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Introduction

Positivity (and preserving it) studied in many settings in the literature.

Different flavors of positivity:

@ Positive semidefinite N X N real symmetric matrices:
uwl Au > 0 Va.

Equivalently: A has all non-negative eigenvalues, or all non-negative
principal minors. (Examples: Correlation and covariance matrices.)

Positive definite sequences/Toeplitz matrices (measures on S')
Moment sequences/Hankel matrices (measures on R)

Hilbert space kernels

Positive definite functions on metric spaces, topological (semi)groups

Question: Classify the positivity preservers in these settings.

Studied for the better part of a century.
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Entrywise functions preserving positivity

Given N > 1 and I C R, let Py (I) denote the N x N positive semidefinite
matrices, with entries in I. (Say Py = Pn(R).)

Problem: Given a function f : I — R, when is it true that
f[A] = (f(au)) € Py forall A e PN(I)?
(Long history!)
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Question (Polya—Szegd, 1925): Anything else? Remarkably, the answer is no, if
we want to preserve positivity in all dimensions.

Theorem (Schoenberg, Duke Math. J. 1942; Rudin, Duke Math. J. 1959)

Suppose I = (—1,1) and f : I — R. The following are equivalent:

© f[A] €Py forall A€ Py(I) and all N.

@ [ is analytic on I and has nonnegative Maclaurin coefficients. In other
words, f(z) =352, ckx” on (—1,1) with all ¢, > 0.
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Schoenberg's theorem

Question (Polya—Szegd, 1925): Anything else? Remarkably, the answer is no, if
we want to preserve positivity in all dimensions.

Theorem (Schoenberg, Duke Math. J. 1942; Rudin, Duke Math. J. 1959)

Suppose I = (—1,1) and f : I — R. The following are equivalent:

© f[A] €Py forall A€ Py(I) and all N.

@ [ is analytic on I and has nonnegative Maclaurin coefficients. In other
words, f(z) =352, ckx” on (—1,1) with all ¢, > 0.

Such functions f are said to be absolutely monotonic on (0, 1).
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Toeplitz and Hankel matrices

Motivations: Rudin was motivated by harmonic analysis and Fourier analysis
on locally compact groups. On G = S*, he studied preservers of positive
definite sequences (an)ncz. This means the Toeplitz kernel (a;—;)s,j>0 is
positive semidefinite.
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Toeplitz and Hankel matrices

Motivations: Rudin was motivated by harmonic analysis and Fourier analysis
on locally compact groups. On G = S*, he studied preservers of positive
definite sequences (an)ncz. This means the Toeplitz kernel (a;—;)s,j>0 is
positive semidefinite.

@ In [Duke Math. J. 1959] Rudin showed: f preserves positive definite
sequences (Toeplitz matrices) if and only if f is absolutely monotonic.
Suffices to work with measures with 3-point supports.

@ Important parallel notion: moment sequences.
Given positive measures p on [—1, 1], with moment sequences

() i= (snlp)izo where si(u) = [ a* dp,
R
classify the moment-sequence transformers: f(sk(p)) = sk(ou), Vk = 0.

@ With Belton—Guillot—Putinar ~~ a parallel result to Rudin:
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Toeplitz and Hankel matrices (cont.)

Let 0 < p < o0 be a scalar, and set I = (—p, p).

Theorem (Rudin, Duke Math. J. 1959)

Given a function f : I — R, the following are equivalent:

© f[-] preserves the set of positive definite sequences with entries in 1.

@ f[—] preserves positivity on Toeplitz matrices of all sizes and rank < 3.
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Let 0 < p < o0 be a scalar, and set I = (—p, p).

Theorem (Rudin, Duke Math. J. 1959)

Given a function f : I — R, the following are equivalent:

© f[-] preserves the set of positive definite sequences with entries in 1.
@ f[—] preserves positivity on Toeplitz matrices of all sizes and rank < 3.

© [ is analytic on I and has nonnegative Maclaurin coefficients.
In other words, f(x) = > 32, craz® on (—1,1) with all ¢ > 0.

Theorem (Belton—Guillot—K.—Putinar, 2016)

Given a function f : I — R, the following are equivalent:
© f[-] preserves the set of moment sequences with entries in I.
@ f[-] preserves positivity on Hankel matrices of all sizes and rank < 3.

© [ is analytic on I and has nonnegative Maclaurin coefficients.
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Positive semidefinite kernels

@ These two results greatly weaken the hypotheses of Schoenberg's theorem
— only need to consider positive semidefinite matrices of rank < 3.

@ Note, such matrices are precisely the Gram matrices of vectors in a
3-dimensional Hilbert space. Hence Rudin (essentially) showed:

Let H be a real Hilbert space of dimension > 3. If f[—] preserves
positivity on all Gram matrices in H, then f is a power series on R with
non-negative Maclaurin coefficients.
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Positive semidefinite kernels

@ These two results greatly weaken the hypotheses of Schoenberg's theorem
— only need to consider positive semidefinite matrices of rank < 3.

@ Note, such matrices are precisely the Gram matrices of vectors in a
3-dimensional Hilbert space. Hence Rudin (essentially) showed:

Let H be a real Hilbert space of dimension > 3. If f[—] preserves
positivity on all Gram matrices in H, then f is a power series on R with
non-negative Maclaurin coefficients.

@ But such functions are precisely the positive semidefinite kernels on H!
(Results of Pinkus et al.) Such kernels are important in modern day

machine learning, via RKHS.

@ Thus, Rudin (1959) classified positive semidefinite kernels on R?, which is
relevant in machine learning. (Now also via our parallel ‘Hankel’ result.)
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Schoenberg's theorem in several variables

Let I = (—p, p) for some 0 < p < oo as above. Also fix m > 1.
Given matrices A1,...,Am € Py(I) and f: I™ — R, define

flA1, .. Amliy = f@P, . d™), Vi, j=1,...,N.

ij o g

Theorem (FitzGerald—Micchelli-Pinkus, Linear Alg. Appl. 1995)

Given f : R™ — R, the following are equivalent:
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flA1, .. Amliy = f@P, . d™), Vi, j=1,...,N.

ij o g

Theorem (FitzGerald—Micchelli-Pinkus, Linear Alg. Appl. 1995)

Given f : R™ — R, the following are equivalent:

Q f[A1,...,An,] €Py forall Aj € Pn(I) and all N.
@ The function f is real entire and absolutely monotonic: for all x € R™,
fx) = Z caX”, where co > 0 Vo € Z}".

aEZT

((2) = (1) by Schur Product Theorem.)

Apoorva Khare, 1ISc Bangalore 8/ 32



Dimension-free results 1. Analysis: Schoenberg, Rudin, and measures

2. Metric geometry: from spheres to correlations
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Let I = (—p, p) for some 0 < p < oo as above. Also fix m > 1.
Given matrices A1,...,Am € Py(I) and f: I™ — R, define

flA1, .. Amliy = f@P, . d™), Vi, j=1,...,N.

ij o g

Theorem (FitzGerald—Micchelli-Pinkus, Linear Alg. Appl. 1995)

Given f : R™ — R, the following are equivalent:

Q f[A1,...,An,] €Py forall Aj € Pn(I) and all N.
@ The function f is real entire and absolutely monotonic: for all x € R™,
fx) = Z caX”, where co > 0 Vo € Z}".

aEZT

((2) = (1) by Schur Product Theorem.) The test set can again be reduced:

Theorem (Belton—Guillot—K.—Putinar, 2016)

The above two hypotheses are further equivalent to:

© f[-] preserves positivity on m-tuples of Hankel matrices of rank < 3.
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In the 1900s, the notion of a metric space emerged from the works of Fréchet
and Hausdorff. ..

@ Now ubiquitous in science (mathematics, physics, economics, statistics,
computer science. . . ).
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Distance geometry

How did the study of positivity and its preservers begin?

In the 1900s, the notion of a metric space emerged from the works of Fréchet
and Hausdorff. ..

@ Now ubiquitous in science (mathematics, physics, economics, statistics,

computer science. . . ).

@ Fréchet [Math. Ann. 1910]. If (X, d) is a metric space with | X|=n+1,
then (X, d) isometrically embeds into (R", ().

@ This avenue of work led to the exploration of metric space embeddings.

Natural question: Which metric spaces isometrically embed into
Euclidean space?
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Which metric spaces isometrically embed into a Euclidean space?
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Euclidean metric spaces and positive matrices

Which metric spaces isometrically embed into a Euclidean space?

@ Menger [Amer. J. Math. 1931] and Fréchet [Ann. of Math. 1935]
provided characterizations.
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Euclidean metric spaces and positive matrices

Which metric spaces isometrically embed into a Euclidean space?

@ Menger [Amer. J. Math. 1931] and Fréchet [Ann. of Math. 1935]
provided characterizations.

@ Reformulated by Schoenberg, using. .. matrix positivity!

Theorem (Schoenberg, Ann. of Math. 1935)

Fix integers n,r > 1, and a finite metric space (X, d), where

X ={zo,...,xn}. Then (X,d) isometrically embeds into R" (with the

Euclidean distance/norm) but not into R"~* if and only if the n x n matrix
A= (d(wo,2:)* + d(wo,z;)* — d(ws, 25)*)F 5=

is positive semidefinite of rank r.

This is how Schoenberg connected metric geometry and matrix positivity.
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Distance transforms: positive definite functions

@ In the preceding result, the matrix
A = (d(wo,z:)? + d(z0,25) — d(zi,25)°)}"j=1 is positive semidefinite,
if and only if the matrix Af,, 1)y (ny1) = (—d(zi,25)*)} =0 is
conditionally positive semidefinite: u” A'u > 0 whenever > ouj =0.

@ Early instance of how (conditionally) positive matrices emerged from
metric geometry.
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Now we move to transforms of positive matrices. Note that:

@ Applying the function —z? entrywise sends any distance matrix from

Euclidean space, to a conditionally positive semidefinite matrix A’.
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Distance transforms: positive definite functions

@ In the preceding result, the matrix
A = (d(wo,z:)? + d(z0,25) — d(zi,25)°)}"j=1 is positive semidefinite,
if and only if the matrix Af,, 1)y (ny1) = (—d(zi,25)*)} =0 is
conditionally positive semidefinite: u” A'u > 0 whenever > ouj =0.

@ Early instance of how (conditionally) positive matrices emerged from
metric geometry.

Now we move to transforms of positive matrices. Note that:

@ Applying the function —z? entrywise sends any distance matrix from

Euclidean space, to a conditionally positive semidefinite matrix A’.

@ Similarly, which entrywise maps send distance matrices to positive
semidefinite matrices? Such maps are called positive definite functions.

@ Schoenberg was interested in embedding metric spaces into Euclidean
spheres. This embeddability turns out to involve a single p.d. function!
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Distance transforms: positive definite functions

@ In the preceding result, the matrix
A = (d(wo,z:)? + d(z0,25) — d(zi,25)°)}"j=1 is positive semidefinite,
if and only if the matrix Af,, 1)y (ny1) = (—d(zi,25)*)} =0 is
conditionally positive semidefinite: u” A'u > 0 whenever > ouj =0.

@ Early instance of how (conditionally) positive matrices emerged from
metric geometry.

Now we move to transforms of positive matrices. Note that:

@ Applying the function —z? entrywise sends any distance matrix from

Euclidean space, to a conditionally positive semidefinite matrix A’.
@ Similarly, which entrywise maps send distance matrices to positive
semidefinite matrices? Such maps are called positive definite functions.
@ Schoenberg was interested in embedding metric spaces into Euclidean
spheres. This embeddability turns out to involve a single p.d. function!
This is the cosine function.
Apoorva Khare, 1ISc Bangalore 11 / 32
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Positive definite functions on spheres

Notice that the Hilbert sphere S (hence every subspace such as S"~') has a
rotation-invariant distance — arc-length along a great circle:

d(w,y) = <(w,y) = avccos(z, y), @,y € 5.
Now applying cos[—] entrywise to any distance matrix on S yields:
cos[(d(zi, z;))iz0] = ({xi, ;5))i,520,

and this is a Gram matrix, so cos(+) is positive definite on 5.
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rotation-invariant distance — arc-length along a great circle:

d(z,y) := <(z,y) = arccos(z, y), x,y € S.
Now applying cos[—] entrywise to any distance matrix on S yields:
cos[(d(zi, z;))iz0] = ({xi, ;5))i,520,
and this is a Gram matrix, so cos(+) is positive definite on 5.

Schoenberg then classified all continuous f such that f o cos(-) is p.d.:

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose f : [=1,1] — R is continuous, and r > 2. Then f(cos-)
is positive definite on the unit sphere S~ C R" if and only if

r—2
)= ZakC,(CT)(-) for some a, > 0,
k>0
where C,(c)‘)(-) are the ultraspherical / Gegenbauer / Chebyshev polynomials.

Also follows from Bochner's work on compact homogeneous spaces [Ann. of
Math. 1941] — but Schoenberg proved it directly with less ‘heavy’ machinery.
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@ Any Gram matrix of vectors z; € S™"' is the same as
a rank < r correlation matrix A = (as;); -1, i.e.,
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@ Any Gram matrix of vectors z; € S™"' is the same as
. . n .
a rank < r correlation matrix A = (as;); -1, i.e.,
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1 1
o — o\ |

—
Sy

@ So,

f(cos-) positive definite on "' <= (f(cosd(zs,2;)))} ;=1 € Pp
= (f(zi,25)))ij=1 € Pn
= (f(aiy))ij=1 €Pr Vn > 1,

i.e., f preserves positivity on correlation matrices of rank < r.

@ If instead r = oo, such a result would classify the entrywise positivity
preservers on all correlation matrices. Interestingly, 70 years later the
subject has acquired renewed interest because of its immediate impact in
high-dimensional covariance estimation, in several applied fields.
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2. Metric geometry: from spheres to correlations

Schoenberg's theorem on positivity preservers

And indeed, Schoenberg did make the leap from S"™"! to S>°:

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose f : [—1,1] — R is continuous. Then f(cos-) is positive definite on the
Hilbert sphere S C R* = ¢ if and only if

(cos ) Z Ck COS 6‘

k>0

where cx, > 0 Vk are such that >, cx < oo.
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Hilbert sphere S C R* = ¢ if and only if

(cos ) Z Ck COS 0

k>0

where cx, > 0 Vk are such that >, cx < oo.

(By the Schur product theorem, cos” @ is positive definite on S>.)

Freeing this result from the sphere context, one obtains Schoenberg's theorem
on entrywise positivity preservers.
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Theorem (Schoenberg, Duke Math. J. 1942)

Suppose f : [—1,1] — R is continuous. Then f(cos-) is positive definite on the
Hilbert sphere S C R* = ¢ if and only if

(cos ) Z Ck COS 0

k>0

where cx, > 0 Vk are such that >, cx < oo.

(By the Schur product theorem, cos” @ is positive definite on S>.)

Freeing this result from the sphere context, one obtains Schoenberg's theorem
on entrywise positivity preservers.

For more information: A panorama of positivity — arXiv, Dec. 2018.
(Survey, 80+ pp., by A. Belton, D. Guillot, A.K., and M. Putinar.)
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Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention,
owing to the statistics of big data.
@ Major challenge in science: detect structure in vast amount of data.

@ Covariance/correlation is a fundamental measure of dependence between
random variables:

Y= (O‘»;j)p Ti5 = COV(X»;,XJ') = E[XZX]] — ]E[XZ]E[X]]

i,7=11
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Schoenberg's result has recently attracted renewed attention,
owing to the statistics of big data.

@ Major challenge in science: detect structure in vast amount of data.

@ Covariance/correlation is a fundamental measure of dependence between
random variables:

Y =(0ij)i =1, 0ij = Cov(Xi, X;) = E[XiX;] — E[XG]E[X;].
@ Important question: Estimate ¥ from data z1,...,z, € RP.

@ In modern-day settings (small samples, ultra-high dimension), covariance
estimation can be very challenging.
@ Classical estimators (e.g. sample covariance matrix (MLE)):
1 n
S==> (&, -0 (x; —7)"

n“
j=1

perform poorly, are singular/ill-conditioned, etc.
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Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention,
owing to the statistics of big data.

@ Major challenge in science: detect structure in vast amount of data.

@ Covariance/correlation is a fundamental measure of dependence between
random variables:

Y =(0ij)i =1, 0ij = Cov(Xi, X;) = E[XiX;] — E[XG]E[X;].
@ Important question: Estimate ¥ from data z1,...,z, € RP.

@ In modern-day settings (small samples, ultra-high dimension), covariance
estimation can be very challenging.
@ Classical estimators (e.g. sample covariance matrix (MLE)):
1 n
S==> (&, -0 (x; —7)"

n“
j=1

perform poorly, are singular/ill-conditioned, etc.

@ Require some form of regularization — and resulting matrix has to be
positive semidefinite (in the parameter space) for applications.
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Motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics.
Let X1,..., X, be a collection of random variables.
@ Very large vectors: rare that all X; depend strongly on each other.

@ Many variables are (conditionally) independent; not used in prediction.
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Let X1,..., X, be a collection of random variables.
@ Very large vectors: rare that all X; depend strongly on each other.
@ Many variables are (conditionally) independent; not used in prediction.

@ Leverage the independence/conditional independence structure to reduce
dimension — translates to zeros in covariance/inverse covariance matrix.

@ Modern approach: Compressed sensing methods (Daubechies, Donoho,
Candes, Tao, ...) use convex optimization to obtain a sparse estimate of
¥ (e.g., £*-penalized likelihood methods).

@ State-of-the-art for ~ 20 years.
Works well for dimensions of a few thousands.
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Motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics.
Let X1,..., X, be a collection of random variables.
@ Very large vectors: rare that all X; depend strongly on each other.
@ Many variables are (conditionally) independent; not used in prediction.

@ Leverage the independence/conditional independence structure to reduce
dimension — translates to zeros in covariance/inverse covariance matrix.

@ Modern approach: Compressed sensing methods (Daubechies, Donoho,
Candes, Tao, ...) use convex optimization to obtain a sparse estimate of
¥ (e.g., £*-penalized likelihood methods).

@ State-of-the-art for ~ 20 years.
Works well for dimensions of a few thousands.

@ Not scalable to modern-day problems with 100,000+ variables (disease
detection, climate sciences, finance. .. ).
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Thresholding covariance/correlation matrices

1 02 0 0.95 0.18 0.02
True¥ =102 1 05 S=10.18 0.96 0.47
0 05 1 0.02 047 0.98

Natural to threshold small entries (thinking the variables are independent):
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Thresholding and regularization

Thresholding covariance/correlation matrices

1 02 0 0.95 0.18 0.02
True¥ =102 1 05 S=10.18 0.96 0.47
0 05 1 0.02 047 0.98

Natural to threshold small entries (thinking the variables are independent):

B 095 018 O
S=10.18 0.96 047
0 047 098

Can be significant if p = 1,000,000 and only, say, ~ 1% of the entries of the
true ¥ are nonzero.
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Entrywise functions — regularization

More generally, we could apply a function f: R — R to the elements of the
matrix S — regularization:

Fow) flons) .. Flonn)

(Example on previous slide is fc(x) = x - 13> for some € > 0.)

@ Highly scalable. Analysis on the cone — no optimization.

@ Regularized matrix f[S] further used in applications, where (estimates of)
3 required in procedures such as PCA; CCA, MANOVA, etc.

@ Question: When does this procedure preserve positive (semi)definiteness?
Critical for applications since X € Px.

Problem: For what functions f : R — R, does f[—] preserve Py?
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Schoenberg's result characterizes functions preserving positivity for matrices of
all dimensions: f[A] € Py for all A € Py and all N.
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Schoenberg's result characterizes functions preserving positivity for matrices of
all dimensions: f[A] € Py for all A € Py and all N.

Similar/related problems studied by many others, including:
@ Bharali, Bhatia, Christensen, FitzGerald, Helson, Hiai, Holtz,
@ Horn, Jain, Kahane, Karlin, Katznelson, Loewner, Menegatto,

@ Micchelli, Pinkus, Pélya, Ressel, Vasudeva, Willoughby, . ..
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@ Natural refinement of original problem of Schoenberg.

@ In applications: dimension of the problem is known.
Unnecessarily restrictive to preserve positivity in all dimensions.
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Schoenberg's result characterizes functions preserving positivity for matrices of
all dimensions: f[A] € Py for all A € Py and all N.

Similar/related problems studied by many others, including:
@ Bharali, Bhatia, Christensen, FitzGerald, Helson, Hiai, Holtz,
@ Horn, Jain, Kahane, Karlin, Katznelson, Loewner, Menegatto,
@ Micchelli, Pinkus, Pélya, Ressel, Vasudeva, Willoughby, . ..

Preserving positivity for fixed V:

@ Natural refinement of original problem of Schoenberg.

@ In applications: dimension of the problem is known.
Unnecessarily restrictive to preserve positivity in all dimensions.

@ Known for N = 2 (Vasudeva, I[JPAM 1979):

f is nondecreasing and f(z)f(y) > f(\/@)2 on (0, 00).
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Preserving positivity in fixed dimension

Schoenberg's result characterizes functions preserving positivity for matrices of
all dimensions: f[A] € Py for all A € Py and all N.

Similar/related problems studied by many others, including:
@ Bharali, Bhatia, Christensen, FitzGerald, Helson, Hiai, Holtz,

@ Horn, Jain, Kahane, Karlin, Katznelson, Loewner, Menegatto,
@ Micchelli, Pinkus, Pélya, Ressel, Vasudeva, Willoughby, . ..

Preserving positivity for fixed V:

@ Natural refinement of original problem of Schoenberg.

@ In applications: dimension of the problem is known.
Unnecessarily restrictive to preserve positivity in all dimensions.

@ Known for N = 2 (Vasudeva, I[JPAM 1979):
f is nondecreasing and f(z)f(y) > f(v/zy)* on (0,0).
@ Open for N > 3.
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@ We revisit this problem with modern applications in mind.
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Problems motivated by applications

@ We revisit this problem with modern applications in mind.
@ Applications motivate many new exciting problems:

2. Sparsity
constraints

1. Rank
constraints

7. Applications:
combinatorics,

3. Moment/p.d.
sequences
(Hankel/Toeplitz)

Preserving
positivity

symmetric functions,
matrix analysis

4. General
functions

6. Entrywise
powers

5. Polynomials
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Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, which preserves
positivity on Py for some N > 3.
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Fixed dimension results

Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, which preserves
positivity on Px for some N > 3. (Open since Schoenberg’'s Duke 1942 paper.)

For fixed N > 3 and general f, only known necessary condition is due to Horn:

Theorem (Horn, Trans. AMS 1969; Guillot-K.—Rajaratnam, Trans. AMS 2017)

Fix I = (0,p) for 0 < p < oo, and f : I — R. Suppose f[A] € Pn for all
A € Py (I) Hankel of rank < 2, with N fixed.
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Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, which preserves
positivity on Px for some N > 3. (Open since Schoenberg’'s Duke 1942 paper.)

For fixed N > 3 and general f, only known necessary condition is due to Horn:

Theorem (Horn, Trans. AMS 1969; Guillot-K.—Rajaratnam, Trans. AMS 2017)

Fix I = (0,p) for 0 < p < oo, and f : I — R. Suppose f[A] € Pn for all
A € Py (I) Hankel of rank < 2, with N fixed. Then f € CN=3(I), and

f’f’af”a’” 7f(N73) ZOOHI.
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Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, which preserves
positivity on Px for some N > 3. (Open since Schoenberg’'s Duke 1942 paper.)

For fixed N > 3 and general f, only known necessary condition is due to Horn:

Theorem (Horn, Trans. AMS 1969; Guillot-K.—Rajaratnam, Trans. AMS 2017)

Fix I = (0,p) for 0 < p < oo, and f : I — R. Suppose f[A] € Pn for all
A € Py (I) Hankel of rank < 2, with N fixed. Then f € CN=3(I), and

f’f’af”a’” 7f(N73) 20 on I.
If f € CN7Y(I) then this also holds for f(N=2) f(N=1)

@ Implies Schoenberg—Rudin result for matrices with positive entries.
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For fixed N > 3 and general f, only known necessary condition is due to Horn:

Theorem (Horn, Trans. AMS 1969; Guillot-K.—Rajaratnam, Trans. AMS 2017)

Fix I = (0,p) for 0 < p < oo, and f : I — R. Suppose f[A] € Pn for all
A € Py (I) Hankel of rank < 2, with N fixed. Then f € CN=3(I), and

f’f’af”a’” 7f(N73) 20 on I.
If f € CN7Y(I) then this also holds for f(N=2) f(N=1)

@ Implies Schoenberg—Rudin result for matrices with positive entries.
N-1

@ Eg,let NeNandco,...,en—1#0. If f(2) = Z ¢;jz +enz
§=0

preserves positivity on Py, then ¢o,...,cn—1 > 0.
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Question: Find a power series with a negative coefficient, which preserves
positivity on Px for some N > 3. (Open since Schoenberg’'s Duke 1942 paper.)

For fixed N > 3 and general f, only known necessary condition is due to Horn:
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@ Implies Schoenberg—Rudin result for matrices with positive entries.
N-1
@ Eg,let NeNandco,...,en—1#0. If f(2) = Z ¢;jz +enz
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preserves positivity on Py, then ¢o,...,cn—1 > 0.
Can ¢y be negative? Sharp bound? (Not known to date.)
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More generally, the first N nonzero Maclaurin coefficients must be positive.
Can the next one be negative?
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More generally, the first N nonzero Maclaurin coefficients must be positive.
Can the next one be negative?

Theorem (K.—Tao 2017; Belton—Guillot—K.-Putinar, Adv. Math. 2016)

Fix p > 0 and integers 0 < no<---<nN 1 < M, and let

E Cjz "M

be a polynomial with real coefflc:ents.

Apoorva Khare, 11ISc Bangalore 22 / 32



3. Statistics: covariance estimation
4. Symmetric function theory
5. Combinatorics: critical exponent

Fixed dimension results

Polynomials preserving positivity in fixed dimension

More generally, the first N nonzero Maclaurin coefficients must be positive.
Can the next one be negative?

Theorem (K.—Tao 2017; Belton—Guillot—K.-Putinar, Adv. Math. 2016)

Fix p > 0 and integers 0 < no<---<nN 1 < M, and let

E Cjz "M

be a polynomial with real coefflc:ents.

Then the following are equivalent.

© f[-] preserves positivity on Pn ((0, p)).

@ The coefficients c; satisfy either co, ...,cn—1,¢ >0,
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Fixed dimension results

Polynomials preserving positivity in fixed dimension

More generally, the first N nonzero Maclaurin coefficients must be positive.
Can the next one be negative?

Theorem (K.—Tao 2017; Belton—Guillot—K.—Putinar, Adv. Math.

Fix p > 0 and integers 0 < ng < -+ < ny—1 < M, and let
N—1
fz) = Z ;2™ 4+ 2M
§=0

be a polynomial with real coefficients.

Then the following are equivalent.
© f[-] preserves positivity on Pn ((0, p)).
@ The coefficients c; satisfy either co, ...,cn—1,¢ >0,

orco,...,cn—1 >0 and ¢ > —C~t, where
N-1 pp; N-1

P (M —n;)*
H (n; —ma)?’

Cj n
T =0, VY

C =

Jj=0
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Fixed dimension results

Polynomials preserving positivity in fixed dimension

More generally, the first N nonzero Maclaurin coefficients must be positive.
Can the next one be negative?

Theorem (K.—Tao 2017; Belton—Guillot—K.-Putinar, Adv. Math. 2016)

Fix p > 0 and integers 0 < no<---<nN 1 < M, and let

Zcz’—FCZ

be a polynomial with real coefflc:ents.

Then the following are equivalent.

© f[-] preserves positivity on Pn ((0, p)).

@ The coefficients c; satisfy either co, ...,cn—1,¢ >0,
orco,...,cn—1 >0 and ¢ > —C~t, where
N-1 M5 N-1 (M = ny)?
¢=2 = 1l G=y
j=0 i=0,i£]

© f[-] preserves positivity on rank-one Hankel matrices in Py ((0, p)).
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@ Quantitative version of Schoenberg's theorem in fixed dimension:
polynomials that preserve positivity on Py, but not on Py 1.
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en = N, the theorem provides an exact characterization o
@ When M = N, the th d t ch t t f
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© The result holds verbatim for sums of real powers.

@ Surprisingly, the sharp bound on the negative threshold
M—j; N-1 2
Lp (M —n;)
C:= E I I .
o (g —mi)?
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is obtained on rank 1 matrices with positive entries.
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Consequences

@ Quantitative version of Schoenberg's theorem in fixed dimension:
polynomials that preserve positivity on Py, but not on Py 1.

en = N, the theorem provides an exact characterization o
@ When M = N, the th d t ch t t f
polynomials of degree at most IV that preserve positivity on Py.

© The result holds verbatim for sums of real powers.

@ Surprisingly, the sharp bound on the negative threshold
M—j; N-1 2
Lp (M —n;)
C:= E I I .
o (g —mi)?
i=0,i#]

is obtained on rank 1 matrices with positive entries.

@ The proofs involve a deep result on Schur positivity.

@ Further applications: Schubert cell-type stratifications,
connections to Rayleigh quotients,
thresholds for analytic functions and Laplace transforms,
additional novel symmetric function identities, . . ..
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Schur polynomials

Key ingredient in proof — representation theory / symmetric functions:

Given a decreasing N-tuple ny_1 > ny—_2 > --- > ng > 0, the corresponding
Schur polynomial over a field F is the unique polynomial extension to F¥ of

det(z;77")
S(nn_1,0m0) (s oo, TN) 1= Aotz

for pairwise distinct z; € F.
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Schur polynomials

Key ingredient in proof — representation theory / symmetric functions:

Given a decreasing N-tuple ny_1 > ny—_2 > --- > ng > 0, the corresponding
Schur polynomial over a field F is the unique polynomial extension to F¥ of

det(z]771)
Stny_1,m0) (T1y o TN) 1= ———=
(NN —15---sm0) ) ) ) det(mz 1)
for pairwise distinct z; € F. Note that the denominator is precisely the
Vandermonde determinant

V(x) =V(z,...,on) :=det(z! ') = H (z; — ).

1<i<GEN
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Schur polynomials

Key ingredient in proof — representation theory / symmetric functions:

Given a decreasing N-tuple ny_1 > ny—_2 > --- > ng > 0, the corresponding
Schur polynomial over a field F is the unique polynomial extension to F¥ of
det(z]771)
Stny_1,m0) (T1y o TN) 1= ———=
(ny_1 ng) ) ) ) det(mf 1)
for pairwise distinct z; € F. Note that the denominator is precisely the
Vandermonde determinant

V() =V(z1,...,on) =det(z] ) = [ (&5 — ).
1<i<j<N

Example: If N =2 and n = (m < n), then

n,.m m,.n
T1Ty — T1 T my/ n—m-—1 n—m-—2 n—m-—1
sn(T1,02) = =" = (2122) " (] +Y Tot- oty )-

Basis of homogeneous symmetric polynomials in z1,...,zN.
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By-product: novel symmetric function identity

@ Well-known identity of Cauchy: if fo(t) =1/(1—t)=>",., t*, then
det foluv'] = V(@)V(v) Y _ sn(w)sa(v),

where n runs over all decreasing integer tuples with at most N parts.
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@ Frobenius extended this to all f.(t) = (1 —ct)/(1 —t) for a scalar c.
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By-product: novel symmetric function identity

@ Well-known identity of Cauchy: if fo(t) =1/(1—t)=>",., t*, then
det foluv'] = V(@)V(v) Y _ sn(w)sa(v),
where n runs over all decreasing integer tuples with at most N parts.

@ Frobenius extended this to all f.(t) = (1 —ct)/(1 —t) for a scalar c.

@ We show this for every power series

~ obtained by generalizing a matrix positivity computation of Loewner:

Theorem (K., 2018)

Fix a commutative unital ring R and let t be an indeterminate. Let
f®) ==X pso0 fut™ € R[[t]] be an arbitrary formal power series. Given
vectors u,v € RY for some N > 1, we have:

det fltuv] = V(@)V(v) > " > sn(1)sn (V) 1:[ fr-
k=0

M}(J;’) n=(ny_1,...,n0) FM
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Combinatorics
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Matrices with zeros according to graphs

@ In many applications, rare for all variables to depend strongly on each
other — simplifies prediction.

@ Many variables are (conditionally) independent — domain-specific
knowledge in applications.
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Matrices with zeros according to graphs

@ In many applications, rare for all variables to depend strongly on each
other — simplifies prediction.

@ Many variables are (conditionally) independent — domain-specific
knowledge in applications. Leverage the (conditional) independence
structure to reduce dimension.

g . * % 0 x
* *x *x 0
0 * x x
* 0 *x %
2 3
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Matrices with zeros according to graphs

@ In many applications, rare for all variables to depend strongly on each
other — simplifies prediction.

@ Many variables are (conditionally) independent — domain-specific
knowledge in applications. Leverage the (conditional) independence

structure to reduce dimension.
1 4

* % 0 x

* *x *x 0

0 * x x

* 0 *x %
2 3

@ Natural to encode dependencies via a graph, where lack of an edge
signifies conditional independence (given other variables).
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Matrices with zeros according to graphs

@ In many applications, rare for all variables to depend strongly on each
other — simplifies prediction.

@ Many variables are (conditionally) independent — domain-specific
knowledge in applications. Leverage the (conditional) independence
structure to reduce dimension.

g . * % 0 x
* *x *x 0
0 * x x
* * %
2 3

@ Natural to encode dependencies via a graph, where lack of an edge
signifies conditional independence (given other variables).

Study matrices with zeros according to graphs:
Given a graph G = (V, E) on N vertices, and I C R, define
Pa(I) :={A = (ai;) € Pn(I) 1 ai; = 0if i #j, (i,5) € E}.

Note: a;; can be zero if (i,j) € E.
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Preserving positivity with sparsity constraints

Given a subset I C R and a graph G = (V, E), define for A € Pg(I):
flai; ifi=jo0r(i,j) € E,
(felAl)s = { (o) 43)

0 otherwise.
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Can we characterize the functions f such that
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Given a subset I C R and a graph G = (V, E), define for A € Pg(I):
flai; ifi=jo0r(i,j) € E,
(felAl)s = { (o) 43)

0 otherwise.

Can we characterize the functions f such that
falA] € Pg for every A € Pe(I) ?

@ Previously known characterization for individual graphs: only for Ks, i.e.,
P, — Vasudeva (1979).

@ Only known characterization for sequence of graphs: {Kn : N € N}
[Schoenberg, Rudin]. Yields absolutely monotonic functions.
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Given a subset I C R and a graph G = (V, E), define for A € Pg(I):
flai; ifi=jo0r(i,j) € E,
(felAl)s = { (o) 43)

0 otherwise.

Can we characterize the functions f such that
falA] € Pg for every A € Pe(I) ?

@ Previously known characterization for individual graphs: only for Ks, i.e.,
P, — Vasudeva (1979).

@ Only known characterization for sequence of graphs: {Kn : N € N}
[Schoenberg, Rudin]. Yields absolutely monotonic functions.

@ (Guillot—-K.—Rajaratnam, 2016:) Characterization for any collection of
trees.

Apoorva Khare, 11ISc Bangalore 27 / 32



3. Statistics: covariance estimation
4. Symmetric function theory

Fixed dimension results A ) 0
5. Combinatorics: critical exponent

Preserving positivity with sparsity constraints

Given a subset I C R and a graph G = (V, E), define for A € Pg(I):
flai; ifi=jo0r(i,j) € E,
(felAl)s = { (o) 43)

0 otherwise.

Can we characterize the functions f such that
falA] € Pg for every A € Pe(I) ?

@ Previously known characterization for individual graphs: only for Ks, i.e.,
P, — Vasudeva (1979).

@ Only known characterization for sequence of graphs: {Kn : N € N}
[Schoenberg, Rudin]. Yields absolutely monotonic functions.

@ (Guillot—-K.—Rajaratnam, 2016:) Characterization for any collection of
trees.

We now explain how powers preserving positivity ~ a novel graph invariant.
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(Here, 0 :=0.)
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Distinguished family of functions: the power maps 2%, € R, = > 0.
(Here, 0 :=0.)
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Distinguished family of functions: the power maps 2%, € R, = > 0.
(Here, 0 :=0.)
1 06 05 O 0
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Example: Suppose 75 = [ 0.5 06 1 0.6 0.5
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Raise each entry to the ath power for some o > 0.
When is the resulting matrix positive semidefinite?
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Powers preserving positivity: Working example

Distinguished family of functions: the power maps 2%, € R, = > 0.
(Here, 0 :=0.)
1 06 05 O 0
06 1 06 05 O
Example: Suppose 75 = [ 0.5 06 1 0.6 0.5
0 05 06 1 06
0 0 05 06 1

Raise each entry to the ath power for some o > 0.
When is the resulting matrix positive semidefinite?

Intriguing “phase transition” discovered by FitzGerald and Horn:

Theorem (FitzGerald—Horn, J. Math. Anal. Appl. 1977)

Let N > 2. Then f(xz) = x* preserves positivity on Pn ([0, c0)) if and only if
a € NU[N —2,0).
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(Here, 0 :=0.)
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Let N > 2. Then f(xz) = x* preserves positivity on Pn ([0, c0)) if and only if
a € NU[N — 2,00). The threshold N — 2 is called the critical exponent.

Apoorva Khare, 1ISc Bangalore 28 / 32



3. Statistics: covariance estimation
4. Symmetric function theory

Fixed dimension results A ) 0
5. Combinatorics: critical exponent

Powers preserving positivity: Working example

Distinguished family of functions: the power maps 2%, € R, = > 0.

(Here, 0 :=0.)
1 06 05 O 0
06 1 06 05 O
Example: Suppose 75 = [ 0.5 06 1 0.6 0.5
0 05 06 1 06
0 0 05 06 1

Raise each entry to the ath power for some o > 0.
When is the resulting matrix positive semidefinite?

Intriguing “phase transition” discovered by FitzGerald and Horn:

Theorem (FitzGerald—Horn, J. Math. Anal. Appl. 1977)

Let N > 2. Then f(xz) = x* preserves positivity on Pn ([0, c0)) if and only if
a € NU[N — 2,00). The threshold N — 2 is called the critical exponent.

So for T as above, all powers o € NU [3, c0) work.

Apoorva Khare, 1ISc Bangalore 28 / 32



3. Statistics: covariance estimation
4. Symmetric function theory

Fixed dimension results A ) 0
5. Combinatorics: critical exponent

Powers preserving positivity: Working example

Distinguished family of functions: the power maps 2%, € R, = > 0.

(Here, 0 :=0.)
1 06 05 O 0
06 1 06 05 O
Example: Suppose 75 = [ 0.5 06 1 0.6 0.5
0 05 06 1 06
0 0 05 06 1

Raise each entry to the ath power for some o > 0.
When is the resulting matrix positive semidefinite?

Intriguing “phase transition” discovered by FitzGerald and Horn:

Theorem (FitzGerald—Horn, J. Math. Anal. Appl. 1977)

Let N > 2. Then f(xz) = x* preserves positivity on Pn ([0, c0)) if and only if
a € NU[N — 2,00). The threshold N — 2 is called the critical exponent.

So for T as above, all powers o € NU [3, c0) work. Can we do better?
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Critical exponent of a graph

Exploit the sparsity structure of Pg.

Problem: Compute the set of powers preserving positivity on Pg:

Ha :={a>0:A° € Pg for all A € Ps([0,00))}

CE(G) := smallest ag s.t.  preserves positivity on Pg,Va > ao.
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Exploit the sparsity structure of Pg.

Problem: Compute the set of powers preserving positivity on Pg:

Ha :={a>0:A° € Pg for all A € Ps([0,00))}

CE(G) := smallest ag s.t.  preserves positivity on Pg,Va > ao.

@ By FitzGerald-Horn, CE(G) always exists and is < |[V(G)| — 2.
Call this the critical exponent of the graph G.
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Critical exponent of a graph

Exploit the sparsity structure of Pg.

Problem: Compute the set of powers preserving positivity on Pg:

Ha :={a>0:A° € Pg for all A € Ps([0,00))}

CE(G) := smallest ag s.t.  preserves positivity on Pg,Va > ao.
@ By FitzGerald-Horn, CE(G) always exists and is < |[V(G)| — 2.
Call this the critical exponent of the graph G.

@ FitzGerald—Horn studied the case G = K,: CE(K;)=r —2.
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Exploit the sparsity structure of Pg.
Problem: Compute the set of powers preserving positivity on Pg:

Ha :={a>0:A° € Pg for all A € Ps([0,00))}

CE(G) := smallest ag s.t.  preserves positivity on Pg,Va > ao.
@ By FitzGerald-Horn, CE(G) always exists and is < |[V(G)| — 2.
Call this the critical exponent of the graph G.

@ FitzGerald—Horn studied the case G = K,: CE(K;)=r —2.
@ Guillot—-K.—Rajaratnam [Trans. AMS 2016] studied trees: CE(T) = 1.
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Critical exponent of a graph

Exploit the sparsity structure of Pg.
Problem: Compute the set of powers preserving positivity on Pg:

Ha :={a>0:A° € Pg for all A € Ps([0,00))}

CE(G) := smallest ag s.t.  preserves positivity on Pg,Va > ao.

By FitzGerald-Horn, CE(QG) always exists and is < |[V(G)| — 2.
Call this the critical exponent of the graph G.

FitzGerald—Horn studied the case G = K,: CE(K,)=r—2.
Guillot-K.—Rajaratnam [Trans. AMS 2016] studied trees: CE(T) = 1.

How do CE(G) and H¢ depend on the geometry of G?
Compute CE(G) for a family containing complete graphs and trees?
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Chordal graphs — powers preserving positivity

Trees have no cycles of length n > 3.
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Chordal graphs — powers preserving positivity

Trees have no cycles of length n > 3.

Definition: G is chordal if it does not contain induced cycles of length n > 4.

Chordal Not Chordal
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Chordal graphs — powers preserving positivity

Trees have no cycles of length n > 3.

Definition: G is chordal if it does not contain induced cycles of length n > 4.

Chordal Not Chordal

Theorem (Guillot—-K.—Rajaratnam, J. Combin. Theory Ser. A 2016)

Let KV be the ‘almost complete’ graph on r nodes — missing one edge.
Let r = r(G) be the largest integer such that either K, or K™ s an induced
subgraph of G.
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Chordal graphs — powers preserving positivity

Trees have no cycles of length n > 3.

Definition: G is chordal if it does not contain induced cycles of length n > 4.

Chordal Not Chordal

Theorem (Guillot—-K.—Rajaratnam, J. Combin. Theory Ser. A 2016)

Let KV be the ‘almost complete’ graph on r nodes — missing one edge.
Let r = r(G) be the largest integer such that either K, or M) s an induced
subgraph of G.

If G is chordal with |V'| > 2, then Hg = N U [r — 2, 00).
In particular, CE(G) =1 — 2.

Unites complete graphs, trees, band graphs, split graphs. ..
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Non-chordal graphs

Example: Band graphs with bandwidth d: CE(G) = min(d,n — 2).

1 06 05 O 0
06 1 06 05 0
SoforTs =105 06 1 0.6 0.5] asabove, all powers > 2 = d work.
0 05 06 1 06
0 0 05 06 1
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Non-chordal graphs

Example: Band graphs with bandwidth d: CE(G) = min(d,n — 2).

1 06 05 O 0
06 1 06 05 0
SoforTs =105 06 1 0.6 0.5] asabove, all powers > 2 = d work.
0 05 06 1 06
0 0 05 06 1

Other graphs? (Talk by Dominique Guillot in MS18-iii.)
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Non-chordal graphs

Example: Band graphs with bandwidth d: CE(G) = min(d,n — 2).
1 06 05 O 0
06 1 06 05 O
SoforTs =105 06 1 0.6 0.5] asabove, all powers > 2 = d work.
0 05 06 1 0.6
0 0 05 06 1

Other graphs? (Talk by Dominique Guillot in MS18-iii.)
CE(G) in terms of other graph invariants? Not clear.

American Institute
of Mathematics ~
N SERB
DIA

[A]

International Linear

] ] Algebra Society
Apoorva Khare, 11ISc Bangalore mﬂl 31/ 32



3. Statistics: covariance estimation

4. Symmetric function theory

Fixed dimension results A ) 0
5. Combinatorics: critical exponent

Selected publications

. Guillot, A. Khare, and B. Rajaratnam:

1]
2]
(3]
[4]

Preserving positivity for rank-constrained matrices, Trans. AMS, 2017.
Preserving positivity for matrices with sparsity constraints, Tr. AMS, 2016.
Critical exponents of graphs, J. Combin. Theory Ser. A, 2016.

Complete characterization of Hadamard powers preserving Loewner
positivity, monotonicity, and convexity, J. Math. Anal. Appl., 2015.

A.

Belton, D. Guillot, A. Khare, and M. Putinar:

(5]
[6]
[7]

Matrix positivity preservers in fixed dimension. I, Advances in Math., 2016.
Moment-sequence transforms, Preprint, 2016.

A panorama of positivity (survey), Shimorin volume + Ransford-60 proc.

(8]

[9]

On the sign patterns of entrywise positivity preservers in fixed dimension,
(With T. Tao) Preprint, 2017.

Smooth entrywise positivity preservers, a Horn—Loewner master theorem,
and Schur polynomials, Preprint, 2018.

Apoorva Khare, 11ISc Bangalore 32 /32



	Dimension-free results
	1. Analysis: Schoenberg, Rudin, and measures
	2. Metric geometry: from spheres to correlations

	Fixed dimension results
	3. Statistics: covariance estimation
	4. Symmetric function theory
	5. Combinatorics: critical exponent


