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Dimension-free results
Fixed dimension results

Working example

Definition. A real symmetric matrix AN×N is positive semidefinite if all
eigenvalues of A are > 0. (Equivalently, uTAu > 0 for all u ∈ RN .)

Example: Consider the following 5× 5 correlation matrices:

A =


1 0.6 0 0 0

0.6 1 0.5 0 0
0 0.5 1 0.4 0
0 0 0.4 1 0.3
0 0 0 0.3 1

 , B =


1 0.6 0.5 0 0

0.6 1 0.6 0.5 0
0.5 0.6 1 0.6 0.5
0 0.5 0.6 1 0.6
0 0 0.5 0.6 1

 .

(Pattern of zeros according to graphs: tree, banded graph.)

Question: Raise each entry to the αth power for some α > 0.
For which α are the resulting matrices positive?
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1. Analysis: Schoenberg, Rudin, and measures
2. Metric geometry: from spheres to correlations

Positivity and
Analysis
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Introduction

Positivity (and preserving it) studied in many settings in the literature.

Different flavors of positivity:

Positive semidefinite matrices (correlation and covariance matrices)

Positive definite sequences/Toeplitz matrices (measures on S1)

Moment sequences/Hankel matrices (measures on R)
Totally positive matrices and kernels (Pólya frequency
functions/sequences)

Hilbert space kernels

Positive definite functions on metric spaces, topological (semi)groups

Question: Classify the positivity preservers in these settings.

Studied for the better part of a century.
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Entrywise functions preserving positivity
Given N > 1 and I ⊂ R, let PN (I) denote the N ×N positive semidefinite
matrices, with entries in I. (Say PN = PN (R).)

Problem: Given a function f : I → R, when is it true that
f [A] := (f(aij)) ∈ PN for all A ∈ PN (I)?

(Long history!)

The Hadamard product (or Schur, or entrywise product) of two
matrices is given by: A ◦B = (aijbij).

Schur Product Theorem (Schur, J. Reine Angew. Math. 1911)

If A,B ∈ PN , then A ◦B ∈ PN .

Pólya–Szegö: As a consequence,

f(x) = x2, x3, . . . , xk preserves positivity on PN for all N, k.

f(x) =
∑l
k=0 ckx

k preserves positivity if ck > 0.

Taking limits: if f(x) =
∑∞
k=0 ckx

k is convergent and ck > 0, then f [−]
preserves positivity.

Anything else?

Apoorva Khare, IISc Bangalore 4 / 31
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Schoenberg’s theorem

Question (Pólya–Szegö, 1925): Anything else?

Remarkably, the answer is no, if
we want to preserve positivity in all dimensions.

Theorem (Schoenberg, Duke Math. J. 1942; Rudin, Duke Math. J. 1959)

Suppose I = (−1, 1) and f : I → R. The following are equivalent:

1 f [A] ∈ PN for all A ∈ PN (I) and all N .

2 f is analytic on I and has nonnegative Maclaurin coefficients. In other
words, f(x) =

∑∞
k=0 ckx

k on (−1, 1) with all ck > 0.

Such functions f are said to be absolutely monotonic on (0, 1).

Apoorva Khare, IISc Bangalore 5 / 31



Dimension-free results
Fixed dimension results

1. Analysis: Schoenberg, Rudin, and measures
2. Metric geometry: from spheres to correlations

Schoenberg’s theorem

Question (Pólya–Szegö, 1925): Anything else? Remarkably, the answer is no, if
we want to preserve positivity in all dimensions.

Theorem (Schoenberg, Duke Math. J. 1942; Rudin, Duke Math. J. 1959)

Suppose I = (−1, 1) and f : I → R. The following are equivalent:

1 f [A] ∈ PN for all A ∈ PN (I) and all N .

2 f is analytic on I and has nonnegative Maclaurin coefficients. In other
words, f(x) =

∑∞
k=0 ckx

k on (−1, 1) with all ck > 0.

Such functions f are said to be absolutely monotonic on (0, 1).

Apoorva Khare, IISc Bangalore 5 / 31



Dimension-free results
Fixed dimension results

1. Analysis: Schoenberg, Rudin, and measures
2. Metric geometry: from spheres to correlations

Schoenberg’s theorem

Question (Pólya–Szegö, 1925): Anything else? Remarkably, the answer is no, if
we want to preserve positivity in all dimensions.

Theorem (Schoenberg, Duke Math. J. 1942; Rudin, Duke Math. J. 1959)

Suppose I = (−1, 1) and f : I → R. The following are equivalent:

1 f [A] ∈ PN for all A ∈ PN (I) and all N .

2 f is analytic on I and has nonnegative Maclaurin coefficients. In other
words, f(x) =

∑∞
k=0 ckx

k on (−1, 1) with all ck > 0.

Such functions f are said to be absolutely monotonic on (0, 1).

Apoorva Khare, IISc Bangalore 5 / 31



Dimension-free results
Fixed dimension results

1. Analysis: Schoenberg, Rudin, and measures
2. Metric geometry: from spheres to correlations

Toeplitz and Hankel matrices

Motivations: Rudin was motivated by harmonic analysis and Fourier analysis
on locally compact groups. On G = S1, he studied preservers of positive
definite sequences (an)n∈Z. This means the Toeplitz kernel (ai−j)i,j>0 is
positive semidefinite.

In [Duke Math. J. 1959] Rudin showed: f preserves positive definite
sequences (Toeplitz matrices) if and only if f is absolutely monotonic.
Suffices to work with measures with 3-point supports.

Important parallel notion: moment sequences.
Given positive measures µ on [−1, 1], with moment sequences

s(µ) := (sk(µ))k>0, where sk(µ) :=

∫
R
xk dµ,

classify the moment-sequence transformers: f(sk(µ)) = sk(σµ), ∀k > 0.

With Belton–Guillot–Putinar  a parallel result to Rudin:

Apoorva Khare, IISc Bangalore 6 / 31
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Toeplitz and Hankel matrices (cont.)

Let 0 < ρ 6∞ be a scalar, and set I = (−ρ, ρ).

Theorem (Rudin, Duke Math. J. 1959)

Given a function f : I → R, the following are equivalent:

1 f [−] preserves the set of positive definite sequences with entries in I.

2 f [−] preserves positivity on Toeplitz matrices of all sizes and rank 6 3.

3 f is analytic on I and has nonnegative Maclaurin coefficients.
In other words, f(x) =

∑∞
k=0 ckx

k on I with all ck > 0.

Theorem (Belton–Guillot–K.–Putinar, J. Eur. Math. Soc., accepted)

Given a function f : I → R, the following are equivalent:

1 f [−] preserves the set of moment sequences with entries in I.

2 f [−] preserves positivity on Hankel matrices of all sizes and rank 6 3.

3 f is analytic on I and has nonnegative Maclaurin coefficients.

Apoorva Khare, IISc Bangalore 7 / 31
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Positive semidefinite kernels

These two results greatly weaken the hypotheses of Schoenberg’s theorem
– only need to consider positive semidefinite matrices of rank 6 3.

Note, such matrices are precisely the Gram matrices of vectors in a
3-dimensional Hilbert space. Hence Rudin (essentially) showed:

Let H be a real Hilbert space of dimension > 3. If f [−] preserves
positivity on all Gram matrices in H, then f is a power series on R with
non-negative Maclaurin coefficients.

But such functions are precisely the positive semidefinite kernels on H!
(Results of Pinkus et al.) Such kernels are important in modern day
machine learning, via RKHS.

Thus, Rudin (1959) classified positive semidefinite kernels on R3, which is
relevant in machine learning. (Now also via our parallel ‘Hankel’ result.)

Apoorva Khare, IISc Bangalore 8 / 31
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Metric geometry
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Distance geometry

How did the study of positivity and its preservers begin?

In the 1900s, the notion of a metric space emerged from the works of Fréchet
and Hausdorff. . .

Now ubiquitous in science (mathematics, physics, economics, statistics,
computer science. . . ).

Fréchet [Math. Ann. 1910]. If (X, d) is a metric space with |X| = n+ 1,
then (X, d) isometrically embeds into (Rn, `∞).

This avenue of work led to the exploration of metric space embeddings.
Natural question: Which metric spaces isometrically embed into
Euclidean space?

Apoorva Khare, IISc Bangalore 9 / 31
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Euclidean metric spaces and positive matrices

Which metric spaces isometrically embed into a Euclidean space?

Menger [Amer. J. Math. 1931] and Fréchet [Ann. of Math. 1935]
provided characterizations.

Reformulated by Schoenberg, using. . . matrix positivity!

Theorem (Schoenberg, Ann. of Math. 1935)

Fix a finite metric space (X, d), where X = {x0, . . . , xn}. Then (X, d)
isometrically embeds into some Rm (with the Euclidean distance/norm) if and
only if the n× n matrix

A := (d(x0, xi)
2 + d(x0, xj)

2 − d(xi, xj)
2)ni,j=1

is positive semidefinite. Moreover, the smallest such m is the rank of A.

This is how Schoenberg connected metric geometry and matrix positivity.

Apoorva Khare, IISc Bangalore 10 / 31
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Theorem (Schoenberg, Ann. of Math. 1935)

Fix a finite metric space (X, d), where X = {x0, . . . , xn}. Then (X, d)
isometrically embeds into some Rm (with the Euclidean distance/norm) if and
only if the n× n matrix

A := (d(x0, xi)
2 + d(x0, xj)

2 − d(xi, xj)
2)ni,j=1

is positive semidefinite.

Moreover, the smallest such m is the rank of A.

This is how Schoenberg connected metric geometry and matrix positivity.
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Fixed dimension results

1. Analysis: Schoenberg, Rudin, and measures
2. Metric geometry: from spheres to correlations

Positive definite functions on spheres
Schoenberg was interested in embedding metric spaces into Euclidean spheres.

Notice that every sphere Sr−1 – whence the Hilbert sphere S∞ – has a
rotation-invariant distance. Namely, the arc-length along a great circle:

d(x, y) := ^(x, y) = arccos〈x, y〉, x, y ∈ S∞.

Applying cos[−] entrywise to any distance matrix on S∞ yields:

cos[(d(xi, xj))i,j>0] = (〈xi, xj〉)i,j>0,

and this is a Gram matrix, so cos(·) is positive definite on S∞.

Schoenberg then classified all continuous f such that f ◦ cos(·) is p.d.:

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose f : [−1, 1]→ R is continuous, and r > 2. Then f(cos ·)
is positive definite on the unit sphere Sr−1 ⊂ Rr if and only if

f(·) =
∑
k>0

akC
( r−2

2
)

k (·) for some ak > 0,

where C(λ)
k (·) are the ultraspherical / Gegenbauer / Chebyshev polynomials.
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1. Analysis: Schoenberg, Rudin, and measures
2. Metric geometry: from spheres to correlations

From spheres to correlation matrices

Any Gram matrix of vectors xj ∈ Sr−1 is the same as
a rank 6 r correlation matrix A = (aij)

n
i,j=1, i.e.,

= (〈xi, xj〉)ni,j=1.

So,

f(cos ·) positive definite on Sr−1 ⇐⇒ (f(cos d(xi, xj)))
n
i,j=1 ∈ Pn

⇐⇒ (f(〈xi, xj〉))ni,j=1 ∈ Pn
⇐⇒ (f(aij))

n
i,j=1 ∈ Pn ∀n > 1,

i.e., f preserves positivity on correlation matrices of rank 6 r.

If instead r =∞, such a result would classify the entrywise positivity
preservers on all correlation matrices. Interestingly, 70 years later the
subject has acquired renewed interest because of its immediate impact in
high-dimensional covariance estimation, in several applied fields.
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Fixed dimension results

1. Analysis: Schoenberg, Rudin, and measures
2. Metric geometry: from spheres to correlations

Schoenberg’s theorem on positivity preservers

And indeed, Schoenberg did make the leap from Sr−1 to S∞:

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose f : [−1, 1]→ R is continuous. Then f(cos ·) is positive definite on the
Hilbert sphere S∞ ⊂ R∞ = `2 if and only if

f(cos θ) =
∑
k>0

ck cosk θ,

where ck > 0 ∀k are such that
∑
k ck <∞.

(By the Schur product theorem, cosk θ is positive definite on S∞.)

Freeing this result from the sphere context, one obtains Schoenberg’s theorem
on entrywise positivity preservers.

For more information: A panorama of positivity – arXiv, Dec. 2018.
(Survey, 80+ pp., by A. Belton, D. Guillot, A.K., and M. Putinar.)
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Statistics
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3. Statistics: covariance estimation
4. Combinatorics: critical exponent

Modern motivation: covariance estimation
Schoenberg’s result has recently attracted renewed attention,
owing to the statistics of big data.

Major challenge in science: detect structure in vast amount of data.

Covariance/correlation is a fundamental measure of dependence between
random variables:

Σ = (σij)
p
i,j=1, σij = Cov(Xi, Xj) = E[XiXj ]− E[Xi]E[Xj ].

Important question: Estimate Σ from data x1, . . . , xn ∈ Rp.
In modern-day settings (small samples, ultra-high dimension), covariance
estimation can be very challenging.

Classical estimators (e.g. sample covariance matrix (MLE)):

S =
1

n

n∑
j=1

(xj − x)(xj − x)T

perform poorly, are singular/ill-conditioned, etc.

Require some form of regularization – and resulting matrix has to be
positive semidefinite (in the parameter space) for applications.
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3. Statistics: covariance estimation
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Motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics.

Let X1, . . . , Xp be a collection of random variables.

Very large vectors: rare that all Xj depend strongly on each other.

Many variables are (conditionally) independent; not used in prediction.

Leverage the independence/conditional independence structure to reduce
dimension – translates to zeros in covariance/inverse covariance matrix.

Modern approach: Compressed sensing methods (Daubechies, Donoho,
Candes, Tao, . . . ) use convex optimization to obtain a sparse estimate of
Σ (e.g., `1-penalized likelihood methods).

State-of-the-art for ∼ 20 years.
Works well for dimensions of a few thousands.

Not scalable to modern-day problems with 100, 000+ variables (disease
detection, climate sciences, finance. . . ).
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Thresholding and regularization

Thresholding covariance/correlation matrices

True Σ =

 1 0.2 0
0.2 1 0.5
0 0.5 1

 , S =

0.95 0.18 0.02
0.18 0.96 0.47
0.02 0.47 0.98



Natural to threshold small entries (thinking the variables are independent):

S̃ =

0.95 0.18 0
0.18 0.96 0.47
0 0.47 0.98


Can be significant if p = 100, 000 and only, say, ∼ 1% of the entries of the true
Σ are nonzero.
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Entrywise functions – regularization

More generally, we could apply a function f : R→ R to the elements of the
matrix S – regularization:

Σ̂ = f [S] :=


f(σ11) f(σ12) . . . f(σ1N )
f(σ21) f(σ22) . . . f(σ2N )

...
...

. . .
...

f(σN1) f(σN2) . . . f(σNN )


(Example on previous slide is fε(x) = x · 1|x|>ε for some ε > 0.)

Highly scalable. Analysis on the cone – no optimization.

Regularized matrix f [S] further used in applications, where (estimates of)
Σ required in procedures such as PCA, CCA, MANOVA, etc.

Question: When does this procedure preserve positive (semi)definiteness?
Critical for applications since Σ ∈ PN .

Problem: For what functions f : R→ R, does f [−] preserve PN?
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Preserving positivity in fixed dimension
Schoenberg’s result characterizes functions preserving positivity for matrices of
all dimensions: f [A] ∈ PN for all A ∈ PN and all N .

Similar/related problems studied by many others, including:

Bharali, Bhatia, Christensen, FitzGerald, Helson, Hiai, Holtz,

Horn, Jain, Kahane, Karlin, Katznelson, Loewner, Menegatto,

Micchelli, Pinkus, Pólya, Ressel, Vasudeva, Willoughby, . . .

Preserving positivity for fixed N :

Natural refinement of original problem of Schoenberg.

In applications: dimension of the problem is known.
Unnecessarily restrictive to preserve positivity in all dimensions.

Known for N = 2 (Vasudeva, IJPAM 1979):

f is nondecreasing and f(x)f(y) > f(
√
xy)2 on (0,∞).

Open for N > 3.
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Problems motivated by applications

We revisit this problem with modern applications in mind.

Applications motivate many new exciting problems:
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Further connections: total positivity, symmetric functions

Two more broad areas:

1 Total positivity: Pólya frequency functions and sequences.

Rich history, from Laguerre and Fekete–Pólya, to Schoenberg,
Gantmacher–Krein, Karlin. . .

2 Connections of positivity preservers, as well as of total positivity, to
←→ algebraic combinatorics, Schur polynomials. (K.–Tao)
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Dimension-free results
Fixed dimension results
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Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, preserving positivity
on PN with N > 3.

(Was not known since Schoenberg’s Duke 1942 paper.)

Fixed N > 3 and general f  only known necessary condition, by Loewner:

Theorem (Horn–Loewner, Guillot–K.–Rajaratnam, Trans. AMS 1969, 2017)

Fix I = (0,∞) and f : I → R of class CN−1. Suppose f [A] ∈ PN for all
A ∈ PN (I) Hankel of rank 6 2, with N fixed. Then

f, f ′, f ′′, · · · , f (N−1) > 0 on I.

Implies Schoenberg–Rudin result for matrices with positive entries.

Loewner had initially summarized these computations in a letter to
Josephine Mitchell (Penn. State University) on October 24, 1967:
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Entrywise polynomial preservers in fixed dimension
Consequence: Let N ∈ N and c0, . . . , c2N 6= 0. Suppose

f(x) =

N−1∑
j=0

cjx
j + cNx

N +
2N∑

j=N+1

cjx
j

preserves positivity on PN . Then:
By considering f(x), we obtain c0, . . . , cN−1 > 0.

By considering f(1/x), we obtain: cN+1, . . . , c2N > 0.

Can cN be negative?
(More generally, which coefficients in a polynomial preserver can be negative?)

Theorem (K.–Tao, Amer. J. Math., accepted)

There exists a polynomial preserver of positivity on PN , with a (sufficiently
small) negative coefficient, if and only if there are N positive coefficients
occurring ‘before’ it, and N positive coefficients occurring ‘after’ it.
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Positivity and
Combinatorics
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Matrices with zeros according to graphs

In many applications, rare for all variables to depend strongly on each
other – simplifies prediction.

Many variables are (conditionally) independent – domain-specific
knowledge in applications.

Leverage the (conditional) independence
structure to reduce dimension.

1

2 3

4 
∗ ∗ 0 ∗
∗ ∗ ∗ 0
0 ∗ ∗ ∗
∗ 0 ∗ ∗


Natural to encode dependencies via a graph, where lack of an edge
signifies conditional independence (given other variables).

Study matrices with zeros according to graphs:

Given a graph G = (V,E) on N vertices, and I ⊂ R, define

PG(I) := {A = (aij) ∈ PN (I) : aij = 0 if i 6= j, (i, j) 6∈ E}.

Note: aij can be zero if (i, j) ∈ E.
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Powers preserving positivity: Working example

Distinguished family of functions: the power maps xα, α ∈ R, x > 0.
(Here, 0α := 0.)

Example: Suppose T5 =


1 0.6 0.5 0 0

0.6 1 0.6 0.5 0
0.5 0.6 1 0.6 0.5
0 0.5 0.6 1 0.6
0 0 0.5 0.6 1

.

Raise each entry to the αth power for some α > 0.
When is the resulting matrix positive semidefinite?

Intriguing “phase transition” discovered by two students of Loewner:

Theorem (FitzGerald–Horn, J. Math. Anal. Appl. 1977)

Let N > 2. Then f(x) = xα preserves positivity on PN ([0,∞)) if and only if
α ∈ N ∪ [N − 2,∞). The threshold N − 2 is called the critical exponent.

So for T5 as above, all powers α ∈ N ∪ [3,∞) work. Can we do better?
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Intriguing “phase transition” discovered by two students of Loewner:

Theorem (FitzGerald–Horn, J. Math. Anal. Appl. 1977)

Let N > 2. Then f(x) = xα preserves positivity on PN ([0,∞)) if and only if
α ∈ N ∪ [N − 2,∞). The threshold N − 2 is called the critical exponent.

So for T5 as above, all powers α ∈ N ∪ [3,∞) work.

Can we do better?
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Digression: the Pólya frequency function of Karlin

In fact when FitzGerald–Horn were students (at Stanford), in the next building
S. Karlin had discovered this same ‘Wallach set’ of powers, via total positivity!

Karlin studied powers of the Pólya frequency function Ω(x) := xe−x1x>0,
and showed that if n > 0 is an integer, Ω(x)n has the following property:

For all N > 1, the function Ω(x)n is totally non-negative of order N .

That is, for all scalars x1 < · · · < xN , y1 < · · · < yN , the matrix
Ω(x1 − y1)n Ω(x1 − y2)n · · · Ω(x1 − yN )n

Ω(x2 − y1)n Ω(x2 − y2)n · · · Ω(x2 − yN )n

...
...

. . .
...

Ω(xN − y1)n Ω(xN − y2)n · · · Ω(xN − yN )n


has all 1× 1, . . . , N ×N minors non-negative.
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Digression: the Pólya frequency function of Karlin (cont.)

Karlin asked: What if we consider non-integer powers α > 0? These are never
TN, but are TNN for various N :

Theorem (Karlin, Trans. Amer. Math. Soc. 1964)

Let 2 6 N ∈ Z, and α ∈ N ∪ [N − 2,∞).
Then Ω(x)α = xαe−αx1x>0 is TNN .

What about the remaining powers?

Theorem (K., 2020)

Let α ∈ (0, N − 2) \ Z. Then xαe−αx1x>0 is not TNN .

(Key ingredient in proof: 2020 results of Tanvi Jain.)
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Critical exponent of a graph
Back to entrywise powers preserving positivity. E.g., can we improve on the set

of powers N ∪ [3,∞) for T5 =


1 0.6 0.5 0 0
0.6 1 0.6 0.5 0
0.5 0.6 1 0.6 0.5
0 0.5 0.6 1 0.6
0 0 0.5 0.6 1

?

Exploit the sparsity structure of PG.

Problem: Compute the set of powers preserving positivity on PG:
HG := {α > 0 : A◦α ∈ PG for all A ∈ PG([0,∞))}

CE(G) := smallest α0 s.t. xα preserves positivity on PG,∀α > α0.

How do CE(G) and HG depend on the geometry of G?

By FitzGerald–Horn, CE(G) always exists and is 6 |V (G)| − 2.
Call this the critical exponent of the graph G.
FitzGerald–Horn studied the case G = Kr: CE(Kr) = r − 2.
Guillot–K.–Rajaratnam [Trans. AMS 2016] studied trees: CE(T ) = 1.

Compute CE(G) for a family containing complete graphs and trees?
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Chordal graphs – powers preserving positivity

Trees have no cycles of length n > 3.

Definition: G is chordal if it does not contain induced cycles of length n > 4.

Chordal Not Chordal

Theorem (Guillot–K.–Rajaratnam, J. Combin. Theory Ser. A 2016)

Let K(1)
r be the ‘almost complete’ graph on r nodes – missing one edge.

Let r = r(G) be the largest integer such that either Kr or K(1)
r is an induced

subgraph of G.

If G is chordal with |V | > 2, then HG = N ∪ [r − 2,∞).

In particular, CE(G) = r − 2.

Unites complete graphs, trees, band graphs, split graphs. . .
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Open to date: non-chordal graphs

Example: Band graphs with bandwidth d: CE(G) = min(d, n− 2).

So for T5 =


1 0.6 0.5 0 0

0.6 1 0.6 0.5 0
0.5 0.6 1 0.6 0.5
0 0.5 0.6 1 0.6
0 0 0.5 0.6 1

 as above, all powers > 2 = d work.

Non-chordal graphs? CE(G) in terms of ‘known’ graph invariants?
Not known to date.

1
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