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Abstract. This survey contains a selection of topics unified by the
concept of positive semi-definiteness (of matrices or kernels), reflecting
natural constraints imposed on discrete data (graphs or networks) or
continuous objects (probability or mass distributions). We put empha-
sis on entrywise operations which preserve positivity, in a variety of
guises. Techniques from harmonic analysis, function theory, operator
theory, statistics, combinatorics, and group representations are invoked.
Some partially forgotten classical roots in metric geometry and distance
transforms are presented with comments and full bibliographical refer-
ences. Modern applications to high-dimensional covariance estimation
and regularization are included.
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1. Introduction

Matrix positivity, or positive semidefiniteness, is one of the most wide-
reaching concepts in mathematics, old and new. Positivity of a matrix
is as natural as positivity of mass in statics or positivity of a probability
distribution. It is a notion which has attracted the attention of many great
minds. Yet, after at least two centuries of research, positive matrices still
hide enigmas and raise challenges for the working mathematician.

The vitality of matrix positivity comes from its breadth, having many
theoretical facets and also deep links to mathematical modelling. It is not
our aim here to pay homage to matrix positivity in the large. Rather, the
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present survey, split for technical reasons into two parts, has a limited but
carefully chosen scope.

Our panorama focuses on entrywise transforms of matrices which preserve
their positive character. In itself, this is a rather bold departure from the
dogma that canonical transformations of matrices are not those that oper-
ate entry by entry. Still, this apparently esoteric topic reveals a fascinating
history, abundant characteristic phenomena and numerous open problems.
Each class of positive matrices or kernels (regarding the latter as continuous
matrices) carries a specific toolbox of internal transforms. Positive Hankel
forms or Toeplitz kernels, totally positive matrices, and group-invariant pos-
itive definite functions all possess specific positivity preservers. As we see
below, these have been thoroughly studied for at least a century.

One conclusion of our survey is that the classification of positivity pre-
servers is accessible in the dimension-free setting, that is, when the sizes of
matrices are unconstrained. In stark contrast, precise descriptions of posi-
tivity preservers in fixed dimension are elusive, if not unattainable with the
techniques of modern mathematics. Furthermore, the world of applications
cares much more about matrices of fixed size than in the free case. The
accessibility of the latter was by no means a sequence of isolated, simple ob-
servations. Rather, it grew organically out of distance geometry, and spread
rapidly through harmonic analysis on groups, special functions, and prob-
ability theory. The more recent and highly challenging path through fixed
dimensions requires novel methods of algebraic combinatorics and symmet-
ric functions, group representations, and function theory.

As well as its beautiful theoretical aspects, our interest in these topics is
also motivated by the statistics of big data. In this setting, functions are
often applied entrywise to covariance matrices, in order to induce sparsity
and improve the quality of statistical estimators (see [72, 73, 114]). Entry-
wise techniques have recently increased in popularity in this area, largely
because of their low computational complexity, which makes them ideal to
handle the ultra high-dimensional datasets arising in modern applications.
In this context, the dimensions of the matrices are fixed, and correspond to
the number of underlying random variables. Ensuring that positivity is pre-
served by these entrywise methods is critical, as covariance matrices must
be positive semidefinite. Thus, there is a clear need to produce characteriza-
tions of entrywise preservers, so that these techniques are widely applicable
and mathematically justified. We elaborate further on this in the second
part of the survey.

We conclude by remarking that, while we have tried to be comprehensive
in our coverage of the field of matrix positivity and the entrywise calculus,
our panorama is far from being complete. We apologize for any omissions.
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2. From metric geometry to matrix positivity

2.1. Distance geometry. During the first decade of the 20th century, the
concept of a metric space emerged from the works of Fréchet and Hausdorff,
each having different and well-anchored roots, in function spaces and in set
theory and measure theory. We cannot think today of modern mathematics
and physics without referring to metric spaces, which touch areas as diverse
as economics, statistics, and computer science. Distance geometry is one of
the early and ever-lasting by-products of metric-space theory. One of the key
figures of the Vienna Circle, Karl Menger, started a systematic study in the
1920s of the geometric and topological features of spaces that are intrinsic
solely to the distance they carry. Menger published his findings in a series of
articles having the generic name “Untersuchungen über allgemeine Metrik,”
the first one being [99]; see also his synthesis [100]. His work was very
influential in the decades to come [23], and by a surprising and fortunate
stroke not often encountered in mathematics, Menger’s distance geometry
has been resurrected in recent times by practitioners of convex optimization
and network analysis [39, 95].

Let (X, ρ) be a metric space. One of the naive, yet unavoidable, questions
arising from the very beginning concerns the nature of operations φ(ρ) which
may be performed on the metric and which enhance various properties of
the topological space X. We all know that ρ/(ρ + 1) and ργ , if γ ∈ (0, 1),
also satisfy the axioms of a metric, with the former making it bounded. Less
well known is an observation due to Blumenthal, that the new metric space
(X, ργ) has the four-point property if γ ∈ (0, 1/2]: every four-point subset
of X can be embedded isometrically into Euclidean space [23, Section 49].

Metric spaces which can be embedded isometrically into Euclidean space,
or into infinite-dimensional Hilbert space, are, of course, distinguished and
desirable for many reasons. We owe to Menger a definitive characteriza-
tion of this class of metric spaces. The core of Menger’s theorem, stated
in terms of certain matrices built from the distance function (known as
Cayley–Menger matrices) was slightly reformulated by Fréchet and cast in
the following simple form by Schoenberg.

Theorem 2.1 (Schoenberg [120]). Let d ≥ 1 be an integer and let (X, ρ)
be a metric space. An (n + 1)-tuple of points x0, x1, . . . , xn in X can be
isometrically embedded into Euclidean space Rd, but not into Rd−1, if and
only if the matrix

[ρ(x0, xj)
2 + ρ(x0, xk)

2 − ρ(xj , xk)
2]nj,k=1,

is positive semidefinite with rank equal to d.
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Proof. This is surprisingly simple. Necessity is immediate, since the Eu-
clidean norm and scalar product in Rd give that

ρ(x0, xj)
2 + ρ(x0, xk)

2 − ρ(xj , xk)
2

= ‖x0 − xj‖2 + ‖x0 − xk‖2 − ‖(x0 − xj)− (x0 − xk)‖2

= 2〈x0 − xj , x0 − xk〉,
and the latter are the entries of a positive semidefinite Gram matrix of rank
less than or equal to d.

For the other implication, we consider first a full-rank d× d matrix asso-
ciated with a (d+ 1)-tuple. The corresponding quadratic form

Q(λ) =
1

2

d∑
j,k=1

(ρ(x0, xj)
2 + ρ(x0, xk)

2 − ρ(xj , xk)
2)λjλk

is positive definite. Hence there exists a linear change of variables

λk =

d∑
j=1

ajkµj (1 ≤ j ≤ d)

such that

Q(λ) = µ21 + µ22 + · · ·+ µ2d.

Interpreting (µ1, µ2, . . . , µd) as coordinates in Rd, the standard simplex with
vertices

e0 = (0, . . . , 0), e1 = (1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1)

has the corresponding quadratic form (of distances) equal to µ21+µ22+· · ·+µ2d.
Now we perform the coordinate change µj 7→ λj . Specifically, set P0 = 0

and let Pj ∈ Rd be the point with coordinates λj = 1 and λk = 0 if k 6= j.
Then one identifies distances:

‖P0 − Pj‖ = ρ(x0, xj) (0 ≤ j ≤ d)

and ‖Pj − Pk‖ = ρ(xj , xk) (1 ≤ j, k ≤ d).

The remaining case with n > d can be analyzed in a similar way, after taking
an appropriate projection. �

In the conditions of the theorem, fixing a “frame” of d points and letting
the (d+ 1)-th point float, one obtains an embedding of the full metric space
(X, ρ) into Rd. This idea goes back to Menger, and it led, with Schoenberg’s
touch, to the following definitive statement. Here and below, all Hilbert
spaces are assumed to be separable.

Corollary 2.2 (Schoenberg [120], following Menger). A separable metric
space (X, ρ) can be isometrically embedded into Hilbert space if and only if,
for every (n + 1)-tuple of points (x0, x1, . . . , xn) in X, where n ≥ 2, the
matrix

[ρ(x0, xj)
2 + ρ(x0, xk)

2 − ρ(xj , xk)
2]nj,k=1
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is positive semidefinite.

The notable aspect of the two previous results is the interplay between
purely geometric concepts and matrix positivity. This will be a recurrent
theme of our survey.

2.2. Spherical distance geometry. One can specialize the embedding
question discussed in the previous section to submanifolds of Euclidean
space. A natural choice is the sphere.

For two points x and y on the unit sphere Sd−1 ⊂ Rd, the rotationally
invariant distance between them is

ρ(x, y) = ^(x, y) = arccos〈x, y〉,
where the angle between the two vectors is measured on a great circle and
is always less than or equal to π.

A straightforward application of the simple, but central, Theorem 2.1]
yields the following result.

Theorem 2.3 (Schoenberg [120]). Let (X, ρ) be a metric space and let
(x1, . . . , xn) be an n-tuple of points in X. For any integer d ≥ 2, there
exists an isometric embedding of (x1, . . . , xn) into Sd−1 endowed with the
geodesic distance but not Sd−2 if and only if

ρ(xj , xk) ≤ π (1 ≤ j, k ≤ n)

and the matrix
[
cos ρ(xj , xk)

]n
j,k=1

is positive semidefinite of rank d.

Indeed, the necessity is assured by choosing x0 to be the origin in Rd. In
this case,

ρ(x0, xj)
2 + ρ(x0, xk)

2 − ρ(xj , xk)
2 = ‖xj‖2 + ‖xk‖2 − ‖xj − xk‖2

= 2〈xj , xk〉
= 2 cos ρ(xj , xk).

The condition is also sufficient, by possibly adding an external point x0
to the metric space, subject to the constraints that ρ(x0, xj) = 1 for all j.
The details can be found in [120].1

2.3. Distance transforms. A notable step forward in the study of the
existence of isometric embeddings of a metric space into Euclidean or Hilbert
space was made by Schoenberg. In a series of articles [121, 123, 124, 136], he
changed the set-theoretic lens of Menger, by initiating a harmonic-analysis
interpretation of this embedding problem. This was a major turning point,
with long-lasting, unifying, and unexpected consequences.

1An alternate proof of sufficiency is to note that A := [cos ρ(xj , xk)]nj,k=1 is a Gram

matrix of rank r, hence equal to BTB for some r × n matrix B with unit columns.
Denoting these columns by b1, . . . , bn ∈ Sr−1, the map xj 7→ bj is an isometry since
ρ(xj , xk) and ^(yj , yk) ∈ [0, π]. Moreover, since A has rank r, the bj cannot all lie in a
smaller-dimensional sphere.
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We return to a separable metric space (X, ρ) and seek distance-function
transforms ρ 7→ φ(ρ) which enhance the geometry of X, to the extent that
the new metric space

(
X,φ(ρ)

)
is isometrically equivalent to a subspace

of Hilbert space. Schoenberg launched this whole new chapter from the
observation that the Euclidean norm is such that the matrix

[exp
(
−‖xj − xk‖2

)
]Nj,k=1

is positive semidefinite for any choice of points x1, . . . , xN in the ambient
space. Once again, we see the presence of matrix positivity. While this
claim may not be obvious at first sight, it is accessible once we recall a key
property of Fourier transforms.

An even function f : Rd → C is said to be positive definite if the complex
matrix [f(xj−xk)]Nj,k=1 is positive semidefinite for any N ≥ 1 and any choice

of points x1, . . . , xN ∈ Rd. We will call f(x−y) a positive semidefinite kernel
on Rd × Rd in this case. (See [132] for a comprehensive survey of this class
of maps.)

Bochner’s theorem [25] characterizes positive definite functions on Rd as
Fourier transforms of even positive measures of finite mass:

f(ξ) =

∫
e−ix·ξ dµ(x).

Indeed,

f(ξ − η) =

∫
e−ix·ξeix·η dµ(x)

is a positive semidefinite kernel because it is the average over µ of the positive

kernel (ξ, η) 7→ e−ix·ξeix·η. Since the Gaussian e−x
2

is the Fourier transform
of itself (modulo constants), it turns out that it is a positive definite function
on R, whence exp(−‖x‖2) has the same property as a function on Rd. Taking
one step further, the function x 7→ exp(−‖x‖2) is positive definite on any
Hilbert space.

With this preparation we are ready for a second characterization of metric
subspaces of Hilbert space.

Theorem 2.4 (Schoenberg [123]). A separable metric space (X, ρ) can be
embedded isometrically into Hilbert space if and only if the kernel

X ×X → (0,∞); (x, y) 7→ exp(−λ2ρ(x, y)2)

is positive semidefinite for all λ ∈ R.

Proof. Necessity follows from the positive definiteness of the Gaussian dis-
cussed above. (We also provide an elementary proof below; see Lemma 5.7
and the subsequent discussion). To prove sufficiency, we recall the Menger–
Schoenberg characterization of isometric subspaces of Hilbert space. We
have to derive, from the positivity assumption, the positivity of the matrix

[ρ(x0, xj)
2 + ρ(x0, xk)

2 − ρ(xj , xk)
2]nj,k=1.
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Elementary algebra transforms this constraint into the requirement that
n∑

j,k=0

ρ(xj , xk)
2cjck ≤ 0 whenever

n∑
j=0

cj = 0.

By expanding exp(−λ2ρ(xj , xk)
2) as a power series in λ2, and invoking the

positivity of the exponential kernel, we see that

0 ≤ −λ2
n∑

j,k=0

ρ(xj , xk)
2cjck +

λ4

2

n∑
j,k=0

ρ(xj , xk)
4cjck − · · ·

for all λ > 0. Hence the coefficient of −λ2 is non-positive. �

The flexibility of the Fourier-transform approach is illustrated by the fol-
lowing application, also due to Schoenberg [123].

Corollary 2.5. Let H be a Hilbert space with norm ‖·‖. For every δ ∈ (0, 1),
the metric space (H, ‖ · ‖δ) is isometric to a subspace of a Hilbert space.

Proof. Note first the identity

ξα = cα

∫ ∞
0

(1− e−s2ξ2)s−1−α ds (ξ > 0, 0 < α < 2),

where cα is a normalization constant. Consequently,

‖x− y‖α = cα

∫ ∞
0

(1− e−s2‖x−y‖2)s−1−α ds.

Let δ = α/2. For points x0, x1, . . . , xn in H and weights c0, c1, . . . , cn
satisfying

c0 + c1 + · · ·+ cn = 0,

it holds that
n∑

j,k=0

‖xj − xk‖2δcjck = −cα
∫ ∞
0

n∑
j,k=0

cjcke
−s2‖xj−xk‖2s−1−α ds ≤ 0,

and the proof is complete. �

Several similar consequences of the Fourier-transform approach are within
reach. For instance, Schoenberg observed in the same article that if the Lp

norm is raised to the power γ, where 0 < γ ≤ p/2 and 1 ≤ p ≤ 2, then
Lp(0, 1) is isometrically embeddable into Hilbert space.

2.4. Altering Euclidean distance. By specializing the theme of the pre-
vious section to Euclidean space, Schoenberg and von Neumann discovered
an arsenal of powerful tools from harmonic analysis that were able to settle
the question of whether Euclidean space equipped with the altered distance
φ
(
‖x − y‖

)
may be isometrically embedded into Hilbert space [122, 136].

The key ingredients are characterizations of Laplace and Fourier transforms
of positive measures, that is, Bernstein’s completely monotone functions [17]
and Bochner’s positive definite functions [25].
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Here we present some highlights of the Schoenberg–von Neumann frame-
work. First, we focus on an auxiliary class of distance transforms. A real
continuous function φ is called positive definite in Euclidean space Rd if the
kernel

(x, y) 7→ φ
(
‖x− y‖

)
is positive semidefinite. Bochner’s theorem and the rotation-invariance of
this kernel prove that such a function φ is characterized by the representation

φ(t) =

∫ ∞
0

Ωd(tu) dµ(u),

where µ is a positive measure and

Ωd

(
‖x‖
)

=

∫
‖ξ‖=1

eix·ξ dσ(ξ),

with σ the normalized area measure on the unit sphere in Rd; see [122,
Theorem 1]. By letting d tend to infinity, one finds that positive definite
functions on infinite-dimensional Hilbert space are precisely of the form

φ(t) =

∫ ∞
0

e−t
2u2 dµ(u),

with µ a positive measure on the semi-axis. Notice that positive definite
functions in Rd are not necessarily differentiable more than (d− 1)/2 times,
while those which are positive definite in Hilbert space are smooth and even
complex analytic in the sector | arg t| < π/4.

The class of functions f which are continuous on R+ := [0,∞), smooth
on the open semi-axis (0,∞), and such that

(−1)nf (n)(t) ≥ 0 for all t > 0

was studied by S. Bernstein, who proved that they coincide with Laplace
transforms of positive measures on R+:

f(t) =

∫ ∞
0

e−tu dµ(u). (2.1)

Such functions are called completely monotonic and have proved highly rel-
evant for probability theory and approximation theory; see [17] for the foun-
dational reference. Thus we have obtained a valuable equivalence.

Theorem 2.6 (Schoenberg). A function f is completely monotone if and
only if t 7→ f(t2) is positive definite on Hilbert space.

The direct consequences of this apparently innocent observation are quite
deep. For example, the isometric-embedding question for altered Euclidean
distances is completely answered via this route. The following results are
from [122] and [136].

Theorem 2.7 (Schoenberg–von Neumann). Let H be a separable Hilbert
space with norm ‖ · ‖.
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(1) For any integers n ≥ d > 1, the metric space (Rd, φ
(
‖ · ‖

)
) may be

isometrically embedded into (Rn, ‖ · ‖) if and only if φ(t) = ct for
some c > 0.

(2) The metric space (Rd, φ
(
‖·‖
)
) may be isometrically embedded into H

if and only if

φ(t)2 =

∫ ∞
0

1− Ωd(tu)

u2
dµ(u),

where µ is a positive measure on the semi-axis such that∫ ∞
1

1

u2
dµ(u) <∞.

(3) The metric space (H,φ
(
‖ ·‖
)
) may be isometrically embedded into H

if and only if

φ(t)2 =

∫ ∞
0

1− e−t2u

u
dµ(u),

where µ is a positive measure on the semi-axis such that∫ ∞
1

1

u
dµ(u) <∞.

In von Neumann and Schoenberg’s article [136], special attention is paid
to the case of embedding a modified distance on the line into Hilbert space.
This amounts to characterizing all screw lines in a Hilbert space H: the
continuous functions

f : R→ H; t 7→ ft

with the translation-invariance property

‖fs − ft‖ = ‖fs+r − ft+r‖ for all s, r, t ∈ R.

In this case, the gauge function φ is such that φ(t−s) = ‖fs−ft‖ and t 7→ ft
provides the isometric embedding of (R, φ

(
|·|
)
) into H. Von Neumann seized

the opportunity to use Stone’s theorem on one-parameter unitary groups,
together with the spectral decomposition of their unbounded self-adjoint
generators, to produce a purely operator-theoretic proof of the following
result.

Corollary 2.8. The metric space (R, φ
(
| · |)

)
isometrically embeds into

Hilbert space if and only if

φ(t)2 =

∫ ∞
0

sin2(tu)

u2
dµ(u) (t ∈ R),

where µ is a positive measure on R+ satisfying∫ ∞
1

1

u2
dµ(u) <∞.
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Moreover, in the conditions of the corollary, the space (R, φ
(
| · |
)
) embeds

isometrically into Rd if and only if the measure µ consists of finitely many
point masses, whose number is roughly d/2; see [136, Theorem 2] for the
precise statement. To give a simple example, consider the function

φ : R→ R+; t 7→
√
t2 + sin2 t.

This is indeed a screw function, because

φ(t− s)2 = (t− s)2 + sin2(t− s)

= (t− s)2 +
1

4

(
cos(2t)− cos(2s)

)2
+

1

4

(
sin(2t)− cos(2s)

)2
.

Note that a screw line is periodic if and only if it is not injective. Fur-
thermore, one may identify screw lines with period τ > 0 by the geometry
of the support of the representing measure: this support must be contained
in the lattice (π/τ)Z+, where Z+ := Z ∩ R+ = {0, 1, 2, . . . }. Consequently,
all periodic screw lines in Hilbert space have a gauge function φ such that

φ(t)2 =
∞∑
k=1

ck sin2(kπt/τ), (2.2)

where ck ≥ 0 and
∑∞

k=1 ck <∞; see [136, Theorem 5].

2.5. Positive definite functions on homogeneous spaces. Having re-
solved the question of isometrically embedding Euclidean space into Hilbert
space, a natural desire was to extend the analysis to other special manifolds
with symmetry. This was done almost simultaneously by Schoenberg on
spheres [125] and by Bochner on compact homogeneous spaces [26].

Let X be a compact space endowed with a transitive action of a group
G and an invariant measure. We seek G-invariant distance functions, and
particularly those which identify X with a subspace of a Hilbert space. To
simplify terminology, we call the latter Hilbert distances.

The first observation of Bochner is that a G-invariant symmetric kernel
f : X ×X → R satisfies the Hilbert-space embeddability condition,

n∑
k=0

ck = 0 =⇒
n∑

j,k=0

f(xj , xk)cjck ≥ 0,

for all choices of weights cj and points xj ∈ X, if and only if f is of the form

f(x, y) = h(x, y)− h(x0, x0) (x, y ∈ X),

where h is a G-invariant positive definite kernel and x0 is a point of X. One
implication is clear. For the other, we start with a G-invariant function f
subject to the above constraint and prove, using G-invariance and integra-
tion over X, the existence of a constant c such that h(x, y) = f(x, y) + c is
a positive semidefinite kernel. This gives the following result.
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Theorem 2.9 (Bochner [26]). Let X be a compact homogeneous space. A
continuous invariant function ρ on X ×X is a Hilbert distance if and only
if there exists a continuous, real-valued, invariant, positive definite kernel h
on X and a point x0 ∈ X, such that

ρ(x, y) =
√
h(x0, x0)− h(x, y) (x, y ∈ X).

Privileged orthonormal bases of G-invariant functions, in the L2 space
associated with the invariant measure, provide a canonical decompositions of
positive definite kernels. These generalized spherical harmonics were already
studied by E. Cartan, H. Weyl and J. von Neumann; see, for instance [138].
We elaborate on two important particular cases.

Let X = T = {eiθ : θ ∈ R} be the unit torus, endowed with the invariant
arc-length measure. A continuous positive definite function h : T × T → R
admits a Fourier decomposition

h(eix, eiy) =
∑
j,k∈Z

ajke
ijxe−iky.

If h is further required to be rotation invariant, we find that

h(eix, eiy) =
∑
k∈Z

ake
ik(x−y),

where ak ≥ 0 for all k ∈ Z and ak = a−k because h takes real values.
Moreover, the series is Abel summable:

∑∞
k=0 ak = h(1, 1) <∞. Therefore,

a rotation-invariant Hilbert distance ρ on the torus has the expression (after
taking its square):

ρ(eix, eiy)2 = h(1, 1)− h(eix, eiy) =
∞∑
k=1

ak(2− eik(x−y) − e−ik(x−y))

= 2
∞∑
k=1

ak(1− cos k(x− y))

= 4
∞∑
k=1

ak sin2(k(x− y)/2).

These are the periodic screw lines (2.2) already investigated by von Neumann
and Schoenberg.

As a second example, we follow Bochner in examining a separable, com-
pact group G. A real-valued, continuous, positive definite and G-invariant
kernel h admits the decomposition

h(x, y) =
∑
k∈Z

ckχk(yx
−1),

where ck ≥ 0 for all k ∈ Z,
∑

k∈Z ck <∞ and χk denote the characters of ir-
reducible representations of G. In conclusion, an invariant Hilbert distance ρ
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on G is characterized by the formula

ρ(x, y)2 =
∑
k∈Z

ck
(
1− χk(yx

−1) + χk(xy
−1)

2χk(1)

)
,

where ck ≥ 0 and
∑

k∈Z ck <∞.
For details and an analysis of similar decompositions on more general

homogeneous spaces, we refer the reader to [26].
The above analysis of positive definite functions on homogeneous spaces

was carried out separately by Schoenberg in [125]. First, he remarks that a
continuous, real-valued, rotationally invariant and positive definite kernel f
on the sphere Sd−1 has a distinguished Fourier-series decomposition with
non-negative coefficients. Specifically,

f(cos θ) =
∞∑
k=0

ckP
(λ)
k (cos θ) (2.3)

where λ = (d − 2)/2, P
(λ)
k are the ultraspherical orthogonal polynomials,

ck ≥ 0 for all k ≥ 0 and
∑∞

k=0 ck < ∞. This decomposition is in accord
with Bochner’s general framework, with the difference lying in Schoenberg’s
elementary proof, based on induction on dimension. As with all our formulas
concerning the sphere, θ represents the geodesic distance (arc length along
a great circle) between two points.

To convince the reader that expressions in the cosine of the geodesic
distance are positive definite, let us consider points x1, . . . , xn ∈ Sd−1. The
Gram matrix with entries

〈xj , xk〉 = cos θ(xj , xk)

is obviously positive semidefinite, with constant diagonal elements equal
to 1. According to the Schur product theorem [129], all functions of the
form cosk θ, where k is a non-negative integer, are therefore positive definite
on the sphere.

At this stage, Schoenberg makes a leap forward and studies invariant
positive definite kernels on S∞, that is, functions f(cos θ) which admit rep-
resentations as above for all d ≥ 2. His conclusion is remarkable in its
simplicity.

Theorem 2.10 (Schoenberg [125]). A real-valued function f(cos θ) is pos-
itive definite on all spheres, independent of their dimension, if and only
if

f(cos θ) =

∞∑
k=0

ck cosk θ, (2.4)

where ck ≥ 0 for all k ≥ 0 and
∑∞

k=0 ck <∞.

This provides a return to the dominant theme, of isometric embedding
into Hilbert space.
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Corollary 2.11. The function ρ(θ) is a Hilbert distance on S∞ if and only
if

ρ(θ)2 =
∞∑
k=0

ck(1− cosk θ),

where ck ≥ 0 for all k ≥ 0 and
∑∞

k=0 ck <∞.

However, there is much more to derive from Schoenberg’s theorem, once
it is freed from the spherical context.

Theorem 2.12 (Schoenberg [125]). Let f : [−1, 1] → R be a continuous
function. If the matrix [f(ajk)]

n
j,k=1 is positive semidefinite for all n ≥ 1

and all positive semidefinite matrices [ajk]
n
j,k=1 with entries in [−1, 1], then,

and only then,

f(x) =
∞∑
k=0

ckx
k (x ∈ [−1, 1]),

where ck ≥ 0 for all k ≥ 0 and
∑∞

k=0 ck <∞.

Proof. One implication follows from the Schur product theorem [129], which
says that if the n × n matrices A and B are positive semidefinite, then
so is their entrywise product A ◦ B := [ajkbjk]

n
j,k=1. Indeed, inductively

setting B = A◦k = A ◦ · · · ◦A, the k-fold entrywise power, shows that every
monomial xk preserves positivity when applied entrywise. That the same
property holds for functions f(x) =

∑
k≥0 ckx

k, with all ck ≥ 0, now follows
from the fact that the set of positive semidefinite n × n matrices forms a
closed convex cone, for all n ≥ 1.

For the non-trivial, reverse implication we restrict the test matrices to
those with leading diagonal terms all equal to 1. By interpreting such a
matrix A as a Gram matrix, we identify n points on the sphere x1, . . . ,
xn ∈ Sn−1 satisfying

ajk = 〈xj , xk〉 = cos θ(xj , xk) (1 ≤ j, k ≤ n).

Then we infer from Schoenberg’s theorem that f admits a uniformly con-
vergent Taylor series with non-negative coefficients. �

We conclude this section by mentioning some recent avenues of research
that start from Bochner’s theorem (and its generalization in 1940, by Weil,
Povzner, and Raikov, to all locally compact abelian groups) and Schoen-
berg’s classification of positive definite functions on spheres. On the theo-
retical side, there has been a profusion of recent mathematical activity on
classifying positive definite functions (and strictly positive definite functions)
in numerous settings, mostly related to spheres [9, 10, 32, 141, 142, 144],
two-point homogeneous spaces2[7, 8, 28], locally compact abelian groups and
homogeneous spaces [45, 64], and products of these [15, 16, 63, 65, 67, 66].

2Recall [137] that a metric space (X, ρ) is n-point homogeneous if, given finite sets X1,
X2 ⊂ X of equal size no more than n, every isometry from X1 to X2 extends to a self-
isometry of X. This property was first considered by Birkhoff [21], and of course differs
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Moreover, this line of work directly impacts applied fields. For instance,
in climate science and geospatial statistics, one uses positive definite ker-
nels and Schoenberg’s results (and their sequels) to study trends in climate
behavior on the Earth, since it can be modelled by a sphere, and positive
definite functions on S2 × R characterize space-time covariance functions
on it. See [62, 101, 108, 109] for more details on these applications. There
is a natural connection to probability theory, through the work of Lévy;
see e.g. [56]. Other applied fields include genomics and finance, through
high-dimensional covariance estimation. We elaborate on this in Chapter 7
below.

There are several other applications of Schoenberg’s work on positive def-
inite functions on spheres (his paper [125] has more than 160 citations)
and we mention here just a few of them. Schoenberg’s results were used
by Musin [102] to compute the kissing number in four dimensions, by an
extension of Delsarte’s linear-programming method. Moreover, the results
also apply to obtain new bounds on spherical codes [103], with further ap-
plications to sphere packing [35, 36, 37, 38]. There are also applications to
approximating functions and interpolating data on spheres, pseudodifferen-
tial equations with radial basis functions, and Gaussian random fields.

Remark 2.13. Another modern-day use of Schoenberg’s results in [125] is
in Machine Learning; see [131, 133], for example. Given a real inner-product
space H and a function f : R→ R, an alternative notion of f being positive
definite is as follows: for any finite set of vectors x1, . . . , xn ∈ H, the matrix

[f(〈xj , xk〉)]nj,k=1

is positive semidefinite. This is in contrast to the notion promoted by
Bochner, Weil, Schoenberg, Pólya, and others, which concerns positivity
of the matrix with entries f(〈xj − xk, xj − xk〉1/2). It turns out that every
positive definite kernel on H, given by

(x, y) 7→ f(〈x, y〉)
for a function f which is positive definite in this alternate sense, gives rise
to a reproducing-kernel Hilbert space, which is a central concept in Machine
Learning. We restrict ourselves here to mentioning that, in this setting, it is
desirable for the kernel to be strictly positive definite; see [105] for further
clarification and theoretical results along these lines.

2.6. Connections to harmonic analysis. Positivity and sharp continuity
bounds for linear transformations between specific normed function spaces
go hand in hand, especially when focusing on the kernels of integral trans-
forms. The end of 1950s marked a fortunate condensation of observations,
leading to a quasi-complete classification of preservers of positive or bounded
convolution transforms acting on spaces of functions on locally compact

from the more common usage of the terminology of a homogeneous space G/H, whose
study by Bochner was mentioned above.
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abelian groups. In particular, these results can be interpreted as Schoenberg-
type theorems for Toeplitz matrices or Toeplitz kernels. We briefly recount
the main developments.

A groundbreaking theorem of the 1930s attributed to Wiener and Levy
asserts that the pointwise inverse of a non-vanishing Fourier series with
coefficients in L1 exhibits the same summability behavior of the coefficient
sequence. To be more precise, if φ is never zero and has the representation

φ(θ) =

∞∑
n=−∞

cne
inθ, where

∞∑
n=−∞

|cn| <∞,

then its reciprocal has a representation of the same form:

(1/φ)(θ) =

∞∑
n=−∞

dne
inθ, where

∞∑
n=−∞

|dn| <∞.

It was Gelfand [61] who in 1941 cast this permanence phenomenon in the
general framework of commutative Banach algebras. Gelfand’s theory ap-

plied to the Wiener algebra W := L̂1(Z) of Fourier transforms of L1 func-
tions on the dual of the unit torus proves the following theorem.

Theorem 2.14 (Gelfand [61]). Let φ ∈ W and let f(z) be an analytic
function defined in a neighborhood of φ(T). Then f(φ) ∈W .

The natural inverse question of deriving smoothness properties of inner
transformations of Lebesgue spaces of Fourier transforms was tackled almost
simultaneously by several analysts. For example, Rudin proved in 1956
[115] that a coefficient-wise transformation cn 7→ f(cn) mapping the space

L̂1(T) into itself implies the analyticity of f in a neighborhood of zero. In a
similar vein, Rudin and Kahane proved in 1958 [84] that a coefficient-wise
transformation cn 7→ f(cn) which preserves the space of Fourier transforms

M̂(T) of finite measures on the torus implies that f is an entire function. In
the same year, Kahane [83] showed that no quasi-analytic function (in the

sense of Denjoy–Carleman) preserves the space L̂1(Z) and Katznelson [87]
refined an inverse to Gelfand’s theorem above, by showing the semi-local

analyticity of transformers of elements of L̂1(Z) subject to some support
conditions.

Soon after, the complete picture emerged in full clarity. It was unveiled
by Helson, Kahane, Katznelson and Rudin in an Acta Mathematica article
[74]. Given a function f defined on a subset E of the complex plane, we say
that f operates on the function algebra A, if f(φ) ∈ A for every φ ∈ A with
range contained in E. The following metatheorem is proved in the cited
article.

Theorem 2.15 (Helson–Kahane–Katznelson–Rudin [74]). Let G be a lo-
cally compact abelian group and let Γ denote its dual, and suppose both are
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endowed with their respective Haar measures. Let f : [−1, 1] → C be a
function satisfying f(0) = 0.

(1) If Γ is discrete and f operates on L̂1(G), then f is analytic in some
neighborhood of the origin.

(2) If Γ is not discrete and f operates on L̂1(G), then f is analytic in
[−1, 1].

(3) If Γ is not compact and f operates on M̂(G), then f can be extended
to an entire function.

Rudin refined the above results to apply in the case of various Lp norms
[117, 118], by stressing the lack of continuity assumption for the transformer
f in all results (similar in nature to the statements in the above theorem).
From Rudin’s work we extract a highly relevant observation, à la Schoen-
berg’s theorem, aligned to the spirit of the present survey.

Theorem 2.16 (Rudin [116]). Suppose f : (−1, 1)→ R maps every positive
semidefinite Toeplitz kernel with elements in (−1, 1) into a positive semidef-
inite kernel:

[aj−k]
∞
j,k=−∞ ≥ 0 =⇒ [f(aj−k)]

∞
j,k=−∞ ≥ 0.

Then f is absolutely monotonic, that is analytic on (−1, 1) with a Taylor
series having non-negative coefficients:

f(x) =

∞∑
n=0

ckx
k, where ck ≥ 0 for all k ≥ 0.

In the above Theorem and henceforth, the notations A ≤ B and B ≥ A
mean that the (possibly semi-infinite or bi-infinite) matrix B−A is positive
semidefinite, i.e. has all principal minors non-negative.

The converse is obviously true by the Schur product theorem. The el-
ementary proof, quite independent of the derivation of the metatheorem
stated above, is contained in [116]. Notice again the lack of a continuity
assumption in the hypotheses.

In fact, Rudin proves more, by restricting the test domain of positive
semidefinite Toeplitz kernels to the two-parameter family

an = α+ β cos(nθ) (n ∈ Z) (2.5)

with θ fixed so that θ/π is irrational and α, β ≥ 0 such that α + β < 1.
Rudin’s proof commences with a mollifier argument to deduce the continuity
of the transformer, then uses a development in spherical harmonics very
similar to the original argument of Schoenberg. We will resume this topic
in Section 3.3, setting it in a wider context.

With the advances in abstract duality theory for locally convex spaces,
it is not surprising that proofs of Schoenberg-type theorems should be ac-
cessible with the aid of such versatile tools. We will confine ourselves here
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to mentioning one pertinent convexity-theoretic proof of Schoenberg’s theo-
rem, due to Christensen and Ressel [33]. (See also [34] for a complex sphere
variant.)

Skipping freely over the details, the main observation of these two au-
thors is that the multiplicatively closed convex cone of positivity preservers
of positive semidefinite matrices of any size, with entries in [−1, 1], is closed

in the product topology of R[−1,1], with a compact base K defined by the
normalization f(1) = 1. The set of extreme points of K is readily seen to be
closed, and an elementary argument identifies it as the set of all monomials
xn, where n ≥ 0, plus the characteristic functions χ1 ± χ−1. An application
of Choquet’s representation theorem now provides a proof of a generaliza-
tion of Schoenberg’s theorem, by removing the continuity assumption in the
statement.

3. Entrywise functions preserving positivity in all dimensions

3.1. History. With the above history to place the present survey in context,
we move to its dominant theme: entrywise positivity preservers. In analysis
and in applications in the broader mathematical sciences, one is familiar
with applying functions to the spectrum of diagonalizable matrices: A =
UDU∗ then f(A) = Uf(D)U∗. More formally, one uses the Riesz–Dunford
holomorphic functional calculus to define f(A) for classes of matrices A and
functions f .

Our focus in this survey will be on the parallel philosophy of entrywise cal-
culus. To differentiate this from the functional calculus, we use the notation
f [A].

Definition 3.1. Fix a domain I ⊂ C and integers m, n ≥ 1. Let Pn(I)
denote the set of n × n Hermitian positive semidefinite matrices with all
entries in I.

A function f : I → C acts entrywise on a matrix

A = [ajk]1≤j≤m, 1≤k≤n ∈ Im×n

by setting

f [A] := [f(ajk)]1≤j≤m, 1≤k≤n ∈ Cm×n.
Below, we allow the dimensions m and n to vary, while keeping the uniform
notation f [−].

We also let 1m×n denote the m× n matrix with each entry equal to one.
Note that 1n×n ∈ Pn(R).

In this survey, we explore the following overarching question in several
different settings.

Which functions preserve positive semidefiniteness when applied entrywise
to a class of positive matrices?

This question was first asked by Pólya and Szegö in their well-known book
[107]. The authors observed that Schur’s product theorem, together with
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the fact that the positive matrices form a closed convex cone, has the fol-
lowing consequence: if f(x) is any power series with non-negative Maclaurin
coefficients that converges on a domain I ⊂ R, then f preserves positivity
(that is, preserves positive semidefiniteness) when applied entrywise to pos-
itive semidefinite matrices with entries in I. Pólya and Szegö then asked
if there are any other functions that possess this property. As discussed
above, Schoenberg’s theorem 2.12 provides a definitive answer to their ques-
tion (together with the improvements by Rudin or Christensen–Ressel to
remove the continuity hypothesis). Thanks to Pólya and Szegö’s observa-
tion, Schoenberg’s result may be considered as a rather challenging converse
to the Schur product theorem.

In a similar vein, Rudin [116] observed that if one moves to the complex
setting, then the conjugation map also preserves positivity when applied
entrywise to positive semidefinite complex matrices. Therefore the maps

z 7→ zjzk (j, k ≥ 0)

preserve positivity when applied entrywise to complex matrices of all di-
mensions, again by the Schur product theorem. The same property is now
satisfied by non-negative linear combinations of these functions. In [116],
Rudin made this observation and conjectured, à la Pólya–Szegö, that these
are all of the preservers. This was proved by Herz in 1963.

Theorem 3.2 (Herz [77]). Let D(0, 1) denote the open unit disc in C, and
suppose f : D(0, 1) → C. The entrywise map f [−] preserves positivity on
Pn
(
D(0, 1)

)
for all n ≥ 1, if and only if

f(z) =
∑
j,k≥0

cjkz
jzk for all z ∈ D(0, 1),

where cjk ≥ 0 for all j, k ≥ 0.

Akin to the above results by Schoenberg, Rudin, Christensen and Ressel,
and Herz, we mention one more Schoenberg-type theorem, for matrices with
positive entries. The following result again demonstrates the rigid principle
that analyticity and absolute monotonicity follow from the preservation of
positivity in all dimensions.

Theorem 3.3 (Vasudeva [134]). Let f : (0,∞) → R. Then f [−] preserves
positivity on Pn

(
(0,∞)

)
for all n ≥ 1, if and only if f(x) =

∑∞
k=0 ckx

k on
(0,∞), where ck ≥ 0 for all k ≥ 0.

3.2. The Horn–Loewner necessary condition in fixed dimension.
The previous section contains several variants of a “dimension-free” result:
namely, the classification of entrywise maps that preserve positivity on test
sets of matrices of all sizes. In the next section, we discuss a dimension-free
result that parallels Rudin’s work in [116], by approaching the problem via
preservers of moment sequences for positive measures on the real line. In
other words, we will work with Hankel instead of Toeplitz matrices.
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In the later part of this survey, we focus on entrywise functions that pre-
serve positivity when the test set consists of matrices of a fixed size. For both
of these settings, the starting point is an important result first published by
R. Horn (who in [80] attributes it to his PhD advisor C. Loewner).

Theorem 3.4 ([80]). Let f : (0,∞) → R be continuous. Fix a positive
integer n and suppose f [−] preserves positivity on Pn

(
(0,∞)

)
. Then f ∈

Cn−3((0,∞)),

f (k)(x) ≥ 0 whenever x ∈ (0,∞) and 0 ≤ k ≤ n− 3,

and f (n−3) is a convex non-decreasing function on (0,∞). Furthermore, if

f ∈ Cn−1
(
(0,∞)

)
, then f (k)(x) ≥ 0 whenever x ∈ (0,∞) and 0 ≤ k ≤ n−1.

This result and its variations are the focus of the present section.
Theorem 3.4 is remarkable for several reasons.

(1) Modulo variations, it remains to this day the only known criterion
for a general entrywise function to preserve positivity in a fixed di-
mension. Later on, we will see more precise conclusions drawn when
f is a polynomial or a power function, but for a general function
there are essentially no other known results.

(2) While Theorem 3.4 is a fixed-dimension result, it can be used to
prove some of the aforementioned dimension-free characterizations.
For instance, if f [−] preserves positivity on Pn

(
(0,∞)

)
for all n ≥ 1,

then, by Theorem 3.4, the function f is absolutely monotonic on
(0,∞). A classical result of Bernstein on absolutely monotonic func-
tions now implies that f is necessarily given by a power series with
non-negative coefficients, which is precisely Vasudeva’s Theorem 3.3.

In the next section, we will outline an approach to prove a stronger
version of Schoenberg’s theorem 2.12 (in the spirit of Theorem 2.16
by Rudin), starting from Theorem 3.3.

(3) Theorem 3.4 is also significant because there is a sense in which it is
sharp. We elaborate on this when studying polynomial and power-
function preservers; see Chapters 4 and 6.

Remark 3.5. There are other, rather unexpected consequences of Theo-
rem 3.4 as well. It was recently shown that the key determinant compu-
tation underlying Theorem 3.4 can be generalized to yield a new class of
symmetric function identities for any formal power series. The only such
identities previously known were for the case f(x) = 1−cx

1−x . This is discussed
in Section 4.6.

We next explain the steps behind the proof of the Horn–Loewner theo-
rem 3.4. These also help in proving certain strengthenings of Theorem 3.4,
which are mentioned below. In turn, these strengthenings additionally serve
to clarify the nature of the Horn–Loewner necessary condition.

Proof of Theorem 3.4. The proof by Loewner is in two steps. First he as-
sumes f to be smooth and shows the result by induction on n. The base
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case of n = 1 is immediate, and for the induction step one proceeds as fol-
lows. Fix a > 0, choose any vector u = (u1, . . . , un)T ∈ Rn with distinct
coordinates, and define

∆(t) := det[f(a+ tujuk)]
n
j,k=1 = det f [a1n×n + uuT ] (0 < t� 1).

Then Loewner shows that

∆(0) = ∆′(0) = · · · = ∆(n2)−1(0) = 0,

∆(n2)(0) = cf(a)f ′(a) · · · f (n−1)(a) for some c > 0.
(3.1)

(See Remark 3.5 above.)
Returning to the proof of Theorem 3.4 for smooth functions: apply the

above treatment not to f but to gτ (x) := f(x) + τxn, where τ > 0. By the

Schur product theorem, gτ satisfies the hypotheses, whence ∆(t)/t(
n
2) ≥ 0

for t > 0. Taking t→ 0+, by L’Hôpital’s rule we obtain

gτ (a)g′τ (a) · · · g(n−1)τ (a) ≥ 0, for all τ > 0.

Finally, the induction hypothesis implies that f , f ′, . . . , f (n−2) are non-

negative at a, whence gτ (a), . . . , g
(n−2)
τ (a) > 0. It follows that g

(n−1)
τ (a) ≥ 0

for all τ > 0, and hence, f (n−1)(a) ≥ 0, as desired.

Remark 3.6. The above argument is amenable to proving more refined
results. For example, it can be used to prove the positivity of the first n
non-zero derivatives of a smooth preserver f ; see Theorem 3.10.

The second step of Loewner’s proof begins by using mollifiers. Suppose f
is continuous; approximate it by a mollified family fδ → f as δ → 0+. Thus
fδ is smooth and its first n derivatives are non-negative on (0,∞). By the
mean-value theorem for divided differences, this implies that the divided
differences of each fδ, of orders up to n − 1 are non-negative. Since f is
continuous, the same holds for f .

Now one invokes a rather remarkable result by Boas and Widder [24],
which can be viewed as a converse to the mean-value theorem for divided
differences. It asserts that given an integer k ≥ 2 and an open interval
I ⊂ R, if all kth order “equi-spaced” forward differences (whence divided
differences) of a continuous function f : I → R are non-negative on I, then f

is k− 2 times differentiable on I; moreover, f (k−2) is continuous and convex
on I, with non-decreasing left- and right-hand derivatives. Applying this
result for each 2 ≤ k ≤ n− 1 concludes the proof of Theorem 3.4. �

Note that this proof only uses matrices of the form a1n×n+tuuT , and the
arguments are all local. Thus it is unsurprising that strengthened versions
of the Horn–Loewner theorem can be found in the literature; see [12, 71],
for example. We present here the stronger of these variants.

Theorem 3.7 (See [12, Section 3]). Suppose 0 < ρ ≤ ∞, I = (0, ρ),
and f : I → R. Fix u0 ∈ (0, 1) and an integer n ≥ 1, and define u :=
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(1, u0, . . . , u
n−1
0 )T . Suppose f [A] ∈ P2(R) for all A ∈ P2(I), and also that

f [A] ∈ Pn(R) for all Hankel matrices A = a1n×n+ tuuT , with a, t ≥ 0 such
that a+ t ∈ I. Then the conclusions of Theorem 3.4 hold.

Beyond the above strengthenings, the notable feature here is that the
continuity hypothesis has been removed, akin to the Rudin and Christensen–
Ressel results. We reproduce here an elegant argument to show continuity;
this can be found in Vasudeva’s paper [134], and uses only the test set P2(I).

By considering f [A] for A =

[
a b
b a

]
with 0 < b < a < ρ, it follows that f

is non-negative and non-decreasing on I. One also shows that f is either
identically zero or never zero on I. In the latter case, considering f [A] for

A =

[
a

√
ab√

ab b

]
∈ P2(I) shows that f is multiplicatively mid-convex : the

function

g(y) := log f(ey) (y < log ρ)

is midpoint convex and locally bounded on the interval log I. Now the
following classical result [113, Theorem 71.C] shows that g is continuous on
log I, so f is continuous on I.

Proposition 3.8. Let U be a convex open set in a real normed linear space.
If g : U → R is midpoint convex on U and bounded above in an open
neighborhood of a single point in U , then g is continuous, so convex, on U .

We now move to variants of the Horn–Loewner result. Notice that Theo-
rems 3.4 and 3.7 are results for arbitrary positivity preservers f(x). When
more is known about f , such as smoothness or even real analyticity, stronger
conclusions can be drawn from smaller test sets of matrices. A recent variant
is the following lemma, shown by evaluating f [−] at matrices (tujuk)

n
j,k=1

and using the invertibility of “generic” generalized Vandermonde matrices.

Lemma 3.9 (Belton–Guillot–Khare–Putinar [11] and Khare–Tao [89]). Let
n ≥ 1 and 0 < ρ ≤ ∞. Suppose f(x) =

∑
k≥0 ckx

k is a convergent power se-

ries on I = [0, ρ) that is positivity preserving entrywise on rank-one matrices
in Pn(I). Further assume that cm′ < 0 for some m′.

(1) If ρ <∞, then we have cm > 0 for at least n values of m < m′. (In
particular, the first n non-zero Maclaurin coefficients of f , if they
exist, must be positive.)

(2) If instead ρ = ∞, then we have cm > 0 for at least n values of
m < m′ and at least n values of m > m′. (In particular, if f is
a polynomial, then the first n non-zero coefficients and the last n
non-zero coefficients of f , if they exist, are all positive.)

Notice that this lemma (a) talks about the derivatives of f at 0 and not in
(0, ρ); and moreover, (b) considers not the first few derivatives, but the first
few non-zero derivatives. Thus, it is morally different from the preceding
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two theorems, and one naturally seeks a common unification of these three
results. This was recently achieved:

Theorem 3.10 (Khare [88]). Let 0 ≤ a <∞, ε ∈ (0,∞), I = [a, a+ ε), and
let f : I → R be smooth. Fix integers n ≥ 1 and 0 ≤ p ≤ q ≤ n, with p = 0
if a = 0, and such that f(x) has q−p non-zero derivatives at x = a of order
at least p. Now let

m0 := 0, . . . mp−1 := p− 1;

suppose further that

p ≤ mp < mp+1 < · · · < mq−1

are the lowest orders (above p) of the first q−p non-zero derivatives of f(x)
at x = a.

Also fix distinct scalars u1, . . . , un ∈ (0, 1), and let u := (u1, . . . , un)T .

If f [a1n×n + tuuT ] ∈ Pn(R) for all t ∈ [0, ε), then the derivative f (k)(a) is
non-negative whenever 0 ≤ k ≤ mq−1.

Notice that varying p allows one to control the number of initial deriva-
tives versus the number of subsequent non-zero derivatives of smallest or-
der. In particular, if p = q = n, then the result implies the “stronger”
Horn–Loewner theorem 3.7 (and so Theorem 3.4) pointwise at every a > 0.
At the other extreme is the special case of p = 0 (at any a ≥ 0), which
strengthens the conclusions of Theorems 3.4 and 3.7 for smooth functions.

Corollary 3.11. Suppose a, ε, I, f , n and u are as in Theorem 3.10.
If f [a1n×n + tuuT ] ∈ Pn(R) for all t ∈ [0, ε), then the first n non-zero
derivatives of f(x) at x = a are positive.

Remark 3.12. Theorem 3.10 further clarifies the nature of the Horn–
Loewner result and its proof. The reduction from arbitrary functions, to
continuous functions, to smooth functions, requires an open domain (0, ρ),
in order to use mollifiers, for example. However, the result for smooth func-
tions actually holds pointwise, as shown by Theorem 3.10.

The proof of Theorem 3.10 combines novel arguments together with the
previously mentioned techniques of Loewner. The refinement of the deter-
minant computations (3.1) is of particular note; see Theorem 4.20 and its
consequence, Theorem 4.22.

3.3. Schoenberg redux: moment sequences and Hankel matrices.
In this section, we outline another approach to proving Schoenberg’s the-
orem 2.12, which yields a stronger version parallel to the strengthening
by Rudin of Theorem 2.16. The present section reveals connections be-
tween positivity preservers, totally non-negative Hankel matrices, moment
sequences of positive measures on the real line, and also a connection to
semi-algebraic geometry.

We begin with Rudin’s Theorem 2.16 and the family (2.5). Notice that
the positive definite sequences in (2.5) give rise to the Toeplitz matrices
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A(n, α, β, θ) with (j, k) entry equal to α+β cos
(
(j−k)θ

)
. From the elemen-

tary identity

cos(p− q) = cos p cos q + sin p sin q (p, q ∈ R),

it follows that these Toeplitz matrices have rank at most three:

A(n, α, β, θ) = α1n×n + βuuT + βvvT , (3.2)

where

u :=
(
cos θ, cos(2θ), . . . , cos(nθ)

)T
and v :=

(
sin θ, sin(2θ), . . . , sin(nθ)

)T
.

In particular, Rudin’s work (see Theorem 2.16 and the subsequent discus-
sion) implies the following result.

Proposition 3.13. Let θ ∈ R such that θ/π is irrational. An entrywise
map f : R→ R preserves positivity on the set of Toeplitz matrices

{A(n, α, β, θ) : n ≥ 1, α, β > 0}
if and only if f(x) =

∑∞
k=0 ckx

k is a convergent power series on R, with
ck ≥ 0 for all k ≥ 0.

Thus, one can significantly reduce the set of test matrices.

Proof. Given 0 < ρ < ∞, let the restriction fρ := f |(−ρ,ρ). Observe from
the discussion following Theorem 2.16 that Rudin’s work explicitly shows
the result for f1, whence for any fρ by a change of variables. Thus,

fρ(x) =
∞∑
k=0

ck,ρx
k, ck,ρ ≥ 0 for all k ≥ 0 and ρ > 0.

Given 0 < ρ < ρ′ < ∞, it follows by the identity theorem that ck,ρ = ck,ρ′

for all k. Hence f(x) =
∑

k≥0 ck,1x
k (which was Rudin’s f1(x)), now on all

of R. �

In a parallel vein to Rudin’s results and Proposition 3.13, the following
strengthening of Schoenberg’s result can be shown, using a different (and
perhaps more elementary) approach than those of Schoenberg and Rudin.

Theorem 3.14 (Belton–Guillot–Khare–Putinar [12]). Suppose 0 < ρ ≤ ∞
and I = (−ρ, ρ). Then the following are equivalent for a function f : I → R.

(1) The entrywise map f [−] preserves positivity on Pn(I), for all n ≥ 1.
(2) The entrywise map f [−] preserves positivity on the Hankel matrices

in Pn(I) of rank at most 3, for all n ≥ 1.
(3) The function f is real analytic on I and absolutely monotonic on

(0, ρ). In other words, f(x) =
∑

k≥0 ckx
k on I, with ck ≥ 0 ∀k.

Remark 3.15. Recall the alternate notion of positive definite functions
discussed in Remark 2.13. In [105] and related works, Pinkus and other au-
thors study this alternate notion of positive definite functions on H. Notice
that such matrices form precisely the set of positive semidefinite symmetric
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matrices of rank at most dimH. In particular, Theorem 3.14 and the far
earlier 1959 paper [116] of Rudin both provide a characterization of these
functions, on every Hilbert space of dimension 3 or more.

Parallel to the discussions of the proofs of Schoenberg’s and Rudin’s re-
sults (see the previous chapter), we now explain how to prove Theorem 3.14.
Clearly, (3) =⇒ (1) =⇒ (2) in the theorem. We first outline how to
weaken the condition (2) even further and still imply (3). The key idea is
to consider moment sequences of certain non-negative measures on the real
line. This parallels Rudin’s considerations of Fourier–Stieltjes coefficients of
non-negative measures on the circle.

Definition 3.16. A measure µ with support in R is said to be admissible
if µ ≥ 0 on R, and all moments of µ exist and are finite:

sk(µ) :=

∫
R
xk dµ(x) <∞ (k ≥ 0).

The sequence s(µ) :=
(
sk(µ)

)∞
k=0

is termed the moment sequence of µ. Cor-
responding to µ and this moment sequence is the moment matrix of µ:

Hµ :=


s0(µ) s1(µ) s2(µ) · · ·
s1(µ) s2(µ) s3(µ) · · ·
s2(µ) s3(µ) s4(µ) · · ·

...
...

...
. . .

 ;

note that Hµ = [si+j(µ)]i,j≥0 is a semi-infinite Hankel matrix. Finally, a
function f : R → R acts entrywise on moment sequences, to yield real
sequences:

f [s(µ)] := (f
(
s0(µ)

)
, . . . , f

(
sk(µ)

)
, . . .).

We are interested in understanding which entrywise functions preserve
the space of moment sequences of admissible measures. The connection
to positive semidefinite matrices is made through Hamburger’s theorem,
which says that a real sequence (s0, s1, . . .) is the moment sequence of an
admissible measure on R if and only if every (finite) principal minor of the
moment matrix Hµ is positive semidefinite. For simplicity, this last will be
reformulated below to saying that Hµ is positive semidefinite.

The weakening of Theorem 3.14(2) is now explained: it suffices to consider
the reduced test set of those Hankel matrices, which arise as the moment
matrices of admissible measures supported at three points. Henceforth,
let δx denote the Dirac probability measure supported at x ∈ R. It is
not hard to verify that the m-point measure µ =

∑m
j=1 cjδxj has Hankel
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matrix Hµ with rank no more than m:

sk(µ) =
m∑
j=1

cjx
k
j (k ≥ 0)

=⇒ Hµ =
m∑
j=1

cjuju
T
j , where uj := (1, xj , x

2
j , . . .)

T .

(3.3)

Thus, a further strengthening of Schoenberg’s result is as follows.

Theorem 3.17 (Belton–Guillot–Khare–Putinar [12]). In the setting of The-
orem 3.14, the three assertions contained therein are also equivalent to

(4) For each measure

µ = aδ1+bδu0 +cδ−1, with u0 ∈ (0, 1), a, b, c ≥ 0, a+b+c ∈ (0, ρ), (3.4)

there exists an admissible measure σµ on R such that f
(
sk(µ)

)
=

sk(σµ) for all k ≥ 0.

In fact, we will see in Section 3.4 below that this assertion (4) can be
simplified to just assert that f [Hµ] is positive semidefinite, and so completely
avoid the use of Hamburger’s theorem.

We now discuss the proof of these results, working with ρ = ∞ for ease
of exposition. The first observation is that the strengthening of the Horn–
Loewner theorem 3.7, together with the use of Bernstein’s theorem (see
remark (2) following Theorem 3.4), implies the following “stronger” form of
Vasudeva’s theorem 3.3:

Theorem 3.18 (see [12]). Suppose I = (0,∞) and f : I → R. Also fix
u0 ∈ (0, 1). The following are equivalent:

(1) The entrywise map f [−] preserves positivity on Pn(I) for all n ≥ 1.
(2) The entrywise map f [−] preserves positivity on all moment matrices

Hµ for µ = aδ1 + bδu0 , a, b > 0.

(3) The function f equals a convergent power series
∑∞

k=0 ckx
k for all

x ∈ I, with the Maclaurin coefficients ck ≥ 0 for all k ≥ 0.

Notice that the test matrices in assertion (2) are all Hankel, and of rank
at most two. This severely weakens Vasudeva’s original hypotheses.

Now suppose the assertion in Theorem 3.17(4) holds. By the preceding re-
sult, f(x) is given on (0,∞) by an absolutely monotonic function

∑
k≥0 ckx

k.
The next step is to show that f is continuous. For this, we will crucially use
the following “integration trick”. Suppose for each admissible measure µ as
in (3.4), there is a non-negative measure σµ supported on [−1, 1] such that
f
(
sk(µ)

)
= sk(σµ) for all k ≥ 0. (Note here that it is not immediate that

the support is contained in [−1, 1].)
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Now let p(t) =
∑

k≥0 bkt
k be a polynomial that takes non-negative values

on [−1, 1]. Then,

0 ≤
∫ 1

−1
p(t) dσµ(t) =

∞∑
k=0

∫ 1

−1
bkt

k dσµ(t) =

∞∑
k=0

bksk(σµ) =

∞∑
k=0

bkf
(
sk(µ)

)
.

(3.5)

Remark 3.19. For example, suppose p(t) = 1− td for some d ≥ 1. If µ =
aδ1 + bδu0 + cδ−1, where u0 ∈ (0, 1) and a, b, c > 0, then the inequality (3.5)
gives that

0 ≤ f
(
s0(µ)

)
− f

(
sd(µ)

)
= f(a+ b+ c)− f(a+ bud0 + c(−1)d).

It is not clear a priori how to deduce this inequality using the fact that f [−]
preserves matrix positivity and the Hankel moment matrix of µ. The expla-
nation, which we provide in Section 3.4 below, connects moment problems,
matrix positivity, and real algebraic geometry.

We now outline how (3.5) can be used to prove of the continuity of f .
First note that |sk(µ)| ≤ s0(µ) for µ as above and all k ≥ 0. This fact and
the easy observation that f is bounded on compact subsets of R together
imply that all moments of σµ are uniformly bounded. From this we deduce
that σµ is necessarily supported on [−1, 1].

The inequality (3.5) now gives the left-continuity of f at −β, for every
β ≥ 0. Fix u0 ∈ (0, 1), and let

µb := (β + bu0)δ−1 + bδu0 (b > 0).

Applying (3.5) to the polynomials p±,1(t) := (1± t)(1− t2), we deduce that

f
(
β + b(1 + u0)

)
− f

(
β + b(u0 + u20)

)
≥ |f(−β)− f

(
−β − bu0(1− u20)

)
|.

Letting b → 0+, the left continuity of f at −β follows. Similarly, to show
that f is right continuous at −β, we apply the integral trick to p±,1(t) and
to µ′b := (β + bu30)δ−1 + bδu0 instead of µb.

Having shown continuity, to prove the stronger Schoenberg theorem, we
next assume that f is smooth on R. For all a ∈ R, define the function

Ha : R→ R; x 7→ f(a+ ex).

The function Ha satisfies the estimates

|H(n)
a (x)| ≤ H(n)

|a| (x) (a, x ∈ R, n ∈ Z+). (3.6)

This is shown by another use of the integration trick (3.5), this time for
the polynomials p±,n(t) := (1 ± t)(1 − t2)n for all n ≥ 0. In turn, the
estimates (3.6) lead to showing that Ha is real analytic on R, for all a ∈ R.
Now composing H−a for a > |x| with the function La(y) := log(a+y) shows
that f(x) is real analytic on R and agrees with

∑
k≥0 akx

k on (0,∞). This
concludes the proof for smooth functions.

Finally, to pass from smooth functions to continuous functions, we again
use a mollified family fδ → f as δ → 0+. Each fδ is the restriction of an
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entire function, say f̃δ, and the family {f̃1/n : n ≥ 1} forms a normal family
on each open disc D(0, r). It follows from results by Montel and Morera that

f̃1/n(z) converges uniformly to a function gr on each closed disc D(0, r), and
gr is analytic. Since gr restricts to f on (−r, r), it follows that f is necessarily
also real analytic on R, and we are done.

3.4. The integration trick, and positivity certificates. Observe that
the inequality (3.5) can be written more generally as follows.

Given a polynomial p(t) =
∑

k≥0 bkt
k which takes non-negative values on

[−1, 1], as well as a positive semidefinite Hankel matrix H = (si+j)i,j≥0, we
have that ∑

k≥0
bksk ≥ 0. (3.7)

As shown in (3.5), this assertion is clear via an application of Hamburger’s
theorem. We now demonstrate how the assertion can instead be derived from
first principles, with interesting connections to positivity certificates.

First note that the inequality (3.7) holds if p(t) is the square of a polyno-
mial. For instance, if p(t) = (1− 3t)2 = 1− 6t+ 9t2 on [−1, 1], then

s0 − 6s1 + 9s2 = (e0 − 3e1)
TH(e0 − 3e1), (3.8)

where e0 = (1, 0, 0, . . .) and e1 = (0, 1, 0, 0, . . .). The non-negativity of (3.8)
now follows immediately from the positivity of the matrix H. The same
reasoning applies if p(t) is a sum of squares of polynomials, or even the
limit of a sequence of sums of squares. Thus, one approach to showing
the inequality (3.7) for an arbitrary polynomial p(t) which is non-negative
on [−1, 1] is to seek a limiting sum-of-squares representation, which is also
known as a positivity certificate, for p.

If a d-variate real polynomial is a sum of squares of real polynomials,
then it is clearly non-negative on Rd, but the converse is not true for d > 1.3

Even when d = 1, while a sum-of-squares representation is an equivalent
characterization for one-variable polynomials that are non-negative on R,
here we are working on the compact semi-algebraic set [−1, 1]. We now give
three proofs of the existence of such a positivity certificate in the setting
used above.

Proof 1. A result of Berg, Christensen, and Ressel (see the end of [14]) shows
more generally that, for every dimension d ≥ 1, any non-negative polynomial
on [−1, 1]d has a limiting sum-of-squares representation. �

3This is connected to semi-algebraic geometry and to Hilbert’s seventeenth problem:
recall the famous result of Motzkin that there are non-negative polynomials on Rd that
are not sums of squares, such as x4y2 + x2y4 − 3x2y2 + 1. Such phenomena have been
studied in several settings, including polytopes (by Farkas, Handelman, and Pólya) and
more general semi-algebraic sets (by Putinar, Schmüdgen, Stengel, Vasilescu, and others).
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Proof 2. The only polynomials used in proving the stronger form of Schoen-
berg’s theorem, Theorems 3.14 and 3.17, appear following (3.6):

p±,n(t) := (1± t)(1− t2)n (n ≥ 0).

Each of these polynomials is composed of factors of the form p±,0(t) = 1± t,
so it suffices to produce a limiting sum-of-squares representation for these
two polynomials on [−1, 1]. Note that

1

2
(1± t)2 =

1

2
± t+

t2

2
,

1

4
(1− t2)2 =

1

4
− t2

2
+
t4

4
,

1

8
(1− t4)2 =

1

8
− t4

4
+
t8

8
,

and so on. Adding the first n equations shows that (1± t)+2−n(t2
n−1) is a

sum-of-squares polynomial for all n. Taking n→∞ finishes the proof. �

Proof 3. In fact, for any d ≥ 1 and any compact set K ⊂ Rd, if f is a non-
negative continuous function on K, then f has a positivity certificate. The
Stone–Weierstrass theorem gives a sequence of polynomials which converges
to
√
f , and the squares of these polynomials then provide the desired limiting

representation for f . This is a simpler proof than Proof 1 from [14], but the
convergence here is uniform, whereas the convergence in [14] is stronger. �

Remark 3.20. In (3.5), we used H = Hσµ , which was positive semidefinite
by assumption. The previous discussion shows that Theorem 3.17(4) can
be further weakened, by requiring only that f [Hµ] is positive semidefinite,
as opposed to being equal to Hσ for some admissible measure σ. Hence we
do not require Hamburger’s theorem in order to prove the strengthening of
Schoenberg’s theorem that uses the test set of low-rank Hankel matrices.

3.5. Variants of moment-sequence transforms. We now present a trio
of results on functions which preserve moment sequences.

For K ⊂ R, letM(K) denote the set of moment sequences corresponding
to admissible measures with support in K. We say that F mapsM(K) into
M(L), where K, L ⊂ R, if for every admissible measure µ with support in
K there exists an admissible measure σ with support in L such that

F (sk(µ)) = sk(σ) for all k ∈ Z+,

where sk(µ) is the kth-power moment of µ, as in Definition 3.16.

Theorem 3.21. A function F : R → R maps M([−1, 1]) into itself if and
only if F is the restriction to R of an absolutely monotonic entire function.

Theorem 3.22. A function F : R+ → R maps M([0, 1]) into itself if and
only if F is absolutely monotonic on (0,∞) and 0 ≤ F (0) ≤ limε→0+ F (ε).
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Theorem 3.23. A function F : R→ R maps M([−1, 0]) into M((−∞, 0])

if and only if there exists an absolutely monotonic entire function F̃ : C→ C
such that

F (x) =

 F̃ (x) if x ∈ (0,∞),
0 if x = 0,

−F̃ (−x) if x ∈ (−∞, 0).

It is striking to observe the possibility of a discontinuity at the origin
which may occur in the latter two of these three theorems.

We will content ourselves here with sketching the proof of the second
result. For the others, see [12], noting that the first of the results follows
from Theorems 3.14 and 3.17 for ρ =∞.

Proof of Theorem 3.22. Note that the moment matrix corresponding to an
element of M([0, 1]) has a zero entry if and only if µ = aδ0 for some a ≥ 0.
This and the Schur product theorem give one implication.

For the converse, suppose F preservesM([0, 1]). Fix finitely many scalars
cj , tj > 0 and an integer n ≥ 0, and set

p(t) = (1− t)n and µ =
∑
j

e−tjαcjδe−tjh , (3.9)

where α > 0 and h > 0. If g(x) :=
∑

j cje
−tjx then the integration trick

(3.5), but working on [0, 1], shows that the forward finite differences of F ◦g
alternate in sign:

n∑
k=0

(−1)k
(
n

k

)
F
(∑

j

cje
−tj(α+kh)

)
≥ 0,

so (−1)n∆n
h(F ◦ g)(α) ≥ 0. As this holds for all α, h > 0 and all n ≥ 0,

it follows that F ◦ g : (0,∞) → (0,∞) is completely monotonic. The weak
density of measures of the form µ, together with Bernstein’s theorem (2.1),
gives that F ◦ g is completely monotonic on (0,∞) for every completely
monotonic function g : (0,∞) → (0,∞). Finally, a theorem of Lorch and
Newman [96, Theorem 5] now gives that F : (0,∞) → (0,∞) is absolutely
monotonic. �

3.6. Multivariable positivity preservers and moment families. We
now turn to the multivariable case, and begin with two results of FitzGerald,
Micchelli, and Pinkus [52]. We first introduce some notation and a piece of
terminology.

Fix I ⊂ C and an integer m ≥ 1, and let

Ak = (akij)
N
i,j=1 ∈ IN×N for k = 1, . . . ,m.

For any function f : Im → C, we have the N ×N matrix

f(A1, . . . , Am) :=
(
f(a1ij , . . . , a

m
ij )
)N
i,j=1

∈ CN×N .
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We say that f : Rm → R is real positivity preserving if

f(A1, . . . , Am) ∈ PN (R) for all A1, . . . , Am ∈ PN (R) and all N ≥ 1,

where, as above PN (R) is the collection of N × N positive semidefinite
matrices with real entries. Similarly, we say that f : Cm → C is positivity
preserving if

f(A1, . . . , Am) ∈ PN for all A1, . . . , Am ∈ PN and all N ≥ 1,

where PN is the collection of N × N positive semidefinite matrices with
complex entries. Finally, recall that a function f : Rm → R is said to be real
entire if there exists an entire function F : Cm → C such that F |Rm = f .
We will also use the multi-index notation

xα := xα1
1 · · ·x

αm
m if x = (x1, . . . , xm) and α = (α1, . . . , αm).

The following theorems are natural extensions of Schoenberg’s theorem
and Herz’s theorem, respectively.

Theorem 3.24 ([52, Theorem 2.1]). Let f : Rm → R, where m ≥ 1. Then
f is real positivity preserving if and only f is real entire of the form

f(x) =
∑
α∈Zm+

cαxα (x ∈ Rm),

where cα ≥ 0 for all α ∈ Zm+ .

Theorem 3.25 ([52, Theorem 3.1]). Let f : Cm → C, where m ≥ 1. Then
f is positivity preserving if and only f is of the form

f(z) =
∑

α,β∈Zm+

cαβz
αzβ (z ∈ Cm),

where cαβ ≥ 0 for all α, β ∈ Zm+ and the power series converges absolutely
for all z ∈ C.

We now consider the notion of moment family for measures on Rd. As
above, a measure on Rd is said to be admissible if it is non-negative and
has moments of all orders. Given such a measure µ, we define the moment
family

sα(µ) :=

∫
xα dµ(x) for all α ∈ Zm+ .

In line with the above, we let M(K) denote the set of all moment families
of admissible measures supported on K ⊂ Rd.

Note that a measure µ is supported in [−1, 1]d if and only if its moment
family is uniformly bounded:

sup
{
|sα(µ)| : α ∈ Zm+

}
<∞.

Theorem 3.26 ([12, Theorem 8.1]). A function F : R→ R mapsM
(
[−1, 1]d

)
to itself if and only if F is absolutely monotonic and entire.
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Proof. Since [−1, 1] can be identified with [−1, 1] × {0} d−1 ⊂ [−1, 1]d, the
forward implication follows from the one-dimensional result, Theorem 3.21.

For the converse, we use the fact [112] that a collection of real numbers
(sα)α∈Zd+

is an element of M
(
[−1, 1]d

)
if and only if the weighted Hankel-

type kernels on Zd+ × Zd+
(α, β) 7→ sα+β and (α, β) 7→ sα+β − sα+β+21j (1 ≤ j ≤ d)

are positive semidefinite, where

1j := (0, . . . , 0, 1, 0, . . . , 0) ∈ Zd+
with 1 in the jth position. Now suppose F is absolutely monotonic and
entire; given a family (sα)α∈Zd+

subject to these positivity constraints, we

have to verify that the family (F (sα))α∈Zd+
satisfies them as well.

Theorem 3.14 gives that (α, β) 7→ F (sα+β) and (α, β) 7→ F (sα+β+21j ) are
positive semidefinite, so we must show that

(α, β) 7→ F (sα+β)− F (sα+β+21j )

is positive semidefinite for j = 1, . . . , d. As F is absolutely monotonic and
entire, it suffices to show that

(α, β) 7→ (sα+β)◦n − (sα+β+21j )
◦n

is positive semidefinite for any n ≥ 0, but this follows from the Schur product
theorem: if A ≥ B ≥ 0, then

A◦n ≥ A◦(n−1) ◦B ≥ A◦(n−2) ◦B◦2 ≥ · · · ≥ B◦n. �

We next consider characterizations of real-valued multivariable functions
which map tuples of moment sequences to moment sequences.

Let K1, . . . , Km ⊂ R. A function F : Rm → R acts on tuples of moment
sequences of (admissible) measures M(K1)× · · · ×M(Km) as follows:

F [s(µ1), . . . , s(µm)]k := F
(
sk(µ1), . . . , sk(µm)

)
for all k ≥ 0. (3.10)

Given I ⊂ Rm, a function F : I → R is absolutely monotonic if F is
continuous on I, and for all interior points x ∈ I and α ∈ Zm+ , the mixed
partial derivative DαF (x) exists and is non-negative, where

DαF (x) :=
∂|α|

∂xα1
1 · · · ∂x

αm
m
F (x1, . . . , xm) and |α| := α1 + · · ·+ αm.

With this definition, the multivariable analogue of Bernstein’s theorem is as
one would expect; see [27, Theorem 4.2.2].

To proceed further, it is necessary to introduce the notion of a facewise
absolutely monotonic function on Rm+ . Observe that the orthant Rm+ is a
convex polyhedron, and is therefore the disjoint union of the relative interiors
of its faces. These faces are in one-to-one correspondence with subsets of
[m] := {1, . . . ,m}:

J 7→ RJ+ := {(x1, . . . , xm) ∈ Rm+ : xi = 0 if i 6∈ J}; (3.11)
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note that this face has relative interior RJ>0 := (0,∞)J × {0}[m]\J .

Definition 3.27. A function F : Rm+ → R is facewise absolutely monotonic

if, for every J ⊂ [m], there exists an absolutely monotonic function gJ on RJ+
which agrees with F on RJ>0.

Thus a facewise absolutely monotonic function is piecewise absolutely
monotonic, with the pieces being the relative interiors of the faces of the
orthant Rm+ . See [12, Example 8.4] for further discussion. In the special case
m = 1, this broader class of functions (than absolutely monotonic functions
on R+) coincides precisely with the maps which are absolutely monotonic
on (0,∞) and have a possible discontinuity at the origin, as in Theorem 3.22
above.

This definition allows us to characterize the preservers of m-tuples of
elements of M

(
[0, 1]

)
; the preceding observation shows that Theorem 3.22

is precisely the m = 1 case.

Theorem 3.28 ([12, Theorem 8.5]). Let F : Rm+ → R, where the integer
m ≥ 1. The following are equivalent.

(1) F maps M([0, 1])m into M([0, 1]).
(2) F is facewise absolutely monotonic, and the functions {gJ : J ⊂ [m]}

are such that 0 ≤ gJ ≤ gK on RJ+ whenever J ⊂ K ⊂ [m].
(3) F is such that

F
(√
x1y1, . . . ,

√
xmym

)2 ≤ F (x1, . . . , xm)F (y1, . . . , ym)

for all x, y ∈ Rm+ and there exists some z ∈ (0, 1)m such that the
products zα := zα1

1 · · · zαmm are distinct for all α ∈ Zm+ and F maps

M
(
{1, z1}

)
× · · · ×M

(
{1, zm}

)
∪M({0, 1})m to M(R).

The heart of Theorem 3.28 can be deduced from the following result on
positivity preservation on tuples of low-rank Hankel matrices. In a sense,
it is the multi-dimensional generalization of the ‘stronger Vasudeva theo-
rem’ 3.18.

Fix ρ ∈ (0,∞], an integer m ≥ 1 and a point z ∈ (0, 1)m with distinct
products, as in Theorem 3.28(3). For all N ≥ 1, let

HN := {a1N×N + bul,NuTl,N : a ∈ (0, ρ), b ∈ [0, ρ− a), 1 ≤ l ≤ m},

where ul,N := (1, zl, . . . , z
N−1
l )T .

Theorem 3.29 ([12, Theorem 8.6]). If F : (0, ρ)m → R preserves positivity
on P2

(
(0, ρ)

)m
and HmN for all N ≥ 1, then F is absolutely monotonic and

is the restriction of an analytic function on the polydisc D(0, ρ)m.

The notion of facewise absolute monotonicity emerges from the study of
positivity preservers of tuples of moment sequences. If one focuses instead
on maps preserving positivity of tuples of all positive semidefinite matrices,
or even all Hankel matrices, then this richer class of maps does not appear.
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Proposition 3.30. Suppose ρ ∈ (0,∞] and F : [0, ρ)m → R. The following
are equivalent.

(1) F [−] preserves positivity on the space of m-tuples of Hankel matrices
with entries in [0, ρ).

(2) F is absolutely monotonic on [0, ρ)m.
(3) F [−] preserves positivity on the space of m-tuples of all matrices

with entries in [0, ρ).

Proof. Clearly (2) =⇒ (3) =⇒ (1), so suppose (1) holds. It follows from
Theorem 3.29 that F is absolutely monotonic on the domain (0, ρ)m and
agrees there with an analytic function g : D(0, ρ)m → C. To see that F ≡ g
on [0, ρ)m, we use induction on m, with the m = 1 case being left as an
exercise (see [12, Proof of Proposition 7.3]).

Now suppose m > 1, let c = (c1, . . . , cm) ∈ [0, ρ)m \ (0, ρ)m and define

H :=

1 0 1
0 1 1
1 1 2

 and Ai :=

{
13×3 if ci > 0,

H if ci = 0.

Choosing un = (u1,n, . . . , um,n) ∈ (0, ρ)m such that un → c, it follows that

lim
n→∞

F [u1,nA1, . . . , um,nAm] =

g(c) F (c) g(c)
F (c) g(c) g(c)
g(c) g(c) g(c)

 ∈ P3,
where the (1, 2) and (2, 1) entries are as claimed by the induction hypothesis.
The determinants of the first and last principal minors now give that

g(c) ≥ 0 and − g(c)
(
g(c)− F (c)

)2 ≥ 0,

whence F (c) = g(c). �

Having considered functions defined on the positive orthant, we now look
at the situation for functions defined over the whole of Rm.

Theorem 3.31 ([12, Theorem 8.9]). Suppose F : Rm → R for some integer
m ≥ 1. The following are equivalent.

(1) F maps M
(
[−1, 1]

)m
into M(R).

(2) The function F is real positivity preserving.
(3) The function F is absolutely monotonic on Rm+ and agrees with an

entire function on Rm.

As before, the proof reveals that verifying positivity preservation for tu-
ples of low-rank Hankel matrices suffices. The following notation and corol-
lary make this precise.

For all u ∈ (0,∞), let Mu :=M
(
{−1, u, 1}

)
and

M[u] :=
⋃{
M
(
{s1, s2}

)
: s1 ∈ {−1, 0, 1}, s2 ∈ {−u, 0, u}

}
.

Corollary 3.32 ([12, Theorem 8.10]). The hypotheses in Theorem 3.31 are
also equivalent to the following.
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(4) There exist u0 ∈ (0, 1) and ε > 0 such that F maps

Mm
[u0]
∪
⋃{
Mv1 × · · · ×Mvm : v1, . . . , vm ∈ (0, 1 + ε)

}
into M(R).

4. Entrywise polynomials preserving positivity in fixed
dimension

Having discussed at length the dimension-free setting, we now turn our
attention to functions that preserve positivity in a fixed dimension N ≥ 2.
This is a natural question from the standpoint of both theory as well as ap-
plications. This latter connection to applied fields and to high-dimensional
covariance estimation will be explained below in Chapter 7.

Mathematically, understanding the functions f such that f [−] : PN → PN
for fixed N ≥ 2, is a non-trivial and challenging refinement of Schoenberg’s
1942 theorem. A complete characterization was found for N = 2 by Va-
sudeva [134]:

Theorem 4.1 (Vasudeva [134]). Given a function f : (0,∞) → R, the
entrywise map f [−] preserves positivity on P2

(
(0,∞)

)
if and only f is non-

negative, non-decreasing, and multiplicatively mid-convex:

f(x)f(y) ≥ f
(√
xy
)2

for all x, y > 0.

In particular, f is either identically zero or never zero on (0,∞), and f is
also continuous.

On the other hand, if N ≥ 3, then such a characterization remains open
to date. As mentioned above, perhaps the only known result for general
entrywise preservers is the Horn–Loewner theorem 3.4 (or its more general
variants such as Theorem 3.10).

In light of this challenging scarcity of results in fixed dimension, a strategy
adopted in the literature has been to further refine the problem, in one of
several ways:

(1) Restrict the class of functions, while operating entrywise on all of PN
(over some given domain I, say (0, ρ) or (−ρ, ρ) for 0 < ρ ≤ ∞). For
example, in this survey we consider possibly non-integer power func-
tions, polynomials and power series, and even linear combinations of
real powers.

(2) Restrict the class of matrices and study entrywise functions over
this class in a fixed dimension. For instance, popular sub-classes
of matrices include positive matrices with rank bounded above, or
with a given sparsity pattern (zero entries), or classes such as Hankel
or Toeplitz matrices; or intersections of these classes. For instance,
in discussing the Horn–Loewner and Schoenberg–Rudin results, we
encountered Toeplitz and Hankel matrices of low rank.

(3) Study the problem under both of the above restrictions.
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In this chapter we begin with the first of these restrictions. Specifically, we
will study polynomial maps that preserve positivity, when applied entrywise
to PN . Recall from the Schur product theorem that if the polynomial f has
only non-negative coefficients then f [−] preserves positivity on PN for every
dimension N ≥ 1. It is natural to expect that if one reduces the test set, from
all dimensions to a fixed dimension, then the class of polynomial preservers
should be larger. Remarkably, until 2016 not a single example was known
of a polynomial positivity preserver with a negative coefficient. Then, in
quick succession, the two papers [11, 89] provided a complete understanding
of the sign patterns of entrywise polynomial preservers of PN . The goal of
this chapter is to discuss some of the results in these works.

4.1. Characterizations of sign patterns. Until further notice, we work
with entrywise polynomial or power-series maps of the form

f(x) = c0x
n0 + c1x

n1 + · · · , with 0 ≤ n0 < n1 < · · · , (4.1)

and cj ∈ R typically non-zero, which preserve PN (I) for various I. Our
goal is to try and understand their sign patterns, that is, which cj can be
negative. The first observation is that as soon as I contains the interval
(0, ρ) for any ρ > 0, by the Horn–Loewner type necessary conditions in
Lemma 3.9, the lowest N non-zero coefficients of f(x) must be positive.

The next observation is that if I 6⊂ R+, then, in general, there is no
structured classification of the sign patterns of the power series preservers
on PN (I). For example, let k be a non-negative integer; the polynomials

fk,t(x) := t(1 + x2 + · · ·+ x2k)− x2k+1 (t > 0)

do not preserve positivity entrywise on PN
(
(−ρ, ρ)

)
for any N ≥ 2. This

may be seen by taking u := (1,−1, 0, . . . , 0)T and A := ηuuT for some
0 < η < ρ, and noting that

uT fk,t[A]u = −4η2k+1 < 0.

Similarly, if one allows complex entries and uses higher-order roots of
unity, such negative results (vis-à-vis Lemma 3.9) are obtained for complex
matrices.

Given this, in the rest of the chapter we will focus on I = (0, ρ) for
0 < ρ ≤ ∞.4 As mentioned above, if f as in (4.1) entrywise preserves
positivity even on rank-one matrices in PN

(
(0, ρ)

)
then its first N non-zero

Maclaurin coefficients are positive. Our goal is to understand if any other
coefficient can be negative (and if so, which of them). This has at least two
ramifications:

(1) It would yield the first example of a polynomial entrywise map (for
a fixed dimension) with at least one negative Maclaurin coefficient.

4That said, we also briefly discuss the one situation in which our results do apply more
generally, even to I = D(0, ρ) ⊂ C (an open complex disc).
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Recall the contrast to Schoenberg’s theorem in the dimension-free
setting.

(2) This also yields the first example of a polynomial (or power series)
that entrywise preserves positivity on PN (I) but not PN+1(I). In
particular it would imply that the Horn–Loewner type necessary
condition in Lemma 3.9(1) is “sharp”.

These goals are indeed achieved in the particular case n0 = 0, . . . , nN−1 =
N − 1 in [11], and subsequently, for arbitrary n0 < · · · < nN−1 in [89]. (In
fact, in the latter work the nj need not even be integers; this is discussed
below.) Here is a ‘first’ result along these lines. Henceforth we assume that
ρ <∞; we will relax this assumption midway through Section 4.5 below.

Theorem 4.2 (Belton–Guillot–Khare–Putinar [11] and Khare–Tao [89]).
Suppose N ≥ 2 and n0 < · · · < nN−1 are non-negative integers, and ρ, c0,
. . . , cN−1 are positive scalars. Given εM ∈ {0,±1} for all M > nN−1, there
exists a power series

f(x) = c0x
n0 + · · ·+ cN−1x

nN−1 +
∑

M>nN−1

dMx
M

such that f is convergent on (0, ρ), the entrywise map f [−] preserves posi-
tivity on PN

(
(0, ρ)

)
and dM has the same sign (positive, negative or zero)

as εM for all M > nN−1.

Outline of proof. The claim is such that it suffices to show the result for
exactly one εM = −1. Indeed, given the claim, for each M > nN−1 there

exists δM ∈ (0, 1/M !) such that
∑N−1

j=0 cjx
nj + dxM preserves positivity

entrywise on PN
(
(0, ρ)

)
whenever |d| ≤ δM . Now let dM := εMδM for all

M > nN−1, and define

fM (x) :=

N1∑
j=0

cjx
nj + dMx

M and f(x) :=
∑

M>nN−1

2nN−1−MfM (x).

Then it may be verified that |f(x)| ≤
∑N−1

j=0 cjx
nj + 2nN−1ex/2, and hence f

has the desired properties. �

Thus it suffices to show the existence of a polynomial positivity preserver
on PN

(
(0, ρ)

)
with precisely one negative Maclaurin coefficient, the leading

term. In the next few sections we explain how to achieve this goal. In fact,
one can show a more general result, for real powers as well.

Theorem 4.3 (Khare–Tao [89]). Fix an integer N ≥ 2 and real exponents
n0 < · · · < nN−1 < M in the set Z+ ∪ [N − 2,∞). Suppose ρ, c0, . . . ,
cN−1 > 0 as above. Then there exists c′ < 0 such that the function

f(x) = c0x
n0 + · · ·+ cN−1x

nN−1 + c′xM
(
x ∈ (0, ρ)

)
preserves positivity entrywise on PN

(
(0, ρ)

)
. [Here and below, we set 00 :=

1.]
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The restriction of the nj lying in Z+ ∪ [N − 2,∞) is a technical one that
is explained in a later chapter on the study of entrywise powers preserving
positivity on PN

(
(0,∞)

)
; see Theorem 6.1.

Remark 4.4. A stronger result, Theorem 4.15, which also applies to real
powers, is stated below. We mention numerous ramifications of the results
in this chapter following that result.

The proofs of the preceding two theorems crucially use type-A represen-
tation theory (specifically, a family of symmetric functions) that naturally
emerges here via generalized Vandermonde determinants. These symmetric
homogeneous polynomials are introduced and used in the next section.

For now, we explain how Theorem 4.3 helps achieve a complete classi-
fication of the sign patterns of a family of generalised power series, of the
form

f(x) =
∞∑
j=0

cjx
nj , nj ∈ Z+ ∪ [N − 2,∞) for all j ≥ 0,

but without the requirement that that exponents are non-decreasing. In
this generality, one first notes that the Horn–Loewner-type Lemma 3.9 still
applies: if some coefficient cj0 < 0, then there must be at least N indices j
such that nj < nj0 and cj > 0. The following result shows that once again,
this necessary condition is the best possible.

Theorem 4.5 (Classification of sign patterns for real power-series pre-
servers, Khare–Tao [89]). Fix an integer N ≥ 2, and distinct real exponents
n0, n1, . . . in Z+ ∪ [N − 2,∞). Suppose εj ∈ {0,±1} is a choice of sign for
each j ≥ 0, such that if εj0 = −1 then εj = +1 for at least N choices of j
such that nj < nj0. Given any ρ > 0, there exists a choice of coefficients cj
with sign εj such that

f(x) :=
∞∑
j=0

cjx
nj

is convergent on (0, ρ) and preserves positivity entrywise on PN
(
(0, ρ)

)
.

Notice this result is strictly more general than Theorem 4.2, because the
sequence n0, n1, . . . can contain an infinite decreasing sequence of positive
non-integer powers, for example, all rational elements of [N − 2,∞). Thus
Theorem 4.5 covers a larger class of functions than even Hahn or Puiseux
series.

Theorem 4.5 is derived from Theorem 4.3 in a similar fashion to the proof
of Theorem 4.2, and we refer the reader to [89, Section 1] for the details.

4.2. Schur polynomials; the sharp threshold bound for a single
matrix. We now explain how to prove Theorem 4.3. The present section
will discuss the case of integer powers, and end by proving the theorem
for a single ‘generic’ rank-one matrix. In the following section we show
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how to extend the results to all rank-one matrices for integer powers. The
subsequent section will complete the proof for real powers, and then for
matrices of all ranks.

The key new tool that is indispensable to the following analysis is that of
Schur polynomials. These can be defined in a number of equivalent ways; we
refer the reader to [30] for more details, including the equivalence of these
definitions shown using ideas of Karlin–Macgregor, Lindström, and Gessel–
Viennot. For our purposes the definition of Cauchy is the most useful:

Definition 4.6. Given non-negative integers N ≥ 1 and n0 < · · · < nN−1,
let

n := (n0, . . . , nN−1)
T , and nmin := (0, 1, . . . , N − 1)T ,

and define V (n) :=
∏

0≤i<j≤N−1(nj − ni).
Given a vector u = (u1, . . . , uN )T and a non-negative integer k, let u◦k :=

(uk1, . . . , u
k
N )T , and let u◦n be the N ×N matrix with (j, k) entry u

nk−1

j .
The Schur polynomial in variables u1, . . . , uN of degree n is given by

sn(u) :=
det u◦n

det u◦nmin
. (4.2)

Notice that the numerator is a generalized Vandermonde determinant, so
a homogeneous and alternating polynomial, while the denominator is the
usual Vandermonde determinant in the indeterminates u1, . . . , uN . Hence
their ratio sn(u) is a homogeneous symmetric polynomial in Z[u1, . . . , uN ].
It follows that Schur polynomials are well defined when working over any
commutative unital ring.

Schur polynomials are an extremely well-studied family of symmetric
functions. Their appeal lies in the important observation that they are
the characters of all irreducible (finite-dimensional) polynomial representa-
tions of the complex Lie group GLn(C) (or of the Lie algebra sln+1(C)). In
this setting, the definition of Cauchy is a special case of the Weyl character
formula. Thus, its specialization yields the corresponding Weyl dimension
formula, which will be of use below:

sn((1, . . . , 1)T ) =
∏

0≤i<j≤N−1

nj − ni
j − i

=
V (n)

V (nmin)
. (4.3)

An alternate proof of (4.3) comes from the principal specialization for-
mula: for a variable q, one has that

sn
(
(1, q, . . . , qN−1)T ) =

∏
0≤i<j≤N−1

qnj − qni
qj − qi

; (4.4)

this follows from (4.2) because now the numerator is also a standard Vander-
monde determinant. We also refer the reader to [98] for many more results
and properties of Schur polynomials.
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Returning to polynomial positivity preservers, we wish to consider func-
tions of the form

f(x) = c0x
n0 + · · ·+ cN−1x

nN−1 + c′xM ,

with non-negative integers n0 < · · · < nN−1 < M and positive coefficients
c0, . . . , cN−1. We are interested in characterizing those c′ ∈ R for which
the entrywise map f [−] preserves positivity on PN

(
(0, ρ)

)
. By the Schur

product theorem, this is equivalent to finding the smallest c′ such that f [−]
is a preserver. We may assume that c′ < 0, so we rescale by t := |c′|−1 and
define

pt(x) := t

N−1∑
j=0

cjx
nj − xM . (4.5)

The goal now is to find the smallest t > 0 such that pt[−] preserves positivity
on PN

(
(0, ρ)

)
. We next achieve this goal for a single rank-one matrix.

Proposition 4.7. With notation as above, define

nj = (n0, . . . , nj−1, n̂j , nj+1, . . . , nN−1,M)T

for 0 ≤ j ≤ N − 1. Given a vector u ∈ (0,∞)N with distinct coordinates,
the following are equivalent.

(1) The matrix pt[uuT ] is positive semidefinite.
(2) det pt[uuT ] ≥ 0.

(3) t ≥
N−1∑
j=0

snj (u)2

cjsn(u)2
.

In particular, this shows that for a generic rank-one matrix in PN
(
(0, ρ)

)
,

there does exist a positivity-preserving polynomial with a negative leading
term.

In essence, the equivalences in Proposition 4.7 hold more generally; this
is distilled into the following lemma.

Lemma 4.8 (Khare–Tao [90]5). Fix w ∈ RN and a positive-definite matrix
H. Fix t > 0 and define Pt := tH −wwT . The following are equivalent.

(1) Pt is positive semidefinite.
(2) detPt ≥ 0.

(3) t ≥ wTH−1w = 1− det(H −wwT )

detH
.

We refer the reader to [90] for the detailed proof of Lemma 4.8, remarking
only that the equality in assertion (3) follows by using Schur complements

in two different ways to expand the determinant of the matrix

[
H w
wT 1

]
.

5The work [90] is an extended abstract of the paper [89], but some of the results in it
have different proofs from [89].
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Now Proposition 4.7 follows directly from Lemma 4.8, by setting

H =

N−1∑
j=0

cju
◦nj (u◦nj )T and w = u◦M ,

where H is positive definite because of the following general matrix factor-
ization (which is also used below).

Proposition 4.9. Let f(x) =
∑M

k=0 fkx
k be a polynomial with coefficients

in a commutative ring R. For any integer N ≥ 1 and any vectors u =
(u1, . . . , uN )T and v = (v1, . . . , vN )T ∈ RN , it holds that

f [tuvT ] =
M∑
k=0

fkt
ku◦k(v◦k)T (4.6)

=


1 u1 · · · uM1
1 u2 · · · uM2
...

...
. . .

...
1 uN · · · uMN



f0 0 · · · 0
0 f1t · · · 0
...

...
. . .

...
0 0 · · · fM t

M




1 v1 · · · vM1
1 v2 · · · vM2
...

...
. . .

...
1 vN · · · vMN


T

,

where 1 is a multiplicative identity which is adjoined to R if necessary.

Now to adopt Lemma 4.8(3), this same equation and the Cauchy–Binet
formula allow one to compute det(H −wwT ) in the present situation, and

this yields precisely that t ≥
N−1∑
j=0

snj (u)2

cjsn(u)2
, as desired.

4.3. The threshold for all rank-one matrices: a Schur positivity
result. We continue toward a proof of Theorem 4.3. The next step is to
use Proposition 4.7 to achieve an intermediate goal: a threshold bound for c′

that works for all rank-one matrices in PN
(
(0, ρ)

)
, still working with integer

powers. Clearly, to do so one has to understand the supremum of each
ratio Rj := snj (u)2/sn(u)2, as u runs over vectors in (0,

√
ρ)N with distinct

coordinates. More precisely, one has to understand the supremum of the
weighted sum

∑
j Rj/cj .

This observation was first made in the work [11] for the case nj = j,
that is, n = nmin. It led to the first proof of Theorem 4.3, with all of the
denominators being the same: snmin(u) = 1. We now use another equivalent
definition of Schur polynomials, by Littlewood, realizing them as sums of
monomials corresponding to certain Young tableaux. Every monomial has
a non-negative integer coefficient. It follows by the continuity and homo-
geneity of snj and the Weyl Dimension Formula (4.3), that the supremum

in the previous paragraph equals the value at (
√
ρ, . . . ,

√
ρ)T , namely

sup
u∈(0,√ρ)N

snj (u)2 =
V (nj)

2

V (nmin)2
ρM−nj .
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Since all of these suprema are attained at the same point
√
ρ(1, . . . , 1)T , the

weighted sum in Proposition 4.7(3) also attains its supremum at the same
point. Thus, we conclude using Proposition 4.7 that

f(x) =
N−1∑
j=0

cjx
nj + c′xM

preserves positivity entrywise on all rank-one matrices uuT ∈ PN
(
(0, ρ)

)
if

and only if

c′ ≥ −
(N−1∑
j=0

V (nj)
2

cjV (nmin)2
ρM−nj

)−1
.

In fact, if n = nmin then the entire argument above goes through even
when one changes the domain to the open complex disc D(0, ρ), or any
intermediate domain (0, ρ) ⊂ D ⊂ D(0, ρ). This is precisely the content of
the main result in [11].

Theorem 4.10 (Belton–Guillot–Khare–Putinar [11]). Fix ρ > 0 and inte-
gers M ≥ N ≥ 2. Let

f(z) =

N−1∑
j=0

cjz
j + c′zM , where c0, . . . , cN−1, c

′ ∈ R,

and let I := D(0, ρ) be the closed disc in the complex plane with centre 0
and radius ρ. The following are equivalent.

(1) The entrywise map f [−] preserves positivity on PN (I).
(2) The entrywise map f [−] preserves positivity on rank-one matrices in
PN
(
(0, ρ)

)
.

(3) Either c0, . . . , cN−1, c′ are all non-negative, or c0, . . . , cN−1 are
positive and

c′ ≥ −
(N−1∑
j=0

V (nj)
2

cjV (nmin)2
ρM−j

)−1
,

where nj := (0, 1, . . . , j−1, ĵ, j+1, . . . , N−1,M)T for 0 ≤ j ≤ N−1.

This theorem provides a complete understanding of which polynomials
of degree at most N preserve positivity entrywise on PN

(
(0, ρ)

)
and, more

generally, on any subset of PN
(
D(0, ρ)

)
that contains the rank-one matrices

in PN
(
(0, ρ)

)
.

Remark 4.11. Clearly (1) =⇒ (2) here, and the proof of (2)⇐⇒ (3) was
outlined above via Proposition 4.7. We defer mentioning the proof strategy
for (2) =⇒ (1), because we will later see a similar theorem over I = (0, ρ)
for more general powers nj . The proof of that result, Theorem 4.15, will be
outlined in some detail.
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Having dealt with the base case of n = nmin, as well as n = (k, k +
1, . . . , k + N − 1) for any k ∈ Z+, which holds by the Schur product the-
orem, we now turn to the general case. In general, sn(u) is no longer a
monomial, and so it is no longer clear if and where the supremum of each
ratio snj (u)2/sn(u)2, or of their weighted sum, is attained for u ∈ (0,

√
ρ)N .

The threshold bound for all rank-one matrices itself is not apparent, and
the bound for all matrices in PN

(
(0, ρ)

)
is even more inaccessible.

By a mathematical miracle, it turns out that the same phenomenon as
in the base case holds in general. Namely, the ratio of each snj and sn
attains its supremum at

√
ρ(1, . . . , 1)T . Hence one can proceed as above to

obtain a uniform threshold for c′, which works for all rank-one matrices in
PN
(
(0, ρ)

)
.

Example 4.12. To explain the ideas of the preceding paragraph, we present
an example. Suppose

N = 3, n = (0, 2, 3), M = 4, and u = (u1, u2, u3)
T .

Then

n3 = (0, 2, 4),

sn(u) = u1u2 + u2u3 + u3u1,

and sn3(u) = (u1 + u2)(u2 + u3)(u3 + u1).

The claim is that sn3(u)/sn(u) is coordinatewise non-decreasing for u ∈
(0,∞)3; the assertion about its supremum on (0,

√
ρ)N immediately follows

from this. It suffices by symmetry to show the claim only for one variable,
say u3. By the quotient rule,

sn(u)∂u3sm(u)− sm(u)∂u3sn(u) = (u1 + u2)(u1u3 + 2u1u2 + u2u3)u3,

and this is clearly non-negative on the positive orthant, proving the claim.
As we see, the above expression is, in fact, monomial positive, from which
numerical positivity follows immediately.

In fact, an even stronger fact holds. Viewed as a polynomial in u3, every
coefficient in the above expression is in fact Schur positive. In other words,

the coefficient of each uj3 is a non-negative combination of Schur polynomials
in u1 and u2:

(u1 + u2)(u1u3 + 2u1u2 + u2u3)u3 =
∑
j≥0

pj(u1, u2)u
j
3,

where

pj(u1, u2) =


2s(1,3)(u1, u2) if j = 1,

s(0,3)(u1, u2) + s(1,2)(u1, u2) if j = 2,

0 otherwise.

In particular, this implies that each coefficient is monomial positive, whence
numerically positive. We recall here that the monomial positivity of Schur
polynomials follows from the definition of sn(u) using Young tableaux.
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The miracle to which we alluded above, is that the Schur positivity in the
preceding example in fact holds in general.

Theorem 4.13 (Khare–Tao [89]). If n0 < · · · < nN−1 and m0 < · · · <
mN−1 are N -tuples of non-negative integers such that mj ≥ nj for j = 0,
. . . , N − 1, then the function

fm,n : (0,∞)N → R; u 7→ sm(u)

sn(u)

is non-decreasing in each coordinate. Furthermore, if

sn(u)∂uN sm(u)− sm(u)∂uN sn(u) (4.7)

is considered as a polynomial in uN , then the coefficient of every mono-

mial ujN is a Schur-positive polynomial in u1,. . . , uN−1.

The second, stronger part of Theorem 4.13 follows from a deep and highly
non-trivial result in symmetric function theory (or type-A representation
theory) by Lam, Postnikov, and Pylyavskyy [92], following earlier results by
Skandera. We refer the reader to this paper and to [89] for more details.
Notice also that the first assertion in Theorem 4.13 only requires the numer-
ical positivity of the expression (4.7). This is given a separate proof in [89],
using the method of condensation due to Charles Lutwidge Dodgson [40].6

In this context, we add for completeness that in [89] the authors also show a
log-supermodularity (or FKG, or MTP2) phenomenon for determinants of
totally positive matrices.

4.4. Real powers; the threshold works for all matrices. We now re-
turn to the proof of Theorem 4.3, which holds for real powers. Our next
step is to observe that the first part of Theorem 4.13 now holds for all real
powers. Since one can no longer define Schur polynomials in this case, we
work with generalized Vandermonde determinants instead:

Corollary 4.14. Fix N -tuples of real powers n = (n0 < · · · < nN−1) and
m = (m0 < · · · < mN−1), such that nj ≤ mj for all j. Letting u◦n :=
[u
nk−1

j ]Nj,k=1 as above, the function

f : {u ∈ (0,∞)N : ui 6= uj if i 6= j} → R; u 7→ det u◦m

det u◦n

is non-decreasing in each coordinate.

We sketch here one proof. The version for integer powers, Theorem 4.13,
gives the version for rational powers, by taking a “common denominator”
L ∈ Z such that Lmj and Lnj are all integers, and using a change of variables

yj := u
1/L
j . The general version for real powers then follows by considering

rational approximations and taking limits.

6This article by Dodgson immediately follows his better-known 1865 publication, Alice’s
Adventures in Wonderland.
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Corollary 4.14 helps prove the real-power version of Theorem 4.3, just as
Theorem 4.13 would have shown the integer-powers case of Theorem 4.3.
Namely, first note that Proposition 4.7 holds even when the nj are real
powers; the only changes are (a) to assume that the coordinates of u are
distinct, and (b) to rephrase the last assertion (3) to the following:

t ≥
N−1∑
j=0

(det u◦nj )2

cj(det u◦n)2
.

These arguments help prove the first part of the following result, which is
the culmination of these ideas.

Theorem 4.15 (Khare–Tao [89]). Fix an integer N ≥ 1 and real exponents
n0 < · · · < nN−1 < M , as well as scalars ρ > 0 and c0, . . . , cN−1, c′. Let

f(x) :=
N−1∑
j=0

cjx
nj + c′xM .

The following are equivalent.

(1) The function f preserves positivity entrywise on all rank-one matri-
ces in PN

(
(0, ρ)

)
.

(2) The function f preserves positivity entrywise on all Hankel rank-one
matrices in PN

(
(0, ρ)

)
.

(3) Either the coefficients c0, . . . , cN−1 and c′ are non-negative, or c0,
. . . , cN−1 are positive and

c′ ≥ −
(N−1∑
j=0

V (nj)
2

cjV (n)2
ρM−nj

)−1
,

where V (n) and nj are as defined above.

If, moreover, the exponents nj all lie in Z+ ∪ [N − 2,∞), then these
assertions are also equivalent to the following.

(4) The function f preserves positivity entrywise on PN
(
(0, ρ)

)
.

Before sketching the proof, we note several ramifications of this result.

(1) The theorem completely characterizes linear combinations of up to
N + 1 powers that entrywise preserve positivity on PN

(
(0, ρ)

)
. The

same is true for any subset of PN
(
(0, ρ)

)
that contains all rank-one

positive semidefinite Hankel matrices.
(2) As discussed above, Theorem 4.15 implies Theorem 4.5, which helps

in understanding which sign patterns correspond to countable sums
of real powers that preserve positivity entrywise on PN

(
(0, ρ)

)
(or

on the subset of rank-one matrices). In particular, the existence of
sign patterns which are not all non-negative shows the existence of
functions which preserve positivity on PN but not on PN+1.
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(3) Theorem 4.15 bounds A◦M in terms of a multiple of
∑N−1

j=0 cjA
◦nj .

More generally, one can do this for an arbitrary convergent power
series instead of a monomial, in the spirit of Theorem 4.2. Even
more generally, one may work with Laplace transforms of measures;
see Corollary 4.17 below.

For completeness, we also mention two developments related (somewhat
more distantly) to the above results.

• A refinement of a conjecture of Cuttler, Greene, and Skandera (2011)
and its proof; see [89] for more details. In particular, this approach
assists with a novel characterization of weak majorization, using
Schur polynomials.
• A related “Schubert cell-type” stratification of the cone PN (C); see

[11] for further details.

We conclude this section by outlining the proof of Theorem 4.15.

Proof. Clearly, (4) =⇒ (1) =⇒ (2). If (2) holds, then, by Corollary 3.11
at a = 0, either all the cj and c′ are non-negative, or cj is positive for all j.
Thus, we suppose that cj > 0 > c′.

Note that if u(u0) := (1, u0, . . . , u
N−1
0 )T for some u0 ∈ (0, 1), then

A(u0) := ρu20u(u0)u(u0)
T

is a rank-one Hankel matrix and hence in our test set. Repeating the analysis
in Section 4.2, using generalized Vandermonde determinants instead of Schur
polynomials and rank-one Hankel matrices of the form A(u0),

|c′|−1 ≥ sup
u0∈(0,1)

N−1∑
j=0

(det[
√
ρu0u(u0)]

◦nj )2

cj(det[
√
ρu0u(u0)]◦n)2

=
N−1∑
j=0

lim
u0→1−

N−1∑
j=0

(det u(u0)
◦nj )2

cj(det u(u0)◦n)2
(ρu20)

M−nj ,

where the equality follows from Corollary 4.14 above. The real-exponent
version of (4.4) holds if q ∈ (0,∞) \ {1} and the exponents nj are real and
non-decreasing:

det u(q)◦n =
∏

0≤i<k≤N−1
(qnk − qni) = V (q◦n).

Applying this identity, the above computation yields

|c′|−1 ≥ lim
u0→1−

N−1∑
j=0

V (u
◦nj
0 )2

V (u◦n0 )2
(ρu20)

M−nj

cj
=

N−1∑
j=0

V (nj)
2

cjV (n)2
ρM−nj .

Thus (2) =⇒ (3). Conversely, that (3) =⇒ (1) follows by a similar
analysis to that given above, using Corollary 4.14 and the density of matrices

uuT , where u ∈
(
0,
√
ρ
)N

has distinct entries, in the set of all rank-one

matrices in PN
(
(0, ρ)

)
.
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It remains to show that (1) =⇒ (4) if all the exponents nj ∈ Z+ ∪
[N − 2,∞). We proceed by induction on N . The case N = 1 is immediate.
For the inductive step, we apply the extension principle of the following
Proposition 4.16 with h = f , which requires verification that f ′[−] preserves
positivity on PN−1. This is a straightforward calculation via the induction
hypothesis. �

The following extension principle was inspired by work of FitzGerald and
Horn [51].

Proposition 4.16 (Khare–Tao [89]). Suppose 0 < ρ ≤ ∞, and I = (0, ρ),
(−ρ, ρ) or the closure of one of these sets. Let h : I → R be a continuously
differentiable function on the interior of I. If h′[−] preserves positivity en-
trywise on PN−1(I) and h[−] does so on the rank-one matrices in PN (I),
then h[−] in fact preserves positivity on all of PN (I).7

Proposition 4.16 relies on two arguments found in [51]: (a) every matrix in
PN may be written as the sum of a rank-one matrix in PN , and a matrix in
PN−1 with its last row and column both zero, and (b) applying the integral
identity

h(x)− h(y) =

∫ y

x
h′(t) dt =

∫ 1

0
(x− y)h′(λx+ (1− λ)y) dλ

entrywise to this decomposition. See [89, Section 3] for more details. The
original use of these arguments was when h is a power function; this is
explained in Chapter 6 below.

4.5. Power series preservers and beyond; unbounded domains. In
the remainder of this chapter, we use Theorem 4.15 to derive several corol-
laries; thus, we retain and use the notation of that theorem. As discussed
following Theorem 4.15, the first consequence extends the theorem from
bounding monomials A◦M = (xM )[A] by a multiple of

∑N−1
j=0 cjA

◦nj , to

bounding f [A] for more general power series. Even more generally, one can
work with Laplace transforms of real measures on R.

Corollary 4.17 (Khare–Tao [89]). Let the notation be as for Theorem 4.15,
with cj > 0 for all j. Suppose µ is a real measure supported on [nN−1+ε,∞)
for some ε > 0, and let

gµ(x) :=

∫ ∞
nN−1+ε

xt dµ(t). (4.8)

7An analogous version of this results holds for I = D(0, ρ) or its closure in C, with
h : I → C analytic. This is used to prove the corresponding implication in Theorem 4.10
above.



48 A. BELTON, D. GUILLOT, A. KHARE, AND M. PUTINAR

If gµ is absolutely convergent at ρ, then there exists a finite threshold tµ > 0
such that, for all A ∈ PN

(
(0, ρ)

)
, the matrix

tµ

N−1∑
j=0

cjA
◦nj − gµ[A]

is positive semidefinite.

Proof. By Theorem 4.15 and the fact that PN (R) is a closed convex cone,
it suffices to show the finiteness of the quantity∫ ∞

nN−1+ε

N−1∑
j=0

V (nj)
2

cjV (n)2
ρM−nj dµ+(M),

where µ+ is the positive part of µ. This follows from the hypotheses. �

We now turn to the ρ = ∞ case, which was briefly alluded to above. In
other words, the domain is now unbounded: I = (0,∞). As in the bounded-
domain case, the question of interest is to classify all possible sign patterns
of polynomial or power-series preservers on PN (I) for a fixed integer N .

Similar to the above discussion for bounded I, the crucial step in clas-
sifying sign patterns of power series (or more general functions, as in The-
orem 4.5) is to work with integer powers and precisely one coefficient that
can be negative. Thus, one first observes that Lemma 3.9(2) holds in the
unbounded-domain case I = (0,∞). Hence given a polynomial

f(x) =
2N−1∑
j=0

cjx
nj + c′xM ,

where

0 ≤ n0 < · · · < nN−1 < M < nN < nN+1 · · · < n2N−1,

if f [−] preserves positivity on PN
(
(0,∞)

)
, then either all the coefficients

c0, . . . , c2N−1, c
′ are non-negative, or c0, . . . , c2N−1 are positive and c′

can be negative. In this case, an explicit threshold is not known as it is in
Theorem 4.15, but we now explain why such a threshold exists.

We start from (4.6) and repeat the subsequent analysis via the Cauchy–
Binet formula. To find a uniform threshold for c′ that works for all rank-one
matrices in PN

(
(0,∞)

)
, it suffices to bound, uniformly from above, certain

ratios of sums of squares of Schur polynomials. This may be done because
of the following tight bounds.

Proposition 4.18 (Khare–Tao [89]). If n := (n0, . . . , nN−1) and u :=
(u1, . . . , uN ), where n0 < · · · < nN−1 are non-negative integers and u1 ≤
· · · ≤ uN are non-negative real numbers, then

un−nmin ≤ sn(u) ≤ V (n)

V (nmin)
un−nmin , (4.9)
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where nmin := (0, . . . , nN−1). The constants 1 and V (n)/V (nmin) on each
side of (4.9) cannot be improved.

We refer the reader to [89, Section 4] for further details, including how
Proposition 4.18 implies the existence of preservers f as above for rank-
one matrices with c′ < 0. The extension from rank-one matrices to all
of PN

(
(0,∞)

)
is carried out using the extension principle in Proposition 4.16.

In a sense, Proposition 4.18 isolates the ‘leading term’ of every Schur
polynomial. This calculation can be generalized to the case of non-integer
powers,8which helps extend the above results for the unbounded domain
I = (0,∞) to real powers. This yields the desired classification, similar to
Theorem 4.5 in the bounded-domain case.

Theorem 4.19 (Khare–Tao [89]). Let N ≥ 2, and let {αj : j ≥ 0} ⊂
Z+ ∪ [N − 2,∞) be a set of distinct real numbers. For each j ≥ 0, let
εj ∈ {0,±1} be a sign and suppose that, whenever εj0 = −1, then εj = +1
for at least N choices of j such that αj < αi0 and also for at least N choices
of j such that αj > αi0. There exists a series with real coefficients,

f(x) =

∞∑
j=0

cjx
αj

which converges on (0,∞), preserves positivity entrywise on PN
(
(0,∞)

)
,

and is such that cj has the same sign as εj for all j ≥ 0.

Note that, in particular, Theorem 4.19 reaffirms that the Horn–Loewner-
type conditions in Lemma 3.9(2) are sharp.

4.6. Digression: Schur polynomials from smooth functions, and
new symmetric function identities. Before proceeding to additional
applications of Theorem 4.15 and related results, we take a brief detour
to explain how Schur polynomials arise naturally from any sufficiently dif-
ferentiable function.

Theorem 4.20 (Khare [88]). Fix non-negative integers m0 < m1 < · · · <
mN−1, as well as scalars ε > 0 and a ∈ R. Let M := m0 + · · ·+mN−1 and
suppose the function f : [a, a+ ε)→ R is M -times differentiable at a. Given
vectors u, v ∈ RN , define ∆ : [0, ε′) → R for a sufficiently small ε′ ∈ (0, ε)
by setting

∆(t) := det f [a1N×N + tuvT ].

Then,

∆(M)(0) =
∑
m`M

(
M

m0,m1, . . . ,mN−1

)
V (u)V (v)sm(u)sm(v)

N−1∏
k=0

f (mk)(a),

(4.10)

8We refer the reader again to [89, Section 5] for the details, which use additional
concepts from type-A representation theory: the Harish-Chandra–Itzykson–Zuber integral
and Gelfand–Tsetlin patterns.
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where the first factor in the summand is a multinomial coefficient, and we
sum over all partitions m = (m0, . . . ,mN−1) of M with unequal parts, that
is, M = m0 + · · ·+mN−1 and 0 ≤ m0 < · · · < mN−1.

In particular, ∆(0) = ∆′(0) = · · · = ∆((N2 )−1)(0) = 0.

Remark 4.21. As a special case, if f : R → R is smooth at a, and u,
v ∈ RN , then defining ∆(t) := det f [a1N×N + tuvT ] gives a function ∆
which is smooth at 0, and Theorem 4.20 gives all of these derivatives via
the formula (4.10). The general version of Theorem 4.20 is a key ingredi-
ent in showing Theorem 3.10, which subsumes all known variants of Horn–
Loewner-type necessary conditions in fixed dimension.

The key determinant computation required to prove the original Horn–
Loewner necessary condition in fixed dimension (see Theorem 3.4) is the
special case of Theorem 4.20 where u = v and mj = j for all j. In this
situation, sm(u) = sm(v) = 1, so Schur polynomials do not appear. The
general version of Theorem 4.20 decouples the vectors u and v, and holds
for all M > 0 if f is smooth (as in Loewner’s setting). Moreover, it reveals
the presence of Schur polynomials in every case other than the ones studied
by Loewner, that is, when M >

(
N
2

)
.

While Theorem 4.20 involves derivatives of a smooth function, the result
and its proof are, in fact, completely algebraic, and valid over any commu-
tative ring. To show this, an algebraic analogue of the differential operator
is required, with more structure than is given by a derivation. The precise
statement and its proof may be found in [88, Section 2].

We conclude this section by applying Theorem 4.20 and its algebraic
avatar to symmetric function theory. We begin by recalling the famous
Cauchy summation identity [98, Example I.4.6]: if f0(x) := 1 + x+ x2 + · · ·
is the geometric series, viewed as a formal power series over a commutative
unital ring R, and u1, . . . , uN , v1, . . . , vN are commuting variables, then

det f0[uvT ] = V (u)V (v)
∑
m

sm(u)sm(v), (4.11)

where the sum runs over all partitions m with at most N parts.9

A natural question is whether similar formulae hold when f0 is replaced by
other formal power series. Very few such results were known; this includes
one due to Frobenius [55], for the function fc(x) := (1− cx)/(1− x) with c

9Usually one uses infinitely many indeterminates in symmetric function theory, but
given the connection to the entrywise calculus in a fixed dimension, we will restrict our
attention to uj and vj for 1 ≤ j ≤ N .
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an scalar. (This is also connected to theta functions and elliptic Frobenius–
Stickelberger–Cauchy determinant identities.) For this function,

det fc[uvT ] = det
[1− cujvk

1− ujvk

]N
j,k=1

= V (u)V (v)(1− c)N−1

×
( ∑
m:m0=0

sm(u)sm(v) + (1− c)
∑

m:m0>0

sm(u)sm(v)
)
.

(4.12)

A third, obvious identity is if f is a ‘fewnomial’ with at most N−1 terms.
In this case, f [uvT ] is a sum of at most N − 1 rank-one matrices, and so its
determinant vanishes.

The following result extends all three of these cases to an arbitrary formal
power series over an arbitrary commutative ring R, and with an additional
Z+-grading.

Theorem 4.22 (Khare [88]). Fix a commutative unital ring R and let t be
an indeterminate. Let f(t) :=

∑
M≥0 fM t

M ∈ R[[t]] be an arbitrary formal

power series. Given vectors u, v ∈ RN , where N ≥ 1, we have that

det f [tuvT ] = V (u)V (v)
∑

M≥(N2 )

tM
∑

m=(mN−1,...,m0) `M

sm(u)sm(v)
N−1∏
k=0

fmk .

(4.13)

The heart of the proof involves first computing, for each M ≥ 0, the
coefficient of tM in det f [tuvT ], over the “universal ring”

R′ := Q[u1, . . . , uN , v1, . . . , vN , f0, f1, . . .],

where uj , vk and fm are algebraically independent over Q. These coef-

ficients are seen to equal ∆(M)(0)/M !, by the algebraic version of Theo-
rem 4.20. Thus, (4.13) holds over R′. Then note that both sides of (4.13)
lie in the subring R0 := Z[u1, . . . , uN , v1, . . . , vN , f0, f1, . . .], so the identity
holds in R0. Finally, it holds as claimed by specializing from R0 to R.

An alternate approach to proving Theorem 4.22 is also provided in [88].
The identity (4.6) is applied, along with the Cauchy–Binet formula, to each
truncated Taylor–Maclaurin polynomial f≤M of f(x). The result follows
by taking limits in the t-adic topology, using the t-adic continuity of the
determinant function.

4.7. Further applications: linear matrix inequalities, Rayleigh quo-
tients, and the cube problem. This chapter ends with further ramifica-
tions and applications of the above results. First, notice that Theorem 4.15
implies the following linear matrix inequality version that is ‘sharp’ in more
than one sense:
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Corollary 4.23. Fix ρ > 0, real exponents n0 < · · · < nN−1 < M for some
integer N ≥ 1, and scalars cj > 0 for all j. Then,

A◦M ≤ C
(
c0A

◦n0 + · · ·+ cN−1A
◦nN−1

)
,

where C =
N−1∑
j=0

V (nj)
2

cjV (n)2
ρM−nj ,

for all A ∈ PN
(
(0, ρ)

)
of rank one, or of all ranks if n0, . . . , nN−1 ∈

Z+ ∪ [N − 2,∞). Moreover, the constant C is the smallest possible, as is the
number of terms N on the right-hand side.

Seeking a uniform threshold such as C in the preceding inequality can
also be achieved (as explained above) by first working with a single positive
matrix, then optimizing over all matrices. The first step here can be recast
as an extremal problem that involves Rayleigh quotients:

Proposition 4.24 (see [11, 89]). Fix an integer N ≥ 2 and real exponents
n0 < · · · < nN−1 < M , where each nj ∈ Z+ ∪ [N − 2,∞). Given positive
scalars c0, . . . , cN−1, let

h(x) :=
N−1∑
j=0

cjx
nj

(
x ∈ (0,∞)

)
.

Then, for 0 < ρ <∞ and A ∈ PN
(
[0, ρ]

)
,

t h[A] ≥ A◦M if and only if t ≥ %(h[A]†/2A◦Mh[A]†/2), (4.14)

where %[B] and B† denote the spectral radius and the Moore–Penrose pseudo-
inverse of a square matrix B, respectively. Moreover, for every non-zero
matrix A ∈ PN

(
[0, ρ]

)
, the following variational formula holds:

%(h[A]†/2A◦Mh[A]†/2) = sup
u∈(kerh[A])⊥\{0}

uTA◦Mu

uTh[uuT ]u
≤

N−1∑
j=0

V (nj)
2

V (n)2
ρM−nj

cj
.

Proposition 4.24 is shown using the Kronecker normal form for matrix
pencils; see the treatment in [57, Section X.6]. When the matrix A is
a generic rank-one matrix, the above generalized Rayleigh quotient has a
closed-form expression, which features Schur polynomials for integer pow-
ers. This reveals connections between Rayleigh quotients, spectral radii, and
symmetric functions.

Proposition 4.25. Let the notation be as in Proposition 4.24, but now with
nj not necessarily in Z+ ∪ [N − 2,∞). If A = uuT , where u ∈ (0,∞)N has
distinct coordinates, then h[A] is invertible, and the threshold bound

%(h[A]†/2A◦Mh[A]†/2) = (u◦M )Th[uuT ]−1u◦M =
N−1∑
j=0

(det u◦nj )2

cj(det u◦n)2
. (4.15)
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In fact, the proof of the final equality in (4.15) is completely algebraic,
and reveals new determinantal identities that hold over any field F with at
least N elements.

Proposition 4.26 (Khare–Tao [89]). Suppose N ≥ 1 and 0 ≤ n0 < · · · <
nN−1 < M are integers, and u,v ∈ FN each have distinct coordinates. Let

cj ∈ F× and define h(t) :=
∑N−1

j=0 cjt
nj . Then h[uvT ] is invertible, and

(v◦M )Th[uvT ]−1u◦M =

N−1∑
j=0

det u◦nj det v◦nj

cj det u◦n det v◦n
.

The final result is a variant of the matrix-cube problem [104], and connects
to spectrahedra [22, 135] and modern optimization theory. Given two or
more real symmetric N × N matrices A0, . . . , AM+1, the corresponding
matrix cube of size 2η > 0 is

U [η] :=
{
A0 +

M+1∑
m=1

umAm : um ∈ [−η, η]
}
.

The matrix-cube problem is to find the largest η > 0 such that U [η] ⊂
PN (R). In the present setting of the entrywise calculus, the above results
imply asymptotically matching upper and lower bounds for the size of the
matrix cube.

Theorem 4.27 (see [11, 89]). Suppose M ≥ 0 and 0 ≤ n0 < n1 < · · · are
integers. Fix positive scalars ρ > 0, 0 < α1 < · · · < αM+1, and cj > 0 for
all j ≥ 0, and define for each N ≥ 1 and each matrix A ∈ PN

(
[0, ρ]

)
, the

cube

UA[η] :=


N−1∑
j=0

cjA
◦nj +

M+1∑
m=1

umA
◦(nN−1+αm) : um ∈ [−η, η]

 . (4.16)

Also define for N ≥ 1 and α > 0:

Kα(N) :=
N−1∑
j=0

V (nj(α,N))2

V (n(N))2
ρα−nj

cj
, (4.17)

where n(N) := (n0, . . . , nN−1)
T , and

nj(α,N) := (n0, . . . , nj−1, nj+1, . . . , nN−1, nN−1 + α).

Then for each fixed N ≥ 1, we have the uniform upper and lower bounds:

η ≤
(
Kα1(N) + · · ·+KαM+1(N)

)−1
=⇒ UA[η] ⊂ PN for all A ∈ PN

(
[0, ρ]

)
=⇒ η ≤ KαM+1(N)−1.

(4.18)

Moreover, if the nj grow linearly, in that

αM+1 − αM ≥ nj+1 − nj for all j ≥ 0,
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then the lower and upper bounds for η = ηN in (4.18) are asymptotically
equal as N →∞:

lim
N→∞

KαM+1(N)−1
M+1∑
m=1

Kαm(N) = 1.

5. Totally non-negative matrices and positivity preservers

In this chapter, we discuss variant notions of matrix positivity that are
well studied in the literature, total positivity and total non-negativity, and
characterize the maps which preserve these properties.

Definition 5.1. A real matrix A is said to be totally non-negative or totally
positive if every minor of A is non-negative or positive, respectively. We will
denote these matrices, as well as the property, by TN and TP.

In older texts, such matrices were called totally positive and strictly totally
positive, respectively.

To introduce the theory of total positivity, we can do no better than
quote from the preface of Karlin’s magisterial book [85]: “Total positivity
is a concept of considerable power that plays an important role in various
domains of mathematics, statistics and mechanics”. Karlin goes on to list
“problems involving convexity, moment spaces, eigenvalues of integral oper-
ators, ... oscillation properties of solutions of linear differential equations ...
the theory of approximations ... statistical decision procedures ... discern-
ing uniformly most powerful tests for hypotheses ... ascertaining optimal
policy for inventory and production processes ... analysis of diffusion-type
stochastic processes, and ... coupled mechanical systems.”

Perhaps the earliest result on total positivity is due to Fekete, in corre-
spondence with Pólya [50] published in 1912 (see Lemma 5.10). Schoenberg
observed the variation-diminishing properties of TP matrices in 1930 [119],
and published a series of papers on Pólya frequency functions, which are de-
fined in terms of total positivity, in the 1950s [127, 126, 128]. Independently
of Schoenberg, Krein’s investigation of ordinary differential equations led
him to the total positivity of Green’s functions for certain differential oper-
ators, and in the mid-1930s his works with Gantmacher looked at spectral
and other properties of totally positive matrices and kernels; see [58] and
[85, Section 10.6].

For more on these four authors, one may consult the afterwork of Pinkus’s
book on total positivity [106], which also contains a wealth of results on
totally positive and totally non-negative matrices. For a modern collection
of applications of the theory of total positivity, see the book edited by Gasca
and Micchelli [60].

More recently, total positivity has had a major impact on Lie theory.
Lusztig extended the theory of total positivity to the setting of linear alge-
braic groups; see [97] for an exposition of this work. This led Fomin and
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Zelevinsky to investigate the combinatorics of Lusztig’s theory [53] and re-
sulted in the invention of cluster algebras [54]. These objects have generated
an enormous amount of activity in a short period of time, with connections
across a wide range of areas within representation theory, combinatorics,
geometry, and mathematical physics. For the latter, we will mention only
the totally non-negative Grassmannian [110], its connections with scatter-
ing amplitudes for quantum field theories [4], and the work by Kodama and
Williams on regular soliton solutions of the Kadomtsev–Petviashvili equa-
tion [91].

Example 5.2. Perhaps the most well-known class of totally positive ma-
trices consists of the (generalized) Vandermonde matrices: for real numbers
0 < x1 < · · · < xm and α1 < · · · < αn, the m× n matrix

A := [xαkj ]1≤j≤m, 1≤k≤n

is totally positive. Indeed, it suffices to show the positivity of any such
matrix determinant detA when m = n. That detA is non-zero follows from
Laguerre’s extension of Descartes’ rule of signs (see [82]) and by fixing the xj
and considering a linear homotopy from (0, 1, . . . , n−1) to (α1, . . . , αn), one
obtains a continuous non-vanishing function from the usual Vandermonde
determinant

∏
1≤j<k≤n(xk − xj) (which is positive) to detA.

Example 5.3. Another prominent class of symmetric totally positive ma-
trices consists of the Hankel moment matrices Hµ := [sj+k(µ)]j,k≥0 corre-
sponding to admissible measures µ; see Definition 3.16.

5.1. Totally non-negative and totally positive kernels. An important
generalization of TN and TP matrices is given by the following functional
form.

Definition 5.4. LetX and Y be totally ordered sets, and letK : X×Y → R
be a kernel.

(1) The kernel K is totally positive of order r, denoted TPr, if, for any
n-tuples of points x1 < · · · < xn in X and y1 < · · · < yn in Y , where
1 ≤ n ≤ r, the matrix

[K(xj , yk)]
n
j,k=1

has positive determinant.
(2) The kernel K is totally positive if K is TPr for all r ≥ 1.
(3) Similarly, one defines TNr kernels and totally non-negative kernels

by replacing the word “positive” in the above by “non-negative.”

If X = {1, . . . ,m} and Y = {1, . . . , n}, we recover the earlier notions
of totally positive and totally non-negative matrices. When X and Y are
taken to be real intervals, TN and TP kernels can be thought of as continuous
analogues of TN and TP matrices. In fact, one has a continuous analogue
of the Cauchy–Binet formula, which generalizes its traditional version.
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Theorem 5.5 (Basic Composition Lemma, see e.g. [85, 86]). Suppose X,
Y , Z ⊂ R and let µ be a non-negative Borel measure on Y . Suppose K :
X ×Y → R and L : Y ×Z → R are pointwise Borel measurable with respect
to Y , and let

M : X × Z → R; (x, z) 7→
∫
Y
K(x, y)L(y, z) dµ(y).

If M is well defined on the whole of X × Z, then

det

M(x1, z1) . . . M(x1, zm)
...

. . .
...

M(xm, z1) . . . M(xm, zm)


=

∫
· · ·
∫

y1<y2<···<ym∈Y

det[K(xi, yj)]
m
i,j=1 det[L(yj , zk)]

m
j,k=1

m∏
j=1

dµ(yj).

As an immediate consequence, we have the following corollary.

Corollary 5.6. In the setting of Theorem 5.5, if the kernels K and L are
both TNr or TPr for some r ≥ 1, then M has the same property. In partic-
ular, if K and L are both TN or TP, then so is M .

We conclude this part with an observation of Pólya that connects to a class
of well-studied functions, and also implies the positive definiteness of the
Gaussian kernel. Recall from the proof of Theorem 2.4 above that this latter
property was crucially used by Schoenberg in characterizing metric space
embeddings into Hilbert space; however, its proof above was only outlined
(via the more sophisticated machinery of Fourier analysis and Bochner’s
theorem).

Lemma 5.7 (Pólya). The Gaussian kernel K : R × R → R given by
K(x, y) := exp(−(x− y)2) is totally positive.

Proof. It suffices to show that every square matrix generated from the kernel
has positive determinant. Given real numbers x1 < · · · < xn and y1 < · · · <
yn, we observe the following factorization:

[exp(−(xj − yk)2)]nj,k=1

= diag[exp(−x2j )]nj=1[exp(2xjyk)]
n
j,k=1 diag[exp(−y2k)]nk=1.

The proof concludes by observing that all three matrices on the right-hand
side have positive determinants, the second because it is a Vandermonde
matrix [pαkj ] with pj = exp(2xj) and αk = yk. �

Example 5.8. The Gaussian function f(x) = exp(−x2) is thus an example
of a Pólya frequency function, that is, one for which f(x− y) is a TP kernel
on R × R. As noted above, these functions were intensively studied by
Schoenberg, and continue to be much studied in mathematics and statistics;
two of the classic references are [29, 43].
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The case of the multivariate Gaussian kernel follows immediately from
the one-dimensional version.

Corollary 5.9. For all d ≥ 1, the Gaussian kernel

Rd × Rd → (0,∞); (x,y) 7→ K(x,y) := exp(−‖x− y‖2)

is positive semidefinite on Rd×Rd. In other words, the matrix [exp(−‖xj −
xk‖2)]nj,k=1 is positive semidefinite for all x1, . . . , xn ∈ Rd.

Proof. The d = 1 case is a direct consequence of Lemma 5.7, and the case
of general d follows from this by using the Schur product theorem. �

5.2. Entrywise preservers of totally non-negative Hankel matrices.
In the recent article [48] by Fallat, Johnson, and Sokal, the authors study
when various classes of totally non-negative (TN) matrices are closed under
taking sums or Schur products. As they observe, the set of all TN matrices
is not closed under these operations; for example, the 3× 3 identity matrix
and the all-ones matrix 13×3 are both TN but their sum is not.

It is of interest to isolate a class of TN matrices that is a closed convex
cone, and is furthermore closed under taking Schur products. Indeed, it is
under these conditions that the observation of Pólya–Szegö (see Section 3.1)
holds, leading to large classes of TN preservers.

Such a class of matrices has been identified in both the dimension-free as
well as fixed-dimension settings. It consists of the TN Hankel matrices. In
a fixed dimension, there is the following classical result from 1912.

Lemma 5.10 (Fekete [50]). Let A be a possibly rectangular real Hankel
matrix such that all of its contiguous minors are positive. Then A is totally
positive.

Recall that a minor is said to be contiguous if it is obtained from successive
rows and successive columns of A.

If A is a square Hankel matrix, let A(1) be the square submatrix of A
obtained by removing the first row and the last column. Notice that every
contiguous minor of A is a principal minor of either A or A(1). Combined
with Fekete’s lemma, these observations help show another folklore result.

Theorem 5.11. Let A be a square real Hankel matrix. Then A is TN or TP
if and only if both A and A(1) are positive semidefinite or positive definite,
respectively.

Theorem 5.11 is a very useful bridge between matrix positivity and total
non-negativity. A related dimension-free variant (see [2, 59]) concerns the
Stieltjes moment problem: a sequence (s0, s1, . . . , ) is the moment sequence
of an admissible measure on R+ (see Definition 3.16) if and only if the

Hankel matrices H := (sj+k)j,k≥0 and H(1) (obtained by excising the first
row of H, or equivalently, the first column) are both positive semidefinite.
By Theorem 5.11, this is equivalent to saying that H is totally non-negative.
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With Theorem 5.11 in hand, one can easily show several basic facts about
TN Hankel matrices; we collect these in the following result for convenience.

Lemma 5.12. For an integer N ≥ 1 and a set I ⊂ R+, let HTNN (I)
denote the set of N ×N TN Hankel matrices with entries in I. For brevity,
we let HTNN := HTNN

(
R+).

(1) The family HTNN is closed under taking sums and non-negative
scalar multiples, or more generally, integrals against non-negative
measures (as long as these exist).

(2) In particular, if µ is an admissible measure supported on R+, then
its moment matrix Hµ :=

(
sj+k(µ)

)∞
j,k=0

is totally non-negative.

(3) HTNN is closed under taking entrywise products.
(4) If the power series f(x) =

∑
k≥0 ckx

k is convergent on I ⊂ R+, with

ck ≥ 0 for all k ≥ 0, then the entrywise map f [−] preserves total
non-negativity on HTNN (I), for all N ≥ 1.

Given Lemma 5.12(4), which is identical to the start of the story for pos-
itivity preservers, it is natural to expect parallels between the two settings.
For example, one can ask if a Schoenberg-type phenomenon also holds for
preservers of total non-negativity on

⋃
N≥1HTNN

(
[0, ρ)

)
with 0 < ρ ≤ ∞.

As we now explain, this is indeed the case; we will set ρ = ∞ for ease of
exposition. From Theorem 3.14 and the subsequent discussion, it follows via
Hamburger’s theorem that the class of functions

∑
k≥0 ckx

k with all ck ≥ 0
characterizes the entrywise maps preserving the set of moment sequences
of admissible measures supported on [−1, 1]. By the above discussion, in
considering the family of matrices HTNN for all N ≥ 1, we are studying
moment sequences of admissible measures supported on I = R+, or the re-
lated Hausdorff moment problem for I = [0, 1]. In this case, one also has a
Schoenberg-like characterization, outside of the origin.

Theorem 5.13 (Belton–Guillot–Khare–Putinar [12]). Let f : R+ → R.
The following are equivalent.

(1) Applied entrywise, the map f preserves the set HTNN for all N ≥ 1.
(2) Applied entrywise, the map f preserves positive semidefiniteness on

HTNN for all N ≥ 1.
(3) Applied entrywise, the map f preserves the set of moment sequences

of admissible measures supported on R+.
(4) Applied entrywise, the map f preserves the set of moment sequences

of admissible measures supported on [0, 1].
(5) The function f agrees on (0,∞) with an absolutely monotonic entire

function, hence is non-decreasing, and 0 ≤ f(0) ≤ limε→0+ f(ε).

Remark 5.14. If we work only with f : (0,∞) → R, then we are inter-
ested in matrices in HTNN with positive entries. Since the only matrices
in HTNN with a zero entry are scalar multiples of the elementary square
matrices E11 or ENN (equivalently, the only admissible measures supported
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in R+ with a zero moment are of the form cδ0), the test set does not really
reduce, and hence the preceding theorem still holds in essence: we must
replace HTNN by HTNN

(
(0,∞)

)
in (1) and (2), reduce the class of ad-

missible measures to those that are not of the form cδ0 in (3) and (4), and
end (5) at ‘entire function’. These five modified statements are, once again,
equivalent, and provide further equivalent conditions to those of Vasudeva
(Theorems 3.3 and 3.18).

In a similar vein, we now present the classification of sign patterns of
polynomial or power-series functions that preserve TN entrywise in a fixed
dimension on Hankel matrices. This too turns out to be exactly the same
as for positivity preservers.

Theorem 5.15 (Khare–Tao [89]). Fix ρ > 0 and real exponents n0 < · · · <
nN−1 < M . For any real coefficients c0, . . . , cN−1, c′, let

f(x) :=

N−1∑
j=0

cjx
nj + c′xM . (5.1)

The following are equivalent.

(1) The entrywise map f [−] preserves TN on the rank-one matrices
in HTNN

(
(0, ρ)

)
.

(2) The entrywise map f [−] preserves positivity on the rank-one matri-
ces in HTNN

(
(0, ρ)

)
.

(3) Either all the coefficients c0, . . . , cN−1, c′ are non-negative, or c0,
. . . , cN−1 are positive and c′ ≥ −C−1, where

C =

N−1∑
j=0

V (nj)
2

V (n)2
ρM−nj

cj
. (5.2)

If nj ∈ Z+ ∪ [N − 2,∞) for j = 0, . . . , N − 1, then conditions (1), (2) and
(3) are further equivalent to the following.

(4) The entrywise map f [−] preserves TN on HTNN

(
[0, ρ]

)
.

In particular, this produces further equivalent conditions to Theorem 4.15.
Notice that assertion (2) here is valid because the rank-one matrices used in

proving Theorem 4.15 are of the form cuuT , where u = (1, u0, . . . , u
N−1
0 )T ,

u0 ∈ (0, 1), and c ∈ (0, ρ), so that cuuT ∈ HTNN

(
(0, ρ)

)
.

The consequences of Theorem 4.15 also carry over for TN preservers. For
instance, one can bound Laplace transforms analogously to Corollary 4.17,
by replacing the words “positive semidefinite” by “totally non-negative” and
the set PN

(
(0, ρ)

)
by HTNN

(
(0, ρ)

)
. Similarly, one can completely classify

the sign patterns of power series that preserve TN entrywise on Hankel
matrices of a fixed size:

Theorem 5.16 (Khare–Tao [89]). Theorems 4.5 and 4.19 hold upon replac-
ing the phrase “preserves positivity entrywise on PN

(
(0, ρ)

)
” with “preserves

TN entrywise on HTNN

(
(0, ρ)

)
”, for both ρ <∞ and for ρ =∞.
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We point the reader to [89, End of Section 9] for details.
To conclude, it is natural to seek a general result that relates the positivity

preservers on PN (I) and TN preservers on the set HTNN (I) for domains
I ⊂ R+. Here is one variant which helps prove the above theorems, and
which essentially follows from Theorem 5.11.

Proposition 5.17 (Khare–Tao [89]). Fix integers 1 ≤ k ≤ N and a scalar
0 < ρ ≤ ∞. Suppose f : [0, ρ) → R is such that the entrywise map
f [−] preserves positivity on PkN

(
[0, ρ)

)
, the set of matrices in PN

(
[0, ρ)

)
with rank no more than k. Then f [−] preserves total non-negativity on
HTNN

(
[0, ρ)

)
∩ PkN

(
[0, ρ)

)
.

5.3. Entrywise preservers of totally non-negative matrices. The TN
property is very rigid when it comes to entrywise operations, as the following
result makes clear.

Theorem 5.18 ([13, Theorem 2.1]). Let F : R+ → R be a function and
let d := min(m,n), where m and n are positive integers. The following are
equivalent.

(1) F preserves TN entrywise on m× n matrices.
(2) F preserves TN entrywise on d× d matrices.
(3) F is either a non-negative constant or

(a) (d = 1) F (x) ≥ 0;
(b) (d = 2) F (x) = cxα for some c > 0 and some α ≥ 0;
(c) (d = 3) F (x) = cxα for some c > 0 and some α ≥ 1;
(d) (d ≥ 4) F (x) = cx for some c > 0.

Proof. That (1) ⇐⇒ (2) is immediate, as is the equivalence of (2) and (3)
when d = 1. For larger values of d, we sketch the implication (2) =⇒ (3).

For d = 2, let the totally non-negative matrices

A(x, y) :=

[
x xy
1 y

]
and B(x, y) :=

[
xy x
y 1

]
(x, y ≥ 0). (5.3)

If the non-constant function F preserves TN entrywise for 2 × 2 matrices,
then the non-negativity of the determinants of F [A(x, y)] and F [B(x, y)]
gives that

F (xy)F (1) = F (x)F (y) for all x, y ≥ 0. (5.4)

It follows that F is strictly positive. Applying Vasudeva’s argument, as
set out before Proposition 3.8, now implies that F is continuous on (0,∞).
Since the identity (5.4) shows that x 7→ F (x)/F (1) is multiplicative, there
exists an exponent α ∈ R+ such that F (x) = F (1)xα for all x > 0. The final
details are left as an exercise.

For d = 3, note that the 3 × 3 matrix A ⊕ 0 is totally non-negative if
and only if the 2 × 2 matrix A is. Hence the previous working gives that
F (x) = cxα for some c > 0 and α ≥ 0. Looking at detF [C] for the totally
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non-negative matrix

C :=

 1 1/
√

2 0

1/
√

2 1 1/
√

2

0 1/
√

2 1

 (5.5)

shows that we must have α ≥ 1.
The argument to rule out the possibility that α ∈ [1, 2) when d ≥ 4 is

more involved, but makes use of an example of Fallat, Johnson and Sokal
[48, Example 5.8]. Full details are provided in [13]. �

If our totally non-negative matrices are also required to be symmetric,
and so positive semidefinite, then the classes of preservers are enlarged some-
what, but still fairly restrictive.

Theorem 5.19 ([13, Theorem 2.3]). Let F : R+ → R and let d be a positive
integer. The following are equivalent.

(1) F preserves TN entrywise on symmetric d× d matrices.
(2) F is either a non-negative constant or

(a) (d = 1) F ≥ 0;
(b) (d = 2) F is non-negative, non-decreasing, and multiplicatively

mid-convex, that is, F (
√
xy)2 ≤ F (x)F (y) for all x, y ∈ [0,∞),

so continuous;
(c) (d = 3) F (x) = cxα for some c > 0 and some α ≥ 1;
(d) (d = 4) F (x) = cxα for some c > 0 and some α ∈ {1} ∪ [2,∞);
(e) (d ≥ 5) F (x) = cx for some c > 0.

5.4. Entrywise preservers of totally positive matrices. In moving
from total non-negativity to total positivity, we face two significant tech-
nical challenges. Firstly, the idea of realizing totally non-negative d × d
matrices as submatrices of totally non-negative (d + 1) × (d + 1) matrices,
by padding with zeros, does not transfer to the TP setting. Secondly, it is
no longer possible to use Vasudeva’s idea to establish multiplicative mid-
point convexity, since the test matrices used for this are not always totally
positive.

The first issue leads us into the domain of totally positive completion
problems [47]. It is possible to do this generality, using parametrizations
of TP matrices [53] or exterior bordering [46, Chapter 9], but the following
result has the advantage of providing an explicit embedding into a well-
known class of matrices.

Lemma 5.20 ([13, Lemma 3.2]). Any totally positive 2× 2 matrix may be
realized as the leading principal submatrix of a positive multiple of a rectan-
gular totally positive generalized Vandermonde matrix of any larger size.

Remark 5.21 ([13, Remark 3.4]). Lemma 5.20 can be strengthened to the
following completion result: given integers m, n ≥ 2, an arbitrary 2 × 2
matrix A occurs as a minor in a totally positive m× n matrix at any given
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position (that is, in a specified pair of rows and pair of columns) if and only
if A is totally positive.

The other tool which will be vital to our deliberations is the following
result of Whitney.

Theorem 5.22 ([139, Theorem 1]). The set of totally positive m×n matrices
is dense in the set of totally non-negative m× n matrices.

With these tools in hand, we are able to provide a complete classification
of the entrywise TP preservers of each fixed size, akin to the results in the
preceding section.

Theorem 5.23 ([13, Theorem 3.1]). Let F : (0,∞)→ R be a function and
let d := min(m,n), where m and n are positive integers. The following are
equivalent.

(1) F preserves total positivity entrywise on m× n matrices.
(2) F preserves total positivity entrywise on d× d matrices.
(3) The function F satisfies

(a) (d = 1) F (x) > 0;
(b) (d = 2) F (x) = cxα for some c > 0 and some α > 0;
(c) (d = 3) F (x) = cxα for some c > 0 and some α ≥ 1;
(d) (d ≥ 4) F (x) = cx for some c > 0.

Proof. We sketch the proof that (2) =⇒ (3) when d = 2 and d ≥ 3. For
the first case, working with the matrix[

y x
x y

]
(y > x > 0)

shows that F takes positive values and is increasing, so is Borel measurable
and continuous except on a countable set. We now fix a point of continuity a
and use the totally positive matrices

A(x, y, ε) :=

[
ax axy
a− ε ay

]
and B(x, y, ε) :=

[
axy ax
ay a+ ε

]
to show that

0 ≤ lim
ε→0+

detF [A(x, y, ε)] = F (ax)F (ay)− F (axy)F (a)

and 0 ≤ lim
ε→0+

detF [B(x, y, ε)] = F (a)F (axy)− F (ax)F (ay)

for all x, y > 0. Hence G : x 7→ F (ax)/F (a) is such that

G(xy) = G(x)G(y) for all x, y > 0,

so G is a measurable solution of the Cauchy functional equation. It follows
that G(x) = xα for some α ∈ R. As F , and so G, is increasing, we must
have α > 0.

Finally, if d ≥ 3, then the embedding of Lemma 5.20 and the previous
working give positive constants c and α such that F (x) = cxα. In particular,
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the function F admits a continuous extension F̃ to R+. The density of TP
in TN, that is, Theorem 5.22, implies that F̃ preserves TN entrywise on d×d
matrices. Theorem 5.18 now establishes the form of F̃ , and so of F . �

We may consider a version of the previous theorem which restricts to the
case of totally positive matrices which are symmetric. A moment’s thought
leads to the consideration of a symmetric version of the matrix completion
problem.

Lemma 5.24 ([13, Lemma 3.7]). Any symmetric totally positive 2×2 matrix
occurs as the leading principal submatrix of a totally positive d × d Hankel
matrix, where d ≥ 2 can be taken arbitrary large.

Proof. It suffices to embed the matrix[
1 a
a b

]
(0 < a <

√
b)

into such a Hankel matrix. It is an exercise to prove the existence of a
continuous function f : [0, 1]→ R+; x 7→ cxs such that∫ 1

0
f(x) dx = a and

∫ 1

0
f(x)2 dx = b,

and then setting

ajk :=

∫ 1

0
f(x)j+k dx (j, k ≥ 0)

gives a Hankel matrix A as required. The verification of total positivity may
be made with the help of Andréief’s identity,

det

[∫
φi(x)ψj(x) dx

]k
i,j=1

=
1

k!

∫
· · ·
∫

det(φi(xj))
k
i,j=1 det(ψi(xj))

k
i,j=1 dx1 · · · dxk,

where φi(x) = f(x)αi−1 and ψj(x) = f(x)βj−1, with

1 ≤ α1 < · · · < αk ≤ d and 1 ≤ β1 < · · · < βk ≤ d,
together with the total positivity of generalized Vandermonde matrices. �

We remark here that the preceding result can be further strengthened to
have the symmetric TP 2×2 matrix occur in any “symmetric” position inside
a larger square symmetric TP Hankel matrix, in the spirit of Remark 5.21.
See [13, Theorem 3.9] for details.

We now state the symmetric version of Theorem 5.23.

Theorem 5.25 ([13, Theorem 3.6]). Let F : (0,∞) → R and let d be a
positive integer. The following are equivalent.

(1) F preserves total positivity entrywise on symmetric d× d matrices.
(2) The function F satisfies
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(a) (d = 1) F (x) > 0;
(b) (d = 2) F is positive, increasing, and multiplicatively mid-

convex, that is, F (
√
xy)2 ≤ F (x)F (y) for all x, y ∈ (0,∞),

so continuous;
(c) (d = 3) F (x) = cxα for some c > 0 and some α ≥ 1;
(d) (d = 4) F (x) = cxα for some c > 0 and some α ∈ {1} ∪ [2,∞).
(e) (d ≥ 5) F (x) = cx for some c > 0.

Although we have developed the key ingredients to prove this theorem,
we content ourselves with referring the interested reader to [13].

6. Power functions

A natural approach to tackle the problem of characterizing entrywise
preservers in fixed dimension is to examine if some natural simple functions
preserve positivity. One such family is the collection of power functions,
f(x) = xα for α > 0. Characterizing which fractional powers preserve
positivity entrywise has recently received much attention in the literature.
One of the first results in this area reads as follows.

Theorem 6.1 (FitzGerald and Horn [51, Theorem 2.2]). Let N ≥ 2 and
let A = [ajk] ∈ PN

(
R+

)
. For any real number α ≥ N − 2, the matrix

A◦α := [aαjk] is positive semidefinite. If 0 < α < N − 2 and α is not an

integer, then there exists a matrix A ∈ PN
(
(0,∞)

)
such that A◦α is not

positive semidefinite.

Theorem 6.1 shows that every real power α ≥ N − 2 entrywise preserves
positivity, while no non-integers in (0, N − 2) do. This surprising “phase
transition” phenomenon at the integer N − 2 is referred to as the “criti-
cal exponent” for preserving positivity. Studying which powers entrywise
preserve positivity is a very natural and interesting problem. It also often
provides insights to determine which general functions preserve positivity.
For example, Theorem 6.1 suggests that functions that entrywise preserve
positivity on PN should have a certain number of non-negative derivatives,
which is indeed the case by Theorem 3.4.

Outline of the proof. The first part of Theorem 6.1 relies on an ingenious
idea that we now sketch. The result is obvious for N = 2. Let us assume it
holds for some N − 1 ≥ 2, let A ∈ PN (R+), and let α ≥ N − 2. Write A in
block form,

A =

[
B ξ
ξT aNN

]
,

where B has dimension (N − 1)× (N − 1) and ξ ∈ RN−1. Assume without
loss of generality that aNN 6= 0 (as the case where aNN = 0 follows from
the induction hypothesis) and let ζ := (ξT , aNN )T /

√
aNN . Then A− ζζT =

(B− ξξT )/aNN ⊕ 0, where (B− ξξT )/aNN is the Schur complement of aNN
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in A. Hence A− ζζT is positive semidefinite. By the fundamental theorem
of calculus, for any x, y ∈ R,

xα = yα + α

∫ 1

0
(x− y)(λx+ (1− λ)y)α−1 dλ.

Using the above expression entrywise, we obtain

A◦α = ζ◦α(ζ◦α)T +

∫ 1

0
(A− ζζT ) ◦ (λA+ (1− λ)ζζT )◦(α−1) dλ.

Observe that the entries of the last row and column of the matrix A− ζζT
are all zero. Using the induction hypothesis and the Schur product theorem,
it follows that the integrand is positive semidefinite, and therefore so is A◦α.

The converse implication in Theorem 6.1 is shown by considering a matrix
of the form a1N×N + tuuT , where a, t > 0, the coordinates of u are distinct,
and t1 is small. Recall this is the exact same class of matrices that was
useful in proving the Horn–Loewner theorem 3.4 as well as its strengthening
in Theorem 3.10. The original proof, by FitzGerald and Horn [51], used
u = (1, 2, . . . , N)T , while a later proof by Fallat, Johnson and Sokal [48]

used the same argument, now with u = (1, u0, . . . , u
N−1
0 )T ; the motivation

in [48] was to work with Hankel matrices, and the matrix a1N×N + tuuT is
indeed Hankel. That said, the argument of FitzGerald and Horn works more
generally than both of these proofs, to show that, for any non-integral power
α ∈ (0, N−2), a > 0, and vector u ∈ (0,∞)N with distinct coordinates, there
exists t > 0 such that (a1N×N + tuuT )◦α is not positive semidefinite. �

In her 2017 paper [81], Jain provided a remarkable strengthening of the
result mentioned at the end of the previous proof, which removes the de-
pendence on t entirely.

Theorem 6.2 (Jain [81]). Let

A := [1 + ujuk]
N
j,k=1 = 1N×N + uuT ,

where N ≥ 2 and u = (u1, . . . , uN )T ∈ (0,∞)N has distinct entries. Then
A◦α is positive semidefinite for α ∈ R if and only if α ∈ Z+ ∪ [N − 2,∞).

Jain’s result identifies a family of rank-two positive semidefinite matrices,
every one of which encodes the classification of powers preserving positivity
over all of PN

(
(0,∞)

)
. In a sense, her rank-two family is the culmination

of previous work on positivity preserving powers for PN
(
(0,∞)

)
, since for

rank-one matrices, every entrywise power preserves positivity: (uuT )◦α =
u◦α(u◦α)T .

An immediate consequence of these results is the classification of the
entrywise powers preserving positivity on the N ×N TN Hankel matrices.
Recall from the results in Section 5.2 (including Lemma 5.12(4)) that there
is to be expected a strong correlation between this classification and the one
in Theorem 6.1.
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Corollary 6.3. Given N ≥ 2, the following are equivalent for an exponent
α ∈ R.

(1) The entrywise power function x 7→ xα preserves total non-negativity
on HTNN (see Lemma 5.12).

(2) The entrywise map x 7→ xα preserves positivity on HTNN .
(3) The entrywise map x 7→ xα preserves positivity on the matrices in

HTNN

(
(0,∞)

)
of rank at most two.

(4) The exponent α ∈ Z+ ∪ [N − 2,∞).

Proof. That (4) =⇒ (2) and (2) =⇒ (1) follow from Theorems 6.1
and 5.11, respectively. That (1) =⇒ (2) and (2) =⇒ (3) are obvious, and
Jain’s Theorem 6.2 shows that (3) =⇒ (4). �

A problem related to the above study of entrywise powers preserving
positivity, is to characterize infinitely divisible matrices. This problem was
also considered by Horn in [80]. Recall that a complex N ×N matrix is said
to be infinitely divisible if A◦α ∈ PN for all α ∈ R+. Denote the incidence
matrix of A by M(A):

M(A)jk = mjk :=

{
0 if ajk = 0

1 otherwise.

Also, let

L(A) := {x ∈ CN :

N∑
j,k=1

mjkxjxk = 0},

and note that L(A) is the kernel of M(A) if M(A) is positive semidefinite.
Assuming the arguments of the entries are chosen in a consistent way [80],

we let

log#A := M(A) ◦ log[A] = [µjk log ajk]
N
j,k=1,

with the usual convention 0 log 0 = 0.

Theorem 6.4 (Horn [80, Theorem 1.4]). An N ×N matrix A is infinitely
divisible if and only if (a) A is Hermitian, with ajj ≥ 0 for all j, (b) M(A) ∈
PN , and (c) log#A is positive semidefinite on L(A).

6.1. Sparsity constraints. Theorem 6.1 was recently extended to more
structured matrices. Given I ⊂ R and a graph G = (V,E) on the finite ver-
tex set V = {1, . . . , N}, we define the cone of positive-semidefinite matrices
with zeros according to G:

PG(I) := {A = [ajk] ∈ PN (I) : ajk = 0 if (j, k) 6∈ E and i 6= j}. (6.1)

Note that if (j, k) ∈ E, then the entry ajk is unconstrained; in particular, it
is allowed to be 0. Consequently, the cone PG := PG(R) is a closed subset
of PN .
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A natural refinement of Theorem 6.1 involves studying powers that en-
trywise preserve positivity on PG. In that case, the flavor of the prob-
lem changes significantly, with the discrete structure of the graph playing a
prominent role.

Definition 6.5 (Guillot–Khare–Rajaratnam [69]). Given a simple graph
G = (V,E), let

HG := {α ∈ R : A◦α ∈ PG for all A ∈ PG(R+)}. (6.2)

Define the Hadamard critical exponent of G to be

CE(G) := min{α ∈ R : [α,∞) ⊂ HG}. (6.3)

Notice that, by Theorem 6.1, for every graph G = (V,E), the critical
exponent CE(G) exists, and lies in [ω(G) − 2, |V | − 2], where ω(G) is the
size of the largest complete subgraph of G, that is, the clique number. To
compute such critical exponents is natural and highly non-trivial.

FitzGerald and Horn proved that CE(Kn) = n − 2 for all n ≥ 2 (The-
orem 6.1), while it follows from [70, Proposition 4.2] that CE(T ) = 1 for
every tree T . For a general graph, it is not a priori clear what the critical
exponent is or how to compute it. A natural family of graphs that encom-
passes both complete graphs and trees is that of chordal graphs. Recall that
a graph is chordal if it does not contain an induced cycle of length 4 or
more. Chordal graphs feature extensively in many areas, such as the theory
of graphical models [93], and in problems involving positive-definite com-
pletions (see [130]). Examples of important chordal graphs include trees,
complete graphs, Apollonian graphs, band graphs, and split graphs.

Recently, Guillot, Khare, and Rajaratnam [69] were able to compute the
complete set of entrywise powers preserving positivity on PG for all chordal
graphs G. Here, the critical exponent can be described purely combinatori-
ally.

Theorem 6.6 (Guillot–Khare–Rajaratnam [69]). Let K
(1)
r denote the com-

plete graph with one edge removed, and let G be a finite simple connected
chordal graph. The critical exponent for entrywise powers preserving posi-

tivity on PG is r − 2, where r is the largest integer such that Kr or K
(1)
r

is an induced subgraph of G. More precisely, the set of entrywise powers
preserving PG is HG = Z+ ∪ [r − 2,∞), with r as before.

The set of entrywise powers preserving positivity was also computed in
[69] for cycles and bipartite graphs.

Theorem 6.7 (Guillot–Khare–Rajaratnam [69]). The critical exponent of
cycles and bipartite graphs is 1.

Surprisingly, the critical exponent does not depend on the size of the
graph for cycles and bipartite graphs. In particular, it is striking that any
power greater than 1 preserves positivity for families of dense graphs such as
bipartite graphs. Such a result is in sharp contrast to the general case, where
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there is no underlying structure of zeros. That small powers can preserve
positivity is important for applications, since such entrywise procedures are
often used to regularize positive definite matrices, such as covariance or
correlation matrices, where the goal is to minimally modify the entries of
the original matrix (see [94, 143] and Chapter 7 below).

For a general graph, the problem of computing the set HG or the critical
exponent CE(G) remains open. We now outline some other natural open
problems in the area.

Problems.

(1) In every currently known case (Theorems 6.6, 6.7), CE(G) is equal

to r − 2, where r is the largest integer such that Kr or K
(1)
r is an

induced subgraph of G. Is the same true for every graph G?
(2) Is CE(G) always an integer? Can this be proved without computing

CE(G) explicitly?
(3) Recall that every chordal graph is perfect. Can the critical exponent

be calculated for other broad families of graphs such as the family
of perfect graphs?

6.2. Rank constraints and other Loewner properties. Another ap-
proach to generalize Theorem 6.1 is to examine other properties of entrywise
functions such as monotonicity, convexity, and super-additivity (with respect
to the Loewner semidefinite ordering) [78, 68]. Given a set V ⊂ PN (I), recall
that a function f : I → R is

• positive on V with respect to the Loewner ordering if f [A] ≥ 0 for
all 0 ≤ A ∈ V ;
• monotone on V with respect to the Loewner ordering if f [A] ≥ f [B]

for all A, B ∈ V such that A ≥ B ≥ 0;
• convex on V with respect to the Loewner ordering if f [λA + (1 −
λ)B] ≤ λf [A] + (1− λ)f [B] for all λ ∈ [0, 1] and all A, B ∈ V such
that A ≥ B ≥ 0;
• super-additive on V with respect to the Loewner ordering if f [A +
B] ≥ f [A] + f [B] for all A, B ∈ V for which f [A+B] is defined.

The following relations between the first three notions were obtained by
Hiai.

Theorem 6.8 (Hiai [78, Theorem 3.2]). Let I = (−ρ, ρ) for some ρ > 0.

(1) For each N ≥ 3, the function f is monotone on PN (I) if and only
if f is differentiable on I and f ′ is positive on PN (I).

(2) For each N ≥ 2, the function f is convex on PN (I) if and only if f
is differentiable on I and f ′ is monotone on PN (I).

Power functions satisfying any of the above four properties have been
characterized by various authors. In recent work, Hiai [78] has extended
Theorem 6.1 by considering the odd and even extensions of the power func-
tions to R. For α > 0, the even and odd extensions to R of the power func-
tion fα(x) := xα are defined to be φα(x) := |x|α and ψα(x) := sign(x)|x|α.
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The first study of powers α > 0 for which φα preserves positivity entrywise
on PN (R) was carried out by Bhatia and Elsner [18]. Subsequently, Hiai
studied the power functions φα and ψα that preserve Loewner positivity,
monotonicity, and convexity entrywise, and showed for positivity preservers
that the same phase transition occurs at n − 2 for φα and ψα, as demon-
strated in [51]. The work was generalized in [68] to matrices satisfying rank
constraints.

Definition 6.9. Fix non-negative integers n ≥ 2 and n ≥ k, and a set
I ⊂ R. Let Pkn(I) denote the subset of matrices in Pn(I) that have rank at
most k, and let

Hpos(n, k) := {α > 0 : xα preserves positivity on Pkn(R+)},

Hφpos(n, k) := {α > 0 : φα preserves positivity on Pkn(R)}, (6.4)

Hψpos(n, k) := {α > 0 : ψα preserves positivity on Pkn(R)}.

Similarly, let HJ(n, k), HφJ(n, k) and HψJ (n, k) denote sets of the entrywise

powers preserving Loewner properties on Pkn(R+) or Pkn(R), where J ∈
{monotonicity, convexity, super-additivity}.

The set of entrywise powers preserving the above notions are given in the
table below (see [68, Theorem 1.2]).

7. Motivation from statistics

The study of entrywise functions preserving positivity has recently at-
tracted renewed attraction due to its importance in the estimation and reg-
ularization of covariance/correlation matrices. Recall that the covariance
between two random variables Xj and Xk is given by

σjk = Cov(Xj , Xk) = E
[
(Xj − E[Xj ])(Xk − E[Xk])

]
,

where E[Xj ] denotes the expectation of Xj . In particular, Cov(Xj , Xj) =
Var(Xj), the variance of Xj . The covariance matrix of a random vector
X := (X1, . . . , Xm), is the matrix Σ := [Cov(Xj , Xk)]

m
j,k=1. Covariance

matrices are a fundamental tool that measure linear dependencies between
random variables. In order to discover relations between variables in data,
statisticians and applied scientists need to obtain estimates of the covariance
matrix Σ from observations x1, . . . , xn ∈ Rm of X. A traditional estimator
of Σ is the sample covariance matrix S given by

S = [sjk]
m
j,k=1 =

1

n− 1

n∑
i=1

(xi − x)(xi − x)T , (7.1)

where x := 1
n

∑n
i=1 xi is the average of the observations. In the case where

the random vector X has a multivariate normal distribution with mean µ
and covariance matrix Σ, one can show that x and n−1

n S are the maximum
likelihood estimators of µ and Σ, respectively [3, Chapter 3]. It is not difficult
to show that S is an unbiased estimator of Σ. More generally, under weak
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J HJ(n, k) HφJ(n, k) HψJ (n, k)

Positivity

k = 1 R R R
G–K–R G–K–R G–K–R

N ∪ [n− 2,∞) 2N ∪ [n− 2,∞) (−1 + 2N) ∪ [n− 2,∞)
2 ≤ k ≤ n FitzGerald–Horn Hiai, Bhatia–Elsner, Hiai, G–K–R

G–K–R

Monotonicity

k = 1 R+ R+ R+

G–K–R G–K–R G–K–R

2 ≤ k ≤ n N ∪ [n− 1,∞) 2N ∪ [n− 1,∞) (−1 + 2N) ∪ [n− 1,∞)
FitzGerald–Horn Hiai, G–K–R Hiai, G–K–R

Convexity

k = 1 [1,∞) [1,∞) [1,∞)
G–K–R G–K–R G–K–R

2 ≤ k ≤ n N ∪ [n,∞) 2N ∪ [n,∞) (−1 + 2N) ∪ [n,∞)
Hiai, G–K–R Hiai, G–K–R Hiai, G–K–R

Super-additivity

1 ≤ k ≤ n N ∪ [n,∞) 2N ∪ [n,∞) (−1 + 2N) ∪ [n,∞)
G–K–R G–K–R G–K–R

Table 1. Summary of real Hadamard powers preserving
Loewner properties, with additional rank constraints. See
Bhatia–Elsner [18], FitzGerald–Horn [51], Guillot–Khare–
Rajaratnam [68], and Hiai [78].

assumptions, one can show that the distribution of
√
n(S −Σ) is asymptot-

ically normal as n → ∞. The exact description of the limiting distribution
depends on the moments and the cumulants of X (see [20, Chapter 6.3]).
For example, in the two-dimensional case, we have the following result.

Let Nm(µ,Σ) denote the m-dimensional normal distribution with mean µ
and covariance matrix Σ.

Proposition 7.1 (see [20, Example 6.4]). Let x1, . . . , xn ∈ R2 be an
independent and identically distributed sample from a bivariate vector X =
(X1, X2) with mean µ = (µ1, µ2) and finite fourth-order moments, and let S
be as in Equation (7.1). Then

√
n

 s21s12
s22

−
 σ21σ12
σ22

 d−→ N3(0,Ω),

where Ω is the symmetric 3× 3 matrix

Ω =

 µ
1
4 − (µ12)

2 µ1231 − µ1211µ12 µ1222 − µ12µ22
µ1231 − µ1211µ12 µ1222 − (µ1211)

2 µ1213 − µ1211µ22
µ1222 − µ12µ22 µ1231 − µ1211µ12 µ24 − (µ22)

2

 ,
and µik = E[(Xi − µi)k] and µijkl = E[(Xi − µi)k(Xj − µj)l].
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In traditional statistics, one usually assumes the number of samples n
is large enough for asymptotic results such as the one above to apply. In
covariance estimation, one typically requires a sample size at least a few
times the number of variables m for that to apply. In such a case, the
sample covariance matrix provides a good approximation of the true co-
variance matrix Σ. However, this ideal setting is rarely seen nowadays.
Indeed, our systematic and automated way of collecting data today yields
datasets where the number of variables is often orders of magnitude larger
than the number of instances available for study [41]. Classical statisti-
cal methods were not designed and are not suitable for analyzing data in
such settings. Developing new methodologies that are adapted to modern
high-dimensional problems is the object of active research. In the case of
covariance estimation, several strategies have been proposed to replace the
traditional sample covariance matrix estimator S. These approaches typ-
ically leverage low-dimensional structures in the data (low rank, sparsity,
. . . ) to obtain reasonable covariance estimates, even when the sample size
is small compared to the dimension of the problem (see [111] for a detailed
description of such techniques). One such approach involves applying func-
tions to the entries of sample covariance matrices to improve their properties
(see [6, 19, 44, 75, 76, 94, 114, 143]). For example, hard thresholding a matrix
entails setting to zero the entries of the matrix that are smaller in absolute
value than a prescribed value ε > 0 (thinking the corresponding variables
are independent, for example). Letting

fHε (x) =

{
x if |x| > ε,

0 otherwise,
(7.2)

hard thresholding is equivalent to applying the function fHε entrywise to the
entries of the matrix. Another popular example that was first studied in the
context of wavelet shrinkage [42] is soft thresholding, where fHε is replaced
by

fSε : x 7→ sign(x)
(
|x| − ε

)
+

with y+ := max{y, 0}.
Soft thresholding not only sets small entries to zero, it also shrinks all the
other entries continuously towards zero. Several other thresholding and
shrinkage procedures were also recently proposed in the context of covariance
estimation (see [49] and the references therein).

Compared to other techniques, the above procedure has several advan-
tages. Firstly, the resulting estimators are often significantly more precise
than the sample covariance matrices. Secondly, applying a function to the
entries of a matrix is very simple and not computationally intensive. The
procedure can therefore be performed in very high dimensions and in real-
time applications. This is in contrast to several other techniques that require
solving optimization problems and often become too intensive to be used in
modern applications. A downside of the entrywise calculus, however, is that
the positive definiteness of the resulting matrices is not guaranteed. As the
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parameter space of covariance matrices is the cone of positive definite ma-
trices, it is critical that the resulting matrices be positive definite for the
technique to be useful and widely applicable. The problem of characterizing
positivity preservers thus has an immediate impact in the area of covariance
estimation by providing useful functions that can be applied entrywise to
covariance estimates in order to regularize them.

Several characterizations of when thresholding procedures preserve posi-
tivity have recently been obtained.

7.1. Thresholding with respect to a graph. In [72], the concept of
thresholding with respect to a graph was examined. In this context, the ele-
ments to threshold are encoded in a graph G = (V,E) with V = {1, . . . , p}.
If A = (ajk) is a p× p matrix, we denote by AG the matrix with entries

(AG)jk =

{
ajk if (j, k) ∈ E or j = k,

0 otherwise.

We say that AG is the matrix obtain by thresholding A with respect to the
graph G. The main result of [72] characterizes the graphs G for which the
corresponding thresholding procedure preserves positivity. Denote by P+

N

the set of real symmetric N × N positive definite matrices and by P+
G the

subset of positive definite matrices contained in PG (see Equation (6.1)).

Theorem 7.2 (Guillot–Rajaratnam [72, Theorem 3.1]). The following are
equivalent:

(1) AG ∈ P+
N for all A ∈ P+

N ;

(2) G =
⋃d
i=1Gi, where G1, . . . , Gd are disconnected and complete

components of G.

The implication (2) =⇒ (1) of the theorem is intuitive and straightfor-
ward, since principal submatrices of positive definite matrices are positive
definite. That (1) =⇒ (2) may come as a surprise though, and shows
that indiscriminate or arbitrary thresholding of a positive definite matrix
can quickly lead to loss of positive definiteness.

Theorem 7.2 also generalizes to matrices that already have zero entries. In
that case, the characterization of the positivity preservers remains essentially
the same.

Theorem 7.3 (Guillot–Rajaratnam [72, Theorem 3.3]). Let G = (V,E)
be an undirected graph and let H = (V,E′) be a subgraph of G, so that
E′ ⊂ E. Then AH is positive definite for every A ∈ P+

G if and only if
H = G1 ∪ · · · ∪ Gk, where G1, . . . , Gk are disconnected induced subgraphs
of G.

7.2. Hard and soft thresholding. Theorems 7.2 and 7.3 address the case
where positive definite matrices are thresholded with respect to a given
pattern of entries, regardless of the magnitude of the entries of the original
matrix. The more natural case where the entries are hard or soft thresholded
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was studied in [72, 73]. In applications, it is uncommon to threshold the
diagonal entries of estimated covariance matrices, as the diagonal contains
the variance of the underlying variables. Hence, for a given function f : R→
R and a real matrix A = [ajk], we let the matrix f∗[A] be defined by setting

f∗[A]jk :=

{
f(ajk) if j 6= k,

ajk otherwise.

Theorem 7.4 (Guillot–Rajaratnam [72, Theorem 3.6]). Let G be a con-
nected undirected graph with n ≥ 3 vertices. The following are equivalent.

(1) There exists ε > 0 such that, for every A ∈ P+
G , we have (fHε )∗[A] ∈

P+
n .

(2) For every ε > 0 and every A ∈ P+
G , we have fHε [A] ∈ P+

n .
(3) G is a tree.

The case of soft thresholding was considered in [73]. Surprisingly, the
characterization of the thresholding levels that preserve positivity is exactly
the same as in the case of hard thresholding.

Theorem 7.5 (Guillot–Rajaratnam [73, Theorem 3.2]). Let G = (V,E) be
a connected graph with n ≥ 3 vertices. Then the following are equivalent:

(1) There exists ε > 0 such that for every A ∈ P+
G , we have (fSε )∗[A] ∈

P+
n .

(2) For every ε > 0 and every A ∈ P+
G , we have fSε [A] ∈ P+

n .
(3) G is a tree.

An extension of Schoenberg’s theorem (Theorem 2.12) to the case where
the function f is only applied to the off-diagonal entries of the matrix was
also obtained in [73].

Theorem 7.6 (Guillot–Rajaratnam [73, Theorem 4.21]). Let 0 < ρ ≤ ∞
and f : (−ρ, ρ) → R. The matrix f∗[A] is positive semidefinite for all
A ∈ Pn

(
(−ρ, ρ)

)
and all n ≥ 1 if and only if f(x) = xg(x), where

(1) g is analytic on the disc D(0, ρ);
(2) ‖g‖∞ ≤ 1;
(3) g is absolutely monotonic on (0, ρ).

When ρ = ∞, the only functions satisfying the above conditions are the
affine functions f(x) = ax for 0 ≤ a ≤ 1.

7.3. Rank and sparsity constraints. An explicit and useful characteri-
zation of entrywise functions preserving positivity on PN for a fixed N still
remains out of reach as of today. Motivated by applications in statistics, the
authors in [70, 71] examined the cases where the matrices in PN satisfy sup-
plementary rank and sparsity constraints that are common in applications.

Observe that the sample covariance matrix (Equation (7.1)) has rank at
most n, where n is the number of samples used to compute it. Moreover, as
explained at the start of this Chapter, it is common in modern applications
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that n is much smaller than the dimension p. Hence, when studying the
regularization approach described above, it is natural to consider positive
semidefinite matrices with bounded rank.

An immediate application of Schoenberg’s theorem on spheres (see Equa-
tion (2.3)) provides a characterization of entrywise positivity preservers of
correlation matrices of all dimensions, with rank bounded by n. Recall that
a correlation matrix is the covariance matrix of a random vector where each
variable has variance 1, so is a positive semidefinite matrix with diagonal
entries equal to 1. As in Equation (2.3), we denote the ultraspherical or-

thogonal polynomials by P
(λ)
k .

Theorem 7.7 (Reformulation of [125, Theorem 1]). Let n ∈ N and let
f : [−1, 1]→ R. The following are equivalent.

(1) f [A] ∈ PN for all correlation matrices A ∈ PN
(
[−1, 1]

)
with rank

no more than n and all N ≥ 1.

(2) f(x) =
∑∞

j=0 ajP
(λ)
j (x) with aj ≥ 0 for all j ≥ 0 and λ = (n− 1)/2.

Proof. The result follows from [125, Theorem 1] and the observation that
correlation matrices of rank at most n are in correspondence with Gram
matrices of vectors in Sn−1. �

In order to approach the case of matrices of a fixed dimension, we intro-
duce some notation.

Definition 7.8. Let I ⊂ R. Define Sn(I) to be the set of n× n symmetric
matrices with entries in I. Let rankA denote the rank of a matrix A. We
define:

Skn(I) := {A ∈ Sn(I) : rankA ≤ k},

Pkn(I) := {A ∈ Pn(I) : rankA ≤ k}.

The main result in [71] provides a characterization of entrywise functions
mapping P ln into Pkn.

Theorem 7.9 (Guillot–Khare–Rajaratnam [71, Theorem B]). Let 0 < R ≤
∞ and I = [0, R) or (−R,R). Fix integers n ≥ 2, 1 ≤ k < n − 1, and
2 ≤ l ≤ n. Suppose f ∈ Ck(I). The following are equivalent.

(1) f [A] ∈ Skn for all A ∈ P ln(I);
(2) f(x) =

∑r
t=1 ctx

it for some ct ∈ R and some it ∈ N such that

r∑
t=1

(
it + l − 1

l − 1

)
≤ k. (7.3)

Similarly, f [−] : P ln(I) → Pkn if and only if f satisfies (2) and ct ≥ 0 for
all t. Moreover, if I = [0, R) and k ≤ n − 3, then the assumption that
f ∈ Ck(I) is not required.
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Notice that Theorem 7.9 is a fixed-dimension result with rank constraints.
This may be considered a refinement of a similar, dimension-free result with
rank constraints shown in [5], in which the authors arrive at the same con-
clusion as in part (2) above. We compare the two settings: in [5], (a) the hy-
potheses held for all dimensions N rather than in a fixed dimension; (b) the
test matrices were a larger set in each dimension, compared to just the posi-
tive matrices considered in Theorem 7.9; (c) the test matrices did not consist
only of rank-one matrices, similar to Theorem 7.9; and (d) the test functions
f in the dimension-free case were assumed to be measurable, rather than
Ck as in the fixed-dimension case. Thus, Theorem 7.9 is (a refinement of)
the fixed-dimension case of the first main result in [5].10

The (2) =⇒ (1) implication in Theorem 7.9 is clear. Indeed, let i ≥ 0

and A =
∑l

j=1 uju
T
j ∈ P ln(I). Then

A◦i =
∑

m1+···+ml=i

(
i

m1, . . . ,ml

)
wmwT

m where wm := u◦m1
1 ◦ · · · ◦ u◦mll

and

(
i

m1, . . . ,ml

)
is a multinomial coefficient. Note that there are exactly(

i+l−1
l−1

)
terms in the previous summation. Therefore rankA◦i ≤

(
i+l−1
l−1

)
, and

so (1) easily follows from (2). The proof that (1) =⇒ (2) is much more
challenging; see [71] for details.

In [70], the authors focus on the case where sparsity constraints are im-
posed to the matrices instead of rank constraints. Positive semidefinite ma-
trices with zeros according to graphs arise naturally in many applications.
For example, in the theory of Markov random fields in probability theory
([93, 140]), the nodes of a graph G represent components of a random vec-
tor, and edges represent the dependency structure between nodes. Thus,
absence of an edge implies marginal or conditional independence between
the corresponding random variables, and leads to zeros in the associated co-
variance or correlation matrix (or its inverse). Such models therefore yield
parsimonious representations of dependency structures. Characterizing en-
trywise functions preserving positivity for matrices with zeros according to
a graph is thus of tremendous interest for modern applications. Obtaining
such characterizations is, however, much more involved than the original
problem considered by Schoenberg as one has to enforce and maintain the
sparsity constraint. The problem of characterizing functions preserving pos-
itivity for sparse matrices is also intimately linked to problems in spectral
graph theory and many other problems (see e.g. [79, 1, 105, 31]).

10We also point out the second main result in loc. cit., that is, [5, Theorem 2], which
classifies all continuous entrywise maps f : C → C that obey similar rank constraints in
all dimensions. Such maps are necessarily of the form g(z) =

∑p
j=1 βjz

mj (z)nj , where
the exponents mj and nj are non-negative integers. This should immediately remind the
reader of Rudin’s conjecture in the ‘dimension-free’ case, and its resolution by Herz; see
Theorem 3.2.
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As before, for a given graph G = (V,E) on the finite vertex set V =
{1, . . . , N}, we denote by PG(I) the set of positive-semidefinite matrices
with entries in I and zeros according to G, as in (6.1). Given a function
f : R→ R and A ∈ S|G|(R), denote by fG[A] the matrix such that

fG[A]jk :=

{
f(ajk) if (j, k) ∈ E or j = k,

0 otherwise.

The first main result in [70] is an explicit characterization of the entrywise
positive preservers of PG for any collection of trees (other than copies of K2).
Following Vasudeva’s classification for PK2 in Theorem 4.1, trees are the only
other graphs for which such a classification is currently known.

Theorem 7.10 (Guillot–Khare–Rajaratnam [70, Theorem A]). Suppose
I = [0, R) for some 0 < R ≤ ∞, and f : I → R+. Let G be a tree
with at least 3 vertices, and let A3 denote the path graph on 3 vertices. The
following are equivalent.

(1) fG[A] ∈ PG for every A ∈ PG(I);
(2) fT [A] ∈ PT for all trees T and all matrices A ∈ PT (I);
(3) fA3 [A] ∈ PA3 for every A ∈ PA3(I);
(4) The function f satisfies

f
(√
xy
)2 ≤ f(x)f(y) for all x, y ∈ I (7.4)

and is super-additive on I, that is,

f(x+ y) ≥ f(x) + f(y) whenever x, y, x+ y ∈ I. (7.5)

The implication (4) =⇒ (1) was further extended to all chordal graphs:
it is the following result with c = 2 and d = 1.

Theorem 7.11 (Guillot–Khare–Rajaratnam [69]). Let G be a chordal graph
with a perfect elimination ordering of its vertices {v1, . . . , vn}. For all 1 ≤
k ≤ n, denote by Gk the induced subgraph on G formed by {v1, . . . , vk}, so
that the neighbors of vk in Gk form a clique. Define c = ω(G) to be the
clique number of G, and let

d := max{degGk(vk) : k = 1, . . . , n}.

If f : R → R is any function such that f [−] preserves positivity on P1
c (R)

and f [M + N ] ≥ f [M ] + f [N ] for all M ∈ Pd and N ∈ P1
d , then f [−]

preserves positivity on PG(R). [Here, P1
d denotes the matrices in Pd of rank

at most one.]

See [69] for other sufficient conditions for a general entrywise function to
preserve positivity on PG for G chordal.

To state the final result in this section, recall that Schoenberg’s theorem
(Theorem 2.12) shows that entrywise functions preserving positivity for all
matrices (that is, according to the family of complete graphs Kn for n ≥ 1)
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are absolutely monotonic on the positive axis. It is not clear if functions sat-
isfying (7.4) and (7.5) in Theorem 7.10 are necessarily absolutely monotonic,
or even analytic. As shown in [70, Proposition 4.2], the critical exponent
(see Definition 6.5) of every tree is 1. Hence, functions satisfying (7.4) and
(7.5) do not need to be analytic. The second main result in [70] demon-
strates that even if the function is analytic, it can in fact have arbitrarily
long strings of negative Taylor coefficients.

Theorem 7.12 (Guillot–Khare–Rajaratnam [70, Theorem B]). There exists
an entire function f(z) =

∑∞
n=0 anz

n such that

(1) an ∈ [−1, 1] for every n ≥ 0;
(2) The sequence (an)n≥0 contains arbitrarily long strings of negative

numbers;
(3) For every tree G, fG[A] ∈ PG for every A ∈ PG

(
R+

)
.

In particular, if ∆(G) denotes the maximum degree of the vertices of G,
then there exists a family Gn of graphs and an entire function f that is not
absolutely monotonic, such that

(1) supn≥1 ∆(Gn) =∞;
(2) fGn [A] ∈ PGn for every A ∈ PGn(R+).
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