Moments in the history of positivity

Apoorva Khare
IISc and APRG (Bangalore, India)

KBS Fest,
ISI-Bangalore, December 2018
(Partly joint with Alexander Belton, Dominique Guillot, Mihai Putinar; and partly with Terence Tao)

Entrywise functions preserving positivity

Definitions:

(1) A real symmetric matrix $A_{n \times n}$ is positive semidefinite if its quadratic form is so: $x^{T} A x \geq 0$ for all $x \in \mathbb{R}^{n}$. (Hence $\sigma(A) \subset[0, \infty)$.)
(2) Given $n \geq 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_{n}(I)$ denote the $n \times n$ positive (semidefinite) matrices, with entries in I. (Say $\mathbb{P}_{n}=\mathbb{P}_{n}(\mathbb{R})$.)

Entrywise functions preserving positivity

Definitions:

(1) A real symmetric matrix $A_{n \times n}$ is positive semidefinite if its quadratic form is so: $x^{T} A x \geq 0$ for all $x \in \mathbb{R}^{n}$. (Hence $\sigma(A) \subset[0, \infty)$.)
(2) Given $n \geq 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_{n}(I)$ denote the $n \times n$ positive (semidefinite) matrices, with entries in I. (Say $\mathbb{P}_{n}=\mathbb{P}_{n}(\mathbb{R})$.)
(3) A function $f: I \rightarrow \mathbb{R}$ acts entrywise on a matrix $A \in I^{n \times n}$ via:

$$
f[A]:=\left(f\left(a_{j k}\right)\right)_{j, k=1}^{n} .
$$

Problem: For which functions $f: I \rightarrow \mathbb{R}$ is it true that

$$
f[A] \in \mathbb{P}_{n} \text { for all } A \in \mathbb{P}_{n}(I) ?
$$

Entrywise functions preserving positivity

Definitions:

(1) A real symmetric matrix $A_{n \times n}$ is positive semidefinite if its quadratic form is so: $x^{T} A x \geq 0$ for all $x \in \mathbb{R}^{n}$. (Hence $\sigma(A) \subset[0, \infty)$.)
(2) Given $n \geq 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_{n}(I)$ denote the $n \times n$ positive (semidefinite) matrices, with entries in I. (Say $\mathbb{P}_{n}=\mathbb{P}_{n}(\mathbb{R})$.)
(3) A function $f: I \rightarrow \mathbb{R}$ acts entrywise on a matrix $A \in I^{n \times n}$ via: $f[A]:=\left(f\left(a_{j k}\right)\right)_{j, k=1}^{n}$.

Problem: For which functions $f: I \rightarrow \mathbb{R}$ is it true that

$$
f[A] \in \mathbb{P}_{n} \text { for all } A \in \mathbb{P}_{n}(I) ?
$$

- (Long history:) The Schur Product Theorem [Schur, Crelle 1911] says: If $A, B \in \mathbb{P}_{n}$, then so is $A \circ B:=\left(a_{j k} b_{j k}\right)$.
- As a consequence, $f(x)=x^{k}(k \geq 0)$ preserves positivity on \mathbb{P}_{n} for all n.

Entrywise functions preserving positivity

Definitions:

(1) A real symmetric matrix $A_{n \times n}$ is positive semidefinite if its quadratic form is so: $x^{T} A x \geq 0$ for all $x \in \mathbb{R}^{n}$. (Hence $\sigma(A) \subset[0, \infty)$.)
(2) Given $n \geq 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_{n}(I)$ denote the $n \times n$ positive (semidefinite) matrices, with entries in I. (Say $\mathbb{P}_{n}=\mathbb{P}_{n}(\mathbb{R})$.)
(3) A function $f: I \rightarrow \mathbb{R}$ acts entrywise on a matrix $A \in I^{n \times n}$ via: $f[A]:=\left(f\left(a_{j k}\right)\right)_{j, k=1}^{n}$.

Problem: For which functions $f: I \rightarrow \mathbb{R}$ is it true that

$$
f[A] \in \mathbb{P}_{n} \text { for all } A \in \mathbb{P}_{n}(I) ?
$$

- (Long history:) The Schur Product Theorem [Schur, Crelle 1911] says: If $A, B \in \mathbb{P}_{n}$, then so is $A \circ B:=\left(a_{j k} b_{j k}\right)$.
- As a consequence, $f(x)=x^{k}(k \geq 0)$ preserves positivity on \mathbb{P}_{n} for all n.
- (Pólya-Szegö, 1925): Taking sums and limits, if $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ is convergent and $c_{k} \geq 0$, then $f[-]$ preserves positivity.
Question: Anything else?

Schoenberg's theorem

Interestingly, the answer is no, for preserving positivity in all dimensions:

Theorem (Schoenberg, Duke Math. J. 1942; Rudin, Duke Math. J. 1959)

Suppose $I=(-1,1)$ and $f: I \rightarrow \mathbb{R}$. The following are equivalent:
(1) $f[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$ and all $n \geq 1$.
(2) f is analytic on I and has nonnegative Taylor coefficients.

In other words, $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ on I, with all $c_{k} \geq 0$.

Schoenberg's theorem

Interestingly, the answer is no, for preserving positivity in all dimensions:

Theorem (Schoenberg, Duke Math. J. 1942; Rudin, Duke Math. J. 1959)

Suppose $I=(-1,1)$ and $f: I \rightarrow \mathbb{R}$. The following are equivalent:
(1) $f[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$ and all $n \geq 1$.
(2) f is analytic on I and has nonnegative Taylor coefficients.

In other words, $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ on I, with all $c_{k} \geq 0$.

- Schoenberg's result is the (harder) converse to that of his advisor: Schur.
- Vasudeva (IJPAM 1979) proved a variant, over $I=(0, \infty)$.
- Upshot: Preserving positivity in all dimensions is a rigid condition \rightsquigarrow implies real analyticity, absolute monotonicity...

Schoenberg's theorem

Interestingly, the answer is no, for preserving positivity in all dimensions:

Theorem (Schoenberg, Duke Math. J. 1942; Rudin, Duke Math. J. 1959)

Suppose $I=(-1,1)$ and $f: I \rightarrow \mathbb{R}$. The following are equivalent:
(1) $f[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$ and all $n \geq 1$.
(2) f is analytic on I and has nonnegative Taylor coefficients.

In other words, $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ on I, with all $c_{k} \geq 0$.

- Schoenberg's result is the (harder) converse to that of his advisor: Schur.
- Vasudeva (IJPAM 1979) proved a variant, over $I=(0, \infty)$.
- Upshot: Preserving positivity in all dimensions is a rigid condition \rightsquigarrow implies real analyticity, absolute monotonicity...
- We show stronger versions of Vasudeva's and Schoenberg's theorems. (Outlined below.)

Schoenberg's motivations: metric geometry

Endomorphisms of matrix spaces with positivity constraints related to:

- matrix monotone functions (Loewner)
- preservers of matrix properties (rank, inertia, ...)
- real-stable/hyperbolic polynomials (Borcea, Branden, Liggett, Marcus, Spielman, Srivastava. . .)
- positive definite functions (von Neumann, Bochner, Schoenberg ...)

Definition

$f:[0, \infty) \rightarrow \mathbb{R}$ is positive definite on a metric space (X, d) if $\left[f\left(d\left(x_{j}, x_{k}\right)\right)\right]_{j, k=1}^{n} \in \mathbb{P}_{n}, \quad$ for all $n \geq 1$ and all $x_{1}, \ldots, x_{n} \in X$.

Distance geometry

How did the study of positivity and its preservers begin?

Distance geometry

How did the study of positivity and its preservers begin?

In the 1900s, the notion of a metric space emerged from the works of Fréchet and Hausdorff. . .

- Now ubiquitous in science (mathematics, physics, economics, statistics, computer science...).

Distance geometry

How did the study of positivity and its preservers begin?

In the 1900s, the notion of a metric space emerged from the works of Frechet and Hausdorff. . .

- Now ubiquitous in science (mathematics, physics, economics, statistics, computer science...).
- Fréchet [Math. Ann. 1910]. If (X, d) is a metric space with $|X|=n+1$, then (X, d) isometrically embeds into $\left(\mathbb{R}^{n}, \ell_{\infty}\right)$.
- This avenue of work led to the exploration of metric space embeddings. Natural question: Which metric spaces isometrically embed into Euclidean space?

Euclidean metric spaces and positive matrices

Which metric spaces isometrically embed into a Euclidean space?

- Menger [Amer. J. Math. 1931] and Fréchet [Ann. of Math. 1935] provided characterizations.

Euclidean metric spaces and positive matrices

Which metric spaces isometrically embed into a Euclidean space?

- Menger [Amer. J. Math. 1931] and Fréchet [Ann. of Math. 1935] provided characterizations.
- Reformulated by Schoenberg, using matrix positivity:

Theorem (Schoenberg, Ann. of Math. 1935)

Fix integers $n, r \geq 1$, and a finite set $X=\left\{x_{0}, \ldots, x_{n}\right\}$ together with a metric d on X. Then (X, d) isometrically embeds into \mathbb{R}^{r} (with the Euclidean distance/norm) but not into \mathbb{R}^{r-1} if and only if the $n \times n$ matrix

$$
A:=\left(d\left(x_{0}, x_{j}\right)^{2}+d\left(x_{0}, x_{k}\right)^{2}-d\left(x_{j}, x_{k}\right)^{2}\right)_{j, k=1}^{n}
$$

is positive semidefinite of rank r.

Connects metric geometry and matrix positivity.

Schoenberg: from metric geometry to matrix positivity

Sketch of one implication: If (X, d) isometrically embeds into $\left(\mathbb{R}^{r},\|\cdot\|\right)$, then

$$
\begin{aligned}
& d\left(x_{0}, x_{j}\right)^{2}+d\left(x_{0}, x_{k}\right)^{2}-d\left(x_{j}, x_{k}\right)^{2} \\
= & \left\|x_{0}-x_{j}\right\|^{2}+\left\|x_{0}-x_{k}\right\|^{2}-\left\|\left(x_{0}-x_{j}\right)-\left(x_{0}-x_{k}\right)\right\|^{2} \\
= & 2\left\langle x_{0}-x_{j}, x_{0}-x_{k}\right\rangle .
\end{aligned}
$$

But then the matrix A above, is the Gram matrix of a set of vectors in \mathbb{R}^{r}, hence is positive semidefinite, of rank $\leq r$.

Schoenberg: from metric geometry to matrix positivity

Sketch of one implication: If (X, d) isometrically embeds into $\left(\mathbb{R}^{r},\|\cdot\|\right)$, then

$$
\begin{aligned}
& d\left(x_{0}, x_{j}\right)^{2}+d\left(x_{0}, x_{k}\right)^{2}-d\left(x_{j}, x_{k}\right)^{2} \\
= & \left\|x_{0}-x_{j}\right\|^{2}+\left\|x_{0}-x_{k}\right\|^{2}-\left\|\left(x_{0}-x_{j}\right)-\left(x_{0}-x_{k}\right)\right\|^{2} \\
= & 2\left\langle x_{0}-x_{j}, x_{0}-x_{k}\right\rangle .
\end{aligned}
$$

But then the matrix A above, is the Gram matrix of a set of vectors in \mathbb{R}^{r}, hence is positive semidefinite, of rank $\leq r$. In fact the rank is exactly r.

Schoenberg: from metric geometry to matrix positivity

Sketch of one implication: If (X, d) isometrically embeds into $\left(\mathbb{R}^{r},\|\cdot\|\right)$, then

$$
\begin{aligned}
& d\left(x_{0}, x_{j}\right)^{2}+d\left(x_{0}, x_{k}\right)^{2}-d\left(x_{j}, x_{k}\right)^{2} \\
= & \left\|x_{0}-x_{j}\right\|^{2}+\left\|x_{0}-x_{k}\right\|^{2}-\left\|\left(x_{0}-x_{j}\right)-\left(x_{0}-x_{k}\right)\right\|^{2} \\
= & 2\left\langle x_{0}-x_{j}, x_{0}-x_{k}\right\rangle .
\end{aligned}
$$

But then the matrix A above, is the Gram matrix of a set of vectors in \mathbb{R}^{r}, hence is positive semidefinite, of rank $\leq r$. In fact the rank is exactly r.

- Also observe: the matrix $A:=\left(d\left(x_{0}, x_{j}\right)^{2}+d\left(x_{0}, x_{k}\right)^{2}-d\left(x_{j}, x_{k}\right)^{2}\right)_{j, k=1}^{n}$ is positive semidefinite, if and only if the matrix $A_{(n+1) \times(n+1)}^{\prime}:=\left(-d\left(x_{j}, x_{k}\right)^{2}\right)_{j, k=0}^{n}$ is conditionally positive semidefinite: $u^{T} A^{\prime} u \geq 0$ whenever $\sum_{j=0}^{n} u_{j}=0$.
- This is how positive / conditionally positive matrices emerged from metric geometry.

Distance transforms: positive definite functions

As we saw, applying the function $-x^{2}$ entrywise sends any distance matrix from Euclidean space, to a conditionally positive semidefinite matrix A^{\prime}.

What operations send distance matrices to positive semidefinite matrices?

Distance transforms: positive definite functions

As we saw, applying the function $-x^{2}$ entrywise sends any distance matrix from Euclidean space, to a conditionally positive semidefinite matrix A^{\prime}.

What operations send distance matrices to positive semidefinite matrices? These are the positive definite functions. Example: Gaussian kernel:

Theorem (Schoenberg, Trans. AMS 1938)

The function $f(x)=\exp \left(-x^{2}\right)$ is positive definite on \mathbb{R}^{r}, for all $r \geq 1$.
Schoenberg showed this using Bochner's theorem on \mathbb{R}^{r}, and the fact that the Gaussian function is its own Fourier transform (up to constants).

Distance transforms: positive definite functions

As we saw, applying the function $-x^{2}$ entrywise sends any distance matrix from Euclidean space, to a conditionally positive semidefinite matrix A^{\prime}.

What operations send distance matrices to positive semidefinite matrices? These are the positive definite functions. Example: Gaussian kernel:

Theorem (Schoenberg, Trans. AMS 1938)

The function $f(x)=\exp \left(-x^{2}\right)$ is positive definite on \mathbb{R}^{r}, for all $r \geq 1$.
Schoenberg showed this using Bochner's theorem on \mathbb{R}^{r}, and the fact that the Gaussian function is its own Fourier transform (up to constants).

Alternate proof (K.):

(1) An observation of Gantmakher and Krein: Generalized Vandermonde matrices are totally positive. In other words, if $0<y_{1}<\cdots<y_{n}$ and $x_{1}<\cdots<x_{n}$ in \mathbb{R}, then $\operatorname{det}\left(y_{j}^{x_{k}}\right)_{j, k=1}^{n}$ is positive.
(2) A result by Pólya: The Gaussian kernel is positive definite on \mathbb{R}^{1}. Indeed,

$$
\left(\exp \left(-\left(x_{j}-x_{k}\right)^{2}\right)\right)_{j, k=1}^{n}=\operatorname{diag}\left(e^{-x_{j}^{2}}\right) \times\left(\exp \left(2 x_{j} x_{k}\right)\right)_{j, k=1}^{n} \times \operatorname{diag}\left(e^{-x_{k}^{2}}\right)
$$

(3) A result of Schur: The Schur product theorem implies the result for \mathbb{R}^{r}.

Spherical embeddings, via positive definite maps

In fact, Schoenberg [Trans. Amer. Math. Soc. 1938] showed: Euclidean spaces \mathbb{R}^{r}, or their direct limit $\mathbb{R}^{\infty}=\ell^{2}(\mathbb{N})$ (called Hilbert space by Schoenberg) are characterized by the property that the maps

$$
\exp \left(-\lambda^{2} x^{2}\right), \quad \lambda>0
$$

are all positive definite on each (finite) metric subspace.

Spherical embeddings, via positive definite maps

In fact, Schoenberg [Trans. Amer. Math. Soc. 1938] showed: Euclidean spaces \mathbb{R}^{r}, or their direct limit $\mathbb{R}^{\infty}=\ell^{2}(\mathbb{N})$ (called Hilbert space by Schoenberg) are characterized by the property that the maps

$$
\exp \left(-\lambda^{2} x^{2}\right), \quad \lambda>0
$$

are all positive definite on each (finite) metric subspace.
What about distinguished subsets of \mathbb{R}^{r} or of \mathbb{R}^{∞} ? Can one find similar families of functions for them?

Schoenberg explored this question for spheres: $S^{r-1} \subset \mathbb{R}^{r}$ and $S^{\infty} \subset \mathbb{R}^{\infty}$. It turns out, the characterization now involves a single function!

Spherical embeddings, via positive definite maps

In fact, Schoenberg [Trans. Amer. Math. Soc. 1938] showed: Euclidean spaces \mathbb{R}^{r}, or their direct limit $\mathbb{R}^{\infty}=\ell^{2}(\mathbb{N})$ (called Hilbert space by Schoenberg) are characterized by the property that the maps

$$
\exp \left(-\lambda^{2} x^{2}\right), \quad \lambda>0
$$

are all positive definite on each (finite) metric subspace.
What about distinguished subsets of \mathbb{R}^{r} or of \mathbb{R}^{∞} ? Can one find similar families of functions for them?

Schoenberg explored this question for spheres: $S^{r-1} \subset \mathbb{R}^{r}$ and $S^{\infty} \subset \mathbb{R}^{\infty}$. It turns out, the characterization now involves a single function!

This is the cosine.

Spherical embeddings via cosines

Notice that the Hilbert sphere S^{∞} (hence every subspace such as S^{r-1}) has a rotation-invariant distance - arc-length along a great circle:

$$
d(x, y):=\varangle(x, y)=\arccos \langle x, y\rangle, \quad x, y \in S^{\infty}
$$

Hence applying $\cos [-]$ entrywise to any distance matrix on S^{∞} yields:

$$
\cos \left[\left(d\left(x_{j}, x_{k}\right)\right)_{j, k \geq 0}\right]=\left(\left\langle x_{j}, x_{k}\right\rangle\right)_{j, k \geq 0}
$$

and this is a Gram matrix, so positive semidefinite.

Spherical embeddings via cosines

Notice that the Hilbert sphere S^{∞} (hence every subspace such as S^{r-1}) has a rotation-invariant distance - arc-length along a great circle:

$$
d(x, y):=\varangle(x, y)=\arccos \langle x, y\rangle, \quad x, y \in S^{\infty}
$$

Hence applying $\cos [-]$ entrywise to any distance matrix on S^{∞} yields:

$$
\cos \left[\left(d\left(x_{j}, x_{k}\right)\right)_{j, k \geq 0}\right]=\left(\left\langle x_{j}, x_{k}\right\rangle\right)_{j, k \geq 0},
$$

and this is a Gram matrix, so positive semidefinite. Moreover, if $X \hookrightarrow S^{\infty}$ then X must have diameter at most diam $S^{\infty}=\pi$. This shows one half of:

Theorem (Schoenberg, Ann. of Math. 1935)

A finite metric space (X, d) embeds isometrically into the Hilbert sphere S^{∞} if and only if $(a) \cos (x)$ is positive definite on X, and (b) $\operatorname{diam} X \leq \pi$.

Spherical embeddings via cosines

Notice that the Hilbert sphere S^{∞} (hence every subspace such as S^{r-1}) has a rotation-invariant distance - arc-length along a great circle:

$$
d(x, y):=\varangle(x, y)=\arccos \langle x, y\rangle, \quad x, y \in S^{\infty}
$$

Hence applying $\cos [-]$ entrywise to any distance matrix on S^{∞} yields:

$$
\cos \left[\left(d\left(x_{j}, x_{k}\right)\right)_{j, k \geq 0}\right]=\left(\left\langle x_{j}, x_{k}\right\rangle\right)_{j, k \geq 0},
$$

and this is a Gram matrix, so positive semidefinite. Moreover, if $X \hookrightarrow S^{\infty}$ then X must have diameter at most diam $S^{\infty}=\pi$. This shows one half of:

Theorem (Schoenberg, Ann. of Math. 1935)

A finite metric space (X, d) embeds isometrically into the Hilbert sphere S^{∞} if and only if $(a) \cos (x)$ is positive definite on X, and (b) $\operatorname{diam} X \leq \pi$.

- For more on the history/overview: survey article by Belton-Guillot-K.-Putinar, 2019.
- For full proofs of these and below results: lecture notes (K.), 2019.

Positive definite functions on spheres

These results characterize \mathbb{R}^{∞} and S^{∞} in terms of positive definite functions.
At the same time (1930s), Bochner proved his famous theorem classifying all positive definite functions on Euclidean space [Math. Ann. 1933].
Simultaneously generalized in 1940 by Weil, Povzner, and Raikov to arbitrary locally compact abelian groups.

Positive definite functions on spheres

These results characterize \mathbb{R}^{∞} and S^{∞} in terms of positive definite functions.
At the same time (1930s), Bochner proved his famous theorem classifying all positive definite functions on Euclidean space [Math. Ann. 1933].
Simultaneously generalized in 1940 by Weil, Povzner, and Raikov to arbitrary locally compact abelian groups.

After understanding that $\cos (\cdot)$ is positive definite on S^{∞}, Schoenberg was interested in classifying positive definite functions on spheres.
This is the main result - and the title! - of his 1942 paper:

Positive definite functions on spheres (cont.)

Theorem (Schoenberg, Duke Math. J. 1942)
Suppose $f:[-1,1] \rightarrow \mathbb{R}$ is continuous. Then $f(\cos \cdot)$ is positive definite on the Hilbert sphere $S^{\infty} \subset \mathbb{R}^{\infty}=\ell^{2}(\mathbb{N})$ if and only if $f(\cos \theta)=\sum_{k \geq 0} c_{k} \cos ^{k} \theta$, where $c_{k} \geq 0 \forall k$ are such that $\sum_{k} c_{k}<\infty$.

Positive definite functions on spheres (cont.)

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose $f:[-1,1] \rightarrow \mathbb{R}$ is continuous. Then $f(\cos \cdot)$ is positive definite on the Hilbert sphere $S^{\infty} \subset \mathbb{R}^{\infty}=\ell^{2}(\mathbb{N})$ if and only if $f(\cos \theta)=\sum_{k \geq 0} c_{k} \cos ^{k} \theta$, where $c_{k} \geq 0 \forall k$ are such that $\sum_{k} c_{k}<\infty$.

Freeing this result from the sphere context, one obtains Schoenberg's theorem on entrywise positivity preservers: If f is continuous, then $f[-]: \mathbb{P}_{n} \rightarrow \mathbb{P}_{n}$ for all $n \quad \Longleftrightarrow \quad f$ is a power series with all coefficients ≥ 0.

Toeplitz and Hankel matrices

- Rudin (1959) strengthened Schoenberg's theorem to all functions.

Motivations: Rudin was motivated by harmonic analysis and Fourier analysis on locally compact groups. On $G=S^{1}$, he studied preservers of positive definite sequences $\left(a_{n}\right)_{n \in \mathbb{Z}}$. This means the Toeplitz kernel $\left(a_{i-j}\right)_{i, j \geqslant 0}$ is positive semidefinite.

Toeplitz and Hankel matrices

- Rudin (1959) strengthened Schoenberg's theorem to all functions.

Motivations: Rudin was motivated by harmonic analysis and Fourier analysis on locally compact groups. On $G=S^{1}$, he studied preservers of positive definite sequences $\left(a_{n}\right)_{n \in \mathbb{Z}}$. This means the Toeplitz kernel $\left(a_{i-j}\right)_{i, j \geqslant 0}$ is positive semidefinite.

- In [Duke Math. J. 1959] Rudin showed: f preserves positive definite sequences (Toeplitz matrices) if and only if f is absolutely monotonic. Suffices to work with measures with 3-point supports.

Toeplitz and Hankel matrices

- Rudin (1959) strengthened Schoenberg's theorem to all functions.

Motivations: Rudin was motivated by harmonic analysis and Fourier analysis on locally compact groups. On $G=S^{1}$, he studied preservers of positive definite sequences $\left(a_{n}\right)_{n \in \mathbb{Z}}$. This means the Toeplitz kernel $\left(a_{i-j}\right)_{i, j \geqslant 0}$ is positive semidefinite.

- In [Duke Math. J. 1959] Rudin showed: f preserves positive definite sequences (Toeplitz matrices) if and only if f is absolutely monotonic. Suffices to work with measures with 3-point supports.
- Important parallel notion: moment sequences.

Given positive measures μ on $[-1,1]$, with moment sequences

$$
\mathbf{s}(\mu):=\left(s_{k}(\mu)\right)_{k \geqslant 0}, \quad \text { where } s_{k}(\mu):=\int_{\mathbb{R}} x^{k} d \mu
$$

classify the moment-sequence transformers: $f\left(s_{k}(\mu)\right)=s_{k}\left(\sigma_{\mu}\right), \forall k \geq 0$.

Toeplitz and Hankel matrices

- Rudin (1959) strengthened Schoenberg's theorem to all functions.

Motivations: Rudin was motivated by harmonic analysis and Fourier analysis on locally compact groups. On $G=S^{1}$, he studied preservers of positive definite sequences $\left(a_{n}\right)_{n \in \mathbb{Z}}$. This means the Toeplitz kernel $\left(a_{i-j}\right)_{i, j \geqslant 0}$ is positive semidefinite.

- In [Duke Math. J. 1959] Rudin showed: f preserves positive definite sequences (Toeplitz matrices) if and only if f is absolutely monotonic. Suffices to work with measures with 3-point supports.
- Important parallel notion: moment sequences.

Given positive measures μ on $[-1,1]$, with moment sequences

$$
\mathbf{s}(\mu):=\left(s_{k}(\mu)\right)_{k \geqslant 0}, \quad \text { where } s_{k}(\mu):=\int_{\mathbb{R}} x^{k} d \mu
$$

classify the moment-sequence transformers: $f\left(s_{k}(\mu)\right)=s_{k}\left(\sigma_{\mu}\right), \forall k \geq 0$.

- With Belton-Guillot-Putinar \rightsquigarrow a parallel result to Rudin:

Toeplitz and Hankel matrices (cont.)

Let $0<\rho \leq \infty$ be a scalar, and set $I=(-\rho, \rho)$.
Theorem (Rudin, Duke Math. J. 1959)
Given a function $f: I \rightarrow \mathbb{R}$, the following are equivalent:
(1) $f[-]$ preserves the set of positive definite sequences with entries in I.
(2) $f[-]$ preserves positivity on Toeplitz matrices of all sizes and rank ≤ 3.

Toeplitz and Hankel matrices (cont.)

Let $0<\rho \leq \infty$ be a scalar, and set $I=(-\rho, \rho)$.

Theorem (Rudin, Duke Math. J. 1959)

Given a function $f: I \rightarrow \mathbb{R}$, the following are equivalent:
(1) $f[-]$ preserves the set of positive definite sequences with entries in I.
(2) $f[-]$ preserves positivity on Toeplitz matrices of all sizes and rank ≤ 3.
(3) f is analytic on I and has nonnegative Maclaurin coefficients. In other words, $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ on $(-1,1)$ with all $c_{k} \geq 0$.

Toeplitz and Hankel matrices (cont.)

Let $0<\rho \leq \infty$ be a scalar, and set $I=(-\rho, \rho)$.

Theorem (Rudin, Duke Math. J. 1959)

Given a function $f: I \rightarrow \mathbb{R}$, the following are equivalent:
(1) $f[-]$ preserves the set of positive definite sequences with entries in I.
(2) $f[-]$ preserves positivity on Toeplitz matrices of all sizes and rank ≤ 3.
(3) f is analytic on I and has nonnegative Maclaurin coefficients. In other words, $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ on $(-1,1)$ with all $c_{k} \geq 0$.

Theorem (Belton-Guillot-K.-Putinar, 2016)

Given a function $f: I \rightarrow \mathbb{R}$, the following are equivalent:
(1) $f[-]$ preserves the set of moment sequences with entries in I.
(2) $f[-]$ preserves positivity on Hankel matrices of all sizes and rank ≤ 3.
(3) f is analytic on I and has nonnegative Maclaurin coefficients.

Preserving positivity in fixed dimension

Preserving positivity for fixed n :

- Natural refinement of original problem of Schoenberg.
- Known for $n=2$ (Vasudeva [Indian J. Pure Appl. Math. 1979]).

Preserving positivity in fixed dimension

Preserving positivity for fixed n :

- Natural refinement of original problem of Schoenberg.
- Known for $n=2$ (Vasudeva [Indian J. Pure Appl. Math. 1979]). Open when $n \geq 3$.

Preserving positivity in fixed dimension

Preserving positivity for fixed n :

- Natural refinement of original problem of Schoenberg.
- Known for $n=2$ (Vasudeva [Indian J. Pure Appl. Math. 1979]). Open when $n \geq 3$.

To date, there is essentially only one result for fixed $n \geq 3$, due to Charles Loewner. It appeared in the [Trans. Amer. Math. Soc. 1969] paper of his student, Roger A. Horn:

Theorem (Loewner/Horn, 1969)

Suppose $I=(0, \infty)$, and a continuous function $f: I \rightarrow \mathbb{R}$ entrywise preserves positivity on $\mathbb{P}_{n}(I)$ for fixed $n \geq 3$. Then $f \in C^{n-3}(I)$, and

$$
f^{(k)}(x) \geq 0, \quad \forall 0 \leq k \leq n-3, x \in I
$$

If $n \geq 1$ and $f \in C^{n-1}(I)$ then this holds for all $0 \leq k \leq n-1$.

Horn's 1969 paper

We observe that if the quadratic form $\langle x, A x\rangle$ assumes only real values for $x \in C^{n}$, then A is necessarily Hermitian $\left(A=A^{*}\right)$. In particular, if $A \succeq 0$, then A must be Hermitian. All functions and products of matrices will be taken in the pointwise sense, i.e., $f(A) \equiv\left(f\left(a_{i j}\right)\right)_{i, j=1}^{n}$ and $A \circ B \equiv\left(a_{i j} b_{i j}\right)_{i, j=1}^{n}$, and we recall the Schur product theorem (vid. [14, p. 14], or [1, p. 94]):

Theorem 1.1. If $A \succeq 0$ and $B \succeq 0$, then $A \circ B \succeq 0$. Furthermore, if $A \gg 0$ and $B \circledast 0$, then $A \circ B \succcurlyeq 0$.

This theorem shows that if $f(t) \equiv t^{n}, n=1,2, \ldots$, then $f(A) \succeq 0$ whenever $A \succeq 0$, so it is not unnatural to ask what other functions share this property of leaving invariant the convex cone of nonnegative quadratic forms. C. Loewner has found (oral communication) certain necessary conditions, and we have the

Theorem 1.2. Let $f \in C\left(\boldsymbol{R}^{+}\right)$, let $n \geqq 1$ be an integer, and suppose that $f(A) \geq 0$ for every $n \times n$ matrix A such that $A>0$ and $A \succeq 0$. Then $f \in C^{n-3}\left(\boldsymbol{R}^{+}\right), f^{(k)}(x) \geqq 0$ for all $x \in \boldsymbol{R}^{+}$and all $k=0,1,2, \ldots, n-3$, and $f^{(n-3)}$ is a convex and monotone nondecreasing function on \boldsymbol{R}^{+}. In particular, if $f \in C^{n-1}\left(\boldsymbol{R}^{+}\right)$, then $f^{(k)}(x) \geqq 0$ for all $x \in \boldsymbol{R}^{+}$and all $k=0,1,2, \ldots, n-1$.

Stronger form of the Loewner/Horn result

- Define a special Hankel matrix to be $\left(\left(a+t x^{j+k}\right)\right)_{j, k=0}^{n-1}$, where $a, t, x \geq 0$ and $n \geq 1$. (This is a rank ≤ 2 Hankel psd matrix.)

Similar to Rudin's strengthening of Schoenberg's theorem, we now weaken the hypotheses of Loewner's theorem:

Theorem (Belton-Guillot-K.-Putinar, 2016)

Let $0<\rho \leq \infty$ and set $I=(0, \rho)$. Given any function $f: I \rightarrow \mathbb{R}$, suppose $f[-]$ preserves positivity on $\mathbb{P}_{2}(I)$ and the special Hankel matrices in $\mathbb{P}_{n}(I)$ for fixed $n \geq 3$. Then the same conclusions as above hold: $f \in C^{n-3}(I)$, and

$$
\begin{aligned}
& \qquad f^{(k)}(x) \geq 0, \quad \forall 0 \leq k \leq n-3, x \in I \\
& \text { If } n \geq 1 \text { and } f \in C^{n-1}(I) \text { then this holds for all } 0 \leq k \leq n-1 .
\end{aligned}
$$

The proof for smooth functions: Loewner's calculation

Suppose f smooth, entrywise preserves positivity on $\mathbb{P}_{n}((0, \rho))$. Why are $f, f^{\prime}, \ldots, f^{(n-1)}$ non-negative on $(0, \rho)$?

- Proceed by induction on n; for $n=1$ there is nothing to prove.

The proof for smooth functions: Loewner's calculation

Suppose f smooth, entrywise preserves positivity on $\mathbb{P}_{n}((0, \rho))$. Why are $f, f^{\prime}, \ldots, f^{(n-1)}$ non-negative on $(0, \rho)$?

- Proceed by induction on n; for $n=1$ there is nothing to prove.
- Induction step: Suppose $f[-]$ takes special Hankel matrices in $\mathbb{P}_{n}(I)$ to \mathbb{P}_{n}, hence for $(n-1) \times(n-1)$ too - so $f, f^{\prime}, \ldots, f^{(n-2)} \geq 0$ on I.

The proof for smooth functions: Loewner's calculation

Suppose f smooth, entrywise preserves positivity on $\mathbb{P}_{n}((0, \rho))$. Why are $f, f^{\prime}, \ldots, f^{(n-1)}$ non-negative on $(0, \rho)$?

- Proceed by induction on n; for $n=1$ there is nothing to prove.
- Induction step: Suppose $f[-]$ takes special Hankel matrices in $\mathbb{P}_{n}(I)$ to \mathbb{P}_{n}, hence for $(n-1) \times(n-1)$ too - so $f, f^{\prime}, \ldots, f^{(n-2)} \geq 0$ on I.
- Now define $f_{\epsilon}(x):=f(x)+\epsilon x^{n-1}$ for $\epsilon>0$. Then f_{ϵ} satisfies the hypotheses, and $f_{\epsilon}, f_{\epsilon}^{\prime}, \ldots, f_{\epsilon}^{(n-2)}>0$ on I.

The proof for smooth functions: Loewner's calculation

Suppose f smooth, entrywise preserves positivity on $\mathbb{P}_{n}((0, \rho))$. Why are $f, f^{\prime}, \ldots, f^{(n-1)}$ non-negative on $(0, \rho)$?

- Proceed by induction on n; for $n=1$ there is nothing to prove.
- Induction step: Suppose $f[-]$ takes special Hankel matrices in $\mathbb{P}_{n}(I)$ to \mathbb{P}_{n}, hence for $(n-1) \times(n-1)$ too - so $f, f^{\prime}, \ldots, f^{(n-2)} \geq 0$ on I.
- Now define $f_{\epsilon}(x):=f(x)+\epsilon x^{n-1}$ for $\epsilon>0$. Then f_{ϵ} satisfies the hypotheses, and $f_{\epsilon}, f_{\epsilon}^{\prime}, \ldots, f_{\epsilon}^{(n-2)}>0$ on I.
- Let $a \in(0, \rho)$ and choose $x \in(0,1), t \in(0, \rho-a)$. Then $A(a, t, x):=\left(a+t x^{j+k}\right)_{j, k=0}^{n-1}$ is a special Hankel matrix.

The proof for smooth functions: Loewner's calculation

Suppose f smooth, entrywise preserves positivity on $\mathbb{P}_{n}((0, \rho))$. Why are $f, f^{\prime}, \ldots, f^{(n-1)}$ non-negative on $(0, \rho)$?

- Proceed by induction on n; for $n=1$ there is nothing to prove.
- Induction step: Suppose $f[-]$ takes special Hankel matrices in $\mathbb{P}_{n}(I)$ to \mathbb{P}_{n}, hence for $(n-1) \times(n-1)$ too - so $f, f^{\prime}, \ldots, f^{(n-2)} \geq 0$ on I.
- Now define $f_{\epsilon}(x):=f(x)+\epsilon x^{n-1}$ for $\epsilon>0$. Then f_{ϵ} satisfies the hypotheses, and $f_{\epsilon}, f_{\epsilon}^{\prime}, \ldots, f_{\epsilon}^{(n-2)}>0$ on I.
- Let $a \in(0, \rho)$ and choose $x \in(0,1), t \in(0, \rho-a)$. Then $A(a, t, x):=\left(a+t x^{j+k}\right)_{j, k=0}^{n-1}$ is a special Hankel matrix. Hence

$$
\Delta(t):=\operatorname{det} f_{\epsilon}[A(a, x, t)] \geq 0, \quad \text { so } \frac{\Delta(t)}{t^{N}} \geq 0, \quad \text { where } N=\binom{n}{2}
$$

The proof for smooth functions: Loewner's calculation

Suppose f smooth, entrywise preserves positivity on $\mathbb{P}_{n}((0, \rho))$. Why are $f, f^{\prime}, \ldots, f^{(n-1)}$ non-negative on $(0, \rho)$?

- Proceed by induction on n; for $n=1$ there is nothing to prove.
- Induction step: Suppose $f[-]$ takes special Hankel matrices in $\mathbb{P}_{n}(I)$ to \mathbb{P}_{n}, hence for $(n-1) \times(n-1)$ too - so $f, f^{\prime}, \ldots, f^{(n-2)} \geq 0$ on I.
- Now define $f_{\epsilon}(x):=f(x)+\epsilon x^{n-1}$ for $\epsilon>0$. Then f_{ϵ} satisfies the hypotheses, and $f_{\epsilon}, f_{\epsilon}^{\prime}, \ldots, f_{\epsilon}^{(n-2)}>0$ on I.
- Let $a \in(0, \rho)$ and choose $x \in(0,1), t \in(0, \rho-a)$. Then $A(a, t, x):=\left(a+t x^{j+k}\right)_{j, k=0}^{n-1}$ is a special Hankel matrix. Hence

$$
\Delta(t):=\operatorname{det} f_{\epsilon}[A(a, x, t)] \geq 0, \quad \text { so } \frac{\Delta(t)}{t^{N}} \geq 0, \quad \text { where } N=\binom{n}{2}
$$

- Now Loewner computed:

$$
0=\Delta(0)=\Delta^{\prime}(0)=\cdots=\Delta^{(N-1)}(0)
$$

whence by L'Hopital's Rule,

$$
0 \leq \lim _{t \rightarrow 0^{+}} \frac{\Delta(t)}{t^{N}}=\lim _{t \rightarrow 0^{+}} \frac{\Delta^{\prime}(t)}{N t^{N-1}}=\cdots=\lim _{t \rightarrow 0^{+}} \frac{\Delta^{(N)}(t)}{N!}=\frac{\Delta^{(N)}(0)}{N!}
$$

Smooth functions: Loewner's calculation (cont.)

But now Loewner also computed:
$\Delta^{(N)}(0)=\binom{N}{0,1, \ldots, n-1} \prod_{0 \leq j<k \leq n-1}\left(x^{j}-x^{k}\right)^{2} \cdot f_{\epsilon}(a) f_{\epsilon}^{\prime}(a) \cdots f_{\epsilon}^{(n-1)}(a)$.
Hence $f_{\epsilon}^{(n-1)}(a) \geq 0$ for all $\epsilon>0$, so $f^{(n-1)}(a) \geq 0$.

Smooth functions: Loewner's calculation (cont.)

But now Loewner also computed:

$$
\Delta^{(N)}(0)=\binom{N}{0,1, \ldots, n-1} \prod_{0 \leq j<k \leq n-1}\left(x^{j}-x^{k}\right)^{2} \cdot f_{\epsilon}(a) f_{\epsilon}^{\prime}(a) \cdots f_{\epsilon}^{(n-1)}(a) .
$$

Hence $f_{\epsilon}^{(n-1)}(a) \geq 0$ for all $\epsilon>0$, so $f^{(n-1)}(a) \geq 0$.

- Loewner's computation can be made completely algebraic, using the derivation ∂_{t} over any unital commutative ring. (K., 2018 preprint.) This leads to novel symmetric function identities arising out of analysis.
- This line of attack is useful in classifying the entrywise polynomials preserving positivity. (Belton-Guillot-K.-Putinar, [Adv. in Math. 2016], K.-Tao, 2017 preprint).

Smooth functions: Loewner's calculation (cont.)

But now Loewner also computed:

$$
\Delta^{(N)}(0)=\binom{N}{0,1, \ldots, n-1} \prod_{0 \leq j<k \leq n-1}\left(x^{j}-x^{k}\right)^{2} \cdot f_{\epsilon}(a) f_{\epsilon}^{\prime}(a) \cdots f_{\epsilon}^{(n-1)}(a) .
$$

Hence $f_{\epsilon}^{(n-1)}(a) \geq 0$ for all $\epsilon>0$, so $f^{(n-1)}(a) \geq 0$.

- Loewner's computation can be made completely algebraic, using the derivation ∂_{t} over any unital commutative ring. (K., 2018 preprint.) This leads to novel symmetric function identities arising out of analysis.
- This line of attack is useful in classifying the entrywise polynomials preserving positivity. (Belton-Guillot-K.-Putinar, [Adv. in Math. 2016], K.-Tao, 2017 preprint).
- Loewner had initially summarized these computations in a letter to Josephine Mitchell (Penn. State University) on October 24, 1967:

Loewner's computations
whew I got interestedin the folloning question: Let $f(t)$ be a fuructian defined in oonuinterral $(a, b), a \geq 0$ aud corvider all real oy ruerebio weatrics $\left(a_{i j}\right)>0$ of arder x rill eloments $a_{y j} \in(a, b)$. Whic properties nust fol fove incerder (heet the vuatercer $\left(f\left(a_{i 2}\right)\right)>0$. I found as recenary conditions. $f(1) \geq 0, f(t)$ that if is $(m-1)$ times differeutiable the folloming couditicus are ween wry
(C) $f(t) \geq 0, f^{\prime}(t) \geq 0, \ldots f^{(n+1)}(t) \geq 0$ The function $t \rho(\rho>1)$ do unt oulisfy there conditicus for allg> if $x>3$.
The proof \therefore obtained by considering ruativices of the

 is $\left.f(x) f^{\prime}(x)-f^{(r 2 x}\right) \cdot(\pi(x,-x))^{2}$ and fancel $f(n) f^{\prime}(n)$. $f(m-1 /(x) \geq 0$, from wherene eavily
desives llat (C) mantfold.

Corollary: Schoenberg-Rudin theorem on $(0, \infty)$

- Using mollifiers, pass from smooth functions to all continuous functions.
- By a result of Ostrowski (1925), every preserver must be continuous.

Corollary: Schoenberg-Rudin theorem on $(0, \infty)$

- Using mollifiers, pass from smooth functions to all continuous functions.
- By a result of Ostrowski (1925), every preserver must be continuous.

Corollary (Belton-Guillot-K.-Putinar, 2016)

Suppose $0<\rho \leq \infty$ and $I=(0, \rho)$. The following are equivalent for any function $f: I \rightarrow \mathbb{R}$:
(1) $f[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$ and all n.
(2) $f[-]$ preserves positivity on special Hankel matrices in $\mathbb{P}_{n}(I), \forall n \geq 1$.
(3) f is analytic on I and has nonnegative Maclaurin coefficients. In other words, $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ on I with all $c_{k} \geq 0$.

Corollary: Schoenberg-Rudin theorem on $(0, \infty)$

- Using mollifiers, pass from smooth functions to all continuous functions.
- By a result of Ostrowski (1925), every preserver must be continuous.

Corollary (Belton-Guillot-K.-Putinar, 2016)

Suppose $0<\rho \leq \infty$ and $I=(0, \rho)$. The following are equivalent for any function $f: I \rightarrow \mathbb{R}$:
(1) $f[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$ and all n.
(2) $f[-]$ preserves positivity on special Hankel matrices in $\mathbb{P}_{n}(I), \forall n \geq 1$.
(3) f is analytic on I and has nonnegative Maclaurin coefficients. In other words, $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ on I with all $c_{k} \geq 0$.

The implications $(3) \Longrightarrow(1) \Longrightarrow(2)$ are easy. That $(1) \Longrightarrow(3)$ was shown by H.L. Vasudeva [Indian J. Pure Appl. Math. 1979].

Corollary: Schoenberg-Rudin theorem on $(0, \infty)$

- Using mollifiers, pass from smooth functions to all continuous functions.
- By a result of Ostrowski (1925), every preserver must be continuous.

Corollary (Belton-Guillot-K.-Putinar, 2016)

Suppose $0<\rho \leq \infty$ and $I=(0, \rho)$. The following are equivalent for any function $f: I \rightarrow \mathbb{R}$:
(1) $f[A] \in \mathbb{P}_{n}$ for all $A \in \mathbb{P}_{n}(I)$ and all n.
(2) $f[-]$ preserves positivity on special Hankel matrices in $\mathbb{P}_{n}(I), \forall n \geq 1$.
(3) f is analytic on I and has nonnegative Maclaurin coefficients. In other words, $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ on I with all $c_{k} \geq 0$.

The implications $(3) \Longrightarrow(1) \Longrightarrow(2)$ are easy. That $(1) \Longrightarrow$ (3) was shown by H.L. Vasudeva [Indian J. Pure Appl. Math. 1979].

Sketch: By the stronger Loewner theorem, f is smooth and all derivatives are ≥ 0 on I. Extend f continuously to 0^{+}, then apply Bernstein's theorem: such an f can be extended analytically to the complex disc $D(0, \rho)$.

Stronger Schoenberg theorem: outline of proof

Step 1: By an integration trick (connecting positive measures to positivity certificates for limiting s.o.s. polynomials on compact semi-algebraic sets), we show f is continuous on $(-\rho, \rho)$.

Stronger Schoenberg theorem: outline of proof

Step 1: By an integration trick (connecting positive measures to positivity certificates for limiting s.o.s. polynomials on compact semi-algebraic sets), we show f is continuous on $(-\rho, \rho)$.

Step 2: If f is assumed to also be smooth on $(-\rho, \rho)$, then it is real analytic on $(-\rho, \rho)$. Now done by previous slide and the Identity Theorem.

Stronger Schoenberg theorem: outline of proof

Step 1: By an integration trick (connecting positive measures to positivity certificates for limiting s.o.s. polynomials on compact semi-algebraic sets), we show f is continuous on $(-\rho, \rho)$.

Step 2: If f is assumed to also be smooth on $(-\rho, \rho)$, then it is real analytic on $(-\rho, \rho)$. Now done by previous slide and the Identity Theorem.

Step 3: Use three Ms (Mollifiers, Montel, Morera) to pass from smooth functions to continuous functions.

Preservers in fixed dimensions: polynomials

- Recall: classifying the entrywise preservers of \mathbb{P}_{N} for fixed $N \geq 3$ is open to date. For $\bigcup_{N} \mathbb{P}_{N}$ it was $\sum_{k \geq 0} c_{k} x^{k}$ with $c_{k} \geq 0$.
- How about polynomial preservers of \mathbb{P}_{N} for $N \geq 3$? Until 2016, not a single example known with a negative coefficient.

Preservers in fixed dimensions: polynomials

- Recall: classifying the entrywise preservers of \mathbb{P}_{N} for fixed $N \geq 3$ is open to date. For $\bigcup_{N} \mathbb{P}_{N}$ it was $\sum_{k \geq 0} c_{k} x^{k}$ with $c_{k} \geq 0$.
- How about polynomial preservers of \mathbb{P}_{N} for $N \geq 3$? Until 2016, not a single example known with a negative coefficient.
- Joint with Belton-Guillot-Putinar [Adv. Math. 2016] and Tao (2017):
(a) we found the first such examples,
(b) we classified which coefficients can be negative,
(c) we classified the polynomials with at most $N+1$ monomials which are preservers. Again, features rank ≤ 3 Hankel matrices.

Preservers in fixed dimensions: polynomials

- Recall: classifying the entrywise preservers of \mathbb{P}_{N} for fixed $N \geq 3$ is open to date. For $\bigcup_{N} \mathbb{P}_{N}$ it was $\sum_{k \geq 0} c_{k} x^{k}$ with $c_{k} \geq 0$.
- How about polynomial preservers of \mathbb{P}_{N} for $N \geq 3$? Until 2016, not a single example known with a negative coefficient.
- Joint with Belton-Guillot-Putinar [Adv. Math. 2016] and Tao (2017):
(a) we found the first such examples,
(b) we classified which coefficients can be negative,
(c) we classified the polynomials with at most $N+1$ monomials which are preservers. Again, features rank ≤ 3 Hankel matrices.
- The proofs use representation-theoretic tools: Schur polynomials, Harish-Chandra-Itzykson-Zuber integrals, Gelfand-Tsetlin patterns, and Schur positivity.
- It is the mixing of positivity and representation theory / algebra that led us to the first examples and characterization results.

Schur polynomials

Key ingredient in computations - representation theory / symmetric functions:
(Cauchy's definition:) Given a non-increasing n-tuple $m_{n-1} \geq m_{n-2} \geq \cdots \geq m_{0} \geq 0$, the corresponding
Schur polynomial equals the integer-coefficient polynomial

$$
s_{\left(m_{n-1}, \ldots, m_{0}\right)}\left(u_{1}, \ldots, u_{n}\right):=\frac{\operatorname{det}\left(u_{j}^{m_{k-1}}\right)}{\operatorname{det}\left(u_{j}^{k-1}\right)}
$$

Note that the denominator is precisely the Vandermonde determinant $V(\mathbf{u})$.

Schur polynomials

Key ingredient in computations - representation theory / symmetric functions:
(Cauchy's definition:) Given a non-increasing n-tuple $m_{n-1} \geq m_{n-2} \geq \cdots \geq m_{0} \geq 0$, the corresponding
Schur polynomial equals the integer-coefficient polynomial

$$
s_{\left(m_{n-1}, \ldots, m_{0}\right)}\left(u_{1}, \ldots, u_{n}\right):=\frac{\operatorname{det}\left(u_{j}^{m_{k-1}}\right)}{\operatorname{det}\left(u_{j}^{k-1}\right)}
$$

Note that the denominator is precisely the Vandermonde determinant $V(\mathbf{u})$.
Example: If $n=2$ and $\mathbf{m}=(k>l)$, then

$$
s_{\mathbf{m}}\left(u_{1}, u_{2}\right)=\frac{u_{1}^{k} u_{2}^{l}-u_{1}^{l} u_{2}^{k}}{u_{1}-u_{2}}=\left(u_{1} u_{2}\right)^{l}\left(u_{1}^{k-l-1}+u_{1}^{k-l-2} u_{2}+\cdots+u_{2}^{k-l-1}\right)
$$

Basis of homogeneous symmetric polynomials in u_{1}, \ldots, u_{n}.

From positivity and algebra, to inequalities

Treat Schur polynomials as functions on the positive orthant:
Let $s_{\mathbf{m}}(\mathbf{u}):=\operatorname{det}\left(u_{i}^{m_{j}}\right) / \operatorname{det}\left(u_{i}^{j-1}\right)$ be the Schur polynomial corresponding to m (abusing notation). Using deep results in representation theory, (K.-Tao:)

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})}
$$

is coordinatewise nondecreasing for \mathbf{u} in the positive orthant $(0, \infty)^{N}$, whenever $\mathbf{m} \geq \mathbf{n}$ coordinatewise.

From positivity and algebra, to inequalities

Treat Schur polynomials as functions on the positive orthant:
Let $s_{\mathbf{m}}(\mathbf{u}):=\operatorname{det}\left(u_{i}^{m_{j}}\right) / \operatorname{det}\left(u_{i}^{j-1}\right)$ be the Schur polynomial corresponding to \mathbf{m} (abusing notation). Using deep results in representation theory, (K.-Tao:)

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})}
$$

is coordinatewise nondecreasing for \mathbf{u} in the positive orthant $(0, \infty)^{N}$, whenever $\mathbf{m} \geq \mathbf{n}$ coordinatewise.

Using this (with the H-C-I-Z integral) yields a novel characterization of weak majorization for real tuples:

Theorem (K.-Tao, 2017)

Suppose \mathbf{m}, \mathbf{n} are N-tuples of pairwise distinct non-negative real powers. Then

$$
\frac{\left|\operatorname{det}\left(\mathbf{u}^{\circ m_{0}}|\cdots| \mathbf{u}^{\circ m_{N-1}}\right)\right|}{|V(\mathbf{m})|} \geq \frac{\left|\operatorname{det}\left(\mathbf{u}^{\circ n_{0}}|\cdots| \mathbf{u}^{\circ n_{N-1}}\right)\right|}{|V(\mathbf{n})|}, \quad \forall \mathbf{u} \in[1, \infty)^{N}
$$

if and only if \mathbf{m} weakly majorizes \mathbf{n}.

Selected references

[1] A panorama of positivity. (2-part survey, $80+\mathrm{pp}$.)
Shimorin \& Ransford-60 volumes, 2019. (With A. Belton, D. Guillot, M. Putinar.)
[2] Moment-sequence transforms,
Preprint, arXiv, 2016. (With A. Belton, D. Guillot, M. Putinar.)
[3] Matrix positivity preservers in fixed dimension. I,
Advances in Math., 2016. (With A. Belton, D. Guillot, M. Putinar.)
[4] On the sign patterns of entrywise positivity preservers in fixed dimension, Preprint, arXiv, 2017. (With T. Tao.)
[5] Matrix analysis and entrywise positivity preservers, Lecture notes, available on author's website, 2019.

