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Dimension-free results
Fixed dimension results

1. Analysis: Schoenberg, Rudin, and measures
2. Metric geometry: from spheres to correlations

Introduction

Positivity (and preserving it) studied in many settings in the literature.

Different flavors of positivity:

Positive semidefinite N ×N real symmetric matrices:
uTAu > 0 ∀u.
Equivalently: A has all non-negative eigenvalues, or all non-negative
principal minors. (Examples: Correlation and covariance matrices.)

Positive definite sequences/Toeplitz matrices (measures on S1)

Moment sequences/Hankel matrices (measures on R)
Hilbert space kernels

Positive definite functions on metric spaces, topological (semi)groups

Question: Classify the positivity preservers in these settings.

Studied for the better part of a century.
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Entrywise functions preserving positivity
Given N > 1 and I ⊂ R, let PN (I) denote the N ×N positive semidefinite
matrices, with entries in I. (Say PN = PN (R).)

Problem: Given a function f : I → R, when is it true that
f [A] := (f(aij)) ∈ PN for all A ∈ PN (I)?

(Long history!)

The Hadamard product (or Schur, or entrywise product) of two
matrices is given by: A ◦B = (aijbij).

Schur Product Theorem (Schur, J. Reine Angew. Math. 1911)

If A,B ∈ PN , then A ◦B ∈ PN .

Pólya–Szegö: As a consequence,

f(x) = x2, x3, . . . , xk preserves positivity on PN for all N, k.

f(x) =
∑l
k=0 ckx

k preserves positivity if ck > 0.

Taking limits: if f(x) =
∑∞
k=0 ckx

k is convergent and ck > 0, then f [−]
preserves positivity.

Anything else?

Apoorva Khare, IISc Bangalore 3 / 32
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Schoenberg’s theorem

Question (Pólya–Szegö, 1925): Anything else?

Remarkably, the answer is no, if
we want to preserve positivity in all dimensions.

Theorem (Schoenberg, Duke Math. J. 1942; Rudin, Duke Math. J. 1959)

Suppose I = (−1, 1) and f : I → R. The following are equivalent:

1 f [A] ∈ PN for all A ∈ PN (I) and all N .

2 f is analytic on I and has nonnegative Maclaurin coefficients. In other
words, f(x) =

∑∞
k=0 ckx

k on (−1, 1) with all ck > 0.

Such functions f are said to be absolutely monotonic on (0, 1).

Apoorva Khare, IISc Bangalore 4 / 32
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Toeplitz and Hankel matrices

Motivations: Rudin was motivated by harmonic analysis and Fourier analysis
on locally compact groups. On G = S1, he studied preservers of positive
definite sequences (an)n∈Z. This means the Toeplitz kernel (ai−j)i,j>0 is
positive semidefinite.

In [Duke Math. J. 1959] Rudin showed: f preserves positive definite
sequences (Toeplitz matrices) if and only if f is absolutely monotonic.
Suffices to work with measures with 3-point supports.

Important parallel notion: moment sequences.
Given positive measures µ on [−1, 1], with moment sequences

s(µ) := (sk(µ))k>0, where sk(µ) :=

∫
R
xk dµ,

classify the moment-sequence transformers: f(sk(µ)) = sk(σµ), ∀k > 0.

With Belton–Guillot–Putinar  a parallel result to Rudin:

Apoorva Khare, IISc Bangalore 5 / 32
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Toeplitz and Hankel matrices (cont.)

Let 0 < ρ 6∞ be a scalar, and set I = (−ρ, ρ).

Theorem (Rudin, Duke Math. J. 1959)

Given a function f : I → R, the following are equivalent:

1 f [−] preserves the set of positive definite sequences with entries in I.

2 f [−] preserves positivity on Toeplitz matrices of all sizes and rank 6 3.

3 f is analytic on I and has nonnegative Maclaurin coefficients.
In other words, f(x) =

∑∞
k=0 ckx

k on (−1, 1) with all ck > 0.

Theorem (Belton–Guillot–K.–Putinar, 2016)

Given a function f : I → R, the following are equivalent:

1 f [−] preserves the set of moment sequences with entries in I.

2 f [−] preserves positivity on Hankel matrices of all sizes and rank 6 3.

3 f is analytic on I and has nonnegative Maclaurin coefficients.

Apoorva Khare, IISc Bangalore 6 / 32
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Positive semidefinite kernels

These two results greatly weaken the hypotheses of Schoenberg’s theorem
– only need to consider positive semidefinite matrices of rank 6 3.

Note, such matrices are precisely the Gram matrices of vectors in a
3-dimensional Hilbert space. Hence Rudin (essentially) showed:

Let H be a real Hilbert space of dimension > 3. If f [−] preserves
positivity on all Gram matrices in H, then f is a power series on R with
non-negative Maclaurin coefficients.

But such functions are precisely the positive semidefinite kernels on H!
(Results of Pinkus et al.) Such kernels are important in modern day
machine learning, via RKHS.

Thus, Rudin (1959) classified positive semidefinite kernels on R3, which is
relevant in machine learning. (Now also via our parallel ‘Hankel’ result.)

Apoorva Khare, IISc Bangalore 7 / 32
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Schoenberg’s theorem in several variables
Let I = (−ρ, ρ) for some 0 < ρ 6∞ as above. Also fix m > 1.
Given matrices A1, . . . , Am ∈ PN (I) and f : Im → R, define

f [A1, . . . , Am]ij := f(a
(1)
ij , . . . , a

(m)
ij ), ∀i, j = 1, . . . , N.

Theorem (FitzGerald–Micchelli–Pinkus, Linear Alg. Appl. 1995)

Given f : Rm → R, the following are equivalent:

1 f [A1, . . . , Am] ∈ PN for all Aj ∈ PN (I) and all N .

2 The function f is real entire and absolutely monotonic: for all x ∈ Rm,
f(x) =

∑
α∈Zm

+

cαx
α, where cα > 0 ∀α ∈ Zm+ .

((2)⇒ (1) by Schur Product Theorem.) The test set can again be reduced:

Theorem (Belton–Guillot–K.–Putinar, 2016)

The above two hypotheses are further equivalent to:

3 f [−] preserves positivity on m-tuples of Hankel matrices of rank 6 3.

Apoorva Khare, IISc Bangalore 8 / 32
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Distance geometry

How did the study of positivity and its preservers begin?

In the 1900s, the notion of a metric space emerged from the works of Fréchet
and Hausdorff. . .

Now ubiquitous in science (mathematics, physics, economics, statistics,
computer science. . . ).

Fréchet [Math. Ann. 1910]. If (X, d) is a metric space with |X| = n+ 1,
then (X, d) isometrically embeds into (Rn, `∞).

This avenue of work led to the exploration of metric space embeddings.
Natural question: Which metric spaces isometrically embed into
Euclidean space?
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Euclidean metric spaces and positive matrices

Which metric spaces isometrically embed into a Euclidean space?

Menger [Amer. J. Math. 1931] and Fréchet [Ann. of Math. 1935]
provided characterizations.

Reformulated by Schoenberg, using. . . matrix positivity!

Theorem (Schoenberg, Ann. of Math. 1935)

Fix integers n, r > 1, and a finite metric space (X, d), where
X = {x0, . . . , xn}. Then (X, d) isometrically embeds into Rr (with the
Euclidean distance/norm) but not into Rr−1 if and only if the n× n matrix

A := (d(x0, xi)
2 + d(x0, xj)

2 − d(xi, xj)
2)ni,j=1

is positive semidefinite of rank r.

This is how Schoenberg connected metric geometry and matrix positivity.
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Distance transforms: positive definite functions

In the preceding result, the matrix

A = (d(x0, xi)
2 + d(x0, xj)

2 − d(xi, xj)
2)ni,j=1 is positive semidefinite,

if and only if the matrix A′(n+1)×(n+1) := (−d(xi, xj)
2)ni,j=0 is

conditionally positive semidefinite: uTA′u > 0 whenever
∑n
j=0 uj = 0.

Early instance of how (conditionally) positive matrices emerged from
metric geometry.

Now we move to transforms of positive matrices. Note that:

Applying the function −x2 entrywise sends any distance matrix from
Euclidean space, to a conditionally positive semidefinite matrix A′.

Similarly, which entrywise maps send distance matrices to positive
semidefinite matrices? Such maps are called positive definite functions.

Schoenberg was interested in embedding metric spaces into Euclidean
spheres. This embeddability turns out to involve a single p.d. function!
This is the cosine function.
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Positive definite functions on spheres
Notice that the Hilbert sphere S∞ (hence every subspace such as Sr−1) has a
rotation-invariant distance – arc-length along a great circle:

d(x, y) := ^(x, y) = arccos〈x, y〉, x, y ∈ S∞.

Now applying cos[−] entrywise to any distance matrix on S∞ yields:

cos[(d(xi, xj))i,j>0] = (〈xi, xj〉)i,j>0,

and this is a Gram matrix, so cos(·) is positive definite on S∞.

Schoenberg then classified all continuous f such that f ◦ cos(·) is p.d.:

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose f : [−1, 1]→ R is continuous, and r > 2. Then f(cos ·)
is positive definite on the unit sphere Sr−1 ⊂ Rr if and only if

f(·) =
∑
k>0

akC
( r−2

2
)

k (·) for some ak > 0,

where C(λ)
k (·) are the ultraspherical / Gegenbauer / Chebyshev polynomials.

Also follows from Bochner’s work on compact homogeneous spaces [Ann. of
Math. 1941] – but Schoenberg proved it directly with less ‘heavy’ machinery.
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From spheres to correlation matrices

Any Gram matrix of vectors xj ∈ Sr−1 is the same as
a rank 6 r correlation matrix A = (aij)

n
i,j=1, i.e.,

= (〈xi, xj〉)ni,j=1.

So,

f(cos ·) positive definite on Sr−1 ⇐⇒ (f(cos d(xi, xj)))
n
i,j=1 ∈ Pn

⇐⇒ (f(〈xi, xj〉))ni,j=1 ∈ Pn
⇐⇒ (f(aij))

n
i,j=1 ∈ Pn ∀n > 1,

i.e., f preserves positivity on correlation matrices of rank 6 r.

If instead r =∞, such a result would classify the entrywise positivity
preservers on all correlation matrices. Interestingly, 70 years later the
subject has acquired renewed interest because of its immediate impact in
high-dimensional covariance estimation, in several applied fields.
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Schoenberg’s theorem on positivity preservers

And indeed, Schoenberg did make the leap from Sr−1 to S∞:

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose f : [−1, 1]→ R is continuous. Then f(cos ·) is positive definite on the
Hilbert sphere S∞ ⊂ R∞ = `2 if and only if

f(cos θ) =
∑
k>0

ck cosk θ,

where ck > 0 ∀k are such that
∑
k ck <∞.

(By the Schur product theorem, cosk θ is positive definite on S∞.)

Freeing this result from the sphere context, one obtains Schoenberg’s theorem
on entrywise positivity preservers.

For more information: A panorama of positivity – arXiv, Dec. 2018.
(Survey, 80+ pp., by A. Belton, D. Guillot, A.K., and M. Putinar.)
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Positivity and
Statistics
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3. Statistics: covariance estimation
4. Symmetric function theory
5. Combinatorics: critical exponent

Modern motivation: covariance estimation
Schoenberg’s result has recently attracted renewed attention,
owing to the statistics of big data.

Major challenge in science: detect structure in vast amount of data.

Covariance/correlation is a fundamental measure of dependence between
random variables:

Σ = (σij)
p
i,j=1, σij = Cov(Xi, Xj) = E[XiXj ]− E[Xi]E[Xj ].

Important question: Estimate Σ from data x1, . . . , xn ∈ Rp.
In modern-day settings (small samples, ultra-high dimension), covariance
estimation can be very challenging.

Classical estimators (e.g. sample covariance matrix (MLE)):

S =
1

n

n∑
j=1

(xj − x)(xj − x)T

perform poorly, are singular/ill-conditioned, etc.

Require some form of regularization – and resulting matrix has to be
positive semidefinite (in the parameter space) for applications.
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Classical estimators (e.g. sample covariance matrix (MLE)):

S =
1

n

n∑
j=1

(xj − x)(xj − x)T

perform poorly, are singular/ill-conditioned, etc.

Require some form of regularization – and resulting matrix has to be
positive semidefinite (in the parameter space) for applications.
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Motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics.

Let X1, . . . , Xp be a collection of random variables.

Very large vectors: rare that all Xj depend strongly on each other.

Many variables are (conditionally) independent; not used in prediction.

Leverage the independence/conditional independence structure to reduce
dimension – translates to zeros in covariance/inverse covariance matrix.

Modern approach: Compressed sensing methods (Daubechies, Donoho,
Candes, Tao, . . . ) use convex optimization to obtain a sparse estimate of
Σ (e.g., `1-penalized likelihood methods).

State-of-the-art for ∼ 20 years.
Works well for dimensions of a few thousands.

Not scalable to modern-day problems with 100, 000+ variables (disease
detection, climate sciences, finance. . . ).
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Thresholding and regularization

Thresholding covariance/correlation matrices

True Σ =

 1 0.2 0
0.2 1 0.5
0 0.5 1

 S =

0.95 0.18 0.02
0.18 0.96 0.47
0.02 0.47 0.98



Natural to threshold small entries (thinking the variables are independent):

S̃ =

0.95 0.18 0
0.18 0.96 0.47
0 0.47 0.98


Can be significant if p = 1, 000, 000 and only, say, ∼ 1% of the entries of the
true Σ are nonzero.
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Entrywise functions – regularization

More generally, we could apply a function f : R→ R to the elements of the
matrix S – regularization:

Σ̂ = f [S] :=


f(σ11) f(σ12) . . . f(σ1N )
f(σ21) f(σ22) . . . f(σ2N )

...
...

. . .
...

f(σN1) f(σN2) . . . f(σNN )


(Example on previous slide is fε(x) = x · 1|x|>ε for some ε > 0.)

Highly scalable. Analysis on the cone – no optimization.

Regularized matrix f [S] further used in applications, where (estimates of)
Σ required in procedures such as PCA, CCA, MANOVA, etc.

Question: When does this procedure preserve positive (semi)definiteness?
Critical for applications since Σ ∈ PN .

Problem: For what functions f : R→ R, does f [−] preserve PN?
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Preserving positivity in fixed dimension
Schoenberg’s result characterizes functions preserving positivity for matrices of
all dimensions: f [A] ∈ PN for all A ∈ PN and all N .

Similar/related problems studied by many others, including:

Bharali, Bhatia, Christensen, FitzGerald, Helson, Hiai, Holtz,

Horn, Jain, Kahane, Karlin, Katznelson, Loewner, Menegatto,

Micchelli, Pinkus, Pólya, Ressel, Vasudeva, Willoughby, . . .

Preserving positivity for fixed N :

Natural refinement of original problem of Schoenberg.

In applications: dimension of the problem is known.
Unnecessarily restrictive to preserve positivity in all dimensions.

Known for N = 2 (Vasudeva, IJPAM 1979):

f is nondecreasing and f(x)f(y) > f(
√
xy)2 on (0,∞).

Open for N > 3.
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Problems motivated by applications

We revisit this problem with modern applications in mind.

Applications motivate many new exciting problems:
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Preserving positivity in fixed dimension
Question: Find a power series with a negative coefficient, which preserves
positivity on PN for some N > 3.

(Open since Schoenberg’s Duke 1942 paper.)

For fixed N > 3 and general f, only known necessary condition is due to Horn:

Theorem (Horn, Trans. AMS 1969; Guillot–K.–Rajaratnam, Trans. AMS 2017)

Fix I = (0, ρ) for 0 < ρ 6∞, and f : I → R. Suppose f [A] ∈ PN for all
A ∈ PN (I) Hankel of rank 6 2, with N fixed. Then f ∈ CN−3(I), and

f, f ′, f ′′, · · · , f (N−3) > 0 on I.
If f ∈ CN−1(I) then this also holds for f (N−2), f (N−1).

Implies Schoenberg–Rudin result for matrices with positive entries.

E.g., let N ∈ N and c0, . . . , cN−1 6= 0. If f(z) =

N−1∑
j=0

cjz
j + cNz

N

preserves positivity on PN , then c0, . . . , cN−1 > 0.

Can cN be negative? Sharp bound? (Not known to date.)
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Polynomials preserving positivity in fixed dimension
More generally, the first N nonzero Maclaurin coefficients must be positive.
Can the next one be negative?

Theorem (K.–Tao 2017; Belton–Guillot–K.–Putinar, Adv. Math. 2016)

Fix ρ > 0 and integers 0 6 n0 < · · · < nN−1 < M, and let

f(z) =

N−1∑
j=0

cjz
nj + c′zM

be a polynomial with real coefficients.

Then the following are equivalent.

1 f [−] preserves positivity on PN ((0, ρ)).

2 The coefficients cj satisfy either c0, . . . , cN−1, c
′ > 0,

or c0, . . . , cN−1 > 0 and c′ > −C−1, where

C :=

N−1∑
j=0

ρM−nj

cj

N−1∏
i=0,i 6=j

(M − ni)2

(nj − ni)2
.

3 f [−] preserves positivity on rank-one Hankel matrices in PN ((0, ρ)).
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Consequences

1 Quantitative version of Schoenberg’s theorem in fixed dimension:
polynomials that preserve positivity on PN , but not on PN+1.

2 When M = N, the theorem provides an exact characterization of
polynomials of degree at most N that preserve positivity on PN .

3 The result holds verbatim for sums of real powers.

4 Surprisingly, the sharp bound on the negative threshold

C :=

N−1∑
j=0

ρM−j

cj

N−1∏
i=0,i 6=j

(M − ni)2

(nj − ni)2
.

is obtained on rank 1 matrices with positive entries.

5 The proofs involve a deep result on Schur positivity.

6 Further applications: Schubert cell-type stratifications,
connections to Rayleigh quotients,
thresholds for analytic functions and Laplace transforms,
additional novel symmetric function identities, . . . .
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Schur polynomials

Key ingredient in proof – representation theory / symmetric functions:

Given a decreasing N -tuple nN−1 > nN−2 > · · · > n0 > 0, the corresponding
Schur polynomial over a field F is the unique polynomial extension to FN of

s(nN−1,...,n0)(x1, . . . , xN ) :=
det(x

nj−1

i )

det(xj−1
i )

for pairwise distinct xi ∈ F.

Note that the denominator is precisely the
Vandermonde determinant

V (x) = V (x1, . . . , xN ) := det(xj−1
i ) =

∏
16i<j6N

(xj − xi).

Example: If N = 2 and n = (m < n), then

sn(x1, x2) =
xn1x

m
2 − xm1 xn2
x1 − x2

= (x1x2)m(xn−m−1
1 +xn−m−2

1 x2+· · ·+xn−m−1
2 ).

Basis of homogeneous symmetric polynomials in x1, . . . , xN .
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By-product: novel symmetric function identity

Well-known identity of Cauchy: if f0(t) = 1/(1− t) =
∑
k>0 t

k, then

det f0[uvT ] = V (u)V (v)
∑
n

sn(u)sn(v),

where n runs over all decreasing integer tuples with at most N parts.

Frobenius extended this to all fc(t) = (1− ct)/(1− t) for a scalar c.

We show this for every power series
 obtained by generalizing a matrix positivity computation of Loewner:

Theorem (K., 2018)

Fix a commutative unital ring R and let t be an indeterminate. Let
f(t) :=

∑
M>0 fM t

M ∈ R[[t]] be an arbitrary formal power series. Given
vectors u,v ∈ RN for some N > 1, we have:

det f [tuvT ] = V (u)V (v)
∑

M>(N2 )

tM
∑

n=(nN−1,...,n0) `M

sn(u)sn(v)

N−1∏
k=0

fnk .
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Positivity and
Combinatorics

Apoorva Khare, IISc Bangalore 26 / 32



Dimension-free results
Fixed dimension results

3. Statistics: covariance estimation
4. Symmetric function theory
5. Combinatorics: critical exponent

Matrices with zeros according to graphs

In many applications, rare for all variables to depend strongly on each
other – simplifies prediction.

Many variables are (conditionally) independent – domain-specific
knowledge in applications.

Leverage the (conditional) independence
structure to reduce dimension.

1

2 3

4 
∗ ∗ 0 ∗
∗ ∗ ∗ 0
0 ∗ ∗ ∗
∗ 0 ∗ ∗


Natural to encode dependencies via a graph, where lack of an edge
signifies conditional independence (given other variables).

Study matrices with zeros according to graphs:

Given a graph G = (V,E) on N vertices, and I ⊂ R, define

PG(I) := {A = (aij) ∈ PN (I) : aij = 0 if i 6= j, (i, j) 6∈ E}.

Note: aij can be zero if (i, j) ∈ E.
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Preserving positivity with sparsity constraints

Given a subset I ⊂ R and a graph G = (V,E), define for A ∈ PG(I):

(fG[A])ij :=

{
f(aij) if i = j or (i, j) ∈ E,
0 otherwise.

Can we characterize the functions f such that
fG[A] ∈ PG for every A ∈ PG(I) ?

Previously known characterization for individual graphs: only for K2, i.e.,
P2 – Vasudeva (1979).

Only known characterization for sequence of graphs: {KN : N ∈ N}
[Schoenberg, Rudin]. Yields absolutely monotonic functions.
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Powers preserving positivity: Working example

Distinguished family of functions: the power maps xα, α ∈ R, x > 0.
(Here, 0α := 0.)

Example: Suppose T5 =


1 0.6 0.5 0 0

0.6 1 0.6 0.5 0
0.5 0.6 1 0.6 0.5
0 0.5 0.6 1 0.6
0 0 0.5 0.6 1

.

Raise each entry to the αth power for some α > 0.
When is the resulting matrix positive semidefinite?

Intriguing “phase transition” discovered by FitzGerald and Horn:

Theorem (FitzGerald–Horn, J. Math. Anal. Appl. 1977)

Let N > 2. Then f(x) = xα preserves positivity on PN ([0,∞)) if and only if
α ∈ N ∪ [N − 2,∞). The threshold N − 2 is called the critical exponent.

So for T5 as above, all powers α ∈ N ∪ [3,∞) work. Can we do better?
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Critical exponent of a graph

Exploit the sparsity structure of PG.

Problem: Compute the set of powers preserving positivity on PG:

HG := {α > 0 : A◦α ∈ PG for all A ∈ PG([0,∞))}
CE(G) := smallest α0 s.t. xα preserves positivity on PG, ∀α > α0.

By FitzGerald–Horn, CE(G) always exists and is 6 |V (G)| − 2.
Call this the critical exponent of the graph G.

FitzGerald–Horn studied the case G = Kr: CE(Kr) = r − 2.

Guillot–K.–Rajaratnam [Trans. AMS 2016] studied trees: CE(T ) = 1.

How do CE(G) and HG depend on the geometry of G?
Compute CE(G) for a family containing complete graphs and trees?

Apoorva Khare, IISc Bangalore 29 / 32
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Chordal graphs – powers preserving positivity

Trees have no cycles of length n > 3.

Definition: G is chordal if it does not contain induced cycles of length n > 4.

Chordal Not Chordal

Theorem (Guillot–K.–Rajaratnam, J. Combin. Theory Ser. A 2016)

Let K(1)
r be the ‘almost complete’ graph on r nodes – missing one edge.

Let r = r(G) be the largest integer such that either Kr or K(1)
r is an induced

subgraph of G.

If G is chordal with |V | > 2, then HG = N ∪ [r − 2,∞).

In particular, CE(G) = r − 2.

Unites complete graphs, trees, band graphs, split graphs. . .
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Non-chordal graphs
Example: Band graphs with bandwidth d: CE(G) = min(d, n− 2).

So for T5 =


1 0.6 0.5 0 0

0.6 1 0.6 0.5 0
0.5 0.6 1 0.6 0.5
0 0.5 0.6 1 0.6
0 0 0.5 0.6 1

 as above, all powers > 2 = d work.

Other graphs? (Talk by Dominique Guillot in MS18-iii.)
CE(G) in terms of other graph invariants? Not clear.

1
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