

Entrywise positivity preservers in fixed dimension: I

Apoorva Khare

IISc and APRG (Bangalore, India)

(Joint with Alexander Belton, Dominique Guillot, and Mihai Putinar;
and with Terence Tao)

Introduction

Definition. A real symmetric matrix $A_{N \times N}$ is *positive semidefinite* if all eigenvalues of A are ≥ 0 . (Equivalently, $u^T A u \geq 0$ for all $u \in \mathbb{R}^N$.)

Positivity (and preserving it) studied in many settings in the literature.

Introduction

Definition. A real symmetric matrix $A_{N \times N}$ is *positive semidefinite* if all eigenvalues of A are ≥ 0 . (Equivalently, $u^T A u \geq 0$ for all $u \in \mathbb{R}^N$.)

Positivity (and preserving it) studied in many settings in the literature.

Different flavors of positivity:

- Positive semidefinite matrices (correlation and covariance matrices)
- Positive definite sequences/Toeplitz matrices (measures on S^1)
- Moment sequences/Hankel matrices (measures on \mathbb{R})
- Totally positive matrices and kernels (Pólya frequency functions/sequences)
- Hilbert space kernels
- Positive definite functions on metric spaces, topological (semi)groups

Introduction

Definition. A real symmetric matrix $A_{N \times N}$ is *positive semidefinite* if all eigenvalues of A are ≥ 0 . (Equivalently, $u^T A u \geq 0$ for all $u \in \mathbb{R}^N$.)

Positivity (and preserving it) studied in many settings in the literature.

Different flavors of positivity:

- Positive semidefinite matrices (correlation and covariance matrices)
- Positive definite sequences/Toeplitz matrices (measures on S^1)
- Moment sequences/Hankel matrices (measures on \mathbb{R})
- Totally positive matrices and kernels (Pólya frequency functions/sequences)
- Hilbert space kernels
- Positive definite functions on metric spaces, topological (semi)groups

Question: Classify the positivity preservers in these settings.

Studied for the better part of a century.

Entrywise functions preserving positivity

Given $N \geq 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_N(I)$ denote the $N \times N$ positive semidefinite matrices, with entries in I . (Say $\mathbb{P}_N = \mathbb{P}_N(\mathbb{R})$.)

Problem: Given a function $f : I \rightarrow \mathbb{R}$, when is it true that

$$f[A] := (f(a_{ij})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I)?$$

(Long history!)

Entrywise functions preserving positivity

Given $N \geq 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_N(I)$ denote the $N \times N$ positive semidefinite matrices, with entries in I . (Say $\mathbb{P}_N = \mathbb{P}_N(\mathbb{R})$.)

Problem: Given a function $f : I \rightarrow \mathbb{R}$, when is it true that

$$f[A] := (f(a_{ij})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I)?$$

(Long history!) The *Hadamard product* (or Schur, or entrywise product) of two matrices is given by: $A \circ B = (a_{ij}b_{ij})$.

Schur Product Theorem (Schur, *J. Reine Angew. Math.* 1911)

If $A, B \in \mathbb{P}_N$, then $A \circ B \in \mathbb{P}_N$.

Entrywise functions preserving positivity

Given $N \geq 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_N(I)$ denote the $N \times N$ positive semidefinite matrices, with entries in I . (Say $\mathbb{P}_N = \mathbb{P}_N(\mathbb{R})$.)

Problem: Given a function $f : I \rightarrow \mathbb{R}$, when is it true that

$$f[A] := (f(a_{ij})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I)?$$

(Long history!) The *Hadamard product* (or Schur, or entrywise product) of two matrices is given by: $A \circ B = (a_{ij}b_{ij})$.

Schur Product Theorem (Schur, *J. Reine Angew. Math.* 1911)

If $A, B \in \mathbb{P}_N$, then $A \circ B \in \mathbb{P}_N$.

Pólya–Szegö: As a consequence,

- $f(x) = x^2, x^3, \dots, x^k$ preserves positivity on \mathbb{P}_N for all N, k .

Entrywise functions preserving positivity

Given $N \geq 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_N(I)$ denote the $N \times N$ positive semidefinite matrices, with entries in I . (Say $\mathbb{P}_N = \mathbb{P}_N(\mathbb{R})$.)

Problem: Given a function $f : I \rightarrow \mathbb{R}$, when is it true that

$$f[A] := (f(a_{ij})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I)?$$

(Long history!) The *Hadamard product* (or Schur, or entrywise product) of two matrices is given by: $A \circ B = (a_{ij}b_{ij})$.

Schur Product Theorem (Schur, *J. Reine Angew. Math.* 1911)

If $A, B \in \mathbb{P}_N$, then $A \circ B \in \mathbb{P}_N$.

Pólya–Szegö: As a consequence,

- $f(x) = x^2, x^3, \dots, x^k$ preserves positivity on \mathbb{P}_N for all N, k .
- $f(x) = \sum_{k=0}^l c_k x^k$ preserves positivity if $c_k \geq 0$.

Entrywise functions preserving positivity

Given $N \geq 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_N(I)$ denote the $N \times N$ positive semidefinite matrices, with entries in I . (Say $\mathbb{P}_N = \mathbb{P}_N(\mathbb{R})$.)

Problem: Given a function $f : I \rightarrow \mathbb{R}$, when is it true that

$$f[A] := (f(a_{ij})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I)?$$

(Long history!) The *Hadamard product* (or Schur, or entrywise product) of two matrices is given by: $A \circ B = (a_{ij}b_{ij})$.

Schur Product Theorem (Schur, *J. Reine Angew. Math.* 1911)

If $A, B \in \mathbb{P}_N$, then $A \circ B \in \mathbb{P}_N$.

Pólya–Szegö: As a consequence,

- $f(x) = x^2, x^3, \dots, x^k$ preserves positivity on \mathbb{P}_N for all N, k .
- $f(x) = \sum_{k=0}^l c_k x^k$ preserves positivity if $c_k \geq 0$.
- Taking limits: if $f(x) = \sum_{k=0}^{\infty} c_k x^k$ is convergent and $c_k \geq 0$, then $f[-]$ preserves positivity.

Entrywise functions preserving positivity

Given $N \geq 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_N(I)$ denote the $N \times N$ positive semidefinite matrices, with entries in I . (Say $\mathbb{P}_N = \mathbb{P}_N(\mathbb{R})$.)

Problem: Given a function $f : I \rightarrow \mathbb{R}$, when is it true that

$$f[A] := (f(a_{ij})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I) ?$$

(Long history!) The *Hadamard product* (or Schur, or entrywise product) of two matrices is given by: $A \circ B = (a_{ij}b_{ij})$.

Schur Product Theorem (Schur, *J. Reine Angew. Math.* 1911)

If $A, B \in \mathbb{P}_N$, then $A \circ B \in \mathbb{P}_N$.

Pólya–Szegö: As a consequence,

- $f(x) = x^2, x^3, \dots, x^k$ preserves positivity on \mathbb{P}_N for all N, k .
- $f(x) = \sum_{k=0}^l c_k x^k$ preserves positivity if $c_k \geq 0$.
- Taking limits: if $f(x) = \sum_{k=0}^{\infty} c_k x^k$ is convergent and $c_k \geq 0$, then $f[-]$ preserves positivity.
- Anything else?

Schoenberg's theorem

Question (Pólya–Szegö, 1925): Anything else?

Schoenberg's theorem

Question (Pólya–Szegö, 1925): Anything else? Remarkably, the answer is **no**, if we want to preserve positivity in *all* dimensions.

Theorem (Schoenberg, *Duke Math. J.* 1942)

If $f : [-1, 1] \rightarrow \mathbb{R}$ is continuous, the following are equivalent:

- ① $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N([-1, 1])$ and all N .
- ② f is analytic on I and has nonnegative Maclaurin coefficients. In other words, $f(x) = \sum_{k=0}^{\infty} c_k x^k$ on $[-1, 1]$ with all $c_k \geq 0$.

Schoenberg's theorem

Question (Pólya–Szegö, 1925): Anything else? Remarkably, the answer is **no**, if we want to preserve positivity in *all* dimensions.

Theorem (Schoenberg, *Duke Math. J.* 1942)

If $f : [-1, 1] \rightarrow \mathbb{R}$ is continuous, the following are equivalent:

- ① $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N([-1, 1])$ and all N .
- ② f is analytic on I and has nonnegative Maclaurin coefficients. In other words, $f(x) = \sum_{k=0}^{\infty} c_k x^k$ on $[-1, 1]$ with all $c_k \geq 0$.

Schoenberg's theorem is the far harder converse to the result of his advisor (Schur).

Rudin (a) removed the continuity hypothesis, and (b) greatly reduced the test set:

Toeplitz and Hankel matrices (cont.)

Let $0 < \rho \leq \infty$ be a scalar, and set $I = (-\rho, \rho)$.

Theorem (Rudin, Duke Math. J. 1959)

Given a function $f : I \rightarrow \mathbb{R}$, the following are equivalent:

- ① $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N(I)$ and all N .
- ② $f[-]$ preserves positivity on **Toeplitz** matrices of all sizes and rank ≤ 3 .

Toeplitz and Hankel matrices (cont.)

Let $0 < \rho \leq \infty$ be a scalar, and set $I = (-\rho, \rho)$.

Theorem (Rudin, Duke Math. J. 1959)

Given a function $f : I \rightarrow \mathbb{R}$, the following are equivalent:

- ① $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N(I)$ and all N .
- ② $f[-]$ preserves positivity on **Toeplitz** matrices of all sizes and rank ≤ 3 .
- ③ f is analytic on I and has nonnegative Maclaurin coefficients.

In other words, $f(x) = \sum_{k=0}^{\infty} c_k x^k$ on $(-1, 1)$ with all $c_k \geq 0$.

Toeplitz and Hankel matrices (cont.)

Let $0 < \rho \leq \infty$ be a scalar, and set $I = (-\rho, \rho)$.

Theorem (Rudin, *Duke Math. J.* 1959)

Given a function $f : I \rightarrow \mathbb{R}$, the following are equivalent:

- ① $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N(I)$ and all N .
- ② $f[-]$ preserves positivity on **Toeplitz** matrices of all sizes and rank ≤ 3 .
- ③ f is analytic on I and has nonnegative Maclaurin coefficients.

In other words, $f(x) = \sum_{k=0}^{\infty} c_k x^k$ on $(-1, 1)$ with all $c_k \geq 0$.

Theorem (Belton–Guillot–K.–Putinar, *J. Eur. Math. Soc.*, accepted)

Given a function $f : I \rightarrow \mathbb{R}$, the following are equivalent:

- ① $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N(I)$ and all N .
- ② $f[-]$ preserves positivity on **Hankel** matrices of all sizes and rank ≤ 3 .
- ③ f is analytic on I and has nonnegative Maclaurin coefficients.

Positive semidefinite kernels

- These two results greatly weaken the hypotheses of Schoenberg's theorem – only need to consider positive semidefinite matrices of rank ≤ 3 .
- Note, such matrices are precisely the Gram matrices of vectors in a 3-dimensional Hilbert space. Hence Rudin (essentially) showed:

Let \mathcal{H} be a real Hilbert space of dimension ≥ 3 . If $f[-]$ preserves positivity on all Gram matrices in \mathcal{H} , then f is a power series on \mathbb{R} with non-negative Maclaurin coefficients.

Positive semidefinite kernels

- These two results greatly weaken the hypotheses of Schoenberg's theorem – only need to consider positive semidefinite matrices of rank ≤ 3 .
- Note, such matrices are precisely the Gram matrices of vectors in a 3-dimensional Hilbert space. Hence Rudin (essentially) showed:

Let \mathcal{H} be a real Hilbert space of dimension ≥ 3 . If $f[-]$ preserves positivity on all Gram matrices in \mathcal{H} , then f is a power series on \mathbb{R} with non-negative Maclaurin coefficients.

- But such functions are precisely the *positive semidefinite kernels* on \mathcal{H} ! (Results of Pinkus et al.) Such kernels are important in modern day machine learning, via RKHS.

Positive semidefinite kernels

- These two results greatly weaken the hypotheses of Schoenberg's theorem – only need to consider positive semidefinite matrices of rank ≤ 3 .

- Note, such matrices are precisely the Gram matrices of vectors in a 3-dimensional Hilbert space. Hence Rudin (essentially) showed:

Let \mathcal{H} be a real Hilbert space of dimension ≥ 3 . If $f[-]$ preserves positivity on all Gram matrices in \mathcal{H} , then f is a power series on \mathbb{R} with non-negative Maclaurin coefficients.

- But such functions are precisely the *positive semidefinite kernels* on \mathcal{H} ! (Results of Pinkus et al.) Such kernels are important in modern day machine learning, via RKHS.
- Thus, Rudin (1959) classified positive semidefinite kernels on \mathbb{R}^3 , which is relevant in machine learning. (Now also via our parallel 'Hankel' result.)

Schoenberg's motivations: pos. def. functions on spheres

Schoenberg was interested in embedding metric spaces into Euclidean spheres.

- Notice that every sphere S^{r-1} – whence the Hilbert sphere S^∞ – has a rotation-invariant distance. Namely, the *arc-length* along a great circle:

$$d(x, y) := \sphericalangle(x, y) = \arccos \langle x, y \rangle, \quad x, y \in S^\infty.$$

Schoenberg's motivations: pos. def. functions on spheres

Schoenberg was interested in embedding metric spaces into Euclidean spheres.

- Notice that every sphere S^{r-1} – whence the Hilbert sphere S^∞ – has a rotation-invariant distance. Namely, the *arc-length* along a great circle:

$$d(x, y) := \sphericalangle(x, y) = \arccos \langle x, y \rangle, \quad x, y \in S^\infty.$$

- Applying $\cos[-]$ entrywise to any distance matrix on S^∞ yields:

$$\cos[(d(x_i, x_j))_{i,j \geq 0}] = (\langle x_i, x_j \rangle)_{i,j \geq 0},$$

and this is a Gram matrix, so $\cos(\cdot)$ is positive definite on S^∞ .

Schoenberg's motivations: pos. def. functions on spheres

Schoenberg was interested in embedding metric spaces into Euclidean spheres.

- Notice that every sphere S^{r-1} – whence the Hilbert sphere S^∞ – has a rotation-invariant distance. Namely, the *arc-length* along a great circle:

$$d(x, y) := \sphericalangle(x, y) = \arccos \langle x, y \rangle, \quad x, y \in S^\infty.$$

- Applying $\cos[-]$ entrywise to any distance matrix on S^∞ yields:

$$\cos[(d(x_i, x_j))_{i,j \geq 0}] = (\langle x_i, x_j \rangle)_{i,j \geq 0},$$

and this is a Gram matrix, so $\cos(\cdot)$ is positive definite on S^∞ .

Schoenberg then classified *all* continuous f such that $f \circ \cos(\cdot)$ is p.d.:

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose $f : [-1, 1] \rightarrow \mathbb{R}$ is continuous, and $r \geq 2$. Then $f(\cos \cdot)$ is positive definite on the unit sphere $S^{r-1} \subset \mathbb{R}^r$ if and only if

$$f(\cdot) = \sum_{k \geq 0} a_k C_k^{(\frac{r-2}{2})}(\cdot) \quad \text{for some } a_k \geq 0,$$

where $C_k^{(\lambda)}(\cdot)$ are the ultraspherical / Gegenbauer / Chebyshev polynomials.

From spheres to correlation matrices

- Any Gram matrix of vectors $x_j \in S^{r-1}$ is the same as a rank $\leq r$ correlation matrix $A = (a_{ij})_{i,j=1}^n$, i.e.,

$$\hat{A} = \begin{pmatrix} 1 & * & & \\ & 1 & & \\ & * & 1 & \\ & & & 1 \end{pmatrix} = \begin{pmatrix} - & x_1^T & - \\ - & x_2^T & - \\ \vdots & \vdots & \vdots \\ - & x_n^T & - \end{pmatrix} \begin{pmatrix} | & | & & | \\ x_1 & x_2 & \dots & x_n \\ | & | & & | \end{pmatrix} = (\langle x_i, x_j \rangle)_{i,j=1}^n.$$

From spheres to correlation matrices

- Any Gram matrix of vectors $x_j \in S^{r-1}$ is the same as a rank $\leq r$ correlation matrix $A = (a_{ij})_{i,j=1}^n$, i.e.,

$$\hat{A} = \begin{pmatrix} 1 & * & & \\ & 1 & & \\ & * & 1 & \\ & & & 1 \end{pmatrix} = \begin{pmatrix} \vdash & x_1^T & \vdash \\ \vdash & x_2^T & \vdash \\ \vdash & \vdots & \vdash \\ \vdash & x_n^T & \vdash \end{pmatrix} \begin{pmatrix} | & | & & | \\ x_1 & x_2 & \dots & x_n \\ | & | & & | \end{pmatrix} = (\langle x_i, x_j \rangle)_{i,j=1}^n.$$

- So,

$$\begin{aligned} f(\cos \cdot) \text{ positive definite on } S^{r-1} &\iff (f(\cos d(x_i, x_j)))_{i,j=1}^n \in \mathbb{P}_n \\ &\iff (f(\langle x_i, x_j \rangle))_{i,j=1}^n \in \mathbb{P}_n \\ &\iff (f(a_{ij}))_{i,j=1}^n \in \mathbb{P}_n \quad \forall n \geq 1, \end{aligned}$$

From spheres to correlation matrices

- Any Gram matrix of vectors $x_j \in S^{r-1}$ is the same as a rank $\leq r$ correlation matrix $A = (a_{ij})_{i,j=1}^n$, i.e.,

$$\hat{A} = \begin{pmatrix} 1 & * & & \\ & 1 & & \\ & * & 1 & \\ & & & 1 \end{pmatrix} = \begin{pmatrix} \vdash & x_1^T & \vdash \\ \vdash & x_2^T & \vdash \\ \vdash & \vdots & \vdash \\ \vdash & x_n^T & \vdash \end{pmatrix} \begin{pmatrix} | & | & & | \\ x_1 & x_2 & \dots & x_n \\ | & | & & | \end{pmatrix} = (\langle x_i, x_j \rangle)_{i,j=1}^n.$$

- So,

$$\begin{aligned} f(\cos \cdot) \text{ positive definite on } S^{r-1} &\iff (f(\cos d(x_i, x_j)))_{i,j=1}^n \in \mathbb{P}_n \\ &\iff (f(\langle x_i, x_j \rangle))_{i,j=1}^n \in \mathbb{P}_n \\ &\iff (f(a_{ij}))_{i,j=1}^n \in \mathbb{P}_n \quad \forall n \geq 1, \end{aligned}$$

i.e., f preserves positivity on correlation matrices of rank $\leq r$.

From spheres to correlation matrices

- Any Gram matrix of vectors $x_j \in S^{r-1}$ is the same as a rank $\leq r$ correlation matrix $A = (a_{ij})_{i,j=1}^n$, i.e.,

$$\hat{A} = \begin{pmatrix} 1 & * & & \\ & 1 & & \\ & * & 1 & \\ & & & 1 \end{pmatrix} = \begin{pmatrix} \vdash & x_1^T & \vdash \\ \vdash & x_2^T & \vdash \\ \vdash & \vdots & \vdash \\ \vdash & x_n^T & \vdash \end{pmatrix} \begin{pmatrix} | & | & & | \\ x_1 & x_2 & \dots & x_n \\ | & | & & | \end{pmatrix} = (\langle x_i, x_j \rangle)_{i,j=1}^n.$$

- So,

$$\begin{aligned} f(\cos \cdot) \text{ positive definite on } S^{r-1} &\iff (f(\cos d(x_i, x_j)))_{i,j=1}^n \in \mathbb{P}_n \\ &\iff (f(\langle x_i, x_j \rangle))_{i,j=1}^n \in \mathbb{P}_n \\ &\iff (f(a_{ij}))_{i,j=1}^n \in \mathbb{P}_n \quad \forall n \geq 1, \end{aligned}$$

i.e., f preserves positivity on correlation matrices of rank $\leq r$.

- If instead $r = \infty$, such a result would classify the entrywise positivity preservers on all correlation matrices.

From spheres to correlation matrices

- Any Gram matrix of vectors $x_j \in S^{r-1}$ is the same as a rank $\leq r$ correlation matrix $A = (a_{ij})_{i,j=1}^n$, i.e.,

$$\hat{A} = \begin{pmatrix} 1 & * & & \\ & 1 & & \\ & * & 1 & \\ & & & 1 \end{pmatrix} = \begin{pmatrix} \vdash & x_1^T & \vdash \\ \vdash & x_2^T & \vdash \\ \vdash & \vdots & \vdash \\ \vdash & x_n^T & \vdash \end{pmatrix} \begin{pmatrix} | & | & & | \\ x_1 & x_2 & \dots & x_n \\ | & | & & | \end{pmatrix} = (\langle x_i, x_j \rangle)_{i,j=1}^n.$$

- So,

$$\begin{aligned} f(\cos \cdot) \text{ positive definite on } S^{r-1} &\iff (f(\cos d(x_i, x_j)))_{i,j=1}^n \in \mathbb{P}_n \\ &\iff (f(\langle x_i, x_j \rangle))_{i,j=1}^n \in \mathbb{P}_n \\ &\iff (f(a_{ij}))_{i,j=1}^n \in \mathbb{P}_n \quad \forall n \geq 1, \end{aligned}$$

i.e., f preserves positivity on correlation matrices of rank $\leq r$.

- If instead $r = \infty$, such a result would classify the entrywise positivity preservers on all correlation matrices. Interestingly, 70 years later the subject has acquired renewed interest because of its immediate impact in high-dimensional covariance estimation, in several applied fields.

Schoenberg's theorem on positivity preservers

And indeed, Schoenberg did make the leap from S^{r-1} to S^∞ :

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose $f : [-1, 1] \rightarrow \mathbb{R}$ is continuous. Then $f(\cos \cdot)$ is positive definite on the Hilbert sphere $S^\infty \subset \mathbb{R}^\infty = \ell^2$ if and only if

$$f(\cos \theta) = \sum_{k \geq 0} c_k \cos^k \theta,$$

where $c_k \geq 0 \ \forall k$ are such that $\sum_k c_k < \infty$.

Schoenberg's theorem on positivity preservers

And indeed, Schoenberg did make the leap from S^{r-1} to S^∞ :

Theorem (Schoenberg, *Duke Math. J.* 1942)

Suppose $f : [-1, 1] \rightarrow \mathbb{R}$ is continuous. Then $f(\cos \cdot)$ is positive definite on the Hilbert sphere $S^\infty \subset \mathbb{R}^\infty = \ell^2$ if and only if

$$f(\cos \theta) = \sum_{k \geq 0} c_k \cos^k \theta,$$

where $c_k \geq 0 \ \forall k$ are such that $\sum_k c_k < \infty$.

(By the Schur product theorem, $\cos^k \theta$ is positive definite on S^∞ .)

Freeing this result from the sphere context, one obtains Schoenberg's theorem on entrywise positivity preservers.

Schoenberg's theorem on positivity preservers

And indeed, Schoenberg did make the leap from S^{r-1} to S^∞ :

Theorem (Schoenberg, *Duke Math. J.* 1942)

Suppose $f : [-1, 1] \rightarrow \mathbb{R}$ is continuous. Then $f(\cos \cdot)$ is positive definite on the Hilbert sphere $S^\infty \subset \mathbb{R}^\infty = \ell^2$ if and only if

$$f(\cos \theta) = \sum_{k \geq 0} c_k \cos^k \theta,$$

where $c_k \geq 0 \ \forall k$ are such that $\sum_k c_k < \infty$.

(By the Schur product theorem, $\cos^k \theta$ is positive definite on S^∞ .)

Freeing this result from the sphere context, one obtains Schoenberg's theorem on entrywise positivity preservers.

For more information: *A panorama of positivity* – arXiv, Dec. 2018.
(Survey, 80+ pp., by A. Belton, D. Guillot, A.K., and M. Putinar.)

Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention, owing to the statistics of big data.

Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention, owing to the statistics of big data.

- Major challenge in science: detect structure in vast amount of data.
- Covariance/correlation is a fundamental measure of dependence between random variables:

$$\Sigma = (\sigma_{ij})_{i,j=1}^p, \quad \sigma_{ij} = \text{Cov}(X_i, X_j) = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j].$$

Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention, owing to the statistics of big data.

- Major challenge in science: detect structure in vast amount of data.
- Covariance/correlation is a fundamental measure of dependence between random variables:

$$\Sigma = (\sigma_{ij})_{i,j=1}^p, \quad \sigma_{ij} = \text{Cov}(X_i, X_j) = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j].$$

- **Important question:** Estimate Σ from data $x_1, \dots, x_n \in \mathbb{R}^p$.

Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention, owing to the statistics of big data.

- Major challenge in science: detect structure in vast amount of data.
- Covariance/correlation is a fundamental measure of dependence between random variables:

$$\Sigma = (\sigma_{ij})_{i,j=1}^p, \quad \sigma_{ij} = \text{Cov}(X_i, X_j) = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j].$$

- **Important question:** Estimate Σ from data $x_1, \dots, x_n \in \mathbb{R}^p$.
- In modern-day settings (small samples, ultra-high dimension), covariance estimation can be very challenging.
- Classical estimators (e.g. sample covariance matrix (MLE)):

$$S = \frac{1}{n} \sum_{j=1}^n (x_j - \bar{x})(x_j - \bar{x})^T$$

perform poorly, are singular/ill-conditioned, etc.

Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention, owing to the statistics of big data.

- Major challenge in science: detect structure in vast amount of data.
- Covariance/correlation is a fundamental measure of dependence between random variables:

$$\Sigma = (\sigma_{ij})_{i,j=1}^p, \quad \sigma_{ij} = \text{Cov}(X_i, X_j) = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j].$$

- **Important question:** Estimate Σ from data $x_1, \dots, x_n \in \mathbb{R}^p$.
- In modern-day settings (small samples, ultra-high dimension), covariance estimation can be very challenging.
- Classical estimators (e.g. sample covariance matrix (MLE)):

$$S = \frac{1}{n} \sum_{j=1}^n (x_j - \bar{x})(x_j - \bar{x})^T$$

perform poorly, are singular/ill-conditioned, etc.

- Require some form of *regularization* – and resulting matrix has to be positive semidefinite (in the parameter space) for applications.

Motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics.

Let X_1, \dots, X_p be a collection of random variables.

- Very large vectors: rare that all X_j depend strongly on each other.
- Many variables are (conditionally) independent; not used in prediction.

Motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics.

Let X_1, \dots, X_p be a collection of random variables.

- Very large vectors: rare that all X_j depend strongly on each other.
- Many variables are (conditionally) independent; not used in prediction.
- Leverage the independence/conditional independence structure to reduce dimension – translates to zeros in covariance/inverse covariance matrix.

Motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics.

Let X_1, \dots, X_p be a collection of random variables.

- Very large vectors: rare that all X_j depend strongly on each other.
- Many variables are (conditionally) independent; not used in prediction.
- Leverage the independence/conditional independence structure to reduce dimension – translates to zeros in covariance/inverse covariance matrix.
- **Modern approach:** Compressed sensing methods (Daubechies, Donoho, Candes, Tao, ...) use convex optimization to obtain a sparse estimate of Σ (e.g., ℓ^1 -penalized likelihood methods).
- State-of-the-art for ~ 20 years.

Works well for dimensions of a few thousands.

Motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics.

Let X_1, \dots, X_p be a collection of random variables.

- Very large vectors: rare that all X_j depend strongly on each other.
- Many variables are (conditionally) independent; not used in prediction.
- Leverage the independence/conditional independence structure to reduce dimension – translates to zeros in covariance/inverse covariance matrix.
- **Modern approach:** Compressed sensing methods (Daubechies, Donoho, Candes, Tao, ...) use convex optimization to obtain a sparse estimate of Σ (e.g., ℓ^1 -penalized likelihood methods).
- State-of-the-art for ~ 20 years.
Works well for dimensions of a few thousands.
- Not scalable to modern-day problems with 100,000+ variables (disease detection, climate sciences, finance...).

Thresholding and regularization

Thresholding covariance/correlation matrices

$$\text{True } \Sigma = \begin{pmatrix} 1 & 0.2 & 0 \\ 0.2 & 1 & 0.5 \\ 0 & 0.5 & 1 \end{pmatrix}, \quad S = \begin{pmatrix} 0.95 & 0.18 & 0.02 \\ 0.18 & 0.96 & 0.47 \\ 0.02 & 0.47 & 0.98 \end{pmatrix}$$

Thresholding and regularization

Thresholding covariance/correlation matrices

$$\text{True } \Sigma = \begin{pmatrix} 1 & 0.2 & 0 \\ 0.2 & 1 & 0.5 \\ 0 & 0.5 & 1 \end{pmatrix}, \quad S = \begin{pmatrix} 0.95 & 0.18 & 0.02 \\ 0.18 & 0.96 & 0.47 \\ 0.02 & 0.47 & 0.98 \end{pmatrix}$$

Natural to *threshold* small entries (thinking the variables are independent):

$$\tilde{S} = \begin{pmatrix} 0.95 & 0.18 & \mathbf{0} \\ 0.18 & 0.96 & 0.47 \\ \mathbf{0} & 0.47 & 0.98 \end{pmatrix}$$

Thresholding and regularization

Thresholding covariance/correlation matrices

$$\text{True } \Sigma = \begin{pmatrix} 1 & 0.2 & 0 \\ 0.2 & 1 & 0.5 \\ 0 & 0.5 & 1 \end{pmatrix}, \quad S = \begin{pmatrix} 0.95 & 0.18 & 0.02 \\ 0.18 & 0.96 & 0.47 \\ 0.02 & 0.47 & 0.98 \end{pmatrix}$$

Natural to *threshold* small entries (thinking the variables are independent):

$$\tilde{S} = \begin{pmatrix} 0.95 & 0.18 & \mathbf{0} \\ 0.18 & 0.96 & 0.47 \\ \mathbf{0} & 0.47 & 0.98 \end{pmatrix}$$

Can be significant if $p = 100,000$ and only, say, $\sim 1\%$ of the entries of the true Σ are nonzero.

Entrywise functions – regularization

More generally, we could apply a function $f : \mathbb{R} \rightarrow \mathbb{R}$ to the elements of the matrix S – *regularization*:

Entrywise functions – regularization

More generally, we could apply a function $f : \mathbb{R} \rightarrow \mathbb{R}$ to the elements of the matrix S – *regularization*:

$$\widehat{\Sigma} = f[S] := \begin{pmatrix} f(\sigma_{11}) & f(\sigma_{12}) & \dots & f(\sigma_{1N}) \\ f(\sigma_{21}) & f(\sigma_{22}) & \dots & f(\sigma_{2N}) \\ \vdots & \vdots & \ddots & \vdots \\ f(\sigma_{N1}) & f(\sigma_{N2}) & \dots & f(\sigma_{NN}) \end{pmatrix}$$

(Example on previous slide is $f_\epsilon(x) = x \cdot \mathbf{1}_{|x| > \epsilon}$ for some $\epsilon > 0$.)

Entrywise functions – regularization

More generally, we could apply a function $f : \mathbb{R} \rightarrow \mathbb{R}$ to the elements of the matrix S – *regularization*:

$$\widehat{\Sigma} = f[S] := \begin{pmatrix} f(\sigma_{11}) & f(\sigma_{12}) & \dots & f(\sigma_{1N}) \\ f(\sigma_{21}) & f(\sigma_{22}) & \dots & f(\sigma_{2N}) \\ \vdots & \vdots & \ddots & \vdots \\ f(\sigma_{N1}) & f(\sigma_{N2}) & \dots & f(\sigma_{NN}) \end{pmatrix}$$

(Example on previous slide is $f_\epsilon(x) = x \cdot \mathbf{1}_{|x| > \epsilon}$ for some $\epsilon > 0$.)

- Highly scalable. Analysis on the cone – no optimization.

Entrywise functions – regularization

More generally, we could apply a function $f : \mathbb{R} \rightarrow \mathbb{R}$ to the elements of the matrix S – *regularization*:

$$\widehat{\Sigma} = f[S] := \begin{pmatrix} f(\sigma_{11}) & f(\sigma_{12}) & \dots & f(\sigma_{1N}) \\ f(\sigma_{21}) & f(\sigma_{22}) & \dots & f(\sigma_{2N}) \\ \vdots & \vdots & \ddots & \vdots \\ f(\sigma_{N1}) & f(\sigma_{N2}) & \dots & f(\sigma_{NN}) \end{pmatrix}$$

(Example on previous slide is $f_\epsilon(x) = x \cdot \mathbf{1}_{|x| > \epsilon}$ for some $\epsilon > 0$.)

- Highly scalable. Analysis on the cone – no optimization.
- Regularized matrix $f[S]$ further used in applications, where (estimates of) Σ required in procedures such as PCA, CCA, MANOVA, etc.

Entrywise functions – regularization

More generally, we could apply a function $f : \mathbb{R} \rightarrow \mathbb{R}$ to the elements of the matrix S – *regularization*:

$$\widehat{\Sigma} = f[S] := \begin{pmatrix} f(\sigma_{11}) & f(\sigma_{12}) & \dots & f(\sigma_{1N}) \\ f(\sigma_{21}) & f(\sigma_{22}) & \dots & f(\sigma_{2N}) \\ \vdots & \vdots & \ddots & \vdots \\ f(\sigma_{N1}) & f(\sigma_{N2}) & \dots & f(\sigma_{NN}) \end{pmatrix}$$

(Example on previous slide is $f_\epsilon(x) = x \cdot \mathbf{1}_{|x| > \epsilon}$ for some $\epsilon > 0$.)

- Highly scalable. Analysis on the cone – no optimization.
- Regularized matrix $f[S]$ further used in applications, where (estimates of) Σ required in procedures such as PCA, CCA, MANOVA, etc.
- **Question:** When does this procedure preserve positive (semi)definiteness? Critical for applications since $\Sigma \in \mathbb{P}_N$.

Entrywise functions – regularization

More generally, we could apply a function $f : \mathbb{R} \rightarrow \mathbb{R}$ to the elements of the matrix S – *regularization*:

$$\widehat{\Sigma} = f[S] := \begin{pmatrix} f(\sigma_{11}) & f(\sigma_{12}) & \dots & f(\sigma_{1N}) \\ f(\sigma_{21}) & f(\sigma_{22}) & \dots & f(\sigma_{2N}) \\ \vdots & \vdots & \ddots & \vdots \\ f(\sigma_{N1}) & f(\sigma_{N2}) & \dots & f(\sigma_{NN}) \end{pmatrix}$$

(Example on previous slide is $f_\epsilon(x) = x \cdot \mathbf{1}_{|x| > \epsilon}$ for some $\epsilon > 0$.)

- Highly scalable. Analysis on the cone – no optimization.
- Regularized matrix $f[S]$ further used in applications, where (estimates of) Σ required in procedures such as PCA, CCA, MANOVA, etc.
- **Question:** When does this procedure preserve positive (semi)definiteness? Critical for applications since $\Sigma \in \mathbb{P}_N$.

Problem: For what functions $f : \mathbb{R} \rightarrow \mathbb{R}$, does $f[-]$ preserve \mathbb{P}_N ?

Preserving positivity in fixed dimension

Schoenberg's result characterizes functions preserving positivity for matrices of **all** dimensions: $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N$ and **all** N .

Preserving positivity in fixed dimension

Schoenberg's result characterizes functions preserving positivity for matrices of **all** dimensions: $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N$ and **all** N .

Similar/related problems studied by many others, including:

- Bharali, Bhatia, Christensen, FitzGerald, Helson, Hiai, Holtz,
- Horn, Jain, Kahane, Karlin, Katznelson, Loewner, Menegatto,
- Micchelli, Pinkus, Pólya, Ressel, Vasudeva, Willoughby, ...

Preserving positivity in fixed dimension

Schoenberg's result characterizes functions preserving positivity for matrices of *all* dimensions: $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N$ and **all** N .

Similar/related problems studied by many others, including:

- Bharali, Bhatia, Christensen, FitzGerald, Helson, Hiai, Holtz,
- Horn, Jain, Kahane, Karlin, Katznelson, Loewner, Menegatto,
- Micchelli, Pinkus, Pólya, Ressel, Vasudeva, Willoughby, ...

Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
Unnecessarily restrictive to preserve positivity in all dimensions.

Preserving positivity in fixed dimension

Schoenberg's result characterizes functions preserving positivity for matrices of **all** dimensions: $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N$ and **all** N .

Similar/related problems studied by many others, including:

- Bharali, Bhatia, Christensen, FitzGerald, Helson, Hiai, Holtz,
- Horn, Jain, Kahane, Karlin, Katznelson, Loewner, Menegatto,
- Micchelli, Pinkus, Pólya, Ressel, Vasudeva, Willoughby, ...

Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
Unnecessarily restrictive to preserve positivity in all dimensions.
- Known for $N = 2$ (Vasudeva, *IJPAM* 1979):

$$f \text{ is nondecreasing and } f(x)f(y) \geq f(\sqrt{xy})^2 \text{ on } (0, \infty).$$

Preserving positivity in fixed dimension

Schoenberg's result characterizes functions preserving positivity for matrices of **all** dimensions: $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N$ and **all** N .

Similar/related problems studied by many others, including:

- Bharali, Bhatia, Christensen, FitzGerald, Helson, Hiai, Holtz,
- Horn, Jain, Kahane, Karlin, Katznelson, Loewner, Menegatto,
- Micchelli, Pinkus, Pólya, Ressel, Vasudeva, Willoughby, ...

Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
Unnecessarily restrictive to preserve positivity in all dimensions.
- Known for $N = 2$ (Vasudeva, *IJPAM* 1979):

$$f \text{ is nondecreasing and } f(x)f(y) \geq f(\sqrt{xy})^2 \text{ on } (0, \infty).$$

- **Open** for $N \geq 3$.

Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, preserving positivity on \mathbb{P}_N with $N \geq 3$.

Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, preserving positivity on \mathbb{P}_N with $N \geq 3$. (**Was not known** since Schoenberg's *Duke* 1942 paper.)

Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, preserving positivity on \mathbb{P}_N with $N \geq 3$. (**Was not known** since Schoenberg's *Duke* 1942 paper.)

Fixed $N \geq 3$ and general $f \rightsquigarrow$ only known necessary condition, by Loewner:

Theorem (Horn–Loewner, Guillot–K.–Rajaratnam, *Trans. AMS* 1969, 2017)

Fix $I = (0, \infty)$ and $f : I \rightarrow \mathbb{R}$. Suppose $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N(I)$ **Hankel of rank ≤ 2 , with N fixed.**

Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, preserving positivity on \mathbb{P}_N with $N \geq 3$. (**Was not known** since Schoenberg's *Duke* 1942 paper.)

Fixed $N \geq 3$ and general $f \rightsquigarrow$ only known necessary condition, by Loewner:

Theorem (Horn–Loewner, Guillot–K.–Rajaratnam, *Trans. AMS* 1969, 2017)

Fix $I = (0, \infty)$ and $f : I \rightarrow \mathbb{R}$. Suppose $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N(I)$ **Hankel of rank ≤ 2** , with N **fixed**. Then $f \in C^{N-3}(I)$ and

$$f, f', f'', \dots, f^{(N-3)} \geq 0 \text{ on } I.$$

If $f \in C^{N-1}(I)$ then $f^{(N-2)}, f^{(N-1)} \geq 0$ on I .

Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, preserving positivity on \mathbb{P}_N with $N \geq 3$. (**Was not known** since Schoenberg's *Duke* 1942 paper.)

Fixed $N \geq 3$ and general $f \rightsquigarrow$ only known necessary condition, by Loewner:

Theorem (Horn–Loewner, Guillot–K.–Rajaratnam, *Trans. AMS* 1969, 2017)

Fix $I = (0, \infty)$ and $f : I \rightarrow \mathbb{R}$. Suppose $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N(I)$ **Hankel of rank ≤ 2** , with N **fixed**. Then $f \in C^{N-3}(I)$ and

$$f, f', f'', \dots, f^{(N-3)} \geq 0 \text{ on } I.$$

If $f \in C^{N-1}(I)$ then $f^{(N-2)}, f^{(N-1)} \geq 0$ on I .

- Implies Schoenberg–Rudin result for matrices with positive entries.
- Loewner had initially summarized these computations in a letter to Josephine Mitchell (Penn. State University) on October 24, 1967:

Loewner's computations

when I got interested in the following question: let $f(t)$ be a function defined in some interval (a, b) , $a \geq 0$ and consider all real symmetric matrices $(a_{ij}) \geq 0$ of order n with elements $a_{ij} \in (a, b)$. What properties must f have in order that the matrices $(f(a_{ij})) \geq 0$. I found as necessary conditions $f'(t) \geq 0$, $f''(t) \geq 0$ that if f is $(n-1)$ times differentiable the following conditions are necessary

$$(C) \quad f(t) \geq 0, f'(t) \geq 0, \dots, f^{(n-1)}(t) \geq 0$$

The functions t^8 ($\sin t$) do not satisfy these conditions for all $t \in (0, \pi)$ if $n \geq 3$.

The proof is obtained by considering matrices of the

form $a_{ij} = \alpha + \frac{1}{n} \alpha_i \alpha_j$ with $\alpha \in (a, b)$, $\alpha \geq 0$ and the α_i arbitrary. Then $(f(a_{ij})) \geq 0$ and hence the determinant $\det(f(a_{ij})) \geq 0$. The first term in the Taylor expansion of $f(\alpha w)$ at $w=0$ is $f(\alpha) - f'(0) \cdot (\prod \alpha_i \alpha_j)^{1/n}$ and hence $f(\alpha) - f^{(n-1)}(0) \geq 0$, from which one easily derives that (C) must hold.

Entrywise polynomial preservers in fixed dimension

Consequence: Suppose $c_0, c_1, c_2 \neq 0$ are real, $M \geq 3$, and

$$c_0 + c_1 x + c_2 x^2 + c_M x^M$$

entrywise preserves positivity on 3×3 correlation matrices.

Then $c_0, c_1, c_2 > 0$.

Entrywise polynomial preservers in fixed dimension

Consequence: Suppose $c_0, c_1, c_2 \neq 0$ are real, $M \geq 3$, and

$$c_0 + c_1 x + c_2 x^2 + c_M x^M$$

entrywise preserves positivity on 3×3 correlation matrices.

Then $c_0, c_1, c_2 > 0$. **Can c_M be negative? (Not known.)**

Entrywise polynomial preservers in fixed dimension

Consequence: Suppose $c_0, c_1, c_2 \neq 0$ are real, $M \geq 3$, and

$$c_0 + c_1 x + c_2 x^2 + c_M x^M$$

entrywise preserves positivity on 3×3 correlation matrices.

Then $c_0, c_1, c_2 > 0$. **Can c_M be negative? (Not known.)**

General case:

Let $M \geq N \in \mathbb{N}$ and $c_0, \dots, c_{N-1} \neq 0$. Suppose $f(x) = \sum_{j=0}^{N-1} c_j x^j + c_M x^M$

preserves positivity on $\mathbb{P}_N((0, \rho))$. Then $c_0, \dots, c_{N-1} > 0$. **Can $c_M < 0$?**

Entrywise polynomial preservers in fixed dimension

Consequence: Suppose $c_0, c_1, c_2 \neq 0$ are real, $M \geq 3$, and

$$c_0 + c_1 x + c_2 x^2 + c_M x^M$$

entrywise preserves positivity on 3×3 correlation matrices.

Then $c_0, c_1, c_2 > 0$. **Can c_M be negative? (Not known.)**

General case:

Let $M \geq N \in \mathbb{N}$ and $c_0, \dots, c_{N-1} \neq 0$. Suppose $f(x) = \sum_{j=0}^{N-1} c_j x^j + c_M x^M$ preserves positivity on $\mathbb{P}_N((0, \rho))$. Then $c_0, \dots, c_{N-1} > 0$. **Can $c_M < 0$?**

Reformulation: Multiplying by $t = |c_M|^{-1}$, does

$$p_t(x) := t \sum_{j=0}^{N-1} c_j x^j - x^M$$

entrywise preserve positivity on $\mathbb{P}_N((0, \rho))$ **for any** $t > 0$?

Entrywise polynomial preservers in fixed dimension

Consequence: Suppose $c_0, c_1, c_2 \neq 0$ are real, $M \geq 3$, and

$$c_0 + c_1 x + c_2 x^2 + c_M x^M$$

entrywise preserves positivity on 3×3 correlation matrices.

Then $c_0, c_1, c_2 > 0$. **Can c_M be negative? (Not known.)**

General case:

Let $M \geq N \in \mathbb{N}$ and $c_0, \dots, c_{N-1} \neq 0$. Suppose $f(x) = \sum_{j=0}^{N-1} c_j x^j + c_M x^M$ preserves positivity on $\mathbb{P}_N((0, \rho))$. Then $c_0, \dots, c_{N-1} > 0$. **Can $c_M < 0$?**

Reformulation: Multiplying by $t = |c_M|^{-1}$, does

$$p_t(x) := t \sum_{j=0}^{N-1} c_j x^j - x^M$$

entrywise preserve positivity on $\mathbb{P}_N((0, \rho))$ **for any $t > 0$?** **No example known.**

Main result

Theorem (Belton, Guillot, K., Putinar, *Adv. Math.* 2016)

Fix integers $M \geq N \geq 1$, and real scalars $\rho > 0$ and c_0, \dots, c_{N-1} .
For $t > 0$, define $p_t(z) := t \sum_{j=0}^{N-1} c_j z^j - z^M$.

Main result

Theorem (Belton, Guillot, K., Putinar, *Adv. Math.* 2016)

Fix integers $M \geq N \geq 1$, and real scalars $\rho > 0$ and c_0, \dots, c_{N-1} .
For $t > 0$, define $p_t(z) := t \sum_{j=0}^{N-1} c_j z^j - z^M$.

Then the following are equivalent.

- ① $p_t[-]$ preserves positivity on $\mathbb{P}_N(\overline{D}(0, \rho))$.
- ② All coefficients $c_j > 0$, and

$$t \geq \mathcal{K}_{\rho, M} := \sum_{j=0}^{N-1} \binom{M}{j}^2 \binom{M-j-1}{N-j-1}^2 \frac{\rho^{M-j}}{c_j}.$$

Main result

Theorem (Belton, Guillot, K., Putinar, *Adv. Math.* 2016)

Fix integers $M \geq N \geq 1$, and real scalars $\rho > 0$ and c_0, \dots, c_{N-1} .
For $t > 0$, define $p_t(z) := t \sum_{j=0}^{N-1} c_j z^j - z^M$.

Then the following are equivalent.

- ① $p_t[-]$ preserves positivity on $\mathbb{P}_N(\overline{D}(0, \rho))$.
- ② All coefficients $c_j > 0$, and

$$t \geq \mathcal{K}_{\rho, M} := \sum_{j=0}^{N-1} \binom{M}{j}^2 \binom{M-j-1}{N-j-1}^2 \frac{\rho^{M-j}}{c_j}.$$

- ③ $p_t[-]$ preserves positivity on Hankel rank-one matrices in $\mathbb{P}_N((0, \rho))$.

Consequences

- ① Quantitative version of Schoenberg's theorem in fixed dimension:
first examples of polynomials that work for \mathbb{P}_N but not for \mathbb{P}_{N+1} .
("The Loewner–Horn theorem is sharp.")

Consequences

- ① Quantitative version of Schoenberg's theorem in fixed dimension: first examples of polynomials that work for \mathbb{P}_N but not for \mathbb{P}_{N+1} . ("The Loewner–Horn theorem is sharp.")
- ② Complete characterization of polynomials of degree $\leq N$, which preserve positivity on \mathbb{P}_N .

Consequences

- ① Quantitative version of Schoenberg's theorem in fixed dimension: first examples of polynomials that work for \mathbb{P}_N but not for \mathbb{P}_{N+1} . ("The Loewner–Horn theorem is sharp.")
- ② Complete characterization of polynomials of degree $\leq N$, which preserve positivity on \mathbb{P}_N .
- ③ Surprisingly, the sharp bound on the negative threshold is obtained on rank 1 matrices with positive entries.

Consequences

- ① Quantitative version of Schoenberg's theorem in fixed dimension: first examples of polynomials that work for \mathbb{P}_N but not for \mathbb{P}_{N+1} . ("The Loewner–Horn theorem is sharp.")
- ② Complete characterization of polynomials of degree $\leq N$, which preserve positivity on \mathbb{P}_N .
- ③ Surprisingly, the sharp bound on the negative threshold is obtained on rank 1 matrices with positive entries.
- ④ More generally, the theorem provides a characterization of polynomials $p_t[-] : \mathbb{P}_N(K) \rightarrow \mathbb{P}_N$ for any $(0, \rho) \subset K \subset \overline{D}(0, \rho)$.

Consequences

- ① Quantitative version of Schoenberg's theorem in fixed dimension: first examples of polynomials that work for \mathbb{P}_N but not for \mathbb{P}_{N+1} . ("The Loewner–Horn theorem is sharp.")
- ② Complete characterization of polynomials of degree $\leq N$, which preserve positivity on \mathbb{P}_N .
- ③ Surprisingly, the sharp bound on the negative threshold is obtained on rank 1 matrices with positive entries.
- ④ More generally, the theorem provides a characterization of polynomials $p_t[-] : \mathbb{P}_N(K) \rightarrow \mathbb{P}_N$ for any $(0, \rho) \subset K \subset \overline{D}(0, \rho)$.
- ⑤ **Corollary:** By the Schur product theorem, functions of the form $t(c_2x^2 + c_3x^3 + c_4x^4) - x^M$ can be preservers on $\mathbb{P}_3((0, \rho))$ for $c_j > 0$, $M > 4$, and large $t \gg 0$.

Sketch of the proof

Theorem (Belton, Guillot, K., Putinar, 2016)

Let $M \geq N \geq 1$ and $\rho, t, c_0, \dots, c_{N-1} > 0$. If $p_t(z) := t \sum_{j < N} c_j z^j - z^M$, TFAE:

- ① $p_t[-]$ preserves positivity on $\mathbb{P}_N(\overline{D}(0, \rho))$.
- ② $t \geq \mathcal{K}_{\rho, M}$.
- ③ $p_t[-]$ preserves positivity on Hankel rank one matrices in $\mathbb{P}_N((0, \rho))$.

Sketch of the proof

Theorem (Belton, Guillot, K., Putinar, 2016)

Let $M \geq N \geq 1$ and $\rho, t, c_0, \dots, c_{N-1} > 0$. If $p_t(z) := t \sum_{j < N} c_j z^j - z^M$, TFAE:

- ① $p_t[-]$ preserves positivity on $\mathbb{P}_N(\overline{D}(0, \rho))$.
- ② $t \geq \mathcal{K}_{\rho, M}$.
- ③ $p_t[-]$ preserves positivity on Hankel rank one matrices in $\mathbb{P}_N((0, \rho))$.

(1) \implies (3): Immediate.

Sketch of the proof

Theorem (Belton, Guillot, K., Putinar, 2016)

Let $M \geq N \geq 1$ and $\rho, t, c_0, \dots, c_{N-1} > 0$. If $p_t(z) := t \sum_{j < N} c_j z^j - z^M$, TFAE:

- ① $p_t[-]$ preserves positivity on $\mathbb{P}_N(\overline{D}(0, \rho))$.
- ② $t \geq \mathcal{K}_{\rho, M}$.
- ③ $p_t[-]$ preserves positivity on Hankel rank one matrices in $\mathbb{P}_N((0, \rho))$.

(1) \implies (3): Immediate.(3) \implies (2): How does the constant $\mathcal{K}_{\rho, M}$ appear from rank-one matrices?

Sketch of the proof

Theorem (Belton, Guillot, K., Putinar, 2016)

Let $M \geq N \geq 1$ and $\rho, t, c_0, \dots, c_{N-1} > 0$. If $p_t(z) := t \sum_{j < N} c_j z^j - z^M$, TFAE:

- ① $p_t[-]$ preserves positivity on $\mathbb{P}_N(\overline{D}(0, \rho))$.
- ② $t \geq \mathcal{K}_{\rho, M}$.
- ③ $p_t[-]$ preserves positivity on Hankel rank one matrices in $\mathbb{P}_N((0, \rho))$.

(1) \implies (3): Immediate.

(3) \implies (2): How does the constant $\mathcal{K}_{\rho, M}$ appear from rank-one matrices?

Study the determinants of linear pencils

$$\det p_t[A] = \det \left(t(c_0 \mathbf{1}_{N \times N} + c_1 A + \dots + c_{N-1} A^{\circ(N-1)}) - A^{\circ M} \right)$$

for rank-one matrices $A = \mathbf{u}\mathbf{v}^T$.

Schur polynomials

Given an increasing N -tuple of integers $0 \leq n_0 < \dots < n_{N-1}$,
the corresponding **Schur polynomial** over a field \mathbb{F} is the unique polynomial
extension to \mathbb{F}^N of

$$s_{\mathbf{n}}(u_1, \dots, u_N) := \frac{\det(u_i^{n_{j-1}})_{i,j=1}^N}{\det(u_i^{j-1})} = \frac{\det(u_i^{n_{j-1}})_{i,j=1}^N}{V(\mathbf{u})}$$

for pairwise distinct $u_i \in \mathbb{F}$.

Schur polynomials

Given an increasing N -tuple of integers $0 \leq n_0 < \dots < n_{N-1}$,
the corresponding **Schur polynomial** over a field \mathbb{F} is the unique polynomial
extension to \mathbb{F}^N of

$$s_{\mathbf{n}}(u_1, \dots, u_N) := \frac{\det(u_i^{n_j-1})_{i,j=1}^N}{\det(u_i^{j-1})} = \frac{\det(u_i^{n_j-1})_{i,j=1}^N}{V(\mathbf{u})}$$

for pairwise distinct $u_i \in \mathbb{F}$. Note that the denominator is precisely the
Vandermonde determinant

$$V((u_1, \dots, u_N)) := \det(u_i^{j-1}) = \prod_{1 \leq i < j \leq N} (u_j - u_i).$$

Schur polynomials

Given an increasing N -tuple of integers $0 \leq n_0 < \dots < n_{N-1}$, the corresponding **Schur polynomial** over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^N of

$$s_{\mathbf{n}}(u_1, \dots, u_N) := \frac{\det(u_i^{n_j-1})_{i,j=1}^N}{\det(u_i^{j-1})} = \frac{\det(u_i^{n_j-1})_{i,j=1}^N}{V(\mathbf{u})}$$

for pairwise distinct $u_i \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$V((u_1, \dots, u_N)) := \det(u_i^{j-1}) = \prod_{1 \leq i < j \leq N} (u_j - u_i).$$

- Basis of homogeneous symmetric polynomials in u_1, \dots, u_N .
- Characters of irreducible polynomial representations of $GL_N(\mathbb{C})$, usually defined in terms of semi-standard Young tableaux.

Schur polynomials

Given an increasing N -tuple of integers $0 \leq n_0 < \dots < n_{N-1}$, the corresponding **Schur polynomial** over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^N of

$$s_{\mathbf{n}}(u_1, \dots, u_N) := \frac{\det(u_i^{n_{j-1}})_{i,j=1}^N}{\det(u_i^{j-1})} = \frac{\det(u_i^{n_{j-1}})_{i,j=1}^N}{V(\mathbf{u})}$$

for pairwise distinct $u_i \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$V((u_1, \dots, u_N)) := \det(u_i^{j-1}) = \prod_{1 \leq i < j \leq N} (u_j - u_i).$$

- Basis of homogeneous symmetric polynomials in u_1, \dots, u_N .
- Characters of irreducible polynomial representations of $GL_N(\mathbb{C})$, usually defined in terms of semi-standard Young tableaux.
- Weyl Character (Dimension) Formula in Type A:

$$s_{\mathbf{n}}(1, \dots, 1) = \prod_{1 \leq i < j \leq N} \frac{n_j - n_i}{j - i} = \frac{V(\mathbf{n})}{V((0, 1, \dots, N-1))}.$$

Sketch of the proof of the main result (cont.)

Technical heart of the proof: Jacobi–Trudi type identity for p_t .

Sketch of the proof of the main result (cont.)

Technical heart of the proof: Jacobi–Trudi type identity for p_t .

Theorem (Belton, Guillot, K., Putinar, *Adv. Math.* 2016)

Let $M \geq N \geq 1$ be integers, and $c_0, \dots, c_{N-1} \in \mathbb{F}^\times$ be non-zero scalars in any field \mathbb{F} . Define the polynomial

$$p_t(z) := t(c_0 + \dots + c_{N-1}z^{N-1}) - z^M,$$

and the hook partition

$$\mu(M, N, j) := (0, 1, \dots, j-1; \quad j+1, \dots, N-1; \quad M).$$

Sketch of the proof of the main result (cont.)

Technical heart of the proof: Jacobi–Trudi type identity for p_t .

Theorem (Belton, Guillot, K., Putinar, *Adv. Math.* 2016)

Let $M \geq N \geq 1$ be integers, and $c_0, \dots, c_{N-1} \in \mathbb{F}^\times$ be non-zero scalars in any field \mathbb{F} . Define the polynomial

$$p_t(z) := t(c_0 + \dots + c_{N-1}z^{N-1}) - z^M,$$

and the hook partition

$$\mu(M, N, j) := (0, 1, \dots, j-1; \quad j+1, \dots, N-1; \quad M).$$

The following identity holds for all $\mathbf{u}, \mathbf{v} \in \mathbb{F}^N$:

$$\det p_t[\mathbf{u}\mathbf{v}^T] = t^{N-1} V(\mathbf{u}) V(\mathbf{v}) \prod_{j=0}^{N-1} c_j \times \left(t - \sum_{j=0}^{N-1} \frac{s_{\mu(M, N, j)}(\mathbf{u}) s_{\mu(M, N, j)}(\mathbf{v})}{c_j} \right).$$

The negative threshold

Proof of (3) \implies (2).

- If $p_t[\mathbf{u}\mathbf{u}^T] \in \mathbb{P}_N$ for all $\mathbf{u} \in (0, \sqrt{\rho})^N$, and $t, c_0, \dots, c_{N-1} > 0$, then

The negative threshold

Proof of (3) \implies (2).

- If $p_t[\mathbf{u}\mathbf{u}^T] \in \mathbb{P}_N$ for all $\mathbf{u} \in (0, \sqrt{\rho})^N$, and $t, c_0, \dots, c_{N-1} > 0$, then

$$0 \leq \frac{\det p_t[\mathbf{u}\mathbf{u}^T]}{t^{N-1} V(\mathbf{u})^2 c_0 \cdots c_{N-1}} = t - \sum_{j=0}^{N-1} \frac{s_{\mu(M, N, j)}(\mathbf{u})^2}{c_j}.$$

The negative threshold

Proof of (3) \implies (2).

- If $p_t[\mathbf{u}\mathbf{u}^T] \in \mathbb{P}_N$ for all $\mathbf{u} \in (0, \sqrt{\rho})^N$, and $t, c_0, \dots, c_{N-1} > 0$, then

$$0 \leq \frac{\det p_t[\mathbf{u}\mathbf{u}^T]}{t^{N-1} V(\mathbf{u})^2 c_0 \cdots c_{N-1}} = t - \sum_{j=0}^{N-1} \frac{s_{\mu(M, N, j)}(\mathbf{u})^2}{c_j}.$$

- Every Schur polynomial is a *sum* of monomials. So, $s_{\mu(M, N, j)}(\mathbf{u})$ is maximized on $[0, \sqrt{\rho}]^N$ at $\mathbf{u} = (\sqrt{\rho}, \dots, \sqrt{\rho})^T$, whence

The negative threshold

Proof of (3) \implies (2).

- If $p_t[\mathbf{u}\mathbf{u}^T] \in \mathbb{P}_N$ for all $\mathbf{u} \in (0, \sqrt{\rho})^N$, and $t, c_0, \dots, c_{N-1} > 0$, then

$$0 \leq \frac{\det p_t[\mathbf{u}\mathbf{u}^T]}{t^{N-1} V(\mathbf{u})^2 c_0 \cdots c_{N-1}} = t - \sum_{j=0}^{N-1} \frac{s_{\mu(M, N, j)}(\mathbf{u})^2}{c_j}.$$

- Every Schur polynomial is a *sum* of monomials. So,

$s_{\mu(M, N, j)}(\mathbf{u})$ is maximized on $[0, \sqrt{\rho}]^N$ at $\mathbf{u} = (\sqrt{\rho}, \dots, \sqrt{\rho})^T$, whence

$$t \geq \sum_{j=0}^{N-1} \frac{s_{\mu(M, N, j)}(\sqrt{\rho}, \dots, \sqrt{\rho})^2}{c_j} = \sum_{j=0}^{N-1} \binom{M}{j}^2 \binom{M-j-1}{N-j-1}^2 \frac{\rho^{M-j}}{c_j},$$

and this is precisely $\mathcal{K}_{\rho, M}$ by the Weyl Dimension Formula. □

Outstanding questions: 1. More general polynomials

Analogue of Loewner's necessary condition implies:

Suppose $c_0, c_2, c_3 \neq 0$ are real, $M \geq 4$, and

$$c_0 + c_2 x^2 + c_3 x^3 + c_M x^M$$

entrywise preserves positivity on 3×3 correlation matrices.

Then $c_0, c_2, c_3 > 0$.

Outstanding questions: 1. More general polynomials

Analogue of Loewner's necessary condition implies:

Suppose $c_0, c_2, c_3 \neq 0$ are real, $M \geq 4$, and

$$c_0 + c_2 x^2 + c_3 x^3 + c_M x^M$$

entrywise preserves positivity on 3×3 correlation matrices.

Then $c_0, c_2, c_3 > 0$. **Can c_M be negative? (Not known.)**

Outstanding questions: 1. More general polynomials

Analogue of Loewner's necessary condition implies:

Suppose $c_0, c_2, c_3 \neq 0$ are real, $M \geq 4$, and

$$c_0 + c_2 x^2 + c_3 x^3 + c_M x^M$$

entrywise preserves positivity on 3×3 correlation matrices.

Then $c_0, c_2, c_3 > 0$. **Can c_M be negative? (Not known.)**

General case:

Fix integers $N \geq 3$ and $0 \leq n_0 < \dots < n_{N-1} < M$, not all n_j consecutive.

Outstanding questions: 1. More general polynomials

Analogue of Loewner's necessary condition implies:

Suppose $c_0, c_2, c_3 \neq 0$ are real, $M \geq 4$, and

$$c_0 + c_2 x^2 + c_3 x^3 + c_M x^M$$

entrywise preserves positivity on 3×3 correlation matrices.

Then $c_0, c_2, c_3 > 0$. **Can c_M be negative? (Not known.)**

General case:

Fix integers $N \geq 3$ and $0 \leq n_0 < \dots < n_{N-1} < M$, not all n_j consecutive.

Also fix real scalars $\rho > 0$ and $c_{n_0}, \dots, c_{n_{N-1}} \neq 0$. Suppose

$$f(x) = \sum_{j=0}^{N-1} c_{n_j} x^{n_j} + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_N((0, \rho))$. Then $c_{n_j} > 0$ for all j .

Outstanding questions: 1. More general polynomials

Analogue of Loewner's necessary condition implies:

Suppose $c_0, c_2, c_3 \neq 0$ are real, $M \geq 4$, and

$$c_0 + c_2 x^2 + c_3 x^3 + c_M x^M$$

entrywise preserves positivity on 3×3 correlation matrices.

Then $c_0, c_2, c_3 > 0$. **Can c_M be negative? (Not known.)**

General case:

Fix integers $N \geq 3$ and $0 \leq n_0 < \dots < n_{N-1} < M$, not all n_j consecutive.

Also fix real scalars $\rho > 0$ and $c_{n_0}, \dots, c_{n_{N-1}} \neq 0$. Suppose

$$f(x) = \sum_{j=0}^{N-1} c_{n_j} x^{n_j} + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_N((0, \rho))$. Then $c_{n_j} > 0$ for all j .

Can c_M be negative? How about a sharp bound, as above?

(More generally, which coefficients in a polynomial preserver can be negative?)

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies:

Suppose $c_0, c_e, c_\pi \neq 0$ are real, $M \in (\pi, \infty)$, and

$$c_0 + c_e x^e + c_\pi x^\pi + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_3((0, \rho))$.

Then $c_0, c_e, c_\pi > 0$.

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies:

Suppose $c_0, c_e, c_\pi \neq 0$ are real, $M \in (\pi, \infty)$, and

$$c_0 + c_e x^e + c_\pi x^\pi + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_3((0, \rho))$.

Then $c_0, c_e, c_\pi > 0$. **Can c_M be negative? (Not known.)**

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies:

Suppose $c_0, c_e, c_\pi \neq 0$ are real, $M \in (\pi, \infty)$, and

$$c_0 + c_e x^e + c_\pi x^\pi + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_3((0, \rho))$.

Then $c_0, c_e, c_\pi > 0$. **Can c_M be negative? (Not known.)**

General case:

Fix an integer $N \geq 3$ and *real powers* $0 \leq n_0 < \dots < n_{N-1} < M$.

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies:

Suppose $c_0, c_e, c_\pi \neq 0$ are real, $M \in (\pi, \infty)$, and

$$c_0 + c_e x^e + c_\pi x^\pi + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_3((0, \rho))$.

Then $c_0, c_e, c_\pi > 0$. **Can c_M be negative? (Not known.)**

General case:

Fix an integer $N \geq 3$ and *real powers* $0 \leq n_0 < \dots < n_{N-1} < M$.

Also fix positive real scalars $\rho, c_{n_0}, \dots, c_{n_{N-1}} > 0$. Suppose

$$f(x) = \sum_{j=0}^{N-1} c_{n_j} x^{n_j} + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_N((0, \rho))$. Then $c_{n_j} > 0$ for all j .

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies:

Suppose $c_0, c_e, c_\pi \neq 0$ are real, $M \in (\pi, \infty)$, and

$$c_0 + c_e x^e + c_\pi x^\pi + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_3((0, \rho))$.

Then $c_0, c_e, c_\pi > 0$. **Can c_M be negative? (Not known.)**

General case:

Fix an integer $N \geq 3$ and *real powers* $0 \leq n_0 < \dots < n_{N-1} < M$.

Also fix positive real scalars $\rho, c_{n_0}, \dots, c_{n_{N-1}} > 0$. Suppose

$$f(x) = \sum_{j=0}^{N-1} c_{n_j} x^{n_j} + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_N((0, \rho))$. Then $c_{n_j} > 0$ for all j .

Can c_M be negative? How about a sharp bound, as above?

(More generally, which coefficients in such a preserver can be negative?)

Outstanding questions: 3. Unbounded domains

Consequence of Loewner's necessary condition:

Let $N \in \mathbb{N}$ and $c_0, \dots, c_{2N} \neq 0$. Suppose

$$f(x) = \sum_{j=0}^{N-1} c_j x^j + c_N x^N + \sum_{j=N+1}^{2N} c_j x^j$$

entrywise preserves positivity on $\mathbb{P}_N((0, \infty))$. Then:

- By considering $f(x)$, we obtain $c_0, \dots, c_{N-1} > 0$.
- By considering $f(1/x)x^{2N}$, we obtain: $c_{N+1}, \dots, c_{2N} > 0$.

Outstanding questions: 3. Unbounded domains

Consequence of Loewner's necessary condition:

Let $N \in \mathbb{N}$ and $c_0, \dots, c_{2N} \neq 0$. Suppose

$$f(x) = \sum_{j=0}^{N-1} c_j x^j + c_N x^N + \sum_{j=N+1}^{2N} c_j x^j$$

entrywise preserves positivity on $\mathbb{P}_N((0, \infty))$. Then:

- By considering $f(x)$, we obtain $c_0, \dots, c_{N-1} > 0$.
- By considering $f(1/x)x^{2N}$, we obtain: $c_{N+1}, \dots, c_{2N} > 0$.

Can c_N be negative?

(More generally, which coefficients in a polynomial preserver can be negative?)

Outstanding questions: 3. Unbounded domains

Consequence of Loewner's necessary condition:

Let $N \in \mathbb{N}$ and $c_0, \dots, c_{2N} \neq 0$. Suppose

$$f(x) = \sum_{j=0}^{N-1} c_j x^j + c_N x^N + \sum_{j=N+1}^{2N} c_j x^j$$

entrywise preserves positivity on $\mathbb{P}_N((0, \infty))$. Then:

- By considering $f(x)$, we obtain $c_0, \dots, c_{N-1} > 0$.
- By considering $f(1/x)x^{2N}$, we obtain: $c_{N+1}, \dots, c_{2N} > 0$.

Can c_N be negative?

(More generally, which coefficients in a polynomial preserver can be negative?)

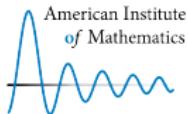
- The same question, for sums of real powers.

Selected publications

A. Belton, D. Guillot, A. Khare, and M. Putinar:

- [1] *Matrix positivity preservers in fixed dimension. I*, Advances in Math., 2016.
- [2] *Moment-sequence transforms*, J. Eur. Math. Soc., accepted.
- [3] *A panorama of positivity* (survey), Shimorin volume + Ransford-60 proc.

- [4] *On the sign patterns of entrywise positivity preservers in fixed dimension*,
(With T. Tao) Amer. J. Math., in press.
- [5] *Matrix analysis and preservers of (total) positivity*, 2020+,
Lecture notes (website); forthcoming book – Cambridge Press + TRIM.



International Linear
Algebra Society

