# Pólya frequency sequences: analysis meets algebra 

Apoorva Khare

Indian Institute of Science, Bangalore

## Totally positive/nonnegative matrices

Definition. A rectangular matrix is totally positive (TP) if all minors are positive. (Similarly, totally non-negative (TN).)

Thus all entries $>0$, all $2 \times 2$ minors $>0, \ldots$

These matrices occur widely in mathematics:

## Totally positive matrices in mathematics

TP and TN matrices occur in

- analysis and differential equations (Aissen, Edrei, Schoenberg, Pólya, Loewner, Whitney)
- probability and statistics (Efron, Karlin, Pitman, Proschan, Rinott)
- interpolation theory and splines (Curry, Schoenberg)
- Gabor analysis (Gröchenig, Stöckler)
- interacting particle systems (Gantmacher, Krein)
- matrix theory (Ando, Cryer, Fallat, Garloff, Johnson, Pinkus, Sokal)
- representation theory (Lusztig, Postnikov)
- cluster algebras (Berenstein, Fomin, Zelevinsky)
- integrable systems (Kodama, Williams)
- quadratic algebras (Borger, Davydov, Grinberg, Hô Hai)
- combinatorics (Brenti, Lindström-Gessel-Viennot, Skandera, Sturmfels) !


## Examples of TP/TN matrices

(1) The lower-triangular matrix $A=\left(\mathbf{1}_{j \geq k}\right)_{j, k=1}^{n}$ is TN.
(2) Generalized Vandermonde matrices are TP: if $0<x_{1}<\cdots<x_{n}$ and $y_{1}<y_{2}<\cdots<y_{n}$ are real, then

$$
\operatorname{det}\left(x_{j}^{y_{k}}\right)_{j, k=1}^{n}>0 .
$$

## Examples of TP/TN matrices

(1) The lower-triangular matrix $A=\left(\mathbf{1}_{j \geq k}\right)_{j, k=1}^{n}$ is TN.
(2) Generalized Vandermonde matrices are TP: if $0<x_{1}<\cdots<x_{n}$ and $y_{1}<y_{2}<\cdots<y_{n}$ are real, then

$$
\operatorname{det}\left(x_{j}^{y_{k}}\right)_{j, k=1}^{n}>0 .
$$

(3) (Pólya:) The Gaussian kernel is TP: given $\sigma>0$ and scalars

$$
x_{1}<x_{2}<\cdots<x_{n}, \quad y_{1}<y_{2}<\cdots<y_{n}
$$

the matrix $G[\mathbf{x} ; \mathbf{y}]:=\left(e^{-\sigma\left(x_{j}-y_{k}\right)^{2}}\right)_{j, k=1}^{n}$ is TP.

## Examples of TP/TN matrices

(1) The lower-triangular matrix $A=\left(\mathbf{1}_{j \geq k}\right)_{j, k=1}^{n}$ is TN.
(2) Generalized Vandermonde matrices are TP: if $0<x_{1}<\cdots<x_{n}$ and $y_{1}<y_{2}<\cdots<y_{n}$ are real, then

$$
\operatorname{det}\left(x_{j}^{y_{k}}\right)_{j, k=1}^{n}>0 .
$$

(3) (Pólya:) The Gaussian kernel is TP: given $\sigma>0$ and scalars

$$
x_{1}<x_{2}<\cdots<x_{n}, \quad y_{1}<y_{2}<\cdots<y_{n}
$$

the matrix $G[\mathbf{x} ; \mathbf{y}]:=\left(e^{-\sigma\left(x_{j}-y_{k}\right)^{2}}\right)_{j, k=1}^{n}$ is TP.
Proof: It suffices to show $\operatorname{det} G[\mathbf{x} ; \mathbf{y}]>0$. Now factorize:

$$
G[\mathbf{x} ; \mathbf{y}]=\operatorname{diag}\left(e^{-\sigma x_{j}^{2}}\right)_{j=1}^{n} \cdot\left(\left(e^{2 \sigma x_{j}}\right)^{y_{k}}\right)_{j, k=1}^{n} \cdot \operatorname{diag}\left(e^{-\sigma y_{k}^{2}}\right)_{k=1}^{n}
$$

The middle matrix is a generalized Vandermonde matrix, so all three factors have positive determinants.

## Pólya frequency sequences

The above notions of 'finite' matrices can be generalized to (bi-)infinite ones. A real sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}$ is a Pólya frequency sequence if for any integers

$$
l_{1}<l_{2}<\cdots<l_{n}, \quad m_{1}<m_{2}<\cdots<m_{n}
$$

the determinant $\operatorname{det}\left(a_{l_{j}-m_{k}}\right)_{j, k=1}^{n} \geq 0$.

## Pólya frequency sequences

The above notions of 'finite' matrices can be generalized to (bi-)infinite ones. A real sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}$ is a Pólya frequency sequence if for any integers

$$
l_{1}<l_{2}<\cdots<l_{n}, \quad m_{1}<m_{2}<\cdots<m_{n}
$$

the determinant $\operatorname{det}\left(a_{l_{j}-m_{k}}\right)_{j, k=1}^{n} \geq 0$.
In other words, these are bi-infinite Toeplitz matrices

$$
\left(\begin{array}{cccccc}
\ddots & \vdots & \vdots & \vdots & \vdots & \\
\cdots & a_{0} & a_{-1} & a_{-2} & a_{-3} & \cdots \\
\cdots & a_{1} & a_{0} & a_{-1} & a_{-2} & \cdots \\
\cdots & a_{2} & a_{1} & a_{0} & a_{-1} & \cdots \\
\cdots & a_{3} & a_{2} & a_{1} & a_{0} & \cdots \\
& \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

which are totally non-negative.

- Example: Gaussians. For $q \in(0,1)$, the sequence $\left(q^{n^{2}}\right)_{n \in \mathbb{Z}}$ is not just a TN sequence, but TP. (Why? Set $q=e^{-\sigma}$.)


## Pólya frequency sequences

The above notions of 'finite' matrices can be generalized to (bi-)infinite ones. A real sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}$ is a Pólya frequency sequence if for any integers

$$
l_{1}<l_{2}<\cdots<l_{n}, \quad m_{1}<m_{2}<\cdots<m_{n}
$$

the determinant $\operatorname{det}\left(a_{l_{j}-m_{k}}\right)_{j, k=1}^{n} \geq 0$.
In other words, these are bi-infinite Toeplitz matrices

$$
\left(\begin{array}{cccccc}
\ddots & \vdots & \vdots & \vdots & \vdots & \\
\cdots & a_{0} & a_{-1} & a_{-2} & a_{-3} & \cdots \\
\cdots & a_{1} & a_{0} & a_{-1} & a_{-2} & \cdots \\
\cdots & a_{2} & a_{1} & a_{0} & a_{-1} & \cdots \\
\cdots & a_{3} & a_{2} & a_{1} & a_{0} & \cdots \\
& \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

which are totally non-negative.

- Example: Gaussians. For $q \in(0,1)$, the sequence $\left(q^{n^{2}}\right)_{n \in \mathbb{Z}}$ is not just a TN sequence, but TP. (Why? Set $q=e^{-\sigma}$.)
Focus on two kinds of examples: finite and one-sided infinite.


## Generating functions of Pólya frequency sequences

- Two remarkable results (1950s) say that finite and one-sided Pólya frequency sequences are simply products of 'atoms'!
- The 'atoms' are explained next. For now: why products?


## Generating functions of Pólya frequency sequences

- Two remarkable results (1950s) say that finite and one-sided Pólya frequency sequences are simply products of 'atoms'!
- The 'atoms' are explained next. For now: why products?

Suppose $\mathbf{a}=\left(\ldots, 0,0, a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right)$ is one-sided. Its generating function is

$$
\Psi_{\mathbf{a}}(x):=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots, \quad a_{0} \neq 0 .
$$

Now if $\mathbf{a}, \mathbf{b}$ are one-sided PF sequences, then their Toeplitz 'matrices' are TN:

$$
T_{\mathbf{a}}:=\left(\begin{array}{cccc}
a_{0} & 0 & 0 & \cdots \\
a_{1} & a_{0} & 0 & \cdots \\
a_{2} & a_{1} & a_{0} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) \quad T_{\mathbf{b}}:=\left(\begin{array}{cccc}
b_{0} & 0 & 0 & \cdots \\
b_{1} & b_{0} & 0 & \cdots \\
b_{2} & b_{1} & b_{0} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

By the Cauchy-Binet formula, so also is $T_{\mathbf{a}} T_{\mathbf{b}} \rightsquigarrow$ Toeplitz matrix.

## Generating functions of Pólya frequency sequences

- Two remarkable results (1950s) say that finite and one-sided Pólya frequency sequences are simply products of 'atoms'!
- The 'atoms' are explained next. For now: why products?

Suppose $\mathbf{a}=\left(\ldots, 0,0, a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right)$ is one-sided. Its generating function is

$$
\Psi_{\mathbf{a}}(x):=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots, \quad a_{0} \neq 0 .
$$

Now if $\mathbf{a}, \mathbf{b}$ are one-sided PF sequences, then their Toeplitz 'matrices' are TN:

$$
T_{\mathbf{a}}:=\left(\begin{array}{cccc}
a_{0} & 0 & 0 & \cdots \\
a_{1} & a_{0} & 0 & \cdots \\
a_{2} & a_{1} & a_{0} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) \quad T_{\mathbf{b}}:=\left(\begin{array}{cccc}
b_{0} & 0 & 0 & \cdots \\
b_{1} & b_{0} & 0 & \cdots \\
b_{2} & b_{1} & b_{0} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

By the Cauchy-Binet formula, so also is $T_{\mathbf{a}} T_{\mathbf{b}} \rightsquigarrow$ Toeplitz matrix.
This product matrix corresponds to the coefficients of the power series $\Psi_{\mathbf{a}}(x) \Psi_{\mathbf{b}}(x)$. This gives new examples of PF sequences from old ones.

## Finite Pólya frequency sequences - and real-rootedness

'Atomic' finite PF sequences:

- The sequence $\left(\ldots, 0,0, a_{0}, 0,0, \ldots\right)$ and ( $\left.\ldots, 0,0,1, \alpha, 0,0, \ldots\right)$ are PF sequences if $a_{0}, \alpha>0$.
Indeed, every 'square submatrix' drawn from these sequences either has a zero row/column, or is triangular with positive diagonal entries.


## Finite Pólya frequency sequences - and real-rootedness

'Atomic' finite PF sequences:

- The sequence $\left(\ldots, 0,0, a_{0}, 0,0, \ldots\right)$ and $(\ldots, 0,0,1, \alpha, 0,0, \ldots)$ are PF sequences if $a_{0}, \alpha>0$. Indeed, every 'square submatrix' drawn from these sequences either has a zero row/column, or is triangular with positive diagonal entries.
- The 'atom' (..., $0,0,1, \alpha, 0,0, \ldots)$ corresponds to $\Psi_{\mathbf{a}}(x)=1+\alpha x$.
- By previous slide, $a_{0}\left(1+\alpha_{1} x\right)\left(1+\alpha_{2} x\right) \cdots\left(1+\alpha_{m} x\right)$ generates a PF sequence $\mathbf{a}_{m}$, when all $\alpha_{j}>0$.


## Finite Pólya frequency sequences - and real-rootedness

'Atomic' finite PF sequences:

- The sequence $\left(\ldots, 0,0, a_{0}, 0,0, \ldots\right)$ and $(\ldots, 0,0,1, \alpha, 0,0, \ldots)$ are PF sequences if $a_{0}, \alpha>0$. Indeed, every 'square submatrix' drawn from these sequences either has a zero row/column, or is triangular with positive diagonal entries.
- The 'atom' $(\ldots, 0,0,1, \alpha, 0,0, \ldots)$ corresponds to $\Psi_{\mathbf{a}}(x)=1+\alpha x$.
- By previous slide, $a_{0}\left(1+\alpha_{1} x\right)\left(1+\alpha_{2} x\right) \cdots\left(1+\alpha_{m} x\right)$ generates a PF sequence $\mathbf{a}_{m}$, when all $\alpha_{j}>0$. In fact, these are all finite PF sequences:


## Theorem (Aissen-Schoenberg-Whitney and Edrei, 1950s)

Suppose $a_{0}, \ldots, a_{m}>0$. The following are equivalent.
(1) $\mathbf{a}=\left(\ldots, 0,0, a_{0}, \ldots, a_{m}, 0,0, \ldots\right)$ is a PF sequence.
(2) The generating function $\Psi_{\mathbf{a}}(x)$ has $m$ negative real roots (i.e., the above form).
(3) The generating function $\Psi_{\mathbf{a}}(x)$ has $m$ real roots.

## Connection to combinatorics

'Finite-order' PF sequences: A real sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}$ is $\mathrm{PF}_{r}$ for $r \geq 1$ if for any size $1 \leq n \leq r$ and integers

$$
l_{1}<l_{2}<\cdots<l_{n}, \quad m_{1}<m_{2}<\cdots<m_{n}
$$

the determinant $\operatorname{det}\left(a_{l_{j}-m_{k}}\right)_{j, k=1}^{n} \geq 0$.

## Connection to combinatorics

'Finite-order' PF sequences: A real sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}$ is $\mathrm{PF}_{r}$ for $r \geq 1$ if for any size $1 \leq n \leq r$ and integers

$$
l_{1}<l_{2}<\cdots<l_{n}, \quad m_{1}<m_{2}<\cdots<m_{n}
$$

the determinant $\operatorname{det}\left(a_{l_{j}-m_{k}}\right)_{j, k=1}^{n} \geq 0$.
PF and related sequences are well-known to combinatorialists:

- $\mathrm{A} \mathrm{PF}_{1}$ sequence $\left(a_{0}, \ldots, a_{m}\right)$ is simply a non-negative sequence. (Brenti: the only ones in combinatorics that are "meaningful".)
- A positive tuple $\left(a_{0}, \ldots, a_{m}\right)$ is a $\mathrm{PF}_{2}$ sequence if and only if it is log-concave: $a_{j}^{2} \geq a_{j-1} a_{j+1}$ for $0<j<m$.


## Connection to combinatorics (cont.)

## Proposition

Fix a positive tuple (padded by zeros) $\mathbf{a}=\left(\ldots, 0,0, a_{0}, \ldots, a_{m}, 0,0, \ldots\right)$.
Then each of the following parts implies the next.
(1) a is a PF sequence - i.e.,, the polynomial $\Psi_{\mathbf{a}}(x)$ is real-rooted.
(2) $\left(a_{0}, \ldots, a_{m}\right)$ is strongly log-concave: $\left(a_{j} /\binom{m}{j}\right)_{j=0}^{m}$ is log-concave.
(3) The tuple $\left(a_{0}, \ldots, a_{m}\right)$ is log-concave.
(4) The tuple $\left(a_{0}, \ldots, a_{m}\right)$ is unimodal.

## Connection to combinatorics (cont.)

## Proposition

Fix a positive tuple (padded by zeros) $\mathbf{a}=\left(\ldots, 0,0, a_{0}, \ldots, a_{m}, 0,0, \ldots\right)$.
Then each of the following parts implies the next.
(1) a is a PF sequence - i.e.,, the polynomial $\Psi_{\mathbf{a}}(x)$ is real-rooted.
(2) $\left(a_{0}, \ldots, a_{m}\right)$ is strongly log-concave: $\left(a_{j} /\binom{m}{j}\right)_{j=0}^{m}$ is log-concave.
(3) The tuple $\left(a_{0}, \ldots, a_{m}\right)$ is log-concave.
(4) The tuple $\left(a_{0}, \ldots, a_{m}\right)$ is unimodal.

Well-studied in combinatorics. E.g. Stirling numbers of second kind:

$$
E_{n}(x)=\sum_{k=1}^{n} k!S(n, k) x^{k}, \quad \sum_{k=1}^{n} S(n, k) x^{k}
$$

are real-rooted polynomials. For more on these connections to combinatorics:

- R.P. Stanley, Graph theory and its applications, 1989.
- F. Brenti, Mem. Amer. Math. Soc., 1989.
- P. Brändén, Handbook of Enumerative Combinatorics, 2014.


## Infinite one-sided Pólya frequency sequences

For 'infinite' one-sided PF sequences, only one other 'atom' - and limits:

## Infinite one-sided Pólya frequency sequences

For 'infinite' one-sided PF sequences, only one other 'atom' - and limits:
Recall, the lower-triangular matrix $A=\left(\mathbf{1}_{j \geq k}\right)_{j, k=1}^{n}$ is TN (direct proof). Hence $\mathbf{a}_{1}:=(\ldots, 0,0,1,1, \ldots)$ is a one-sided PF sequence, with generating function:

$$
\Psi_{\mathbf{a}_{1}}(x)=1+x+x^{2}+\cdots=\frac{1}{1-x} .
$$

## Infinite one-sided Pólya frequency sequences

For 'infinite' one-sided PF sequences, only one other 'atom' - and limits:
Recall, the lower-triangular matrix $A=\left(\mathbf{1}_{j \geq k}\right)_{j, k=1}^{n}$ is TN (direct proof). Hence $\mathbf{a}_{1}:=(\ldots, 0,0,1,1, \ldots)$ is a one-sided PF sequence, with generating function:

$$
\Psi_{\mathbf{a}_{1}}(x)=1+x+x^{2}+\cdots=\frac{1}{1-x}
$$

Claim: The function $\mathbf{a}_{c}:=\left(\ldots, 0,0,1, c, c^{2}, \ldots\right)$ is a PF sequence for $c>0$. Proof: Given increasing tuples of integers $\left(l_{j}\right),\left(m_{k}\right)$ for $1 \leq j, k \leq n$,

$$
\left(\left(\mathbf{a}_{c}\right)_{l_{j}-m_{k}}\right)=\operatorname{diag}\left(c^{l_{j}}\right)_{j=1}^{n} \cdot\left(\mathbf{1}_{l_{j} \geq m_{k}}\right)_{j, k=1}^{n} \cdot \operatorname{diag}\left(c^{-m_{k}}\right)_{k=1}^{n}
$$

and this has a non-negative determinant since $\mathbf{a}_{1}$ is PF.

## Infinite one-sided Pólya frequency sequences

For 'infinite' one-sided PF sequences, only one other 'atom' - and limits:
Recall, the lower-triangular matrix $A=\left(\mathbf{1}_{j \geq k}\right)_{j, k=1}^{n}$ is TN (direct proof). Hence $\mathbf{a}_{1}:=(\ldots, 0,0,1,1, \ldots)$ is a one-sided PF sequence, with generating function:

$$
\Psi_{\mathbf{a}_{1}}(x)=1+x+x^{2}+\cdots=\frac{1}{1-x} .
$$

Claim: The function $\mathbf{a}_{c}:=\left(\ldots, 0,0,1, c, c^{2}, \ldots\right)$ is a PF sequence for $c>0$. Proof: Given increasing tuples of integers $\left(l_{j}\right),\left(m_{k}\right)$ for $1 \leq j, k \leq n$,

$$
\left(\left(\mathbf{a}_{c}\right)_{l_{j}-m_{k}}\right)=\operatorname{diag}\left(c^{l_{j}}\right)_{j=1}^{n} \cdot\left(\mathbf{1}_{l_{j} \geq m_{k}}\right)_{j, k=1}^{n} \cdot \operatorname{diag}\left(c^{-m_{k}}\right)_{k=1}^{n}
$$

and this has a non-negative determinant since $\mathbf{a}_{1}$ is PF.

- Therefore $(1-\beta x)^{-1}$ is a PF sequence for $\beta>0$.
- Limits: If $\mathbf{a}_{m}$ are PF sequences, converging 'pointwise' to $\mathbf{a}$, then $\mathbf{a}$ is a PF sequence.


## Infinite one-sided Pólya frequency sequences

For 'infinite' one-sided PF sequences, only one other 'atom' - and limits:
Recall, the lower-triangular matrix $A=\left(\mathbf{1}_{j \geq k}\right)_{j, k=1}^{n}$ is TN (direct proof). Hence $\mathbf{a}_{1}:=(\ldots, 0,0,1,1, \ldots)$ is a one-sided PF sequence, with generating function:

$$
\Psi_{\mathbf{a}_{1}}(x)=1+x+x^{2}+\cdots=\frac{1}{1-x}
$$

Claim: The function $\mathbf{a}_{c}:=\left(\ldots, 0,0,1, c, c^{2}, \ldots\right)$ is a PF sequence for $c>0$. Proof: Given increasing tuples of integers $\left(l_{j}\right),\left(m_{k}\right)$ for $1 \leq j, k \leq n$,

$$
\left(\left(\mathbf{a}_{c}\right)_{l_{j}-m_{k}}\right)=\operatorname{diag}\left(c^{l_{j}}\right)_{j=1}^{n} \cdot\left(\mathbf{1}_{l_{j} \geq m_{k}}\right)_{j, k=1}^{n} \cdot \operatorname{diag}\left(c^{-m_{k}}\right)_{k=1}^{n}
$$

and this has a non-negative determinant since $\mathbf{a}_{1}$ is PF.

- Therefore $(1-\beta x)^{-1}$ is a PF sequence for $\beta>0$.
- Limits: If $\mathbf{a}_{m}$ are PF sequences, converging 'pointwise' to $\mathbf{a}$, then $\mathbf{a}$ is a PF sequence.
- Example: Since $(1+\delta x / m)^{m}$ generates a PF sequence for $\delta \geq 0$ and all $m \geq 1$, so does $e^{\delta x}$. (E.g., $\left(\ldots, 0,0,1, \frac{1}{1!}, \frac{1}{2!}, \ldots\right)$ is a PF sequence.)


## Infinite one-sided Pólya frequency sequences (cont.)

- More examples: if $\alpha_{j}, \beta_{j} \geq 0$ for all $j \geq 0$ are summable, then

$$
\prod_{j=1}^{\infty}\left(1+\alpha_{j} x\right), \quad \prod_{j=1}^{\infty}\left(1-\beta_{j} x\right)^{-1}
$$

both generate PF sequences.

- Hence so does their product:

$$
e^{\delta x} \frac{\prod_{j=1}^{\infty}\left(1+\alpha_{j} x\right)}{\prod_{j=1}^{\infty}\left(1-\beta_{j} x\right)} .
$$

## Infinite one-sided Pólya frequency sequences (cont.)

- More examples: if $\alpha_{j}, \beta_{j} \geq 0$ for all $j \geq 0$ are summable, then

$$
\prod_{j=1}^{\infty}\left(1+\alpha_{j} x\right), \quad \prod_{j=1}^{\infty}\left(1-\beta_{j} x\right)^{-1}
$$

both generate PF sequences.

- Hence so does their product:

$$
e^{\delta x} \frac{\prod_{j=1}^{\infty}\left(1+\alpha_{j} x\right)}{\prod_{j=1}^{\infty}\left(1-\beta_{j} x\right)}
$$

Remarkably, these are all of the PF sequences!

## Theorem (Aissen-Schoenberg-Whitney and Edrei, 1950s)

A one-sided sequence $\mathbf{a}=\left(\ldots, 0,0, a_{0}=1, a_{1}, \ldots\right)$ is a PF sequence if and only if it is of the above form.
(Uses Hadamard's thesis (1892) and Nevanlinna's refinement (1929) of Picard's theorem.)

## From Pólya-Schur multipliers to Ramanujan graphs

What if $\Psi_{\mathbf{a}}(x)$ is an entire function? It must be $e^{\delta x} \prod_{j \geq 1}\left(1+\alpha_{j} x\right)$.

## Theorem (Pólya-Schur, Crelle, 1914)

An entire function $\Psi(x)=\sum_{n \geq 0} a_{n} x^{n}$ with $\Psi(0)=1$ generates a one-sided PF sequence, if and only if the sequence $n!a_{n}$ is a multiplier sequence of the first kind.

In other words, if $\sum_{j \geq 0} c_{j} x^{j}$ is a real-rooted polynomial, so is $\sum_{j \geq 0} j!a_{j} c_{j} x^{j}$.

## From Pólya-Schur multipliers to Ramanujan graphs

What if $\Psi_{\mathbf{a}}(x)$ is an entire function? It must be $e^{\delta x} \prod_{j \geq 1}\left(1+\alpha_{j} x\right)$.

## Theorem (Pólya-Schur, Crelle, 1914)

An entire function $\Psi(x)=\sum_{n \geq 0} a_{n} x^{n}$ with $\Psi(0)=1$ generates a one-sided PF sequence, if and only if the sequence $n!a_{n}$ is a multiplier sequence of the first kind.

In other words, if $\sum_{j \geq 0} c_{j} x^{j}$ is a real-rooted polynomial, so is $\sum_{j \geq 0} j!a_{j} c_{j} x^{j}$.

- This circle of ideas - and classification of Pólya-Schur type multiplier sequences - has found far-reaching generalizations in work of Borcea and Brändén (late 2000s).


## From Pólya-Schur multipliers to Ramanujan graphs

What if $\Psi_{\mathbf{a}}(x)$ is an entire function? It must be $e^{\delta x} \prod_{j \geq 1}\left(1+\alpha_{j} x\right)$.

## Theorem (Pólya-Schur, Crelle, 1914)

An entire function $\Psi(x)=\sum_{n \geq 0} a_{n} x^{n}$ with $\Psi(0)=1$ generates a one-sided PF sequence, if and only if the sequence $n!a_{n}$ is a multiplier sequence of the first kind.

In other words, if $\sum_{j \geq 0} c_{j} x^{j}$ is a real-rooted polynomial, so is $\sum_{j \geq 0} j!a_{j} c_{j} x^{j}$.

- This circle of ideas - and classification of Pólya-Schur type multiplier sequences - has found far-reaching generalizations in work of Borcea and Brändén (late 2000s).
- Taken forward by Marcus-Spielman-Srivastava (2010s):
- Kadison-Singer conjecture.
- Existence of bipartite Ramanujan (expander) graphs of every degree and every order.


## The Riemann Hypothesis

Pólya frequency sequences also connect to number theory:

## Theorem (Katkova, Comput. Meth. Funct. Th., 2000)

Let $\xi(s)=\binom{s}{2} \pi^{-s / 2} \Gamma(s / 2) \zeta(s)$ be the Riemann xi-function. If

$$
\xi_{1}(s):=\xi(1 / 2+\sqrt{s})
$$

generates a PF sequence, then the Riemann Hypothesis is true.

## The Riemann Hypothesis

Pólya frequency sequences also connect to number theory:

## Theorem (Katkova, Comput. Meth. Funct. Th., 2000)

Let $\xi(s)=\binom{s}{2} \pi^{-s / 2} \Gamma(s / 2) \zeta(s)$ be the Riemann xi-function. If

$$
\xi_{1}(s):=\xi(1 / 2+\sqrt{s})
$$

generates a PF sequence, then the Riemann Hypothesis is true.

Katkova proved that $\xi_{1}$ is PF of order at least 43 , and is 'asymptotically PF' of all orders.

## Hilbert series and PF sequences

PF sequences also show up in algebra. Given a $\mathbb{Z}^{\geq 0}$-graded vector space $V=\oplus_{n \geq 0} V[n]$ over a field $\mathbb{F}$, its Hilbert series is

$$
\begin{aligned}
& \qquad H(V, x)=\sum_{n \geq 0} x^{n} \operatorname{dim} V[n] \\
& \text { If } V \cong \mathbb{F}^{m} \text { for } m \geq 1 \text {, then } H\left(\wedge^{\bullet} V, x\right)=(1+x)^{m}, H\left(\mathbb{S}^{\bullet} V, x\right)=\frac{1}{(1-x)^{m}}, \\
& \text { and from above, these Koszul-dual algebras both generate PF sequences. }
\end{aligned}
$$

## Hilbert series and PF sequences

PF sequences also show up in algebra. Given a $\mathbb{Z}^{\geq 0}$-graded vector space $V=\oplus_{n \geq 0} V[n]$ over a field $\mathbb{F}$, its Hilbert series is

$$
H(V, x)=\sum_{n \geq 0} x^{n} \operatorname{dim} V[n]
$$

If $V \cong \mathbb{F}^{m}$ for $m \geq 1$, then $H\left(\wedge^{\bullet} V, x\right)=(1+x)^{m}, H\left(\mathbb{S}^{\bullet} V, x\right)=\frac{1}{(1-x)^{m}}$, and from above, these Koszul-dual algebras both generate PF sequences.

More generally, say $R: V \otimes V \rightarrow V \otimes V$ satisfies

- the Yang-Baxter equation $R_{12} R_{23} R_{12}=R_{23} R_{12} R_{23}$, and
- the Iwahori-Hecke relation $(R+1)(R-q)=0, q \in \mathbb{F}^{\times}$.

Define two graded algebas - the $R$-exterior algebra and $R$-symmetric algebra:

$$
\wedge_{R}^{\bullet}(V):=T^{\bullet}(V) /(\operatorname{im}(R+\mathrm{Id})), \quad \mathbb{S}_{q, R}^{\bullet}(V):=T^{\bullet}(V) /(\operatorname{im}(R-q \mathrm{Id}))
$$

## Hilbert series and PF sequences

PF sequences also show up in algebra. Given a $\mathbb{Z}^{\geq 0}$-graded vector space $V=\oplus_{n \geq 0} V[n]$ over a field $\mathbb{F}$, its Hilbert series is

$$
H(V, x)=\sum_{n \geq 0} x^{n} \operatorname{dim} V[n]
$$

If $V \cong \mathbb{F}^{m}$ for $m \geq 1$, then $H\left(\wedge^{\bullet} V, x\right)=(1+x)^{m}, H\left(\mathbb{S}^{\bullet} V, x\right)=\frac{1}{(1-x)^{m}}$, and from above, these Koszul-dual algebras both generate PF sequences.

More generally, say $R: V \otimes V \rightarrow V \otimes V$ satisfies

- the Yang-Baxter equation $R_{12} R_{23} R_{12}=R_{23} R_{12} R_{23}$, and
- the Iwahori-Hecke relation $(R+1)(R-q)=0, q \in \mathbb{F}^{\times}$.

Define two graded algebas - the $R$-exterior algebra and $R$-symmetric algebra:

$$
\wedge_{R}^{\bullet}(V):=T^{\bullet}(V) /(\operatorname{im}(R+\mathrm{Id})), \quad \mathbb{S}_{q, R}^{\bullet}(V):=T^{\bullet}(V) /(\operatorname{im}(R-q \operatorname{Id}))
$$

## Theorem (Hô Hai 1999, Davydov 2000)

Suppose $\mathbb{F}$ has characteristic zero, $\operatorname{dim} V<\infty$, and either $q=1$ or $q$ is not a root of unity. Then the Hilbert series $H\left(\wedge_{R}^{\bullet}(V), x\right), H\left(\mathbb{S}_{q, R}^{\bullet}(V), x\right)$ both generate PF sequences.
(Skryabin, 2019)

## Elementary symmetric polynomials

Return to the case $q=1$ and $R=\tau=$ flip, but now with $V$ having a countable $\mathbb{R}^{\geq 0}$-graded basis $v_{j}$ of degree $\alpha_{j}>0$. Then the Hilbert series of $\wedge^{\bullet}(V)$ is:

$$
H\left(\wedge^{\bullet}(V), x\right)=\prod_{j \geq 1}\left(1+\alpha_{j} x\right)
$$

and this generates a PF sequence if $\alpha_{j} \geq 0$ are summable.

## Elementary symmetric polynomials

Return to the case $q=1$ and $R=\tau=$ flip, but now with $V$ having a countable $\mathbb{R}^{\geq 0}$-graded basis $v_{j}$ of degree $\alpha_{j}>0$. Then the Hilbert series of $\wedge^{\bullet}(V)$ is:

$$
H\left(\wedge^{\bullet}(V), x\right)=\prod_{j \geq 1}\left(1+\alpha_{j} x\right)
$$

and this generates a PF sequence if $\alpha_{j} \geq 0$ are summable.

- The constant, linear, quadratic, ... terms of this power series are

$$
1, \quad \sum_{j} \alpha_{j}, \quad \sum_{j<k} \alpha_{j} \alpha_{k}, \quad \sum_{j<k<l} \alpha_{j} \alpha_{k} \alpha_{l}, \quad \ldots
$$

which are precisely the elementary symmetric polynomials in the roots $\alpha_{j}$.

- Thus, the corresponding infinite Toeplitz TN matrix is

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdots \\
e_{1}(\mathbf{u}) & 1 & 0 & 0 & \cdots \\
e_{2}(\mathbf{u}) & e_{1}(\mathbf{u}) & 1 & 0 & \cdots \\
e_{3}(\mathbf{u}) & e_{2}(\mathbf{u}) & e_{1}(\mathbf{u}) & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

where we specialize the variable $u_{j}$ to equal $\alpha_{j} \geq 0$.

## Elementary symmetric polynomials

Return to the case $q=1$ and $R=\tau=$ flip, but now with $V$ having a countable $\mathbb{R}^{\geq 0}$-graded basis $v_{j}$ of degree $\alpha_{j}>0$. Then the Hilbert series of $\wedge^{\bullet}(V)$ is:

$$
H\left(\wedge^{\bullet}(V), x\right)=\prod_{j \geq 1}\left(1+\alpha_{j} x\right)
$$

and this generates a PF sequence if $\alpha_{j} \geq 0$ are summable.

- The constant, linear, quadratic, ... terms of this power series are

$$
1, \quad \sum_{j} \alpha_{j}, \quad \sum_{j<k} \alpha_{j} \alpha_{k}, \quad \sum_{j<k<l} \alpha_{j} \alpha_{k} \alpha_{l}, \quad \ldots
$$

which are precisely the elementary symmetric polynomials in the roots $\alpha_{j}$.

- Thus, the corresponding infinite Toeplitz TN matrix is

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdots \\
e_{1}(\mathbf{u}) & 1 & 0 & 0 & \cdots \\
e_{2}(\mathbf{u}) & e_{1}(\mathbf{u}) & 1 & 0 & \cdots \\
e_{3}(\mathbf{u}) & e_{2}(\mathbf{u}) & e_{1}(\mathbf{u}) & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

where we specialize the variable $u_{j}$ to equal $\alpha_{j} \geq 0$.

- Every minor is numerically positive. In fact, even more is true!


## Complete homogeneous symmetric polynomials

Similarly, the Hilbert series of $\mathbb{S}^{\bullet}(V)$ is:

$$
H\left(\mathbb{S}^{\bullet}(V), x\right)=\prod_{j \geq 1}\left(1-\alpha_{j} x\right)^{-1}
$$

and this generates a PF sequence if $\alpha_{j} \geq 0$ are summable.

## Complete homogeneous symmetric polynomials

Similarly, the Hilbert series of $\mathbb{S}^{\bullet}(V)$ is:

$$
H\left(\mathbb{S}^{\bullet}(V), x\right)=\prod_{j \geq 1}\left(1-\alpha_{j} x\right)^{-1}
$$

and this generates a PF sequence if $\alpha_{j} \geq 0$ are summable.

- The constant, linear, quadratic, ... terms of this power series are

$$
1, \quad \sum_{j} \alpha_{j}, \quad \sum_{j \leq k} \alpha_{j} \alpha_{k}, \quad \sum_{j \leq k \leq l} \alpha_{j} \alpha_{k} \alpha_{l}, \quad \ldots
$$

which are precisely the complete homogeneous symmetric polynomials in the roots $\alpha_{j}$.

- Thus, the corresponding infinite Toeplitz TN matrix is

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdots \\
h_{1}(\mathbf{u}) & 1 & 0 & 0 & \cdots \\
h_{2}(\mathbf{u}) & h_{1}(\mathbf{u}) & 1 & 0 & \cdots \\
h_{3}(\mathbf{u}) & h_{2}(\mathbf{u}) & h_{1}(\mathbf{u}) & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

where we specialize the variable $u_{j}$ to equal $\alpha_{j} \geq 0$.

## Complete homogeneous symmetric polynomials

Similarly, the Hilbert series of $\mathbb{S}^{\bullet}(V)$ is:

$$
H\left(\mathbb{S}^{\bullet}(V), x\right)=\prod_{j \geq 1}\left(1-\alpha_{j} x\right)^{-1}
$$

and this generates a PF sequence if $\alpha_{j} \geq 0$ are summable.

- The constant, linear, quadratic, ... terms of this power series are

$$
1, \quad \sum_{j} \alpha_{j}, \quad \sum_{j \leq k} \alpha_{j} \alpha_{k}, \quad \sum_{j \leq k \leq l} \alpha_{j} \alpha_{k} \alpha_{l}, \quad \ldots
$$

which are precisely the complete homogeneous symmetric polynomials in the roots $\alpha_{j}$.

- Thus, the corresponding infinite Toeplitz TN matrix is

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdots \\
h_{1}(\mathbf{u}) & 1 & 0 & 0 & \cdots \\
h_{2}(\mathbf{u}) & h_{1}(\mathbf{u}) & 1 & 0 & \cdots \\
h_{3}(\mathbf{u}) & h_{2}(\mathbf{u}) & h_{1}(\mathbf{u}) & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

where we specialize the variable $u_{j}$ to equal $\alpha_{j} \geq 0$.

- Every minor is numerically positive. In fact, even more is true!


## Monomial-positivity and the (dual) Jacobi-Trudi identity

## Theorem

All minors of the matrices $\left(e_{j-k}(\mathbf{u}) \mathbf{1}_{j \geq k}\right)_{j, k \geq 0}$ and $\left(h_{j-k}(\mathbf{u}) \mathbf{1}_{j \geq k}\right)_{j, k \geq 0}$ are monomial-positive.
(Hence they take non-negative values upon specializing to $u_{j}=\alpha_{j} \geq 0$.)

## Monomial-positivity and the (dual) Jacobi-Trudi identity

## Theorem

All minors of the matrices $\left(e_{j-k}(\mathbf{u}) \mathbf{1}_{j \geq k}\right)_{j, k \geq 0}$ and $\left(h_{j-k}(\mathbf{u}) \mathbf{1}_{j \geq k}\right)_{j, k \geq 0}$ are monomial-positive.
(Hence they take non-negative values upon specializing to $u_{j}=\alpha_{j} \geq 0$.)

- In fact, an even stronger fact holds: all minors are (skew) Schur-positive $\rightsquigarrow$ non-negative $\mathbb{Z}$-linear combinations of (skew) Schur polynomials.


## Monomial-positivity and the (dual) Jacobi-Trudi identity

## Theorem

All minors of the matrices $\left(e_{j-k}(\mathbf{u}) \mathbf{1}_{j \geq k}\right)_{j, k \geq 0}$ and $\left(h_{j-k}(\mathbf{u}) \mathbf{1}_{j \geq k}\right)_{j, k \geq 0}$ are monomial-positive.
(Hence they take non-negative values upon specializing to $u_{j}=\alpha_{j} \geq 0$.)

- In fact, an even stronger fact holds: all minors are (skew) Schur-positive $\rightsquigarrow$ non-negative $\mathbb{Z}$-linear combinations of (skew) Schur polynomials.
- In a sense, these are the first two instances of numerical positivity 'upgrading' to monomial-positivity, 'upgrading' to Schur-positivity.
- They are called the (dual) Jacobi-Trudi identities (1800s).


## Monomial-positivity and the (dual) Jacobi-Trudi identity

## Theorem

All minors of the matrices $\left(e_{j-k}(\mathbf{u}) \mathbf{1}_{j \geq k}\right)_{j, k \geq 0}$ and $\left(h_{j-k}(\mathbf{u}) \mathbf{1}_{j \geq k}\right)_{j, k \geq 0}$ are monomial-positive.
(Hence they take non-negative values upon specializing to $u_{j}=\alpha_{j} \geq 0$.)

- In fact, an even stronger fact holds: all minors are (skew) Schur-positive $\rightsquigarrow$ non-negative $\mathbb{Z}$-linear combinations of (skew) Schur polynomials.
- In a sense, these are the first two instances of numerical positivity 'upgrading' to monomial-positivity, 'upgrading' to Schur-positivity.
- They are called the (dual) Jacobi-Trudi identities (1800s).

This brings us to Schur polynomials.

## Schur polynomials

Given a decreasing $N$-tuple $n_{N-1}>n_{N-2}>\cdots>n_{0} \geqslant 0$, the corresponding Schur polynomial over a field $\mathbb{F}$ is the unique polynomial extension to $\mathbb{F}^{N}$ of

$$
s_{\left(n_{N-1}, \ldots, n_{0}\right)}\left(u_{1}, \ldots, u_{N}\right):=\frac{\operatorname{det}\left(u_{j}^{n_{k-1}}\right)}{\operatorname{det}\left(u_{j}^{k-1}\right)}
$$

for pairwise distinct $u_{j} \in \mathbb{F}$.

## Schur polynomials

Given a decreasing $N$-tuple $n_{N-1}>n_{N-2}>\cdots>n_{0} \geqslant 0$, the corresponding Schur polynomial over a field $\mathbb{F}$ is the unique polynomial extension to $\mathbb{F}^{N}$ of

$$
s_{\left(n_{N-1}, \ldots, n_{0}\right)}\left(u_{1}, \ldots, u_{N}\right):=\frac{\operatorname{det}\left(u_{j}^{n_{k-1}}\right)}{\operatorname{det}\left(u_{j}^{k-1}\right)}
$$

for pairwise distinct $u_{j} \in \mathbb{F}$.

Example: If $N=2$ and $\mathbf{n}=(m<n)$, then
$s_{\mathbf{n}}\left(u_{1}, u_{2}\right)=\frac{u_{1}^{n} u_{2}^{m}-u_{1}^{m} u_{2}^{n}}{u_{1}-u_{2}}=\left(u_{1} u_{2}\right)^{m}\left(u_{1}^{n-m-1}+u_{1}^{n-m-2} u_{2}+\cdots+u_{2}^{n-m-1}\right)$.

- Basis of homogeneous symmetric polynomials in $u_{1}, \ldots, u_{N}$.
- Characters of irreducible polynomial representations of $G L_{N}(\mathbb{C})$.


## Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose $N=3$ and $\mathbf{m}:=(0,2,4)$. The tableaux are:

| 3 | 3 |
| :--- | :--- |
| 2 |  |
|  |  |


| 3 | 3 |
| :--- | :--- |
| 1 |  |
|  |  |


| 3 | 2 |
| :--- | :--- |
| 2 |  |
|  |  |
|  |  |


| 3 | 2 |
| :--- | :--- |
| 1 |  |
|  |  |
|  |  |


| 3 | 1 |
| :--- | :--- |
| 2 |  |
|  |  |
|  |  |


| 3 | 1 |
| :--- | :--- |
| 1 |  |
|  |  |


| 2 | 2 |
| :--- | :--- |
| 1 |  |
|  |  |


| 2 | 1 |
| :--- | :--- |
| 1 |  |
|  |  |
|  |  |

## Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose $N=3$ and $\mathbf{m}:=(0,2,4)$. The tableaux are:

| 3 | 3 |
| :--- | :--- |
| 2 |  |



| 3 | 1 |
| :--- | :--- |
| 2 |  |
|  |  |
|  |  |



| 2 | 1 |
| :--- | :--- |
| 1 |  |
|  |  |

$$
\begin{aligned}
& s_{(0,2,4)}\left(u_{1}, u_{2}, u_{3}\right) \\
= & u_{3}^{2} u_{2}+u_{3}^{2} u_{1}+u_{3} u_{2}^{2}+2 u_{3} u_{2} u_{1}+u_{3} u_{1}^{2}+u_{2}^{2} u_{1}+u_{2} u_{1}^{2} \\
= & \left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)
\end{aligned}
$$

## Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:
Example 1: Suppose $N=3$ and $\mathbf{m}:=(0,2,4)$. The tableaux are:

| 3 | 3 |
| :--- | :--- |
| 2 |  |
|  |  |



| 3 | 2 |
| :--- | :--- |
| 2 |  |
|  |  |
|  |  |


| 3 | 2 |
| :--- | :--- |
| 1 |  |
|  |  |


| 3 | 1 |
| :--- | :--- |
| 2 |  |
|  |  |
|  |  |



| 2 | 2 |
| :--- | :--- |
| 1 |  |
|  |  |


| 2 | 1 |
| :--- | :--- |
| 1 |  |
|  |  |

$$
\begin{aligned}
& s_{(0,2,4)}\left(u_{1}, u_{2}, u_{3}\right) \\
= & u_{3}^{2} u_{2}+u_{3}^{2} u_{1}+u_{3} u_{2}^{2}+2 u_{3} u_{2} u_{1}+u_{3} u_{1}^{2}+u_{2}^{2} u_{1}+u_{2} u_{1}^{2} \\
= & \left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right) .
\end{aligned}
$$

Example 2: Suppose $N=3$ and $\mathbf{n}=(0,2,3)$ :

| 3 |
| :--- |
| 2 | | 3 |
| :--- |
| 1 | | 2 |
| :--- |

Then $s_{(0,2,3)}\left(u_{1}, u_{2}, u_{3}\right)=u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}$.

## Schur Monotonicity Lemma

Example: Continuing from the previous slide,

$$
f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}, \quad u_{1}, u_{2}, u_{3}>0
$$

Note: both numerator and denominator are monomial-positive (in fact Schur-positive, obviously) - hence non-decreasing in each coordinate.

In fact, their ratio $f(\mathbf{u})$ also has the same property!

## Schur Monotonicity Lemma

Example: Continuing from the previous slide,

$$
f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}, \quad u_{1}, u_{2}, u_{3}>0
$$

Note: both numerator and denominator are monomial-positive (in fact Schur-positive, obviously) - hence non-decreasing in each coordinate.

In fact, their ratio $f(\mathbf{u})$ also has the same property!

## Theorem (K.-Tao, Amer. J. Math., in press)

For integer tuples $0 \leq n_{0}<\cdots<n_{N-1}$ and $0 \leq m_{0}<\cdots<m_{N-1}$ such that $n_{j} \leq m_{j} \forall j$, the function

$$
f:(0, \infty)^{N} \rightarrow \mathbb{R}, \quad f(\mathbf{u}):=\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})}
$$

is non-decreasing in each coordinate. (In fact we show Schur-positivity.)
(Recent example of numerical positivity $\rightsquigarrow$ monomial-pos. $\rightsquigarrow$ Schur-positivity.)

## Schur Monotonicity Lemma (cont.)

Claim: The ratio $f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}$,
treated as a function on the orthant $(0, \infty)^{3}$, is coordinatewise non-decreasing.

## Schur Monotonicity Lemma (cont.)

Claim: The ratio $f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}$,
treated as a function on the orthant $(0, \infty)^{3}$, is coordinatewise non-decreasing.
(Why?) Applying the quotient rule of differentiation to $f$,

$$
s_{\mathbf{n}}(\mathbf{u}) \partial_{u_{3}} s_{\mathbf{m}}(\mathbf{u})-s_{\mathbf{m}}(\mathbf{u}) \partial_{u_{3}} s_{\mathbf{n}}(\mathbf{u})=\left(u_{1}+u_{2}\right)\left(u_{1} u_{3}+2 u_{1} u_{2}+u_{2} u_{3}\right) u_{3}
$$ and this is monomial-positive.

## Schur Monotonicity Lemma (cont.)

Claim: The ratio $f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}$,
treated as a function on the orthant $(0, \infty)^{3}$, is coordinatewise non-decreasing.
(Why?) Applying the quotient rule of differentiation to $f$,

$$
s_{\mathbf{n}}(\mathbf{u}) \partial_{u_{3}} s_{\mathbf{m}}(\mathbf{u})-s_{\mathbf{m}}(\mathbf{u}) \partial_{u_{3}} s_{\mathbf{n}}(\mathbf{u})=\left(u_{1}+u_{2}\right)\left(u_{1} u_{3}+2 u_{1} u_{2}+u_{2} u_{3}\right) u_{3}
$$ and this is monomial-positive.

Now if we write this as $\sum_{j \geqslant 0} p_{j}\left(u_{1}, u_{2}\right) u_{3}^{j}$, then each $p_{j}$ is Schur-positive, i.e. a sum of Schur polynomials:

$$
\begin{aligned}
p_{0}\left(u_{1}, u_{2}\right) & =0 \\
p_{1}\left(u_{1}, u_{2}\right) & =2 u_{1} u_{2}^{2}+2 u_{1}^{2} u_{2}=2 \begin{array}{|c|c|}
\hline 2 & 2 \\
\hline 1 \\
\hline
\end{array}+2 \begin{array}{|c|c|}
\hline 2 & 1 \\
\hline 1 & =2 s_{(3,1)}\left(u_{1}, u_{2}\right)
\end{array} \\
p_{2}\left(u_{1}, u_{2}\right) & =\left(u_{1}+u_{2}\right)^{2}=\begin{array}{|l|l|}
\hline 2 & 2 \\
\hline
\end{array}+\begin{array}{|c|c|}
\hline 2 & 1 \\
\hline
\end{array} \\
& =s_{(3,0)}\left(u_{1}, u_{2}\right)+s_{(2,1)}\left(u_{1}, u_{2}\right)
\end{aligned}
$$

## Proof-sketch of Schur Monotonicity Lemma

The proof for general $\mathbf{m} \geq \mathbf{n}$ is similar:
By symmetry, and the quotient rule of differentiation, it suffices to show that

$$
s_{\mathbf{n}} \cdot \partial_{u_{N}}\left(s_{\mathbf{m}}\right)-s_{\mathbf{m}} \cdot \partial_{u_{N}}\left(s_{\mathbf{n}}\right)
$$

is numerically positive on $(0, \infty)^{N}$. (Note, the coefficients in $s_{\mathbf{n}}(\mathbf{u})$ of each $u_{N}^{j}$ are skew-Schur polynomials in $u_{1}, \ldots, u_{N-1}$.)

## Proof-sketch of Schur Monotonicity Lemma

The proof for general $\mathbf{m} \geq \mathbf{n}$ is similar:
By symmetry, and the quotient rule of differentiation, it suffices to show that

$$
s_{\mathbf{n}} \cdot \partial_{u_{N}}\left(s_{\mathbf{m}}\right)-s_{\mathbf{m}} \cdot \partial_{u_{N}}\left(s_{\mathbf{n}}\right)
$$

is numerically positive on $(0, \infty)^{N}$. (Note, the coefficients in $s_{\mathbf{n}}(\mathbf{u})$ of each $u_{N}^{j}$ are skew-Schur polynomials in $u_{1}, \ldots, u_{N-1}$.)

The assertion would follow if this expression is monomial-positive.

## Proof-sketch of Schur Monotonicity Lemma

The proof for general $\mathbf{m} \geq \mathbf{n}$ is similar:
By symmetry, and the quotient rule of differentiation, it suffices to show that

$$
s_{\mathbf{n}} \cdot \partial_{u_{N}}\left(s_{\mathbf{m}}\right)-s_{\mathbf{m}} \cdot \partial_{u_{N}}\left(s_{\mathbf{n}}\right)
$$

is numerically positive on $(0, \infty)^{N}$. (Note, the coefficients in $s_{\mathbf{n}}(\mathbf{u})$ of each $u_{N}^{j}$ are skew-Schur polynomials in $u_{1}, \ldots, u_{N-1}$.)

The assertion would follow if this expression is monomial-positive.
Our Schur Monotonicity Lemma in fact shows that the coefficient of each $u_{N}^{j}$ is (also) Schur-positive.

## Proof-sketch of Schur Monotonicity Lemma

The proof for general $\mathbf{m} \geq \mathbf{n}$ is similar:
By symmetry, and the quotient rule of differentiation, it suffices to show that

$$
s_{\mathbf{n}} \cdot \partial_{u_{N}}\left(s_{\mathbf{m}}\right)-s_{\mathbf{m}} \cdot \partial_{u_{N}}\left(s_{\mathbf{n}}\right)
$$

is numerically positive on $(0, \infty)^{N}$. (Note, the coefficients in $s_{\mathbf{n}}(\mathbf{u})$ of each $u_{N}^{j}$ are skew-Schur polynomials in $u_{1}, \ldots, u_{N-1}$.)

The assertion would follow if this expression is monomial-positive.
Our Schur Monotonicity Lemma in fact shows that the coefficient of each $u_{N}^{j}$ is (also) Schur-positive.

Key ingredient: Schur-positivity result by Lam-Postnikov-Pylyavskyy (2007). In turn, this emerged out of Skandera's results (2004) on determinant inequalities for totally non-negative matrices.

## Weak majorization through Schur polynomials

- Our Schur Monotonicity Lemma implies in particular:

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geq \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in[1, \infty)^{N}
$$

if $\mathbf{m}$ dominates $\mathbf{n}$ coordinatewise.

- Natural to ask: for which other tuples $\mathbf{m}, \mathbf{n}$ does this inequality hold?


## Weak majorization through Schur polynomials

- Our Schur Monotonicity Lemma implies in particular:

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geq \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in[1, \infty)^{N}
$$

if $\mathbf{m}$ dominates $\mathbf{n}$ coordinatewise.

- Natural to ask: for which other tuples $\mathbf{m}, \mathbf{n}$ does this inequality hold?


## Theorem (K.-Tao, Amer. J. Math., in press)

Given integers $0 \leq n_{0}<\cdots<n_{N-1}$ and $0 \leq m_{0}<\cdots<m_{N-1}$, the above inequality holds for all $\mathbf{u} \in[1, \infty)^{N}$, if and only if $\mathbf{m}$ weakly majorizes $\mathbf{n}$.
(Recall: this means $m_{N-1}+\cdots+m_{j} \geq n_{N-1}+\cdots+n_{j}$ for all $j$.)

## Weak majorization through Schur polynomials

- Our Schur Monotonicity Lemma implies in particular:

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geq \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in[1, \infty)^{N}
$$

if $\mathbf{m}$ dominates $\mathbf{n}$ coordinatewise.

- Natural to ask: for which other tuples $\mathbf{m}, \mathbf{n}$ does this inequality hold?


## Theorem (K.-Tao, Amer. J. Math., in press)

Given integers $0 \leq n_{0}<\cdots<n_{N-1}$ and $0 \leq m_{0}<\cdots<m_{N-1}$, the above inequality holds for all $\mathbf{u} \in[1, \infty)^{N}$, if and only if $\mathbf{m}$ weakly majorizes $\mathbf{n}$.
(Recall: this means $m_{N-1}+\cdots+m_{j} \geq n_{N-1}+\cdots+n_{j}$ for all $j$.)
This problem was studied originally by Skandera and others in 2011, on the entire positive orthant $(0, \infty)^{N}$ :

## Cuttler-Greene-Skandera conjecture

## Theorem (Cuttler-Greene-Skandera, Eur. J. Comb., 2011)

Given integers $0 \leq n_{0}<\cdots<n_{N-1}$ and $0 \leq m_{0}<\cdots<m_{N-1}$ such that

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geq \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in(0, \infty)^{N}
$$

we have that $\mathbf{m}$ majorizes $\mathbf{n}$.
Majorization $=($ weak majorization $)+\left(\sum_{j} m_{j}=\sum_{j} n_{j}\right)$.

## Cuttler-Greene-Skandera conjecture

## Theorem (Cuttler-Greene-Skandera, Eur. J. Comb., 2011)

Given integers $0 \leq n_{0}<\cdots<n_{N-1}$ and $0 \leq m_{0}<\cdots<m_{N-1}$ such that

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geq \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in(0, \infty)^{N}
$$

we have that $\mathbf{m}$ majorizes $\mathbf{n}$.
Majorization $=($ weak majorization $)+\left(\sum_{j} m_{j}=\sum_{j} n_{j}\right)$.
Conjecture (C-G-S, 2011): The converse also holds.

## Cuttler-Greene-Skandera conjecture

## Theorem (Cuttler-Greene-Skandera, Eur. J. Comb., 2011)

Given integers $0 \leq n_{0}<\cdots<n_{N-1}$ and $0 \leq m_{0}<\cdots<m_{N-1}$ such that

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geq \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in(0, \infty)^{N}
$$

we have that $\mathbf{m}$ majorizes $\mathbf{n}$.
Majorization $=($ weak majorization $)+\left(\sum_{j} m_{j}=\sum_{j} n_{j}\right)$.
Conjecture (C-G-S, 2011): The converse also holds.

## Theorem (Sra, Eur. J. Comb., 2016)

The Cuttler-Greene-Skandera conjecture is true.

These results provide novel characterizations of (weak) majorization, through Schur polynomials and through proof-techniques originating in total positivity.

## Open question: Optimizing over $[-1,1]^{N}$ ?

- Our work with Tao (2017) concerned entrywise operations preserving positive semidefiniteness in a fixed dimension.
- The maximization of $s_{\mathbf{m}}(\mathbf{u}) / s_{\mathbf{n}}(\mathbf{u})$ over $(0,1]^{N}$ reveals tight bounds on certain classes of polynomial preservers, acting on correlation matrices with non-negative entries. (By homogeneity and continuity, maximize only over the cube-boundary $(0,1]^{N} \cap \partial(0,1]^{N}$.)


## Open question: Optimizing over $[-1,1]^{N}$ ?

- Our work with Tao (2017) concerned entrywise operations preserving positive semidefiniteness in a fixed dimension.
- The maximization of $s_{\mathbf{m}}(\mathbf{u}) / s_{\mathbf{n}}(\mathbf{u})$ over $(0,1]^{N}$ reveals tight bounds on certain classes of polynomial preservers, acting on correlation matrices with non-negative entries. (By homogeneity and continuity, maximize only over the cube-boundary $(0,1]^{N} \cap \partial(0,1]^{N}$.)
- What about on all correlation matrices? Need to bound $s_{\mathbf{m}}(\mathbf{u}) / s_{\mathbf{n}}(\mathbf{u})$ over all of $[-1,1]^{N} \backslash\{0\}$.
- For this, need to ensure $s_{\mathbf{n}}(\mathbf{u})$ does not vanish except at 0 . Facts:
(1) The only such $\mathbf{n}=(0,1, \ldots, N-2, N-1+2 r)$ for $r \in \mathbb{Z}^{\geq 0}$.
(2) All such $s_{\mathbf{n}}(\mathbf{u})$ are complete symmetric homogeneous polynomials $h_{2 r}(\mathbf{u})$, and they are positive on $\mathbb{R}^{N} \backslash\{0\}$.


## Open question: Optimizing over $[-1,1]^{N}$ ?

- Our work with Tao (2017) concerned entrywise operations preserving positive semidefiniteness in a fixed dimension.
- The maximization of $s_{\mathbf{m}}(\mathbf{u}) / s_{\mathbf{n}}(\mathbf{u})$ over $(0,1]^{N}$ reveals tight bounds on certain classes of polynomial preservers, acting on correlation matrices with non-negative entries. (By homogeneity and continuity, maximize only over the cube-boundary $(0,1]^{N} \cap \partial(0,1]^{N}$.)
- What about on all correlation matrices? Need to bound $s_{\mathbf{m}}(\mathbf{u}) / s_{\mathbf{n}}(\mathbf{u})$ over all of $[-1,1]^{N} \backslash\{0\}$.
- For this, need to ensure $s_{\mathbf{n}}(\mathbf{u})$ does not vanish except at 0 . Facts: (1) The only such $\mathbf{n}=(0,1, \ldots, N-2, N-1+2 r)$ for $r \in \mathbb{Z}^{\geq 0}$.
(2) All such $s_{\mathbf{n}}(\mathbf{u})$ are complete symmetric homogeneous polynomials $h_{2 r}(\mathbf{u})$, and they are positive on $\mathbb{R}^{N} \backslash\{0\}$.

Question: Say $m_{j} \geq j$ for $j=0,1, \ldots, N-2$, and $m_{N-1} \geq N-1+2 r$. Maximize $\frac{s_{\mathbf{m}}(\mathbf{u})}{h_{2 r}(\mathbf{u})}$ on $[-1,1]^{N} \backslash\{0\}$ - or just on its cube-boundary.

## References

[1] A. Khare, 2020+.
Matrix analysis and preservers of (total) positivity.
Lecture notes (website); forthcoming book with Cambridge Univ. Press + TRIM.
[2] G. Pólya and I. Schur, 1914.
Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen. J. reine angew. Math.
[3] M. Aissen, I.J. Schoenberg, and A.M. Whitney, 1952.
On the generating functions of totally positive sequences I. J. d'Analyse Math.
[4] A. Edrei, 1952.
On the generating functions of totally positive sequences I. J. d'Analyse Math.
[5] I.J. Schoenberg, 1955.
On zeros of generating functions of PF sequences and functions. Ann. of Math.
[6] A. Cuttler, C. Greene, and M. Skandera, 2011.
Inequalities for normalized Schur functions. Eur. J. Comb.
[7] S. Sra, 2016.
On inequalities for normalized Schur functions. Eur. J. Comb.
[8] A. Khare and T. Tao, 2020+.
On the sign patterns of entrywise positivity preservers in fixed dimension. Amer. J. Math., in press. (Also published in FPSAC 2018 proceedings.)

