
Entrywise positivity preservers in fixed dimension:
II

Apoorva Khare
IISc and APRG (Bangalore, India)

(Joint with Alexander Belton, Dominique Guillot, and Mihai Putinar;
and with Terence Tao)



Reminders; Improved main result
Extensions to real powers; (Weak) Majorization

Recap
The main result, and the Schur monotonicity lemma

The entrywise calculus

Definitions.
1 A real symmetric matrix AN×N is positive semidefinite if all eigenvalues

of A are > 0. (Equivalently, uTAu > 0 for all u ∈ RN .)

2 Given N > 1 and I ⊂ R, let PN (I) denote the N ×N positive
semidefinite matrices, with entries in I. (Say PN = PN (R).)

3 A function f : I → R acts entrywise on a matrix A via: f [A] := (f(aij)).
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Reminders; Improved main result
Extensions to real powers; (Weak) Majorization

Recap
The main result, and the Schur monotonicity lemma

Schoenberg and Rudin’s theorems

Problem: Given a function f : I → R, when is it true that
f [A] := (f(aij)) ∈ PN for all A ∈ PN (I)?

Pólya–Szegö (1925 book) via the Schur product theorem (Crelle 1911):

If f(x) =
∑∞
k=0 ckx

k is convergent and ck > 0, then f [−] preserves
positivity on PN in all dimensions.

Schoenberg (Duke 1942):

The converse also holds, if f is continuous.

Rudin (Duke 1959); resp. Belton–Guillot–K.–Putinar (JEMS , accepted):

The converse holds for any f, and we only need to assume f [−] preserves
positivity on all Toeplitz (resp. Hankel) matrices of rank 6 3.
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Positivity preservers in fixed dimension
Preserving positivity for fixed N :

Natural refinement of original problem of Schoenberg.

In applications: dimension of the problem is known.
Unnecessarily restrictive to preserve positivity in all dimensions.

Known for N = 2 (Vasudeva, IJPAM 1979). Open for N > 3.

In this talk, we focus on sums of powers
∑
α>0 cαx

α – with α ∈ (0,∞) –
acting on PN ((0, ρ)).

Question: Find such a function with a negative coefficient, preserving positivity
on PN for a fixed N > 3.

Was not known since Schoenberg’s Duke 1942 paper.

Loewner’s necessary condition / variants: If f is any smooth function
preserving positivity on PN ((0, ρ)), then the first N nonzero Maclaurin
coefficients of f must be positive. Can the next one be negative?

Previous talk: Belton–Guillot–K.–Putinar, Adv. Math. 2016:
Yes, if the first N degrees are consecutive.
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Outstanding questions: 1. More general polynomials

Analogue of Loewner’s necessary condition implies:
Suppose c0, c2, c3 6= 0 are real, M > 4, and c0 + c2x

2 + c3x
3 + cMx

M

entrywise preserves positivity on 3× 3 correlation matrices.
Then c0, c2, c3 > 0. Can cM be negative? (Not known.)

General case: Fix integers N > 3 and 0 6 n0 < · · · < nN−1 < M, not all nj
consecutive. Also fix real scalars ρ > 0 and cn0 , . . . , cnN−1 6= 0. Suppose

f(x) =

N−1∑
j=0

cnjx
nj + cMx

M

entrywise preserves positivity on PN ((0, ρ)). Then cnj > 0 ∀j. Can cM < 0?

Reformulation: Multiplying by t = |cM |−1, does

pt(x) := t

N−1∑
j=0

cnjx
nj − xM

entrywise preserve positivity on PN ((0, ρ)) for any t > 0? No example known.
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Main result (for integer powers)

Theorem (K.–Tao, Amer. J. Math., in press)

Fix integers N > 1 and 0 6 n0 < · · · < nN−1 < M, and real scalars ρ > 0 and
cn0 , . . . , cnN−1 . For t > 0, define pt(x) := t

∑N−1
j=0 cnjx

nj − xM .

Then the following are equivalent.

1 pt[−] preserves positivity on PN ((0, ρ)).

2 All coefficients cnj > 0, and

t > Kρ,n,M :=

N−1∑
j=0

V (nj)
2

V (n)2
ρM−nj

cnj

,

where n := (n0, . . . , nN−1), the tuples

nj := (n0, . . . , nj−1, n̂j , nj+1, . . . , nN−1,M), 0 6 j 6 N − 1,

and given a vector u = (u1, . . . , uN ), its ‘Vandermonde determinant’ is

V ((u1, . . . , uN )) := det(uj−1
i ) =

∏
16i<j6N

(uj − ui).

3 pt[−] preserves positivity on Hankel rank-one matrices in PN ((0, ρ)).
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Consequences

1 For the ‘initial’, consecutive powers nj = j as in previous talk,

Kρ,n,M =

N−1∑
j=0

(
M

j

)2(
M − j − 1

N − j − 1

)2
ρM−j

cj
= Kρ,M .

2 Quantitative version of Schoenberg’s theorem in fixed dimension:
first examples of polynomials that work for PN but not for PN+1.
(“The Loewner–Horn theorem is sharp.”)

3 Complete characterization of ‘fewnomials’ with at most N + 1 terms,
which preserve positivity on PN .

4 Surprisingly, the sharp bound on the negative threshold is obtained on
rank 1 matrices.
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Sketch of the proof

Theorem (K.–Tao, in press)

Let N > 1 and 0 6 n0 < · · · < nN−1 < M be integers. If ρ, t, cn0 , . . . , cnN−1 > 0,

and pt(x) := t
∑
j<N cnjx

nj − xM , TFAE:

1 pt[−] preserves positivity on PN ((0, ρ)).

2 t > Kρ,n,M .

3 pt[−] preserves positivity on Hankel rank one matrices in PN ((0, ρ)).

(1) =⇒ (3): Immediate.

(3) =⇒ (2): How does the constant Kρ,n,M appear from rank-one matrices?

Study the determinants of linear pencils

det pt[A] = det
(
t(cn0A

◦n0 + · · ·+ cnN−1A
◦nN−1)−A◦M

)
for rank-one matrices A = uvT .
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2 t > Kρ,n,M .

3 pt[−] preserves positivity on Hankel rank one matrices in PN ((0, ρ)).

(1) =⇒ (3): Immediate.

(3) =⇒ (2): How does the constant Kρ,n,M appear from rank-one matrices?

Study the determinants of linear pencils

det pt[A] = det
(
t(cn0A

◦n0 + · · ·+ cnN−1A
◦nN−1)−A◦M

)
for rank-one matrices A = uvT .
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Recap
The main result, and the Schur monotonicity lemma

Schur polynomials
Given an increasing N -tuple of integers 0 6 n0 < · · · < nN−1,
the corresponding Schur polynomial over a field F is the unique polynomial
extension to FN of

sn(u1, . . . , uN ) :=
det(u

nj−1

i )Ni,j=1

det(uj−1
i )

=
det(u

nj−1

i )Ni,j=1

V (u)

for pairwise distinct ui ∈ F.

Note that the denominator is precisely the
Vandermonde determinant

V ((u1, . . . , uN )) := det(uj−1
i ) =

∏
16i<j6N

(uj − ui).

Basis of homogeneous symmetric polynomials in u1, . . . , uN .

Characters of irreducible polynomial representations of GLN (C),
usually defined in terms of semi-standard Young tableaux.

Weyl Character (Dimension) Formula in Type A:

sn(1, . . . , 1) =
∏

16i<j6N

nj − ni
j − i =

V (n)

V ((0, 1, . . . , N − 1))
.
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Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose N = 3 and m := (0, 2, 4). The tableaux are:

3 3

2

3 3

1

3 2

2

3 2

1

3 1

2

3 1

1

2 2

1

2 1

1

s(0,2,4)(u1, u2, u3)

= u2
3u2 + u2

3u1 + u3u
2
2 + 2u3u2u1 + u3u

2
1 + u2

2u1 + u2u
2
1

= (u1 + u2)(u2 + u3)(u3 + u1).

Example 2: Suppose N = 3 and n = (0, 2, 3): 3

2

3

1

2

1

Then s(0,2,3)(u1, u2, u3) = u1u2 + u2u3 + u3u1.
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Sketch of the proof of the main result (cont.)

Technical result used in the proof: Jacobi–Trudi type identity for pt:

Theorem (K.–Tao, in press)

Let N > 1 and 0 6 n0 < · · · < nN−1 < M be integers. Suppose
c0, . . . , cN−1 ∈ F× are non-zero scalars in a field F. Define the polynomial

pt(x) := t(cn0x
n0 + · · ·+ cnN−1x

nN−1)− xM ,

and the partitions n = (n0, . . . , nN−1) and nj = (n0, . . . , n̂j , . . . , nN−1,M)
as above.

The following identity holds for all u,v ∈ FN :

det pt[uv
T ] = tN−1V (u)V (v)sn(u)sn(v)

N−1∏
j=0

cnj ×
(
t−

N−1∑
j=0

snj (u)snj (v)

cnj sn(u)sn(v)

)
.

Apoorva Khare, IISc Bangalore 11 / 27
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The negative threshold

Proof of (3) =⇒ (2).

If pt[uuT ] ∈ PN for all u ∈ (0,
√
ρ)N6= , and t, cn0 , . . . , cnN−1 > 0, then

0 6
det pt[uu

T ]

tN−1V (u)2sn(u)2cn0 · · · cnN−1

= t−
N−1∑
j=0

snj (u)
2

cnj sn(u)
2
.

In previous talk / ‘baby case’, we have n = (0, 1, . . . , N − 1).
Thus the denominator is cnj · 12  maximize snj (u)

2 over [0,
√
ρ]N .

This is easy, since every Schur polynomial is a sum of monomials. What
to do in the general case?

(“Wishful thinking!”)
If the ratios snj/sn were coordinate-wise non-decreasing, the maximum
would again occur (like last time) at (

√
ρ, . . . ,

√
ρ), and we could proceed.

Need to take a closer look at (ratios of) Schur polynomials.
Toy example: use nj = (0, 2, 4) and n = (0, 2, 3), worked out above.
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Schur Monotonicity Lemma

Example: The ratio snj (u)/sn(u) for nj = (0, 2, 4), n = (0, 2, 3) is:

f(u1, u2, u3) =
(u1 + u2)(u2 + u3)(u3 + u1)

u1u2 + u2u3 + u3u1
, u1, u2, u3 > 0.

Note: both numerator and denominator are monomial-positive (in fact
Schur-positive, obviously) – hence non-decreasing in each coordinate.

‘Miracle’(?): Their ratio f(u) indeed has the same property!

Theorem (K.–Tao, Amer. J. Math., in press)

For integer tuples 0 6 n0 < · · · < nN−1 and 0 6 m0 < · · · < mN−1 such that
nj 6 mj ∀j, the function

f : (0,∞)N → R, f(u) :=
sm(u)

sn(u)

is non-decreasing in each coordinate.
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Schur Monotonicity Lemma (cont.)

Claim: The ratio f(u1, u2, u3) =
(u1 + u2)(u2 + u3)(u3 + u1)

u1u2 + u2u3 + u3u1
,

treated as a function on the orthant (0,∞)3, is coordinatewise non-decreasing.

(Why?) Applying the quotient rule of differentiation to f,

sn(u)∂u3sm(u)− sm(u)∂u3sn(u) = (u1 + u2)(u1u3 + 2u1u2 + u2u3)u3,

and this is monomial-positive.

Now if we write this as
∑
j>0 pj(u1, u2)u

j
3, then each pj is Schur-positive,

i.e. a sum of Schur polynomials:

p0(u1, u2) = 0,

p1(u1, u2) = 2u1u
2
2 + 2u2

1u2 = 2
2 2

1
+ 2

2 1

1
= 2s(1,3)(u1, u2),

p2(u1, u2) = (u1 + u2)
2 =

2 2
+

2 1
+

1 1
+

2

1

= s(0,3)(u1, u2) + s(1,2)(u1, u2).
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Proof-sketch of Schur Monotonicity Lemma

The proof for general m > n is similar:

By symmetry, and the quotient rule of differentiation, it suffices to show that

sn · ∂uN (sm)− sm · ∂uN (sn)

is numerically positive on (0,∞)N . (Note, the coefficients in sn(u) of each ujN
are skew-Schur polynomials in u1, . . . , uN−1.)

The assertion would follow if this expression is monomial-positive.

Our Schur Monotonicity Lemma in fact shows that the coefficient of each ujN
is (also) Schur-positive.

Key ingredient: Schur-positivity result by Lam–Postnikov–Pylyavskyy (2007).
(In turn, this emerged out of Skandera’s 2004 results on determinant
inequalities for totally non-negative matrices.)
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The main result, and the Schur monotonicity lemma

Proof-sketch of Schur Monotonicity Lemma
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Recap
The main result, and the Schur monotonicity lemma

Proof-sketch of main result (concl.)

Returning to the proof of the main result:

If pt[uuT ] ∈ PN for all u ∈ (0,
√
ρ)N , and t, cn0 , . . . , cnN−1 > 0, then

0 6
det pt[uu

T ]

tN−1V (u)2sn(u)2cn0 · · · cnN−1

= t−
N−1∑
j=0

snj (u)
2

cnj sn(u)
2
.

By the Schur Monotonicity Lemma, this is if and only if

t >
N−1∑
j=0

snj (
√
ρ, . . . ,

√
ρ)2

cnj sn(
√
ρ, . . . ,

√
ρ)2

=

N−1∑
j=0

V (nj)
2

V (n)2
ρM−nj

cnj

= Kρ,n,M ,

by the Weyl Dimension Formula.
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Extensions to real powers and power series
(Weak) Majorization, via Schur polynomials

Outstanding questions: 2. Real powers
Analogue of Loewner’s necessary condition implies:
Suppose c0, ce, cπ 6= 0 are real, M ∈ (π,∞), and

c0 + cex
e + cπx

π + cMx
M

entrywise preserves positivity on P3((0, ρ)).
Then c0, ce, cπ > 0. Can cM be negative? (Not known.)

General case:
Fix an integer N > 3 and real powers 0 6 n0 < · · · < nN−1 < M .
Also fix positive real scalars ρ, cn0 , . . . , cnN−1 > 0. Suppose

f(x) =

N−1∑
j=0

cnjx
nj + cMx

M

entrywise preserves positivity on PN ((0, ρ)). Then cnj > 0 for all j.

Can cM be negative? How about a sharp bound, as above?
(More generally, which coefficients in such a preserver can be negative?)
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Generalized Vandermonde determinants

The technical heart of the proof is similar:

Theorem (K.–Tao, in press)

Let N ∈ N and 0 6 n0 < · · · < nN−1 < M be real. Suppose
c0, . . . , cN−1 ∈ (0,∞), and define

pt(x) := t(cn0x
n0 + · · ·+ cnN−1x

nN−1)− xM .

Then for u ∈ (0,∞)N6= ,

det pt[uu
T ] = tN−1 det(u◦n)2

N−1∏
j=0

cnj ×
(
t−

N−1∑
j=0

det(u◦nj )2

det(u◦n)2

)
,

where u◦n := (u
nj−1

i )Ni,j=1 is a generalized Vandermonde matrix.

Now need to maximize a ratio of Vandermonde determinants, again with
nj > n coordinate-wise.
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Extensions to real powers and power series
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Schur–Vandermonde Monotonicity Lemma

Theorem (K.–Tao, in press)

For real tuples n0 < · · · < nN−1 and m0 < · · · < mN−1 such that nj 6 mj ∀j,

f : (0,∞)N6= → R, f(u) :=
detu◦m

detu◦n

defined over ‘pairwise distinct’ uj , is non-decreasing in each coordinate.

Proof:

By multiplying by (u1 · · ·uN )−n0 , we may assume all mj , nj > 0.

W.l.o.g., u1 < · · · < uN . Now if mj , nj are rational, say with common
denominator K ∈ N, work with yj = u

1/K
j :

f(u) =
detu◦m

detu◦n
=

dety◦(K·m)

dety◦(K·n)
=
V (y) · sK·m(y)

V (y) · sK·n(y)
.

This is coordinate-wise non-decreasing in y by the Schur Monotonicity
Lemma, hence in u.

Finally, extend to real tuples m,n by rational approximation.

Apoorva Khare, IISc Bangalore 19 / 27
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Main result (for real powers)

This helps show:

Theorem (K.–Tao, Amer. J. Math., in press)

Fix N ∈ N and real scalars

n0 < · · · < nN−1 < M, ρ > 0, cn0 , . . . , cnN−1 .

For t > 0, define pt(x) := t
∑N−1
j=0 cnjx

nj − xM . The following are equivalent.

1 pt[−] preserves positivity on rank-one matrices in PN ((0, ρ)).

2 All coefficients cnj > 0, and

t > Kρ,n,M :=

N−1∑
j=0

V (nj)
2

V (n)2
ρM−nj

cnj

.

3 pt[−] preserves positivity on Hankel rank-one matrices in PN ((0, ρ)).

If all nj ∈ Z>0 ∪ [N − 2,∞), then the rank-constraint in (1) can be removed.
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Extension to power series
The above results say that if f(x) :=

∑N−1
j=0 cnjx

nj and g(x) := xM for an
integer M > nN−1, then we have the linear matrix inequality

f [A] > K−1
ρ,n,M ·A

◦M = K−1
ρ,n,M · g[A], ∀A ∈ PN ((0, ρ)).

By summing finitely many such inequalities, if g(x) =
∑
M>nN−1

cMx
M , then

f [A] > K−1
ρ,n,g · g[A],

for a finite constant Kρ,n,g.

Question: Is it possible to upper-bound g[A] by Kρ,n,g · f [A], for an arbitrary
power series that is convergent on (0, ρ)?

g(x) =

∞∑
M=bnN−1c+1

cMx
M

Proposition (K.–Tao)

Yes.

Apoorva Khare, IISc Bangalore 21 / 27
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Further applications

1 In fact we work with more general ‘Laplace transforms’

g(x) =

∫ ∞
nN−1+ε

xt dµ(t), ε > 0,

which are absolutely convergent at ρ. The sharp threshold bounds above
imply here as well, that a finite constant Kρ,n,g exists.

2 These results lead to (sharp) linear matrix inequalities, for Hadamard
powers.

3 Application to spectrahedra and matrix cubes:
Upper and lower bounds, which are asymptotically equal.

4 Reformulation in terms of generalized Rayleigh quotients.
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Weak majorization through Schur polynomials

Our Schur Monotonicity Lemma implies in particular:

sm(u)

sn(u)
>
sm(1, . . . , 1)

sn(1, . . . , 1)
, ∀u ∈ [1,∞)N .

if m dominates n coordinatewise.

‘Natural’ to ask: for which other tuples m,n does this inequality hold?

We extend this to real tuples (generalized Vandermonde determinants):

Theorem (K.–Tao, Amer. J. Math., in press)

Given reals n0 < · · · < nN−1 and m0 < · · · < mN−1, TFAE:

1 We have
det(u◦m)

det(u◦n)
>
V (m)

V (n)
, for all ‘distinct’ tuples u ∈ [1,∞)N6= .

2 m weakly majorizes n – i.e., mN−1 + · · ·+mj > nN−1 + · · ·+ nj ∀j.

This problem was studied originally by Skandera and others in the 2010s,
for integer powers, and on the entire positive orthant (0,∞)N :

Apoorva Khare, IISc Bangalore 23 / 27
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Cuttler–Greene–Skandera conjecture

Theorem (Cuttler–Greene–Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers 0 6 n0 < · · · < nN−1 and 0 6 m0 < · · · < mN−1. Then

sm(u)

sn(u)
>
sm(1, . . . , 1)

sn(1, . . . , 1)
, ∀u ∈ (0,∞)N ,

if and only if m majorizes n.

Majorization = (weak majorization ) +
(∑

jmj =
∑
j nj

)
.

Questions:
1 Does this characterization extend to real powers?

2 Can we use a smaller subset than the full orthant (0,∞)N , to deduce
majorization?

Yes, and Yes:

Apoorva Khare, IISc Bangalore 24 / 27
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Majorization via Vandermonde determinants

Theorem (K.–Tao, Amer. J. Math., in press)

Given reals n0 < · · · < nN−1 and m0 < · · · < mN−1, TFAE:

1 We have
det(u◦m)

det(u◦n)
>
V (m)

V (n)
, for all ‘distinct’ tuples u ∈ (0,∞)N6= .

2
det(u◦m)

det(u◦n)
>
V (m)

V (n)
, for all ‘distinct’ tuples u ∈ (0, 1]N6= ∪ [1,∞)N6= .

3 m majorizes n.

Proof:

(1) =⇒ (2): Obvious. (3) =⇒ (1): Akin to Sra (2016).

(2) =⇒ (3): If u ∈ [1,∞)N6= , then by our preceding result: m �w n.
If u ∈ (0, 1]N6= , let vj := 1/uj > 1; then we get:

det(v◦(−m))

det(v◦(−n))
=

det(u◦m)

det(u◦n)
>
V (m)

V (n)
=
V (−m)

V (−n) .

Our preceding result: −m �w −n; and m �w n ⇐⇒ m majorizes n.
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Open question: Optimizing over [−1, 1]N?

The previous talk and this talk concerned polynomials/power series that
entrywise preserve positive semidefiniteness in a fixed dimension.

The maximization of sm(u)/sn(u) over (0, 1]N reveals tight bounds on
certain polynomial preservers, acting on PN ([0, 1]). (By homogeneity and
continuity, maximize only over the cube-boundary (0, 1]N ∩ ∂(0, 1]N .)

What about on all correlation matrices? Need to upper-bound
sm(u)2/sn(u)

2 over all of [−1, 1]N \ {0}.

For this, need to ensure sn(u) does not vanish except at 0. Facts:
(1) The only such n = (0, 1, . . . , N − 2, N − 1 + 2r) for r ∈ Z>0.
(2) All such sn(u) are complete symmetric homogeneous polynomials
h2r(u), and they are positive on RN \ {0}.

Question: Say mj > j for j = 0, 1, . . . , N − 2, and mN−1 > N − 1 + 2r.

Maximize
sm(u)2

h2r(u)2
on [−1, 1]N \ {0} – or just on its cube-boundary.
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