Entrywise positivity preservers in fixed dimension:

II

Apoorva Khare

IISc and APRG (Bangalore, India)
(Joint with Alexander Belton, Dominique Guillot, and Mihai Putinar; and with Terence Tao)

The entrywise calculus

Definitions.

(1) A real symmetric matrix $A_{N \times N}$ is positive semidefinite if all eigenvalues of A are $\geqslant 0$. (Equivalently, $u^{T} A u \geqslant 0$ for all $u \in \mathbb{R}^{N}$.)
(2) Given $N \geqslant 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_{N}(I)$ denote the $N \times N$ positive semidefinite matrices, with entries in I. (Say $\left.\mathbb{P}_{N}=\mathbb{P}_{N}(\mathbb{R}).\right)$
(3) A function $f: I \rightarrow \mathbb{R}$ acts entrywise on a matrix A via: $f[A]:=\left(f\left(a_{i j}\right)\right)$.

Schoenberg and Rudin's theorems

Problem: Given a function $f: I \rightarrow \mathbb{R}$, when is it true that

$$
f[A]:=\left(f\left(a_{i j}\right)\right) \in \mathbb{P}_{N} \text { for all } A \in \mathbb{P}_{N}(I) ?
$$

Schoenberg and Rudin's theorems

Problem: Given a function $f: I \rightarrow \mathbb{R}$, when is it true that

$$
f[A]:=\left(f\left(a_{i j}\right)\right) \in \mathbb{P}_{N} \text { for all } A \in \mathbb{P}_{N}(I) ?
$$

- Pólya-Szegö (1925 book) via the Schur product theorem (Crelle 1911): If $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ is convergent and $c_{k} \geqslant 0$, then $f[-]$ preserves positivity on \mathbb{P}_{N} in all dimensions.
- Schoenberg (Duke 1942):

The converse also holds, if f is continuous.

- Rudin (Duke 1959); resp. Belton-Guillot-K.-Putinar (JEMS, accepted):

The converse holds for any f, and we only need to assume $f[-]$ preserves positivity on all Toeplitz (resp. Hankel) matrices of rank $\leqslant 3$.

Positivity preservers in fixed dimension

Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

Positivity preservers in fixed dimension

Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

- Known for $N=2$ (Vasudeva, IJPAM 1979). Open for $N \geqslant 3$.

Positivity preservers in fixed dimension

Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

- Known for $N=2$ (Vasudeva, IJPAM 1979). Open for $N \geqslant 3$.

In this talk, we focus on sums of powers $\sum_{\alpha \geqslant 0} c_{\alpha} x^{\alpha}-$ with $\alpha \in(0, \infty)-$ acting on $\mathbb{P}_{N}((0, \rho))$.

Question: Find such a function with a negative coefficient, preserving positivity on \mathbb{P}_{N} for a fixed $N \geqslant 3$.

Positivity preservers in fixed dimension

Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

- Known for $N=2$ (Vasudeva, IJPAM 1979). Open for $N \geqslant 3$.

In this talk, we focus on sums of powers $\sum_{\alpha \geqslant 0} c_{\alpha} x^{\alpha}-$ with $\alpha \in(0, \infty)-$ acting on $\mathbb{P}_{N}((0, \rho))$.

Question: Find such a function with a negative coefficient, preserving positivity on \mathbb{P}_{N} for a fixed $N \geqslant 3$.

- Was not known since Schoenberg's Duke 1942 paper.

Positivity preservers in fixed dimension

Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

- Known for $N=2$ (Vasudeva, IJPAM 1979). Open for $N \geqslant 3$.

In this talk, we focus on sums of powers $\sum_{\alpha \geqslant 0} c_{\alpha} x^{\alpha}-$ with $\alpha \in(0, \infty)-$ acting on $\mathbb{P}_{N}((0, \rho))$.

Question: Find such a function with a negative coefficient, preserving positivity on \mathbb{P}_{N} for a fixed $N \geqslant 3$.

- Was not known since Schoenberg's Duke 1942 paper.
- Loewner's necessary condition / variants: If f is any smooth function preserving positivity on $\mathbb{P}_{N}((0, \rho))$, then the first N nonzero Maclaurin coefficients of f must be positive. Can the next one be negative?

Positivity preservers in fixed dimension

Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

- Known for $N=2$ (Vasudeva, IJPAM 1979). Open for $N \geqslant 3$.

In this talk, we focus on sums of powers $\sum_{\alpha \geqslant 0} c_{\alpha} x^{\alpha}-$ with $\alpha \in(0, \infty)-$ acting on $\mathbb{P}_{N}((0, \rho))$.

Question: Find such a function with a negative coefficient, preserving positivity on \mathbb{P}_{N} for a fixed $N \geqslant 3$.

- Was not known since Schoenberg's Duke 1942 paper.
- Loewner's necessary condition / variants: If f is any smooth function preserving positivity on $\mathbb{P}_{N}((0, \rho))$, then the first N nonzero Maclaurin coefficients of f must be positive. Can the next one be negative?
- Previous talk: Belton-Guillot-K.-Putinar, Adv. Math. 2016:

Yes, if the first N degrees are consecutive.

Outstanding questions: 1. More general polynomials

Analogue of Loewner's necessary condition implies:
Suppose $c_{0}, c_{2}, c_{3} \neq 0$ are real, $M \geqslant 4$, and $c_{0}+c_{2} x^{2}+c_{3} x^{3}+c_{M} x^{M}$ entrywise preserves positivity on 3×3 correlation matrices.
Then $c_{0}, c_{2}, c_{3}>0$. Can c_{M} be negative? (Not known.)

Outstanding questions: 1. More general polynomials

Analogue of Loewner's necessary condition implies:
Suppose $c_{0}, c_{2}, c_{3} \neq 0$ are real, $M \geqslant 4$, and $c_{0}+c_{2} x^{2}+c_{3} x^{3}+c_{M} x^{M}$ entrywise preserves positivity on 3×3 correlation matrices.
Then $c_{0}, c_{2}, c_{3}>0$. Can c_{M} be negative? (Not known.)

General case: Fix integers $N \geqslant 3$ and $0 \leqslant n_{0}<\cdots<n_{N-1}<M$, not all n_{j} consecutive. Also fix real scalars $\rho>0$ and $c_{n_{0}}, \ldots, c_{n_{N-1}} \neq 0$. Suppose

$$
f(x)=\sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}+c_{M} x^{M}
$$

entrywise preserves positivity on $\mathbb{P}_{N}((0, \rho))$. Then $c_{n_{j}}>0 \forall j$.

Outstanding questions: 1. More general polynomials

Analogue of Loewner's necessary condition implies:
Suppose $c_{0}, c_{2}, c_{3} \neq 0$ are real, $M \geqslant 4$, and $c_{0}+c_{2} x^{2}+c_{3} x^{3}+c_{M} x^{M}$ entrywise preserves positivity on 3×3 correlation matrices.
Then $c_{0}, c_{2}, c_{3}>0$. Can c_{M} be negative? (Not known.)

General case: Fix integers $N \geqslant 3$ and $0 \leqslant n_{0}<\cdots<n_{N-1}<M$, not all n_{j} consecutive. Also fix real scalars $\rho>0$ and $c_{n_{0}}, \ldots, c_{n_{N-1}} \neq 0$. Suppose

$$
f(x)=\sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}+c_{M} x^{M}
$$

entrywise preserves positivity on $\mathbb{P}_{N}((0, \rho))$. Then $c_{n_{j}}>0 \forall j$. Can $c_{M}<0$?

Outstanding questions: 1. More general polynomials

Analogue of Loewner's necessary condition implies:
Suppose $c_{0}, c_{2}, c_{3} \neq 0$ are real, $M \geqslant 4$, and $c_{0}+c_{2} x^{2}+c_{3} x^{3}+c_{M} x^{M}$ entrywise preserves positivity on 3×3 correlation matrices.
Then $c_{0}, c_{2}, c_{3}>0$. Can c_{M} be negative? (Not known.)

General case: Fix integers $N \geqslant 3$ and $0 \leqslant n_{0}<\cdots<n_{N-1}<M$, not all n_{j} consecutive. Also fix real scalars $\rho>0$ and $c_{n_{0}}, \ldots, c_{n_{N-1}} \neq 0$. Suppose

$$
f(x)=\sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}+c_{M} x^{M}
$$

entrywise preserves positivity on $\mathbb{P}_{N}((0, \rho))$. Then $c_{n_{j}}>0 \forall j$. Can $c_{M}<0$?

Reformulation: Multiplying by $t=\left|c_{M}\right|^{-1}$, does

$$
p_{t}(x):=t \sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}-x^{M}
$$

entrywise preserve positivity on $\mathbb{P}_{N}((0, \rho))$ for any $t>0$?

Outstanding questions: 1. More general polynomials

Analogue of Loewner's necessary condition implies:
Suppose $c_{0}, c_{2}, c_{3} \neq 0$ are real, $M \geqslant 4$, and $c_{0}+c_{2} x^{2}+c_{3} x^{3}+c_{M} x^{M}$ entrywise preserves positivity on 3×3 correlation matrices.
Then $c_{0}, c_{2}, c_{3}>0$. Can c_{M} be negative? (Not known.)

General case: Fix integers $N \geqslant 3$ and $0 \leqslant n_{0}<\cdots<n_{N-1}<M$, not all n_{j} consecutive. Also fix real scalars $\rho>0$ and $c_{n_{0}}, \ldots, c_{n_{N-1}} \neq 0$. Suppose

$$
f(x)=\sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}+c_{M} x^{M}
$$

entrywise preserves positivity on $\mathbb{P}_{N}((0, \rho))$. Then $c_{n_{j}}>0 \forall j$. Can $c_{M}<0$?

Reformulation: Multiplying by $t=\left|c_{M}\right|^{-1}$, does

$$
p_{t}(x):=t \sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}-x^{M}
$$

entrywise preserve positivity on $\mathbb{P}_{N}((0, \rho))$ for any $t>0$? No example known.

Main result (for integer powers)

Theorem (K.-Tao, Amer. J. Math., in press)
Fix integers $N \geqslant 1$ and $0 \leqslant n_{0}<\cdots<n_{N-1}<M$, and real scalars $\rho>0$ and $c_{n_{0}}, \ldots, c_{n_{N-1}}$. For $t>0$, define $p_{t}(x):=t \sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}-x^{M}$.

Main result (for integer powers)

Theorem (K.-Tao, Amer. J. Math., in press)

Fix integers $N \geqslant 1$ and $0 \leqslant n_{0}<\cdots<n_{N-1}<M$, and real scalars $\rho>0$ and $c_{n_{0}}, \ldots, c_{n_{N-1}}$. For $t>0$, define $p_{t}(x):=t \sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}-x^{M}$.
Then the following are equivalent.
(1) $p_{t}[-]$ preserves positivity on $\mathbb{P}_{N}((0, \rho))$.
(2) All coefficients $c_{n_{j}}>0$, and

Main result (for integer powers)

Theorem (K.-Tao, Amer. J. Math., in press)

Fix integers $N \geqslant 1$ and $0 \leqslant n_{0}<\cdots<n_{N-1}<M$, and real scalars $\rho>0$ and $c_{n_{0}}, \ldots, c_{n_{N-1}}$. For $t>0$, define $p_{t}(x):=t \sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}-x^{M}$.
Then the following are equivalent.
(1) $p_{t}[-]$ preserves positivity on $\mathbb{P}_{N}((0, \rho))$.
(2) All coefficients $c_{n_{j}}>0$, and

$$
t \geqslant \mathcal{K}_{\rho, \mathbf{n}, M}:=\sum_{j=0}^{N-1} \frac{V\left(\mathbf{n}_{j}\right)^{2}}{V(\mathbf{n})^{2}} \frac{\rho^{M-n_{j}}}{c_{n_{j}}}
$$

where $\mathbf{n}:=\left(n_{0}, \ldots, n_{N-1}\right)$, the tuples

$$
\mathbf{n}_{j}:=\left(n_{0}, \ldots, n_{j-1}, \widehat{n_{j}}, n_{j+1}, \ldots, n_{N-1}, M\right), \quad 0 \leqslant j \leqslant N-1
$$

and given a vector $\mathbf{u}=\left(u_{1}, \ldots, u_{N}\right)$, its 'Vandermonde determinant' is

$$
V\left(\left(u_{1}, \ldots, u_{N}\right)\right):=\operatorname{det}\left(u_{i}^{j-1}\right)=\prod_{1 \leqslant i<j \leqslant N}\left(u_{j}-u_{i}\right) .
$$

Main result (for integer powers)

Theorem (K.-Tao, Amer. J. Math., in press)

Fix integers $N \geqslant 1$ and $0 \leqslant n_{0}<\cdots<n_{N-1}<M$, and real scalars $\rho>0$ and $c_{n_{0}}, \ldots, c_{n_{N-1}}$. For $t>0$, define $p_{t}(x):=t \sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}-x^{M}$.
Then the following are equivalent.
(1) $p_{t}[-]$ preserves positivity on $\mathbb{P}_{N}((0, \rho))$.
(2) All coefficients $c_{n_{j}}>0$, and

$$
t \geqslant \mathcal{K}_{\rho, \mathbf{n}, M}:=\sum_{j=0}^{N-1} \frac{V\left(\mathbf{n}_{j}\right)^{2}}{V(\mathbf{n})^{2}} \frac{\rho^{M-n_{j}}}{c_{n_{j}}}
$$

where $\mathbf{n}:=\left(n_{0}, \ldots, n_{N-1}\right)$, the tuples

$$
\mathbf{n}_{j}:=\left(n_{0}, \ldots, n_{j-1}, \widehat{n_{j}}, n_{j+1}, \ldots, n_{N-1}, M\right), \quad 0 \leqslant j \leqslant N-1
$$

and given a vector $\mathbf{u}=\left(u_{1}, \ldots, u_{N}\right)$, its 'Vandermonde determinant' is

$$
V\left(\left(u_{1}, \ldots, u_{N}\right)\right):=\operatorname{det}\left(u_{i}^{j-1}\right)=\prod_{1 \leqslant i<j \leqslant N}\left(u_{j}-u_{i}\right) .
$$

(3) $p_{t}[-]$ preserves positivity on Hankel rank-one matrices in $\mathbb{P}_{N}((0, \rho))$.

Consequences

(1) For the 'initial', consecutive powers $n_{j}=j$ as in previous talk,

$$
\mathcal{K}_{\rho, \mathbf{n}, M}=\sum_{j=0}^{N-1}\binom{M}{j}^{2}\binom{M-j-1}{N-j-1}^{2} \frac{\rho^{M-j}}{c_{j}}=\mathcal{K}_{\rho, M}
$$

Consequences

(1) For the 'initial', consecutive powers $n_{j}=j$ as in previous talk,

$$
\mathcal{K}_{\rho, \mathbf{n}, M}=\sum_{j=0}^{N-1}\binom{M}{j}^{2}\binom{M-j-1}{N-j-1}^{2} \frac{\rho^{M-j}}{c_{j}}=\mathcal{K}_{\rho, M} .
$$

(2) Quantitative version of Schoenberg's theorem in fixed dimension: first examples of polynomials that work for \mathbb{P}_{N} but not for \mathbb{P}_{N+1}. ("The Loewner-Horn theorem is sharp.")

Consequences

(1) For the 'initial', consecutive powers $n_{j}=j$ as in previous talk,

$$
\mathcal{K}_{\rho, \mathbf{n}, M}=\sum_{j=0}^{N-1}\binom{M}{j}^{2}\binom{M-j-1}{N-j-1}^{2} \frac{\rho^{M-j}}{c_{j}}=\mathcal{K}_{\rho, M} .
$$

(2) Quantitative version of Schoenberg's theorem in fixed dimension: first examples of polynomials that work for \mathbb{P}_{N} but not for \mathbb{P}_{N+1}. ("The Loewner-Horn theorem is sharp.")
(3) Complete characterization of 'fewnomials' with at most $N+1$ terms, which preserve positivity on \mathbb{P}_{N}.

Consequences

(1) For the 'initial', consecutive powers $n_{j}=j$ as in previous talk,

$$
\mathcal{K}_{\rho, \mathbf{n}, M}=\sum_{j=0}^{N-1}\binom{M}{j}^{2}\binom{M-j-1}{N-j-1}^{2} \frac{\rho^{M-j}}{c_{j}}=\mathcal{K}_{\rho, M} .
$$

(2) Quantitative version of Schoenberg's theorem in fixed dimension: first examples of polynomials that work for \mathbb{P}_{N} but not for \mathbb{P}_{N+1}. ("The Loewner-Horn theorem is sharp.")
(3) Complete characterization of 'fewnomials' with at most $N+1$ terms, which preserve positivity on \mathbb{P}_{N}.
(4) Surprisingly, the sharp bound on the negative threshold is obtained on rank 1 matrices.

Sketch of the proof

Theorem (K.-Tao, in press)
Let $N \geqslant 1$ and $0 \leqslant n_{0}<\cdots<n_{N-1}<M$ be integers. If $\rho, t, c_{n_{0}}, \ldots, c_{n_{N-1}}>0$, and $p_{t}(x):=t \sum_{j<N} c_{n_{j}} x^{n_{j}}-x^{M}$, TFAE:
(1) $p_{t}[-]$ preserves positivity on $\mathbb{P}_{N}((0, \rho))$.
(2) $t \geqslant \mathcal{K}_{\rho, \mathbf{n}, M}$.
(3) $p_{t}[-]$ preserves positivity on Hankel rank one matrices in $\mathbb{P}_{N}((0, \rho))$.

Sketch of the proof

Theorem (K.-Tao, in press)
Let $N \geqslant 1$ and $0 \leqslant n_{0}<\cdots<n_{N-1}<M$ be integers. If $\rho, t, c_{n_{0}}, \ldots, c_{n_{N-1}}>0$, and $p_{t}(x):=t \sum_{j<N} c_{n_{j}} x^{n_{j}}-x^{M}$, TFAE:
(1) $p_{t}[-]$ preserves positivity on $\mathbb{P}_{N}((0, \rho))$.
(2) $t \geqslant \mathcal{K}_{\rho, \mathbf{n}, M}$.
(3) $p_{t}[-]$ preserves positivity on Hankel rank one matrices in $\mathbb{P}_{N}((0, \rho))$.
$(1) \Longrightarrow$ (3): Immediate.

Sketch of the proof

Theorem (K.-Tao, in press)
Let $N \geqslant 1$ and $0 \leqslant n_{0}<\cdots<n_{N-1}<M$ be integers. If $\rho, t, c_{n_{0}}, \ldots, c_{n_{N-1}}>0$, and $p_{t}(x):=t \sum_{j<N} c_{n_{j}} x^{n_{j}}-x^{M}$, TFAE:
(1) $p_{t}[-]$ preserves positivity on $\mathbb{P}_{N}((0, \rho))$.
(2) $t \geqslant \mathcal{K}_{\rho, \mathrm{n}, M}$.
(3) $p_{t}[-]$ preserves positivity on Hankel rank one matrices in $\mathbb{P}_{N}((0, \rho))$.
$(1) \Longrightarrow$ (3): Immediate.
$\mathbf{(3)} \Longrightarrow \mathbf{(2) : ~ H o w ~ d o e s ~ t h e ~ c o n s t a n t ~} \mathcal{K}_{\rho, \mathrm{n}, M}$ appear from rank-one matrices?

Sketch of the proof

Theorem (K.-Tao, in press)
Let $N \geqslant 1$ and $0 \leqslant n_{0}<\cdots<n_{N-1}<M$ be integers. If $\rho, t, c_{n_{0}}, \ldots, c_{n_{N-1}}>0$, and $p_{t}(x):=t \sum_{j<N} c_{n_{j}} x^{n_{j}}-x^{M}$, TFAE:
(1) $p_{t}[-]$ preserves positivity on $\mathbb{P}_{N}((0, \rho))$.
(2) $t \geqslant \mathcal{K}_{\rho, \mathbf{n}, M}$.
(3) $p_{t}[-]$ preserves positivity on Hankel rank one matrices in $\mathbb{P}_{N}((0, \rho))$.
$(1) \Longrightarrow$ (3): Immediate.
(3) \Longrightarrow (2): How does the constant $\mathcal{K}_{\rho, n, M}$ appear from rank-one matrices?

Study the determinants of linear pencils

$$
\operatorname{det} p_{t}[A]=\operatorname{det}\left(t\left(c_{n_{0}} A^{\circ n_{0}}+\cdots+c_{n_{N-1}} A^{\circ n_{N-1}}\right)-A^{\circ M}\right)
$$

for rank-one matrices $A=\mathbf{u v}^{T}$.

Schur polynomials

Given an increasing N-tuple of integers $0 \leqslant n_{0}<\cdots<n_{N-1}$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^{N} of

$$
s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right):=\frac{\operatorname{det}\left(u_{i}^{n_{j-1}}\right)_{i, j=1}^{N}}{\operatorname{det}\left(u_{i}^{j-1}\right)}=\frac{\operatorname{det}\left(u_{i}^{n_{j-1}}\right)_{i, j=1}^{N}}{V(\mathbf{u})}
$$

for pairwise distinct $u_{i} \in \mathbb{F}$.

Schur polynomials

Given an increasing N-tuple of integers $0 \leqslant n_{0}<\cdots<n_{N-1}$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^{N} of

$$
s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right):=\frac{\operatorname{det}\left(u_{i}^{n_{j-1}}\right)_{i, j=1}^{N}}{\operatorname{det}\left(u_{i}^{j-1}\right)}=\frac{\operatorname{det}\left(u_{i}^{n_{j-1}}\right)_{i, j=1}^{N}}{V(\mathbf{u})}
$$

for pairwise distinct $u_{i} \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$
V\left(\left(u_{1}, \ldots, u_{N}\right)\right):=\operatorname{det}\left(u_{i}^{j-1}\right)=\prod_{1 \leqslant i<j \leqslant N}\left(u_{j}-u_{i}\right)
$$

Schur polynomials

Given an increasing N-tuple of integers $0 \leqslant n_{0}<\cdots<n_{N-1}$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^{N} of

$$
s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right):=\frac{\operatorname{det}\left(u_{i}^{n_{j-1}}\right)_{i, j=1}^{N}}{\operatorname{det}\left(u_{i}^{j-1}\right)}=\frac{\operatorname{det}\left(u_{i}^{n_{j-1}}\right)_{i, j=1}^{N}}{V(\mathbf{u})}
$$

for pairwise distinct $u_{i} \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$
V\left(\left(u_{1}, \ldots, u_{N}\right)\right):=\operatorname{det}\left(u_{i}^{j-1}\right)=\prod_{1 \leqslant i<j \leqslant N}\left(u_{j}-u_{i}\right) .
$$

- Basis of homogeneous symmetric polynomials in u_{1}, \ldots, u_{N}.
- Characters of irreducible polynomial representations of $G L_{N}(\mathbb{C})$, usually defined in terms of semi-standard Young tableaux.

Schur polynomials

Given an increasing N-tuple of integers $0 \leqslant n_{0}<\cdots<n_{N-1}$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^{N} of

$$
s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right):=\frac{\operatorname{det}\left(u_{i}^{n_{j-1}}\right)_{i, j=1}^{N}}{\operatorname{det}\left(u_{i}^{j-1}\right)}=\frac{\operatorname{det}\left(u_{i}^{n_{j-1}}\right)_{i, j=1}^{N}}{V(\mathbf{u})}
$$

for pairwise distinct $u_{i} \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$
V\left(\left(u_{1}, \ldots, u_{N}\right)\right):=\operatorname{det}\left(u_{i}^{j-1}\right)=\prod_{1 \leqslant i<j \leqslant N}\left(u_{j}-u_{i}\right) .
$$

- Basis of homogeneous symmetric polynomials in u_{1}, \ldots, u_{N}.
- Characters of irreducible polynomial representations of $G L_{N}(\mathbb{C})$, usually defined in terms of semi-standard Young tableaux.
- Weyl Character (Dimension) Formula in Type A:

$$
s_{\mathbf{n}}(1, \ldots, 1)=\prod_{1 \leqslant i<j \leqslant N} \frac{n_{j}-n_{i}}{j-i}=\frac{V(\mathbf{n})}{V((0,1, \ldots, N-1))}
$$

Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose $N=3$ and $\mathbf{m}:=(0,2,4)$. The tableaux are:

3	3
2	

3	3
1	

3	2
2	

3	2
1	

3	1
2	

3	1
1	

2	2
1	

2	1
1	

Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:
Example 1: Suppose $N=3$ and $\mathbf{m}:=(0,2,4)$. The tableaux are:

3	3
2	

3	3
1	

3	2
2	

3	2
1	

3	1
2	

3	1
1	

2	2
1	

2	1
1	

$$
\begin{aligned}
& s_{(0,2,4)}\left(u_{1}, u_{2}, u_{3}\right) \\
= & u_{3}^{2} u_{2}+u_{3}^{2} u_{1}+u_{3} u_{2}^{2}+2 u_{3} u_{2} u_{1}+u_{3} u_{1}^{2}+u_{2}^{2} u_{1}+u_{2} u_{1}^{2} \\
= & \left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)
\end{aligned}
$$

Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:
Example 1: Suppose $N=3$ and $\mathbf{m}:=(0,2,4)$. The tableaux are:

3	3
2	

3	3
1	

3	2
2	

3	2
1	

3	1
2	

3	1
1	

2	2
1	

2	1
1	

$$
\begin{aligned}
& s_{(0,2,4)}\left(u_{1}, u_{2}, u_{3}\right) \\
= & u_{3}^{2} u_{2}+u_{3}^{2} u_{1}+u_{3} u_{2}^{2}+2 u_{3} u_{2} u_{1}+u_{3} u_{1}^{2}+u_{2}^{2} u_{1}+u_{2} u_{1}^{2} \\
= & \left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right) .
\end{aligned}
$$

Example 2: Suppose $N=3$ and $\mathbf{n}=(0,2,3)$:

3
2
:---
1

Then $s_{(0,2,3)}\left(u_{1}, u_{2}, u_{3}\right)=u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}$.

Sketch of the proof of the main result (cont.)

Technical result used in the proof: Jacobi-Trudi type identity for p_{t} :

Theorem (K.-Tao, in press)

Let $N \geqslant 1$ and $0 \leqslant n_{0}<\cdots<n_{N-1}<M$ be integers. Suppose $c_{0}, \ldots, c_{N-1} \in \mathbb{F}^{\times}$are non-zero scalars in a field \mathbb{F}. Define the polynomial

$$
p_{t}(x):=t\left(c_{n_{0}} x^{n_{0}}+\cdots+c_{n_{N-1}} x^{n_{N-1}}\right)-x^{M}
$$

and the partitions $\mathbf{n}=\left(n_{0}, \ldots, n_{N-1}\right)$ and $\mathbf{n}_{j}=\left(n_{0}, \ldots, \widehat{n_{j}}, \ldots, n_{N-1}, M\right)$ as above.

Sketch of the proof of the main result (cont.)

Technical result used in the proof: Jacobi-Trudi type identity for p_{t} :

Theorem (K.-Tao, in press)

Let $N \geqslant 1$ and $0 \leqslant n_{0}<\cdots<n_{N-1}<M$ be integers. Suppose $c_{0}, \ldots, c_{N-1} \in \mathbb{F}^{\times}$are non-zero scalars in a field \mathbb{F}. Define the polynomial

$$
p_{t}(x):=t\left(c_{n_{0}} x^{n_{0}}+\cdots+c_{n_{N-1}} x^{n_{N-1}}\right)-x^{M}
$$

and the partitions $\mathbf{n}=\left(n_{0}, \ldots, n_{N-1}\right)$ and $\mathbf{n}_{j}=\left(n_{0}, \ldots, \widehat{n_{j}}, \ldots, n_{N-1}, M\right)$ as above. The following identity holds for all $\mathbf{u}, \mathbf{v} \in \mathbb{F}^{N}$:

$$
\operatorname{det} p_{t}\left[\mathbf{u v}^{T}\right]=t^{N-1} V(\mathbf{u}) V(\mathbf{v}) s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v}) \prod_{j=0}^{N-1} c_{n_{j}} \times\left(t-\sum_{j=0}^{N-1} \frac{s_{\mathbf{n}_{j}}(\mathbf{u}) s_{\mathbf{n}_{j}}(\mathbf{v})}{c_{n_{j}} s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v})}\right)
$$

Reminders; Improved main result
Extensions to real powers; (Weak) Majorization

The negative threshold

Proof of (3) \Longrightarrow (2).

The negative threshold

Proof of (3) \Longrightarrow (2).

- If $p_{t}\left[\mathbf{u u}^{T}\right] \in \mathbb{P}_{N}$ for all $\mathbf{u} \in(0, \sqrt{\rho})_{\neq}^{N}$, and $t, c_{n_{0}}, \ldots, c_{n_{N-1}}>0$, then

$$
0 \leqslant \frac{\operatorname{det} p_{t}\left[\mathbf{u} \mathbf{u}^{T}\right]}{t^{N-1} V(\mathbf{u})^{2} s_{\mathbf{n}}(\mathbf{u})^{2} c_{n_{0}} \cdots c_{n_{N-1}}}=t-\sum_{j=0}^{N-1} \frac{s_{\mathbf{n}_{j}}(\mathbf{u})^{2}}{c_{n_{j}} s_{\mathbf{n}}(\mathbf{u})^{2}}
$$

The negative threshold

Proof of (3) \Longrightarrow (2).

- If $p_{t}\left[\mathbf{u u}^{T}\right] \in \mathbb{P}_{N}$ for all $\mathbf{u} \in(0, \sqrt{\rho})_{\neq}^{N}$, and $t, c_{n_{0}}, \ldots, c_{n_{N-1}}>0$, then

$$
0 \leqslant \frac{\operatorname{det} p_{t}\left[\mathbf{u} \mathbf{u}^{T}\right]}{t^{N-1} V(\mathbf{u})^{2} s_{\mathbf{n}}(\mathbf{u})^{2} c_{n_{0}} \cdots c_{n_{N-1}}}=t-\sum_{j=0}^{N-1} \frac{s_{\mathbf{n}_{j}}(\mathbf{u})^{2}}{c_{n_{j}} s_{\mathbf{n}}(\mathbf{u})^{2}} .
$$

- In previous talk / 'baby case', we have $\mathbf{n}=(0,1, \ldots, N-1)$.

Thus the denominator is $c_{n_{j}} \cdot 1^{2} \rightsquigarrow$ maximize $s_{\mathbf{n}_{j}}(\mathbf{u})^{2}$ over $[0, \sqrt{\rho}]^{N}$.

- This is easy, since every Schur polynomial is a sum of monomials. What to do in the general case?

The negative threshold

Proof of (3) \Longrightarrow (2).

- If $p_{t}\left[\mathbf{u u}^{T}\right] \in \mathbb{P}_{N}$ for all $\mathbf{u} \in(0, \sqrt{\rho})_{\neq}^{N}$, and $t, c_{n_{0}}, \ldots, c_{n_{N-1}}>0$, then

$$
0 \leqslant \frac{\operatorname{det} p_{t}\left[\mathbf{u} \mathbf{u}^{T}\right]}{t^{N-1} V(\mathbf{u})^{2} s_{\mathbf{n}}(\mathbf{u})^{2} c_{n_{0}} \cdots c_{n_{N-1}}}=t-\sum_{j=0}^{N-1} \frac{s_{\mathbf{n}_{j}}(\mathbf{u})^{2}}{c_{n_{j}} s_{\mathbf{n}}(\mathbf{u})^{2}}
$$

- In previous talk / 'baby case', we have $\mathbf{n}=(0,1, \ldots, N-1)$.

Thus the denominator is $c_{n_{j}} \cdot 1^{2} \rightsquigarrow$ maximize $s_{\mathbf{n}_{j}}(\mathbf{u})^{2}$ over $[0, \sqrt{\rho}]^{N}$.

- This is easy, since every Schur polynomial is a sum of monomials. What to do in the general case?
- ("Wishful thinking!")

If the ratios $s_{\mathbf{n}_{j}} / s_{\mathbf{n}}$ were coordinate-wise non-decreasing, the maximum would again occur (like last time) at $(\sqrt{\rho}, \ldots, \sqrt{\rho})$, and we could proceed.

The negative threshold

Proof of (3) \Longrightarrow (2).

- If $p_{t}\left[\mathbf{u u}^{T}\right] \in \mathbb{P}_{N}$ for all $\mathbf{u} \in(0, \sqrt{\rho})_{\neq}^{N}$, and $t, c_{n_{0}}, \ldots, c_{n_{N-1}}>0$, then

$$
0 \leqslant \frac{\operatorname{det} p_{t}\left[\mathbf{u} \mathbf{u}^{T}\right]}{t^{N-1} V(\mathbf{u})^{2} s_{\mathbf{n}}(\mathbf{u})^{2} c_{n_{0}} \cdots c_{n_{N-1}}}=t-\sum_{j=0}^{N-1} \frac{s_{\mathbf{n}_{j}}(\mathbf{u})^{2}}{c_{n_{j}} s_{\mathbf{n}}(\mathbf{u})^{2}}
$$

- In previous talk / 'baby case', we have $\mathbf{n}=(0,1, \ldots, N-1)$.

Thus the denominator is $c_{n_{j}} \cdot 1^{2} \rightsquigarrow$ maximize $s_{\mathbf{n}_{j}}(\mathbf{u})^{2}$ over $[0, \sqrt{\rho}]^{N}$.

- This is easy, since every Schur polynomial is a sum of monomials. What to do in the general case?
- ("Wishful thinking!")

If the ratios $s_{\mathbf{n}_{j}} / s_{\mathbf{n}}$ were coordinate-wise non-decreasing, the maximum would again occur (like last time) at $(\sqrt{\rho}, \ldots, \sqrt{\rho})$, and we could proceed.

- Need to take a closer look at (ratios of) Schur polynomials. Toy example: use $\mathbf{n}_{j}=(0,2,4)$ and $\mathbf{n}=(0,2,3)$, worked out above.

Schur Monotonicity Lemma

Example: The ratio $s_{\mathbf{n}_{j}}(\mathbf{u}) / s_{\mathbf{n}}(\mathbf{u})$ for $\mathbf{n}_{j}=(0,2,4), \mathbf{n}=(0,2,3)$ is:

$$
f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}, \quad u_{1}, u_{2}, u_{3}>0
$$

Note: both numerator and denominator are monomial-positive (in fact Schur-positive, obviously) - hence non-decreasing in each coordinate.
'Miracle'(?): Their ratio $f(\mathbf{u})$ indeed has the same property!

Schur Monotonicity Lemma

Example: The ratio $s_{\mathbf{n}_{j}}(\mathbf{u}) / s_{\mathbf{n}}(\mathbf{u})$ for $\mathbf{n}_{j}=(0,2,4), \mathbf{n}=(0,2,3)$ is:

$$
f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}, \quad u_{1}, u_{2}, u_{3}>0
$$

Note: both numerator and denominator are monomial-positive (in fact Schur-positive, obviously) - hence non-decreasing in each coordinate.
'Miracle'(?): Their ratio $f(\mathbf{u})$ indeed has the same property!

Theorem (K.-Tao, Amer. J. Math., in press)

For integer tuples $0 \leqslant n_{0}<\cdots<n_{N-1}$ and $0 \leqslant m_{0}<\cdots<m_{N-1}$ such that $n_{j} \leqslant m_{j} \forall j$, the function

$$
f:(0, \infty)^{N} \rightarrow \mathbb{R}, \quad f(\mathbf{u}):=\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})}
$$

is non-decreasing in each coordinate.

Schur Monotonicity Lemma (cont.)

Claim: The ratio $f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}$,
treated as a function on the orthant $(0, \infty)^{3}$, is coordinatewise non-decreasing.

Schur Monotonicity Lemma (cont.)

Claim: The ratio $f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}$,
treated as a function on the orthant $(0, \infty)^{3}$, is coordinatewise non-decreasing.
(Why?) Applying the quotient rule of differentiation to f,

$$
s_{\mathbf{n}}(\mathbf{u}) \partial_{u_{3}} s_{\mathbf{m}}(\mathbf{u})-s_{\mathbf{m}}(\mathbf{u}) \partial_{u_{3}} s_{\mathbf{n}}(\mathbf{u})=\left(u_{1}+u_{2}\right)\left(u_{1} u_{3}+2 u_{1} u_{2}+u_{2} u_{3}\right) u_{3}
$$ and this is monomial-positive.

Schur Monotonicity Lemma (cont.)

Claim: The ratio $f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}$,
treated as a function on the orthant $(0, \infty)^{3}$, is coordinatewise non-decreasing. (Why?) Applying the quotient rule of differentiation to f,

$$
s_{\mathbf{n}}(\mathbf{u}) \partial_{u_{3}} s_{\mathbf{m}}(\mathbf{u})-s_{\mathbf{m}}(\mathbf{u}) \partial_{u_{3}} s_{\mathbf{n}}(\mathbf{u})=\left(u_{1}+u_{2}\right)\left(u_{1} u_{3}+2 u_{1} u_{2}+u_{2} u_{3}\right) u_{3}
$$

and this is monomial-positive.
Now if we write this as $\sum_{j \geqslant 0} p_{j}\left(u_{1}, u_{2}\right) u_{3}^{j}$, then each p_{j} is Schur-positive, i.e. a sum of Schur polynomials:

$$
\begin{aligned}
p_{0}\left(u_{1}, u_{2}\right) & =0 \\
p_{1}\left(u_{1}, u_{2}\right) & =2 u_{1} u_{2}^{2}+2 u_{1}^{2} u_{2}=2 \begin{array}{|c|c|}
\hline 2 & 2 \\
\hline 1 & +2 \\
p_{2}\left(u_{1}, u_{2}\right) & =\left(u_{1}+u_{2}\right)^{2}=\begin{array}{|c|c|}
\hline 2 & 2 \\
\hline 1 & 1 \\
\hline
\end{array}+2 s_{(1,3)}\left(u_{1}, u_{2}\right) \\
& =s_{(0,3)}\left(u_{1}, u_{2}\right)+s_{(1,2)}\left(u_{1}, u_{2}\right)
\end{array}
\end{aligned}
$$

Proof-sketch of Schur Monotonicity Lemma

The proof for general $\mathbf{m} \geqslant \mathbf{n}$ is similar:
By symmetry, and the quotient rule of differentiation, it suffices to show that

$$
s_{\mathbf{n}} \cdot \partial_{u_{N}}\left(s_{\mathbf{m}}\right)-s_{\mathbf{m}} \cdot \partial_{u_{N}}\left(s_{\mathbf{n}}\right)
$$

is numerically positive on $(0, \infty)^{N}$. (Note, the coefficients in $s_{\mathbf{n}}(\mathbf{u})$ of each u_{N}^{j} are skew-Schur polynomials in u_{1}, \ldots, u_{N-1}.)

Proof-sketch of Schur Monotonicity Lemma

The proof for general $\mathbf{m} \geqslant \mathbf{n}$ is similar:
By symmetry, and the quotient rule of differentiation, it suffices to show that

$$
s_{\mathbf{n}} \cdot \partial_{u_{N}}\left(s_{\mathbf{m}}\right)-s_{\mathbf{m}} \cdot \partial_{u_{N}}\left(s_{\mathbf{n}}\right)
$$

is numerically positive on $(0, \infty)^{N}$. (Note, the coefficients in $s_{\mathbf{n}}(\mathbf{u})$ of each u_{N}^{j} are skew-Schur polynomials in u_{1}, \ldots, u_{N-1}.)

The assertion would follow if this expression is monomial-positive.

Proof-sketch of Schur Monotonicity Lemma

The proof for general $\mathbf{m} \geqslant \mathbf{n}$ is similar:
By symmetry, and the quotient rule of differentiation, it suffices to show that

$$
s_{\mathbf{n}} \cdot \partial_{u_{N}}\left(s_{\mathbf{m}}\right)-s_{\mathbf{m}} \cdot \partial_{u_{N}}\left(s_{\mathbf{n}}\right)
$$

is numerically positive on $(0, \infty)^{N}$. (Note, the coefficients in $s_{\mathbf{n}}(\mathbf{u})$ of each u_{N}^{j} are skew-Schur polynomials in u_{1}, \ldots, u_{N-1}.)

The assertion would follow if this expression is monomial-positive.
Our Schur Monotonicity Lemma in fact shows that the coefficient of each u_{N}^{j} is (also) Schur-positive.

Proof-sketch of Schur Monotonicity Lemma

The proof for general $\mathbf{m} \geqslant \mathbf{n}$ is similar:
By symmetry, and the quotient rule of differentiation, it suffices to show that

$$
s_{\mathbf{n}} \cdot \partial_{u_{N}}\left(s_{\mathbf{m}}\right)-s_{\mathbf{m}} \cdot \partial_{u_{N}}\left(s_{\mathbf{n}}\right)
$$

is numerically positive on $(0, \infty)^{N}$. (Note, the coefficients in $s_{\mathbf{n}}(\mathbf{u})$ of each u_{N}^{j} are skew-Schur polynomials in u_{1}, \ldots, u_{N-1}.)

The assertion would follow if this expression is monomial-positive.
Our Schur Monotonicity Lemma in fact shows that the coefficient of each u_{N}^{j} is (also) Schur-positive.

Key ingredient: Schur-positivity result by Lam-Postnikov-Pylyavskyy (2007). (In turn, this emerged out of Skandera's 2004 results on determinant inequalities for totally non-negative matrices.)

Proof-sketch of main result (concl.)

Returning to the proof of the main result:

- If $p_{t}\left[\mathbf{u u}^{T}\right] \in \mathbb{P}_{N}$ for all $\mathbf{u} \in(0, \sqrt{\rho})^{N}$, and $t, c_{n_{0}}, \ldots, c_{n_{N-1}}>0$, then

$$
0 \leqslant \frac{\operatorname{det} p_{t}\left[\mathbf{u u}^{T}\right]}{t^{N-1} V(\mathbf{u})^{2} s_{\mathbf{n}}(\mathbf{u})^{2} c_{n_{0}} \cdots c_{n_{N-1}}}=t-\sum_{j=0}^{N-1} \frac{s_{\mathbf{n}_{j}}(\mathbf{u})^{2}}{c_{n_{j}} s_{\mathbf{n}}(\mathbf{u})^{2}}
$$

Proof-sketch of main result (concl.)

Returning to the proof of the main result:

- If $p_{t}\left[\mathbf{u u}^{T}\right] \in \mathbb{P}_{N}$ for all $\mathbf{u} \in(0, \sqrt{\rho})^{N}$, and $t, c_{n_{0}}, \ldots, c_{n_{N-1}}>0$, then

$$
0 \leqslant \frac{\operatorname{det} p_{t}\left[\mathbf{u} \mathbf{u}^{T}\right]}{t^{N-1} V(\mathbf{u})^{2} s_{\mathbf{n}}(\mathbf{u})^{2} c_{n_{0}} \cdots c_{n_{N-1}}}=t-\sum_{j=0}^{N-1} \frac{s_{\mathbf{n}_{j}}(\mathbf{u})^{2}}{c_{n_{j}} s_{\mathbf{n}}(\mathbf{u})^{2}}
$$

- By the Schur Monotonicity Lemma, this is if and only if

$$
t \geqslant \sum_{j=0}^{N-1} \frac{s_{\mathbf{n}_{j}}(\sqrt{\rho}, \ldots, \sqrt{\rho})^{2}}{c_{n_{j}} s_{\mathbf{n}}(\sqrt{\rho}, \ldots, \sqrt{\rho})^{2}}=\sum_{j=0}^{N-1} \frac{V\left(\mathbf{n}_{j}\right)^{2}}{V(\mathbf{n})^{2}} \frac{\rho^{M-n_{j}}}{c_{n_{j}}}=\mathcal{K}_{\rho, \mathbf{n}, M}
$$

by the Weyl Dimension Formula.

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies:
Suppose $c_{0}, c_{e}, c_{\pi} \neq 0$ are real, $M \in(\pi, \infty)$, and

$$
c_{0}+c_{e} x^{e}+c_{\pi} x^{\pi}+c_{M} x^{M}
$$

entrywise preserves positivity on $\mathbb{P}_{3}((0, \rho))$.
Then $c_{0}, c_{e}, c_{\pi}>0$. Can c_{M} be negative? (Not known.)

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies:
Suppose $c_{0}, c_{e}, c_{\pi} \neq 0$ are real, $M \in(\pi, \infty)$, and

$$
c_{0}+c_{e} x^{e}+c_{\pi} x^{\pi}+c_{M} x^{M}
$$

entrywise preserves positivity on $\mathbb{P}_{3}((0, \rho))$.
Then $c_{0}, c_{e}, c_{\pi}>0$. Can c_{M} be negative? (Not known.)
General case:
Fix an integer $N \geqslant 3$ and real powers $0 \leqslant n_{0}<\cdots<n_{N-1}<M$.
Also fix positive real scalars $\rho, c_{n_{0}}, \ldots, c_{n_{N-1}}>0$. Suppose

$$
f(x)=\sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}+c_{M} x^{M}
$$

entrywise preserves positivity on $\mathbb{P}_{N}((0, \rho))$. Then $c_{n_{j}}>0$ for all j.

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies:
Suppose $c_{0}, c_{e}, c_{\pi} \neq 0$ are real, $M \in(\pi, \infty)$, and

$$
c_{0}+c_{e} x^{e}+c_{\pi} x^{\pi}+c_{M} x^{M}
$$

entrywise preserves positivity on $\mathbb{P}_{3}((0, \rho))$.
Then $c_{0}, c_{e}, c_{\pi}>0$. Can c_{M} be negative? (Not known.)
General case:
Fix an integer $N \geqslant 3$ and real powers $0 \leqslant n_{0}<\cdots<n_{N-1}<M$.
Also fix positive real scalars $\rho, c_{n_{0}}, \ldots, c_{n_{N-1}}>0$. Suppose

$$
f(x)=\sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}+c_{M} x^{M}
$$

entrywise preserves positivity on $\mathbb{P}_{N}((0, \rho))$. Then $c_{n_{j}}>0$ for all j.
Can c_{M} be negative? How about a sharp bound, as above? (More generally, which coefficients in such a preserver can be negative?)

Generalized Vandermonde determinants

The technical heart of the proof is similar:

Theorem (K.-Tao, in press)

Let $N \in \mathbb{N}$ and $0 \leqslant n_{0}<\cdots<n_{N-1}<M$ be real. Suppose $c_{0}, \ldots, c_{N-1} \in(0, \infty)$, and define

$$
p_{t}(x):=t\left(c_{n_{0}} x^{n_{0}}+\cdots+c_{n_{N-1}} x^{n_{N-1}}\right)-x^{M} .
$$

Then for $\mathbf{u} \in(0, \infty)_{\neq}^{N}$,

$$
\operatorname{det} p_{t}\left[\mathbf{u} \mathbf{u}^{T}\right]=t^{N-1} \operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)^{2} \prod_{j=0}^{N-1} c_{n_{j}} \times\left(t-\sum_{j=0}^{N-1} \frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}_{j}}\right)^{2}}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)^{2}}\right)
$$

where $\mathbf{u}^{\text {on }}:=\left(u_{i}^{n_{j-1}}\right)_{i, j=1}^{N}$ is a generalized Vandermonde matrix.

Now need to maximize a ratio of Vandermonde determinants, again with $\mathbf{n}_{j} \geqslant \mathbf{n}$ coordinate-wise.

Schur-Vandermonde Monotonicity Lemma

Theorem (K.-Tao, in press)

For real tuples $n_{0}<\cdots<n_{N-1}$ and $m_{0}<\cdots<m_{N-1}$ such that $n_{j} \leqslant m_{j} \forall j$,

$$
f:(0, \infty)_{\neq}^{N} \rightarrow \mathbb{R}, \quad f(\mathbf{u}):=\frac{\operatorname{det} \mathbf{u}^{\circ \mathbf{m}}}{\operatorname{det} \mathbf{u}^{\circ \mathbf{n}}}
$$

defined over 'pairwise distinct' u_{j}, is non-decreasing in each coordinate.

Schur-Vandermonde Monotonicity Lemma

Theorem (K.-Tao, in press)

For real tuples $n_{0}<\cdots<n_{N-1}$ and $m_{0}<\cdots<m_{N-1}$ such that $n_{j} \leqslant m_{j} \forall j$,

$$
f:(0, \infty)_{\neq}^{N} \rightarrow \mathbb{R}, \quad f(\mathbf{u}):=\frac{\operatorname{det} \mathbf{u}^{\circ \mathbf{m}}}{\operatorname{det} \mathbf{u}^{\circ \mathbf{n}}}
$$

defined over 'pairwise distinct' u_{j}, is non-decreasing in each coordinate.

Proof:

- By multiplying by $\left(u_{1} \cdots u_{N}\right)^{-n_{0}}$, we may assume all $m_{j}, n_{j} \geqslant 0$.

Schur-Vandermonde Monotonicity Lemma

Theorem (K.-Tao, in press)

For real tuples $n_{0}<\cdots<n_{N-1}$ and $m_{0}<\cdots<m_{N-1}$ such that $n_{j} \leqslant m_{j} \forall j$,

$$
f:(0, \infty)_{\neq}^{N} \rightarrow \mathbb{R}, \quad f(\mathbf{u}):=\frac{\operatorname{det} \mathbf{u}^{\circ \mathbf{m}}}{\operatorname{det} \mathbf{u}^{\circ \mathbf{n}}}
$$

defined over 'pairwise distinct' u_{j}, is non-decreasing in each coordinate.

Proof:

- By multiplying by $\left(u_{1} \cdots u_{N}\right)^{-n_{0}}$, we may assume all $m_{j}, n_{j} \geqslant 0$.
- W.I.o.g., $u_{1}<\cdots<u_{N}$. Now if m_{j}, n_{j} are rational, say with common denominator $K \in \mathbb{N}$, work with $y_{j}=u_{j}^{1 / K}$:

$$
f(\mathbf{u})=\frac{\operatorname{det} \mathbf{u}^{\circ \mathbf{m}}}{\operatorname{det} \mathbf{u}^{\circ \mathbf{n}}}=\frac{\operatorname{det} \mathbf{y}^{\circ(K \cdot \mathbf{m})}}{\operatorname{det} \mathbf{y}^{\circ(K \cdot \mathbf{n})}}=\frac{V(\mathbf{y}) \cdot s_{K \cdot \mathbf{m}}(\mathbf{y})}{V(\mathbf{y}) \cdot s_{K \cdot \mathbf{n}}(\mathbf{y})}
$$

This is coordinate-wise non-decreasing in y by the Schur Monotonicity Lemma, hence in \mathbf{u}.

Schur-Vandermonde Monotonicity Lemma

Theorem (K.-Tao, in press)

For real tuples $n_{0}<\cdots<n_{N-1}$ and $m_{0}<\cdots<m_{N-1}$ such that $n_{j} \leqslant m_{j} \forall j$,

$$
f:(0, \infty)_{\neq}^{N} \rightarrow \mathbb{R}, \quad f(\mathbf{u}):=\frac{\operatorname{det} \mathbf{u}^{\circ \mathbf{m}}}{\operatorname{det} \mathbf{u}^{\circ \mathbf{n}}}
$$

defined over 'pairwise distinct' u_{j}, is non-decreasing in each coordinate.

Proof:

- By multiplying by $\left(u_{1} \cdots u_{N}\right)^{-n_{0}}$, we may assume all $m_{j}, n_{j} \geqslant 0$.
- W.I.o.g., $u_{1}<\cdots<u_{N}$. Now if m_{j}, n_{j} are rational, say with common denominator $K \in \mathbb{N}$, work with $y_{j}=u_{j}^{1 / K}$:

$$
f(\mathbf{u})=\frac{\operatorname{det} \mathbf{u}^{\circ \mathbf{m}}}{\operatorname{det} \mathbf{u}^{\circ \mathbf{n}}}=\frac{\operatorname{det} \mathbf{y}^{\circ(K \cdot \mathbf{m})}}{\operatorname{det} \mathbf{y}^{\circ(K \cdot \mathbf{n})}}=\frac{V(\mathbf{y}) \cdot s_{K \cdot \mathbf{m}}(\mathbf{y})}{V(\mathbf{y}) \cdot s_{K \cdot \mathbf{n}}(\mathbf{y})}
$$

This is coordinate-wise non-decreasing in y by the Schur Monotonicity Lemma, hence in \mathbf{u}.

- Finally, extend to real tuples \mathbf{m}, \mathbf{n} by rational approximation.

Main result (for real powers)

This helps show:
Theorem (K.-Tao, Amer. J. Math., in press)
Fix $N \in \mathbb{N}$ and real scalars

$$
n_{0}<\cdots<n_{N-1}<M, \quad \rho>0, \quad c_{n_{0}}, \ldots, c_{n_{N-1}}
$$

For $t>0$, define $p_{t}(x):=t \sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}-x^{M}$. The following are equivalent.

Main result (for real powers)

This helps show:
Theorem (K.-Tao, Amer. J. Math., in press)
Fix $N \in \mathbb{N}$ and real scalars

$$
n_{0}<\cdots<n_{N-1}<M, \quad \rho>0, \quad c_{n_{0}}, \ldots, c_{n_{N-1}}
$$

For $t>0$, define $p_{t}(x):=t \sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}-x^{M}$. The following are equivalent.
(1) $p_{t}[-]$ preserves positivity on rank-one matrices in $\mathbb{P}_{N}((0, \rho))$.
(2) All coefficients $c_{n_{j}}>0$, and

$$
t \geqslant \mathcal{K}_{\rho, \mathbf{n}, M}:=\sum_{j=0}^{N-1} \frac{V\left(\mathbf{n}_{j}\right)^{2}}{V(\mathbf{n})^{2}} \frac{\rho^{M-n_{j}}}{c_{n_{j}}} .
$$

(3) $p_{t}[-]$ preserves positivity on Hankel rank-one matrices in $\mathbb{P}_{N}((0, \rho))$.

Main result (for real powers)

This helps show:
Theorem (K.-Tao, Amer. J. Math., in press)
Fix $N \in \mathbb{N}$ and real scalars

$$
n_{0}<\cdots<n_{N-1}<M, \quad \rho>0, \quad c_{n_{0}}, \ldots, c_{n_{N-1}}
$$

For $t>0$, define $p_{t}(x):=t \sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}-x^{M}$. The following are equivalent.
(1) $p_{t}[-]$ preserves positivity on rank-one matrices in $\mathbb{P}_{N}((0, \rho))$.
(2) All coefficients $c_{n_{j}}>0$, and

$$
t \geqslant \mathcal{K}_{\rho, \mathbf{n}, M}:=\sum_{j=0}^{N-1} \frac{V\left(\mathbf{n}_{j}\right)^{2}}{V(\mathbf{n})^{2}} \frac{\rho^{M-n_{j}}}{c_{n_{j}}} .
$$

(3) $p_{t}[-]$ preserves positivity on Hankel rank-one matrices in $\mathbb{P}_{N}((0, \rho))$.

If all $n_{j} \in \mathbb{Z}^{\geqslant 0} \cup[N-2, \infty)$, then the rank-constraint in (1) can be removed.

Extension to power series

The above results say that if $f(x):=\sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}$ and $g(x):=x^{M}$ for an integer $M>n_{N-1}$, then we have the linear matrix inequality

$$
f[A] \geqslant \mathcal{K}_{\rho, \mathbf{n}, M}^{-1} \cdot A^{\circ M}=\mathcal{K}_{\rho, \mathbf{n}, M}^{-1} \cdot g[A], \quad \forall A \in \mathbb{P}_{N}((0, \rho))
$$

Extension to power series

The above results say that if $f(x):=\sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}$ and $g(x):=x^{M}$ for an integer $M>n_{N-1}$, then we have the linear matrix inequality

$$
f[A] \geqslant \mathcal{K}_{\rho, \mathbf{n}, M}^{-1} \cdot A^{\circ M}=\mathcal{K}_{\rho, \mathbf{n}, M}^{-1} \cdot g[A], \quad \forall A \in \mathbb{P}_{N}((0, \rho))
$$

By summing finitely many such inequalities, if $g(x)=\sum_{M>n_{N-1}} c_{M} x^{M}$, then

$$
f[A] \geqslant \mathcal{K}_{\rho, \mathbf{n}, g}^{-1} \cdot g[A],
$$

for a finite constant $\mathcal{K}_{\rho, \mathbf{n}, g}$.

Extension to power series

The above results say that if $f(x):=\sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}$ and $g(x):=x^{M}$ for an integer $M>n_{N-1}$, then we have the linear matrix inequality

$$
f[A] \geqslant \mathcal{K}_{\rho, \mathbf{n}, M}^{-1} \cdot A^{\circ M}=\mathcal{K}_{\rho, \mathbf{n}, M}^{-1} \cdot g[A], \quad \forall A \in \mathbb{P}_{N}((0, \rho)) .
$$

By summing finitely many such inequalities, if $g(x)=\sum_{M>n_{N-1}} c_{M} x^{M}$, then

$$
f[A] \geqslant \mathcal{K}_{\rho, \mathbf{n}, g}^{-1} \cdot g[A],
$$

for a finite constant $\mathcal{K}_{\rho, \mathbf{n}, g}$.

Question: Is it possible to upper-bound $g[A]$ by $\mathcal{K}_{\rho, \mathbf{n}, g} \cdot f[A]$, for an arbitrary power series that is convergent on $(0, \rho)$?

$$
g(x)=\sum_{M=\left\lfloor n_{N-1}\right\rfloor+1}^{\infty} c_{M} x^{M}
$$

Extension to power series

The above results say that if $f(x):=\sum_{j=0}^{N-1} c_{n_{j}} x^{n_{j}}$ and $g(x):=x^{M}$ for an integer $M>n_{N-1}$, then we have the linear matrix inequality

$$
f[A] \geqslant \mathcal{K}_{\rho, \mathbf{n}, M}^{-1} \cdot A^{\circ M}=\mathcal{K}_{\rho, \mathbf{n}, M}^{-1} \cdot g[A], \quad \forall A \in \mathbb{P}_{N}((0, \rho))
$$

By summing finitely many such inequalities, if $g(x)=\sum_{M>n_{N-1}} c_{M} x^{M}$, then

$$
f[A] \geqslant \mathcal{K}_{\rho, \mathbf{n}, g}^{-1} \cdot g[A]
$$

for a finite constant $\mathcal{K}_{\rho, \mathbf{n}, g}$.
Question: Is it possible to upper-bound $g[A]$ by $\mathcal{K}_{\rho, \mathbf{n}, g} \cdot f[A]$, for an arbitrary power series that is convergent on $(0, \rho)$?

$$
g(x)=\sum_{M=\left\lfloor n_{N-1}\right\rfloor+1}^{\infty} c_{M} x^{M}
$$

Proposition (K.-Tao)

Yes.

Further applications

(1) In fact we work with more general 'Laplace transforms'

$$
g(x)=\int_{n_{N-1}+\varepsilon}^{\infty} x^{t} d \mu(t), \quad \varepsilon>0
$$

which are absolutely convergent at ρ. The sharp threshold bounds above imply here as well, that a finite constant $\mathcal{K}_{\rho, \mathbf{n}, g}$ exists.

Further applications

(1) In fact we work with more general 'Laplace transforms'

$$
g(x)=\int_{n_{N-1}+\varepsilon}^{\infty} x^{t} d \mu(t), \quad \varepsilon>0
$$

which are absolutely convergent at ρ. The sharp threshold bounds above imply here as well, that a finite constant $\mathcal{K}_{\rho, \mathbf{n}, g}$ exists.
(2) These results lead to (sharp) linear matrix inequalities, for Hadamard powers.

Further applications

(1) In fact we work with more general 'Laplace transforms'

$$
g(x)=\int_{n_{N-1}+\varepsilon}^{\infty} x^{t} d \mu(t), \quad \varepsilon>0
$$

which are absolutely convergent at ρ. The sharp threshold bounds above imply here as well, that a finite constant $\mathcal{K}_{\rho, \mathbf{n}, g}$ exists.
(2) These results lead to (sharp) linear matrix inequalities, for Hadamard powers.
(3) Application to spectrahedra and matrix cubes:

Upper and lower bounds, which are asymptotically equal.
(4) Reformulation in terms of generalized Rayleigh quotients.

Weak majorization through Schur polynomials

- Our Schur Monotonicity Lemma implies in particular:

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in[1, \infty)^{N}
$$

if \mathbf{m} dominates \mathbf{n} coordinatewise.

- 'Natural' to ask: for which other tuples \mathbf{m}, \mathbf{n} does this inequality hold?

Weak majorization through Schur polynomials

- Our Schur Monotonicity Lemma implies in particular:

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in[1, \infty)^{N}
$$

if \mathbf{m} dominates \mathbf{n} coordinatewise.

- 'Natural' to ask: for which other tuples \mathbf{m}, \mathbf{n} does this inequality hold?

We extend this to real tuples (generalized Vandermonde determinants):
Theorem (K.-Tao, Amer. J. Math., in press)
Given reals $n_{0}<\cdots<n_{N-1}$ and $m_{0}<\cdots<m_{N-1}$, TFAE:
(1) We have $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all 'distinct' tuples $\mathbf{u} \in[1, \infty)_{\neq}^{N}$.
(2) \mathbf{m} weakly majorizes \mathbf{n}-i.e., $m_{N-1}+\cdots+m_{j} \geqslant n_{N-1}+\cdots+n_{j} \forall j$.

Weak majorization through Schur polynomials

- Our Schur Monotonicity Lemma implies in particular:

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in[1, \infty)^{N}
$$

if \mathbf{m} dominates \mathbf{n} coordinatewise.

- 'Natural' to ask: for which other tuples \mathbf{m}, \mathbf{n} does this inequality hold?

We extend this to real tuples (generalized Vandermonde determinants):
Theorem (K.-Tao, Amer. J. Math., in press)
Given reals $n_{0}<\cdots<n_{N-1}$ and $m_{0}<\cdots<m_{N-1}$, TFAE:
(1) We have $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all 'distinct' tuples $\mathbf{u} \in[1, \infty)_{\neq}^{N}$.
(2) \mathbf{m} weakly majorizes \mathbf{n}-i.e., $m_{N-1}+\cdots+m_{j} \geqslant n_{N-1}+\cdots+n_{j} \forall j$.

This problem was studied originally by Skandera and others in the 2010s, for integer powers, and on the entire positive orthant $(0, \infty)^{N}$:

Cuttler-Greene-Skandera conjecture

Theorem (Cuttler-Greene-Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers $0 \leqslant n_{0}<\cdots<n_{N-1}$ and $0 \leqslant m_{0}<\cdots<m_{N-1}$. Then

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in(0, \infty)^{N}
$$

if and only if \mathbf{m} majorizes \mathbf{n}.
Majorization $=($ weak majorization $)+\left(\sum_{j} m_{j}=\sum_{j} n_{j}\right)$.

Cuttler-Greene-Skandera conjecture

Theorem (Cuttler-Greene-Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers $0 \leqslant n_{0}<\cdots<n_{N-1}$ and $0 \leqslant m_{0}<\cdots<m_{N-1}$. Then

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in(0, \infty)^{N}
$$

if and only if \mathbf{m} majorizes \mathbf{n}.
Majorization $=($ weak majorization $)+\left(\sum_{j} m_{j}=\sum_{j} n_{j}\right)$.

Questions:

(1) Does this characterization extend to real powers?
(2) Can we use a smaller subset than the full orthant $(0, \infty)^{N}$, to deduce majorization?

Cuttler-Greene-Skandera conjecture

Theorem (Cuttler-Greene-Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers $0 \leqslant n_{0}<\cdots<n_{N-1}$ and $0 \leqslant m_{0}<\cdots<m_{N-1}$. Then

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in(0, \infty)^{N}
$$

if and only if \mathbf{m} majorizes \mathbf{n}.
Majorization $=($ weak majorization $)+\left(\sum_{j} m_{j}=\sum_{j} n_{j}\right)$.

Questions:

(1) Does this characterization extend to real powers?
(2) Can we use a smaller subset than the full orthant $(0, \infty)^{N}$, to deduce majorization?

Yes, and Yes:

Majorization via Vandermonde determinants

Theorem (K.-Tao, Amer. J. Math., in press)
Given reals $n_{0}<\cdots<n_{N-1}$ and $m_{0}<\cdots<m_{N-1}$, TFAE:
(1) We have $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all 'distinct' tuples $\mathbf{u} \in(0, \infty)_{\neq}^{N}$.
(2) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all 'distinct' tuples $\mathbf{u} \in(0,1]_{\neq}^{N} \cup[1, \infty)_{\neq}^{N}$.
(3) m majorizes n .

Majorization via Vandermonde determinants

Theorem (K.-Tao, Amer. J. Math., in press)

Given reals $n_{0}<\cdots<n_{N-1}$ and $m_{0}<\cdots<m_{N-1}$, TFAE:
(1) We have $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all 'distinct' tuples $\mathbf{u} \in(0, \infty)_{\neq}^{N}$.
(2) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all 'distinct' tuples $\mathbf{u} \in(0,1]_{\neq}^{N} \cup[1, \infty)_{\neq}^{N}$.
(3) m majorizes n .

Proof:

- $(1) \Longrightarrow(2)$: Obvious. $\quad(3) \Longrightarrow(1)$: Akin to Sra (2016).
- $(2) \Longrightarrow(3)$: If $\mathbf{u} \in[1, \infty)_{\neq}^{N}$, then by our preceding result: $\mathbf{m} \succ_{w} \mathbf{n}$.

Majorization via Vandermonde determinants

Theorem (K.-Tao, Amer. J. Math., in press)

Given reals $n_{0}<\cdots<n_{N-1}$ and $m_{0}<\cdots<m_{N-1}$, TFAE:
(1) We have $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all 'distinct' tuples $\mathbf{u} \in(0, \infty)_{\neq}^{N}$.
(2) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all 'distinct' tuples $\mathbf{u} \in(0,1]_{\neq}^{N} \cup[1, \infty)_{\neq}^{N}$.
(3) m majorizes n .

Proof:

- $(1) \Longrightarrow(2)$: Obvious. $\quad(3) \Longrightarrow(1)$: Akin to Sra (2016).
- $(2) \Longrightarrow(3)$: If $\mathbf{u} \in[1, \infty)_{\neq}^{N}$, then by our preceding result: $\mathbf{m} \succ_{w} \mathbf{n}$. If $\mathbf{u} \in(0,1]_{\neq}^{N}$, let $v_{j}:=1 / u_{j} \geqslant 1$; then we get:

$$
\frac{\operatorname{det}\left(\mathbf{v}^{\circ(-\mathbf{m})}\right)}{\operatorname{det}\left(\mathbf{v}^{\circ(-\mathbf{n})}\right)}=\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}=\frac{V(-\mathbf{m})}{V(-\mathbf{n})}
$$

Our preceding result: $\mathbf{- m} \succ_{w}-\mathbf{n}$;

Majorization via Vandermonde determinants

Theorem (K.-Tao, Amer. J. Math., in press)

Given reals $n_{0}<\cdots<n_{N-1}$ and $m_{0}<\cdots<m_{N-1}$, TFAE:
(1) We have $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all 'distinct' tuples $\mathbf{u} \in(0, \infty)_{\neq}^{N}$.
(2) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all 'distinct' tuples $\mathbf{u} \in(0,1]_{\neq}^{N} \cup[1, \infty)_{\neq}^{N}$.
(3) m majorizes n .

Proof:

- $(1) \Longrightarrow(2)$: Obvious. $\quad(3) \Longrightarrow(1)$: Akin to Sra (2016).
- $(2) \Longrightarrow(3)$: If $\mathbf{u} \in[1, \infty)_{\neq}^{N}$, then by our preceding result: $\mathbf{m} \succ_{w} \mathbf{n}$. If $\mathbf{u} \in(0,1]_{\neq}^{N}$, let $v_{j}:=1 / u_{j} \geqslant 1$; then we get:

$$
\frac{\operatorname{det}\left(\mathbf{v}^{\circ(-\mathbf{m})}\right)}{\operatorname{det}\left(\mathbf{v}^{\circ(-\mathbf{n})}\right)}=\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}=\frac{V(-\mathbf{m})}{V(-\mathbf{n})}
$$

Our preceding result: $\mathbf{- m} \succ_{w} \mathbf{-} \mathbf{n}$; and $\mathbf{m} \succ_{w} \mathbf{n} \Longleftrightarrow \mathbf{m}$ majorizes \mathbf{n}.

Open question: Optimizing over $[-1,1]^{N}$?

- The previous talk and this talk concerned polynomials/power series that entrywise preserve positive semidefiniteness in a fixed dimension.
- The maximization of $s_{\mathbf{m}}(\mathbf{u}) / s_{\mathbf{n}}(\mathbf{u})$ over $(0,1]^{N}$ reveals tight bounds on certain polynomial preservers, acting on $\mathbb{P}_{N}([0,1])$. (By homogeneity and continuity, maximize only over the cube-boundary $(0,1]^{N} \cap \partial(0,1]^{N}$.)

Open question: Optimizing over $[-1,1]^{N}$?

- The previous talk and this talk concerned polynomials/power series that entrywise preserve positive semidefiniteness in a fixed dimension.
- The maximization of $s_{\mathbf{m}}(\mathbf{u}) / s_{\mathbf{n}}(\mathbf{u})$ over $(0,1]^{N}$ reveals tight bounds on certain polynomial preservers, acting on $\mathbb{P}_{N}([0,1])$. (By homogeneity and continuity, maximize only over the cube-boundary $(0,1]^{N} \cap \partial(0,1]^{N}$.)
- What about on all correlation matrices? Need to upper-bound $s_{\mathbf{m}}(\mathbf{u})^{2} / s_{\mathbf{n}}(\mathbf{u})^{2}$ over all of $[-1,1]^{N} \backslash\{0\}$.
- For this, need to ensure $s_{\mathbf{n}}(\mathbf{u})$ does not vanish except at 0 . Facts:
(1) The only such $\mathbf{n}=(0,1, \ldots, N-2, N-1+2 r)$ for $r \in \mathbb{Z} \geqslant 0$.
(2) All such $s_{\mathbf{n}}(\mathbf{u})$ are complete symmetric homogeneous polynomials $h_{2 r}(\mathbf{u})$, and they are positive on $\mathbb{R}^{N} \backslash\{0\}$.

Open question: Optimizing over $[-1,1]^{N}$?

- The previous talk and this talk concerned polynomials/power series that entrywise preserve positive semidefiniteness in a fixed dimension.
- The maximization of $s_{\mathbf{m}}(\mathbf{u}) / s_{\mathbf{n}}(\mathbf{u})$ over $(0,1]^{N}$ reveals tight bounds on certain polynomial preservers, acting on $\mathbb{P}_{N}([0,1])$. (By homogeneity and continuity, maximize only over the cube-boundary $(0,1]^{N} \cap \partial(0,1]^{N}$.)
- What about on all correlation matrices? Need to upper-bound $s_{\mathbf{m}}(\mathbf{u})^{2} / s_{\mathbf{n}}(\mathbf{u})^{2}$ over all of $[-1,1]^{N} \backslash\{0\}$.
- For this, need to ensure $s_{\mathbf{n}}(\mathbf{u})$ does not vanish except at 0 . Facts:
(1) The only such $\mathbf{n}=(0,1, \ldots, N-2, N-1+2 r)$ for $r \in \mathbb{Z}^{\geqslant 0}$.
(2) All such $s_{\mathbf{n}}(\mathbf{u})$ are complete symmetric homogeneous polynomials $h_{2 r}(\mathbf{u})$, and they are positive on $\mathbb{R}^{N} \backslash\{0\}$.

Question: Say $m_{j} \geqslant j$ for $j=0,1, \ldots, N-2$, and $m_{N-1} \geqslant N-1+2 r$. Maximize $\frac{s_{\mathbf{m}}(\mathbf{u})^{2}}{h_{2 r}(\mathbf{u})^{2}}$ on $[-1,1]^{N} \backslash\{0\}$ - or just on its cube-boundary.

Selected publications

A. Belton, D. Guillot, A. Khare, and M. Putinar:
[1] Matrix positivity preservers in fixed dimension. I, Advances in Math., 2016.
[2] Moment-sequence transforms, J. Eur. Math. Soc., accepted.
[3] A panorama of positivity (survey), Shimorin volume + Ransford- 60 proc.
[4] On the sign patterns of entrywise positivity preservers in fixed dimension, (With T. Tao) Amer. J. Math., in press.
[5] Matrix analysis and preservers of (total) positivity, 2020+, Lecture notes (website); forthcoming book - Cambridge Press + TRIM.

