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Abstract. Compared to the entrywise transforms which preserve positive semidefi-
niteness, those leaving invariant the inertia of symmetric matrices reveal a surprising
rigidity. We first obtain the classification of negativity preservers by combining recent
advances in matrix analysis with some novel arguments relying on well chosen test
matrices, Sidon sets from number theory, and analytic properties of absolutely mono-
tone functions. We continue with the analogous classification in the multi-variable
setting, revealing for the first time a striking separation of variables, with absolute
monotonicity on one side and only homotheties on the other. We conclude with the
complex analogue of this result.
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1. Introduction and main results

A subtitle of this article could be “Indefinite variations on a theme by Schoenberg.”
We honor here Schoenberg the mathematician, whose legacy is arguably comparable to
that of his homonym, the artist. As much as Arnold Schoenberg’s musical innovation
has shaped the last century, the same applies to Isaac Schoenberg in the mathematical
milieu. We touch upon below only a concise, but profound, 1942 contribution of the
latter [35]: a definitive description of positive definite functions defined on Euclidean
spheres. This theorem synthesizes several decades of metric geometry, a topic much
cultivated by Schoenberg (partially in the company of von Neumann). A second mo-
tivation comes from his early studies of total positivity, in themselves rooted in the
analysis of the oscillatory behavior of analytic functions or matrices. From this path of
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discovery the concept of splines would later emerge. A reformulation of Schoenberg’s
classification of positive definite functions on spheres turned out to be a guiding light
for generations to come. We state this theorem in a form which includes some slight
enhancements accumulated over time.

Henceforth, a function f : I → R acts entrywise on a matrix A = (aij) with entries
in I via the prescription f [A] :=

(
f(aij)

)
.

Theorem 1.1 ([35, 32, 5]). Let I := (−ρ, ρ), where 0 < ρ ≤ ∞. Given a function
f : I → R, the following are equivalent.

(1) The function f acts entrywise to preserve the set of positive semidefinite ma-
trices of all dimensions with entries in I.

(2) The function f is absolutely monotone, that is, f(x) =
∑∞

n=0 cnx
n for all x ∈ I

with cn ≥ 0 for all n.

We use the term absolutely monotone to describe functions which have a power-series
representation with non-negative Maclaurin coefficients, although the non-negativity of
derivatives holds only for a certain subset of the domain (which is [0, ρ) above). For
more on this, see Appendix A.

Entrywise transforms that preserve positive definiteness have been investigated within
the context of linear algebra or harmonic analysis by many authors: Rudin [32], Herz
[19], Loewner and Horn [20], Christensen and Ressel [11, 12] (who also have a relevant
monograph with Berg [8]), Vasudeva [38], and FitzGerald, Micchelli and Pinkus [15],
to name just some of those whose work in this area appeared in the second half of the
20th century. More recently, we have articles by Fallat, Johnson and Sokal [14], Jain
[22, 23], and Vishwakarma [40], in addition to our previous publications [3, 5] and those
with additional co-authors [16, 26]). We note also that Molnár [29] has studied similar
transforms in the context of operator algebras.

Interest in this subject was reinvigorated by statisticians. Their quest was prompted
by the implementation of thresholding or other entrywise operations aimed at regular-
izing large correlation matrices which are near, but not, sparse. Details about this line
of enquiry appear in [17], [4, Section 5], and the monograph [25].

The present article is a part of a systematic study and classification of inner trans-
formations of structured matrices and kernels. Our earlier works dealt with entrywise
positivity preservers: see, in particular, [5] and [7]. We now turn to indefinite quadratic
forms. In addition to the unquestionable theoretical interest, a strong motivation to
pursue this investigation comes from the recently uncovered benefits of embedding
data, and particularly big data, in hyperbolic space. This is a lively topic in full spate
today, surfacing in an array of areas such as image and language processing [33, 27],
finance [24], social networks [39], and geographic routing [28]. We do not explore such
applications in the present work, focusing solely on describing the entrywise preservers
of matrices with negative-eigenvalue constraints. The surprising rigidity revealed by
the classification completed below would suggest profound impacts on data structuring.
We will elaborate on such applications in a separate article.

We provide herein a comprehensive extension to previous Schoenberg-type theorems,
old and new, such as [5]. To be more specific, Theorem 1.1 classifies all entrywise inner
transforms of self-adjoint matrices with no negative eigenvalues, tacitly allowing the
nullity or number of positive eigenvalues to vary. (Throughout this work, eigenvalues
are counted with multiplicity.) Instead, we now seek operations which do not change
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the inertia of real symmetric matrices. More generally, we provide complete answers
to three questions.

• What are the entrywise transforms sending matrices with at most k negative
eigenvalues to ones with at most l negative eigenvalues, for arbitrary non-
negative integers k and l?
• What are the preservers of inertia on such sets of matrices? (We recall that

the inertia of a complex Hermitian matrix A is the triple (n+, n0, n−) of non-
negative integers corresponding to the number of positive, zero and negative
eigenvalues of A. Some authors prefer the term signature for this triple, but as
this is also used to describe the difference n+ − n− we will prefer the former
terminology.)
• What are the multi-variable analogues of these questions, in both the real and

complex settings?

The classes of transforms that answer these questions turn out to be far smaller than
the collection of functions appearing in Theorem 1.1.

1.1. One-variable inertia preservers. A step further from Schoenberg’s Theorem
is the description of entrywise transforms that preserve the inertia of matrices with
precisely k negative eigenvalues for some choice of integer k. To state our first complete
result precisely, we introduce the following notation.

Given non-negative integers n and k, with n ≥ 1 and k ≤ n, we let S(k)
n (I) denote

the set of n × n symmetric matrices with entries in I ⊆ R having exactly k negative
eigenvalues; here and throughout, eigenvalues are counted with multiplicity. Let

S(k)(I) :=

∞⋃
n=k

S(k)
n (I)

be the set of real symmetric matrices of arbitrary size with entries in I and exactly k

negative eigenvalues. For brevity we let S(k) := S(k)(R) and S(k)
n := S(k)

n (R).

Note that, for any n ≥ 1, the sets S(0)
n , S(1)

n , . . . , S(n)
n are pairwise disjoint and

partition the set of n× n real symmetric matrices.
We now assert

Theorem 1.2. Let I := (−ρ, ρ), where 0 < ρ ≤ ∞, and let k be a non-negative integer.
Given a function f : I → R, the following are equivalent.

(1) The entrywise transform f [−] preserves the inertia of all matrices in S(k)(I).
(2) The function is a positive homothety: f(x) ≡ cx for some constant c > 0.

Thus, the class of inertia preservers for the collection of real symmetric matrices of
all sizes with k negative eigenvalues is highly restricted, whatever the choice of k: every
such map in fact preserves not only the nullity and the total multiplicities of positive
and negative eigenvalues, it preserves the eigenvalues themselves, up to simultaneous
scaling.

Our second result resolves the dimension-free preserver problem for S(k)(I). If k = 0,
Schoenberg’s Theorem 1.1 shows that the class of entrywise preservers is far larger than
the class of inertia preservers, which contains only the positive homotheties. However,
if k > 0 then this is no longer the case.
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Theorem 1.3. Let I := (−ρ, ρ), where 0 < ρ ≤ ∞, and let k be a positive integer.
Given a function f : I → R, the following are equivalent.

(1) The entrywise transform f [−] sends S(k)(I) to S(k).
(2) The function f is a positive homothety, so that f(x) ≡ cx for some c > 0, or,

when k = 1, we can also have that f(x) ≡ −c for some c > 0.

There is a notable rigidity phenomenon here, in stark contrast to the dimension-free
preserver problem for positive semidefinite matrices (the k = 0 case). When there
is at least one negative eigenvalue, the non-constant transforms leaving invariant the
number of negative eigenvalues also conserve the number of positive eigenvalues and the
number of zero eigenvalues; more strongly, they preserve the eigenvalues themselves, up
to simultaneous scaling. That is, Schoenberg’s theorem collapses to just homotheties
if k ≥ 2, with the additional appearance of negative constant functions if k = 1 (and
the collection of preservers is non-convex in this last case).

It is interesting to compare these results with a theorem obtained about three decades
ago by FitzGerald, Micchelli, and Pinkus [15], who classified the entrywise preservers
of conditionally positive matrices of all sizes. An n × n real symmetric matrix A is
conditionally positive if the corresponding quadratic form is positive semidefinite when
restricted to the hyperplane 1⊥n ⊆ Rn, where 1n := (1, . . . , 1)T . That is,

if v ∈ Rn is such that vT1n = 0 then vTAv ≥ 0.

The authors showed in [15, Theorem 2.9] that an entrywise preserver f [−] of this class
of conditionally positive matrices corresponds to a function that differs from being
absolutely monotone by a constant:

f(x) =

∞∑
n=0

cnx
n for all x ∈ R, where cn ≥ 0 for all n ≥ 1. (1.1)

From the perspective of the present article, conditionally positive matrices are those real
symmetric matrices with at most one negative eigenvalue, with the negative eigenspace
(if it exists) constrained to equal R1n. If this constraint on the eigenspace is removed,
Theorem 1.3 shows that the class of preservers shrinks dramatically. The high level
of rigidity for preservers of negative spectral multiplicity is akin to that occurring for
preservers of totally positive and totally non-negative kernels: see the recent work [7]
for further details on the latter.

Another way to view Schoenberg’s Theorem [35] is as the description of the entrywise
transforms that preserve the class of correlation matrices of vectors in Hilbert space.
A completely parallel theory is developed in Section 3, providing the classification of
self transforms of Gram matrices of vectors belonging to a Pontryagin space (that is,
a Hilbert space endowed with an indefinite sesquilinear form with a finite number of
negative squares [2]).

Our next step involves relaxing the conditions appearing in Theorem 1.3, by only
imposing an upper bound on the number of negative eigenvalues. In other words, we
seek to classify the endomorphisms of the closure

S(k)
n (I) :=

k⋃
j=0

S(j)
n (I), where n ≥ 1. (1.2)
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Note that the domain remains I and not its closure I. Similarly to before, we let S(k)
n

serve as an abbreviation for S(k)
n (R).

Once again, if k = 0 then this is just Schoenberg’s Theorem 1.1, which yields a large
class of transforms. In contrast, if k > 0 then we again obtain a far smaller class.

Theorem 1.4. Let I := (−ρ, ρ), where 0 < ρ ≤ ∞, and let k be a positive integer.
Given a function f : I → R, the following are equivalent.

(1) The entrywise transform f [−] sends S(k)
n (I) to S(k)

n for all n ≥ k.
(2) The function f is either linear and of the form f(x) ≡ f(0)+cx, where f(0) ≥ 0

and c > 0, or constant, so that f(x) ≡ d for some d ∈ R.

Theorems 1.2, 1.3 and 1.4 are negativity-preserving results. All three statements turn
out to be consequences of the following unifying theorem that we prove in Section 2
below.

Theorem A. Let I := (−ρ, ρ), where 0 < ρ ≤ ∞, and let k and l be positive integers.
Given a function f : I → R, the following are equivalent.

(1) The entrywise transform f [−] sends S(k)
n (I) to S(l)

n for all n ≥ k.

(2) The entrywise transform f [−] sends S(k)
n (I) to S(l)

n for all n ≥ k.
(3) Exactly one of the following occurs:

(a) the function f is constant, so that f(x) ≡ d for some d ∈ R;
(b) it holds that l ≥ k and f is linear, with f(x) ≡ f(0) + cx, where c > 0 and

also f(0) ≥ 0 if l = k.

If instead k ≥ 1 and l = 0 then the entrywise transform f [−] sends S(k)
n (I) (and so

S(k)
n (I)) to S(0)

n = S(0)
n for all n ≥ k if and only if f(x) ≡ c for some c ≥ 0.

Finally, if k = 0 and l ≥ 1 then the entrywise transform f [−] sends S(0)
n (I) to S(l)

n

for all n ≥ 1 if and only if

f(x) =
∞∑
n=0

cnx
n for all x ∈ (−ρ, ρ), where cn ≥ 0 for all n ≥ 1.

Note that setting k = l = 0 in Theorem A(1) (the missing case) gives exactly
hypothesis (1) of Schoenberg’s Theorem 1.1.

The class of functions identified in Theorem A when k = 0 and l ≥ 1 is independent
of l and coincides with the dimension-free entrywise preservers for two related but
distinct constraints: (a) conditional positivity, as noted above (1.1), and (b) Loewner

monotonicity, so that f [A]− f [B] ∈ S(0) whenever A−B ∈ S(0). The latter claim is a
straightforward consequence of Schoenberg’s Theorem 1.1; see [25, Theorem 19.2].

Remark 1.5. A striking consequence of Theorem A is as follows. For any polynomial
function f , if the negative spectral multiplicity of f [C] is uniformly bounded above
for any sufficiently large matrix C then f cannot have any quadratic or higher-order
terms. The proof of this result is given in the next section, and uses Sidon sets (also
known as Bd sets) from additive combinatorics and number theory, whose study was
pioneered by Erdös and Turán and developed by Chowla, among others.
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1.2. Multi-variable transforms and non-balanced domains. Given the results
described above, it is natural to explore extensions in two directions, aligned to previous
work. In the sequel, for any integers m and n with m ≤ n, we let [m : n] denote the
set {m,m+ 1, . . . , n} = [m,n] ∩ Z.

• Functions acting on matrices with entries in I = (0, ρ) (positive entries) or
in I = [0, ρ) (non-negative entries). For preservers of positive semidefiniteness,
this problem was considered by Loewner and Horn [20] and Vasudeva [38] for
the case ρ = ∞, and then in recent work [5] for finite ρ. In each case, the
class obtained consists of functions represented by convergent power series with
non-negative Maclaurin coefficients.
• Functions acting on m-tuples of matrices. A function f : Im → R acts entrywise

on m-tuples of matrices with entries in I: if B(p) = (b
(p)
ij ) is an n×n matrix for

p = 1, . . . , m then the n× n matrix f [B(1), . . . , B(m)] has (i, j) entry

f [B(1), . . . , B(m)]ij = f(b
(1)
ij , . . . , b

(m)
ij ) for all i, j ∈ [1 : n].

In this case, the classification of preservers in the positive-semidefinite setting
was achieved by FitzGerald, Micchelli and Pinkus [15] when I = R, and then
in our recent work [5] over smaller domains.

Given a multi-index α = (α1, . . . , αm) ∈ Zm+ , where Z+ = {0, 1, 2, . . .} is the set
of non-negative integers, and a point x = (x1, . . . , xm) ∈ Rm, we use the standard
notation xα := xα1

1 · · ·xαm
m .

Theorem 1.6 ([5]). Let I = (−ρ, ρ), (0, ρ) or [0, ρ), where 0 < ρ ≤ ∞, and let m
be a positive integer. The function f : Im → R acts entrywise to send m-tuples of
positive semidefinite matrices with entries in I of arbitrary size to the set of positive
semidefinite matrices if and only if f is represented on Im by a convergent power series
with non-negative coefficients:

f(x) =
∑

α∈Zm
+

cαxα for all x ∈ Im, where cα ≥ 0 for all α. (1.3)

Below, we extend this result to the complete classification of negativity-preserving
transforms acting on tuples of matrices, in the spirit of the one-variable results above,
over the three types of domain: I = (−ρ, ρ), (0, ρ) or [0, ρ), where 0 < ρ ≤ ∞.
The key to this is a multi-variable strengthening of Theorem A which also applies to
these three different types of domain. The proof of this result, Theorem B, appears
in Sections 4 and 5, together with the necessary supporting results and subsequent
corollaries: Section 4 is concerned with the extension of Theorem A to several variables
and Section 5 then allows the restriction of I from (−ρ, ρ) to (0, ρ) or [0, ρ).

Notation 1.7. In Theorem A, the parameters k and l control the degree of negativity in
the domain and the co-domain, respectively. In the multi-variable setting, the domain
parameter k becomes an m-tuple of non-negative integers k = (k1, . . . , km). Given such
a k, we may permute the entries so that any zero entries appear first: more formally,
there exists m0 ∈ [0 : m] with kp = 0 for p ∈ [1 : m0] and kp ≥ 1 for p ∈ [m0 + 1 : m].
We say that k is admissible in this case and let kmax := max{1, kp : p ∈ [1 : m]},

S(k)
n (I) := S(k1)

n (I)× · · · × S(km)
n (I), and S(k)

n (I) := S(k1)
n (I)× · · · × S(km)

n (I).
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We now provide the result that unifies both Schoenberg’s theorem and Theorem A.
Its necessarily technical statement shows a separation of variables, combining additively
two kinds of preservers: the rich class of multi-variable power series on one side and
the rigid family of homotheties on the other.

Theorem B (A Schoenberg-type theorem with negativity constraints). Let I :=
(−ρ, ρ), (0, ρ), or [0, ρ), where 0 < ρ ≤ ∞, let l and m be non-negative integers,
with m ≥ 1, and let k ∈ Zm+ be an admissible tuple. Given any function f : Im → R,
the following are equivalent.

(1) The entrywise transform f [−] sends S(k)
n (I) to S(l)

n for all n ≥ kmax.

(2) The entrywise transform f [−] sends S(k)
n (I) to S(l)

n for all n ≥ kmax.
(3) There exists a function F : (−ρ, ρ)m0 → R and a non-negative constant cp for

each p ∈ [m0 + 1 : m] such that
(a) we have the representation

f(x) = F (x1, . . . , xm0) +
m∑

p=m0+1

cpxp for all x ∈ Im, (1.4)

(b) the function x′ := (x1, . . . , xm0) 7→ F (x′)−F (0m0) is absolutely monotone,
that is, it is represented on Im0 by a convergent power series with all
Maclaurin coefficients non-negative, and

(c) we have the inequality

1F (0)<0 +
∑
p:cp>0

kp ≤ l.

[Here and below, the quantity 1P has the value 0 if the proposition P is false and 1 if
it is true.]

Theorem B unifies all of the potentially disparate cases for k and l, such as those
considered in the one-variable Theorem A, into one set of assertions; the multivariable
formulation seems to add clarity to the situation. For instance, if k = 0 and l > 0
then (3)(c) is vacuously true, whereas if l = 0 then condition (3)(c) requires that
f(0m) = F (0m0) ≥ 0. Moreover, when k = 0 and l = 0 we recover Theorem 1.6 and, in
particular, Schoenberg’s theorem. Similarly, if m = 1 and I = (−ρ, ρ) then we recover
Theorem A.

Given previous results, the fact that the transforms classified by Theorem B are real
analytic is to be expected, but their exact structure is surprising.

Theorem B is the building block we use to obtain the classification of negativity-
preserving transforms in several variables. The classes of transforms do not depend on
the choice of one-sided or two-sided domains, akin to the one-variable setting.

We complete the paper by proving complex-valued counterparts to the preceding
statements, now applying to Hermitian matrices. In this case, the complex analogue of
Schoenberg’s theorem in one variable was proved by Herz [19]; the multivariable result
was obtained by FitzGerald, Micchelli and Pinkus:

Theorem 1.8 ([15]). Let m be a positive integer. The function f : Cm → C acts
entrywise to send m-tuples of positive semidefinite complex Hermitian matrices to the
set of positive semidefinite matrices if and only if f is represented on Cm by a convergent
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power series in z = (z1, . . . , zm) and z = (z1, . . . , zm) with non-negative coefficients:

f(z) =
∑

α,β∈Zm
+

cα,βzαzβ for all z ∈ Cm, where cα,β ≥ 0 for all α,β. (1.5)

With Theorem 1.8 at hand, we provide the complex analogue of our main result.

Theorem C. Let l and m be non-negative integers, with m ≥ 1, and let k ∈ Zm+ be an
admissible tuple. Given any function f : Cm → C, the following are equivalent.

(1) The entrywise transform f [−] sends S(k)
n (C) to S(l)

n (C) for all n ≥ kmax.

(2) The entrywise transform f [−] sends S(k)
n (C) to S(l)

n (C) for all n ≥ kmax.
(3) There exists a function F : Cm0 → C and non-negative constants cp and dp for

each p ∈ [m0 + 1 : m] such that
(a) we have the representation

f(z) = F (z1, . . . , zm0) +

m∑
p=m0+1

(
cpzp + dpzp

)
for all z ∈ Cm, (1.6)

(b) the function z′ := (z1, . . . , zm0) 7→ F (z′) − F (0m0) is represented on Cm0

by a convergent power series in z′ and z′ with non-negative coefficients, as
in (1.5), and

(c) we have the inequality

1F (0)<0 +
∑
p:cp>0

kp +
∑
p:dp>0

kp ≤ l

and the constant f(0m) = F (0m0) is real.

Although it may seem elementary, a central technique for narrowing down the class
of negativity-preserving transforms to the hyper-rigid forms listed above is to test
them on non-orthogonal “weighted sums of squares”, that is, linear combinations of
carefully chosen rank-one matrices. Starting with Horn’s landmark dissertation [20],
this is a key ingredient in almost all structured-matrix-preserver studies [25]. A second
key technique in our proofs is the inflation and deflation of symmetric matrices along
isogenic blocks [6].

1.3. Organization of the paper. In Section 2, we prove Theorem A and then deduce
from it Theorems 1.2, 1.3 and 1.4. Working in the one-variable setting and with the
two-sided domain I = (−ρ, ρ) allows us to introduce several key ideas and techniques
in less complex circumstances, and these will then be employed in the multi-variable
setting and with one-sided domains.

We next explore the territory of Pontryagin space and classify in Section 3 the
entrywise transforms of indefinite Gram matrices in this environment.

In Sections 4, 5, and 6 we prove the several-variables results mentioned above, first
over the two-sided product domain, then on the one-sided versions, and finally, over C.
In each section, this is followed by the classification of negativity preservers, extend-
ing the results obtained in the single-variable case. We conclude with an appendix
that proves a multi-variable Bernstein theorem, asserting that absolutely monotone
functions on (0, ρ)m necessarily have power-series representations with non-negative
Maclaurin coefficients.
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1.4. Notation. We let R denote the set of real numbers and Z+ = {0, 1, 2, . . .} the
set of non-negative integers. Given a, b ∈ Z+ with a < b, we let [a : b] := [a, b] ∩ Z+.
If ρ =∞ then ρ/a and ρ− a also equal ∞, for any finite a > 0. We also set 00 := 1.

2. Inertia preservers for matrices with real entries

We now begin to address the results appearing in the introduction. In this section,
we will consider functions with domain I = (−ρ, ρ). The proofs below involve several
key ideas:

(a) the translation g of f , where g(x) := f(x)− f(0);
(b) a “replication trick” that we will demonstrate shortly (see (2.2) and thereafter);
(c) a result from previous work [16], that functions sending positive matrices of

rank at most k to ones of rank at most l are necessarily polynomials;
(d) the use of Sidon sets (also known as Bd sets) from number theory and additive

combinatorics;
(e) the following lemma.

Lemma 2.1. Let h : I → R be absolutely monotone, where I := (−ρ, ρ) and 0 < ρ ≤ ∞,

and let C :=

[
A B
B A

]
, where A, B ∈ S(0)

n (I) are positive semidefinite matrices.

(1) If A−B ∈ S(k)
n for some non-negative integer k then C ∈ S(k)

2n (I).

(2) If h[C] ∈ S(l)
2n for some non-negative integer l then h[A]− h[B] ∈ S(l)

n .

Proof. Note first that

JT
[
A B
B A

]
J =

[
A+B 0

0 A−B

]
, where J :=

1√
2

[
Idn −Idn
Idn Idn

]
(2.1)

is orthogonal and Idn is the n × n identity matrix. As A + B is positive semidefinite,

it follows from (2.1) that if A−B ∈ S(k)
n then C ∈ S(k)

2n (I).

Next, if h[C] ∈ S(l)
2n then another application of (2.1) gives that[

h[A] + h[B] 0
0 h[A]− h[B]

]
∈ S(l)

2n .

Schoenberg’s Theorem 1.1 gives that h[A] + h[B] is positive semidefinite and therefore

h[A]− h[B] ∈ S(l)
n , as claimed. �

In addition to the key ideas, we will use a further two lemmas. The first is the
following basic consequence of Weyl’s interlacing theorem.

Lemma 2.2. Suppose A ∈ S(k)
n for some positive integer n and non-negative integer k.

If B ∈ S(0)
n has rank 1 then A + B ∈ S(k−1)

n ∪ S(k)
n and A − B ∈ S(k)

n ∪ S(k+1)
n (where

S(−1)
n := ∅ and S(n+1)

n := ∅).

Proof. Let λ1(C) ≤ · · · ≤ λn(C) denote the eigenvalues of the n × n real symmetric
matrix C, repeated according to multiplicity, and let λ0(C) := −∞ and λn+1(C) :=∞.

We note first that C ∈ S(k)
n if and only if 0 ∈ (λk(C), λk+1(C)], for k = 0, 1, . . . , n.
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If A and B are as in the statement of the lemma, then the following inequalities are
a corollary [21, Corollary 4.3.9] of Weyl’s interlacing theorem:

λ1(A) ≤ λ1(A+B) ≤ λ2(A) ≤ · · · ≤ λn(A) ≤ λn(A+B).

It follows that 0 ∈ (λk(A), λk+1(A)] = I1 ∪ I2, where I1 := (λk(A), λk(A + B)] and
I2 := (λk(A+B), λk+1(A)].

Then either k ≥ 1 and 0 ∈ I1 ⊆ (λk−1(A + B), λk(A + B)], so A + B ∈ S(k−1)
n , or

0 ∈ I2 ⊆ (λk(A+B), λk+1(A+B)], so A+B ∈ S(k)
n . The first claim follows.

For the second part, note that A−B ∈ S(l)
n for some l ∈ {0, . . . , n}, so the previous

working gives that A = (A − B) + B ∈ S(l−1)
n ∪ S(l)

n . As A ∈ S(k)
n , it follows that

l − 1 = k or l = k. This completes the proof. �

The next lemma is a simple but useful observation about inertia.

Lemma 2.3. Let p and q be non-negative integers and suppose {u1, . . . ,up,v1, . . . ,vq}
is a set of linearly independent vectors in Rn, so that n ≥ p+ q. The matrix

u1u
T
1 + · · ·+ upu

T
p − v1v

T
1 − · · · − vqv

T
q

has exactly p positive and q negative eigenvalues.

Proof. If necessary, we extend the given set to a basis by adding vectors w1, . . . , wr,
where r = n−p−q. If C is the n×n matrix with these basis vectors as columns and B
is the n× n matrix defined in the statement of the lemma then B = CDCT , where

D =

Idp 0 0
0 −Idq 0
0 0 0r×r

 .
The matrix C has full rank, so is invertible, and it follows from Sylvester’s law of inertia
[21, Theorem 4.5.8] that B and D have the same inertia. �

Proof of Theorem A. We first show that (3) implies (2) (and this holds without any
restrictions on the domain I ⊆ R).

If f(x) ≡ d for some d ∈ R then f [A] ∈ S(1)
n ⊆ S(l)

n , since the matrix d1n×n = d1n1
T
n

has nullity at least n − 1 and the eigenvalue nd. This also gives one implication for

the final claim in the statement of the theorem, since f [A] = d1n×n ∈ S(0)
n if d ≥ 0.

Moreover, if d < 0 then f [A] ∈ S(1)
n and so f does not map S

(k)
n into S(0)

n in this case.

Next, suppose f(x) = f(0) + cx with c > 0, and let A ∈ S(k)
n . If f(0) ≥ 0 then

f [A] = f(0)1n×n + cA ∈ S(k−1)
n ∪ S(k)

n , by Lemma 2.2, and so f [A] ∈ S(l)
n as long as

l ≥ k. If instead f(0) < 0 then, again by Lemma 2.2, f [A] = f(0)1n×n + cA has at
most k + 1 negative eigenvalues and k + 1 ≤ l as long as l > k.

This shows (3) =⇒ (2) and its l = 0 analogue in the penultimate sentence of
Theorem A. For the k = 0 analogue in the final sentence, if f has the prescribed

form then g : x 7→ f(x) − f(0) is absolutely monotone, so g[−] : S(0)
n (I) → S(0)

n by

Schoenberg’s Theorem 1.1. Now Lemma 2.2 implies that f [−] : S(0)
n (I)→ S(1)

n ⊆ S(l)
n ,

as required.
Next, we note that this working also yields the implication (3) =⇒ (1), including

the l = 0 analogue. Indeed, if (3) holds and k′ ∈ [1 : k] then the transform f [−] maps
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S(k′)
n (I) to S(l)

n by the (3) =⇒ (2) result, whereas f [−] maps S(0)
n (I) to S(l)

n by the
k = 0 analogue.

That (1) implies (2) is immediate. It remains to show (2) =⇒ (3). Henceforth, we
suppose that I = (−ρ, ρ), where 0 < ρ ≤ ∞, the non-negative integers k and l are not

both zero, and f : I → R is such that f [−] : S(k)
n (I) → S(l)

n for all n ≥ k, or for all
n ≥ 1 if k = 0.

To show that f has the form claimed in each case, we proceed in a series of steps.
Step 1: Let g : I → R be defined by setting g(x) := f(x) − f(0). Then g is absolutely
monotone.

Indeed, by Lemma 2.2, g[−] : S(k)
N (I) → S(l+1)

N for all N ≥ k. If A ∈ S(0)
n (I), then

the block-diagonal matrix

D := (−t0 Idk)⊕A⊕(l+2) ∈ S(k)
N ,

where t0 ∈ (0, ρ), there are l+ 2 copies of A along the block diagonal, and we have that
N = k + (l + 2)n. It follows that

g[D] = (g(−t0) Idk)⊕ g[A]⊕(l+2) ∈ S(l+1)
N . (2.2)

Thus, the block-diagonal matrix g[A]⊕(l+2) can have at most l+1 negative eigenvalues.
This is only possible if g[A] has no such eigenvalues, which implies that g[A] is positive
semidefinite whenever A is. Thus, by Schoenberg’s Theorem 1.1, the function g is
absolutely monotone. (This is the replication trick mentioned at the beginning of this
section.)

If k = 0 we are now done, so henceforth we assume that k ≥ 1.

Step 2: If g is as in Step 1 and B ∈ S(0)
n (I) has rank k then g[B] has rank at most l.

Define an absolutely monotone function h : I → R by setting h(x) := f(x) + |f(0)|.
If C ∈ S(k)

n (I) then f [C] ∈ S(l)
n , by assumption, and so h[C] = f [C]+ |f(0)|1n×n ∈ S(l)

n ,

by Lemma 2.2. Thus h[−] : S(k)
n (I) → S(l)

n for all n ≥ k. Applying Lemma 2.1 with
the matrices A = 0n×n and B as above yields

−g[B] = h[0n×n]− h[B] ∈ S(l)
n .

However, the matrix g[B] is positive semidefinite, by Schoenberg’s Theorem 1.1, so it
has no negative eigenvalues, and hence has rank at most l.

We now resolve the l = 0 case in Step 3, before working with l > 0 in Steps 4 and 5.

Step 3: If f [−] : S(k)
n (I)→ S(0)

n for all n ≥ k then f is constant.
Suppose this holds; let t0 ∈ (0, ρ) and note that the function g from Step 1 applied

entrywise sends the matrix t0Idk to g(t0)Idk. By Step 2, the latter matrix has rank 0,
so g(t0) = 0. Since g is absolutely monotone and vanishes on (0, ρ), it must be zero,
by the identity theorem. Hence f is constant.
Step 4: If f is non-constant then f is linear with positive slope.

Let g(x) =
∑∞

j=1 cjx
j , where cj ≥ 0 for all j. We first recall [16, Theorems A and B],

which imply that if n ≥ max{k, l+ 3} and the entrywise transform g[−] sends matrices

in S(0)
n (I) with rank at most k to matrices with rank at most l, then g is a polynomial.

Hence it follows from these results and Step 2 that g is a polynomial. Moreover, by

Lemma 2.2, we have that g[−] : S(k)
n (I)→ S(l+1)

n for all n ≥ k.
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We now suppose for contradiction that cr > 0 for some r ≥ 2. Let N ≥ l + 3 be a
positive integer and, for some u0 ∈ (0, 1), let

u := (1, u0, . . . , u
N−1
0 )T ∈ (0, 1]N . (2.3)

For any tuple of distinct positive integers s = (s0, . . . , sl+2), the vectors

u◦si = (1, usi0 , . . . , u
(N−1)si
0 )T

(
i ∈ [0 : l + 2]

)
are linearly independent, as they form l + 3 columns of a generalized Vandermonde
matrix. Our strategy is to apply g[−] to a matrix of the form C := B ⊕ −t0Idk−1,
where

B := t0

(
−εu◦s0(u◦s0)T +

l+2∑
i=1

u◦si(u◦si)T
)
∈ S(1)

N (2.4)

as long as t0 and ε are both positive, by Lemma 2.3. Then C lies in S(k)
N+k−1

(
(0, ρ)

)
whenever t0 ∈

(
0, ρ/(l + 2)

)
and ε is positive and sufficiently small. It follows that

g[C] = g[B]⊕ g(−t0)Idk−1

has at most l + 1 negative eigenvalues, whence so does the N × N matrix g[B]. We
will show this to be false for a judicious choice of s: its entries will form a generalized
Sidon set, as explained in Remark 2.4.

We now let si := (d+ 1)i for i ∈ [0 : l+ 2], where d is the degree of the polynomial g,
and suppose N > (d+ 1)l+3. We compute by multinomial expansion that

g[B] =
d∑
j=1

cjt
j
0

∑
m0+···+ml+2=j

(−ε)m0

(
j

m0, . . . ,ml+2

)
wmwT

m, (2.5)

where the sum is taken over m = (m0, . . . ,ml+2) ∈ Zl+3
+ , the vector

wm := u◦s·m ∈ RN and s ·m =

l+2∑
i=0

mi(d+ 1)i.

By considering base-(d+1) representations of non-negative integers, it is clear that the
map

[0, d]l+3 → Z; m 7→ s ·m =
l+2∑
i=0

mi(d+ 1)i

is injective and its domain [0 : d]l+3 has size (d+1)l+3 < N . It follows by Vandermonde
theory that the collection of vectors of the form wm appearing in (2.5) is linearly
independent. Hence, by Lemma 2.3, the matrix g[B] has precisely as many negative
eigenvalues as there are summands in (2.5) with a negative coefficient, that is, those
with cj > 0 and m0 odd. There are at least l+ 2 such summands, when j = d > 1 and

m ∈
{

(1, d− 1, 0, . . . , 0), (1, 0, d− 1, 0, . . . , 0), . . . , (1, . . . , 0, d− 1)
}
.

Hence g[B] has at least l + 2 negative eigenvalues, which is the desired contradiction.
Step 5: Concluding the proof.

We may assume f(x) = f(0) + cx, where c > 0, and we must show that l ≥ k and
that f(0) ≥ 0 if l = k.
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If l > k there is nothing to prove. If l < k then we claim no such function f exists.
Let {v1 := 1k+1, v2, . . . , vk+1} be an orthogonal basis of Rk+1, fix δ ∈ (0, ρ), and choose
a positive ε small enough so that the entries of the matrix

A := δ1k+11
T
k+1 − ε

k+1∑
j=2

vjv
T
j (2.6)

lie in (0, ρ). Then A ∈ S(k)
k+1(I) and

f [A] = (f(0) + cδ)1k+11
T
k+1 − cε

k+1∑
j=2

vjv
T
j ∈ S

(k)
k+1 ∪ S

(k+1)
k+1 ,

as we know the eigenvalues explicitly. Hence f [−] cannot send S(k)
k+1(I) to S(l)

k+1 if l < k.
The final case to consider is when l = k and f(0) < 0, but the counterexample (2.6)

also works here if we insist that δ < |f(0)|/c, whence f(0) + cδ < 0 and therefore

f [A] ∈ S(k+1)
k ; this shows that f [A] 6∈ S(l)

k+1. �

Remark 2.4. For completeness, we note that the specific integers sj = (d+1)j chosen
in the proof of Step 4 above work because the map m 7→ s ·m is injective. As long as N
is taken sufficiently large, we could instead have used any real tuple s that satisfies this
condition; such positive-integer tuples, for a fixed value of

∑
jmj , are called Bd or Sidon

sets. This is a very well studied notion in number theory and additive combinatorics; for
early work in this area, see Singer [37], Erdös and Turán [13], and Bose and Chowla [10].

Remark 2.5. Atzmon and Pinkus studied entrywise transforms of rectangular matrices
that preserve bounds on rank: see [1].

With Theorem A at hand, we show the remaining results above.

Proof of Theorems 1.2 and 1.3. It is straightforward to verify that (2) implies (1) for
both theorems.

Next, suppose k ≥ 1. If f [−] preserves the inertia of all matrices in S(k)
n (I) then

f [−] sends S(k)
n (I) into S(k)

n . If this holds for all n then Theorem A with l = k gives
that either f(x) ≡ d for some d ∈ R, or f is linear, so f(x) ≡ f(0) + cx, with f(0) ≥ 0
and c > 0.

If k ≥ 2 then f(x) ≡ d cannot send S(k)(I) to S(k). Moreover, if k = 1 then indeed

f(x) ≡ d preserves S(1) for d < 0 and does not do so if d ≥ 0. Finally, if t0 ∈ (0, ρ/2)

then the matrix t0

[
1 2
2 1

]
shows that no constant function preserves the inertia of all

matrices in S(1)(I). Thus, we now assume f is of the form f(x) = f(0) + cx, with
f(0) ≥ 0 and c > 0, and show that f(0) = 0.

By hypothesis, if t0 ∈ (0, ρ) then

f [−t0Idk] = f(0)1k×k − ct0Idk ∈ S
(k)
k . (2.7)

As f(0)1k×k has the eigenvalue kf(0), so f [−t0Idk] has the eigenvalue kf(0) − ct0,
which can be made positive if f(0) > 0 by taking t0 sufficiently small. Thus f(0) = 0
and this concludes the proof for k ≥ 1.
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It remains to show that (1) implies (2) in Theorem 1.2 when k = 0. If f [−] preserves
the inertia of positive semidefinite matrices then, by Schoenberg’s Theorem 1.1, the
function f has a power-series representation f(x) =

∑∞
n=0 cnx

n on I, with cn ≥ 0
for all n ≥ 0. Suppose cr > 0 and cs > 0 for distinct non-negative integers r and s.
Applying f [−] to the rank-one matrix A = t0uuT , where u = (1, 1/2)T and t0 ∈ (0, ρ),
and using the Loewner ordering, we see that

f [A] ≥ crA◦r + csA
◦s = crt

r
0u
◦r(u◦r)T + cst

s
0u
◦s(u◦s)T ,

where u◦r and u◦s are not proportional. Hence f [A] is positive definite, and therefore
non-singular, while A is not. This contradicts the hypotheses, so the power series
representing f has at most one non-zero term.

Finally, we claim that f is a homothety. If not, say f(x) = cxn for c > 0 and n ≥ 2,
then we apply f to the rank-2 matrix B = t0(13×3 + uuT ), where u = (x, y, z)T has
distinct positive entries and t0 is positive and sufficiently small to ensure B has entries
in I. The binomial theorem gives that

B◦n = tn0

n∑
j=0

(
n

j

)
(xj , yj , zj)(xj , yj , zj)T ≥ tn0

2∑
j=0

(
n

j

)
(xj , yj , zj)(xj , yj , zj)T =: B′,

and the column space of B′ contains (xj , yj , zj)T for j = 0, 1, and 2. These three vectors
are linearly independent, as a Vandermonde determinant demonstrates, so B′ is positive
definite, hence non-singular. Then so is B◦n, while B has rank 2 by construction. This
contradicts the hypothesis, and so n = 1 and f(x) = cx as claimed. �

Proof of Theorem 1.4. If f is constant then f [A] ∈ S(1)
n ⊆ S(k)

n for any n× n matrix A
and any positive integer k. Furthermore, if f(x) = f(0) + cx, with c > 0 and f(0) ≥ 0,

then f [A] = f(0)1n×n + cA ∈ S(k)
n for any A ∈ S(k)

n , by Lemma 2.2.

Conversely, if f [−] sends S(k)
n (I) to S(k)

n for all n ≥ 1 then, in particular, it sends

S(k)
n (I) to S(k)

n . Theorem A now shows that f has the form claimed. �

3. Entrywise preservers of k-indefinite Gram matrices

3.1. Gram matrices in Pontryagin space. In analogy with the standard version of
Schoenberg’s theorem, we may interpret the main result of this section as a classification
of entrywise preservers of finite correlation matrices in a Hilbert space endowed with
an indefinite metric. To be more specific, we introduce the following terminology.

Definition 3.1. A Pontryagin space is a pair (H,J), where H is a separable real
Hilbert space and J : H → H is a bounded linear operator such that J = J∗ and
J2 = IdH , the identity operator on H. Note that J is an isometric isomorphism.

We write J = P+ − P−, where P+ and P− are orthogonal projections onto the
eigenspaces H+ := {x ∈ H : Jx = x} and H− := {x ∈ H : Jx = −x}, respectively, so
that H = H+ ⊕H−.

We say that the Pontryagin space has negative index k if dimH− = k. We assume
henceforth that k is positive and finite.

Here we follow Pontryagin’s original convention from [30], that the negative index
is taken to be finite, as opposed to that used by Azizov and Iokhvidov [2], where the
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positive index dimH+ is required to be finite. In the same way that the sign choice
for Lorentz metric is merely a convention, there is no difference between the theories
which are obtained.

These spaces provide the framework for a still active, important branch of spectral
analysis. We refer the reader to the classic monograph on the subject [2].

Definition 3.2. The Pontryagin space (H,J) carries a continuous symmetric bilinear
form [·, ·], where

[u, v] := 〈u, Jv〉 for all u, v ∈ H.
Given any u ∈ H, let u+ := P+u and u− := P−u, so that u = u++u− and Ju = u+−u−.
Then

[u+ + u−, u+ + u−] = ‖u+‖2 − ‖u−‖2.

The analogy with Minkowski space endowed with the Lorentz metric is obvious and
it goes quite far [2]. We include, for completeness, a proof of the following well known
lemma.

Lemma 3.3. (1) Suppose (H,J) is a Pontryagin space of negative index k. If
(v1, . . . , vn) is an n-tuple of vectors in the Hilbert space H and

aij := [vi, vj ] for all i, j ∈ [1 : n]

then the n× n correlation matrix A = (aij)
n
i,j=1 is real, symmetric, and admits

at most k negative eigenvalues, counted with multiplicity.
(2) Conversely, let A = (aij)

n
i,j=1 be a real symmetric matrix with at most k negative

eigenvalues, counted with multiplicity. There exists a Pontryagin space (H,J)
of negative index k and an n-tuple of vectors (v1, . . . , vn) in H such that

aij = [vi, vj ] for all i, j ∈ [1 : n].

Having reminded the reader that we count eigenvalues with multiplicity, we again
leave this implicit.

Proof. (1) That A is real and symmetric is immediate. Let T : Rn → H be the linear
transform mapping the canonical basis vector ej into vj for j = 1, . . . , n. Then

aij = 〈ei, T ∗JTej〉 for all i, j ∈ [1 : n],

and the self-adjoint operator T ∗JT = T ∗P+T − T ∗P−T has at most k negative eigen-
values.

(2) Let T denote the linear transformation of Euclidean space Rn corresponding to
the given matrix A. Thus

aij = 〈ei, T ej〉 for all i, j ∈ [1 : n],

where e1, . . . , en are the canonical basis vectors in Rn. The spectral decomposition of T
provides orthogonal projections Q+ and Q− = Id − Q+ on Rn that commute with T
and are such that TQ+ ≥ 0, −TQ− ≥ 0, and r := rankQ− ≤ k.

Setting H+ := Q+Rn and H− := (Q−Rn)⊕Rk−r, let (H,J) be the Pontryagin space
of negative index k obtained by equipping H = H+⊕H− with the map J : x+ +x− 7→
x+ − x− for all x+ ∈ H+ and x− ∈ H−.
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Let vi :=
√
TQ+ei +

√
−TQ−ei for i = 1, . . . , n. Since

√
TQ+ maps Rn into H+

and
√
−TQ− maps Rn into H−, we have that

[vi, vj ] = 〈
√
TQ+ei +

√
−TQ−ei, J(

√
TQ+ej +

√
−TQ−ej)〉

= 〈
√
TQ+ei,

√
TQ+ej〉 − 〈

√
−TQ−ei,

√
−TQ−ej〉

= 〈ei, TQ+ej〉+ 〈ei, TQ−ej〉
= 〈ei, T (Q+ +Q−)ej〉
= aij . �

A small variation of the first observation above provides the following stabilization
result.

Corollary 3.4. Let (vj)
∞
j=1 be a sequence of vectors in a Pontryagin space of negative

index k. There exists a threshold N such that the number of negative eigenvalues of
the Gram matrix

(
[vi, vj ]

)n
i,j=1

is constant for all n ≥ N .

Proof. For any n ≥ 1, the Gram matrix A[n] :=
(
[vi, vj ]

)n
i,j=1

can have no more than k

negative eigenvalues, by Lemma 3.3(1). Furthermore, by the Cauchy interlacing theo-
rem [21, Theorem 4.3.17], the number of negative eigenvalues in A[n] cannot decrease
as n increases. The result follows. �

We now establish a partial converse of the above corollary, employing an infinite-
matrix version of Lemma 3.3(2).

Lemma 3.5. Let (aij)
∞
i,j=1 be an infinite real symmetric matrix with the property that

every finite leading principal submatrix of it has at most k negative eigenvalues. Then
there exists a sequence of vectors (vj)

∞
j=1 in a Pontryagin space of negative index k such

that

aij = [vi, vj ] for all i, j ≥ 1.

Proof. One can select successively positive weights (wj)
∞
j=1 so that the infinite matrix

B = (bij)
∞
i,j=1 := (wiwjaij)

∞
i,j=1 = diag(w1, w2, . . .)(aij) diag(w1, w2, . . .)

has square-summable entries:
∞∑

i,j=1

b2ij <∞.

(To do this, choose wn so that the sum of the squares of the entries of B[n] = (bij)
n
i,j=1

that do not appear in B[n−1] = (bij)
n−1
i,j=1 is less than 2−n.)

Then the matrix B represents a self-adjoint Hilbert–Schmidt operator on `2 which
we denote by B as well. Since all finite leading principal submatrices of this matrix
have at most k negative eigenvalues, the operator B has at most k spectral points,
counting multiplicities, on (−∞, 0). (Suppose otherwise, so that there exists a (k+ 1)-
dimensional subspace U of `2 such that 〈x,Bx〉 < 0 whenever x ∈ U \ {0}. The
truncation Bn := B[n] ⊕ 0∞×∞ converges to B in the Hilbert–Schmidt norm, so in
operator norm, as n → ∞, and therefore 〈x,Bnx〉 < 0 for all x ∈ U \ {0} and all
sufficiently large n, a contradiction.)
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Hence there exists an orthogonal projection P− on `2 with r := rankP− ≤ k that
commutes with B and is such that D := −BP− ≥ 0 and C := BP+ ≥ 0, where
P+ := I − P−. We now proceed essentially as for the proof of Lemma 3.3(2).

Define a Pontryagin space (H,J) of negative index k by setting H := H+⊕H−, where
H+ := P+`

2 and H− := P−`
2 ⊕Rk−r, and J(x+ + x−) := x+ − x− whenever x+ ∈ H+

and x− ∈ H−. If (ej)
∞
j=1 is the canonical basis for `2 ⊆ H and vj := w−1

j (C1/2 +D1/2)ej
for all j ≥ 1 then

[vi, vj ] = w−1
i w−1

j 〈(C
1/2 +D1/2)ei, (C

1/2 −D1/2)ej〉 = w−1
i w−1

j 〈ei, (C −D)ej〉 = aij

for all i, j ≥ 1, as required. �

3.2. Preservers of k-indefinite Gram matrices. As a variation on Schoenberg’s
description of endomorphisms of correlation matrices of systems of vectors lying in
Hilbert space, we now classify the entrywise preservers of the Gram matrices of systems
of vectors in a real Pontryagin space of negative index k. We proceed by first introducing
some terminology and notation.

Definition 3.6. Given a non-negative integer k and a sequence of vectors (vj)
∞
j=1 in a

Pontryagin space, let aij := [vi, vj ]. The infinite real symmetric matrix A = (aij)
∞
i,j=1

is a k-indefinite Gram matrix if the leading principal submatrix A[n] := (ai,j)
n
i,j=1 has

exactly k negative eigenvalues whenever n is sufficiently large.
We denote the collection of all k-indefinite Gram matrices by Pk and we let Pk :=⋃k
j=0 Pj , the collection of j-indefinite Gram matrices for j = 0, . . . , k. By Lemma 3.5,

this is also the collection of all infinite real symmetric matrices whose leading principal
submatrices have at most k negative eigenvalues.

Our next result classifies the entrywise preservers of Pk and of Pk, in the spirit
of Theorems 1.3 and 1.4. The entrywise preservers of Gram matrices in Euclidean
space are precisely the absolutely monotone functions, by Schoenberg’s Theorem 1.1.
However, in the indefinite setting the set of preservers is much smaller.

Theorem 3.7. Fix a positive integer k and a function f : R→ R.

(1) The map f [−] : Pk → Pk if and only if f is a positive homothety, so that
f(x) ≡ cx for some c > 0, or k = 1, in which case we may have a negative
constant function, so that f(x) ≡ −c for some c > 0.

(2) The map f [−] : Pk →Pk if and only if f(x) ≡ d for some real constant d or
f(x) = f(0) + cx, with f(0) ≥ 0 and c > 0.

The key idea in the proof is to employ a construction introduced and studied in
detail in our recent work [6], which we now recall and study further.

Definition 3.8. Let π = {I1, . . . , Im} be a partition of the set of positive integers
[1 : N ] = {1, 2, . . . , N} into m non-empty subsets, so that m ∈ [1 : N ]. Define the

inflation Σ↑π : Rm×m → RN×N as the linear map such that

1{i}×{j} 7→ 1Ii×Ij ,

where 1A×B has (p, q) entry 1 if p ∈ A and q ∈ B, and 0 otherwise.

Thus, Σ↑π sends every m ×m matrix into one with blocks that are constant on the
rectangles defined by the partition π.
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Lemma 3.9. Suppose A is an m×m real symmetric matrix. Then Σ↑π(A) has the same
number of positive eigenvalues and the same number of negative eigenvalues, counted
with multiplicity, as A does.

Proof. Define the weight matrix Wπ ∈ RN×m to have (i, j) entry 1 if i ∈ Ij and 0
otherwise. As verified in [6], we have that

Σ↑π(A) =WπAWT
π for any A ∈ Rm×m and WT

πWπ = diag
(
|I1|, . . . , |Im|

)
.

Since each set in π is non-empty, the matrix Wπ has full column rank and so may be
extended to an invertible N×N matrix Xπ = [Wπ C] for some matrix C ∈ RN×(N−m).
Then

Xπ

[
A 0
0 0

]
XT
π =WπAWT

π = Σ↑π(A).

Since Xπ is invertible, it follows from Sylvester’s law of inertia [21, Theorem 4.5.8] that

Σ↑π(A) and

[
A 0
0 0

]
have the same inertia, and the proof is complete. �

With Lemma 3.9 at hand, we can prove Theorem 3.7. First we introduce some
notation.

Definition 3.10. Given an n× n real symmetric matrix

A =

[
A0 a

aT ann

]
(3.1)

and a positive integer m, let Am := Σ↑πm(A) be the inflation of A according to the
partition

πm :=
{
{1}, . . . , {n− 1}, {n, . . . , n− 1 +m}

}
,

so that

Am =


A0 a · · · a

aT ann · · · ann
...

...
. . .

...

aT ann · · · ann

 .
As A ∈ S(k)

n for some k ∈ {0, . . . , n}, it follows from Lemma 3.9 that Am ∈ S(k)
n−1+m

for all m ≥ 1. Hence there exists a k-indefinite Gram matrix Ã that can be considered
as the direct limit of the sequence of matrices (Am)∞m=1, where Ã = (gij)

∞
i,j=1 ∈Pk is

such that Ã[N ] = (gij)
N
i,j=1 = AN−n+1 for all N ≥ n. In particular, the matrix A is

recoverable from Ã, since Ã[n] = A.

Below, the collection of all k-indefinite Gram matrices of the form Ã for some A as
in (3.1) is denoted Pfin

k .

Note that f [A[n]] = f [A][n] for all n ≥ 1 and f [Am] = f [A]m for all m ≥ 1, which

implies that f̃ [A] = f [Ã], whenever these quantities are well defined.
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Proof of Theorem 3.7. (1) It is immediately seen that every positive homothety
preserves Pk and every negative constant sends P1 to itself. Furthermore,
if f [−] preserves Pk then it sends Pfin

k to Pk. We now show that

f [−] : Pfin
k →Pk if and only if f [−] : S(k)

n → S(k)
n for all n ≥ k.

Given this, the result follows at once from Theorem 1.3.

Suppose f [−] sends Pfin
k to Pk and let A ∈ S(k)

n for some n ≥ k. The

Gram matrix Ã ∈ Pfin
k so f̃ [A] = f [Ã] ∈ Pk by assumption. Hence the

leading principal submatrix f̃ [A][N ] ∈ S
(k)
N for all sufficiently large N , so for

some N ≥ n, but this matrix equals f [A]N−n+1, which has the same number of

negative eigenvalues as f [A], by Lemma 3.9. Thus f [−] maps S(k)
n to itself.

Conversely, suppose f [−] maps S(k)
n to itself for all n ≥ k and let Ã ∈ Pfin

k

for some A ∈ S(k)
n . We know that f [A] ∈ S(k)

n , by assumption, and therefore

f [Ã][N ] = f̃ [A][N ] = f [A]N−n+1 ∈ S(k)
n for all N ≥ n, again using Lemma 3.9.

Hence f [Ã] ∈Pfin
k ⊆Pk, as claimed.

(2) If f(x) ≡ d for some d ∈ R then f [B] = d̃ ∈ P1 ⊆ Pk for all k ≥ 1 and
any infinite matrix B. Similarly, if f(x) = f(0) + cx, with f(0) ≥ 0 and

c > 0, then f [B] = f̃(0) + cB, so f [A][n] = f(0)1n×n + cA[n] ∈ S
(k)
n for all

sufficiently large n if A ∈ Pk , by Lemma 2.2. In both cases we see that
f [−] : Pk → Pk. In turn, this condition implies that f [−] : Pfin

k → Pk. We

now claim that if f [−] : Pfin
k → Pk, then f is a real constant or linear of the

above form. Similarly to the previous part, this follows from Theorem A, given
the following claim:

f [−] : Pfin
k →Pk if and only if f [−] : S(k)

n → S(k)
n for all n ≥ k.

The proof of this equivalence follows the same lines as that in the previous part,
so the details are left to the interested reader. �

4. Multi-variable transforms with negativity constraints

We now turn to the analysis of functions of several variables, acting on tuples of
matrices with prescribed negativity. In the present section, we focus on functions of
the form f : Im → R, where I = (−ρ, ρ) for some 0 < ρ ≤ ∞. The next section will
address the cases where I = (0, ρ) and I = [0, ρ). We will then turn to the complex
setting in Section 6.

Recall that if B(p) = (b
(p)
ij ) is an n × n matrix with entries in I for all p ∈ [1 : m]

then the function f acts entrywise to produce the n× n matrix f [B(1), . . . , B(m)] with
(i, j) entry

f [B(1), . . . , B(m)]ij = f(b
(1)
ij , . . . , b

(m)
ij ) for all i, j ∈ [1 : n].

The negativity constraints on the domain are described by anm-tuple of non-negative
integers k = (k1, . . . , km). As noted in the introduction, we may permute the entries
of k so that any zero entries appear first: there exists m0 ∈ [0 : m] with kp = 0 for
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p ∈ [1 : m0] and kp ≥ 1 for p ∈ [m0 + 1 : m]. In this case, the m-tuple k is said to be
admissible. We let kmax := max{kp : p ∈ [1 : m]},

S(k)
n (I) := S(k1)

n (I)× · · · × S(km)
n (I), and S(k)

n (I) := S(k1)
n (I)× · · · × S(km)

n (I).

The simplest generalization of the one-variable preserver problem would involve taking
k1 = · · · = km = l, but the more general problem is more interesting (and also more
challenging). We now recall our generalization of Theorem A, but break it into two
parts for ease of exposition while proving it.

Theorem 4.1 (The cases k = 0 and l = 0). Let I = (−ρ, ρ), (0, ρ) or [0, ρ), where
0 < ρ ≤ ∞, and let k ∈ Zm+ be admissible. Given a function f : Im → R, the following
are equivalent.

(1) The entrywise transform f [−] sends S(k)
n (I) to S(0)

n for all n ≥ kmax.

(2) The entrywise transform f [−] sends S(k)
n (I) to S(0)

n for all n ≥ kmax.
(3) The function f is independent of xm0+1, . . . , xm and is represented on Im

by a convergent power series in the reduced tuple x′ := (x1, . . . , xm0), with all
Maclaurin coefficients non-negative.

If, instead, k = 0 and l ≥ 1 then f [−] sends S(0)
n (I) to S(l)

n if and only if the function f
is represented on Im by a power series

∑
α∈Zm

+
cαxα with cα ≥ 0 for all α ∈ Zm+ \ {0}.

The case of entrywise positivity preservers corresponds to taking k = 0 and l = 0.
The analogue of Schoenberg’s theorem holds, as shown by FitzGerald, Micchelli, and
Pinkus in [15]. Before that, Vasudeva [38] had obtained the one-sided, one-variable
version of Schoenberg’s theorem, which corresponds to taking m = 1 and I = (0,∞).
These results were extended to various smaller domains in our previous work: see
Theorem 1.6 above, the proof of which employs the multi-variable version of Bernstein’s
theorem on absolutely monotone functions. This theorem was obtained by Bernstein
[9] for m = 1, and then by Schoenberg [34] for m = 2. For m > 2, see Appendix A.

Schoenberg’s theorem and these generalizations yield a large collection of preservers.
Theorem 4.1 shows that a similarly rich class of preservers is obtained even if one
relaxes some (but not all) of the negativity constraints, from none to some, provided

that the codomain is still required to be S(0)
n .

We now complete the classification of the multi-variable transforms for the remaining
case of Theorem B. The class of functions obtained is given by a combination of the
rich class of absolutely monotone functions in the variables for which the corresponding
entries of k are zero and the rigid class of positive homotheties in a subset of the
remaining variables.

Theorem 4.2 (The case of k 6= 0 and l > 0). Let I := (−ρ, ρ), (0, ρ) or [0, ρ), where
0 < ρ ≤ ∞, let k be admissible and not equal to 0, and suppose l is a positive integer.
Given a function f : Im → R, the following are equivalent.

(1) The entrywise transform f [−] sends S(k)
n (I) to S(l)

n for all n ≥ kmax.

(2) The entrywise transform f [−] sends S(k)
n (I) to S(l)

n for all n ≥ kmax.
(3) There exists a function F : (−ρ, ρ)m0 → R and a non-negative constant cp for

each p ∈ [m0 + 1 : m] such that
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(a) we have the representation

f(x) = F (x1, . . . , xm0) +

m∑
p=m0+1

cpxp for all x ∈ Im, (4.1)

(b) the function x′ := (x1, . . . , xm0) 7→ F (x′)−F (0m0) is absolutely monotone,
that is, it is represented on Im0 by a convergent power series with all
Maclaurin coefficients non-negative, and

(c) we have the inequality

1F (0)<0 +
∑
p:cp>0

kp ≤ l.

In the above, we adopt the convention that if m0 = 0 then F (x1, . . . , xm0) is the
constant F (0) and (3)(b) is vacuously satisfied.

Remark 4.3. As asserted in [5, Remark 9.16] for the k = 0 case, there is no greater
generality in considering, for Theorems 4.1 and 4.2, domains of the form

(−ρ1, ρ1)× · · · × (−ρm, ρm), where 0 < ρ1, . . . , ρm ≤ ∞.
For finite ρp, one can introduce the scaling xp 7→ xp/ρp, whereas for infinite ρp, one can
truncate to (−N,N), scale and then use the identity theorem to facilitate the extension
to (−∞,∞).

The simplest multi-variable generalization mentioned above, k1 = · · · = km = l, is
a straightforward consequence of Theorem 4.2. The classification obtained is rigid and
very close to what is seen in Theorems 1.3 and 1.4.

Corollary 4.4. Let I := (−ρ, ρ), (0, ρ) or [0, ρ), where 0 < ρ ≤ ∞, let k and m be
positive integers, and let f : Im → R.

(1) The entrywise transform f [−] sends S(k1T
m)

n (I) to S(k)
n for all n ≥ k if and only

if f(x) = cxp0 for a constant c > 0 and some p0 ∈ [1 : m], or, when k = 1, we
may also have f(x) ≡ −c for some c > 0.

(2) The entrywise transform f [−] sends S(k1T
m)

n (I) to S(k)
n for all n ≥ k if and only

if f(x) = cxp0 + d for some p0 ∈ [1 : m], with either c = 0 and d ∈ R, or c > 0
and d ≥ 0.

It is not clear how to define inertia preservers when there are multiple matrices to
which an entrywise transform is applied. Hence we provide no version of Theorem 1.2
in Corollary 4.4. However, when we work over (0, ρ) or [0, ρ) in the next section, we
will give a proof of the analogue of Theorem 1.2 for these domains in the m = 1 case.

Proof. We first prove (1). The reverse implication is readily verified; for the forward
assertion, apply Theorem 4.2, noting that m0 = 0, to obtain that either f(x) ≡ F (0)

or f(x) = F (0) + cxp0 with F (0) ≥ 0 and c > 0. Now f ≡ F (0) cannot take S(k1T
m)

n (I)

to S(k)
n for any real F (0) if k ≥ 2, and for non-negative F (0) if k = 1. We next assume

that f(x) = F (0) + cxp0 ; to complete the proof, we need to show that F (0) = 0.

Taking B(1) = · · · = B(m) = −t0Idk for t0 ∈ (0, ρ), the working around (2.7) gives
that F (0) = 0.

Coming to (2), the reverse implication is trivial for c = 0, and follows from Lemma 2.2
if c > 0 and d ≥ 0. The forward implication follows immediately from Theorem 4.2. �
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4.1. The proofs. The remainder of this section is devoted to establishing Theorems 4.1
and 4.2 for the case I = (−ρ, ρ). In addition to the replication trick and multi-variable
analogues of various lemmas used above, a key ingredient is Lemma 3.9. This result is
indispensable for producing tuples of test matrices of the same large dimension while
preserving the number of negative eigenvalues.

The next proposition provides suitable multi-variable versions of Steps 1 and 2 from
the proof of Theorem A. In order to state it clearly, we introduce some notation.

Notation 4.5. Given n×n test matrices A(1), . . . , A(m) and constants ε1, . . . , εm, we
let the m-tuples A := (A(1), . . . , A(m)) and

A + ε1 := (A(1) + ε11n×n, . . . , A
(m) + εm1n×n), (4.2)

and similarly for B and B + ε1.
If P = {p1 < · · · < pk} is a non-empty subset of [1 : m] then AP and AP + εP1

denote the corresponding k-tuples with entries whose indices appear in P , so that
AP = (A(p1), . . . , A(pk)) and similarly for AP + εP1.

If α ∈ Zm+ then A◦α denotes the matrix (A(1))◦α1 ◦ · · · ◦ (A(m))◦αm , where ◦ denotes
the Schur product, so that A◦α has (i, j) entry

A◦αij = (A
(1)
ij )α1 · · · (A(m)

ij )αm for all i, j ∈ [1 : n].

A function f with power-series representation f(x) =
∑

α cαxα acts on the m-tuple A
to give the n× n matrix f [A] =

∑
α cαA

◦α.

The following result and its corollary are not required when considering functions of
a single variable but they are crucial to our arguments in the multivariable setting.

Proposition 4.6. Let I := (−ρ, ρ), (0, ρ) or [0, ρ), where 0 < ρ ≤ ∞. Suppose

f : Im → R is such that the entrywise transform f [−] sends S(k)
n (I) to S(l)

n for all
n ≥ kmax, where k ∈ Zm+ and l is a non-negative integer.

(1) The function f is represented on Im by a power series
∑

α∈Zm
+
cαxα, where the

coefficient cα ≥ 0 for all α ∈ Zm+ \ {0}.
(2) Suppose the matrices A(1), . . . , A(m), B(1), . . . , B(m) ∈ S(0)

n are such that

A(p) −B(p) ∈ S(kp)
n for all p ∈ [1 : m]. Fix ε1, . . . , εm ≥ 0 such that the entries

of A(p) + εp1n×n and B(p) + εp1n×n all lie in I for every p ∈ [1 : m]. Then

f [B + ε1]− f [A + ε1]

is a positive semidefinite matrix with rank at most l.

Proof of Proposition 4.6 for I = (−ρ, ρ).

(1) Define g on Im by setting g(x) = f(x)− f(0). Given a constant t0 ∈ (0, ρ) and

matrices A1, . . . , Am ∈ S(0)
n (I), let N := kmax + (l + 2)n and

B(p) := −t0Idkp ⊕ 0(kmax−kp)×(kmax−kp) ⊕A⊕(l+2)
p ∈ S(kp)

N (I) (4.3)

for all p ∈ [1 : m]. By hypothesis and Lemma 2.2, the entrywise transform g[−]

sends S(k)
N (I) to S(l+1)

N , so g[B] ∈ S(l+1)
N . As the block-diagonal matrix g[B]

contains l + 2 copies of the matrix g[A] on the diagonal, this last matrix must
be positive semidefinite. It now follows from Theorem 1.6 that g is absolutely
monotone.
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(2) It follows from the previous part that the function h : x 7→ f(x) + |f(0)| is
absolutely monotone, so h[A + ε1] and h[B + ε1] are positive semidefinite.

By Lemma 2.2, h[−] sends S(k)
n (I) to S(l)

n for all n ≥ kmax. Using (2.1), we
see that

C(p) :=

[
A(p) + εp1n×n B(p) + εp1n×n
B(p) + εp1n×n A(p) + εp1n×n

]
∈ S(kp)

2n (I)

for all p ∈ [1 : m], so h[C] ∈ S(l)
2n . Hence, again using (2.1), we have that

f [A + ε1]− f [B + ε1] = h[A + ε1]− h[B + ε1] ∈ S(l)
n .

By the Schur product theorem, any absolutely monotone function acting entry-
wise preserves Loewner monotonicity. Hence f [B + ε1]− f [A + ε1] is positive
semidefinite, and so has rank at most l, by the previous working.

�

We now present an application of the second part of the previous proposition after
first introducing some notation. Given a set P = {p1 < · · · < pk} ⊆ [1 : m] and
x = (x1, . . . , xm) ∈ Rm, let P ′ = [1 : m] \ P and xP = (xp1 , . . . , xpk). Further, let |P |
denote the cardinality of P , so that |P | ∈ [0 : m].

Let I := (−ρ, ρ), (0, ρ) or [0, ρ), where 0 < ρ ≤ ∞, and suppose f : Im → R is such
that

f(x) =
∑

α∈Zm
+

cαxα for all x ∈ Im,

where cα ≥ 0 for all α ∈ Zm+ \ {0}. Given P ⊆ [1 : m], we can write

f(x) =
∑

αP∈Z
|P |
+

cαP (xP ′)xαP
P for all x ∈ Im, (4.4)

where cαP is an absolutely monotone function defined on IP
′

whenever αP 6= 0P and
c0P (xP ′) ≡ c0 is constant.

Corollary 4.7. Let I := (−ρ, ρ), (0, ρ) or [0, ρ), where 0 < ρ ≤ ∞. Suppose

f : Im → R is such that the entrywise transform f [−] sends S(k)
n (I) to S(l)

n for all
n ≥ kmax, where k ∈ Zm+ and l is a non-negative integer. Given P ⊆ [1 : m], let f have
the split representation (4.4).

For each p ∈ [1 : m], let B(p) ∈ S(0)
n have rank kp and suppose the non-negative

constant εp is such that B(p) + εp1n×n has all of its entries in I. If g : IP → R is such
that

g(xP ) =
∑

αP∈Z
|P |
+ \{0}

cαP (εP ′)xαP
P for all xP ∈ IP

then the matrix g[BP ] is positive semidefinite and has rank at most l.

Proof of Corollary 4.7 for I = (−ρ, ρ). That g[BP ] is positive semidefinite is a straight-
forward consequence of the Schur product theorem. Next, applying Proposition 4.6(2)

with (A(p), B(p), εp) there equal to (ε′p1n×n, B
(p) +ε′p1n×n, ε

′
p) for all p, where ε′p = εp/2,

it follows that
C := f [B + ε1]− f [ε1]
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is positive semidefinite and has rank at most l. Thus, for the final claim it suffices to
show that the inequality C ≥ g[BP ] holds. Note first that

cαP [BP ′ + εP ′1] ≥ cαP [εP ′1] for all αP ∈ Z|P |+ ,

by Loewner monotonicity, as in the proof of Proposition 4.6(2). Again using the Schur
product theorem, it follows that

C =
∑

αP∈Z
|P |
+

(
cαP [BP ′ + εP ′1] ◦ (BP + εP1)◦αP − cαP [εP ′1] ◦ (εP1)◦αP

)
≥

∑
αP∈Z

|P |
+

cαP [εP ′1] ◦
(

(BP + εP1)◦αP − (εP1)◦αP

)
=
∑
αP 6=0

cαP (εP ′)
(

(BP + εP1)◦αP − (εP1)◦αP

)
≥
∑
αP 6=0

cαP (εP ′)B◦αP
P

= g[BP ]. �

With Proposition 4.6 and Corollary 4.7 at hand, we show the two theorems above.

Proof of Theorem 4.1 for I = (−ρ, ρ). We begin by showing a cycle of implications for
the three equivalent hypotheses. The Schur product theorem gives that (3) implies (1)
and it is immediate that (1) implies (2). We now assume (2) and deduce that (3) holds.

Note first that the case m0 = m is Theorem 1.6, so we assume henceforth that
m0 < m. Proposition 4.6(1) gives that x 7→ f(x) − f(0) is absolutely monotone and
we claim that f(0) ≥ 0, so that f is itself absolutely monotone. To see this, let
N = 1 + kmax and t0 ∈ (0, ρ), and set

B(p) := 0(N−kp)×(N−kp) ⊕−t0Idkp ∈ S
(kp)
N (I) for all p ∈ [1 : m]. (4.5)

By hypothesis, f [B] ∈ S(0)
N is positive semidefinite. In particular, its (1, 1) entry f(0)

is non-negative.
To complete the first part of the proof, we now show that the power series that

represents f contains no monomials involving any of xm0+1, . . . , xm. We suppose
without loss of generality that there is a monomial containing xm. Let a, b, 2t0 ∈ (0, ρ),
with a < b, let N ≥ 2 + kmax, and set

B
(m)
0 :=

[
a b
b a

]
⊕ (2t01km×km − t0Idkm)⊕ t0IdN−km−2 ∈ S

(km)
N ,

since the first matrix has one positive and one negative eigenvalue and 2t01km×km has
eigenvalue 0 with multiplicity km − 1 and eigenvalue 2kmt0 with multiplicity 1.

Similarly, for p ∈ [1 : m− 1], let

B′p := (2t01(kp+1)×(kp+1) − t0Idkp+1)⊕ t0IdN−kp−2 ∈ S
(kp)
N−1.

By the continuity of eigenvalues, we can now take ε0 positive but sufficiently small so
that, for all p ∈ [1 : m− 1],

B′p + ε01(N−1)×(N−1) ∈ S
(kp)
N−1

(
(0, ρ)

)
and B

(m)
0 + ε01N×N ∈ S(km)

N

(
(0, ρ)

)
. (4.6)
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After this preamble, we can now define the test matrices we need. We take the partition
π =

{
{1, 2}, {3}, . . . , {N}

}
of [1 : N ] into N − 1 subsets and then use the inflation

operator Σ↑π from Definition 3.8 to produce

B(p) :=

{
Σ↑π(B′p + ε01(N−1)×(N−1)) if p ∈ [1 : m− 1],

B
(m)
0 + ε01N×N if p = m.

(4.7)

By Lemma 3.9, we have that B(p) ∈ SkpN
(
(0, ρ)

)
for all p ∈ [1 : m]. Hence, by hypothesis,

the matrix f [B] ∈ S(0)
N . In particular, its leading principal 2× 2 submatrix is positive

semidefinite, but this submatrix M equals[
F (a) F (b)
F (b) F (a)

]
, where F (xm) := f(t0 + ε0, . . . , t0 + ε0, xm) for all xm ∈ (0, ρ).

As f is absolutely monotone and we have assumed that its power-series represen-
tation contains a monomial involving xm, the function F is strictly increasing. This
implies that the matrix M has negative determinant, contradicting the fact that it is
positive semidefinite. Hence f cannot depend on xm, and similarly not on xp for any
p > m0. Thus (2) implies (3).

Finally, suppose k = 0 and l ≥ 1. The forward implication is a special case of
Proposition 4.6(1). For the converse, note that if g : x 7→ f(x) − f(0) is absolutely

monotone then the entrywise transform g[−] sends S(0)
n (I) to S(0)

n , by the Schur product

theorem. Hence, by Lemma 2.2, the entrywise map f [−] sends S(k)
n (I) to S(1)

n ⊆ S(l)
n ,

as claimed. �

The remainder of this section is occupied by the following proof.

Proof of Theorem 4.2 for I = (−ρ, ρ). We first show that (3) implies (2). Suppose f
has the form (4.1) and let G(x′) = F (x′) − F (0) for all x′ := (x1, . . . , xm0). If the

matrix B(p) ∈ S(kp)
n (I) for all p ∈ [1 : m] then

f [B] = F (0)1n×n +G[B[1:m0]] +

m∑
p=m0+1

cpB
(p).

Since G is absolutely monotone and B(1), . . . , B(m0) ∈ S(0)
n , the matrix G[B[1:m0]] is

positive semidefinite. Hence, by repeated applications of Lemma 2.2, the number of
negative eigenvalues that the matrix f [B] has is bounded above by that number for

M := F (0)1n×n +

m∑
p=m0+1

cpB
(p).

By spectral decomposition, we can write B(p) = B
(p)
+ − B

(p)
− , where B

(p)
+ and B

(p)
−

are each the sum of rank-one positive semidefinite matrices. Repeated application of

Lemma 2.2 shows that B(p) + B(q) ∈ S(kp+kq)
n and therefore we have that M ∈ S(K)

n ,
where K := 1F (0)<0 +

∑
p:cp>0 kp ≤ l by (3)(c). Hence M has at most l negative

eigenvalues and therefore so does f [B].
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As in the single-variable case, we now claim that this working extends to show that
(3) =⇒ (1). Suppose k′ = (k′1, . . . , k

′
m) ∈ Zm+ \ {0} is such that k′j ≤ kj for all

j ∈ [1 : m], so that m′0 ≥ m0 and k′max ≤ kmax. If (3) holds for k then we can write

f(x) = F0(x1, . . . , xm′
0
) +

m∑
p=m′

0+1

c′pxp,

where

F0(x1, . . . , xm′
0
) := F (x1, . . . , xm0) +

m′
0∑

p=m0+1

cpxp

and c′p = cp for p ∈ [m′0 + 1 : m]. Since F0(0m′
0
) = F (0m0), we have that

1F0(0)<0 +
∑
p:c′p>0

kp ≤ 1F (0)<0 +
∑
p:cp>0

kp ≤ l,

and therefore f [−] maps S(k′)
n (I) into S(l)

n for all n ≥ k′max, by the previous working.
That (1) =⇒ (2) is immediate; finally, we show that (2) implies (3), in several

steps. We commence by noting that Proposition 4.6(1) gives that g : x 7→ f(x)− f(0)
has a power-series representation with non-negative coefficients.
Step 1: The only powers of xp with p ∈ [m0 + 1 : m] that may occur in any monomial
in the power-series representation of f are x0

p and x1
p.

Lemma 2.2 implies that the transform g[−] sends S(k)
n (I) to S(l+1)

n for all n ≥ kmax.
We show the claim by applying Theorem A to the restriction of g to each coordinate xp0 ,

where p0 ∈ [m0 + 1 : m]. Given t0 ∈ (0, ρ) and B ∈ S(kp0 )
n (I) for each p ∈ [1 : m], we

define the block test matrix

B(p) :=

{
B ⊕ 0kmax×kmax if p = p0,

t01n×n ⊕ (−t0Idkp)⊕ 0(kmax−kp)×(kmax−kp) otherwise,

where the term −t0Idkp is omitted if kp = 0. As the block diagonal matrix g[B] has at
most l + 1 negative eigenvalues, so does its leading n× n block gp0 [B], where

gp0 : I → R; x 7→ g(t01
T
p0−1, x, t01

T
m−p0).

Thus gp0 [−] sends S(kp0 )
n (I) into S(l+1)

n , and it follows from Theorem A that gp0 is of
the form required.
Step 2: The function f has the power-series representation

f(x) = F (x′) +
m∑

p=m0+1

cp(x
′)xp for all x ∈ Im,

where x′ = (x1, . . . , xm0) and the functions cp and x′ 7→ F (x′) − F (0) are absolutely
monotone.

Fix any t0 ∈ (0, ρ) and define

h : I → R; x 7→ g(t01
T
m0
, x1Tm−m0

).

Then h is a polynomial with non-negative coefficients whose degree is independent of t0,
by Step 1. The claim follows if we can show that h is linear.
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We suppose for contradiction that the claim fails to hold, so that d, the degree of h,
is at least 2. We suppose N > (d + 1)l+3 and let u be as in (2.3), where u0 ∈ (0, 1),
and B be as in (2.4), where t0 ∈ (0, ρ), ε is positive and small enough to ensure B has
entries in (0, ρ) and sj := (d+ 1)j for j ∈ [0 : l+ 2]. For p ∈ [1 : m], we define the block
test matrix

B(p) :=

{
t01N×N ⊕ 0(kmax−1)×(kmax−1) if p ∈ [1 : m0],

B ⊕ (−t0Idkp−1)⊕ 0(kmax−kp)×(kmax−kp) if p ∈ [m0 + 1 : m].
(4.8)

Since each B(p) ∈ S(kp)
N+kmax−1(I), the matrix g[B] has at most l+1 negative eigenvalues.

Hence so does its leading N ×N block, which is precisely h[B], but this is impossible
by the analysis following (2.4). This contradiction shows that h is linear.
Step 3: In the notation of Step 2, each absolutely monotone function cp is constant.

To establish this claim we fix t0 ∈ (0, ρ) and let

A(p) :=

{
t0Idl+1 ⊕ 0kmax×kmax if p ∈ [1 : m0],

0(l+1+kmax)×(l+1+kmax) if p ∈ [m0 + 1 : m]

and

B(p) :=

{
A(p) if p ∈ [1 : m0],

t01(l+1)×(l+1) ⊕ t0Idkp−1 ⊕ 0(kmax−kp+1)×(kmax−kp+1) if p ∈ [m0 + 1 : m].

Given any ε ∈ (0, ρ − t0), we let ε1 = · · · = εm = ε and apply Proposition 4.6(2) to
see that f [B + ε1]− f [A + ε1] is positive semidefinite and has rank at most l. As this
is a block-diagonal matrix, the same holds for its (l + 1) × (l + 1) leading principal
submatrix M . In particular, M is singular.

We now obtain a contradiction if any absolutely monotone function cp is non-
constant. We have that

M = t0

m∑
p=m0+1

cp[t0Idl+1 + ε1(l+1)×(l+1), . . . , t0Idl+1 + ε1(l+1)×(l+1)]

=
(
h(t0 + ε)− h(ε)

)
Idl+1 + h(ε)1(l+1)×(l+1),

where h : x 7→ t0
∑m

p=m0+1 cp(x1Tm0
). If any function cp contains a non-trivial mono-

mial, then so does the absolutely monotone map h, which implies that

a := h(t0 + ε) > b := h(ε) ≥ 0,

and so the matrix M = (a− b)Idl+1 + b1(l+1)×(l+1) would be positive definite.
Step 4: Completing the proof.

To conclude, we assume f has the form (1.4) and show the bound

1F (0)<0 +
∑
p:cp>0

kp ≤ l.

We adapt the test matrix in (2.6) and the subsequent discussion to the present
situation. We define P+ := {p ∈ [m0 + 1 : m] : cp > 0}; if P+ is empty then there is
nothing to prove, so we assume otherwise. We let {v1 := 1K+1, v2, . . . , vK+1} be an
orthogonal basis of RK+1, where K :=

∑
p∈P+

kp and fix a partition {Jp : p ∈ P+} of
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[2 : K + 1] such that |Jp| = kp for all p. We fix δ ∈
(
0, ρmin{cp : p ∈ P+}

)
and choose

a positive ε small enough to ensure the entries of the matrix

A(p) :=
δ

cp|P+|
1K+11

T
K+1 −

ε

cp

∑
j∈Jp

vjv
T
j (4.9)

lie in (0, ρ). Lemma 2.3 then gives that A(p) ∈ S(kp)
K+1(I) for all p ∈ P+.

We now let N := K + kmax, choose t0 ∈ (0, ρ), and use the inflation operator Σ↑π
from Definition 3.8 to obtain the test matrix

B(p) :=


0N×N if p ∈ [1 : m0],

Σ↑π(A(p)) if p ∈ P+,

0(N−kp)×(N−kp) ⊕ (−t0Idkp) otherwise,

where π :=
{
{1}, . . . , {K}, {K+1, . . . , N}

}
. The matrix B(p) ∈ S(kp)

N (I) for all p ∈ P+,

by Lemma 3.9, so B ∈ S(k)
N and therefore f [B] ∈ S(l)

N . As we see directly that

f [B] = F (0)1N×N +
∑
p∈P+

cpB
(p) = Σ↑π

(
F (0)1(K+1)×(K+1) +

∑
p∈P+

cpA
(p)
)
,

it follows from Lemma 3.9 that

F (0)1(K+1)×(K+1) +
∑
p∈P+

cpA
(p) = (F (0) + δ)1K+11

T
K+1 − ε

K+1∑
j=2

vjv
T
j (4.10)

also has at most l negative eigenvalues.
There are now two cases to consider. If F (0) ≥ 0 then Lemma 2.3 applied to (4.10)

gives that K ≤ l, as desired. If, instead, we have that F (0) < 0 then we may shrink δ
if necessary to ensure that F (0) + δ < 0, and then again Lemma 2.3 gives the desired
inequality, now K + 1 ≤ l. �

5. Multi-variable transforms for matrices with positive entries

In this section, we provide proofs for results stated above where matrices have entries
in the one-sided intervals I = (0, ρ) and I = [0, ρ), where 0 < ρ ≤ ∞, and functions
have domains of the form (0, ρ)m and [0, ρ)m, where m ≥ 1.

Remark 5.1. As with Remark 4.3, such classification results imply their counterparts
for functions with domains of the form

(0, ρ1)× · · · × (0, ρm) or [0, ρ1)× · · · × [0, ρm),

where 0 < ρ1, . . . , ρm ≤ ∞.

Having explored the one-variable and multi-variable situations separately in the two-
sided case, where I = (−ρ, ρ), in this section we adopt a unified approach.

The case of I = [0, ρ) will follow from the other two cases. Thus, we first let I = (0, ρ)
and defer the proofs for I = [0, ρ) to Section 5.1. While the classification results for
I = (−ρ, ρ) above hold verbatim (except for the change of domain) when I = (0, ρ),
the proofs need to be modified in several places. We describe these modifications in
what follows, and skip lightly over the remaining arguments, which are essentially the
same as those in Sections 2 and 4.
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The first step is to prove Proposition 4.6 when I = (0, ρ). For this, we require the
enhanced set of test matrices given by the following lemma.

Lemma 5.2. Given constants a and b, with 0 ≤ a < b, a non-negative integer k and a
non-negative constant ε, the map

Ψ = Ψ(a, b, k, ε) : S(0)
n → S(k)

k+1+n; B 7→ (Mk+1(a, b)⊕B) + ε1(k+1+n)×(k+1+n)

is well defined, where

Mk+1(a, b) :=


a b b · · · b
b a b · · · b
b b a · · · b
...

...
...

. . .
...

b b b · · · a

 = (a− b)Idk+1 + b1(k+1)×(k+1).

Furthermore, the k negative eigenvalues of Ψ(B) are all equal to a − b for any choice
of B.

Proof. The k = 0 case is immediate, so we assume henceforth that k ≥ 1.
The matrix b1(k+1)×(k+1) has rank one and eigenvector 1k+1 with eigenvalue (k+1)b,

so Mk+1(a, b) has eigenvalue a + kb with multiplicity 1 and eigenvalue a − b with
multiplicity k.

Let P = (k + 1)−11k+11
T
k+1 and P⊥ = Idk+1 − P , so that P and P⊥ are spectral

projections such that Mk+1(a, b) = (a+ kb)P + (a− b)P⊥ and

Ψ(B) =
(
(a+ kb)P + (a− b)P⊥

)
⊕B + ε1(k+1+n)×(k+1+n).

If v lies in the range of P⊥, which has dimension k, then Pv = 0k+1 and 1Tk+1v = 0,
so

Ψ(B)

[
v
0n

]
= (a− b)

[
v
0n

]
.

This shows that a−b is an eigenvalue of Ψ(B) with multiplicity at least k. As the matrix
Mk+1(a, b)⊕B has k+1 non-negative eigenvalues, so does Ψ(B), by [21, Corollary 4.3.9]
and the previous observation. This completes the proof. �

Proof of Proposition 4.6 and Corollary 4.7 for I = (0, ρ). The reader can verify that
the above proofs of Proposition 4.6(2) and Corollary 4.7 with I = (−ρ, ρ) go through
verbatim for I = (0, ρ), since all of the test matrices used therein have all their entries
in (0, ρ). It remains to show that the first part of Proposition 4.6 holds in this setting.

We begin by fixing ε ∈ I = (0, ρ) and a, b ∈ (0, ρ − ε) with a < b. Given a positive

integer n and an m-tuple of matrices A = (A(1), . . . , A(m)) ∈ S(0)
n

(
(0, ρ−ε)

)
, the matrix

B
(p)
0 := Ψ(a, b, kp, 0)

(
(A(p))⊕(l+2)

)
= Mkp+1(a, b)⊕ (A(p))⊕(l+2)

is anNp×Np block-diagonal matrix with entries in [0, ρ−ε), whereNp := kp+1+(l+2)n,

for all p ∈ [1 : m]. By Lemma 5.2, the matrix B
(p)
0 + ε1Np×Np ∈ S

(kp)
Np

(I). We apply

the inflation operator Σ↑πp to this matrix, where

πp :=
{
{1, . . . , kmax − kp + 1}, {kmax − kp + 2}, . . . , {kmax − kp +Np}

}
.
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By Lemma 3.9, the matrix B(p) := Σ↑πp(B
(p)
0 ) is such that B(p) + ε1N×N ∈ S

(kp)
N (I),

where N := kmax + 1 + (l + 2)n.

It now follows from the hypotheses of the theorem that f [B + ε1] ∈ S(l)
N , where

ε1 = · · · = εm = ε. Thus, by Lemma 2.2, we have that

gε[B] ∈ S(l+1)
N , where gε(x) := f(x + ε1m)− f(ε1m).

The matrix gε[B] is block diagonal of the form

gε[Σ
↑
π1′

(
Mk1+1(a, b)

)
, . . . ,Σ↑πm′

(
Mkm+1(a, b)

)
]⊕ gε[A]⊕(l+2),

where

πp′ := {A ∩ {1, . . . , kmax + 1} : A ∈ πp} for all p ∈ [1 : m].

Thus gε[A] cannot have any negative eigenvalues, for any m-tuple A ∈ S(0)
n

(
(0, ρ− ε)

)
and all n ≥ 1. It now follows from Theorem 1.6 that

f(x + ε1m)− f(ε1m) = gε(x) =
∑

α∈Zm
+

cα,εx
α for all x ∈ (0, ρ− ε)m,

where cα,ε ≥ 0 for all α ∈ Zm+ .
As this holds for all ε ∈ (0, ρ), we see that f is smooth on (0, ρ)m and (∂αf)(x) ≥ 0

for all α 6= 0 and all x ∈ (0, ρ)m. In particular, ∂xpf is absolutely monotone on (0, ρ)m

for any p ∈ [1 : m] and so, by Theorem A.1, it has there a power-series representation
with non-negative Maclaurin coefficients: we can write

(∂xpf)(x) =
∑

α∈Zm
+

(αp + 1)c
(p)

α+eTp
xα for all x ∈ (0, ρ)m,

where c
(p)

α+eTp
≥ 0 for all α. Since f is smooth, the mixed partial derivatives ∂xp∂xqf

and ∂xq∂xpf are equal for any distinct p and q, whence c
(p)
α = c

(q)
α whenever αp > 0

and αq > 0. Hence setting cα := c
(p)
α makes cα well defined whenever α 6= 0. We let

f̃(x) :=
∑
α 6=0

cαxα for all x ∈ (0, ρ)m,

which is convergent because∑
α 6=0

|cαxα| ≤
m∑
p=1

xp
∑

α:αp>0

(αp + 1)cα+eTp
xα.

Note that ∂xp f̃ = ∂xpf on (0, ρ)m for any [1 : m] and therefore f = f̃ + c0 if we let

c0 := f(ε1m) − f̃(ε1m). This shows that x 7→ f(x) has a power-series representation
on (0, ρ)m of the form claimed and so completes the proof of Proposition 4.6(1) when
I = (0, ρ). �

With Proposition 4.6 and Corollary 4.7 now established for I = (0, ρ), we next show
that the two main theorems hold in this context.

We note first that if f has a power-series representation on (0, ρ)m as in the conclusion
of Proposition 4.6(1) then the unique extension of the function f to (−ρ, ρ)m will also
be denoted by f and will be used without further comment.
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Proof of Theorem 4.1 for I = (0, ρ). The implication (1) =⇒ (2) is immediate, and
that (3) =⇒ (1) follows from the Schur product theorem. It remains to show that
(2) =⇒ (3) and also the case when k = 0 and l ≥ 1. Given (2), we note that
Proposition 4.6(1) shows that f has a power-series representation

f(x) =
∑

α∈Zm
+

cαxα for all x ∈ (0, ρ)m (5.1)

with the coefficients cα ≥ 0 for all α 6= 0. In particular, the function x 7→ f(x) − c0
is continuous, non-negative, and non-decreasing on (0, ρ)m and hence extends to a
continuous function on [0, ρ)m. We denote this extension by g and use g to extend f
to [0, ρ)m so that f(x) = g(x) + c0 for all x ∈ [0, ρ)m.

Now the proof of Theorem 4.1 for I = (−ρ, ρ) goes through verbatim, with one
exception: the test matrix in (4.5) must be changed. We let N := kmax + 1 and

πp :=
{
{1}, {2}, . . . , {kp}, {kp + 1, . . . , N}

}
.

Given a, b ∈ (0, ρ), with a < b, the matrix

B(p) := Σ↑πp
(
Mkp+1(a, b)

)
∈ S(kp)

N (I) for all p ∈ [1 : m],

by Lemma 5.2 and Lemma 3.9. It follows that the matrix f [B] is positive semidefinite,
and so its (1, 1) entry f(a1m) ≥ 0. Since f is continuous on [0, ρ)m, letting a → 0+

gives that f(0) ≥ 0, as required. �

Proof of Theorem 4.2 for I = (0, ρ). That (1) =⇒ (2) is immediate, while the proofs
that (3) =⇒ (2) and (3) =⇒ (1) go through as for the case where I = (−ρ, ρ).
To show (2) =⇒ (3), we note as above that Proposition 4.6(1) and the remarks
immediately after (5.1) show the function f extends continuously to the domain [0, ρ)m

with the power-series representation (5.1) there, and g : x 7→ f(x)− f(0) is absolutely
monotone on this domain. We will proceed parallel to the proof of Theorem 4.2,
indicating the changes required for each of its steps.

The first step is somewhat different and its proof is entirely changed.
Step 1′: For each p ∈ [m0 + 1 : m], only finitely many powers of xp occur in any
monomial in the power-series representation of f .

Here we apply Corollary 4.7 instead of Theorem A to the restriction of g to each
coordinate xp0 . To do this, we fix p0 ∈ [m0 + 1 : m] and n ≥ max{kp0 , l + 3}, and

suppose B ∈ S(0)
n

(
[0, ρ)

)
has rank kp0 . We take ε > 0 such that B + ε1n×n has all its

entries in (0, ρ), choose t0 ∈ (0, ρ− ε), and let N := n+ kmax. We let the matrix

B(p) :=

{
B ⊕ 0kmax×kmax if p = p0,

t01n×n ⊕ t0Idkp−1 ⊕ 0(kmax−kp+1)×(kmax−kp+1) otherwise.

We can write g in the split representation

g(x) =
∞∑
n=0

cn(x[1:m]\{p0})x
n
p0 for all x ∈ [0, ρ)m

and so the function g′p0 : [0, ρ)→ R such that

g′p0(x) := g(ε1Tp0−1, x, ε1
T
m−p0)− g(ε1Tp0−1, 0, ε1

T
m−p0) =

∞∑
n=1

cn(ε1Tm−1)xn.
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Applying Corollary 4.7 with P = {p0} and εp := ε for all p ∈ [1 : m], the matrix

g′p0 [B(p0)] =

∞∑
n=1

cn(ε1Tm−1)(B(p0))◦n

is positive semidefinite and has rank at most l. As g′p0(0) = 0, this is a block matrix and

so its leading n× n block has the same property. Hence g′p0 sends any B ∈ S(0)
n

(
[0, ρ)

)
with rank kp0 to a positive semidefinite matrix of rank at most l. As n ≥ max{kp0 , l+3},
applying [16, Theorems A and B] with I = [0, ρ) gives that g′p0 is a polynomial. This
proves the claim.
Step 2: The function f has the power-series representation

f(x) = F (x′) +
m∑

p=m0+1

cp(x
′)xp for all x ∈ Im,

where x′ = (x1, . . . , xm0) and the functions cp and x′ 7→ F (x′) − F (0) are absolutely
monotone.

The proof here is the same as above for the case when I = (−ρ, ρ) until the definition
of the test matrices in (4.8). Instead we let a, b ∈ (0, ρ) be such that a < b and take

B(p) :=

{
t01N×N ⊕ 0kmax×kmax if p ∈ [1 : m0],

B ⊕Mkp(a, b)⊕ 0(kmax−kp)×(kmax−kp) if p ∈ [m0 + 1 : m],

where Mkp(a, b) is as in Lemma 5.2. The matrix B(p) ∈ S(kp)
N+kmax

(
[0, ρ)

)
and therefore

we have that B(p)+ε1(N+kmax)×(N+kmax) ∈ S
(kp)
N+kmax

(I) for all p and all sufficiently small

and positive ε, by the continuity of eigenvalues. Hence g[B + ε1(N+kmax)×(N+kmax)] has

at most l+1 negative eigenvalues, where εp = ε for all p. Letting ε→ 0+, the same holds

for g[B], again by the continuity of eigenvalues, since S(l+1)
N+kmax

is closed for the topology

of entrywise convergence. As g[B] is a block matrix, its leading N ×N block h[B] also
has at most l+ 1 negative eigenvalues, where we recall that h(x) := g(t01

T
m0
, x1Tm−m0

).
As before, this is not possible according to the analysis following (2.4) if h has degree 2
or more. Thus h must be linear, which proves the claim.
Step 3: In the notation of Step 2, each absolutely monotone function cp is constant.

The proof above of this step when I = (−ρ, ρ) goes through verbatim if I = (0, ρ).
Step 4: Completing the proof.

The proof of this step with I = (−ρ, ρ) may be imitated verbatim, until and including

the definition in (4.9) of the matrix A(p) for p ∈ P+. To continue in the current setting,
where I = (0, ρ), we let N := K + kmax + 1, choose a, b ∈ (0, ρ) with a < b, and take

some ε ∈ (0, ρ− b). With the help of the inflation operator Σ↑π from Definition 3.8, we
let

B(p) :=


b1N×N if p ∈ [1 : m0],

Σ↑π(A(p)) if p ∈ P+,

(0(N−kp−1)×(N−kp−1) ⊕Mkp+1(a, b)) + ε1N×N otherwise,
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where π :=
{
{1}, . . . , {K}, {K + 1, . . . , N}

}
and Mkp+1(a, b) is as in Lemma 5.2. It

follows from Lemma 5.2 and Lemma 3.9 that B ∈ S(k)
N

(
(0, ρ)

)
. Hence

f [B] = F [B(1), . . . , B(m0)] +
∑
p∈P+

cpB
(p) ∈ S(l)

N .

Since F is continuous, letting b→ 0+ gives that

F [0N×N , . . . ,0N×N ] +
∑
p∈P+

cpB
(p) = F (0Tm0

)1N×N +
∑
p∈P+

cpB
(p)

= Σ↑π

(
F (0)1(K+1)×(K+1) +

∑
p∈P+

cpA
(p)
)
∈ S(l)

N ,

by the continuity of eigenvalues. Hence the matrix in (4.10) also has at most l negative
eigenvalues, by Lemma 3.9, and the rest of the proof following (4.10) goes through
unchanged. �

Remark 5.3. We could have used Step 1′ and its proof as above in place of Step 1 in
the proof given in Section 4 of Theorem 4.2 for I = (−ρ, ρ).

We now use Theorem 4.2 to establish two results for preservers when I = (0, ρ),
including a version of Corollary 4.4. The proofs require another carefully chosen set of
test matrices.

Lemma 5.4. There exists an invertible matrix A ∈ S(1)
3

(
(0, 5)

)
such that, for each

positive integer k, the matrix

A⊕k + t13k×3k ∈ S
(k−1)
3k whenever t > 1.

Proof. Note first that the matrix

A =

4 2 3
2 1 2
3 2 4


has characteristic polynomial

det(xId3 −A) = (x− 1)(x2 − 8x− 1)

and eigenvalues 1, 4 +
√

17 and 4−
√

17, whence A ∈ S(1)
3

(
(0, 5)

)
.

To proceed, we recall the matrix determinant lemma, that

det(B + uvT ) = detB + vT (adjB) u,

where adjB denotes the adjugate of the matrix B, and the identity

adj(B ⊕ C) = (detC) adjB ⊕ (detB) adjC.

It follow from these identities that, for any t ∈ R,

det(xId3k −A⊕k − t13k×3k)

= det(xId3 −A)k−1(det(xId3 −A)− tk1T3 adj(xId3 −A)13).

A straightforward computation reveals that

1T3 adj(xId3 −A)13 = (3x− 1)(x− 1)
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and so the characteristic polynomial of the linear pencil A⊕k + t13k×3k is

det(xId3 −A)k−1(x− 1)(x2 − (8 + 3tk)x− 1 + tk).

Thus A⊕k + t13k×3k ∈ S
(k−1)
3k if both roots of the polynomial x2 − (8 + 3tk)x− 1 + tk

are positive, but this holds for all t > 1. �

Now we have:

Proof of Corollary 4.4 for I = (0, ρ). The proof with I = (−ρ, ρ) of the second part
goes through verbatim over (0, ρ), as does the proof of the first part until the final

sentence, which uses the matrices B(1) = · · · = B(m) = −εIdk having no entries in
(0, ρ). Thus, it remains to show the following holds.
Suppose I := (0, ρ), where 0 < ρ ≤ ∞, and let f(x) = cxp0 + d for all x ∈ Im, where

c > 0, p0 ∈ [1 : m] and d ≥ 0. If k ≥ 1 and f [−] sends S(k1T
m)

n (I) to S(k)
n for all n ≥ k

then d = 0.
To show this, suppose d > 0 and let A ∈ S(1)

3

(
(0, 5)

)
be as in Lemma 5.4. Choose

δ ∈ (0, d/c) such that δ < ρ/5, so that (δA)⊕k ∈ S(k)
3k

(
[0, ρ)

)
. This matrix is invertible,

so (δA)⊕k + ε13k×3k ∈ S
(k)
3k

(
(0, ρ)

)
for sufficiently small ε > 0, by the continuity of

eigenvalues. Then, by the assumption on f ,

B := f [(δA)⊕k + ε13k×3k, . . . , (δA)⊕k + ε13k×3k] = c(δA)⊕k + (cε+ d)13k×3k ∈ S
(k)
3k .

Furthermore, we can write

B = cδ(A⊕k + (d/cδ)13k×3k) + cε13k×3k,

and Lemma 5.4 implies that A⊕k + t13k×3k ∈ S
(k−1)
3k for all t > 1, so B ∈ S(k−1)

3k , by
Lemma 2.2.

This contradiction shows that d = 0, as claimed. �

We end by returning full circle to the first result we stated in the one-variable setting:
the classification of inertia preservers for matrices with positive or non-negative entries.

Corollary 5.5. Let I := (0, ρ) or [0, ρ), where 0 < ρ ≤ ∞, and let k be a non-negative
integer. Given a function f : I → R, the following are equivalent.

(1) The entrywise transform f [−] preserves the inertia of all matrices in S(k)(I).
(2) The function is a positive homothety: f(x) ≡ cx for some constant c > 0.

In other words, Theorem 1.2 holds verbatim if I = (−ρ, ρ) is replaced by (0, ρ)
or [0, ρ).

Proof for I = (0, ρ). Clearly, (2) implies (1). Conversely, if k = 0 then the proof of
Theorem 1.2 goes through in this case, using Theorem 1.6 with m = 1 in place of

Schoenberg’s Theorem 1.1. Otherwise, we have k ≥ 1 and f [−] sends S(k)
n

(
(0, ρ)

)
into

S(k)
n for all n ≥ k. The m = 1 case of Theorem 4.2 with k1 = l = k gives that either
f(x) ≡ d for some d ∈ R or f(x) ≡ cx+ d, with c > 0 and d ≥ 0. Now we are done by
following the proof of Theorem 1.2 to out the first possibility and using the italicized
assertion in the proof of Corollary 4.4 to show that d = 0. �
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5.1. Proofs for matrices with non-negative entries. We conclude by explaining
how to modify the proofs given above to obtain Theorems 4.1 and 4.2, together with
their classification consequences in Corollaries 4.4 and 5.5, when I = [0, ρ). We begin
by establishing Proposition 4.6 and Corollary 4.7 in this context.

Proof of Proposition 4.6 and Corollary 4.7 for I = [0, ρ). Proofs of the second parts of
Proposition 4.6 and Corollary 4.7 when I = (0, ρ) go through verbatim if I = [0, ρ),
since the test matrices used there have all their entries in (0, ρ). It remains to prove
the first part of Proposition 4.6. This follows the same reasoning as the proof of
Proposition 4.6(1) for I = (−ρ, ρ), but with B(p) there replaced by

B(p) := Mkp+1(a, b)⊕ 0(kmax−kp)×(kmax−kp) ⊕A⊕(l+2)
p ∈ S(kp)

N

for each p ∈ [1 : m], where a, b ∈ (0, ρ) with a < b and Mkp+1(a, b) is as in Lemma 5.2.
�

With these results in hand, we can now provide the final proofs.

Proof of Theorems 4.1 and 4.2, and of Corollaries 4.4 and 5.5, for I = [0, ρ). First, it

is clear that (1) implies (2) in Theorem 4.1. If (2) holds then f [−] sends S(k)
n

(
(0, ρ)

)
to

S(0)
n , for all n ≥ kmax, so the I = (0, ρ) part of Theorem 4.1 implies that the restriction

of x→ f(x) to (0, ρ)m is independent of xm0+1, . . . , xm. However, Proposition 4.6(1)
implies that f is continuous on [0, ρ)m, so this independence extends to the whole
domain of f and therefore (2) implies (3). Finally, (3) =⇒ (1) by the Schur product
theorem. The proof of the final part of Theorem 4.1 is identical to the I = (−ρ, ρ)
version.

For Theorem 4.2, clearly (1) =⇒ (2). If (2) holds then (3) holds for the restriction
of f to (0, ρ)m, and again Proposition 4.6(1) allows extension by continuity, so that
(2) holds in general. The proof that (3) implies (1) is unchanged from the I = (−ρ, ρ)
case.

For both parts of Corollary 4.4, if f has the prescribed form then the entrywise

transform maps S(k1T
m)

n (I) or S(k1T
m)

n (I) to S(k)
n or S(k)

n when I = (−ρ, ρ), so the same
holds when I = [0, ρ). The converse uses the same restriction and continuity argument
as before.

Finally, that (2) implies (1) in Corollary 5.5 is immediate. For the converse, note
again that the conclusion holds for the restriction of f to (0, ρ) and the continuity of f
on I = [0, ρ) follows from Theorem B and Proposition 4.6(1). �

6. Transforms of complex Hermitian matrices

This section is devoted to understanding the class of entrywise negativity preservers
for tuples of Hermitian matrices with complex entries. We begin by recording the

elementary observation that entrywise conjugation preserves S(k)
n (C) for all k ∈ [0 : n]

and all n ≥ 1, and by establishing the following lemma.

Lemma 6.1. There exists a 2× 2 complex Hermitian matrix A which is singular, has
one positive eigenvalue, and is such that the matrix cA+dA is positive definite for any
choice of c, d ∈ (0,∞).



36 ALEXANDER BELTON, DOMINIQUE GUILLOT, APOORVA KHARE, AND MIHAI PUTINAR

Proof. Choose any complex number ζ of unit modulus other than 1 and −1 and let

A :=

(
1 ζ
ζ 1

)
.

This matrix is Hermitian and has zero determinant and positive trace. If c, d ∈ (0,∞)
then

1

c+ d
(cA+ dA) =

(
1 η
η 1

)
,

where η = (cζ + dζ)/(c+ d) lies in the interior of the line segment joining ζ and ζ, so
is in the open unit disc. The result follows. �

We are now equipped to prove the main result.

Proof of Theorem C. We first assume that (3) holds, so that the function f has the
representation (1.6), and show (2), following the proof of Theorem 4.2 for I = (−ρ, ρ).

Given B(p) ∈ S(kp)
n (C) for all p ∈ [1 : m], we have that

f [B] = F (0)1n×n +G[B[1:m0]] +
m∑

p=m0+1

(
cpB

(p) + dpB(p)
)
,

where G(z′) = F (z′)−F (0) for all z′ := (z1, . . . , zm0). Since B(1), . . . , B(m0) ∈ S(0)
n (C),

the matrix G[B[1:m0]] is positive semidefinite by the Schur product theorem. Hence,
by repeated applications of Lemma 2.2, which remains valid for complex Hermitian
matrices, the number of negative eigenvalues of the matrix f [B] is bounded above by
the number of negative eigenvalues of

M := F (0)1n×n +
m∑

p=m0+1

(
cpB

(p) + dpB(p)
)
.

As in the real case, we may use spectral decomposition and repeated applications of

Lemma 2.2 to see that M ∈ S(K)
n (C), where K := 1F (0)<0 +

∑
p:cp>0 kp +

∑
p:dp>0 kp.

We conclude from condition (3)(c) that M has at most l negative eigenvalues. Hence
so does f [B].

This shows that (3) =⇒ (2), and the same working as for the real case now yields
that (3) =⇒ (1). Moreover, that (1) =⇒ (2) is trivial.

To conclude, we show that (2) =⇒ (3). The proof again follows similar steps to
those proving Proposition 4.6 and Theorem 4.2 when I = (−ρ, ρ), and also makes use
of Theorem 1.8.
Step 1: Let g : Cm → C be defined by setting g(z) := f(z) − f(0) for all z ∈ C. The
function g has a power-series representation in z and z with non-negative coefficients
as seen in (1.5).

First, we note the complex Hermitian version of Lemma 2.2 implies g[−] : S(k)
N (C)→

S(l+1)
N (C) for all N ≥ kmax. For any t0 ∈ (0,∞) and A1, . . . , Am ∈ S(0)

n (C), the block-
diagonal matrix

B(p) := (−t0Idkp)⊕ 0(kmax−kp)×(kmax−kp) ⊕A⊕(l+2)
p ∈ S(kp)

N (C)
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for all p ∈ [1 : m], where N = kmax + (l+ 2)n. Our initial observation implies that the

block-diagonal matrix g[A]⊕(l+2) can have at most l + 1 negative eigenvalues, but this
is only possible if g[A] is positive semidefinite. We are now done, by Theorem 1.8.
Step 2: The preserver f satisfies (3)(a) and (3)(b).

This is obtained by restricting f to act on Rm, in which case Theorem B gives the
representation

f(x) = f(0) +
∑

α∈Zm0
+ \{0}

cαxα
[1:m0] +

m∑
p=m0+1

c′pxp for all x ∈ Rm,

where each coefficient cα and c′p is non-negative. On the other hand, by the previous
step,

f(x) = f(0) +
∑

α′∈Zm
+ \{0}

fα′xα′
for all x ∈ Rm, where fα′ :=

∑
α+β=α′

cα,β ≥ 0;

(Note that both power series are absolutely convergent on Cm.) Equating the two
forms of f and applying the identity theorem for several real variables, it follows that
every monomial in the series representation for f other than those occurring in (1.6)
must vanish. This proves the claim.
Step 3: The preserver f satisfies (3)(c).

We let P+ := {p ∈ [m0 + 1 : m] : cp > 0} and P+ := {p ∈ [m0 + 1 : m] : dp > 0}. If

the set P+ ∪ P+ is empty then we take

B(p) :=

{
0kmax×kmax if p ∈ [1 : m0],

−Idkp×kp ⊕ 0(kmax−kp)×(kmax−kp) if p ∈ [m0 + 1 : m].

By assumption, we have that f [B] = F (0)1kmax×kmax is Hermitian and has at most l
negative eigenvalues. This shows (3)(c).

Henceforth, we suppose P+ ∪P+ is non-empty. To see that F (0m0) = f(0m) is real,
we let

B(p) := 0(kmax+1−kp)×(kmax+1−kp) ⊕ (−Idkp) if p ∈ [1 : m].

Then f [B] is Hermitian, by assumption, so its (1, 1) entry f(0) is real.
With Lemma 6.1 at hand, we now proceed as in the final steps in the proof of

Theorem 4.2. We let

K ′ :=
∑

p∈P+∩P+

kp and K ′′ :=
∑

p∈P+4P+

kp, (6.1)

where the symmetric difference P+4 P+ := (P+ ∪ P+) \ (P+ ∩ P+). We need to show
that 1F (0)<0 + 2K ′ +K ′′ ≤ l.

If P+4P+ = ∅, we skip this paragraph. If not, we let {v1 = 1K′′+1, v2, . . . , vK′′+1} be

an orthogonal basis of RK′′+1 and extend the vectors v2, . . . , vK′′+1 to lie in RK′′+2K′+1

by padding with zeros: we set ṽj := vj ⊕ 02K′ for j ∈ [2 : K ′′ + 1]. We fix a partition

{Jp : p ∈ P+ 4 P+} of [2 : K ′′ + 1] such that |Jp| = kp for all p. Given δ ∈ (0,∞), we
let

A(p) :=
δ

εp|P+ 4 P+|
1K′′+2K′+11

T
K′′+2K′+1 −

1

εp

∑
j∈Jp

ṽj ṽ
T
j
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for all p ∈ P+ 4 P+, where εp := cp if p ∈ P+ \ P+ and εp := dp if p ∈ P+ \ P+. Note

that A(p) ∈ S(kp)
K′′+2K′+1(C) for all p ∈ P+ 4 P+, by Lemma 2.3.

Taking N := K ′′ + 2K ′ + kmax, we use the inflation operator Σ↑π from Definition 3.8
to obtain the test matrix

B(p) :=


0N×N if p ∈ [1 : m0],

Σ↑π(A(p)) if p ∈ P+∆P+,

0(N−kp)×(N−kp) ⊕ (−Idkp) if p ∈ [m0 + 1 : m] \ (P+ ∪ P+),

where π :=
{
{1}, . . . , {K ′′ + 2K ′}, {K ′′ + 2K ′ + 1, . . . , N}

}
.

It remains to define the test matrix B(p) for p ∈ P+ ∩ P+ = {p1 < · · · < pr}. For
each s ∈ [1 : r], we let

ks) :=

s−1∑
t=1

kpt and k(s :=

r∑
t=s+1

kpt ,

and take

B(ps) := Σ↑π
(
0(K′′+1+2ks))×(K′′+1+2ks)) ⊕ (−A)⊕kps ⊕ 02k(s×2k(s

)
,

where A is given by Lemma 6.1.

It is easy to see that the matrix B(p) ∈ S(kp)
N (C) for all p ∈ [1 : m], by Lemma 3.9,

so f [B] ∈ S(l)
N (C). Furthermore, a direct computation shows that

f [B] = F (0)1N×N +
∑

p∈P+\P+

cpB
(p) +

∑
p∈P+\P+

dpB(p) +
∑

p∈P+∩P+

(
cpB

(p) + dpB(p)
)

= Σ↑π
(
(F (0) + δ1K′′>0)1(K′′+2K′+1)×(K′′+2K′+1)

)
+ Σ↑π

((
−1K′′>0

K′′+1∑
j=2

vjv
T
j

)
⊕

r⊕
s=1

(−cpsA− dpsA)⊕kps
)
,

where 1K′′>0

∑K′′+1
j=2 vjv

T
j equals 0 ∈ R1 if K ′′ = 0. By Lemma 3.9, the matrix f [B]

has precisely as many negative eigenvalues as the matrix

M :=
(
F (0) + δ1K′′>0

)
1(K′′+2K′+1)×(K′′+2K′+1)

+

((
−1K′′>0

K′′+1∑
j=2

vjv
T
j

)
⊕

r⊕
s=1

(−cpsA− dpsA)⊕kps
)
.

Lemma 2.3 and Lemma 6.1 imply that the second term in this sum has exactly K ′′+2K ′

negative eigenvalues. Moreover, the vector 1K′′+2K′+1 is not in the column space of
this second term, since it is orthogonal to each vector ṽj and the column spaces of the
remaining block factors

0(K′′+1+2ks))×(K′′+1+2ks)) ⊕ (−cpsA− dpsA)⊕kps ⊕ 02k(s×2k(s

together span 0K′′+1 ⊕ C2K′
.

To conclude the proof, we consider two cases. If F (0) ≥ 0 then Lemma 2.3 gives
that M has exactly K ′′ + 2K ′ negative eigenvalues, so K ′′ + 2K ′ ≤ l, as desired. If,
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instead, we have that F (0) < 0 then we can ensure that F (0) + δ1K′′>0 < 0, shrinking
δ if necessary, and then M has exactly K ′′ + 2K ′ + 1 negative eigenvalues. Again, this
is at most l, which concludes the proof. �

We conclude by adapting Corollaries 4.4 and 5.5 to the complex setting. As conjugate
maps are involved, we re-state both results.

Corollary 6.2. Let k and m be positive integers and let f : Im → C.

(1) The entrywise transform f [−] sends S(k1T
m)

n (C) to S(k)
n for all n ≥ k if and only

if f(z) ≡ czp0 or f(z) ≡ czp0 for a constant c > 0 and some p0 ∈ [1 : m], or,
when k = 1, we may also have f(z) ≡ −c for some c > 0.

(2) The entrywise transform f [−] sends S(k1T
m)

n (C) to S(k)
n for all n ≥ k if and only

if f(z) ≡ czp0 + d or f(z) ≡ czp0 + d for some p0 ∈ [1 : m], with either c = 0
and d ∈ R, or c > 0 and d ≥ 0.

(3) If m = 1 and k′ ∈ {0, k}, the entrywise transform f [−] preserves the inertia of

all matrices in S(k′)(C) if and only if f(z) ≡ cz or f(z) ≡ cz for some c > 0.

Proof. The proof of the first two parts are identical to the proof of the I = (−ρ, ρ) case
of Corollary 4.4, except that we use Theorem C instead of Theorem 4.2. To prove (3),
the reverse inclusion is immediate; conversely, Theorem C gives that either f(z) ≡ cz+d
or f(z) ≡ cz + d, with c ≥ 0 and with d ≥ 0 if c > 0. Now restricting to matrices with
real entries, we are done by the corresponding implication in Theorem 1.2. �

Appendix A. Absolutely monotone functions of several variables

The purpose of this Appendix is to provide the proof of a result on absolutely mono-
tone functions of several variables that seems to not be readily available in the literature,
but was used in previous work [5] and is relevant to the present paper.

Given an open interval I ⊆ R and a positive integer m, let x = (x1, . . . , xm) ∈ Im
and α = (α1, . . . , αm) ∈ Zm+ . Set |α| := α1 + · · ·+ αm.

Recall that a smooth function f : Im → R is absolutely monotone if

∂αf(x) =
∂|α|f

∂xα1
1 · · · ∂x

αm
m

(x1, . . . , xm) ≥ 0 for all α ∈ Zm+ and x ∈ Im.

If, instead, the function f is such that

(−1)|α|∂αf(x) ≥ 0 for all α ∈ Zm+ and x ∈ Im

then f is said to be completely monotone.
A function f : [0, ρ)m → R, where 0 < ρ ≤ ∞, is said to be absolutely monotone if the

restriction of f to (0, ρ)m is absolutely monotone, as defined above, and f is continuous
on [0, ρ)m. Step II in the proof of [31, Theorem 5] shows that such a function has
non-negative one-sided derivatives at the boundary points of its domain.

Above and in previous work [5], we use the fact that absolutely monotone functions
have power-series representations with non-negative Maclaurin coefficients. This result
is used for functions with domains of the form (0, ρ)m, where 0 < ρ ≤ ∞ and m ≥ 1.
For m = 1, this is a special case of Bernstein’s theorem [9], and for m = 2 the power-
series representation is derived in Schoenberg’s paper [34] using completely monotone
functions.
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However, we were unable to find in the literature a reference for the case m > 2.
When I = [0, ρ) and ρ is finite, this representation theorem, for all m ≥ 1, is found in
Ressel’s work [31, Theorem 8]; the extension to the case ρ = ∞ is immediate, by the
identity theorem.

To fill this gap, we state the following theorem and provide its proof.

Theorem A.1. Let I = (0, ρ), where 0 < ρ ≤ ∞, and let m be a positive integer.
The smooth function f : Im → R is absolutely monotone if and only if f is represented
on Im by a power series with non-negative Maclaurin coefficients:

f(x) =
∑

α∈Zm
+

cαxα for all x ∈ Im, where cα ≥ 0 for all α.

Note that any function with such a representation extends to a real-analytic function
on the domain (−ρ, ρ)m.

Theorem A.1 was implicitly used to prove the multi-variable version of Schoenberg’s
Theorem 1.6 with I = (0, ρ)m in our previous work [5], where it is used in turn to
show this theorem for I = [0, ρ)m and I = (−ρ, ρ)m. The same result is used in the
present work, to prove Proposition 4.6(1) for all three choices of I, leading to the
characterization results of Theorems 4.1 and 4.2 and their corollaries.

We now turn to the proof of Theorem A.1. While it is likely that it would be
possible to show this result for m > 2 by adapting the proof for the m = 2 case given
by Schoenberg [34], we proceed differently here: we use Ressel’s theorem and a natural
group operation on convex cones, well known in Hardy-space theory.

Proof of Theorem A.1. The reverse implication is clear. To prove the other, we note
that, from the previous remarks, we need only to show that an absolutely monotone
function on (0, ρ)m has a continuous extension to [0, ρ)m when ρ is finite. Moreover,
by scaling, we may assume that ρ = 1. We offer two different paths to show that such
an extension exists.
Path 1: We note first that

g : (0,∞)m → [0,∞); x 7→ f(e−x1 , . . . , e−xm)

is completely monotone, because an inductive argument shows that

(∂αg)(x) = (−1)|α|g(x)pα(e−x1 , . . . , e−xm) for all α ∈ Zm+ ,
where pα is a polynomial with non-negative coefficients. Hence, by [18, Corollaries 2.1
and 2.2], the function g is real analytic on (0,∞)m. Composition with the change of
coordinates

T : (0, 1)m → (0,∞)m; (x1, . . . , xm) 7→ (− log x1, . . . ,− log xm)

now shows that f = g ◦ T is real analytic on (0, 1)m.
Now fix ε ∈ (0, 1/2) and consider the function.

h : (−ε, 1− ε)m → R; x 7→ f(x + ε1m).

It is immediate that h is absolutely monotone on [0, 1− ε)m, so it is represented there
by a power series with non-negative Maclaurin coefficients, by [31, Theorem 8]:

f(x + ε1m) = h(x) =
∑

α∈Zm
+

dαxα for all x ∈ [0, 1− ε)m, (A.1)
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where dα ≥ 0 for all α ∈ Zm+ . Moreover, this series is absolutely convergent for all
x ∈ [−ε, 1− ε)m, since ε < 1/2. Thus h admits a continuous extension to the boundary.
Since f is real analytic and agrees with the power series (A.1) on an open set, it admits
a continuous extension to [0, 1)m, as desired. �
Path 2: The following approach was communicated to us by Paul Ressel. Given any
point x0 ∈ [0, 1)m, there exists ε0 > 0 such that x0 + ε01m ∈ [0, 1)m. If

gx0 : (0, ε0]→ R; t 7→ f(x0 + t1m)

then g′′x0
≥ 0 and so gx0 is convex on (0, ε0]. Hence gx0(0+) exists, is finite and agrees

with gx0(0) = f(x0) if x0 ∈ (0, 1)m. We can now extend f to [0, 1)m by setting

f̃ : [0, 1)m → R; x0 7→ gx0(0+).

One can verify that this function satisfies the “forward difference” definition of absolute

monotonicity, as given on [31, pp. 259–260]. Hence, by [31, Theorem 8], f̃ is represented
by a convergent series with non-negative Maclaurin coefficients, and therefore so is f .
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