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Reminders; Improved main result Recap
The main result, and the Schur monotonicity lemma

The entrywise calculus

Definitions.
@ A real symmetric matrix Ay« is positive semidefinite if all eigenvalues
of A are > 0. (Equivalently, u” Au > 0 for all u € RY.)

@ Given N > 1 and I CR, let Px(I) denote the N x N positive
semidefinite matrices, with entries in I. (Say Py = Pn(R).)

© A function f: I — R acts entrywise on a matrix A via: f[A] := (f(asj))-
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Schoenberg and Rudin’s theorems

Problem: Given a function f : I — R, when is it true that
f[A] = (f(a”)) € Py forall A € PN(I)?
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Schoenberg and Rudin’s theorems

Problem: Given a function f : I — R, when is it true that
f[A] = (f(a”)) € Py forall A € PN(I)?

@ Polya—Szegd (1925 book) via the Schur product theorem (Crelle 1911):

If f(z) = 352, ckx® is convergent and ci. > 0, then f[—] preserves
positivity on Py in all dimensions.

@ Schoenberg (Duke 1942):

The converse also holds, if f is continuous.
@ Rudin (Duke 1959); resp. Belton—Guillot-K.—Putinar (JEMS, accepted):

The converse holds for any f, and we only need to assume f[—] preserves
positivity on all Toeplitz (resp. Hankel) matrices of rank < 3.
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Positivity preservers in fixed dimension

Preserving positivity for fixed N:
@ Natural refinement of original problem of Schoenberg.

@ In applications: dimension of the problem is known.
Unnecessarily restrictive to preserve positivity in all dimensions.
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Positivity preservers in fixed dimension

Preserving positivity for fixed N:
@ Natural refinement of original problem of Schoenberg.

@ In applications: dimension of the problem is known.
Unnecessarily restrictive to preserve positivity in all dimensions.

@ Known for N = 2 (Vasudeva, I[JPAM 1979). Open for N > 3.

In this talk, we focus on sums of powers }° -, caz® — with a € (0,00) -
acting on Px((0, p)).

Question: Find such a function with a negative coefficient, preserving positivity
on Py for a fixed N > 3.

Apoorva Khare, 1ISc Bangalore 4 /27



Reminders; Improved main result Recap
The main result, and the Schur monotonicity lemma

Positivity preservers in fixed dimension

Preserving positivity for fixed N:
@ Natural refinement of original problem of Schoenberg.

@ In applications: dimension of the problem is known.
Unnecessarily restrictive to preserve positivity in all dimensions.

@ Known for N = 2 (Vasudeva, I[JPAM 1979). Open for N > 3.

In this talk, we focus on sums of powers }° -, caz® — with a € (0,00) -
acting on Px((0, p)).

Question: Find such a function with a negative coefficient, preserving positivity
on Py for a fixed N > 3.

@ Was not known since Schoenberg's Duke 1942 paper.

Apoorva Khare, 1ISc Bangalore 4 /27



Reminders; Improved main result Recap
The main result, and the Schur monotonicity lemma

Positivity preservers in fixed dimension

Preserving positivity for fixed N:
@ Natural refinement of original problem of Schoenberg.

@ In applications: dimension of the problem is known.
Unnecessarily restrictive to preserve positivity in all dimensions.

@ Known for N = 2 (Vasudeva, I[JPAM 1979). Open for N > 3.

In this talk, we focus on sums of powers }° -, caz® — with a € (0,00) -
acting on Px((0, p)).

Question: Find such a function with a negative coefficient, preserving positivity
on Py for a fixed N > 3.
@ Was not known since Schoenberg's Duke 1942 paper.

@ Loewner’s necessary condition / variants: If f is any smooth function
preserving positivity on Pn((0, p)), then the first N nonzero Maclaurin
coefficients of f must be positive. Can the next one be negative?
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Positivity preservers in fixed dimension

Preserving positivity for fixed N:
@ Natural refinement of original problem of Schoenberg.
@ In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

@ Known for N = 2 (Vasudeva, I[JPAM 1979). Open for N > 3.

In this talk, we focus on sums of powers }° -, caz® — with a € (0,00) -
acting on Px((0, p)).

Question: Find such a function with a negative coefficient, preserving positivity
on Py for a fixed N > 3.
@ Was not known since Schoenberg's Duke 1942 paper.

@ Loewner’s necessary condition / variants: If f is any smooth function
preserving positivity on Pn((0, p)), then the first N nonzero Maclaurin
coefficients of f must be positive. Can the next one be negative?

@ Previous talk: Belton—Guillot—K.—Putinar, Adv. Math. 2016:
Yes, if the first N degrees are consecutive.
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QOutstanding questions: 1. More general polynomials

Analogue of Loewner’s necessary condition implies:

Suppose o, ¢2,c3 # 0 are real, M > 4, and ¢ + c22? + c32® + cpra™

entrywise preserves positivity on 3 x 3 correlation matrices.
Then cg, c2,¢c3 > 0. Can ¢y be negative? (Not known.)
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Analogue of Loewner’s necessary condition implies:

Suppose o, ¢2,c3 # 0 are real, M > 4, and ¢ + c22? + c32® + cpra™

entrywise preserves positivity on 3 x 3 correlation matrices.
Then cg, c2,¢c3 > 0. Can ¢y be negative? (Not known.)

General case: Fix integers N > 3 and 0 < no < --- < ny_1 < M, not all n;
consecutive. Also fix real scalars p > 0 and ¢y, ..., cny_, 7 0. Suppose

N-1
flz) = Z anCEnj + CM:EM
j=0

entrywise preserves positivity on Pn((0,p)). Then c,; > 0 Vj.
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QOutstanding questions: 1. More general polynomials

Analogue of Loewner’s necessary condition implies:

Suppose o, ¢2,c3 # 0 are real, M > 4, and ¢ + c22? + c32® + cpra™

entrywise preserves positivity on 3 x 3 correlation matrices.
Then cg, c2,¢c3 > 0. Can ¢y be negative? (Not known.)

General case: Fix integers N > 3 and 0 < no < --- < ny_1 < M, not all n;
consecutive. Also fix real scalars p > 0 and ¢y, ..., cny_, 7 0. Suppose

N-1
f@) =" caa" +cara™
j=0
entrywise preserves positivity on Pn((0,p)). Then c,; > 0Vj. Can car < 07
Reformulation: Multiplying by t = |car| ™, does
N-1
pe(z) =1t Z cnjx"j — M
j=0
entrywise preserve positivity on Pn((0, p)) for any ¢ > 07
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QOutstanding questions: 1. More general polynomials

Analogue of Loewner’s necessary condition implies:

Suppose o, ¢2,c3 # 0 are real, M > 4, and ¢ + c22? + c32® + cpra™

entrywise preserves positivity on 3 x 3 correlation matrices.
Then cg, c2,¢c3 > 0. Can ¢y be negative? (Not known.)

General case: Fix integers N > 3 and 0 < no < --- < ny_1 < M, not all n;
consecutive. Also fix real scalars p > 0 and ¢y, ..., cny_, 7 0. Suppose

N-1
flz) = Z anCEnj + CM:EM
j=0
entrywise preserves positivity on Pn((0, p)). Then ¢n; > 0 V3. Can cy < 07?
Reformulation: Multiplying by t = |car| ™, does
N-1
pe(z) =1t Z cnjx"j — M
3=0
entrywise preserve positivity on P ((0, p)) for any ¢ > 07 No example known.
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Main result (for integer powers)

Theorem (K.—Tao, Amer. J. Math., in press)

Fix integers N > 1 and 0 < no < --- < nny-1 < M and real scalars p > 0 and
Cngs---,Cny_,- Fort >0, define pi(x) —tz 4 an z — M.
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Main result (for integer powers)

Theorem (K.—Tao, Amer. J. Math., in press)
Fix integers N > 1 and 0 < no < --
Cngs---,Cny_,- Fort >0, define pi(z) := tz 4 an
Then the following are equivalent.

© p:[—] preserves positivity on Py ((0, p)).

@ Al coefficients c,,; > 0, and

< ny-1 < M and real scalars p > 0 and

njfo
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Main result (for integer powers)

Theorem (K.—Tao, Amer. J. Math., in press)

Fix integers N > 1 and 0 < no < --- < nny-1 < M and real scalars p > 0 and

Cngs---,Cny_,- Fort >0, define pi(z) := tz 4 an z" — g™,
Then the following are equivalent.
© p:[—] preserves positivity on Py ((0, p)).
@ Al coefficients c,,; > 0, and
M
L2 Komn = V @,
j=0 g
where n := (nog,...,nn—1), the tuples
n;:= (no,...,Nj—1,M;,Nj4+1,---,An-1,M), 0<j<N-—1,

and given a vector u = (u1,...,un), its ‘Vandermonde determinant’ is

V((us,...,un)) i=det(ul ) = [ (u—w).

1<i<G<N
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Main result (for integer powers)

Theorem (K.—Tao, Amer. J. Math., in press)

Fix integers N > 1 and 0 < no < --- < nny-1 < M and real scalars p > 0 and

Cngs---,Cny_,- Fort >0, define pi(z) := tz 4 an z" — g™,
Then the following are equivalent.
© p:[—] preserves positivity on Py ((0, p)).
@ Al coefficients c,,; > 0, and
M
L2 Komn = V @,
j=0 g
where n := (nog,...,nn—1), the tuples
n;:= (no,...,Nj—1,M;,Nj4+1,---,An-1,M), 0<j<N-—1,

and given a vector u = (u1,...,un), its ‘Vandermonde determinant’ is

V((us,...,un)) i=det(ul ) = [ (u—w).

1<i<G<N

© p.[—] preserves positivity on Hankel rank-one matrices in Py ((0, p)).
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Consequences

@ For the ‘initial’, consecutive powers n; = j as in previous talk,

N-1 A 2 } . 2

M M—-—j—1\ p"™/
IC)nzw': . . “ :’C;
=3 () (N2J21) 25 = o
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Consequences

@ For the ‘initial’, consecutive powers n; = j as in previous talk,

N_1 N2/ ) 2 s
M M—j—1\ pM7
K)nzr': . - " :’C)zr%
p,n,M Z(]) <:\—]—1> ¢ p, M

=0

@ Quantitative version of Schoenberg's theorem in fixed dimension:
first examples of polynomials that work for P but not for Py 1.
(“The Loewner-Horn theorem is sharp.”)
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Consequences

@ For the ‘initial’, consecutive powers n; = j as in previous talk,

N_1 N2/ ) 2 s
M M—j—1\ pM7
K)nzr': . - " :’C)zr%
p,n,M Z(]) <:\—]—1> ¢ p, M

=0

@ Quantitative version of Schoenberg's theorem in fixed dimension:
first examples of polynomials that work for P but not for Py 1.
(“The Loewner-Horn theorem is sharp.”)

© Complete characterization of ‘fewnomials’ with at most N + 1 terms,
which preserve positivity on Py .

© Surprisingly, the sharp bound on the negative threshold is obtained on
rank 1 matrices.

Apoorva Khare, 11ISc Bangalore 7 /27



Reminders; Improved main result Recap
The main result, and the Schur monotonicity lemma

Sketch of the proof

Theorem (K.—Tao, in press)
Let N>1and0<ng <:---<nn_1 <M beintegers. If p,t, cny,...,Cny_; >0,
and py(z) ==ty cn; 2™ — xM | TFAE:

@ p:[-] preserves positivity on Pn ((0, p)).

Qt>Kyn -

© pi[] preserves positivity on Hankel rank one matrices in P ((0, p)).
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Theorem (K.—Tao, in press)
Let N>1and0<ng <:---<nn_1 <M beintegers. If p,t, cn), -
and py(z) ==ty cn; 2™ — xM | TFAE:

@ p:[-] preserves positivity on Pn ((0, p)).

e t> ]C/Ln,z\l-
© pi[] preserves positivity on Hankel rank one matrices in P ((0, p)).

csCnyn_q >0,

(1) = (3): Immediate.
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Sketch of the proof

Theorem (K.—Tao, in press)
Let N >1and0<ng <:---<nny_1 <M beintegers. If p,t, cng, ..
and py(z) ==ty cn; 2™ — xM | TFAE:

@ p:[-] preserves positivity on Pn ((0, p)).

e t> ]Cp?n,z\l-
© pi[] preserves positivity on Hankel rank one matrices in P ((0, p)).

s Cnpy_q >0,

(1) = (3): Immediate.
(3) = (2): How does the constant K, 1 appear from rank-one matrices?
Study the determinants of linear pencils

det p:[A] = det (t(cnoAO"O +o ey ATV — AOM)

for rank-one matrices A = uv’.
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Schur polynomials

Given an increasing N-tuple of integers 0 < no < --- < ny-_1,
the corresponding Schur polynomial over a field F is the unique polynomial
extension to FV of

sn(u un) = det(u?jfl)g\’szl _ det(u?jfl)g\&:1
T el ) V)

for pairwise distinct u; € F.
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extension to FV of
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for pairwise distinct u; € F. Note that the denominator is precisely the
Vandermonde determinant

V((ur,...,un)) i=det(u! )= J[ (u;—w).

1<i<GEN
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extension to FV of
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for pairwise distinct u; € F. Note that the denominator is precisely the
Vandermonde determinant

V((ur,...,un)) i=det(u! )= J[ (u;—w).

1<i<j<N
@ Basis of homogeneous symmetric polynomials in u1,...,un.

@ Characters of irreducible polynomial representations of GLx(C),
usually defined in terms of semi-standard Young tableaux.
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Schur polynomials

Given an increasing N-tuple of integers 0 < no < --- < ny-_1,
the corresponding Schur polynomial over a field F is the unique polynomial
extension to FV of

sn(u un) = det(u?jfl)g\’szl _ det(u?jfl)g\&:1
T el ) V)

for pairwise distinct u; € F. Note that the denominator is precisely the
Vandermonde determinant

V((ur,...,un)) i=det(u! )= J[ (u;—w).

1<i<j<N
@ Basis of homogeneous symmetric polynomials in u1,...,un.

@ Characters of irreducible polynomial representations of GLx(C),
usually defined in terms of semi-standard Young tableaux.

@ Weyl Character (Dimension) Formula in Type A:

B ng —n; V(n)
sn(l,...,1) = H j—i  V((0,1,...,N—1))
1<i<j<N
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Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose N =3 and m := (0,2,4). The tableaux are:

33\33\32\32\31\31\22\21\
2 1 2 1 2 1 1 1
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Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose N =3 and m := (0,2,4). The tableaux are:

33\33\32\32\31\31\22\21\
2 1 2 1 2 1 1 1

5(0,2,4)(U1,u27 UB)
) 2 2 2 2 2
= u3u2 + uzul + usus + 2uszu2u1 + Usul + usu1 + u2uj

(u1 4 u2)(u2 + usz)(us + u1).
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Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose N =3 and m := (0,2,4). The tableaux are:

33\33\32\32\31\31\22\21\
2 1 2 1 2 1 1 1

5(0,2,4)(U1,u27 UB)
) 2 2 2 2 2
= u3u2 + uzul + usus + 2uszu2u1 + Usul + usu1 + u2uj

(u1 4 u2)(u2 + usz)(us + u1).

Example 2: Suppose N =3 and n = (0,2, 3):

Then s(g,2,3)(u1, uz, uz) = uruz + ugus + usu1.
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Sketch of the proof of the main result (cont.)

Technical result used in the proof: Jacobi—Trudi type identity for p;:

Theorem (K.—Tao, in press)

Let N>1and0<ng<---<nny-1< M be integers. Suppose

Co,...,cN—1 € F* are non-zero scalars in a field F. Define the polynomial
_ no nN_—1 M
pe(x) :=t(engx™ + -+ cny_, )—x,
and the partitions n = (no,...,nn-1) and n; = (no,...,n5,...,nN—1, M)

as above.
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Sketch of the proof of the main result (cont.)

Technical result used in the proof: Jacobi—Trudi type identity for p;:

Theorem (K.—Tao, in press)

Let N>1and0<ng<---<nny-1< M be integers. Suppose
Co,...,cN—1 € F* are non-zero scalars in a field F. Define the polynomial
pe(w) = t(cnomno +o C"N—lmnN_l) - IM’
and the partitions n = (no,...,nn-1) and n; = (no,...,n5,...,nN—1, M)
as above. The following identity holds for all u,v € F :
N-1 N1 o (a)sn, (V)
det pe[uv”] = NV (u)V n.x( Spl@y(7). )
et pifuv”] @V @saCn) [T enyx (1= 3 2 u>s,, E
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The negative threshold

Proof of (3) = (2).
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The negative threshold

Proof of (3) = (2).
@ If piluu’] € Py forallu e (0,/p)Y, and t,cng, ..., cny_, >0, then

T N-1 2
0< det p:[uu’ | e Z sn; (1) .
tNilv(u)28n(u)2cno rCnn_g ; C"‘Sn(u)2
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The negative threshold

Proof of (3) = (2).
@ If piluu’] € Py forallu e (0,/p)Y, and t,cng, ..., cny_, >0, then

0< det p;[uu] _y NZ_I smj(u)2
S AN-1V (u)2sn(u)2cny cCny_y = Cn;Sn(u)?’

@ In previous talk / ‘baby case’, we have n = (0,1,..., N — 1).
Thus the denominator is ¢, - 1> ~ maximize sn; (u)? over [0, \/p]" .

@ This is easy, since every Schur polynomial is a sum of monomials. What
to do in the general case?
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The negative threshold

Proof of (3) = (2).
@ If piluu’] € Py forallu e (0,/p)Y, and t,cng, ..., cny_, >0, then

0< det p;[uu] _y NZ_I Sn, (w)?
S N-1V (u)2sn(u)2¢ng  Cnyy = Cn;Sn(u)?’
@ In previous talk / ‘baby case’, we have n = (0,1,..., N — 1).

Thus the denominator is ¢, - 1> ~ maximize sn; (u)? over [0, \/p]" .

@ This is easy, since every Schur polynomial is a sum of monomials. What
to do in the general case?

@ (“Wishful thinking!")
If the ratios sn./sn were coordinate-wise non-decreasing, the maximum
would again occur (like last time) at (\/p,...,/p), and we could proceed.
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The negative threshold

Proof of (3) = (2).

@ If p;[uu’] € Py forallue (0,,p)2, and t,cng, ..., Cny_, >0, then
0< det p;[uu] _y NZ_I Sn, (w)?
S AN-1V (u)2sn(u)2cny cCny_y = Cn;Sn(u)?’

@ In previous talk / ‘baby case’, we have n = (0,1,..., N — 1).
Thus the denominator is ¢, - 1> ~ maximize sn; (u)? over [0, \/p]" .

@ This is easy, since every Schur polynomial is a sum of monomials. What
to do in the general case?

@ (“Wishful thinking!")
If the ratios sn./sn were coordinate-wise non-decreasing, the maximum
would again occur (like last time) at (\/p,...,/p), and we could proceed.

@ Need to take a closer look at (ratios of) Schur polynomials.
Toy example: use n; = (0,2,4) and n = (0, 2, 3), worked out above.
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Reminders; Improved main result Recap
The main result, and the Schur monotonicity lemma

Schur Monotonicity Lemma

Example: The ratio sn, (u)/sn(u) for n; = (0,2,4), n = (0,2,3) is:

(u1 + u2)(uz + us)(us + u1)
uiu2 + U2uU3 + uzul

f(’u,l,UQ,U3) = s U1, U2, U3 > 0.

Note: both numerator and denominator are monomial-positive (in fact
Schur-positive, obviously) — hence non-decreasing in each coordinate.

‘Miracle'(?): Their ratio f(u) indeed has the same property!
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Schur Monotonicity Lemma

Example: The ratio sn, (u)/sn(u) for n; = (0,2,4), n = (0,2,3) is:

Flus, uz ) = (u1 + u2)(u2 + us)(us + 'LLI)’ sz > 0.
uiu2 + U2uU3 + uzul

Note: both numerator and denominator are monomial-positive (in fact
Schur-positive, obviously) — hence non-decreasing in each coordinate.

‘Miracle'(?): Their ratio f(u) indeed has the same property!

Theorem (K.—Tao, Amer. J. Math., in press)

For integer tuples 0 < ng < -+ < ny—1 and 0 < mo < --- < my—1 such that
n; < m; Vj, the function

f:(0,00)Y =R, f(u) =

is non-decreasing in each coordinate.
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The main result, and the Schur monotonicity lemma

Schur Monotonicity Lemma (cont.)

(u1 + u2)(u2 + usz)(us + u1)

Claim: The ratio f(u1,u2,us) =
urU2 + U2U3 + UzUL

treated as a function on the orthant (0,00)*, is coordinatewise non-decreasing.
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Schur Monotonicity Lemma (cont.)

(u1 + u2)(u2 + usz)(us + u1)
ULuU2 + U2u3z + Uzul

Claim: The ratio f(u1,u2,us) =
treated as a function on the orthant (0,00)*, is coordinatewise non-decreasing.

(Why?) Applying the quotient rule of differentiation to f,
$n(1)Ous Sm (1) — Sm(U)uzsn(u) = (u1 + u2)(urus + 2uiuz + ugus)us,

and this is monomial-positive.
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Schur Monotonicity Lemma (cont.)

(u1 + u2)(u2 + usz)(us + u1)
ULuU2 + U2u3z + Uzul

Claim: The ratio f(u1,u2,us) =
treated as a function on the orthant (0,00)*, is coordinatewise non-decreasing.
(Why?) Applying the quotient rule of differentiation to f,

$n(1)Ous Sm (1) — Sm(U)uzsn(u) = (u1 + u2)(urus + 2uiuz + ugus)us,

and this is monomial-positive.

Now if we write this as Zj>0 pj('LLl,UQ)Ug, then each p; is Schur-positive,
i.e. a sum of Schur polynomials:

po(u1,u2) = 0,

2],

2]t

= 50,3) (u1, u2) + 5(1,2) (u1, u2).
Apoorva Khare, 11ISc Bangalore 14 / 27

p1(ur, u2) = 2uiul + 2uiug = 2 = 25(1,3) (u1, u2),

2], 2140,

p2(ur,u2) = (u1 4 u2)® = ‘ |




Reminders; Improved main result Recap
The main result, and the Schur monotonicity lemma

Proof-sketch of Schur Monotonicity Lemma

The proof for general m > n is similar:
By symmetry, and the quotient rule of differentiation, it suffices to show that
Sn - Oup (Sm) — Sm * Oup (Sn)

is numerically positive on (0,00)". (Note, the coefficients in sn(u) of each u?
are skew-Schur polynomials in u1,...,un—_1.)
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Proof-sketch of Schur Monotonicity Lemma

The proof for general m > n is similar:

By symmetry, and the quotient rule of differentiation, it suffices to show that
$n - Ouy (5m) = sm + Ouy (sn)

is numerically positive on (0,00)". (Note, the coefficients in sn(u) of each u?
are skew-Schur polynomials in u1,...,un—_1.)

The assertion would follow if this expression is
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The proof for general m > n is similar:

By symmetry, and the quotient rule of differentiation, it suffices to show that
$n - Ouy (5m) = sm + Ouy (sn)

is numerically positive on (0,00)". (Note, the coefficients in sn(u) of each u?
are skew-Schur polynomials in u1,...,un—_1.)

The assertion would follow if this expression is

Our Schur Monotonicity Lemma in fact shows that the coefficient of each u),
is (also) Schur-positive.
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Reminders; Improved main result Recap
The main result, and the Schur monotonicity lemma

Proof-sketch of Schur Monotonicity Lemma

The proof for general m > n is similar:

By symmetry, and the quotient rule of differentiation, it suffices to show that
Sn * Oupy (Sm) — Sm - Oup (Sn)

is numerically positive on (0,00)". (Note, the coefficients in sn(u) of each u?

are skew-Schur polynomials in u1,...,un—_1.)

The assertion would follow if this expression is

Our Schur Monotonicity Lemma in fact shows that the coefficient of each u),
is (also) Schur-positive.

Key ingredient: Schur-positivity result by Lam—Postnikov—Pylyavskyy (2007).
(In turn, this emerged out of Skandera’s 2004 results on determinant
inequalities for totally non-negative matrices.) O
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Reminders; Improved main result Recap
The main result, and the Schur monotonicity lemma

Proof-sketch of main result (concl.)

Returning to the proof of the main result:

@ If p;[uu’] € Py forallue (0,,/p)", and t,cng, ..., Cny_, >0, then

0< det p;[uu] _y NZ_I smj(u)2
< N1V (1)250(1)%Cng - - Cny s - =5 Cn sn(u)?’
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Reminders; Improved main result Recap
The main result, and the Schur monotonicity lemma

Proof-sketch of main result (concl.)

Returning to the proof of the main result:
@ If p;[uu’] € Py forallue (0,,/p)", and t,cng, ..., Cny_, >0, then

N-1
0 < detpt[uuT] —t_ Z SnJ
tN=1V(u)2sn(u)2cng - - Cny_y =5 Cn sn(u)?

@ By the Schur Monotonicity Lemma, this is if and only if

N-1

sn, (v/Py -, /D) Z pM — Kot
C"an(\f \f =0 V Cnj e

by the Weyl Dimension Formula. O
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Extensions to real powers and power series
Extensions to real powers; (Weak) Majorization (Weak) Majorization, via Schur polynomials

Outstanding questions: 2. Real powers

Analogue of Loewner’s necessary condition implies:
Suppose ¢, Ce, cx # 0 are real, M € (m, 00), and

e e M
Co+ CeX +Crx +CMT

entrywise preserves positivity on P5((0, p)).
Then co, ce,cx > 0. Can ¢y be negative? (Not known.)
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Analogue of Loewner’s necessary condition implies:
Suppose ¢, Ce, cx # 0 are real, M € (m, 00), and

e e M
Co+ CeX +Crx +CMT

entrywise preserves positivity on P5((0, p)).
Then co, ce,cx > 0. Can ¢y be negative? (Not known.)

General case:
Fix an integer N > 3 and real powers 0 < no < --- <ny-1 < M.
Also fix positive real scalars p, cng, ..., cny_, > 0. Suppose

N—-1
fl@)=>" en;a" +eya
3=0

entrywise preserves positivity on Px((0,p)). Then cn; > 0 for all j.

Apoorva Khare, 1ISc Bangalore 17 / 27



Extensions to real powers and power series
Extensions to real powers; (Weak) Majorization (Weak) Majorization, via Schur polynomials

Outstanding questions: 2. Real powers

Analogue of Loewner’s necessary condition implies:
Suppose ¢, Ce, cx # 0 are real, M € (m, 00), and

e e M
Co+ CeX +Crx +CMT

entrywise preserves positivity on P5((0, p)).
Then co, ce,cx > 0. Can ¢y be negative? (Not known.)

General case:

Fix an integer N > 3 and real powers 0 < no < --- <ny-1 < M.
Also fix positive real scalars p, cng, ..., cny_, > 0. Suppose

N—-1
fl@)=>" en;a" +eya
3=0

entrywise preserves positivity on Px((0,p)). Then cn; > 0 for all j.

Can ¢y be negative? How about a sharp bound, as above?
(More generally, which coefficients in such a preserver can be negative?)
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Extensions to real powers and power series
Extensions to real powers; (Weak) Majorization (Weak) Majorization, via Schur polynomials

Generalized Vandermonde determinants

The technical heart of the proof is similar:

Theorem (K.—Tao, in press)

Let NeNand0<ng<---<nny-1< M be real. Suppose
Co,---,cn—1 € (0,00), and define

Pt(Z) 1= t(CrgZ™ + -+ F Cnpy_, 2™V 1) — 2™,
Then for u € (0,00),
N-1 N—

detpt[uuT] _ tN_l det(uon)2 H Cn X ( det On] 2)7
=5 J — d uon

,_.

<.

ni__ . . .
where u™ := (u;?~"),_, is a generalized Vandermonde matrix.

Now need to maximize a ratio of Vandermonde determinants, again with
n; > n coordinate-wise.
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Extensions to real powers and power series
Extensions to real powers; (Weak) Majorization (Weak) Majorization, via Schur polynomials

Schur—Vandermonde Monotonicity Lemma

Theorem (K.—Tao, in press)

For real tuplesng < --- < ny—1 and mg < --- < mn—1 such that n; < mj Vj,

__detu’™

f B (07 OO)Q — R, f(u) = W

defined over ‘pairwise distinct’ uj, is non-decreasing in each coordinate.
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Schur—Vandermonde Monotonicity Lemma

Theorem (K.—Tao, in press)

For real tuplesng < --- < ny—1 and mg < --- < mn—1 such that n; < mj Vj,

__detu’™

f B (07 OO)Q — R, f(u) = W

defined over ‘pairwise distinct’ uj, is non-decreasing in each coordinate.

Proof:

@ By multiplying by (u1---un)~"°, we may assume all m;,n; > 0.
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Schur—Vandermonde Monotonicity Lemma

Theorem (K.—Tao, in press)

For real tuplesng < --- < ny—1 and mg < --- < mn—1 such that n; < mj Vj,

__detu’™

f B (07 OO)Q — R, f(u) = W

defined over ‘pairwise distinct’ uj, is non-decreasing in each coordinate.

Proof:
@ By multiplying by (u1---un)~"°, we may assume all m;,n; > 0.
@ W.lo.g, u1 <--- <un. Now if mj,n; are rational, say with common
denominator K € N, work with y; = u;/K:
Flu) = detu®™ _ det y°(K-m) _ V) sK‘m(y).
detuer  dety°®Em  V(y)-sk.a(y)

This is coordinate-wise non-decreasing in y by the Schur Monotonicity
Lemma, hence in u.
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Schur—Vandermonde Monotonicity Lemma

Theorem (K.—Tao, in press)

For real tuplesng < --- < ny—1 and mg < --- < mn—1 such that n; < mj Vj,

__detu’™

f B (07 OO)Q — R, f(u) = W

defined over ‘pairwise distinct’ uj, is non-decreasing in each coordinate.

Proof:
@ By multiplying by (u1---un)~"°, we may assume all m;,n; > 0.
@ W.lo.g, u1 <--- <un. Now if mj,n; are rational, say with common
denominator K € N, work with y; = u;/K:
Flu) = detu®™ _ det y°(K-m) _ V) sK‘m(y).
detuer  dety°®Em  V(y)-sk.a(y)

This is coordinate-wise non-decreasing in y by the Schur Monotonicity
Lemma, hence in u.

@ Finally, extend to real tuples m, n by rational approximation. O
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Extensions to real powers and power series
Extensions to real powers; (Weak) Majorization (Weak) Majorization, via Schur polynomials

Main result (for real powers)

This helps show:

Theorem (K.—Tao, Amer. J. Math., in press)

Fix N € N and real scalars

ng <---<ny-1<M, p>0, Cnoy -+ Cny_y-

For t > 0, define p:(z) := tzj o Cnyx™ — z™ . The following are equivalent.
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Main result (for real powers)

This helps show:

Theorem (K.—Tao, Amer. J. Math., in press)

Fix N € N and real scalars

ng <---<ny-1<M, p>0, Cnoy -+ Cny_y-

For t > 0, define p:(z) := tzj o Cnyx™ — z™ . The following are equivalent.

© p:[—] preserves positivity on rank-one matrices in Pn((0, p)).
@ Al coefficients c; > 0, and

N—-1 j
V(n,)* pMm

t>K n,M ‘= nJ
=z vpn, M Z V( )2 an

=0

© p:[—] preserves positivity on Hankel rank-one matrices in Py ((0, p)).
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Main result (for real powers)

This helps show:

Theorem (K.—Tao, Amer. J. Math., in press)

Fix N € N and real scalars

ng <---<ny-1<M, p>0, Cnoy -+ Cny_y-

For t > 0, define p:(z) := tzj o Cnyx™ — z™ . The following are equivalent.

© p:[—] preserves positivity on rank-one matrices in Pn((0, p)).
@ Al coefficients c; > 0, and

N—-1 j
V(n,)* pMm

t>K n,M ‘= nJ
=z vpn, M Z V( )2 an

=0

© p:[—] preserves positivity on Hankel rank-one matrices in Py ((0, p)).

If all nj € Z2° U [N — 2, 00), then the rank-constraint in (1) can be removed.
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Extensions to real powers and power series
Extensions to real powers; (Weak) Majorization (Weak) Majorization, via Schur polynomials

Extension to power series

The above results say that if f(x) := Z;V:Bl cn; 2™ and g(z) := 2™ for an

integer M > nx_1, then we have the linear matrix inequality

FIAAZ K - AM =K, - glAl, YA EPN((0,p)).
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Extension to power series

The above results say that if f(x) := Z;V:Bl cn; 2™ and g(z) := 2™ for an

integer M > nx_1, then we have the linear matrix inequality
FIAL 2 Ky A =K - glA]L YA €PN ((0,p)).
By summing finitely many such inequalities, if g(z) = ZM>nN71 ez, then
A 2 Kpn g - glA),

for a finite constant /C) 1 4.
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Extension to power series

The above results say that if f(x) := Z;V:Bl cn; 2™ and g(z) := 2™ for an

integer M > nx_1, then we have the linear matrix inequality
FIAL 2 Ky A =K - glA]L YA €PN ((0,p)).
By summing finitely many such inequalities, if g(z) = ZM>nN71 ez, then
A 2 Kpn g - glA),

for a finite constant /C) 1 4.

Question: s it possible to upper-bound g[A] by K, n,q - f[A], for an arbitrary
power series that is convergent on (0, p)?

oo

glx)= > cua

M=|ny_1]+1
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Extension to power series

The above results say that if f(x) := Z;V:Bl cn; 2™ and g(z) := 2™ for an

integer M > nx_1, then we have the linear matrix inequality

FIAI = K0 - A =K, L glAl, YA €PN((0,p)).

p,n, M °

By summing finitely many such inequalities, if g(z) = ZM>nN71 ez, then

for a finite constant /C) 1 4.

Question: s it possible to upper-bound g[A] by K, n,q - f[A], for an arbitrary
power series that is convergent on (0, p)?

oo

glx)= > cua

M=|ny_1]+1

Proposition (K.—Tao)
Yes.
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Extensions to real powers; (Weak) Majorization (Weak) Majorization, via Schur polynomials

Further applications

@ In fact we work with more general ‘Laplace transforms’

s@)= [~ atdun, e>o,

N-—1te€

which are absolutely convergent at p. The sharp threshold bounds above
imply here as well, that a finite constant K, n 4 exists.
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@ These results lead to (sharp) linear matrix inequalities, for Hadamard
powers.
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Extensions to real powers; (Weak) Majorization (Weak) Majorization, via Schur polynomials

Further applications

@ In fact we work with more general ‘Laplace transforms’

s@)= [~ atdun, e>o,

N—1+t¢€
which are absolutely convergent at p. The sharp threshold bounds above

imply here as well, that a finite constant K, n 4 exists.

@ These results lead to (sharp) linear matrix inequalities, for Hadamard
powers.

© Application to spectrahedra and matrix cubes:
Upper and lower bounds, which are asymptotically equal.

@ Reformulation in terms of generalized Rayleigh quotients.
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Weak majorization through Schur polynomials

@ Our Schur Monotonicity Lemma implies in particular:

sm(u) _ sm(1,...,1)
sn(u) > sn(l,...,1)’

Vu € [1,00)".

if m dominates n coordinatewise.

@ 'Natural’ to ask: for which other tuples m, n does this inequality hold?
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Weak majorization through Schur polynomials

@ Our Schur Monotonicity Lemma implies in particular:

sm(u) _ sm(1,...,1)
sn(u) > sn(l,...,1)’

Vu € [1,00)".

if m dominates n coordinatewise.

@ 'Natural’ to ask: for which other tuples m, n does this inequality hold?

We extend this to real tuples (generalized Vandermonde determinants):

Theorem (K.—Tao, Amer. J. Math., in press)

Given reals ng < --- < nny-1 and mo < --- < mn—1, TFAE:

det(u®™) _ V(m)
=

det(u°m) V(n)

@ m weakly majorizesn —ie, my—1+--+mj; Znn_1+---+n; Vj.

@ We have , for all ‘distinct’ tuples u € [1, oo)g
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Weak majorization through Schur polynomials

@ Our Schur Monotonicity Lemma implies in particular:

sm(u) _ sm(1,...,1)
sn(u) > sn(l,...,1)’

Vu € [1,00)".

if m dominates n coordinatewise.

@ 'Natural’ to ask: for which other tuples m, n does this inequality hold?

We extend this to real tuples (generalized Vandermonde determinants):

Theorem (K.—Tao, Amer. J. Math., in press)

Given reals ng < --- < nny-1 and mo < --- < mn—1, TFAE:

det(u®™) _ V(m)
=

det(u°m) V(n)

@ m weakly majorizesn —ie, my—1+--+mj; Znn_1+---+n; Vj.

@ We have , for all ‘distinct’ tuples u € [1, oo)g

This problem was studied originally by Skandera and others in the 2010s,

for integer powers, and on the entire positive orthant (0, c0)™:
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Cuttler—Greene—Skandera conjecture

Theorem (Cuttler—Greene—Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers 0 < no < --- <mny-1 and 0 <mo < -+ <mpn—1. Then

sm(1) _ sm(1,...,1)
sn(u) > sn(l,...,1)’

Yu € (0,00)",

if and only if m majorizes n.

Majorization = (weak majorization) + (ZJ mj =3, nj>.
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Cuttler—Greene—Skandera conjecture

Theorem (Cuttler—Greene—Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers 0 < no < --- <mny-1 and 0 <mo < -+ <mpn—1. Then

sm(1) _ sm(1,...,1)
sn(u) > sn(l,...,1)’

if and only if m majorizes n.

Yu € (0,00)",

Majorization = (weak majorization) + (ZJ mj =3, nj>.

Questions:
@ Does this characterization extend to real powers?

@ Can we use a smaller subset than the full orthant (0,00)", to deduce
majorization?
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Cuttler—Greene—Skandera conjecture

Theorem (Cuttler—Greene—Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers 0 < no < --- <mny-1 and 0 <mo < -+ <mpn—1. Then

sm(1) _ sm(1,...,1)
sn(u) > sn(l,...,1)’

if and only if m majorizes n.

Yu € (0,00)",

Majorization = (weak majorization) + (ZJ mj =3, nj>.

Questions:
@ Does this characterization extend to real powers?

@ Can we use a smaller subset than the full orthant (0,00)", to deduce
majorization?

Yes, and Yes:
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Extensions to real powers; (Weak) Majorization

Majorization via Vandermonde determinants

Theorem (K.—Tao, Amer. J. Math., in press)

Given reals ng < --- <nn—_1 and mo < --- < my_1, TFAE:

det(u®™) _ V(m) e N
We h > , for all / ) .
@ We have det(um) Vn) or all ‘distinct’ tuples u € (0, 00)2:

det(u®™) _ V(m)
° det(u°n) V(n)

© m majorizes n.

> , for all ‘distinct’ tuples u € (0,1]% U [1,00)%.
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Extensions to real powers; (Weak) Majorization

Majorization via Vandermonde determinants

Theorem (K.—Tao, Amer. J. Math., in press)

Given reals ng < --- <nn—_1 and mo < --- < my_1, TFAE:

det(u®™) _ V(m) e N
We h > , for all / ) .
@ We have det(um) Vn) or all ‘distinct’ tuples u € (0, 00)2:

det(u®™) _ V(m) e N N
> .
Q det(u) > Vin)’ for all ‘distinct’ tuples u € (0, 1] U [1,00)2
© m majorizes n.
Proof:
@ (1) = (2): Obvious. (3) = (1): Akin to Sra (2016).

@ (2) = (3): If u€e [1,00)Z, then by our preceding result: m >, n.
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Majorization via Vandermonde determinants

Theorem (K.—Tao, Amer. J. Math., in press)
Given reals ng < --- <nn—_1 and mo < --- < my_1, TFAE:
det(u®™) _ V(m)
>
det(u°m) V(n)
o det(u®™) _ V(m)
det(u°n) V(n)

© m majorizes n.

@ We have

, for all ‘distinct’ tuples u € (0, oo)g

> , for all ‘distinct’ tuples u € (0,1]% U [1,00)%.

Proof:
@ (1) = (2): Obvious. (3) = (1): Akin to Sra (2016).
@ (2) = (3): If u€e [1,00)Z, then by our preceding result: m >, n.
If ue (0,1]%, let v; := 1/u; > 1; then we get:

det(ve(—™) _ det(u®™) S V(im) V(-m)
det(ve(=m) ~ det(u°®) = V(n) V(-n)’

Our preceding result: —m >, —n;
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Majorization via Vandermonde determinants

Theorem (K.—Tao, Amer. J. Math., in press)
Given reals ng < --- <nn—_1 and mo < --- < my_1, TFAE:
det(u®™) _ V(m)
>
det(u°m) V(n)
o det(u®™) _ V(m)
det(u°n) V(n)

© m majorizes n.

@ We have

, for all ‘distinct’ tuples u € (0, oo)g

> , for all ‘distinct’ tuples u € (0,1]% U [1,00)%.

Proof:
@ (1) = (2): Obvious. (3) = (1): Akin to Sra (2016).
@ (2) = (3): If u€e [1,00)Z, then by our preceding result: m >, n.
If ue (0,1]%, let v; := 1/u; > 1; then we get:

det(ve(—™) _ det(u®™) S V(im) V(-m)
det(ve(=m) ~ det(u°®) = V(n) V(-n)’

Our preceding result: —m >,, —n; and m >, n <= m majorizes n.
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Open question: Optimizing over [—1,1]V7?

@ The previous talk and this talk concerned polynomials/power series that
entrywise preserve positive semidefiniteness in a fixed dimension.

@ The maximization of sm(u)/sn(u) over (0,1]Y reveals tight bounds on
certain polynomial preservers, acting on Pn([0,1]). (By homogeneity and
continuity, maximize only over the cube-boundary (0,1]Y N 9(0,1]".)
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Open question: Optimizing over [—1,1]V7?

@ The previous talk and this talk concerned polynomials/power series that
entrywise preserve positive semidefiniteness in a fixed dimension.

@ The maximization of sm(u)/sn(u) over (0,1]Y reveals tight bounds on
certain polynomial preservers, acting on Pn([0,1]). (By homogeneity and
continuity, maximize only over the cube-boundary (0,1]Y N 9(0,1]".)

@ What about on all correlation matrices? Need to upper-bound
sm(1)?/sn(u)? over all of [—1,1]™ \ {0}.

@ For this, need to ensure sn(u) does not vanish except at 0. Facts:
(1) The only such n = (0,1,...,N —2,N — 1 + 2r) for r € Z*°.
(2) All such sn(u) are complete symmetric homogeneous polynomials
ha,(u), and they are positive on R™ \ {0}.
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Open question: Optimizing over [—1,1]V7?

@ The previous talk and this talk concerned polynomials/power series that
entrywise preserve positive semidefiniteness in a fixed dimension.

@ The maximization of sm(u)/sn(u) over (0,1]Y reveals tight bounds on
certain polynomial preservers, acting on Pn([0,1]). (By homogeneity and
continuity, maximize only over the cube-boundary (0,1]Y N 9(0,1]".)

@ What about on all correlation matrices? Need to upper-bound
sm(1)?/sn(u)? over all of [—1,1]™ \ {0}.

@ For this, need to ensure sn(u) does not vanish except at 0. Facts:
(1) The only such n = (0,1,...,N —2,N — 1 + 2r) for r € Z*°.
(2) All such sn(u) are complete symmetric homogeneous polynomials
ha,(u), and they are positive on R™ \ {0}.

Question: Say m; > j for j =0,1,...,N —2, and my—1 > N — 1+ 2r.
sm(u)?

Maximize ~=2—_ on [~1,1)" \ {0} — or just on its cube-boundary.
hQT (u)2
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