” version of the WJ -invariance of the character of the module M(λ, J).
We now extend the former phenomenon and parallel the latter, in the situation discussed above:

Proposition 7.5. Let g, λ ∈ h∗, and Hmin = {H1, . . . ,Hk} ⊆ Indep(Jλ) be as in Theorem 7.1 –
as also the subgroup WH ' (Z/2Z)k of W . Then,

w(chM(λ,H)) = (−1)`(w)−`H(w) chM(λ,H), ∀w ∈WH. (7.12)

Proof. With notation as in (7.5), write WH = {wJ =
∏
j∈J sHj | J ⊆ {1, . . . , k}}. Now compute,

starting from the Weyl–Kac type character formula (7.6):

wK(chM(λ,H)) =
∑

J⊆{1,...,k}

wK

(
(−1)|J |ewJ•λ∏

α∈∆+(1− e−α)dim gα

)

= (−1)`(wK)
∑

J⊆{1,...,k}

(−1)|J |e(wKwJ )•λ∏
α∈∆+(1− e−α)dim gα

= (−1)`(wK) · (−1)|K| chM(λ,H),

since (−1)|K∆J | = (−1)|K|(−1)|J |. This concludes the proof. �
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Remark 7.6. Suppose g is semisimple, and H ⊆ Indep(I) is such that the minimal sets in Hmin are
pairwise orthogonal. We explain a sense in which Proposition 7.5 extends to OH the WJ -invariance
of chM for all objects M in the parabolic category OpJ . Indeed, via a triangular change of bases,
the WJ -invariance of all characters in OpJ , is K0-equivalent to that of chM(λ, J) for all λ with
L(λ) ∈ OpJ . The higher order analogue of this is given by Proposition 7.5 (via Proposition 6.4(2)):

If L(λ) ∈ OH, then the character of M(λ,H) satisfies (7.12) with WH replaced by WH′λ,

since if H = HJ and L(λ) ∈ OH = OpJ , then H′λ = HJ and `HJ = `.

7.3. Setting 2: Pairwise orthogonal integrable roots, and the parabolic Weyl semi-
group. We next prove BGG resolutions and character formulas for the modules M(λ,H) in an-
other setting: for gJλ = sl⊕n2 for some n > 1. In this case, the BGG resolution turns out to involve
a semigroup action of WH ∼= (Z/2Z)⊕k (as sets, with k = |Hmin|) on λ, as we first explain for k = 2:

Theorem 7.7. Suppose g = sl⊕n2 for some n > 1, λ ∈ h∗, and Hmin = {H1, H2} ⊆ Indep(Jλ) = 2Jλ.

Using the notation of λH , f
(λ)
H as in (7.1), the module M(λ,Hmin) has a BGG resolution

0 −→M(λH1∪H2)
d2−→M(λH1)⊕M(λH2)

d1−→M(λ)
d0−→M(λ,Hmin)→ 0, (7.13)

where the “Koszul-type” differentials are given by

d1(X1mλH1
, X2mλH2

) :=
(
X1f

(λ)
H1

+X2f
(λ)
H2

)
mλ,

d2(XmλH1∪H2
) := (−Xf

(λ)
H2\H1

mλH1
, Xf

(λ)
H1\H2

mλH2
), X,X1, X2 ∈ Un−.

This result can be verified by hand, and gives chM(λ,Hmin) as the Euler characteristic. It also
yields the same Weyl character formula as previously, involving w • λ for w in the set

WH = WHmin := {1, w{1} = sH1 , w{2} = sH2 , w◦ = w{1,2} = sH1∪H2}.
Define the associated length function `H = `Hmin , which sends 1 7→ 0, w{j} 7→ 1, and w{1,2} 7→ 2.

Corollary 7.8. Notation as above. Then:

chM(λ,Hmin) =
∑
w∈WH

(−1)`H(w)ew•λ∏
α∈∆+(1− e−α)dim gα

. (7.14)

Remark 7.9. While the Weyl character formula is unchanged from (7.6), the action of WH on the
orbit of λ is now different than in the previous case (7.2). (This action is useful in understanding
the differential maps, which differ even for Hmin = {H1, H2} over g = sl⊕n2 .) Indeed, now we use

wJ ·′ wK := wJ∪K , wJ •′ λHK := λHJ∪K = λHJ∪HK , ∀J,K ⊆ {1, 2}.
Thus, (WH, ·′) is what we term the parabolic Weyl semigroup in this situation. Moreover, the
map •′ is a semigroup action of (WH, ·′) on the orbit {λ, λH1 , λH2 , λH1∪H2}. Of course, in the
character formula (7.14), the only element on which WH acts is λ itself, which is dominant integral
for ∆H1∪H2 , and so in those equations •′ = •.

Example 7.10. For a concrete working example, the reader can consider e.g. g = sl⊕3
2 , I = {1, 2, 3},

λ ∈ P+, and Hmin = {{1, 2}, {2, 3}}. The overlap between elements of Hmin is what leads to the
parabolic Weyl semigroup WH ∼= (Z/2Z)⊕2 here (as sets), and its orbit is WH •′ λ.

We now write down the analogous picture – over g with orthogonal integrable roots for λ ∈ h∗,
i.e., gJλ = sl⊕n2 – with Hmin = {H1, . . . ,Hk} ⊆ Indep(Jλ). Our BGG-type resolution again turns
out to yield the same character formula (7.14); however, one now requires alternate notation from
the earlier one, as is revealed by the simple case

g = sl⊕3
2 , Hmin = {H1 = {1, 2}, H2 = {1, 3}, H3 = {2, 3}}. (7.15)
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In this case, the terms M1 →M0 = M(λ)→M(λ,Hmin) are as above, while in the above notation,

λH{1,2} = λH{1,3} = λH{2,3} = λH{1,2,3} = s1s2s3 • λ.

To distinguish between the corresponding four Verma modules occurring in M2 and M3, define

λ(J) := λHJ = λ−
∑

h∈∪j∈JHj

(〈λ, α∨h 〉+ 1)αh ∈ λ− Z>0ΠJλ , J ⊆ {1, . . . , k}. (7.16)

Choosing a maximal vector mλ ∈M(λ)λ, the modules M(λ(J)) then again embed into one another
via the maps ι(J ′, J) for J ⊆ J ′ ⊆ {1, . . . , k} as in (7.7), and via this embedding into M(λ), have
intersections as in (7.8). Thus, also fix maximal vectors mλ(J) ∈ M(λ(J))λ(J) such that ι(J ′, J)

sends mλ(J ′) to f
(λ)
HJ′\HJ

mλ(J) for all J ⊆ J ′ ⊆ {1, . . . , k}. Now define the modules

Mt :=
⊕

J⊆{1,...,k}, |J |=t

M(λ(J)), 0 6 t 6 k.

Also define the differential d1 : M1 →M0 via

d1

 k∑
j=1

Xjmλ({j})

 :=
k∑
j=1

Xjf
(λ)
Hj
mλ, Xj ∈ Un−

and the differential dt, t > 1 via its coordinates. Namely, dt(J
′, J) : M(λ(J ′)) → M(λ(J)) is zero

unless J ⊆ J ′ with t = |J ′| = |J |+ 1, in which case

J ′ = {i1, . . . , it : 1 6 i1 < · · · < it 6 k}, X ∈ Un−

=⇒ dt
(
Xmλ(J ′)

)
:= X

t∑
j=1

(−1)j−1f
(λ)
Hij \HJ′\{ij}

mλ(J ′\{ij}). (7.17)

Remark 7.11. The modules Mt and differentials dt indeed specialize to their counterparts in
Theorem 7.1 as well as in Theorem 7.7, earlier in this section.

As above, we now show this yields a resolution; notice that in conjunction with Theorem 7.1 and
Proposition 7.5, this resolution would also imply our main theorem E.

Theorem 7.12. Fix Kac–Moody g and λ ∈ h∗ such that the nodes Jλ have no edges, and let
Hmin = {H1, . . . ,Hk} ⊆ Indep(Jλ). With the modules Mt and differentials dt as above, the complex

0 −→Mk
dk−→Mk−1

dk−1−→ · · · d2−→M1
d1−→M0

d0−→M(λ,H)→ 0 (7.18)

is a free Un−-resolution of M(λ,H). As a consequence, with λ(J) as in (7.16),

chM(λ,H) =
∑

J⊆{1,...,k}

(−1)|J | chM(λ(J)). (7.19)

Proof. First consider the variant of this complex over gJλ ' sl⊕n2 . Writing f
(λ)
Hij \HJ′\{ij}

as f
(λ)
Hij \HJ′\{ij}

=

lcm{f (λ)
Hi

: i ∈ J ′}

lcm{f (λ)
Hi

: i ∈ J ′, i 6= ij}
, (7.18) is precisely the Taylor resolution [36] (see also [13]) for M(λ,H)

over the commutative ring – in fact UFD – R := C[{fi : i ∈ Jλ}]. Now the result follows over Ug by
tensoring this Taylor resolution with the R-module Un−, which is R-free by the PBW theorem. �

In particular, the Weyl character formula again follows from this resolution, as for k = 2. Let

WH = {(wJ , J) | J ⊆ {1, . . . , k}}, wJ := s⋃
j∈J Hj

, (wJ , J) ·′ (wK ,K) := (wJ∪K , J ∪K)
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for J,K ⊆ {1, . . . , k} denote the parabolic Weyl semigroup in this situation. Define the length
of (wJ , J) to be `H((wJ , J)) := |J |. Then (WH, ·′) acts on the orbit {λHJ : J ⊆ {1, . . . , k}} (with
λH∅ = λ) via: (wJ , J) •′ λHK := λHJ∪K . On λ, this is the dot-action: (wJ , J) •′ λ = wJ • λ ∀J .

Corollary 7.13. The resolution (7.18) once again implies, for arbitrary Hmin of size k > 1:

chM(λ,H) =
∑

w=(wJ ,J)∈WH

(−1)`H(w)ew•λ∏
α∈∆+(1− e−α)dim gα

. (7.20)

7.4. Resolutions over dihedral groups. Having obtained BGG resolutions and Weyl character
formulas in the above two settings using WH, we briefly discuss another potentially simple setting
in which such formulas and resolutions can be explored. We begin with a small lemma on Coxeter
generators in finite Weyl groups. As used in Corollary 7.4, if two sets H1, H2 ⊆ Jλ of independent
nodes are orthogonal, then (sH1sH2)2 = 1 in W . The next lemma computes this order in the more
general case when H1, H2 are merely pairwise disjoint. Even more generally:

Lemma 7.14. Suppose g is of finite type, and H1, . . . ,Hk ∈ Indep(I) are pairwise disjoint. Let
H1t· · ·tHk have connected Dynkin components J1, . . . , Jl. Then the product sH1 · · · sHk has order
precisely lcm(c1, . . . , cl), where ct is the Coxeter number of the parabolic Weyl subgroup WJt.

Proof. For 1 6 i 6 k and 1 6 t 6 l, define Jit := Hi∩Jt. It is clear that
∏k
i=1 sHi =

∏l
t=1 st, where

st := sJ1t · · · sJkt are pairwise commuting. Hence the order of sH1 · · · sHk is the lcm of the orders of
the st. But each st is a Coxeter element for the Weyl group on tiJit = Jt, hence has order ct. �

Remark 7.15. The assumption of finite type is needed in Lemma 7.14, because if W is an irre-
ducible, infinite Coxeter group then its Coxeter elements have infinite order [19, 34].

As an “application”, let g be of finite type and Hmin = {H1, H2}, with H1, H2 ∈ Indep(Jλ)
disjoint subsets of nodes. The corresponding subgroup WH = 〈sH1 , sH2〉 is then dihedral in these
two Coxeter generators, with the longest word in them given by w◦, say. If sH1sH2 has order m > 2
(computed via Lemma 7.14), then we would expect the BGG resolution to be of the form

0 −→M(w◦ • λ)
dm−→M(sH1w◦ • λ)⊕ M(sH2w◦ • λ)

dm−1−→ · · · d2−→ (7.21)

d2−→ M(sH1 • λ)⊕M(sH2 • λ)
d1−→M(λ)

d0−→M(λ,H) −→ 0.

Moreover, such a resolution would again lead to a Weyl character formula akin to (7.20).

Example 7.16. For additional intuition about such a resolution, we discuss the simplest “nontriv-
ial” case. Let g = sl4, λ = 0, and H = {H1 = {1, 3}, H2 = {2}}, so that sH1sH2 has order 4 by
Lemma 7.14. (Here, sH1 = s1s3 and sH2 = s2.) Then does M(0,H) have a resolution of the form

0 −→M(w◦ • 0)
d4−→M(sH1w◦ • 0)⊕M(sH2w◦ • 0)

d3−→M(sH1sH2 • 0)⊕M(sH2sH1 • 0)

d2−→M(sH1 • 0)⊕M(sH2 • 0)
d1−→M(0)

d0−→M(0,H) −→ 0,

where w◦ = sH1sH2sH1sH2 , and the differentials need to be worked out using the relations in U(sl4).
For instance, d1 : (X1msH1

•0, X2msH2
•0) 7→ (X1f1f3 +X2f2)m0 for X1, X2 ∈ Un− with some fixed

choice of highest weight vectors m, and similarly, one coordinate of d2 is given by

d2(XmsH1
sH2
•0) := (X(f2f1f3 + 2f12f3 − 2f23f1 + 2f123)msH1

•0,−Xf2
1 f

2
3msH2

•0),

where f12 = [f1, f2], f23 = [f2, f3], f123 are the non-simple negative root vectors, and X ∈ Un−.
Note, for all other subsets H′ ⊆ Indep(I) for g = sl4, λ = 0, a BGG resolution of M(0,H′) is known.

Remark 7.17. Given the expected resolution (7.21) for two minimal holes, one can ask what
happens when H has > 3 minimal holes. This is not always “finite Coxeter”, as we explain.
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Given (7.21), a natural question is if all such resolutions involve a finite Weyl/Coxeter group in
every situation over g of finite type. In order to avoid Weyl semigroups arising due to overlap of
nodes in holes (see Remark 7.9), one can restrict to the case of say disjoint holes in H. Even with
these constraints, we now explain why the question above cannot have a uniformly positive answer
– even with three holes and g of type A. Indeed, suppose

g = sl5, λ ∈ P+, H = {{1}, {3}, {2, 4}}.

Then the subgroup WH of W ' S5 generated by s1, s3, t2 := s2s4 has at least the relations

(s1t2)6 = (s1s3)2 = (t2s3)4 = 1

by Lemma 7.14, and one would like to know if these relations give a Coxeter presentation of WH.
But this is necessarily false, since the only finite Coxeter group with connected underlying Coxeter
graph containing an edge labeled 6, is a dihedral group [11, 12] – with 2 Coxeter generators.

7.5. Concluding remarks and questions. Looking back – in the course of this paper, we have
uncovered a host of objects and properties: (a) The higher order Verma modules M(λ,H) – whose
weight-sets have closed-form expressions and Minkowski sum decompositions, and comprise the
weights of all highest weight g-modules – and moreover, these modules themselves comprise all
highest weight sl⊕n2 -modules. (b) BGG resolutions and WH-invariant characters of these modules.
(c) kth order upper- and lower-approximations of all highest weight modules. (d) The kth order
integrability of highest weight modules, leading to iteratively stratifying the quotients of each M(λ),
each time into intervals. (e) Category OH, with enough projectives and BGG-type reciprocity.

All of these are natural extensions of their zeroth and first order versions in the literature –
M(λ),M(λ, J); their characters and resolutions; O,OpJ – i.e., they “occur in nature”, and are
not “artificial” constructs. Yet, surprisingly, to our knowledge they were unexplored to date.
The present paper provides information on the above objects/properties to varying degrees of
completeness – from Theorem A to Theorem E. We end this paper with a few questions that are
natural to explore going ahead, given the above results.

(1) Much is understood about the first order approximations of highest weight modules, but less
is known about the higher order analogues. Thus, a natural question is to better understand
the higher order Verma modules M(λ,H) for all g, λ,H. Can one “upgrade” the weight-sets
of the modules M(λ,H) to their characters, at once extending the classical formulas (1.1),
(1.6) for parabolic Verma modules as well as (7.6) and (7.20)?

(2) Second, do the modules M(λ,H) occur at the end of a BGG-type resolution that uses
Verma modules? More concretely, in what generality in (g, λ,H) can one show a resolution
of M(λ,H), which at once extends the usual BGG resolution for M(λ, J) as well as (7.2)
and (7.18)? (Informally, can one extend these Koszul–Taylor resolutions from (Z/2Z)⊕n to
other Weyl groups.) And is (7.21) true?

(3) Is there a general version of the parabolic Weyl (semi)group WJ or WH, and of its action
•′ on the orbit of λ, that works in the cases in (2) above? Does this (semi)group have a
Coxeter-type enumeration as words in the generators {sH : H ∈ Hmin}, which act on λ?
And can Proposition 7.5 – or a refinement thereof – be proved for more general g, λ,H?
(Note, it also holds in all parabolic categories OpJ .)

(4) Another follow-up is to interpret the modules M(λ,H) and their resolutions, geometrically
on the flag variety – then extend this to more general V , and to the categories OH.

(5) Extend the treatment of OpJ in the literature (see e.g. [20, 21, 32]) to the higher order
parabolic categories OH, for all H ⊆ Indep(I). Natural questions include:
(a) BGG-type reciprocity: Extending Theorem 6.17 to arbitrary OH over all g.
(b) Parabolic Verma modules: Finding “higher order Jantzen filtrations” for M(λ,H) (see

[42, 43]). (Also note, if M(λ,H) is simple then it is a parabolic Verma module.)
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(c) Blocks: Endomorphism rings of block-progenerators and other projectives in OH, and
their properties, including Koszulity and Koszul duals [2, 4, 33, 35]. Homomorphisms

between higher order Vermas. Determining the block structure of OH,[λ] (see [41]).
(6) This question is more speculative. It involves Theorem 5.5, which characterizes the first

order integrability of a highest weight module V , i.e. the set JV , in terms of the convex hull
of the set of weights – or in other words, the extremal rays and edges of the WJV -invariant
polyhedral shape conv(wtV ). Similarly, the zeroth order integrability of V is the vertex λ.
It could be interesting to examine what “higher order geometric combinatorics” emerges
out of the higher order integrabilities (Hmin

V )6k (see Section 5.2, including Definition 5.12).

In parallel, one can ask if Proposition 6.21 can be extended to all blocks OH,[λ] over arbi-
trary g. Namely, if the categories OH lead to “refined” Kazhdan–Lusztig combinatorics and
(quotient) spaces associated to Hecke modules – working internally in OH rather than first
converting to Verma characters via BGG resolutions – which specialize to relative/parabolic
versions (e.g. [9, 14]) at first order.

Appendix A. Proof of enough projectives – details

Here we include details of the proof of a part of Theorem D: OH has enough projectives. As said
above, we do so because there are multiple standard objects for the simple objects (which do get
used in BGG reciprocity, see Section 6.3). We thus list and verify the five conditions in [4, Theorem
3.2.1]. The setting in [4] does hold: by Lemma 6.2, A is an abelian subcategory of C-vector spaces.

(1) Every object of A ⊆ O has finite length.
(2) There are only finitely many simple isoclasses in A ⊆ OW•λ. Index these by S.
(3) The endomorphisms of all simple objects in A ⊆ O are scalars.

Moreover, S ⊆ h∗ has the partial order 6, via: ν 6 µ if µ − ν ∈ Z>0Π. For every lower-closed
subset T ⊆ S (if s ∈ T, s′ 6 s then s′ ∈ T ), let AT be the full subcategory of objects in A, all of
whose simple subquotients are L(µ) with µ ∈ T . E.g., (6µ) := {s ∈ S : s 6 µ} for µ ∈ S, and
similarly (<µ). Finally, define the (co)standard objects in A(6µ) for µ ∈ S via Proposition 6.4:

H′µ := {Jµ ∩H : H ∈ Hmin}, ∆(µ) := M(µ,H′µ), ∇(µ) := M(µ,H′µ)∨. (A.1)

Moreover, since L(µ)∨ ∼= L(µ), one has canonical maps (up to scaling)

π : ∆(µ)� L(µ), π∨ : L(µ) ↪→ ∇(µ).

(5) The objects K := ker(π), coker(π∨) = K∨ lie in A(<µ), in that their simple subquotients

are all of the form L(ν) with ν < µ. (The assertion for K∨ follows from that for K, since
restricted duality is an exact contravariant functor on O, hence on A via Lemma 6.2.)

It remains to verify the fourth condition:

(4) Fix a lower-closed subset T ⊆ S and a maximal element µ ∈ (T,6). Then in AT , ∆(µ)�
L(µ) is a projective cover and L(µ) ↪→ ∇(µ) is an injective hull.

The exactness and contravariance of restricted duality on AT shows that the assertion for ∇(µ)
follows from that for ∆(µ). Thus, it suffices to show that ∆(µ) is a projective cover of L(µ).

Begin by noting that ∆(µ) = M(µ,H′µ) is indecomposable. Moreover, N := ker(π : ∆(µ) �
L(µ)) is indeed a superfluous submodule of ∆(µ), since it does not intersect the highest weight line
∆(µ)µ which generates ∆(µ). Thus, it remains to show that ∆(µ) is a projective object in AT if
µ is maximal in (T,6) ⊆ (S,6). We do so by showing that the functor HomAT (∆(µ),−) is exact.
More strongly, denote by Mµ the µ-weight space of M , and assert the functorial isomorphism

HomAT (∆(µ),M) ∼= Mµ, M ∈ AT .
Indeed, fix a highest weight vector vµ ∈ ∆(µ)µ, and send ϕ ∈ HomAT (∆(µ),M) to ϕ(vµ) ∈Mµ,

for M ∈ AT . Clearly this assignment is linear and injective, and we now prove the surjectivity.
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Given M ∈ AT ⊆ OH = OHmin
, choose 0 6= mµ ∈Mµ. We claim that the corresponding map

ϕ : ∆(µ) = M(µ,H′µ)→M, F · vµ 7→ F ·mµ, F ∈ U(g)

is indeed a g-module map. Since µ is maximal in T , it suffices to verify that for all H ∈ Hmin,

f
(µ)
Jµ∩H ·Mµ = 0, where we recall, f

(µ)
Jµ∩H :=

∏
h∈Jµ∩H

f
〈µ,α∨h 〉+1

h . (A.2)

By the definition of OH, fH = f
(0)
H acts nilpotently on mµ ∈Mµ, so there exists n such that

0 = fnHvµ = fnJµ∩HfnH\Jµvµ.

Acting by enh for all h ∈ H \ Jµ, it follows via (6.2) as above that fnJµ∩Hmµ = 0. Now define

mh = 〈µ, α∨h 〉+ 1, ∀h ∈ Jµ, H1 := {h ∈ Jµ ∩H : n > mh}.

Repeating the proof of Lemma 6.6, one obtains: (i) H1 is nonempty, and (ii) f
(µ)
H1
mµ = 0. This

implies (A.2); hence, ∆(µ) is projective in AT . Thus by [4, Theorem 3.2.1], A and hence OH has
enough projectives. Using the properties of restricted duality, OH also has enough injectives. �
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