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Abstract. We continue the study of real polynomials acting entrywise on matrices of
fixed dimension to preserve positive semidefiniteness, together with the related analysis
of order properties of Schur polynomials.

Previous work has shown that, given a real polynomial with positive coefficients that
is perturbed by adding a higher-degree monomial, there exists a negative lower bound for
the coefficient of the perturbation which characterises when the perturbed polynomial
remains positivity preserving.

We show here that, if the perturbation coefficient is strictly greater than this bound
then the transformed matrix becomes positive definite given a simple genericity condition
that can be readily verified. We identity a slightly stronger genericity condition that
ensures positive definiteness occurs at the boundary.

The analysis is complemented by computing the rank of the transformed matrix in
terms of the location of the original matrix in a Schubert cell-type stratification that we
have introduced and explored previously. The proofs require enhancing to strictness a
Schur monotonicity result of Khare and Tao, to show that the ratio of Schur polynomials
is strictly increasing along each coordinate on the positive orthant and non-decreasing on
its closure whenever the defining tuples satisfy a coordinate-wise domination condition.

1. Background and setup

The study of entrywise positivity preservers involves understanding the structure of
functions of the form f : I → R, for some complex domain I, such that, if a complex
Hermitian matrix A = (aij) with entries in I is positive semidefinite then so is the matrix
f [A] :=

(
f(aij)

)
; when f is a power function, so that f(x) ≡ xα for some α, we also use

the Schur product notation f [A] = A◦α.
This subject has a rich history, beginning with the Schur product theorem [21], which

implies that all functions represented by power series with non-negative coefficients pre-
serve positivity in this sense for square matrices of arbitrary size. The converse, that there
are no other preservers in all dimensions, was first shown by Schoenberg [20] for continuous
functions defined on I = [−1, 1], and subsequently by several others. For domains of the
form I = (−ρ, ρ), with 0 < ρ 6∞, we mention Rudin [19] and recent work [6] for variants
with greatly reduced test sets in each dimension. The book [14] contains additional details
and references.

The situation is more involved in a fixed dimension N , where the complete classification
of the entrywise positivity preservers remains open to date even for 3 × 3 matrices, that
is, when N = 3. For matrices with positive entries, the real powers which are entrywise
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positivity preservers were classified by FitzGerald and Horn in [9]: these are the non-
negative integers and all real powers beyond the threshold N − 2, that is, elements of
the set Z+ ∪ [N − 2,∞). If one considers polynomial preservers instead then no such
preservers were known in fixed dimension beyond the case of non-negative coefficients,
until the previous part of this work [3], which was subsequently extended by Khare and
Tao [15].

1.1. Polynomial preservers yield positive definite matrices. We lay out here in a
condensed form the key results from [3, 15] that are relevant to our work here, and provide
from this context the first novel observation of this paper.

By a result of Loewner (see [12]), if ρ > 0 and the smooth function f : (0, ρ) → R is
such that f [A] is positive semidefinite for any positive semidefinite A ∈ (0, ρ)N×N , then f ,

f ’, . . . , f (N−1) are non-negative on (0, ρ), but this need not hold for any higher derivative
of f . More generally, if f is a real polynomial preserver with exactly N + 1 monomial
terms, then the first N non-zero Maclaurin coefficients of f are positive. The question
of whether the leading coefficient could be negative was eventually answered positively
in [3, 15] with an explicit sharp negative lower bound in several slightly different settings.
We begin here fixing some notation, introducing these settings and then providing the
common bound which holds for all of them.

Definition 1.1. Given a domain I ⊆ C and positive integers N and k with k 6 N , denote
by PkN (I) the set of positive semidefinite N × N matrices with entries in I and rank at
most k; recall that any positive semidefinite complex matrix is automatically Hermitian.
For convenience, we also set PN (I) := PNN (I). The Loewner partial order on N × N
Hermitian matrices is defined by setting A > B if and only if A−B ∈ PN (C).

For any ρ > 0, let D(0, ρ) denote the closed disc in C with center 0 and radius ρ. We
are interested in the entrywise action of the function

f(z) :=

N−1∑
j=0

cjz
nj + c′zM = h(z) + c′zM (1.1)

on some suitable set of test matrices P0 ⊆ PN
(
D
(
(0, ρ)

)
, where the number of terms N

is a positive integer, the coefficients c0, . . . , cN−1 and c′ are real numbers and the powers
are arranged in increasing order: n0 < n1 < · · · < nN−1 < M . The test set P0 is may
depend on the form of f , as follows.

(1) The minimal subset P0 = P1
N

(
(0, ρ)

)
, for arbitrary real powers n0, . . . , nN−1

and M .
(2) A subset P0 such that P1

N

(
(0, ρ)

)
⊆ P0 ⊆ P1

N

(
[0, ρ]

)
, for non-negative powers n0,

. . . , nN−1 and M . Here and elsewhere we set 00 := 1.
(3) A subset P0 such that P1

N

(
(0, ρ)

)
⊆ P0 ⊆ PN ([0, ρ]

)
, where n0, . . . , nN−1 and M

are elements of the set Z+ ∪ [N − 1,∞). 1

(4) A subset P0 such that P1
N

(
(0, ρ)

)
⊆ P0 ⊆ PN

(
D(0, ρ)

)
, where n0, . . . , nN−1 are

successive non-negative integers (so that nj = n0 + j for j = 0, . . . , N − 1) and M
is an integer.

1As mentioned previously, it is known [9] that all real powers α > N−2 preserve positivity when acting
entrywise on PN

(
[0, ρ]

)
, but we need more for our purposes, namely, powers that preserve the Loewner

order on P0: if A, B ∈ P0 with A−B ∈ PN
(
[0, ρ]

)
then A◦α −B◦α ∈ PN (R). See [11, Theorem 5.1(ii)].
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In the complex case (4) above, if the polynomial f has the form (1.1) with coefficients
c0, . . . , cN−1 > 0 and cM < 0, and the powers n0, . . . , nN−1 are not successive non-
negative integers then f does not preserve positive semidefiniteness entrywise on P0 for
some M > nN−1: see [15, Proposition 7.1].

Having described these possibilities, we recall the corresponding classification of entry-
wise polynomial preservers.

Theorem 1.2 ([3, Theorem 1.1] and [15, Section 1.3]). Let f be as in (1.1), let ρ > 0 and
set

C = C(f, ρ) :=
N−1∑
j=0

V (nj)
2

V (n)2

ρM−nj

cj
, (1.2)

where the Vandermonde determinant

V (m) :=
∏

16k<l6N

(ml −mk) for any m = (m1, . . . ,mN )

and the N -tuples

nj := (n0, . . . , n̂j , . . . , nN−1,M) and n := (n0, . . . , nN−1), (1.3)

where n̂j indicates that nj is omitted. Given a test set P0 according to Definition 1.1, the
following are equivalent.

(1) The map f [−] preserves positivity on P0.
(2) The coefficients of f satisfy either (a) c0, . . . , cN−1, c′ > 0, or (b) c0, . . . , cN−1 > 0

and c′ > −C−1.
(3) The map f [−] preserves positivity on the subset of Hankel matrices in P1

N

(
(0, ρ)

)
.

Fundamentally, our work involves the constructive analysis of the largest eigenvalue for
linear pencils of Hermitian matrices of the form

h[A]− λA◦M ,

where h is the unperturbed polynomial adapted to the size of the positive matrix A and
the power M exceeds the degree of h. One of the results we show in the present work is
an enhancement of previous work to show the positive definiteness of f [A] for generic A:

Theorem 1.3. Let f , C and P0 be as in Theorem 1.2, with c0, . . . , cN−1 > 0 and c′ > C−1.
If all of the rows of A ∈ P0 are distinct and n0 = 0 when A has a zero row then f [A] is
positive definite.

This is stated and proved in Theorems 2.2 and 2.8 below.
To establish these two theorems, we rely on a lower-bound result, that if a positive

semidefinite matrix A has distinct rows then it has a rank-one lower bound u, such
that A > uuT , and u may be chosen to have distinct entries. In the complex setting
this is elementary, but if A has non-negative entries and u is required to as well then we
establish the existence of such a lower bound using Perron–Frobenius theory. This result,
Theorem 2.12, may be of independent interest.
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1.2. Strict monotonicity of Schur polynomial ratios. Next we switch tracks and
focus on Schur polynomials from an order perspective. While this may seem a non sequitur,
it is not: the proofs of Theorem 1.2 in [15] rely crucially on

(i) a combinatorial determinant formula involving Schur polynomials (Theorem 2.6)
and

(ii) a Schur monotonicity lemma (Section 2.1).

We will now introduce some notation to facilitate the statement of the monotonicity
lemma.

For any set of real numbers S, the collection of N -tuples of distinct elements of S
is denoted by SN6= and its subset of N -tuples with entries in increasing order is denoted

by SN< . Given vectors u = (ui)
N
i=1 ∈ (0,∞)N and m = (mj)

N
j=1 ∈ RN , we let the matrix

u◦m := (u
mj
i )Ni,j=1.

Theorem 1.4 (Schur monotonicity lemma, [15, Corollary 8.7 and Proposition 8.1]). Let
m, n ∈ RN< be such that mj 6 nj for all j, where N > 1. The symmetric function

f : (0,∞)N6= → R; u 7→ det u◦n

det u◦m

is non-decreasing in each coordinate. If, moreover, the entries of the vectors m and n are
non-negative integers then f extends uniquely to the whole of (0,∞)N and coordinate-wise
monotonicity holds everywhere.

To see the connection with Schur, we note that when m and n are composed of non-
negative integers then f(u) ≡ sn(u)/sm(u), the ratio of Schur polynomials sm and sn as
defined in (2.2) below.

Theorem 1.4 is interesting for multiple reasons. First, it provided the missing ingredient
required to extend the positivity preserver results in [3] to general polynomials in [15].
Second, it led to novel characterizations in the theory of real inequalities [15]: of weak
majorization, as well as of majorization for all real tuples, extending the integer-tuple case
in [8, 22]. Third, this result admits several different proofs: via a log-supermodularity
phenomenon and totally positive matrices [15], using a result of Lam, Postnikov and
Pylyavskyy [16] from representation theory and the theory of symmetric functions [15],
and relying on the theory of Chebyshev blossoming in Müntz spaces, as developed by
Ait-Haddou and co-authors [1, 2].

In fact, the hypotheses of this theorem serve to deliver a stronger conclusion and this
is our second main result:

Theorem 1.5. With the hypotheses of Theorem 1.4, when m and n are distinct the
function f is actually strictly increasing in each coordinate. Moreover, when m and n
also have non-negative-integer entries, this coordinate-wise strict monotonicity holds for
the extension of f to all of (0,∞)N .

In fact, we show a stronger result than the final assertion here, by extending the function
to parts of the boundary of the positive orthant. Moreover, it is not the generalized
Vandermonde ratio with non-integer powers but the Schur polynomial ratio with integer
exponents whose strict monotonicity has the more involved proof. See Theorems 2.9
and 2.11 for details.
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Apart from its intrinsic interest, Theorem 1.5 is the key to proving Theorem 1.3 and
its variations in Section 2. The proofs of both main results combine techniques from
analysis with properties of Schur polynomials, which are inherently algebraic objects with
a representation-theoretic flavour. Our exploration reinforces the need for further study
of Schur functions from an analytical viewpoint. Prior work has already revealed the
essential role of Schur functions in the investigation of positivity transforms (see [3, 15] and
also [18]), and we can add two more contributions from recent work [13]. The first creates
a bridge between analysis and algebra: the Schur polynomials lie within the Maclaurin
expansion of det f [uvT ] for every smooth function f . The second walks across this bridge
to contribute to algebra: the well-known determinant formula of Cauchy in symmetric
function theory, its extension by Frobenius, and a determinant computation by Loewner
[12] all admit a common extension, to power series over an arbitrary commutative ring.

While the main theme of our work is the classification of positivity transforms, at least
two ingredients in the proofs below may be of independent interest: the strict monotonicity
of certain ratios of Schur functions and the continuity of certain Rayleigh quotients on
isogenic strata of positive matrices.

One conclusion that may be drawn from the present article is that applications of Schur
functions to topics beyond algebra are far from being fully explored. Further discoveries
and more surprises undoubtedly lie in wait.

Organisation of the remainder of this paper. Section 2 contains the statements
and proofs of extended versions of the two new theorems stated above, Theorems 1.3
and 1.4. This section concludes by resolving the question of whether Loewner’s necessary
condition for smooth functions to preserve positive semidefiniteness in fixed dimension is
also sufficient.

In Section 3, we recall the isogenic block stratification from [4, 5] and use this to find
the rank of the matrix f [A] for A in any given stratum and f as in Theorem 1.2(2)(b).

We conclude with Section 4, in which we recall the interpretation from [3] of the bound C
in terms of a Rayleigh quotient. We prove that this Rayleigh quotient is continuous as a
function of the underlying matrix when restricted to each isogenic stratum.

For the reader’s convenience, we append before the bibliography a list of symbols used
throughout this article.

2. Strictness of linear matrix inequalities for Hadamard powers, and the
Schur strict monotonicity lemma

In this section, we obtain two variations on Theorem 1.2. We note first the following
consequence of this theorem.

Corollary 2.1. Let f , C and P0 be as in Theorem 1.2. If c0, . . . , cN−1 > 0 then

A◦M 6 C
N−1∑
j=0

cjA
◦nj for any A ∈ P0, (2.1)

where 6 denotes the Loewner ordering, and the constant C is sharp.
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It follows immediately from this Corollary that the matrix

f [A] =

N−1∑
j=0

cjA
◦nj + c′A◦M

is positive semidefinite, whenever c0, . . . , cN−1 > 0 and c′ > −C−1, for any A ∈ P0. We
introduce and recall some notation for two important boundary cases:

g(z) =

N−1∑
j=0

cjz
nj − C−1zM and h(z) =

N−1∑
j=0

cjz
nj .

It is natural to ask when the matrices f [A], g[A] and h[A] are positive definite. The
following strengthening of Theorem 1.2 shows that these matrices are generically positive
definite in a strong sense, and zero only in the one-dimensional, degenerate case.

Theorem 2.2. Let f and P0 be as in Definition 1.1(4), so that n0 and M are non-negative
integers and nj = n0 + j for j = 0, . . . , N − 1. Suppose c0, . . . , cN−1 > 0 and c′ > −C−1,
where C is as in (1.2).

(1) Let A ∈ P0 and suppose n0 = 0 if A has a zero row. The following are equivalent.
(a) There exists a vector u ∈ CN with distinct entries such that A > uu∗ and u

has a zero entry if and only if A has a zero row.
(b) All of the rows of A are distinct.
(c) The matrix h[A] is positive definite.
(d) The inequality (2.1) is strict, that is, f [A] is positive definite.

(2) Suppose A ∈ P0 has a row with distinct entries and n0 = 0 if any entry in this
row is zero. Then g[A] is positive definite.

Furthermore, equality in (2.1) is attained on P0 if and only if either N = 1 and A = ρ,
or n0 > 0 and A = 0N×N .

Note that part (1)(a) of Theorem 2.2 does not depend on the coefficients c0, . . . , cN−1

and c′, and that the existence of u follows immediately from Proposition 2.4 if A is
positive definite. Note also that “row” may be replaced with “column” throughout, as all
the matrices are Hermitian.

Theorem 2.8 below provides a variation on Theorem 2.2 for the other three settings of
Definition 1.1.

The proof of Theorem 2.2 relies on the following preliminary observations.

Lemma 2.3. Suppose N > 1 and C, D ∈ PN (C) with C > D. Then C − tD has the
same kernel and rank as C for all t ∈ [0, 1).

Proof. Fix t ∈ (0, 1). If Cu = 0 for some u ∈ CN , then, as 0 6 C − tD 6 C, it follows
that

0 6 u∗(C − tD)u 6 u∗Cu = 0,

so kerC ⊆ ker(C − tD). Conversely, if (C − tD)u = 0 for some u ∈ CN , then

0 = u∗(C − tD)u = u∗Cu− t(u∗Du) =⇒ u∗Cu = t(u∗Du).

Now, if u∗Cu > 0 then u∗Du > 0, so

u∗
(
C − 1 + t

2
D
)
u =

t− 1

2
u∗Du < 0,
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which is impossible as 0 6 C−D 6 C− 1+t
2 D. Thus Cu = 0, proving the reverse inclusion.

We are now done, by the rank-nullity theorem. �

Proposition 2.4 ([3, Proposition 4.2]). Suppose N > 1 and C, D ∈ PN (C). The following
are equivalent.

(1) If v∗Cv = 0 for some v ∈ CN , then v∗Dv = 0.
(2) The inclusion kerC ⊆ kerD holds.
(3) There exists a constant t > 0 such that C > tD.

It follows immediately from the previous result that if C, D ∈ PN with C > D and D
is positive definite, so invertible, then C is also invertible, so positive definite.

While Theorem 2.2(2) is a result on positive definiteness, its proof uses connections
to Schur polynomials and Young tableaux. The key step in this respect is Theorem 2.6,
which requires the following definition (which adopts a different convention to that often
found in the literature [17]).

Definition 2.5. As above, if S is any subset of real numbers, we let SN< denote the set
of all increasing N -tuples of the form n = (n0 < . . . < nN−1) with entries in S. For such
an N -tuple n, we let |n| := n0 + · · ·+ nN−1.

Given any n ∈ (Z+)N< , the corresponding Schur polynomial sn(u1, . . . , uN ) is the unique
polynomial extension of the rational expression

sn(u1, . . . , uN ) :=
det(u

nj−1

i )Ni,j=1

det(uj−1
i )Ni,j=1

. (2.2)

Note that the denominator is precisely the Vandermonde determinant

V (u) = V (u1, . . . , uN ) := det(uj−1
i )Ni,j=1 =

∏
16k<l6N

(ul − uk)

and we can write sn(u)V (u) = det u◦n, where the matrix u◦n := (u
nj−1

i )Ni,j=1. Since the

right-hand side of (2.2) is unchanged after swapping any two elements of u, each Schur
polynomial is a symmetric function.

For any q 6= 0 we have the product identity [23, ((7.105)]

sn(1, q, . . . , qN−1) =
det
(
(qnj−1)i−1

)N
i,j=1

det(qj−1)i−1)Ni,j=1

=
∏

16k<l6N

qnl−1 − qnk−1

ql−1 − qk−1
(2.3)

as the numerator and denominator are both Vandermonde determinants. Taking q → 0
leads to the specialisation

sn(u1NT ) = u|n−δ|
∏

16k<l6N

nl−1 − nk−1

l − k
= u|n−δ|

V (n)

V (δ)
for all u,

where δ := (0, 1, 2, . . . , N − 1). As is well known [17, Chapter I, Equation (5.12)], thanks
to Littlewood we have the identity

sn(u) =
∑
t

ut, (2.4)

a sum of sn(1TN ) = V (n)/V (δ) monomials, where the monomial ut :=
∏N
j=1 u

tj
j has degree

|n− δ| and the sum is taken over all semistandard Young tableau t of shape n− δ.
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In particular, if nj and n = n01
T
N + δ are as in (1.3) and we let n′j := nj − n01

T
N then

sn′j (
√
ρ1TN )2 = ρM−n0−j V (nj)

2

V (n)2
for any ρ > 0. (2.5)

Furthermore, it may be shown by the hook-content formula [23, Theorem 7.21.2] that

V (nj)

V (n)
= snj (1

T
N ) = sn′j (1

T
N ) =

(
M

j

)(
M − j − 1

N − j − 1

)
.

Theorem 2.6 ([15]). Let S be a finite set of real numbers of cardinality at least N and
suppose

F (x) =
∑
n∈S

cnx
n,

where each coefficient cn is real. If u ∈ CN then

detF [uu∗] =
∑
n∈SN<

| det u◦n|2
∏
n∈n

cn. (2.6)

In particular, if the elements of S are non-negative integers then

detF [uu∗] =
∑
n∈SN<

|sn(u)|2|V (u)|2
∏
n∈n

cn. (2.7)

We state and prove a short lemma before we give the proof of Theorem 2.2.

Lemma 2.7. Suppose w ∈ CN has no zero entries. If B ∈ PN (C) is positive definite then
so is the Schur product (ww∗) ◦B.

Proof. For any vector v 6= 0, we have that v ◦w 6= 0 and therefore

v∗
(
(ww∗) ◦B)v = (v ◦w)∗B(v ◦w) > 0. �

Proof of Theorem 2.2. For part (1), we first show that (a) implies (c). Suppose u ∈ CN
has distinct entries and is such that A > uu∗. Then h[uu∗] is the sum of N rank-one
matrices with linearly independent column spaces, since the determinant of the matrix
(un0+l−1
k )Nk,l=1 is the product of a Vandermonde determinant and

∏N
k=1 u

n0
k ; recall that

we take 00 = 1. Thus, h[uu∗] is non-singular and so positive definite. As noted above,
entrywise powers of non-negative integers are Loewner monotone on PN , so h[A] > h[uu∗]
and h[A] is also positive definite, by the remark after Proposition 2.4.

Next, we note that (c) implies (b) because the contrapositive is immediate. We now
suppose that (b) holds and deduce (a). Let uT1 , . . . , uTN denote the rows of A. As CN is not
a finite union of proper subspaces, we can choose a vector v ∈ CN that is not orthogonal
to any vector of the form uj − uk with j 6= k nor any vector uj that is non-zero. We set
w := Av and note that w has distinct entries by the choice of v; moreover, w has a zero
entry if and only if the corresponding row of A is zero. By Proposition 2.4, we have that
A > tww∗ for some scalar t > 0, so (a) follows by setting u :=

√
tw.

Finally, that (c) implies (d) follows from the remark after Proposition 2.4 with C = f [A]
and D = h[A] when c′ > 0, and from Corollary 2.1 and Lemma 2.3 with C = h[A] and
D = C−1A◦M when c′ < 0. Conversely, that (d) implies (c) follows from the same remark
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when c′ 6 0, while if c′ > 0, the implication follows from Lemma 2.3 with C = f [A] and
D = (c′ + C−1)A◦M , together with Corollary 2.1. This concludes the proof of part (1).

To prove part (2), we first show the rank-one case: if A = uu∗ for some column vector
u ∈ D(0,

√
ρ)N and A has a row with distinct entries then u has distinct entries and g[A]

is positive definite.
Suppose for contradiction that det g[uu∗] = 0, and note that, by specialising (2.7) to

the given parameters and using the fact that sn(u) =
∏N
j=1 u

n0
j ,

N−1∑
j=0

|snj (u)|2

cj
= C

N∏
j=1

|uj |2n0 =

N∏
j=1

|uj |2n0

N−1∑
j=0

sn′j (
√
ρ1TN )2

cj
,

by (2.5), where the partition nj is as in (1.3) and n′j := nj − n01
T
N .

We note from the definitions that snj (u) = sn′j (u)
∏N
j=1 u

n0
j . It now follows from the

triangle inequality and the Littlewood identity (2.4) that

|sn′j (u)|2 6 sn′j (
√
ρ1TN )2,

since u ∈ D(0,
√
ρ)N , and therefore |sn′j (u)| = sn′j (

√
ρ1TN ) = ρ(M−n0−j)/2V (nj)/V (n)

for all j. Another application of the triangle inequality implies that all monomials ut

in the sum for sn′j (u) have modulus ρ(M−n0−j)/2 and so are equal (since the identity

|z1 + · · · + zn| = |z1| + · · · + |zn| implies that the non-zero complex numbers z1, . . . , zn
have the same argument). Furthermore, as each entry of u appears in some monomial,
none of the entries is zero.

If M > n0 +N then uM−n0−N
1 u2 · · ·uN−juk is a monomial that occurs in the Littlewood

formula for sn′j (u) for k = 1, . . . , N , and it follows that u1, . . . , uN are all equal. The

edge case M = n0 + N must be dealt with separately, but in this case sn′j (u) is the sum

of all monomials made up of N − j distinct entries of u and the same conclusion holds.
This contradicts the assumption that the entries of u are distinct, showing that g[uu∗] is
indeed positive definite.

Now suppose A has a row v∗ with distinct entries; in particular, the diagonal entry v′

in v is real and positive. Set u := v/
√
v′ and note that A − uu∗ has a zero row and

column. If

pt[B;R,d] := t(d01N×N + d1B + · · ·+ dn−1B
◦(N−1))−B◦(N+R)

for any d = (d0, . . . , dN−1), then [3, (3.16)] yields the identity

pt[A;M −N, c] = pt[uu∗;M −N, c]

+

∫ 1

0
(A− uu∗) ◦Mpt/M [λA+ (1− λ)uu∗;M −N, c′] dλ,

where c′ := (c1, 2c2, . . . , (N − 1)cN−1) and both terms on the right-hand side are positive
semidefinite, by [3, (3.7)]. Thus, if t = C and g0(z) := z−n0g(z) then

g0[A] = t−1pt[A;M −N − n0, c] > t−1pt[uu∗;M −N − n0, c] = g0[uu∗],

which is positive definite by the previous rank-one case. Thus g0[A] is positive definite,
which completes the proof of part (2) if n0 = 0. Otherwise, n0 > 0 and all the entries
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of u are non-zero by hypothesis. In this case, the following calculation implies that the
conclusion of part (2) holds:

g[A] = A◦n0 ◦ g0[A] > (u◦n0(u◦n0)∗) ◦ g0[A]

and the right-hand side is positive definite by applying Lemma 2.7 with w = u◦n0 and
B = g0[A].

The final assertion is immediate when N = 1, so we conclude by showing equality does
not hold in (2.1) whenever N > 1 and A 6= 0N×N . As A is positive semidefinite, some
entry x on the diagonal of A is positive. Suppose u ∈ (0,

√
ρ)N has distinct entries, one of

which is
√
x. The matrix g[uu∗] is positive definite by part (2), so g(x) > 0. Now equality

holds in (2.1) if and only if g[A] = 0, but this working shows that at least one entry on
the main diagonal of g[A] is strictly positive. �

Analogously to Theorem 2.2, one has the following result for the other test sets Pρ
above.

Theorem 2.8. Let f and P0 be as in Definition 1.1(1–3) and suppose c0, . . . , cN−1 > 0
and c′ > −C−1, where C is as in (1.2).

(1) Let A ∈ P0 and suppose n0 = 0 if A has a zero row. The following are equivalent.
(a) There exists a vector u ∈ [0,

√
ρ]N with distinct entries such that A > uu∗

and u has a zero entry if and only if A has a zero row.
(b) All of the rows of A are distinct.
(c) The matrix h[A] is positive definite.
(d) The inequality (2.1) is strict, that is, f [A] is positive definite.

Moreover, (c) is equivalent to (d).
(2) Suppose A ∈ P0 has a row with distinct entries and n0 = 0 if any entry in this

row is zero. Then g[A] is positive definite.

Furthermore, equality in (2.1) is attained on P0 if and only if either N = 1 and A = ρ,
or n0 > 0 and A = 0N×N .

This is proved presently.

2.1. Stronger Schur monotonicity lemmas. The proof of Theorem 2.8 relies on the
following strengthening of the Schur monotonicity lemma above, Theorem 1.4. As above,
for any set of real numbers S, denote by SN6= the set of all N -tuples of distinct elements

of S and by SN< its subset of N -tuples with increasing entries.

Theorem 2.9 (Schur strict monotonicity lemma 1). Fix an integer N > 1 and distinct
N -tuples m = (m0 < · · · < mN−1) and n = (n0 < · · · < nN−1) in RN< such that mj 6 nj
for all j. The symmetric function

f : (0,∞)N6= → R; u 7→ det u◦n

det u◦m

is strictly increasing in each coordinate and, for any ρ ∈ (0,∞), is bounded above by the

constant ρ|n−m|/2V (n)/V (m) on (0,
√
ρ]N6= . Furthermore, if m0 = n0 = 0 then f is well

defined on [0,
√
ρ]N6= and these two properties hold there.

As announced in Theorem 1.5, an extension of this result holds for Schur polynomials.
This will be stated and proved below, after the proof of the present theorem. We state
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and prove the extended result separately, because the behavior of f on the boundary of
the orthant is somewhat delicate.

Proof. We begin by showing the result on (0,
√
ρ]N6= for arbitrary ρ ∈ (0,∞). The first

step is to prove that f is strictly increasing in each coordinate, say in uN . If not, then by
Theorem 1.4, the function f is constant on (u1, . . . , uN−1)× [x, x′] for some x, x′ ∈ (0,

√
ρ]

with x′ < x, and we may shrink this interval to ensure that uj 6∈ [x, x′] for j 6= N . The
function

h : [log x, log x′]→ R; y 7→ f(u1, . . . , uN−1, e
y) =

∑N−1
j=0 gje

njy∑N−1
j=0 g′je

mjy

is constant, and gj and g′j are generalized Vandermonde determinants in u1, . . . , uN−1 for

any j, so are non-zero. Since functions of the form y 7→ eλy are linearly independent for
distinct real λ, this implies that m = n, contrary to our initial assumption.

Next, we note that any vector in (0,
√
ρ]N6= is coordinatewise bounded above (up to

relabeling coordinates) by a vector of the form v = v(ε) :=
√
ρ(1, ε, . . . , εN−1)T , where

ε ∈ (0, 1). Hence, by 1.4 and (2.3),

det(u◦n)

det(u◦m)
6

det(v◦n)

det(v◦m)
= ρ|n−m|/2

V (εn)

V (εm)
,

where εn := (εni−1)Ni=1. It now suffices to show that V (εn)/V (εm) is bounded above on
(0, 1] by V (n)/V (m). As this ratio is non-decreasing in ε, by Theorem 1.4, the least upper
bound will equal the limit as ε→ 1−, if it exists, but this limit is as claimed, by L’Hôpital’s
rule. This shows the result on (0,

√
ρ]N6= .

We now show that f is well defined and strictly increasing at u ∈ [0, ρ]N6= , where one
coordinate of u, say u1, is zero. Then m0 = n0 = 0 by assumption, so the matrices u◦m

and u◦n both have first row e1 := (1, 0, . . . , 0). Now if v1 denotes the truncation of the
vector v by removing its first coordinate, then

f(u) =
det(u◦n1

1 )

det(u◦m1
1 )

,

by expanding both determinants along their first rows; in particular, f(u) is well defined.

As u1 ∈ (0,
√
ρ]N−1
6= , the previous working implies that the right-hand side is strictly

increasing in the coordinates of u1, that is, in all but the first coordinate of u, and has
the requisite upper bound.

Finally, say ν > 0 and v := u + νe1 ∈ (0,∞)N6= ; we wish to show that f(v) > f(u). We

may assume that ν < min{u2, . . . , uN}, by transitivity and the previous working. Hence
v(t) := u + te1 is well defined for any t ∈ [0,u] and we see that

f(v) = f
(
v(ν)

)
> f

(
v(ν/2)

)
> f

(
v(t)

)
for any t ∈ (0, ν).

Taking the limit as t→ 0+, it follows that

f(v) > lim
t→0+

f
(
v(t)

)
= f

(
v(0)

)
= f(u),

as desired. �

The next result is the analogue of Theorem 2.9 for ratios of Schur polynomials on the
positive orthant. Given Theorem 1.4 and the preceding Theorem 2.9, it is natural to ask if
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strict monotonicity extends to the boundary of the orthant [0,∞)N . The following remark
explains why this cannot happen and why Theorem 2.11 is the best possible result that
may be obtained.

Remark 2.10. Here we describe two ways in which the coordinatewise monotonicity of the
Schur-polynomial ratio sn/sm fails to extend to strict monotonicity on all of [0,∞)N \{0}.

Suppose m ∈ (Z+)N< is such that m − δ has exactly N − k non-zero entries, where
0 6 k 6 N . Then sm(u) vanishes whenever u1 = · · · = uk+1 = 0, so for every vector
u ∈ [0,∞)N with at least k + 1 coordinates equal to zero. This is because every semi-
standard Young tableau of shape m− δ necessarily contains at least one entry in the set
{1, . . . , k + 1}. Thus, the ratio sn(u)/sm(u) has domain of definition

Uk := {u ∈ [0,∞)N : at most k coordinates of u are 0}, (2.8)

as some of monomials in the Littlewood identity (2.4) must be non-zero when u ∈ Uk.
Even restricted to the domain Uk, the function u 7→ sn(u)/sm(u) need not be strictly

increasing in each coordinate. If n− δ has exactly l zero entries and m− δ has exactly k
zero entries, with l < k, then sn(u) vanishes whenever l + 1 or more coordinates of u are
zero, so f(u) = sn(u)/sm(u) vanishes whenever u has between l + 1 and k coordinates
equal to 0. In particular, the function f cannot be strictly increasing on the collection of
all such vectors.

Given the understanding of obstructions to strict monotonicity afforded by Remark 2.10,
we now state and prove the strongest-possible monotonicity result for ratios of Schur
polynomials on the closed orthant [0,∞)N .

Theorem 2.11 (Schur strict monotonicity lemma 2). Fix an integer N > 1 and distinct
N -tuples m = (m0 < · · · < mN−1) and n = (n0 < · · · < nN−1) in (Z+)N< such that
mj 6 nj for all j.

(1) The symmetric function

f : (0,∞)N → R; u 7→ sn(u)

sm(u)

is strictly increasing in each coordinate and, for any ρ ∈ (0,∞), is bounded above

by the constant ρ|n−m|/2V (n)/V (m) = f(
√
ρ1TN ) on (0,

√
ρ]N .

(2) Suppose that nj = j for j = 0, . . . , k − 1 but nk > k, where 0 6 k 6 N and
the final condition holds vacuously if k = N . Then f is non-decreasing in each
coordinate on its extended domain of definition Uk given by (2.8).

(3) Suppose that mj = mj = j for j = 0, . . . , k−1 and mk, nk > k, where 0 6 k 6 N
and the final condition holds vacuously if k = N . Then f is strictly increasing in
each coordinate on Uk.

Proof. While this result is similar to Theorem 2.9, its proof is slightly different: the first
part uses Schur polynomials rather than exponentials, while the other parts use semi-
standard Young tableaux.

Given u ∈ (0,∞)N6= , we can expand both determinants along the Nth row to see that

f(u) =
det(un)

det(um)
=

∑N−1
j=0 (−1)N+j+1 det(un(j)

0 )u
nj
N∑N−1

j=0 (−1)N+j+1 det(um(j)

0 )u
mj
N

,
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where u0 := (u1, . . . , uN−1), m(j) equals m with mj removed, and similarly for n(j).
Dividing numerator and denominator by the Vandermonde determinant V (u0), we see
that

f(u) =

∑N−1
j=0 (−1)N+j+1sn(j)(u0)u

nj
N∑N−1

j=0 (−1)N+j+1sm(j)(u0)u
mj
N

. (2.9)

As both sides are continuous on (0,∞)N , the identity (2.9) holds on the entire open
orthant.

With (2.9) at hand, we turn to the proof of the theorem.

(1) By symmetry, it suffices to show f(u) is strictly increasing as a function of uN .
If not, by Theorem 1.4 there exists a point u ∈ (0,∞)N and some ε > 0 such
that the function x 7→ f(u + xeN ) is constant, say with value c, on [0, ε], where
eN := (0, . . . , 0, 1). It follows via (2.9) that the function

g : x 7→
N−1∑
j=0

(−1)N+j+1(sn(j)(u0)xnj − csm(j)(u0)xmj )

is identically zero on [0, ε]. As g is a non-constant polynomial, since m 6= n, this
yields a contradiction.

(2) Let u = (u1, . . . , uN )T ∈ Uk and suppose without loss of generality that uj = 0
if j 6 l and uj > 0 if j > l, where 0 6 l 6 k. Given any i ∈ {1, . . . , N} and t > 0,
we wish to show that f(u + tei) > f(u). If ε is positive and sufficiently small, we
have that

uε := (ε, . . . , ε, ul+1, . . . , uN )T = ε

l∑
j=1

ej + u ∈ (0,∞)N .

By Theorem 1.4, we know that

f(uε + tei)− f(uε) > 0.

We have that sm(uε+ tei) > 0 and sm(uε) > 0, and the same holds for sm(u+ tei)
and sm(u), so we may take ε→ 0+ to obtain the desired inequality.

(3) Let u, k, l, i and t be as for (2). We wish to show that f(u + tei) > f(u).
We first suppose i > l and so we may take i = l + 1 by symmetry. We now use

the Littlewood identity (2.4). As u1 = · · · = ul = 0, the Schur polynomial sn(u) is
obtained by adding monomials corresponding to all semistandard Young tableau
of shape n−δ that do not contain any of the labels 1, . . . , l. Hence this sum can be
written as a Schur polynomial in the reduced set of variables u′ := (ul+1, . . . , uN )T

and the Littlewood sum involves tableau of the shape n′ − δ, where

n′ := (nl − l, . . . , nN−1 − l).
In other words,

f(u) =
sn(u)

sm(u)
=
sn′(u

′)

sm′(u′)

and this last ratio is strictly increasing in each of the variables in u′, by part (1).
Hence f(u + tei) > f(u) for any i > l.

The remaining case is when 1 6 i 6 l, so by symmetry we may assume i = l.
We proceed similarly to the previous case, now summing over all semistandard
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Young tableaux which do not contain the labels 1, . . . , l − 1, and form the Schur
polynomials sn′′(ul,u

′) and sm′′(ul,u
′), where u′ ∈ (0,∞)N−l is as in the previous

paragraph,

m′′ := (ml−1 − l + 1, . . . ,mN−1 − l + 1)

and n′′ := (nl−1 − l + 1, . . . , nN−1 − l + 1).

As above, we have that

f(u) =
sn(u)

sm(u)
=
sm′′(ul,u

′)

sn′′(ul,u′)
.

Hence if the function x 7→ f(u + xel) is not strictly monotone on [0, t] then there
exist a, b ∈ (0, t) with a < b such that the function

g : [a, b]→ R; x 7→ f(0, . . . , 0, x, ul+1, . . . , uN ) =
sm′′(x,u

′)

sn′′(x,u′)

is constant. However this contradicts part (1). �

The following result is used to show that (b) implies (a) in Theorem 2.8(1). The need
to ensure the vector u has non-negative entries means that the elementary argument used
in the proof of Theorem 2.2(1) does not translate to this setting.

Theorem 2.12. Let A ∈ PN
(
[0,∞)

)
, where N > 1, and suppose the rows of A are

distinct. There exists a vector u ∈ [0,∞)N with distinct entries such that A > uuT and u
has a zero entry if and only if A has a zero row.

The condition that A must have distinct rows in Theorem 2.12 and for corresponding
implication in Theorem 2.2(1) is necessary as well as sufficient, as the rank-one case shows.
If A = vv∗ for some v ∈ CN , and u ∈ CN is such that A > uu∗, then u is a scalar multiple
of v, by Proposition 2.4. If A has two equal rows, then two coordinates of v are equal,
whence the same holds for u, and so the conclusion of Theorem 2.12 and the implication
in Theorem 2.2(1) do not hold.

We note that the full-rank case of Theorem 2.12 is immediate, either by Proposition 2.4
or simply because A > λ1IdN > λ1uuT for any unit vector u, where λ1 is the smallest
eigenvalue of A and IdN is the N × N identity matrix. Similarly, the rank-one case is
immedate.

Lemma 2.13. Let A be a real symmetric N ×N matrix, where N > 1, and suppose the
vectors u1, . . . , um ∈ RN are such that A > uju

T
j for all j. If u =

∑m
j=1 λjuj is an

arbitrary convex combination of u1, . . . , um, so that λj ∈ [0, 1] for all j and
∑m

j=1 λj = 1,

then A > uuT .

Proof. We recall the following elementary Schur-complement property: for any v ∈ RN
we have the equivalence

A > vvT ⇐⇒
(
A v
vT 1

)
> 0.

Replacing v by uj in the right-hand side, multiplying through by λj and summing over j
gives the result. �
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Proof of Theorem 2.12. We have the spectral decomposition A =
∑m

j=1 uju
T
j , where the

eigenvectors u1, . . . , um ∈ RN are orthogonal and non-zero. We have that A > uju
T
j

for all j and, by Lemma 2.13, it suffices to show that some convex combination of these
vectors has non-negative and distinct entries, with a zero appearing if and only if A has a
zero row.

We first note that, for any pair of distinct indices j and k in {1, . . . , N}, there exists
some eigenvector ui whose jth and kth coordinates are distinct. If this does not hold for

some such pair then the {j, k}×{j, k} principal submatrix of A has the form

(
α α
α α

)
for

some α > 0. However, if l 6∈ {j, k} then, up to a simultaneous re-indexing of rows and
columns, the {j, k, l} × {j, k, l} minor of A is such that

0 6 det

 α α ajl
α α akl
ajl akl all

 = −α(ajl − akl)2 6 0.

From this it follows that ajl = akl for all l 6∈ {j, k}, which shows that the jth and kth
rows of A are equal. This contradiction establishes our first observation.

We next consider the affine map

Ψ : Rm−1 → RN ; c = (c2, . . . , cm) 7→ u1 +

m∑
j=2

cjuj .

and note that Ψ(c) has distinct coordinates if and only if p(c) 6= 0, where

p(c) :=
∏

16k<l6N

(
Ψ(c)l −Ψ(c)k

)
=

∏
16k<l6N

(
(u1)l − (u1)k +

m∑
j=2

cj
(
(uj)l − (uj)k

))
.

Thus, p is a polynomial in c2, . . . , cm that is a product of non-zero factors that are either
linear or constant, by the first observation. It follows that Ψ(c) has distinct coordinates
for all c not in p−1({0}), which has zero Lebesgue measure.

We now assume that A is irreducible, which implies that A does not have a zero row.
By the Perron–Frobenius theorem, we may take u1 to be the Perron eigenvector, which
lies in (0,∞)N . We can then choose a positive but sufficiently small ε so that Ψ(c)
has all coordinates positive whenever c ∈ (0, ε)m−1. Since this set has positive Lebesgue
measure, there exists some c ∈ (0, ε)m−1\p−1({0}) and u′ = Ψ(c) has positive and distinct
coordinates. Finally, we let u = βu′, where β = 1/(1 + c2 + · · ·+ cm).

We next suppose that A = A1 ⊕ A2, where A1 and A2 have vectors u1 and u2 with
positive entries such that A1 > u1u

T
1 and A2 > u2u

T
2 . A short calculation shows that[

xT1 xT2
]([

A1 0
0 A2

]
−
[
µ1u1

µ2u2

] [
µ1u

T
1 µ2u

T
2

]) [
x1

x2

]
= xT1 A1x1 − 2µ2

1(xT1 u1)2 + xT2 A2x2 − 2µ2
2(xT2 u2)2 + (µ1x

T
1 u1 − µ2x

T
2 u2)2,

so any u of the form µ1u1 ⊕ µ2u2, with µ2
1 < 1/2 and µ2

2 < 1/2, is such that A > uuT .
To ensure that u has distinct and positive entries, we fix suitable positive µ1 and take µ2

positive but sufficiently small to ensure that every entry of µ2u2 is smaller than every
every of µ1u1. Since A may be written, up to a simultaneous re-indexing of rows and
columns, in Frobenius normal form as a block-diagonal sum of irreducible matrices and at
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most one zero, the result follows. If A has a zero row then zero appears in the appropriate
coordinate of u, and otherwise all the entries of u are positive. �

We now use Theorem 2.9 to show that strict positive definiteness holds generically for
polynomial positivity preservers.

Proof of Theorem 2.8. The proof of part (1) is similar to that of the corresponding parts
of the proof of Theorem 2.2, with a few minor modifications. To see that (a) implies (c)
here, we note first that if A has rank one then we may assume A = uu∗. As before, the
matrix h[uu∗] is the sum of N rank-one matrices and their column spaces are spanned
by {u◦n0 , . . . ,u◦nN−1}. This set is linearly independent, as the generalized Vandermonde
determinant of u◦n = (u

nj−1

i )Ni,j=1 is non-zero if u1, . . . , uN > 0 and n0 < n1 < · · · < nN−1

[10, Example XIII.8.1]. In the case where ui = 0 for some i then the ith row of the
matrix u◦n equals (1, 0, . . . , 0) and expanding the determinant along this row reduces the
matter to the former situation. When A = uu∗ we are now done; otherwise we are in
the setting of Definition 1.1(3) and we emply Loewner monotonicity as in the proof of
Theorem 2.2.

The arguments to show that (c) implies (b) and that (c) and (d) are equivalent are
unchanged and the fact that (b) implies (a) follows immediately from Theorem 2.12.

For part (2), we first suppose as in the proof of Theorem 2.2(2) that A = uu∗ has rank
one, and det g[uu∗] = 0. By suitably specializing (2.6), we see that

N−1∑
j=0

det(u◦nj )2

cj
= C det(u◦n)2 = det(u◦n)2

N−1∑
j=0

V (nj)
2

V (n)2

ρM−nj

cj
,

where nj and n are as in (1.3). Moreover, by the hypotheses we have det(u◦n) 6= 0. Thus,

N−1∑
j=0

det(u◦nj )2

cj det(u◦n)2
=

N−1∑
j=0

ρ|nj−n|V (nj)
2

cjV (n)2
. (2.10)

By Theorem 2.9, each summand on the left is strictly less than the corresponding one
on the right whenever u ∈ [0, ρ]N6= and so g[uu∗] is positive definite. The remaining case

occurs when u has a zero entry, in which case n0 = 0 and n0 := (n1 < · · · < nN−1 < M)
lies in (0,∞)N< . Then u◦n0 has a zero row and therefore zero determinant, whereas if m

is such that m0 = 0 then det(u◦m)2 = det(u◦m
′

× )2, where u× is u with the zero entry

removed, so that u× ∈ (0,
√
ρ]N−1
6= , and m′ := (m1 < · · · < mN−1). Hence

det(u◦nj )2

det(u◦n)2
=

det(u
◦n′j
× )2

det(u◦n
′

× )2
6 ρ|n

′
j−n′|

V (n′j)
2

V (n′)2
6 ρ|nj−n|

V (nj)
2

V (n)2

for j = 1, . . . , N − 1. (The final inequality holds because if mk 6 nk for k = 0, . . . , N − 1
and m0 = n0 then V (m)/V (m′) 6 V (n)/V (n′).) Thus the equality (2.10) fails to hold
once again and we see that g[uu∗] is positive definite.

The proof for general A is identical to that part of the proof of Theorem 2.2(2), and
the same holds for the proof of the final part. �

We conclude this section with the following observation.
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Remark 2.14. As noted in the introduction, and explained by Loewner (see Horn’s thesis
[12]), a necessary condition for any smooth function f : (0, ρ) → R to preserve positive

semidefiniteness when applied entrywise to matrices in Pn
(
(0, ρ)

)
is that f , f ′, . . . , f (n−1)

must be non-negative on (0, ρ).
Now a natural question is as follows: is Loewner’s necessary condition also sufficient?

For power functions of the form p(x) ≡ xα then this condition is indeed sufficient, as
shown by FitzGerald and Horn [9]. However, this necessary condition is not sufficient in
general.

From Theorem 1.2 with c0, c1 > 0, n = (0, 1) and M = 2, we see that the quadratic
polynomial p(x) = c0 + c1x+ c′x2 preserves positive semidefiniteness on P2

(
(0, 1)

)
if and

only if

c′ >
−c0c1

4c0 + 2c1
. (2.11)

On the other hand, Loewner’s result provides a lower bound for the coefficient c′ which
can be computed as follows. As p′ is non-negative on [0, 1], we have that 2c′x+ c1 > 0 for
any x ∈ [0, 1], so c′ > −c1/2. If x ∈ [0, 1] then this implies that

p(x) = c′x2 + c1x+ c0 >
−c1

2
x2 + c1x+ c0 = c1x

(
1− x

2

)
+ c0 > c0 > 0.

(Alternatively, one may observe that p is non-decreasing on [0, 1], since p′(x) > 0 for any
choice of x ∈ (0, 1), nd so f is bounded below by p(0) = c0.) Thus, the lower bound
on c′ to ensure that Loewner’s condition holds is −c1/2, which is strictly smaller than the
bound in (2.11). Hence Loewner’s necessary condition is not sufficient, even for polynomial
functions. We thank Siddhartha Sahi for raising this question.

3. Rank properties on strata

Theorem 2.2 provides readily verified criteria to classify when a matrix A ∈ PN
(
D(0, ρ)

)
is such that f [A] is non-singular, and also implies that there are at most two choices of A
for which f [A] is zero. This section significantly refines both of these results, by provding
a method to compute the rank of the matrix f [A]. A tool developed in previous work
[4, 5], a Schubert cell-type stratification of the cone PN (C), turns out to be crucial: the
rank of A depends solely on which stratum A lies in. We begin by recalling the relevant
notions.

Definition 3.1. Given an integer N > 2, denote by (ΠN ,4) the poset of all partitions of
the set {1, . . . , N}, ordered such that π′ 4 π if and only if π is a refinement of π′: every
set in π is a subset of some set in π′.

We let |π| denote the number of sets in π and |I| denote the number of elements in a
set I ∈ π. We insist that N > 2 throughout this section to avoid uninteresting trivialities.

Given non-empty sets I, J ⊆ {1, . . . , N} and an N ×N complex matrix A, we let AI×J
denote the |I| × |J | submatrix of A with row indices in I and column indices in J .

Proposition 3.2 ([5, Propositions 2.4 and 2.6]). Fix an integer N > 2 and a multiplicative
subgroup G 6 C×.

(1) For any N ×N complex matrix A, there exists a unique minimal partition π ∈ ΠN

such that the entries of the submatrix AI×J lie in a single G-orbit for all I, J ∈ π.
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In particular, there exists an |π| × |π| complex matrix C such that A is a block
matrix with AI×J = cIJ1|I|×|J | for all I, J ∈ π. Moreover, A and C have equal
rank.

(2) There is a stratification of the set of N ×N complex matrices,

CN×N =
⊔

π∈ΠN

SGπ ,

where the stratum

SGπ := {A ∈ CN×N : πG(A) = π}

and πG(A) is the partition from (1). The set SGπ has closure

SGπ =
⊔
π′4π

SGπ′ (3.1)

when CN×N is equipped with its usual topology.

Using the above isogenic block stratification, we now refine the results in the preceding
section. We let π∨ := {{1}, . . . , {N}} denote the maximum element of the lattice of
partitions ΠN and we work henceforth with πG(A) only for the trivial subgroup G = {1}.
To lighten notation, we write S{1}π = Sπ and π{1}(A) = π(A).

Theorem 3.3. Let f be as in Definition 1.1(4), so that n0 and M are non-negative
integers and nj = n0 + j for j = 0, . . . , N − 1, where N > 2. Suppose c0, . . . , cN−1 > 0

and c′ > −C−1, where C is as in (1.2). Let A ∈ PN
(
D(0, ρ)

)
, with n0 = 0 if A has a zero

row. Then

rank f [A] = rankh[A] = |π(A)|, (3.2)

while rank g[A] = |π(A)| if

(a) A 6∈ Sπ∨ or
(b) A ∈ Sπ∨ and A has a row with distinct entries, with n0 = 0 if any entry in this

row is zero.

In particular, for any partition π ∈ ΠN and any positive semidefinite matrix A ∈ Sπ,
both f [A] and h[A] have rank equal to the number of blocks in π (as long as n0 = 0
whenever A has a zero row).

When N > 2, the identity matrix is an element of Sπ∨ which has no row with distinct
entries. It follows that Theorem 3.3(b) is a sufficient but not necessary condition for the
rank of g[A] to equal |π(A)|.

Remark 3.4. Theorem 3.3 is intertwined with Theorem 2.2 in two ways. First, the
matrices f [A] and h[A] have rank equal to |π(A)|, so are never zero. Second, the four
equivalent assertions in Theorem 2.2(1) are also equivalent to the following:

(e) The matrix A lies in Sπ∨ , the top cell of the stratification.

Since Sπ∨ is dense in PN , we see again that f [A] is positive definite for generic A.

The proof of Theorem 3.3 employs the block decomposition of Proposition 3.2, as well
as the inflation and compression operators for the entrywise calculus studied elsewhere [5,
Section 4], [7]. We begin by recalling these operators and some basic properties.
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Definition 3.5 ([5, Definition 4.1]). Suppose π = {I1, . . . , Im} ∈ ΠN for some N > 1.
Given i, j ∈ {1, . . . ,m}, we let Eij denote the elementary m×m matrix with (i, j) entry
equal to 1 and all other entries 0, and let 1[Ii × Ij ] denote the N × N matrix with 1 in
each entry of the I1 × Ij block and 0 elsewhere.

(1) Define the linear inflation map

Σ↑π : Cm×m → CN×N ; Eij 7→ 1[Ii × Ij ] (i, j = 1, . . . ,m)

and note that the range of Σ↑π is Sπ.
(2) Define the linear compression map

Σ↓π : CN×N → Cm×m; Σ↓π(A)ij :=
1

|Ii| |Ij |
∑

p∈Ii,q∈Ij

apq (i, j = 1, . . . ,m),

so that the image Σ↓π(A) = (bij)
m
i,j=1 is such that bij is the average of the entries

in AIi×Ij .

The operators Σ↑π and Σ↓π are well behaved with respect to the entrywise calculus:

Theorem 3.6 ([5, Theorem 4.2]). Let Sπ and Cm×m each be equipped with the entrywise
product, so that the units for this product are 1N×N and 1m×m, respectively. The maps

Σ↓π : Sπ → Cm×m and Σ↑π : Cm×m → Sπ
are mutually inverse, rank-preserving isomorphisms of unital commutative ∗-algebras.

Moreover, A ∈ Sπ is positive semidefinite if and only if Σ↓π(A) is.

To summarize the preceeding material in plain language, the main picture adapted
to the trivial group G = {1} is the following: a real symmetric matrix A = (aij)

N
i,j=1

respects the block structure associated to a partition π = {I1, . . . , Im} if the entry aij is
independent of i, j ∈ Ik for some k. The compression map collapses each cell Ik to a single
entry, projecting the matrix A to the m ×m matrix with entries given by the constant
values along the fibres of the projection map. The reverse inflation map restores the
repetitions of matrix entries in A. These are linear, mutually inverse maps that preserve
rank, positive semidefiniteness, and the entrywise product.

With these tools at hand, we proceed.

Proof of Theorem 3.3. As f is equal to h when c′ = 0, we need only consider f [A] and g[A].
For convenience, we let π := π(A).

Suppose A = a1N×N for some a > 0. Then g(a) > 0 if a > 0, by the last part of
the proof of Theorem 2.2, and g(0) = c0 > 1 when A = 0N×N . Since f(a) > g(a), the
rank-one case is established.

Next, we note that π = π∨ if and only if the rows of A are distinct, so the result follows
from Theorem 2.2 in this case.

Otherwise, we suppose that m := |π| is strictly between 1 and N . The matrix g[A] is

positive semidefinite, by Theorem 1.2, and therefore, if B := Σ↓π(A), so is g[B] = Σ↓π
(
g[A]

)
,

by Theorem 3.6. If g[B] is positive definite then so is f [B], since f [B] > g[B], and therefore
both of these matrices have rank m. Another application of Theorem 3.6 then gives that

the matrices g[A] = Σ↑π
(
g[B]

)
and f [A] = Σ↑π

(
g[A]

)
have rank m, as required.
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It thus remains to show that g[B] is positive definite. For this, we will use Lemma 2.3
with C = h[B] and D = C−1

m B◦M for a suitable positive scalar Cm. The Schur product
theorem gives that C and D are both positive semidefinite. Furthermore, as B has distinct
rows and n0 = 0 if B has a zero row, Theorem 2.2(1) gives that

C0 :=

m−1∑
j=0

cjB
◦nj

is positive definite. Since h[B] = C > C0, we have that h[B] is positive definite as well.
We now let

hm(z) :=
m−1∑
j=0

cN−m+jz
j

and let Cm equal C as in (1.2) but with N replaced with m, n = (0, . . . ,m−1), M replaced
by M − n0 −N +m and c = (cN−m, . . . , cN−1), so that

Cm =

m−1∑
j=0

(
M −N +m

j

)2(M −N +m− j − 1

m− j − 1

)2 ρM−n0−N+m−j

cN−m+j
.

By Corollary 2.1,

hm[B] > C−1
m B◦(M−n0−N+m)

and therefore, by the Schur product theorem, we have that

C = h[B] > B◦(n0+N−m) ◦ hm[B] > C−1
m B◦M = D. (3.3)

Moreover, Cm < Cm+1 6 CN , where the constant CN is precisely C as in (1.2), since(
M −N +m+ 1

j + 1

)(
M −N +m

j

)−1

=
M −N +m+ 1

j + 1
> 1 for j = 0, . . . ,m− 1.

Hence

g[B] = h[B]− C−1
N B◦M = C − tD,

where t = Cm/CN ∈ (0, 1). By Lemma 2.3, this has the same rank as C = h[B], which
was shown above to be positive definite. This completes the proof. �

As in the previous section, there is an analogue of Theorem 3.3 that holds in the other
cases set out in Definition 1.1, in the same way that Theorem 2.2 becomes Theorem 2.8.

Theorem 3.7. Let f and P0 be as in Definition 1.1(1–3) and suppose c0, . . . , cN−1 > 0
and c′ > −C−1, where C is as in (1.2). Let A ∈ P0 and suppose n0 = 0 if A has a zero
row. The conclusions of Theorem 3.3 hold once again.

Proof. The proof proceeds in the same manner as that of Theorem 3.3, with appeals to
Theorem 2.2 replaced by employing Theorem 2.8 in its place. As there, it suffices to
assume that m = |π| is strictly between 1 and N , and show that the positive semidefinite

matrix g[B] is in fact positive definite, where B = Σ↓π(A). Here are the steps of the proof,
modified to work for Settings (1)–(3) in Definition 1.1.

To see that C := h[B] and D := CmB◦M are positive semidefinite, where Cm is a
positive constant to be determined, we use the result of FitzGerald and Horn [9] that
the function x 7→ xα acts entrywise to preserve positive semidefiniteness on N × N real
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matrices with positive entries whenever α ∈ Z+ ∪ [N − 2,∞). As above, the matrix C0 is
positive definite, now by Theorem 2.8(1), and hence so is C.

We now let

hm(z) :=
N−1∑

j=N−m
cjz

nj

and take Cm to be as in (1.2) with N = m, n = (nN−m, . . . , nN−1), M unchanged and
c = (cN−m, . . . , cN−1). Once again using the result from [9], together with Corolllary 2.1,
we have that

C := hN [B] > hm[B] > C−1
m B◦m =: D.

We now claim that Cm < CN ; given this, the proof is then completed as for Theorem 3.3.
To show this claim, we note that

CN =
N−1∑
j=0

b2j
ρM−nj

cj
and Cm =

N−1∑
j=N−m

a2
j

ρM−nj

cj
,

where

bj =
∏

k∈{0,...,N−1}\{j}

(M − nk
nj − nk

)2
and aj =

∏
k∈{N−m,...,N−1}\{j}

(M − nk
nj − nk

)2

Hence

CN − Cm >
N−1∑

j=N−m
(b2j − a2

j )
ρM−nj

cj
,

so it suffices to show that b2j > a2
j for j > N −m. This holds because

b2j
a2
j

=

N−m−1∏
k=0

(M − nk
nj − nk

)2
> 1

since M > nj > nk for j > N −m. �

4. Continuity of the Rayleigh quotient on strata

As well as its relevance for calculating the rank, as seen in Section 3, it was shown in [3]
that the constant-block stratification of Proposition 3.2 plays a crucial role in studying
the following Rayleigh quotient:

R = R(A,u, c,M) :=
u∗A◦Mu

u∗(c0A◦n0 + c1A◦n1 + · · ·+ cN−1A◦nN−1)u
. (4.1)

This Rayleigh quotient is connected to the isogenic stratification of the cone Pn(C), and
this theme was developed in [3, Sections 4 and 5] (for consecutive non-negative integer
exponents) and later in [15, Section 11] (for more general exponents).

The optimisation of (4.1) gives an alternative approach for establishing Theorem 1.2.
Namely, if the coefficients c0, . . . , cN−1 are positive and the exponents n0, . . . , nN−1 are
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non-negative then, given any A ∈ PN
(
(0, ρ)

)
, or A ∈ PN (C) if the exponents are integral,

there exists a constant C′ > 0 such that

A◦M 6 C′
N−1∑
j=0

cjA
◦nj = C′h[A]

The smallest such constant CR = CR(A, h,M) may be regarded as a Rayleigh quotient,
and it was shown in [3, Remark 4.6] and [15, Proposition 11.1] that

CR = %(h[A]†/2A◦Mh[A]†/2), (4.2)

whereB†/2 := (B†)1/2 for any square matrixB, withB† the Moore–Penrose pseudo-inverse
of B, and %(·) denotes the spectral radius.

If A = uuT for a vector u ∈ (0,∞)N6= then h[uuT ] is invertible, since the generalized
Vandermonde matrix u◦n is, and

CR = (u◦M )Th[uuT ]−1u◦M =
N−1∑
j=0

(det u◦nj )2

cj(det u◦n)2
;

see [3, Corollary 4.5] and [15, Proposition 11.2]. This explains the connection to the sharp
threshold in Theorem 1.2.

We recall from [3, 15] that an alternate approach to proving Theorem 1.2 is to find the
maximum of the bound (4.2) over all A in the relevant test set P0. The difficulty with this
approach lies in the fact that the Rayleigh-quotient map is not continuous when crossing
strata.

Our focus in this section is on the bound (4.2) for a single matrix A. We are not
concerned with the radius ρ that appeared previously and we do not insist that M > nN−1,
only that M > n0 = 0. In this setting we obtain continuity of the Rayleigh quotient on
each individual stratum.

Theorem 4.1. Let h(z) =
∑N−1

j=0 cjz
nj , where N > 1, the coefficients c0, . . . , cN−1 are

positive and the exponents n0, . . . , nN−1 ∈ Z+ ∪ [N − 1,∞) are distinct, with n0 = 0.
Fix M > 0 and let P0 := PN (C) if the exponents n0, . . . , nN−1 and M are integers and
otherwise let P0 := PN

(
[0,∞)

)
. The map A 7→ CR(A, h,M) is continuous on P0 ∩ Sπ for

any partition π ∈ ΠN .

The proof employs weighted variants of the inflation and compression operators used
in Section 3 that were introduced in [5].

Definition 4.2 ([5]). Given a partition π = {I1, . . . , Im} ∈ ΠN , where N > 2, we use the
diagonal matrix Dπ := diag

(
|I1|, . . . , |Im|

)
to define the linear operators

Θ↓π : CN×N → Cm×m; A 7→ D1/2
π Σ↓π(A)D1/2

π

and Θ↑π : Cm×m → CN×N ; B 7→ Σ↑π(D−1/2
π BD−1/2

π ).

Just as Σ↑π and Σ↓π work well with the entrywise calculus, the maps Θ↑π and Θ↓π are well
behaved with respect to the functional calculus, as the following result demonstrates.

Theorem 4.3 ([5, Theorem 5.2]). The maps Θ↓π and Θ↑π are mutually inverse, rank-
preserving isomorphisms between the unital ∗-algebras Sπ and Cm×m equipped with the
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usual matrix multiplication. Moreover,a matrix A ∈ Sπ is positive semidefinite if and only

if Θ↓π(A) is.

With these preliminaries at hand, we proceed.

Proof of Theorem 4.1. Suppose A ∈ P0 ∩ Sπ and let H := h[A] for brevity. As A is

positive semidefinite, so is B = Σ↓π(A), which has distinct rows by construction. We have
that h[B] has no zero row, since n0 = 0, so either Theorem 2.2 or Theorem 2.8 implies

that Σ↓π(H) = h[B] is positive definite, where this identity holds by Theorem 3.6. Hence

the matrix Σ↓π(H) has full rank, and therefore so does Θ↓π(H) = Θ↓π(Σ↑π(Σ↓π(H))), by

Theorems 3.6 and 4.3. The matrix Θ↓π(H) is therefore invertible, and

H† = Θ↑π(Θ↓π(H)†) = Θ↑π(Θ↓π(H)−1)

by Theorem 4.3. Hence,

H†/2A◦MH†/2 = Θ↑π(Θ↓π(H)−1/2Θ↓π(A◦M )Θ↓π(H)−1/2),

and since all the operations A 7→ H = h[A], A 7→ A◦M , B 7→ B−1/2, Θ↓π, Θ↑π and %(·) are
continuous, this gives the claim. �

We conclude with two questions. A version of the first was originally posed in [3].

Question 4.4. When is the Rayleigh-quotient inequality an equality? More precisely,
given h(z) =

∑N−1
j=0 cjz

nj , where N > 1, the coefficients c0, . . . , cN−1 are positive and the

exponents n0 < · · · < nN−1 < M lie in Z+ ∪ [N − 1,∞), when is A ∈ PN
(
[0, ρ]

)
such that

the inequality

CR = %(h[A]†/2A◦Mh[A]†/2) 6 CV
is an equality, where CV = C as in (1.2)? We see from Theorems 2.2(2) and 2.8(2)
that equality is not attained if A has a row with distinct entries, so lies in in the top
stratum Sπ∨ (and n0 = 0 if any entry in this row is zero), since this implies that the
matrix g[A] = h[A]− C−1

V A◦M is positive definite and h[A]− C−1
R A◦M is not, because

u∗h[A]1/2(IdN − C−1
R h[A]−1/2A◦Mh[A]−1/2)h[A]1/2u = 0

if u = h[A]−1/2v and v is an eigenvector corresponding to the maximum eigenvalue

of h[A]−1/2A◦Mh[A]−1/2.

For our next question, we first present another extension of Theorem 2.2. This result
and its proof involve the linear matrix inequality (2.1), in which the matrix A◦M is bounded
above by powers of lower order. When restricted to the closure of a particular stratum,
this inequality can be strengthened to involve fewer terms.

Proposition 4.5. Let the partition π ∈ ΠN , where N > 2, and suppose π has m blocks,
where m > 1. Suppose c0, . . . , cm−1 are positive and n0, . . . , nm−1, M ∈ Z+∪ [N −1,∞)
are distinct, with n0 < · · · < nm−1 < M . Given any ρ > 0, we let P0 equal PN

(
D(0, ρ)

)
if n0, . . . , nN−1 and M are integers and PN

(
[0, ρ]

)
otherwise. We have the bound

A◦M 6 Cm
m−1∑
j=0

cjA
◦nj for all A ∈ P0 ∩ Sπ, (4.3)
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where Cm equals C as in (1.2) with c = (c0, . . . , cm−1) and n = (n0, . . . , nm−1). Equality
is achieved if and only if either m = 1 and A = ρ1N×N , or n0 > 0 and A = 0N×N .

Furthermore, if Cm is replaced by any larger constant, and n0 = 0 if A ∈ P0 ∩ Sπ has a

zero row, then the inequality (4.3) is strict for A upon applying Σ↓π.

Proof. By Theorem 3.6, the maps Σ↑π and Σ↓π can be used to transfer the setting to either
Pm
(
D(0, ρ)

)
or Pm

(
[0, ρ]

)
. The assertions then follow directly from their counterparts in

Corollary 2.1 and Theorems 2.2 and 2.8; the final statement holds by (1)(d) of each. �

Question 4.6. An explicit expression for the supremum of the function A 7→ CR(A, h,M)
on each stratum Sπ∩P0 is known for π = π∧ [3, Corollary 4.5] and π = π∨ [3, 15] since Sπ∨
contains all matrices of the form A = uuT where u ∈ (0,∞)N has distinct coordinates,
and so the supremum of CR(A, h,M) is at least, so exactly, C from Theorem 1.2. A
natural conjecture, supported by Proposition 4.5, is that the supremum depends only on
the number of blocks in the partition π and not on any further data from π.
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4.2. List of symbols. We collect below some notation used throughout the text.

• D(0, ρ) is the closed disc in C with radius ρ centered at the origin.
• PkN (I) is the set of positive semidefinite N × N matrices of rank at most k with

entries in the set I ⊆ C. Such matrices are necessarily Hermitian.
• PN (I) := PNN (I).
• 1N×N ′ is the N ×N ′ matrix with each entry equal to 1.
• f [A] is the matrix obtained by applying the function f to each of the entries of

the matrix A.
• A◦α is the matrix obtained by taking the αth power of each of the entries of the

matrix A, whenever this is well defined.
• uα = (uαi )mi=1 for any real number α and column vector u = (ui)

m
i=1 whenever the

entries are well defined.
• u◦n = (u

nj
i )mi,j=1 for any column vector u = (ui)

m
i=1 and row vector n = (n1, . . . , nm)

whenever these quantities are well defined.
• V (u) is the Vandermonde determinant of the column vector u = (ui)

m
i=1 or the

row vector u = (u1, . . . um), so that V (u) =
∏

16k<l6m(ul − uk).
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• SN6= is the collection of all N -tuples in S with distinct entries and SN< the subset

of SN6= consisting of N -tuples with strictly increasing entries.

• A† is the Moore–Penrose pseudo-inverse of the matrix A.
• %(A) is the spectral radius of the matrix A.
• (ΠN ,4) is the poset of partitions of {1, . . . , N}, where π′ 4 π if π is a refinement

of π′, so that every set in π is a subset of some set in π′.
• Dπ is them×m diagonal matrix with (i, i) entry |Ii|, where π = {I1, . . . , Im} ∈ ΠN .

• Σ↓π and Σ↑π are defined in Definition 3.5.
• Θ↓π and Θ↑π are defined in Definition 4.2.
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