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Abstract. We discuss a new pseudometric on the space of all norms on a finite-dimensional vector
space (or free module) Fk, with F the real, complex, or quaternion numbers. This metric arises
from the Lipschitz-equivalence of all norms on Fk, and seems to be unexplored in the literature. We
initiate the study of the associated quotient metric space, and show that it is complete, connected,
and non-compact. In particular, the new topology is strictly coarser than that of the Banach–Mazur
compactum. For example, for each k > 2 the metric subspace {‖·‖p : p ∈ [1,∞]} maps isometrically
and monotonically to [0, log k] (or [0, 1] by scaling the norm), again unlike in the Banach–Mazur
compactum.

Our analysis goes through embedding the above quotient space into a normed space, and reveals
an implicit functorial construction of function spaces with diameter norms (as well as a variant of
the distortion). In particular, we realize the above quotient space of norms as a normed space.

We next study the parallel setting of the – also hitherto unexplored – metric space S([n]) of all
metrics on a finite set of n elements, revealing the connection between log-distortion and diameter
norms. In particular, we show that S([n]) is also a normed space. We demonstrate embeddings
of equivalence classes of finite metric spaces (parallel to the Gromov–Hausdorff setting), as well as
of S([n − 1]), into S([n]). We conclude by discussing extensions to norms on an arbitrary Banach
space and to discrete metrics on any set, as well as some questions in both settings above.
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1. The metric space of norms: definition and main result

It is a folklore result that all norms on a finite-dimensional (real or complex) normed linear space
are topologically equivalent – i.e., Lipschitz – with respect to one another. The space of norms has
long been studied using the Banach–Mazur pseudometric. Our goal in this work is to explain a
new, strictly coarser topology on the space of norms on Rk – the equivalence classes are now given
by dilations – which leads us to a non-compact quotient metric space Sk(R). The Banach–Mazur
continuum turns out to be a (compact) quotient of this space; we will see for instance that the two
topologies agree on the sets of p-norms for p ∈ [1, 2] and [2,∞], but not for p ∈ [1,∞].

We then study the space Sk(R) by working in a broader context of function spaces with diameter
norms. As we explain below, (a) this function space construction is functorial and applies in a
special case to the setting of Sk(R); (b) we deduce that the metric on Sk(R) is in fact a norm; and
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(c) we interpret this new metric/norm through a variant of the distortion between metric spaces.
(d) We also apply this functorial framework to deduce similar structural properties of the metric
space of all metrics on each finite set (see Section 4), and of families of norms on an arbitrary Banach
space. Hence the present paper, as we were surprisingly unable to find these results recorded in
the literature.

We begin by setting notation. Fix an integer k > 0 and a Clifford algebra F over R that is a
division ring (equivalently, F lacks zerodivisors), that is, F = R,C, or H. We will denote dimR F by
d; also let 1, i (and j, k) denote the standard R-basis elements in C (or H). Recall the conjugation
operation α 7→ α∗ in F, which is the unique R-linear anti-involution that fixes 1 and acts as
multiplication by −1 on {i, j, k} ∩ F. Now a norm on Fk is a function N : Fk → R satisfying the
following properties for all x,y ∈ Fk and α ∈ F:

(1) Positivity: N(x) > 0, with equality if and only if x = 0.
(2) Homogeneity: N(αx) = |α|N(x), where |α| :=

√
αα∗ will be termed the absolute value of

α ∈ F (to distinguish it from the norm). Recall | · | is multiplicative on F.
(3) Sub-additivity: N(x + y) 6 N(x) +N(y).

Denote the space of all norms on Fk by N (Fk). Here are some basic properties of this space,
some of which are used below.

Lemma 1.1. For F = R,C, or H, and an integer k > 0, the space N (Fk) is closed under the
following operations:

• Addition.
• Multiplication by R>0. (Thus, N (Fk) is a convex cone.)
• Pointwise limits, as long as the limiting function is positive except at 0.
• Pre-composing by continuous additive maps A : Fk → Fk with trivial kernel – equivalently,

real-linear maps A ∈ GLdk(R) under some identification of Fk with Rdk. In other words,

A ∈ GLdk(R), N ∈ N (Fk) =⇒ (x 7→ N(Ax)) ∈ N (Fk).

Notice that there are also other ways to construct norms, e.g. adding norms on subspaces of Fk
to a given norm in N (Fk). See Equation (3.7) below for an example.

The next result is standard for F = R, and easily extends to C or H.

Lemma 1.2. All norms in N (Fk) are Lipschitz-equivalent, i.e., for any two norms N,N ′ ∈ N (Fk)
there exist constants 0 < m 6M such that

m ·N(x) 6 N ′(x) 6M ·N(x), ∀x ∈ Fk. (1.3)

For completeness we include a proof-sketch, in a slightly more general setting that is relevant to
the present work (below).

Proof. This follows from two observations – (i) Fk is a finite-dimensional vector space over R, and
(ii) N (Fk) ⊂ N (Rdk) under the R-linear homeomorphism F ∼= Rd, where d = dimR F. These
observations reduce the situation to the well-known case of F = R, where we remind that the result
again follows from two observations: (a) Every norm is bounded above by a positive multiple of the
sup-norm; one obtains this by working on the boundary ∂C of the cube C = [−1, 1]d. (b) Given a
compact metric space (X, d) (such as X = ∂C), all continuous maps in C(X, (0,∞)) are pairwise
‘Lipschitz equivalent’. A more general statement is that given any set X, all set maps : X → (0,∞)
with image bounded away from 0 and ∞ are pairwise ‘Lipschitz equivalent’. �

The preceding result is well-known. A less well-known result (which we were unable to find in
the literature) is the following construction, which was mentioned by V.G. Drinfeld in a lecture at
the University of Chicago in the early 2000s:
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Proposition 1.4. Say that two norms N,N ′ on Fk are equivalent, written N ∼ N ′, if N ′ ≡ αN
for some positive real number α. Then the space Sk(R) := N (Rk)/ ∼ is a metric space, with metric

dSk(R)([N ], [N ′]) := log(MN,N ′/mN,N ′), (1.5)

where M = MN,N ′, m = mN,N ′ denote the largest and smallest Lipschitz constants respectively, in
Equation (1.3).

Once formulated, the result is shown in a straightforward manner. Informally, ‘the space of
metrics forms a metric space’. The reader may also recognize (1.5) as a variant of the log-distortion
between metrics; see Section 4 for more on this.

Remark 1.6. We now record the connection between the space Sk(F) and the Banach–Mazur
compactum (see e.g. [16]), where two k-dimensional Banach spaces U, V over F = R or C have
distance

log inf{‖T‖ · ‖T−1‖ : T ∈ GL(U, V )}.

Now if two norms are proportional, and thus represent the same point in Sk(R), then they also do
the same in the Banach–Mazur compactum: just note that ‖T‖ · ‖T−1‖ = 1 for T the identity map
on Rk. It follows that the Banach–Mazur compactum is a quotient of Sk(R). One consequence of
our main result (Theorem 1.8 below) is that the topology in Sk(R) is strictly coarser.

The space Sk(F) does not seem to be known to experts, nor is it defined or analyzed in the
literature; we initiate its study in the present work. In light of the preceding remark, we hope that
subsequent, continued analysis of Sk(F) will also yield additional information about the Banach–
Mazur compactum.

We begin with an immediate consequence of the above observation that N (Fk) ⊂ N (Rdk): in a
sense, it suffices to work with F = R (as we do below):

Corollary 1.7. The space Sk(F) := N (Fk)/ ∼ is a closed metric subspace of Sdk(R), with common
metric given by (1.5).

Proof. We show that Sk(F) is closed in Sdk(R). Suppose [Nl]→ [N ] in Sdk(R), with Nl ∈ N (Fk) ∀l
and N ∈ N (Rdk). Without loss of generality, rescale the Nl and assume via (1.3) that

Nl

N
: Fk \ {0} → [1,Ml], ∀l > 0

with Ml → 1 as l→∞. But then, Nl → N pointwise on Fk. In particular, given α ∈ F and nonzero
x ∈ Fk,

N(αx)

N(x)
= lim

l→∞

Nl(αx)

Nl(x)
= |α|,

and from this it follows that N ∈ N (Fk) as desired. �

We now state the main result of the present work (with the caveat that this result is placed in a
more general, functorial framework introduced in the following section). It implies as a consequence
that dSk(F) is not just a metric, but also a norm:

Theorem 1.8. For F = R,C,H, the space Sk(F) is a complete, path-connected metric subspace of
a real Banach space. It is a singleton set for k = 1, and unbounded for k > 1.

(In less formal terms: ‘the space of norms lies in a normed linear space.’) A second consequence is
that in dimensions two and higher, the space of equivalence classes of norms is not compact.
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2. Diameter norms and an endofunctor

The goal of this section and the next is (to proceed toward) proving Theorem 1.8. While it is
possible to provide a direct proof, our construction of a family of Banach spaces that each encompass
Sk(F) (as asserted in Theorem 1.8) turns out to be part of a broader functorial setting – which we
will use below in more than one setting. Thus we explain this setting in the present section, and
complete the proof in Section 3.

The most primitive framework we consider is that of an abelian topological semigroup (G ,+, dG )
with an associative, commutative binary operation + : G × G → G and a translation-invariant
metric dG , i.e.,

dG (x+ z, y + z) = dG (x, y), ∀x, y, z ∈ G . (2.1)

Notice that in such a semigroup, one does not necessarily have inverses (i.e., ‘negatives’) or the
identity element e = 0G . However, the following is easily shown (see e.g. [11] for details).

• the semigroup always has at most one idempotent 2e = e;
• if such an e exists, it is the unique identity element in (the monoid) G ;
• if G does not contain an idempotent, one can formally attach such an idempotent e with

metric dG (e, z) := dG (z, 2z), dG (e, e) = 0, and this creates the unique smallest monoid (with
translation-invariant metric) containing G .

Examples of such semigroups G abound in the literature, the most prominent being Banach
spaces. However, there are several ‘intermediate’ classes of such abelian semigroups, including
monoids (i.e. ‘N ∪ {0}-modules’), groups (i.e. Z-modules), torsion-free divisible groups (i.e. Q-
modules), and normed linear spaces (i.e. R-modules). More generally, one can consider metric
R-modules, where R ⊂ R is a unital subring. As a further variant, one has the subclass of R-
normed R-modules (see Definition 2.2).

Our first goal is to show that the seminorm defined in Theorem 2.3 below endows all G -valued
function spaces with the structure of a (pseudo-)metric. In fact, we show that this holds on a more
structural level. For instance, it is clear that if G is a monoid, then so is the corresponding function
space; and this holds for the finer structures mentioned above as well. What we also show is that
the function space construction is also compatible with ‘good’ homomorphisms.

A systematic way to carry out this bookkeeping is that each of the above classes of semigroups is
in fact a category, and the function space construction is a covariant endofunctor for each of these
categories. This is now explained.

Definition 2.2. Let R ⊂ R denote any unital subring.

(1) Let Semi denote the category of abelian topological semigroups (G ,+, dG ) with translation-
invariant metric dG , as above, and whose morphisms are semigroup homomorphisms that
are Lipschitz.

(2) Let Mon denote the full subcategory of Semi, whose objects are monoids.
(3) Let R-Mod denote the subcategory of Semi, whose objects are R-modules such that multi-

plication by scalars in R are Lipschitz maps, and whose morphisms are Lipschitz R-module
maps.

(4) Let R-NMod denote the full subcategory of R-Mod, whose objects are R-normed R-modules
G . In other words, dG (0, ra) = |r|dG (0, a) for all r ∈ R and a ∈ G .
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(5) Let R-Mod ⊂ R-Mod (note the unconventional notation) denote the full subcategory of R-Mod
whose objects are complete metric spaces; and similarly define R-NMod ⊂ R-NMod.

For each of these classes of objects, we now prove that the following function space construction
is functorial:

Theorem 2.3. Suppose C is one of the categories in Definition 2.2 (i.e., Semi, Mon, R-Mod, . . . , R-
NMod). Given a set X and an object M ∈ C , let Fb(X,M) denote the set of bounded functions
f : X →M , and define

d(f, g) := sup
x,x′∈X

dM (f(x) + g(x′), f(x′) + g(x)). (2.4)

For every set X that is not a singleton:

(1) d is a pseudometric on Fb(X,M).
(2) If one defines f ∼ g to mean d(f, g) = 0, then ∼ is an equivalence relation, and the quotient

space assignment M 7→ Fb(X,M)/ ∼ is a covariant isometric endofunctor of the category
C .

Here, we term a functor F : C → C ′ to be isometric if: (a) all Hom-spaces in C ,C ′ are metric
spaces, and (b) F : Hom(C1, C2)→ Hom(F (C1), F (C2)) is an isometry for all objects C1, C2 ∈ C .

Remark 2.5. As we show in Section 3, the connection to norms arises from the fact that the space
Sk(F) ⊂ Sdk(R) embeds into Fb(X,R)/ ∼ for some compact subset X ⊂ Fk. Thus by Theorem 2.3
for C = R-NMod, the metric on the space of norms arises as a norm in a Banach space.

For more categorical consequences and ramifications related to Theorem 2.3, we refer the reader
to e.g. [11]. Also notice that if X is a singleton then Fb(X,M) 'M , whence Fb(X,M)/ ∼ is the
trivial semigroup (or Banach space). In this case the above result is true, except perhaps for the
word ‘isometric’.

Remark 2.6. For general abelian metric semigroups M ∈ C as in Theorem 2.3, an example of
functions f, g ∈ Fb(X,M) with distance zero is to choose and fix m0 ∈M , and take g(x) ≡ m0+f(x)
on all of X. If M is moreover a monoid and f ≡ 0M , then these are the only examples.

In the further special case when M is an abelian metric group, the functions g ≡ m0 + f turn
out to be the only examples of equivalent functions, for all f ∈ Fb(X,M). Moreover, the (pseudo-
)metric defined above has a more accessible interpretation as a diameter seminorm:

d(f, g) = N(f − g), where N(f) := sup
x,x′∈X

dM (f(x), f(x′)) = diam(im(f)). (2.7)

In particular, the equivalence relation f ∼ g amounts to f − g being a constant function. For
(abelian) monoids (M, 0M ), essentially this last assertion also follows if one restricts to the set of
bounded functions f : X → M satisfying: 0M ∈ im(f). More precisely, if d(f, g) = 0 for such
functions, there exists m0 ∈M such that −m0 ∈M and g ≡ m0 + f on M .

Proof of Theorem 2.3. We begin by showing that (1) holds for all abelian semigroups M , and then
turn to (2) for each successively smaller category. To show (1), we will show the triangle inequality;
note this also proves the transitivity of ∼ and hence that ∼ is an equivalence relation on Fb(X,M).
Given x, y ∈ X,

dM (f(x) + g(y), f(y) + g(x))

= dM (f(x) + g(y) + h(y), f(y) + g(x) + h(y))

6 dM (f(x) + g(y) + h(y), f(y) + g(y) + h(x)) (2.8)

+ dM (f(y) + g(y) + h(x), f(y) + g(x) + h(y))

6 d(f, h) + d(h, g).
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As this inequality holds for all x, y ∈ X, the triangle inequality follows. This proves (1), and as
a consequence, Fb(X,M)/ ∼ is always a metric space under the metric (2.4). That this metric is
translation-invariant (2.1) is straightforward.

We now claim that (2) holds, first for the category Semi. Indeed, one defines the (bounded)
function f + g pointwise for f, g ∈ Fb(X,M). We claim that if f ∼ f ′ and g ∼ g′ (i.e., they have
distances zero between them) in Fb(X,M), then f + g ∼ f ′ + g′. This follows because

dM ((f + g)(x) + (f ′ + g′)(y), (f + g)(y) + (f ′ + g′)(x))

= dM ([f(x) + f ′(y)] + [g(x) + g′(y)], [f(y) + f ′(x)] + [g(y) + g′(x)]) = 0,

which in turn follows from the equalities: f(x)+f ′(y) = f(y)+f ′(x) and g(x)+g′(y) = g(y)+g′(x),
for all x, y ∈ X.

Thus, + is well-defined on Fb(X,M)/ ∼. Similarly, one verifies that if fn → f and gn → g
in Fb(X,M)/ ∼, then fn + gn → f + g. Next, given a semigroup morphism ϕ : M → N , post-
composing by ϕ defines a map ϕ ◦ − of semigroups : Fb(X,M) → Fb(X,N); and if d(f, g) = 0 in
Fb(X,M), then d(ϕ ◦ f, ϕ ◦ g) = 0 in Fb(X,N). Thus ϕ induces a well-defined map

[ϕ] : Fb(X,M)/ ∼ → Fb(X,N)/ ∼ . (2.9)

Finally, we verify that the given functor induces isometries on Hom-spaces. The first sub-step is
to claim that every Hom-space Hom(M,N) in Semi is itself a semigroup, with translation-invariant
metric given by:

d(η, ϕ) := sup
m 6=m′∈M

dN (η(m) + ϕ(m′), ϕ(m) + η(m′))

dM (m,m′)
.

We only show that if d(η, ϕ) = 0 then η = ϕ; the remainder of the claim is straightforward (with
the triangle inequality following similarly to (2.8)). Indeed, if d(η, ϕ) = 0, then:

d(η, ϕ) = 0 =⇒ dM (η(m) + ϕ(2m), η(2m) + ϕ(m)) = 0 ∀m ∈M =⇒ η ≡ ϕ.

This proves the above claim.
We now show that the map ϕ 7→ [ϕ] is an isometry

[−] : HomC (M,N)→ HomC (Fb(X,M)/ ∼, Fb(X,N)/ ∼).

Suppose η, ϕ : M → N are semigroup morphisms, and let d(η, ϕ) = L. If L = 0 then the preceding
computation shows η ≡ ϕ and hence [η] = [ϕ]. Otherwise, we compute from first principles:

d([η], [ϕ]) = sup
[f ] 6=[g]∈Fb(X,M)/∼

d(η ◦ [f ] + ϕ ◦ [g], ϕ ◦ [f ] + η ◦ [g])

d([f ], [g])

= sup
[f ] 6=[g]∈Fb(X,M)/∼

1

d([f ], [g])
sup

x,x′∈X
dN (η(m) + ϕ(m′), ϕ(m) + η(m′)),

where m := f(x) + g(x′) and m′ := f(x′) + g(x). Now note that

dN (η(m) + ϕ(m′), ϕ(m) + η(m′)) 6 d(η, ϕ)dM (f(x) + g(x′), f(x′) + g(x)) 6 L · d([f ], [g])

for all x, x′ ∈ X. It follows that d([η], [ϕ]) 6 L = d(η, ϕ).
To show the reverse inequality, suppose ml 6= m′l, l ∈ N are sequences in M such that the

sequences

dl :=
dN (η(ml) + ϕ(m′l), ϕ(ml) + η(m′l))

dM (ml,m
′
l)

are non-decreasing to L = d(η, ϕ) as l → ∞. We now use that X is not a singleton, whence for a
fixed element x1 ∈ X, we consider

fl|X ≡ ml, gl|X\x1 ≡ ml, gl(x1) := m′l, l ∈ N.
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Clearly d([fl], [gl]) = dM (ml,m
′
l), whence for any x2 ∈ X \ x1, we compute from above:

d([η], [ϕ])

> sup
l∈N

dN (η(fl(x1) + gl(x2)) + ϕ(fl(x2) + gl(x1)), η(fl(x2) + gl(x1)) + ϕ(fl(x1) + gl(x2)))

d([fl], [gl])

= sup
l∈N

dN (η(ml) + ϕ(m′l), ϕ(ml) + η(m′l))

dM (ml,m
′
l)

= sup
l∈N

dl = L = d(η, ϕ).

This proves the theorem for metric semigroups, i.e. for C = Semi. We next impose the additional
structure in each smaller subcategory one by one, and show the result for the remaining C . Clearly,
if M is a monoid, then so is Fb(X,M)/ ∼, with identity f ≡ 0M . Now the result is easily verified
for C = Mon. (Note that all morphisms are automatically monoid maps.)

Next suppose C = R-Mod. One checks that if f ∼ g then rf ∼ rg, where rf ∈ Fb(X,M) is
defined in the usual (pointwise) fashion. Also, multiplication by r is Lipschitz on Fb(X,M)/ ∼ if
it is so on M itself. Now the result is easily verified in this setting. Finally, if M is also R-normed,
then one checks that so is Fb(X,M)/ ∼.

This shows the result for all categories except for R-Mod, R-NMod. For these latter cases, it suffices
to show the claim that if M is a complete abelian metric group then so is Fb(X,M)/ ∼. We begin
by isolating the main component of this argument into a standalone result (together with some
related preliminaries).

Lemma 2.10. Fix a set X and an abelian metric semigroup (M,+, dM ).

(1) Fb(X,M) is a metric space under the sup-norm

d∞(f, g) := sup
x∈X

dM (f(x), g(x)).

Moreover, Fb(X,M) is complete if and only if M is complete.
(2) The quotient map of metric spaces : Fb(X,M)→ Fb(X,M)/ ∼ is Lipschitz of norm at most

2.
(3) If M is moreover a group, there exists a section Φx0 : Fb(X,M)/ ∼ → Fb(X,M) which is

a sub-contraction:

d∞(Φx0([f ]),Φx0([g])) 6 d([f ], [g]), ∀x0 ∈ X, [f ], [g] ∈ Fb(X,M), (2.11)

and such that the image of Φx0 is precisely the set of functions vanishing at x0.

Proof. (1) is well-known, and (2) is standard using:

dM (f(x) + g(x′), f(x′) + g(x))

6 dM (f(x) + g(x′), g(x) + g(x′)) + dM (g(x) + g(x′), g(x) + f(x′))

6 2d∞(f, g), ∀f, g ∈ Fb(X,M), x, x′ ∈ X.

To show (3), choose any representative f of [f ] ∈ Fb(X,M)/ ∼, recalling by Remark 2.6 that f is
unique up to translation by an element of M . Now the ‘Kuratowski’ map Φx0([f ]) := f(x)− f(x0)
satisfies (2.11). (We also point out for completeness some related observations at the start of [4,
Section 3].) �

Returning to the proof of the above claim, suppose [fn] ∈ Fb(X,M)/ ∼ is Cauchy, with M
complete. For any fixed x0 ∈ X, this implies by Lemma 2.10(3) that Φx0([fn]) is Cauchy, whence
it converges in the d∞ metric to some bounded map f by Lemma 2.10(1). Hence, [fn] → [f ] by
Lemma 2.10(2). �
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We now refine the above categorical construction, when the domain X is additionally equipped
with a topology:

Corollary 2.12. Given a topological space X and an abelian metric semigroup (M,+, dM ), define
Cb(X,M) to be the set of bounded continuous functions : X →M . Now fix a unital subring R ⊂ R.

(1) If M is in fact an abelian group, then Cb(X,M)/ ∼ is a closed subobject of Fb(X,M)/ ∼.
(2) With notation as in Theorem 2.3 (for any of the categories C ), Cb(X,M) forms a pseu-

dometric subspace of Fb(X,M), whence Cb(X,M)/ ∼ is a subobject of Fb(X,M)/ ∼ in C .
Moreover, M 7→ Cb(X,M)/ ∼ is also a covariant endofunctor of C , which is isometric if
X is not a singleton.

Note that the case of X compact Hausdorff and M = R was studied in greater detail in [4], and
is part of a broader program to study isometries and linear isomorphisms of spaces of continuous
functions. See e.g. [1, 4, 10], and the references therein.

Proof. To show (1), if fn : X → M are continuous and [fn] → [f ] for some f ∈ Fb(X,M), then
Φx0([fn])→ Φx0([f ]) uniformly by (2.11), whence Φx0([f ]) is continuous and hence so is f .

For the categories whose objects are not all complete, the assertion (2) follows from Theorem 2.3
and the continuity of the R-module operations. For the categories C = R-Mod, R-NMod, one further
uses the previous part and that Fb(X,M)/ ∼ is complete by Theorem 2.3. �

3. Distances between p-norms; proof of the main result

In this section we prove Theorem 1.8, deriving part of it from the functorial framework discussed
in the previous section.

3.1. p-norm computations. Part of the proof of Theorem 1.8 works with the p-norms on Fk; thus,
we begin by providing ‘more standard’ models for certain sets of such norms. Given p ∈ [1,∞),
define for x = (x1, . . . , xk) ∈ Fk its p-norm:

‖(x1, . . . , xk)‖p := (|x1|p + · · ·+ |xk|p)1/p , (3.1)

and also define ‖(x1, . . . , xk)‖∞ := maxj |xj |.
As is well-known in the Banach–Mazur framework for F = R or C [6], if p, q ∈ [1,∞] and

2− p, 2− q have the same sign, then the norms ‖ · ‖p and ‖ · ‖q on Fk have Banach–Mazur distance
|1/p − 1/q| · log(k). However, this does not usually hold for 1 6 p < 2 < q 6 ∞ – for instance
if k = 2 then ‖ · ‖1 and ‖ · ‖∞ denote the same point in the Banach–Mazur compactum. In the
present setting of S ′k(F), the p-norms share the above behavior for p ∈ [1, 2] and [2,∞], but differ
in the metric structure for [1,∞]:

Proposition 3.2. Let S ′k(F) ⊂ Sk(F) denote the equivalence classes of the norms {‖ · ‖p : 1 6 p 6
∞}. Then the map f : S ′k(F)→ [0, log k], given by f(‖·‖p) := log k

p for p ∈ [1,∞) and f(‖·‖∞) := 0,

is an isometric bijection.

Thus the p-norms behave ‘uniformly well’: S ′k(R) ∼= S ′k(C) ∼= S ′k(H) ∼= [0, log k].

Proof. For 1 6 p < q < ∞, Hölder’s inequality implies k−1/p‖x‖p 6 k−1/q‖x‖q for all x ∈ Fk,
and equality is attained at the vectors with all equal coordinates. For the other way, we claim
that ‖x‖p > ‖x‖q, with equality along the coordinate axes. Indeed, by rescaling one may assume
‖x‖p = 1, whence |xj |p 6 1 for all j. Thus |xj | 6 1, and it follows that

‖x‖qq =
∑
j

|xj |q 6
∑
j

|xj |p = 1,

whence ‖x‖q 6 1 = ‖x‖p. From this it follows that dSk(F)(‖ · ‖p, ‖ · ‖q) = log k1/p−1/q.
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Finally, it is evident that ‖x‖∞ 6 ‖x‖p 6 k1/p‖x‖∞ for all p ∈ [1,∞) and x ∈ Fk, with equality

attained in the same two cases as above. Thus, dSk(F)(‖ · ‖p, ‖ · ‖∞) = log k1/p. This concludes the
proof. �

Example 3.3. As another example, notice using Lemma 1.1 that given a non-negative measure µ
supported on [1,∞), the function

Nµ(x) :=

∫ ∞
1
‖x‖p dµ(p)

is a norm, if convergent on Fk. Now the same reasoning as in the above proof shows that for all
such µ > 0 with bounded support and positive mass,

dSk(F)(Nµ, ‖ · ‖q) = log

∫ q
1 k

1/p dµ(p)

k1/q
∫ q
1 dµ(p)

6 log(k)(1− q−1), (3.4)

where sup(supp µ) < q <∞.

The above provide examples of subsets of Sk(F) with bounded diameter. However, this does not
always happen, and we now mention such an example, which also serves to show the ‘unbounded-
ness’ assertion in the main result.

Example 3.5. Given p ∈ [1,∞], q ∈ [0,∞), and an integer 1 6 j 6 k, define

Np,q,j(x) := ‖x‖p + q|xj |, x ∈ Fk (3.6)

and consider the family of such norms for a fixed p:

Sk,p := {Np,q,j : q ∈ [0,∞), j ∈ [k]}. (3.7)

(one verifies easily that these are norms). We now claim that akin to Proposition 3.2 for the
p-norms, the family Sk,p can also be realized as a more familiar metric subspace of a Banach space:

Proposition 3.8. Suppose k > 1. The subset Sk,p defined in (3.7) isometrically embeds into Rk
with the `1-norm, via Np,q,j 7→ log(1 + q)ej. The image of Sk,p is the union of the non-negative
coordinate semi-axes.

Proof. Notice that Np,q,j(x) 6 (1 + q)Np,q′,j′(x) for all q, q′ > 0 and j 6= j′ ∈ {1, . . . , k}, with

equality attained at least for x = xej (here, e1, . . . , en comprise the standard basis of Fk). It
follows that

dSk(F)(Np,q,j , Np,q′,j′) = log(1 + q) + log(1 + q′).

One next shows that for a fixed j ∈ {1, . . . , k},

0 6 q 6 q′ <∞ =⇒ Np,q,j(x) 6 Np,q′,j(x) 6
1 + q′

1 + q
Np,q,j(x), ∀x ∈ Fk,

with equality possible on Fk\{0} in either inequality (note that equality in the lower bound requires
k > 1). Therefore dSk(F)(Np,q,j , Np,q′,j) = log(1 + q′)− log(1 + q). This concludes the proof. �

3.2. Proof of the main result. With Proposition 3.8 and the functorial analysis in the previous
section in hand, we can show our main result.

Proof of Theorem 1.8. Begin by fixing any compact subset

X ⊂ Fk \ {0} ∼= Rdk \ {0} satisfying: ∀x ∈ Fk \ {0}, ∃αx ∈ F× such that αxx ∈ X. (3.9)

(For instance, X could be the unit sphere Sdk−1.) The bulk of the proof involves showing the claim
that the space Sk(F) is a closed metric subspace of the Banach space C(X,R)/ ∼ = Cb(X,R)/ ∼
(see Corollary 2.12, noting that X is compact). In particular, Sk(F) is complete.

To show the claim, we construct the embedding Ψ : N (Fk)→ C(X,R) as follows: given a norm
N ∈ N (Fk), define Ψ(N) := logN |X ∈ C(X,R). Since N is a norm, it is uniquely determined by
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its restriction to X, whence Ψ is injective. Moreover, the respective notions of ∼ are compatible
via taking the logarithm, whence Ψ induces an injection [Ψ] : Sk(F) ↪→ C(X,R)/ ∼ of metric
spaces. It is easily verified that [Ψ] is an isometry; recall here that the metric on Sk(F) is given by:
d([N ], [N ′]) := log(MN,N ′/mN,N ′) (see Equations (1.5) and (1.3)).

It remains to show closedness. Suppose Nl are norms on Fk such that [logNl|X ] → [f ] in
C(X,R)/ ∼ under the metric in (1.5) (recall Corollary 2.12 here). As above, one can choose
representative norms Nl on Fk and a function f ∈ C(X,R) in their equivalence classes, such that
for all l > 0,

(logNl)− f : X → [0, εl], εl > 0, (3.10)

with εl → 0+ as l→∞. In particular, Nl → exp(f) pointwise on X. Define

N(0) := 0, N(x) := |αx|−1 exp(f(αxx)), ∀x ∈ Fk \ {0},
where αx comes from the defining property of X. The above claim is proved if one shows that N is
a norm on Fk. First note that N is indeed well-defined: if αx and βx are such that αxx, βxx ∈ X
for some x, then

|αx|−1 exp(f(αxx)) = lim
l→∞
|αx|−1Nl(αxx) = lim

l→∞
|βx|−1Nl(βxx) = |βx|−1 exp(f(βxx)).

Next, N is homogeneous: given any scalar β ∈ F and vector x ∈ Fk \ {0},
N(βx)

N(x)
=
|αβx|−1 exp f(αβxβx)

|αx|−1 exp f(αxx)
= lim

l→∞

|αβx|−1Nl(αβxβx)

|αx|−1Nl(αxx)
= lim

l→∞
|β| = |β|.

Finally, observe that N is sub-additive, i.e., N(x + y) 6 N(x) +N(y) for x,y ∈ Fk. Indeed, this
is immediate if any of x,y,x + y is zero, so assume this does not happen, and compute:

N(x + y) = |αx+y|−1 lim
l→∞

Nl(αx+y(x + y))

6 |αx+y|−1 lim
l→∞

Nl(αx+yx) +Nl(αx+yy)

= |αx+y|−1 lim
l→∞

(
|αx+y|
|αx|

Nl(αxx) +
|αx+y|
|αy|

Nl(αyy)

)
= N(x) +N(y).

The closedness of Sk(F) now follows, whence by Theorem 2.3 and Corollaries 1.7 and 2.12, we have
a chain of inclusions with closed images

Sk(F) ↪→ Sdk(R) ↪→ Cb(X,R)/ ∼ ↪→ Fb(X,R)/ ∼ ;

The above claim now follows; hence Sk(F) is complete. Next, Lemma 1.1 implies that N (Fk) is
convex, hence path-connected, whence so is Sk(F). Moreover, clearly S1(F) is a point. Finally,
assuming k > 1, Proposition 3.8 shows that Sk(F) is unbounded. �

The above proof shows that the metric space of norms embeds into C(X,R)/ ∼ for many different
compact topological subspaces X ⊂ Fk (see (3.9)). We conclude by exploring these embeddings in
greater detail, fixing F = R for convenience. Specifically, if X = Sk−1 denotes the unit sphere, then
under the embedding Sk(R) ↪→ B := C(Sk−1,R)/ ∼, the origin in the Banach space B is precisely
the image of the 2-norm ‖ ·‖2. More generally, we have such an identification of the origin for every
norm – but not for every space X.

Proposition 3.11. Given a norm N : Rk → R and any radius r > 0, let XN,r denote the sphere

XN,r := {x ∈ Rk : N(x) = r}.

Now fix a norm N on Rk, as well as a subset X ⊂ Rk such that every nonzero vector is a positive
real multiple of a point in X. Then the following are equivalent:
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(1) Sk(R) embeds as a closed subset in the Banach space C(X,R)/ ∼ for some topological space
X via [N ′] 7→ [logN ′|X ]; and this embedding maps the equivalence class [N ] to the origin.

(2) X = XN,r for some r > 0.

However, there exist compact sets X ⊂ Rk such that the image of the embedding Sk(R) ↪→
C(X,R)/ ∼ avoids the origin.

Proof. If (1) holds, then N |X must be constant, whence X ⊂ XN,r for some r > 0. Moreover, if
x ∈ XN,r, then αx ∈ X for some α > 0. Since N(αx) = αr, it follows that α = 1 and hence
X = XN,r.

Conversely, suppose (2) holds. Since all norms on Rk are equivalent, the space XN,r is compact
and hence satisfies (3.9), whence the proof of Theorem 1.8 applies to it. In particular, the image
of N under the embedding : Sk(R) ↪→ C(XN,r,R)/ ∼ is a constant function, whose image under ∼
is the trivial class.

Finally, given any point y 6= 0, define the sphere

Xy := {x ∈ Rk : ‖x− y‖22 = 1 + ‖y‖22}.
It is clear that 0 is in the ‘interior’ of the sphere. Also notice that for every unit direction v ∈ Sk−1,
there exists a unique α > 0 such that αv ∈ Xy. Indeed, from the conditions

‖αv − y‖22 = 1 + ‖y‖22, α > 0,

one derives: α =
√

1 + 〈v,y〉2 + 〈v,y〉. In particular, Xy satisfies (3.9) and hence the proof of
Theorem 1.8 applies to it. However, no norm maps via the embedding Sk(R) ↪→ B := C(Xy,R)/ ∼
to the origin in the Banach space B. Indeed, if [N ] 7→ 0B, then the norm N would restrict to a

constant on Xy. But this is false: Xy intersects the line Ry at the two points (‖y‖2±
√

1 + ‖y‖2)y,
and as these are not negatives of one another, evaluating N yields unequal values. �

4. The normed space of metrics on a finite set

We now study a parallel setting to the metric space of norms on Fk, in which the above functorial
approach is also applicable. Given a finite set [n] := {1, . . . , n} with n > 2, it is possible to
impose a pseudometric on the space of metrics on [n] in the same way as above: given metrics
ρ, ρ′ : X ×X → [0,∞), define

d[n](ρ, ρ
′) := log max

j 6=k

ρ′(xj , xk)

ρ(xj , xk)
− log min

j 6=k

ρ′(xj , xk)

ρ(xj , xk)
;

note that exp ◦d[n] is termed the distortion in metric geometry and computer science.
We cite the well-known surveys [13, 15] for further details and reading on the numerous applica-

tions of distortion and metric geometry to computer science, combinatorics, and other fields. Also
note that there is a different, well-studied pseudometric on the space of metrics on [n], or more
generally on all compact metric spaces. This is the Gromov–Hausdorff metric (which is not com-
parable to d[n], as we see below). Nevertheless, the metric d[n], as well as the connection between
diameter norms and (log-)distortion, do not seem to be studied or recorded in the literature. This
motivates the present section.

We begin with a result that is parallel to Theorem 1.8 for Sk(F), and again follows from the
above functorial analysis. In particular, it shows that the metric d[n] is also a diameter norm:

Theorem 4.1. Fix an integer n > 2.

(1) The map d[n] is a pseudometric on the space of metrics on [n], with equivalence classes
precisely consisting of proportional metrics.

(2) The quotient metric space S([n]) is a complete, path-connected, metric subspace of the

Banach space R([n]
2 )/ ∼ = C(

(
[n]
2

)
,R)/ ∼ with the diameter norm, where

(
[n]
2

)
denotes

the discrete set of two-element subsets of [n].
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(3) The space S([n]) is a singleton if n = 2, and unbounded otherwise.

Proof. We only point out why for n > 2 the space S([n]) is unbounded. Indeed, for each m > 1
let Xm := {1, 2, . . . , n − 1;n + m + 1} be the (induced) metric subspace of (R, | · |), and let ρn,m :
[n] × [n] → R be the metric induced by the unique rank/order-preserving map : Xm → [n] ⊂ R.
Compare ρn,m to the discrete metric ρ(x, y) = 1−δx,y: the log-distortion between them is log(n+m),
and m can grow without bound. �

Remark 4.2. The metric on S([n]) – henceforth denoted by dS([n]) – is not comparable to the
well-studied Gromov–Hausdorff metric on compact metric spaces:

dGH(X1, X2) := inf
Z,ι1,ι2

dH(ι1(X1), ι2(X2)),

where one runs over all metric spaces Z and isometric embeddings : ιj : Xj ↪→ Z; and where dH
denotes the Hausdorff distance in Z. To see why dGH is not comparable to the above metric dS([n]),
for any n > 2 choose two different pairs of points from [n], say {a, b} 6= {c, d} ⊂ [n]. Now define
metrics ρ, ρ′ on [n] via: ρ(a, b) = ρ′(c, d) = 1/2 and all other nonzero values of ρ, ρ′ are 1. These
two metric spaces are clearly isometric under a ↔ c, b ↔ d, and all other points left unchanged.
However, the metrics are not proportional. Going the other way, proportional but unequal metrics
on [n] do not admit an isometry between them.

Our next few results are meant to help better understand the metric space S([n]). The following
result parallels Proposition 3.8, and illustrates how a certain one-parameter family of metrics on
[n] can be understood through a more standard model:

Proposition 4.3. Fix integers n > 0 and 1 6 j 6
(
n
2

)
, as well as any bijection to identify the set

of pairs
(
[n]
2

)
(i.e. edges between points in [n]) with the set

[(
n
2

)]
= {1, . . . ,

(
n
2

)
}. Given a ∈ (0, 1],

let ρj,a : [n]× [n]→ R denote the metric in which all nonzero distances in [n] are 1, except for the
distance corresponding to the edge j, which is a. Define

S ′([n]) := {ρj,a : j ∈
[(
n
2

)]
, a ∈ (0, 1]}.

Then S ′([n]) (or its set of equivalence classes) embeds isometrically into R(n2) with the `1-norm,
via: ρj,a 7→ (log a)ej. The image is the union of the non-positive coordinate semi-axes.

The set S ′([n]) comprises the metrics in which [n] may be viewed as a weighted graph with all
edge weights but one equal and at least as large as the remaining edge weight.

Proof. Write N :=
(
n
2

)
for convenience. Viewing each metric ρ on [n] as a function : [N ]→ (0,∞),

say (ρ(1), . . . , ρ(N))T , it follows that

dS([n])(ρj,a, ρj′,a′) = log max
16k6N

ρ
(k)
j,a

ρ
(k)
j′,a′

− log min
16k6N

ρ
(k)
j,a

ρ
(k)
j′,a′

.

Now if j = j′ then the distance is | log a− log a′|, else the distance is − log a− log a′. �

Remark 4.4. Notice that the function ρj,a is a metric on [n] if and only if a ∈ (0, 2]. Thus, one
can compute the distance between ρj,a and ρj′,a′ for a, a′ ∈ (0, 2]. If j = j′ then we once again
obtain | log a− log a′|, but if j 6= j′ then we have:

dS([n])(ρj,a, ρj′,a′) =

{
| log a|+ | log a′|, if either a, a′ > 1 or a, a′ 6 1;

max{| log a|, | log a′|}, otherwise.

We next study embeddings in S([n]) of metric spaces. In doing so, we are motivated by recent
work [7], where it was shown that every finite metric space of size at most

(
n
2

)
embeds isometrically

into the Gromov–Hausdorff space of isometry classes of n-element metric spaces. In other words, a
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representative from the Gromov–Hausdorff equivalence class of every metric space of size at most(
n
2

)
embeds isometrically into Gromov–Hausdorff space. The following result is parallel in spirit,

for the space S([n]):

Theorem 4.5. Let (X, d) be a finite metric space, and n > 3 an integer such that X 6
(
n
2

)
. Then

there exists an equivalent metric space to (X, d) – i.e., a rescaling of d – that admits an isometric
embedding into S([n]).

Note that the result fails to hold for n = 2, since S([2]) is a singleton.
Before proving Theorem 4.5, we recall that its Gromov–Hausdorff analogue in [7] was stated

using the smallest n such that |X| 6
(
n
2

)
. While our variant does not a priori have this extra

restriction, we point out that the two versions are equivalent for S([n]), because of the following
result:

Proposition 4.6. For all n > 2, the metric space S([n]) isometrically embeds into S([n+ 1]).

Proof. Given a finite metric space (X, d) with |X| = n, embed it into a metric space X t {n+ 1},
where n + 1 is an additional point with distance diam(X) from every x ∈ X. A straightforward
computation (perhaps rescaling both diameters to 1 for convenience) now shows that this defines
an isometry from S([n]) into S([n+ 1]). �

We now prove the above theorem.

Proof of Theorem 4.5. In fact we will construct the embedding : (X,α · d) ↪→ S([n]) for a specific
α > 0, using several ‘natural’ tools. We begin by describing these tools.

Observe that every metric on [n] can be viewed as an element of (0,∞)N where N =
(
n
2

)
. Via

taking logarithms, the space S([n]) is in bijection with the set Ψ([n]) of all tuples (ψij)
T ∈ R([n]

2 ) ∼=
RN (here i < j) such that

exp(ψij) + exp(ψjk) > exp(ψik), ∀1 6 i < j < k 6 n. (4.7)

Note that rescaling the metric by α > 0 is equivalent to translating all ψij by logα. In other words,
Ψ([n]) sits inside RN/ ∼, where ∼ denotes additive translations by scalar multiples of (1, . . . , 1)T .

The next observation is that for an integer p > 0, the space (Rp, ‖·‖∞) is isometrically isomorphic
as a Banach space to Rp+1/ ∼ with the diameter norm diam, where ∼ denotes quotienting by
additive translation by multiples of (1, . . . , 1)T . More generally, given integers 0 < p < q, the map

Ψp,q : (x1, . . . , xp)
T 7→ (x1, . . . , xp, 01×(q−p))

T + R(1, . . . , 1)Tq

is an isometric linear embedding of (Rp, ‖ · ‖∞) into (Rq/ ∼,diam). For this reason, note in the
previous paragraph that the bijection of sets

log[−] : (S([n]), dS([n]))→ (Ψ([n]),diam)

is in fact an isometry of metric spaces.
Finally, we recall the Fréchet embedding [5], which maps an N -element metric space (X =

{x0, . . . , xN−1}, d) isometrically into RN−1 with the sup-norm, via: xj 7→ (d(x1, xj), . . . , d(xN−1, xj))
T

for 0 6 j 6 N − 1. Let us denote this embedding by Fr : X → R|X|−1.
With these ingredients in hand, we claim:

Proposition 4.8. Fix an integer n > 3 and a metric space (X, d) such that 3 6 |X| 6 N =
(
n
2

)
.

If X has diameter at most log 2, then the composite map

Ψ|X|−1,N ◦ Fr : (X, d) ↪→ (R|X|−1, ‖ · ‖∞) ↪→ (RN/ ∼, diam)

has image inside the metric space Ψ([n]) ' S([n]). The converse holds if X is a three-element set.

Notice that Proposition 4.8 implies Theorem 4.5, by rescaling the metric onX by (log 2)/ diam(X).
(The case of |X| = 2 is straightforward.) �
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To complete the proof, it remains to show the preceding proposition.

Proof of Proposition 4.8. If diamX 6 log 2, then we claim for each x ∈ X that any three coordi-
nates of the Fréchet tuples (d(x′, x))x′∈X satisfy (4.7). Indeed, if x1, x2, x3 ∈ X then

exp d(x3, x) 6 2 6 exp d(x1, x) + exp d(x2, x).

This shows Ψ|X|,N ◦ Fr(X) ⊂ Ψ([n]). Conversely, let X = {x, y, z}; then we are assuming that

Ψ|X|,N ◦ Fr(X) = {(d(x, y), d(x, z), 0, . . . , 0)T , (0, d(y, z), 0, . . . , 0)T , (d(z, y), 0, 0, . . . , 0)T }

is contained in Ψ([n]). Hence the last of the three points in RN satisfies (4.7), which in turn implies:

exp d(z, y) 6 1 + 1 = 2.

The same argument using the other two Fréchet embeddings of X shows that diamX 6 log 2. �

5. Norms on arbitrary Banach spaces; concluding remarks and questions

5.1. Parallel settings. As shown in Section 2, diameter norms offer a unified and functorial frame-
work, which subsumes and explains both Theorem 1.8 about norms on Fk, as well as Theorem 4.1
about metrics on [n]. This treatment also applies more generally, and we begin this final section by
stating (without proofs, and for completeness) two parallel results: in an arbitrary Banach space
and in a class of discrete metrics on an arbitrary set.

Proposition 5.1. Let B be an arbitrary Banach space over F = R or C, and let X ⊂ B \ {0} be
a subset such that for all 0 6= x ∈ B, there exists αx ∈ F× such that αxx ∈ X. Then the set of
equivalence classes of norms on B (i.e., up to scaling by (0,∞)) whose restriction to X is bounded
away from 0,∞ can be isometrically realized as a complete, path-connected metric subspace of the
Banach space Cb(X,R)/ ∼ with the diameter norm.

Notice that if moreover B is finite-dimensional and X is compact then this reduces to Theo-
rem 1.8. Similarly, for any set X we have the following extension of Theorem 4.1:

Proposition 5.2. For any nonempty set X of size at least 3, the equivalence classes (again by
scaling) of metrics d on X bounded away from 0,∞ outside the diagonal – i.e., such that

0 < inf
x 6=x′∈X

d(x, x′) 6 sup
x6=x′∈X

d(x, x′) <∞

form a complete, path-connected unbounded metric subspace of the Banach space Cb(
(
X
2

)
,R)/ ∼.

Here
(
X
2

)
denotes the discrete set of pairs of elements in X.

5.2. Further questions. Following Theorems 1.8 and 4.1 studying the norms on Fk and the
metrics on [n] respectively, it may be interesting to further explore the spaces Sk(F) and S([n]);
exploring the former may provide additional insights into the Banach–Mazur compactum quotient
space. Thus, we conclude with some observations and questions in both of the above settings.

(1) Are there more standard mathematical (geometric) models with which one can identify the
metric spaces Sk(F) and S([n])? What can one say about their geometric properties?

(2) What are the automorphism groups of these spaces? (Depending on the category under
consideration, one may wish to study homeomorphisms, isometries, . . . ) For instance, by
the final assertion in Lemma 1.1, Sk(F) is equipped with the group PGLdk(R) of isometries,
under a real-linear identification of Fk with Rdk.1 An additional observation (by Terence
Tao in recent discussions) is that Sk(F) also carries an isometric involution, which arises
from considering dual norms. A parallel observation is that the space S([n]) is equipped
with an obvious symmetry group Sn of automorphisms. (In contrast, the Gromov–Hausdorff

1It is easy to verify here that for A ∈ GLdk(R), dSk(F)(N(A · −), N ′(A · −)) = dSk(F)(N(·), N ′(·)).
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space has no isometries [9].) One may also consider local isometries of S([n]) and Sk(F), as
previously done for the Gromov–Hausdorff space in [8].

Remark 5.3. For completeness we point out that individual norms can indeed be un-
changed under precomposing by elements of PGLdk(R). For instance, for the ‖ · ‖2-norm
one has the image of Odk(R), while for p ∈ [1,∞] \ {2}, results of Banach [2] and Lam-
perti [12] show that ‘generalized permutation matrices’ are isometries of ‖·‖p. These consist
of the products of permutation matrices with diagonal orthogonal or unitary matrices for
F = R or C respectively. (When F = R, this is precisely the Weyl group of type B or C,
i.e. the hyperoctahedral group S2 o Sn of signed permutations.)

At the same time, say for F = R there is no nontrivial matrix A ∈ GLk(R), A 6∈ R× · Id,
whose precomposition fixes all of Sk(F). Indeed, using a ‖ · ‖p-norm for p 6= 2, by the
previous paragraph A must be a nonzero scalar multiple of some signed permutation matrix
A′ ∈ S2 o Sn, say A = cA′. Suppose the nonzero entries of A′ correspond to the (signed)

permutation σ ∈ Sn. Now let N(x) :=
∑k

j=1 j|xj | for x ∈ Rk. If e1, . . . , ek comprise the

standard basis elements of Rk, and N(Ax) ≡ c′N(x) on Rk for some c′ > 0, then

N(Aej) = c′N(ej) ∀j =⇒ c′j = |c|σ−1(j), ∀j.
Multiplying these inequalities yields: |c| = c′. Now evaluating at ej + eσ−1(j) yields:

j + σ−1(j) = σ−1(j) + σ−2(j), ∀j ∈ [k].

Hence σ has order at most 2. Using this and evaluating at ej + 2eσ−1(j) yields:

j + 2σ−1(j) = σ−1(j) + 2j, ∀j
and we conclude that σ = Id. Finally, suppose two diagonal entries of A are unequal,
say a11 = c′, a22 = −c′. Define the norm N(x) := ‖x‖1 + |x1 + x2|, and evaluate it at
x = (1, 1, 0, . . . , 0)T :

0 = c′N(x)−N(Ax) = 4c′ − 2c′.

Since c′ > 0, our supposition must therefore be false, concluding the proof. �

(3) How does the space Sk(F) relate to Sk+1(F)? Observe by Proposition 3.2 that the p-norms
isometrically map to the p-norms, provided one rescales the metric/norm on each Sk(F) by
log(k). Alternately, without rescaling any of the norms on Sk(F), is it possible to compute
the fibers of ‘the’ restriction map : Sk+1(F)→ Sk(F)?

On a related note (say with F = R for convenience), is this restriction map a surjection?
I.e., is there a “Hahn–Banach” extension of every norm on Rk to one on Rk+1, say minimally
increasing/without increasing the (log-)distortion relative to some reference norm?

(4) Notice that the previous question has a variant for S([n]) with a positive answer, by Propo-
sition 4.6. Moreover, the fibers of the restriction of norms from [n + 1] to [n] are solution
sets to finite systems of inequalities. It may be interesting to study the structures of these
solution spaces.

(5) To understand the ‘sizes’ and growth of balls in these spaces, one can also explore their
metric entropy. Recall for a metric space X and a radius r > 0, the metric entropy of
E ⊂ X is the largest number of points in E that are r-separated. This is related to the
internal and external covering numbers and the packing number of E; we refer the reader
to [18] for a detailed introduction to these ideas.

(6) What is the smallest Banach space inside which these spaces (or distinguished subsets
therein) can be isometrically embedded? Of course if we restrict to finite subsets X then

the classic observation of Fréchet [5] shows that (X, d) isometrically embeds into R|X|−1
with the supnorm (and into R|X|−2 if |X| > 4) – see the discussion prior to Proposition 4.8.
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If instead of the supnorm one is interested in Euclidean space embeddings – for subsets of
Sk(F) or for S([n]) – the classic paper of Schoenberg [17] (following related works in metric
geometry by Menger, Fréchet, von Neumann, and others) provides the following result for
finite metric spaces X:

Theorem 5.4 (Schoenberg [17], 1935). Fix integers n, r > 1, and a finite set X =
{x0, . . . , xn} together with a metric d on X. Then (X, d) isometrically embeds into Rr
(with the Euclidean distance/norm) but not into Rr−1 if and only if the n× n matrix

A := (d(x0, xj)
2 + d(x0, xk)

2 − d(xj , xk)
2)nj,k=1 (5.5)

is positive semidefinite of rank r.

We also refer the reader to [17] for more general results for separable X, and [3, 14] for
more recent, well-known variants with constraints on the ‘embedding dimension’ r.
(a) We end with some examples and comments in each of the two settings, starting with

S([n]). Note that Proposition 4.3 shows an isometric embedding into R(n2) with the 1-
norm for a subset of S([n]). It would be interesting to explore into what Banach space
can the larger subset of norms explored in Remark 4.4 be isometrically embedded.
Note that this is the restriction of the following metric on the union of the X,Y -axes:

d((x, 0), (0, y)) :=

{
‖(x, y)‖1, if xy > 0;

‖(x, y)‖∞, otherwise,

and d restricted to the X or Y axis is the usual Euclidean distance. Can this metric
space be (better) understood in terms of an isometrically embedding into a Banach
space?
Another question is if Theorem 4.5 can be strengthened, to characterize the finite
metric spaces on at most

(
n
2

)
elements, which can be embedded isometrically – i.e.,

without scaling the metric – into S([n]).
(b) Here are some examples of ‘finite-dimensional embeddings’ for infinite subsets of Sk(F).

Recall from Proposition 3.8 that for each p ∈ [1,∞], the family of norms {Np,q,j : q ∈
[0,∞), j ∈ [k]} isometrically embeds into Rk with the 1-norm. Next, by Proposition 3.2
the p-norms isometrically embed inside a one-dimensional real normed space (in fact,
inside [0, log k]). On the other hand for the p-norms, one can show that the image
S ′k(R) of the p-norms in C(Rk \ {0},R)/ ∼ (akin to (3.9)) has affine hull of infinite
– in fact uncountable – dimension. However, this is a consequence of the specific
embedding and not an intrinsic property of S ′k(R). Thus, it is not clear what is the
smallest (dimensional) Banach space containing an isometric copy of Sk(F).
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[1] Jesús Araujo, Separating maps and linear isometries between some spaces of continuous functions, Journal of
Mathematical Analysis and Applications, 226(1):23–39, 1998.
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