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Classical origins and modern motivations Schoenberg and Rudin’s theorems
One classical and two modern connections

Introduction

Definition. A real symmetric matrix Anx N is positive semidefinite if all
eigenvalues of A are > 0. (Equivalently, u” Au > 0 for all u € RY.)

Positivity (and preserving it) studied in many settings in the literature.
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eigenvalues of A are > 0. (Equivalently, u” Au > 0 for all u € RY.)

Positivity (and preserving it) studied in many settings in the literature.

Different flavors of positivity:

Positive semidefinite matrices (correlation and covariance matrices)
Positive definite sequences/Toeplitz matrices (measures on S')
Moment sequences/Hankel matrices (measures on R)

Totally positive matrices and kernels (Pélya frequency
functions/sequences)

Hilbert space kernels

Positive definite functions on metric spaces, topological (semi)groups
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Introduction

Definition. A real symmetric matrix Anx N is positive semidefinite if all
eigenvalues of A are > 0. (Equivalently, u” Au > 0 for all u € RY.)

Positivity (and preserving it) studied in many settings in the literature.

Different flavors of positivity:
@ Positive semidefinite matrices (correlation and covariance matrices)
@ Positive definite sequences/Toeplitz matrices (measures on S')
@ Moment sequences/Hankel matrices (measures on R)

@ Totally positive matrices and kernels (Pélya frequency
functions/sequences)

@ Hilbert space kernels

@ Positive definite functions on metric spaces, topological (semi)groups

Question: Classify the positivity preservers in these settings.

Studied for the better part of a century.
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Classical origins and modern motivations Schoenberg and Rudin’s theorems
One classical and two modern connections

Entrywise functions preserving positivity

Given N > 1 and I C R, let Py (I) denote the N x N positive semidefinite
matrices, with entries in I. (Say Py = Pn(R).)

Problem: Given a function f : I — R, when is it true that
f[A] = (f(au)) € Py forall A e IP’N(I)?
(Long history!)
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Apoorva Khare, 11ISc Bangalore 3/27



Classical origins and modern motivations Schoenberg and Rudin’s theorems
One classical and two modern connections

Entrywise functions preserving positivity

Given N > 1 and I C R, let Py (I) denote the N x N positive semidefinite
matrices, with entries in I. (Say Py = Pn(R).)
Problem: Given a function f : I — R, when is it true that

f[A] = (f(a”)) € Py forall A e IP’N(I)?

(Long history!) The Hadamard product (or Schur, or entrywise product) of two
matrices is given by: Ao B = (a;;bij).

Schur Product Theorem (Schur, J. Reine Angew. Math. 1911)

If A,B € Py, then Ao B € Py.

Pélya—Szegé: As a consequence,
@ f(z) =2 a3, ..., 2" preserves positivity on Py for all N, k.

o f(x)= 22:0 cra® preserves positivity if ¢ > 0.

Apoorva Khare, 11ISc Bangalore 3/27



Classical origins and modern motivations Schoenberg and Rudin’s theorems
One classical and two modern connections

Entrywise functions preserving positivity

Given N > 1 and I C R, let Py (I) denote the N x N positive semidefinite
matrices, with entries in I. (Say Py = Pn(R).)
Problem: Given a function f : I — R, when is it true that

f[A] = (f(a”)) € Py forall A e IP’N(I)?

(Long history!) The Hadamard product (or Schur, or entrywise product) of two
matrices is given by: Ao B = (a;;bij).

Schur Product Theorem (Schur, J. Reine Angew. Math. 1911)

If A,B € Py, then Ao B € Py.

Pélya—Szegé: As a consequence,
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@ Taking limits: if f(z) = 377, cka” is convergent and cj > 0, then f[—]
preserves positivity.
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Entrywise functions preserving positivity

Given N > 1 and I C R, let Py (I) denote the N x N positive semidefinite
matrices, with entries in I. (Say Py = Pn(R).)
Problem: Given a function f : I — R, when is it true that

f[A] = (f(a”)) € Py forall A e IP’N(I)?

(Long history!) The Hadamard product (or Schur, or entrywise product) of two
matrices is given by: Ao B = (a;;bij).

Schur Product Theorem (Schur, J. Reine Angew. Math. 1911)

If A,B € Py, then Ao B € Py.

Pélya—Szegé: As a consequence,
@ f(z) =2 a3, ..., 2" preserves positivity on Py for all N, k.
o f(x)= 22:0 cra® preserves positivity if ¢ > 0.

@ Taking limits: if f(z) = 377, cka” is convergent and cj > 0, then f[—]
preserves positivity.

@ Anything else?
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Schoenberg's theorem

Question (Polya—Szegd, 1925): Anything else? Remarkably, the answer is no, if
we want to preserve positivity in all dimensions.

Theorem (Schoenberg, Duke Math. J. 1942)
If f:][=1,1] — R is continuous, the following are equivalent:
© f[A] € Py for all A € Pn([—1,1]) and all N.

@ [ is analytic on I and has nonnegative Maclaurin coefficients. In other
words, f(z) = 352, ckx® on [—1,1] with all ¢, > 0.
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Schoenberg's theorem

Question (Polya—Szegd, 1925): Anything else? Remarkably, the answer is no, if
we want to preserve positivity in all dimensions.

Theorem (Schoenberg, Duke Math. J. 1942)

If f:][=1,1] — R is continuous, the following are equivalent:

© f[A] € Py for all A € Pn([—1,1]) and all N.

@ [ is analytic on I and has nonnegative Maclaurin coefficients. In other
words, f(z) = 352, ckx® on [—1,1] with all ¢, > 0.

Schoenberg's theorem is the far harder converse to the result of his advisor

(Schur).

Rudin (a) removed the continuity hypothesis, and (b) greatly reduced the test
set:
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One classical and two modern connections

Toeplitz and Hankel matrices (cont.)

Let 0 < p < oo be a scalar, and set I = (—p, p).

Theorem (Rudin, Duke Math. J. 1959)

Given a function f : I — R, the following are equivalent:
© f[A] €Py forall A€ Py(I) and all N.

@ [[—] preserves positivity on Toeplitz matrices of all sizes and rank < 3.
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Toeplitz and Hankel matrices (cont.)

Let 0 < p < oo be a scalar, and set I = (—p, p).

Theorem (Rudin, Duke Math. J. 1959)

Given a function f : I — R, the following are equivalent:
© f[A] €Py forall A€ Py(I) and all N.

@ [[—] preserves positivity on Toeplitz matrices of all sizes and rank < 3.

© f is analytic on I and has nonnegative Maclaurin coefficients.
In other words, f(z) =372, cka®™ on (—1,1) with all ¢, > 0.

Theorem (Belton—Guillot—K.—Putinar, J. Eur. Math. Soc., accepted)

Given a function f : I — R, the following are equivalent:
© f[A] € Py forall A€ Pn(I) and all N.

@ f[-] preserves positivity on Hankel matrices of all sizes and rank < 3.

© [ is analytic on I and has nonnegative Maclaurin coefficients.
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Classical origins and modern motivations Schoenberg and Rudin’s theorems
One classical and two modern connections

Positive semidefinite kernels

@ These two results greatly weaken the hypotheses of Schoenberg's theorem
— only need to consider positive semidefinite matrices of rank < 3.

@ Note, such matrices are precisely the Gram matrices of vectors in a
3-dimensional Hilbert space. Hence Rudin (essentially) showed:

Let H be a real Hilbert space of dimension > 3. If f[—] preserves
positivity on all Gram matrices in H, then f is a power series on R with
non-negative Maclaurin coefficients.
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Let H be a real Hilbert space of dimension > 3. If f[—] preserves
positivity on all Gram matrices in H, then f is a power series on R with
non-negative Maclaurin coefficients.

@ But such functions are precisely the positive semidefinite kernels on H!

(Results of Pinkus et al.) Such kernels are important in modern day
machine learning, via RKHS.
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Positive semidefinite kernels

@ These two results greatly weaken the hypotheses of Schoenberg's theorem
— only need to consider positive semidefinite matrices of rank < 3.

@ Note, such matrices are precisely the Gram matrices of vectors in a
3-dimensional Hilbert space. Hence Rudin (essentially) showed:

Let H be a real Hilbert space of dimension > 3. If f[—] preserves
positivity on all Gram matrices in H, then f is a power series on R with
non-negative Maclaurin coefficients.

@ But such functions are precisely the positive semidefinite kernels on H!
(Results of Pinkus et al.) Such kernels are important in modern day

machine learning, via RKHS.

@ Thus, Rudin (1959) classified positive semidefinite kernels on R?, which is
relevant in machine learning. (Now also via our parallel ‘Hankel' result.)
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Classical origins and modern motivations Schoenberg and Rudin’s theorems
One classical and two modern connections

Schoenberg's motivations: pos. def. functions on spheres

Schoenberg was interested in embedding metric spaces into Euclidean spheres.

@ Notice that every sphere S"~! — whence the Hilbert sphere S — has a
rotation-invariant distance. Namely, the arc-length along a great circle:

d(z,y) := <(z,y) = arccos(z, y), z,y € ST.
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Schoenberg's motivations: pos. def. functions on spheres

Schoenberg was interested in embedding metric spaces into Euclidean spheres.

@ Notice that every sphere S"~! — whence the Hilbert sphere S — has a
rotation-invariant distance. Namely, the arc-length along a great circle:

d(z,y) := <(z,y) = arccos(z, y), z,y € 8.
@ Applying cos[—] entrywise to any distance matrix on S yields:
cos((d(zs, z5))ijz0] = (i, 25))i5>0,

and this is a Gram matrix, so cos(+) is positive definite on 5.
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Schoenberg's motivations: pos. def. functions on spheres

Schoenberg was interested in embedding metric spaces into Euclidean spheres.

@ Notice that every sphere S"~! — whence the Hilbert sphere S — has a
rotation-invariant distance. Namely, the arc-length along a great circle:

d(z,y) := <(z,y) = arccos(z, y), z,y € 8.
@ Applying cos[—] entrywise to any distance matrix on S yields:
cos((d(zs, z5))ijz0] = (i, 25))i5>0,

and this is a Gram matrix, so cos(+) is positive definite on 5.

Schoenberg then classified all continuous f such that f o cos(:) is p.d.:

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose f : [—1,1] — R is continuous, and r > 2. Then f(cos-)
is positive defmlte on the unit sphere S™=Y C R" if and only if

ZakC( 2 ) for some ay > 0,

where C,(CA)(J are the u/traspherlca/ / Gegenbauer / Chebyshev polynomials.
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Schoenberg and Rudin’s theorems
One classical and two modern connections

Classical origins and modern motivations

From spheres to correlation matrices

@ Any Gram matrix of vectors z; € S™"' is the same as
a rank < r correlation matrix A = (as;); -1, i.e.,
VA |

N _
1 ® f“lT
1 _ 2 o x X X n
A= . 1 = : |1 |2 |” = ((zi, 25))ij=1-
1 -

8 /27
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From spheres to correlation matrices

@ Any Gram matrix of vectors z; € S™"' is the same as
a rank < r correlation matrix A = (as;); -1, i.e.,

T
"o « — o/ |
1 _ 2 o x X X n
A= . 1 = : |1 |2 |” = ((zi, 5))ij=1-
1 I
@ So,

f(cos ) positive definite on ST — (f(cosd(wi,z5)))ij=1 € Pn
= (f((zi,25)))i=1 € Pn
<

(f(al])):szl € Pn Vn > 17
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From spheres to correlation matrices

@ Any Gram matrix of vectors z; € S™"' is the same as
a rank < r correlation matrix A = (as;); -1, i.e.,

T
"o « — o/ |
1 - o x X X n
4= £« 1 B : |1 |2 |n = (26, 25))5=1-
1 -

@ So,

f(cos-) positive definite on "' = (f(cosd(i, z))7 =1 € Py
= (f((zi,25)))i=1 € Pn
= (flaiy))ij=1 €Pn Y >1,

i.e., f preserves positivity on correlation matrices of rank < r.
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From spheres to correlation matrices

@ Any Gram matrix of vectors z; € S™"' is the same as
a rank < r correlation matrix A = (as;); -1, i.e.,

T
y 1 % N | |
1 o 2 _ x xr T n
A= x« 1 = : |1 |2 |” = (w5, 7;5))ij=1-
1 -

@ So,
f(cos ) positive definite on ST — (f(cosd(wi,z5)))ij=1 € Pn
= (f((&i,25)))i =1 € Pn
= (f(aij))ij=1 €Pr Yn =1,
i.e., f preserves positivity on correlation matrices of rank < r.

@ If instead r = oo, such a result would classify the entrywise positivity
preservers on all correlation matrices.
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From spheres to correlation matrices

@ Any Gram matrix of vectors z; € S™"' is the same as
a rank < r correlation matrix A = (as;); -1, i.e.,

T
"o « — o/ |
1 — @ —
A= 1 - : B ol = (@i, 25)i=1
* : | |
1 I
@ So,

f(cos-) positive definite on "' = (f(cosd(i, z))7 =1 € Py
= (f(zi,25)))ij=1 €EPn
= (flaiy))ij=1 €Pn Y >1,

i.e., f preserves positivity on correlation matrices of rank < r.

@ If instead r = oo, such a result would classify the entrywise positivity
preservers on all correlation matrices. Interestingly, 70 years later the
subject has acquired renewed interest because of its immediate impact in
high-dimensional covariance estimation, in several applied fields.
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Classical origins and modern motivations Schoenberg and Rudin’s theorems
One classical and two modern connections

Schoenberg's theorem on positivity preservers

And indeed, Schoenberg did make the leap from S"™"* to S>:

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose f : [—1,1] — R is continuous. Then f(cos-) is positive definite on the
Hilbert sphere S C R* = £? if and only if

(cos ) Z Ck COS 0

k>0

where ci, > 0 Vk are such that }, cx < oo.
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Suppose f : [—1,1] — R is continuous. Then f(cos-) is positive definite on the
Hilbert sphere S C R* = £? if and only if

(cos ) Z Ck COS 0

k>0

where ci, > 0 Vk are such that }, cx < oo.

(By the Schur product theorem, cos” @ is positive definite on S>.)

Freeing this result from the sphere context, one obtains Schoenberg's theorem
on entrywise positivity preservers.
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And indeed, Schoenberg did make the leap from S"™"* to S>:

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose f : [—1,1] — R is continuous. Then f(cos-) is positive definite on the
Hilbert sphere S C R* = £? if and only if

(cos ) Z Ck COS 0

k>0

where ci, > 0 Vk are such that }, cx < oo.

(By the Schur product theorem, cos” @ is positive definite on S>.)

Freeing this result from the sphere context, one obtains Schoenberg's theorem
on entrywise positivity preservers.

For more information: A panorama of positivity — arXiv, Dec. 2018.
(Survey, 80+ pp., by A. Belton, D. Guillot, A.K., and M. Putinar.)
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Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention,
owing to the statistics of big data.
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Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention,
owing to the statistics of big data.

@ Major challenge in science: detect structure in vast amount of data.

@ Covariance/correlation is a fundamental measure of dependence between
random variables:
%= (04)7

i,7=1°

045 = COV(Xi,Xj) = E[XZX]] - E[XZ]E[XJ]
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Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention,
owing to the statistics of big data.

@ Major challenge in science: detect structure in vast amount of data.

@ Covariance/correlation is a fundamental measure of dependence between
random variables:

Y= (0ij)7 j=1»  0ij = Cov(X;, Xj) = E[X; X;] — E[XG]E[X;].
@ Important question: Estimate X from data z1,...,z, € R?.
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Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention,
owing to the statistics of big data.

@ Major challenge in science: detect structure in vast amount of data.

@ Covariance/correlation is a fundamental measure of dependence between
random variables:

Y= (0i)7 j=1» ai; = Cov(Xi, Xj) = E[X; X;] — E[XG]E[X;].
@ Important question: Estimate X from data z1,...,z, € R?.

@ In modern-day settings (small samples, ultra-high dimension), covariance
estimation can be very challenging.
@ Classical estimators (e.g. sample covariance matrix (MLE)):
n
S== (x;—7)(z; —7)"

n<
Jj=1

perform poorly, are singular/ill-conditioned, etc.
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Modern motivation: covariance estimation

Schoenberg's result has recently attracted renewed attention,
owing to the statistics of big data.

@ Major challenge in science: detect structure in vast amount of data.
@ Covariance/correlation is a fundamental measure of dependence between
random variables:
Y= (0i)7 j=1» 0i; = Cov(Xi, X;) = E[X: X;] — E[XG]E[X]].
@ Important question: Estimate X from data z1,...,z, € R?.

@ In modern-day settings (small samples, ultra-high dimension), covariance

estimation can be very challenging.
Classical estimators (e.g. sample covariance matrix (MLE)):
1 _ 7
S==> (x; —7)(x; — @)

n <
j=1

perform poorly, are singular/ill-conditioned, etc.

Require some form of regularization — and resulting matrix has to be
positive semidefinite (in the parameter space) for applications.
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Classical origins and modern motivations Schoenberg and Rudin’s theorems
One classical and two modern connections

Motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics.
Let X1,..., X, be a collection of random variables.
@ Very large vectors: rare that all X; depend strongly on each other.

@ Many variables are (conditionally) independent; not used in prediction.
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@ Many variables are (conditionally) independent; not used in prediction.

@ Leverage the independence/conditional independence structure to reduce
dimension — translates to zeros in covariance/inverse covariance matrix.
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Motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics.
Let X1,..., X, be a collection of random variables.
@ Very large vectors: rare that all X; depend strongly on each other.
@ Many variables are (conditionally) independent; not used in prediction.

@ Leverage the independence/conditional independence structure to reduce
dimension — translates to zeros in covariance/inverse covariance matrix.

@ Modern approach: Compressed sensing methods (Daubechies, Donoho,
Candes, Tao, ...) use convex optimization to obtain a sparse estimate of
¥ (e.g., £'-penalized likelihood methods).

@ State-of-the-art for ~ 20 years.
Works well for dimensions of a few thousands.
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Motivation from high-dimensional statistics

Graphical models: Connections between statistics and combinatorics.
Let X1,..., X, be a collection of random variables.
@ Very large vectors: rare that all X; depend strongly on each other.
@ Many variables are (conditionally) independent; not used in prediction.

@ Leverage the independence/conditional independence structure to reduce
dimension — translates to zeros in covariance/inverse covariance matrix.

@ Modern approach: Compressed sensing methods (Daubechies, Donoho,
Candes, Tao, ...) use convex optimization to obtain a sparse estimate of
¥ (e.g., £'-penalized likelihood methods).

@ State-of-the-art for ~ 20 years.
Works well for dimensions of a few thousands.

@ Not scalable to modern-day problems with 100,000+ variables (disease
detection, climate sciences, finance. .. ).
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Classical origins and modern motivations Schoenberg and Rudin’s theorems
One classical and two modern connections

Thresholding and regularization

Thresholding covariance/correlation matrices

1 02 0 0.95 0.18 0.02
True¥X =102 1 05|, S=10.18 0.96 047
0 05 1 0.02 047 0.98
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Thresholding and regularization

Thresholding covariance/correlation matrices

1 02 0 0.95 0.18 0.02
True¥X =102 1 05|, S=10.18 0.96 047
0 05 1 0.02 047 0.98

Natural to threshold small entries (thinking the variables are independent):

~ 095 018 O
S=10.18 0.96 0.47
0 047 0.98
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One classical and two modern connections

Thresholding and regularization

Thresholding covariance/correlation matrices

1 02 0 0.95 0.18 0.02
True¥X =102 1 05|, S=10.18 0.96 047
0 05 1 0.02 047 0.98

Natural to threshold small entries (thinking the variables are independent):

~ 095 018 O
S=10.18 0.96 0.47
0 047 0.98

Can be significant if p = 100,000 and only, say, ~ 1% of the entries of the true
3} are nonzero.
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Classical origins and modern motivations Schoenberg and Rudin’s theorems
One classical and two modern connections

Entrywise functions — regularization

More generally, we could apply a function f : R — R to the elements of the
matrix S — regularization:

) f(UlN)
floa1)  flo2e) ... floan)

Fow) flons) .. Flown)

(Example on previous slide is fc(x) = x - 13> for some € > 0.)

@ Highly scalable. Analysis on the cone — no optimization.

@ Regularized matrix f[S] further used in applications, where (estimates of)
¥ required in procedures such as PCA, CCA, MANOVA, etc.

@ Question: When does this procedure preserve positive (semi)definiteness?
Critical for applications since ¥ € Py.

Problem: For what functions f : R — R, does f[—] preserve Px?
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Preserving positivity in fixed dimension

Schoenberg's result characterizes functions preserving positivity for matrices of
all dimensions: f[A] € Py for all A € Py and all N.
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Preserving positivity in fixed dimension

Schoenberg's result characterizes functions preserving positivity for matrices of
all dimensions: f[A] € Py for all A € Py and all N.

Similar/related problems studied by many others, including:
@ Bharali, Bhatia, Christensen, FitzGerald, Helson, Hiai, Holtz,
@ Horn, Jain, Kahane, Karlin, Katznelson, Loewner, Menegatto,

@ Micchelli, Pinkus, Pélya, Ressel, Vasudeva, Willoughby, . ..

Preserving positivity for fixed N:

@ Natural refinement of original problem of Schoenberg.

@ In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

@ Known for N = 2 (Vasudeva, IJPAM 1979):

f is nondecreasing and f(x)f(y) > f(/zy)* on (0, 00).
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Preserving positivity in fixed dimension

Schoenberg's result characterizes functions preserving positivity for matrices of
all dimensions: f[A] € Py for all A € Py and all N.
Similar/related problems studied by many others, including:

@ Bharali, Bhatia, Christensen, FitzGerald, Helson, Hiai, Holtz,

@ Horn, Jain, Kahane, Karlin, Katznelson, Loewner, Menegatto,

@ Micchelli, Pinkus, Pélya, Ressel, Vasudeva, Willoughby, . ..

Preserving positivity for fixed N:

@ Natural refinement of original problem of Schoenberg.

@ In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.
@ Known for N = 2 (Vasudeva, IJPAM 1979):
f is nondecreasing and f(x)f(y) > f(/zy)* on (0, 00).
@ Open for N > 3.
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Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, preserving positivity
on Px with N > 3. (Was not known since Schoenberg's Duke 1942 paper.)

Fixed N > 3 and general f ~~ only known necessary condition, by Loewner:

Theorem (Horn—Loewner, Guillot-K.—Rajaratnam, Trans. AMS 1969, 2017)

Fix I = (0,00) and f : I — R. Suppose f[A] € Py for all A € Pn(I) Hankel
of rank < 2, with N fixed.
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Fixed N > 3 and general f ~~ only known necessary condition, by Loewner:

Theorem (Horn—Loewner, Guillot-K.—Rajaratnam, Trans. AMS 1969, 2017)

Fix I = (0,00) and f : I — R. Suppose f[A] € Py for all A € Pn(I) Hankel
of rank < 2, with N fixed. Then f € CN=3(I) and
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Preserving positivity in fixed dimension

Question: Find a power series with a negative coefficient, preserving positivity
on Px with N > 3. (Was not known since Schoenberg's Duke 1942 paper.)

Fixed N > 3 and general f ~~ only known necessary condition, by Loewner:

Theorem (Horn—Loewner, Guillot-K.—Rajaratnam, Trans. AMS 1969, 2017)

Fix I = (0,00) and f : I — R. Suppose f[A] € Py for all A € Pn(I) Hankel
of rank < 2, with N fixed. Then f € CN=3(I) and

f7f/7f//7"' >f(N_3) =20onl.

If f € CN=Y(I) then fN=2) fN=1 > (g onI.

@ Implies Schoenberg—Rudin result for matrices with positive entries.

@ Loewner had initially summarized these computations in a letter to
Josephine Mitchell (Penn. State University) on October 24, 1967:
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Entrywise polynomial preservers in fixed dimension

Consequence: Suppose co, c1,c2 7 0 are real, M > 3, and

2 M
co +cx + c2x” +cpux

entrywise preserves positivity on 3 x 3 correlation matrices.
Then co,c1,c2 > 0.

Apoorva Khare, 1ISc Bangalore 17 / 27



General and polynomial preservers
Polynomial preservers in fixed dimension The main result + proof, via Schur polynomials

Entrywise polynomial preservers in fixed dimension

Consequence: Suppose co, c1,c2 7 0 are real, M > 3, and

2 M
co +cx + c2x” +cpux

entrywise preserves positivity on 3 x 3 correlation matrices.
Then cg, c1,¢2 > 0. Can cy be negative? (Not known.)

Apoorva Khare, 1ISc Bangalore 17 / 27



General and polynomial preservers
Polynomial preservers in fixed dimension The main result + proof, via Schur polynomials

Entrywise polynomial preservers in fixed dimension

Consequence: Suppose co, c1,c2 7 0 are real, M > 3, and

2 M
co +cx + c2x” +cpux

entrywise preserves positivity on 3 x 3 correlation matrices.
Then cg, c1,¢2 > 0. Can cy be negative? (Not known.)

General case:
N-1 _

Let M > N € Nand co,...,cn—1 # 0. Suppose f(z) = Z cjr’ + earx™
j=0

preserves positivity on Px((0, p)). Then co,...,cn—1 > 0. Can cpr < 0?

Apoorva Khare, 1ISc Bangalore 17 / 27



General and polynomial preservers
Polynomial preservers in fixed dimension The main result + proof, via Schur polynomials

Entrywise polynomial preservers in fixed dimension

Consequence: Suppose co, c1,c2 7 0 are real, M > 3, and

2 M
co +cx + c2x” +cpux

entrywise preserves positivity on 3 x 3 correlation matrices.
Then cg, c1,¢2 > 0. Can cy be negative? (Not known.)

General case:
N-1 _

Let M > N € Nand co,...,cn—1 # 0. Suppose f(z) = Z cjr’ + earx™
j=0

preserves positivity on Px((0, p)). Then co,...,cn—1 > 0. Can cpr < 0?
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Entrywise polynomial preservers in fixed dimension

Consequence: Suppose co, c1,c2 7 0 are real, M > 3, and

2 M
co +cx + c2x” +cpux

entrywise preserves positivity on 3 x 3 correlation matrices.
Then cg, c1,¢2 > 0. Can cy be negative? (Not known.)

General case:
N-1 _

Let M > N € Nand co,...,cn—1 # 0. Suppose f(z) = Z cjr’ + earx™
j=0

preserves positivity on Px((0, p)). Then co,...,cn—1 > 0. Can cpr < 0?

Reformulation: Multiplying by t = |car| ™, does
N-1
pe(x) =1t Z cjzt — ™
3=0

entrywise preserve positivity on Pn((0, p)) for any ¢ > 0? No example known.
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Main result

Fix integers M > N > 1, and real scalars p > 0 and co,...,cNn—1.
Fort > 0, define p;(z) :=1 Z;.V:Bl c;d — M.
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Main result

Theorem (Belton, Guillot, K., Putinar, Adv. Math. 2016)

Fix integers M > N > 1, and real scalars p > 0 and co, .
Fort > 0, define p;(z) :=1 Z;.V:Bl c;d — M.

oo CRT=1l5

Then the following are equivalent.

@ p:[-] preserves positivity on Pn (D(0, p)).
@ Al coefficients ¢; > 0, and
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Fix integers M > N > 1, and real scalars p > 0 and co, .
Fort > 0, define p;(z) :=1 Z;.V:Bl c;d — M.

oo CRT=1l5

Then the following are equivalent.

@ p:[-] preserves positivity on Pn (D(0, p)).
@ Al coefficients ¢; > 0, and

il 2 ) 2

M M—-—j—1\ p~™’

t 2 KoM= E . ’ .
: .j—0<7> <N_]_1> €

© p:[—] preserves positivity on Hankel rank-one matrices in Pn((0, p)).
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Consequences
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(“The Loewner—Horn theorem is sharp.")
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Consequences

© Quantitative version of Schoenberg's theorem in fixed dimension:
first examples of polynomials that work for P but not for Px 1.
(“The Loewner—Horn theorem is sharp.")

@ Complete characterization of polynomials of degree < N, which preserve
positivity on Px.

© Surprisingly, the sharp bound on the negative threshold is obtained on
rank 1 matrices with positive entries.

@ More generally, the theorem provides a characterization of polynomials
pe[—] : Pn(K) — Py for any
(0,p) C K C D(0, p).

@ Corollary: By the Schur product theorem, functions of the form
t(cox? + c3x® + caz?) — 2™ can be preservers on P3((0, p)) for ¢; > 0,
M >4, and large t > 0.
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Sketch of the proof

Theorem (Belton, Guillot, K., Putinar, 2016)

Let M > N > 1 and p,t, co,...,cn—1 > 0. If pi(2) ::tzj<chzj — zM TFAE:

@ p:[-] preserves positivity on Px (D(0, p)).
Q t>K,um.
© pi[-] preserves positivity on Hankel rank one matrices in P ((0, p)).
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@ p:[-] preserves positivity on Px (D(0, p)).
Q t>K,um.
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(1) = (3): Immediate.

(3) = (2): How does the constant K, 1s appear from rank-one matrices?

Apoorva Khare, 11ISc Bangalore 20 / 27



General and polynomial preservers
Polynomial preservers in fixed dimension The main result + proof, via Schur polynomials

Sketch of the proof

Theorem (Belton, Guillot, K., Putinar, 2016)

Let M > N > 1 and p,t, co,...,cn—1 > 0. If pi(2) ::tzj<chzj — zM TFAE:

@ p:[] preserves positivity on P (D(0, p)).
Q t>K,um.
© pi[-] preserves positivity on Hankel rank one matrices in P ((0, p)).

(1) = (3): Immediate.
(3) = (2): How does the constant K, 1s appear from rank-one matrices?
Study the determinants of linear pencils

det p;[A] = det (t(coleN + A+ Foen 1 ATTYY — AOM)

for rank-one matrices A = uv’.
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Schur polynomials

Given an increasing N-tuple of integers 0 < no < --- < ny-_1,
the corresponding Schur polynomial over a field F is the unique polynomial

extension to FV of

sn(u un) = det(u?jfl)g\’szl _ det(u?jfl)g\&:1
T el ) V)

for pairwise distinct u; € F.

Apoorva Khare, 1ISc Bangalore 21 /27



General and polynomial preservers
Polynomial preservers in fixed dimension The main result + proof, via Schur polynomials
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Given an increasing N-tuple of integers 0 < no < --- < ny-_1,
the corresponding Schur polynomial over a field F is the unique polynomial
extension to FV of

sn(u un) = det(u?jfl)g\’szl _ det(u?jfl)g\&:1
T el ) V)

for pairwise distinct u; € F. Note that the denominator is precisely the
Vandermonde determinant
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the corresponding Schur polynomial over a field F is the unique polynomial
extension to FV of

sn(u un) = det(u?jfl)g\’szl _ det(u?jfl)g\&:1
T el ) V)

for pairwise distinct u; € F. Note that the denominator is precisely the
Vandermonde determinant

V((ur,...,un)) i=det(u! )= J[ (u;—w).

1<i<j<N
@ Basis of homogeneous symmetric polynomials in u1,...,un.

@ Characters of irreducible polynomial representations of GLx(C),
usually defined in terms of semi-standard Young tableaux.
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Schur polynomials

Given an increasing N-tuple of integers 0 < no < --- < ny-_1,
the corresponding Schur polynomial over a field F is the unique polynomial
extension to FV of

sn(u un) = det(u?jfl)g\’szl _ det(u?jfl)g\&:1
T el ) V)

for pairwise distinct u; € F. Note that the denominator is precisely the
Vandermonde determinant

V((ur,...,un)) i=det(u! )= J[ (u;—w).

1<i<j<N
@ Basis of homogeneous symmetric polynomials in u1,...,un.

@ Characters of irreducible polynomial representations of GLx(C),
usually defined in terms of semi-standard Young tableaux.

@ Weyl Character (Dimension) Formula in Type A:

B ng —n; V(n)
sn(l,...,1) = H j—i  V((0,1,...,N—1))
1<i<j<N
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Sketch of the proof of the main result (cont.)

Technical heart of the proof: Jacobi—-Trudi type identity for p;.
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Polynomial preservers in fixed dimension

Sketch of the proof of the main result (cont.)

Technical heart of the proof: Jacobi—-Trudi type identity for p;.

Theorem (Belton, Guillot, K., Putinar, Adv. Math. 2016)

Let M > N > 1 be integers, and cy, ...,cn—1 € F* be non-zero scalars in any
field F. Define the polynomial

pe(z) :=t(co+ - +en_12) 1) —2M,
and the hook partition
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Sketch of the proof of the main result (cont.)

Technical heart of the proof: Jacobi—-Trudi type identity for p;.

Theorem (Belton, Guillot, K., Putinar, Adv. Math. 2016)

Let M > N > 1 be integers, and cy, ...,cn—1 € F* be non-zero scalars in any
field F. Define the polynomial
pe(z) :=t(co+ - +en_12) 1) —2M,
and the hook partition
w(M,N,j):=(0,1,...,5—1; j+1,...,N—1; M).

The following identity holds for all u,v € FY :

det p;[uv’] =
1Y )V ( )lﬁl e Nz_:l Su(,N ) (W), N,5) (V)
u \4 Cj ( — ) )
=0 =0 €
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The negative threshold

Proof of (3) = (2).
@ If p;[uu’] € Py forallue (0,,/p)", and t,co,...,cn—1 > 0, then
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Proof of (3) = (2).
@ If p;[uu’] € Py forallue (0,,/p)", and t,co,...,cn—1 > 0, then

2

det p;[uu’] su(.N ) (0)?
tN_1V(u)260~'~CN_1 - Cj ’

<
Il
o

@ Every Schur polynomial is a sum of monomials. So,
Su(m,n,j) (1) is maximized on [0, /p]Y at u = (\/p,...,/p)", whence

Apoorva Khare, 1ISc Bangalore 23 /27



General and polynomial preservers
Polynomial preservers in fixed dimension The main result + proof, via Schur polynomials

The negative threshold

Proof of (3) = (2).
@ If p;[uu’] € Py forallue (0,,/p)", and t,co,...,cn—1 > 0, then

2

det p;[uu’] su(.N ) (0)?
tN_1V(u)260~'~CN_1 - Cj ’

<
Il
o

@ Every Schur polynomial is a sum of monomials. So,
Su(m,n,j) (1) is maximized on [0, /p]Y at u = (\/p,...,/p)", whence

st (VB /B NS (M (=1 pM
£ > Z pMNDWVP - VP) Z : v ] P 7
= Cj J N—-j-1 5

c
j=0 J

and this is precisely C, »s by the Weyl Dimension Formula. O
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QOutstanding questions: 1. More general polynomials

Analogue of Loewner’s necessary condition implies:
Suppose cg, c2,c3 # 0 are real, M > 4, and

2 3 M
co + cox” +c3x” + e

entrywise preserves positivity on 3 x 3 correlation matrices.
Then co,ca,c3 > 0.
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Outstanding questions: 2. Real powers

Analogue of Loewner’s necessary condition implies:
Suppose ¢, Ce, cx # 0 are real, M € (m, 00), and

e e M
Co+ CeX +Crx +CMT

entrywise preserves positivity on P5((0, p)).
Then co, ce,cr > 0.
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QOutstanding questions: 3. Unbounded domains

Consequence of Loewner's necessary condition:

Let N € N and co,...,can # 0. Suppose

Zc]w +cNa: + Z CjT

j=N+1

entrywise preserves positivity on Pn((0,00)). Then:
@ By considering f(x), we obtain co,...,cn—1 > 0.

@ By considering f(l/ac)anN7 we obtain: ¢y41,...,con > 0.
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QOutstanding questions: 3. Unbounded domains

Consequence of Loewner's necessary condition:

Let N € N and co,...,can # 0. Suppose

Zc]w +cNa: + Z CjT

j=N+1

entrywise preserves positivity on Pn((0,00)). Then:
@ By considering f(x), we obtain co,...,cn—1 > 0.

@ By considering f(l/ac)anN7 we obtain: ¢y41,...,con > 0.

Can cy be negative?
(More generally, which coefficients in a polynomial preserver can be negative?)

@ The same question, for sums of real powers.
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