Entrywise positivity preservers in fixed dimension:

Apoorva Khare

IISc and APRG (Bangalore, India)

(Joint with Alexander Belton, Dominique Guillot, and Mihai Putinar; and with Terence Tao)

The entrywise calculus

Definitions.

- **()** A real symmetric matrix $A_{N \times N}$ is *positive semidefinite* if all eigenvalues of A are ≥ 0 . (Equivalently, $u^T A u \ge 0$ for all $u \in \mathbb{R}^N$.)
- **3** Given $N \ge 1$ and $I \subset \mathbb{R}$, let $\mathbb{P}_N(I)$ denote the $N \times N$ positive semidefinite matrices, with entries in I. (Say $\mathbb{P}_N = \mathbb{P}_N(\mathbb{R})$.)
- **3** A function $f: I \to \mathbb{R}$ acts *entrywise* on a matrix A via: $f[A] := (f(a_{ij}))$.

Recap The main result, and the Schur monotonicity lemma

Schoenberg and Rudin's theorems

Problem: Given a function $f: I \to \mathbb{R}$, when is it true that $f[A] := (f(a_{ij})) \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N(I)$?

Schoenberg and Rudin's theorems

Problem: Given a function $f: I \to \mathbb{R}$, when is it true that $f[A] := (f(a_{ij})) \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N(I)$?

- Pólya-Szegö (1925 book) via the Schur product theorem (*Crelle* 1911): If f(x) = ∑_{k=0}[∞] c_kx^k is convergent and c_k ≥ 0, then f[-] preserves positivity on ℙ_N in all dimensions.
- Schoenberg (*Duke* 1942):

The converse also holds, if f is continuous.

• Rudin (*Duke* 1959); resp. Belton–Guillot–K.–Putinar (*JEMS*, accepted):

The converse holds for any f, and we only need to assume f[-] preserves positivity on all Toeplitz (resp. Hankel) matrices of rank ≤ 3 .

Preserving positivity for fixed N:

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known. Unnecessarily restrictive to preserve positivity in all dimensions.

Preserving positivity for fixed N:

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
 Unnecessarily restrictive to preserve positivity in all dimensions.
- Known for N = 2 (Vasudeva, *IJPAM* 1979). Open for $N \ge 3$.

Preserving positivity for fixed N:

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
 Unnecessarily restrictive to preserve positivity in all dimensions.
- Known for N = 2 (Vasudeva, *IJPAM* 1979). Open for $N \ge 3$.

In this talk, we focus on sums of powers $\sum_{\alpha \ge 0} c_{\alpha} x^{\alpha}$ – with $\alpha \in (0, \infty)$ – acting on $\mathbb{P}_N((0, \rho))$.

Question: Find such a function with a negative coefficient, preserving positivity on \mathbb{P}_N for a fixed $N \ge 3$.

Preserving positivity for fixed N:

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
 Unnecessarily restrictive to preserve positivity in all dimensions.
- Known for N = 2 (Vasudeva, *IJPAM* 1979). Open for $N \ge 3$.

In this talk, we focus on sums of powers $\sum_{\alpha \ge 0} c_{\alpha} x^{\alpha}$ – with $\alpha \in (0, \infty)$ – acting on $\mathbb{P}_N((0, \rho))$.

Question: Find such a function with a negative coefficient, preserving positivity on \mathbb{P}_N for a fixed $N \ge 3$.

• Was not known since Schoenberg's Duke 1942 paper.

Preserving positivity for fixed N:

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
 Unnecessarily restrictive to preserve positivity in all dimensions.
- Known for N = 2 (Vasudeva, *IJPAM* 1979). Open for $N \ge 3$.

In this talk, we focus on sums of powers $\sum_{\alpha \ge 0} c_{\alpha} x^{\alpha}$ – with $\alpha \in (0, \infty)$ – acting on $\mathbb{P}_N((0, \rho))$.

Question: Find such a function with a negative coefficient, preserving positivity on \mathbb{P}_N for a fixed $N \ge 3$.

- Was not known since Schoenberg's Duke 1942 paper.
- Loewner's necessary condition / variants: If f is any smooth function preserving positivity on $\mathbb{P}_N((0, \rho))$, then the first N nonzero Maclaurin coefficients of f must be positive. Can the next one be negative?

Preserving positivity for fixed N:

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
 Unnecessarily restrictive to preserve positivity in all dimensions.
- Known for N = 2 (Vasudeva, *IJPAM* 1979). Open for $N \ge 3$.

In this talk, we focus on sums of powers $\sum_{\alpha \ge 0} c_{\alpha} x^{\alpha}$ – with $\alpha \in (0, \infty)$ – acting on $\mathbb{P}_N((0, \rho))$.

Question: Find such a function with a negative coefficient, preserving positivity on \mathbb{P}_N for a fixed $N \ge 3$.

- Was not known since Schoenberg's Duke 1942 paper.
- Loewner's necessary condition / variants: If f is any smooth function preserving positivity on $\mathbb{P}_N((0, \rho))$, then the first N nonzero Maclaurin coefficients of f must be positive. Can the next one be negative?
- **Previous talk:** Belton–Guillot–K.–Putinar, *Adv. Math.* 2016: Yes, *if the first* N *degrees are consecutive.*

Apoorva Khare, IISc Bangalore

Analogue of Loewner's necessary condition implies:

Suppose $c_0, c_2, c_3 \neq 0$ are real, $M \ge 4$, and $c_0 + c_2 x^2 + c_3 x^3 + c_M x^M$ entrywise preserves positivity on 3×3 correlation matrices. Then $c_0, c_2, c_3 > 0$. Can c_M be negative? (Not known.)

Analogue of Loewner's necessary condition implies: Suppose $c_0, c_2, c_3 \neq 0$ are real, $M \ge 4$, and $c_0 + c_2 x^2 + c_3 x^3 + c_M x^M$ entrywise preserves positivity on 3×3 correlation matrices. Then $c_0, c_2, c_3 > 0$. Can c_M be negative? (Not known.)

<u>General case</u>: Fix integers $N \ge 3$ and $0 \le n_0 < \cdots < n_{N-1} < M$, not all n_j consecutive. Also fix real scalars $\rho > 0$ and $c_{n_0}, \ldots, c_{n_{N-1}} \ne 0$. Suppose

$$f(x) = \sum_{j=0}^{N-1} c_{n_j} x^{n_j} + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_N((0,\rho))$. Then $c_{n_j} > 0 \ \forall j$.

Analogue of Loewner's necessary condition implies: Suppose $c_0, c_2, c_3 \neq 0$ are real, $M \ge 4$, and $c_0 + c_2 x^2 + c_3 x^3 + c_M x^M$ entrywise preserves positivity on 3×3 correlation matrices. Then $c_0, c_2, c_3 > 0$. Can c_M be negative? (Not known.)

<u>General case</u>: Fix integers $N \ge 3$ and $0 \le n_0 < \cdots < n_{N-1} < M$, not all n_j consecutive. Also fix real scalars $\rho > 0$ and $c_{n_0}, \ldots, c_{n_{N-1}} \ne 0$. Suppose

$$f(x) = \sum_{j=0}^{N-1} c_{n_j} x^{n_j} + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_N((0,\rho))$. Then $c_{n_j} > 0 \ \forall j$. Can $c_M < 0$?

Analogue of Loewner's necessary condition implies: Suppose $c_0, c_2, c_3 \neq 0$ are real, $M \ge 4$, and $c_0 + c_2 x^2 + c_3 x^3 + c_M x^M$ entrywise preserves positivity on 3×3 correlation matrices. Then $c_0, c_2, c_3 > 0$. Can c_M be negative? (Not known.)

<u>General case</u>: Fix integers $N \ge 3$ and $0 \le n_0 < \cdots < n_{N-1} < M$, not all n_j consecutive. Also fix real scalars $\rho > 0$ and $c_{n_0}, \ldots, c_{n_{N-1}} \ne 0$. Suppose

$$f(x) = \sum_{j=0}^{N-1} c_{n_j} x^{n_j} + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_N((0,\rho))$. Then $c_{n_j} > 0 \ \forall j$. Can $c_M < 0$?

<u>*Reformulation:*</u> Multiplying by $t = |c_M|^{-1}$, does

$$p_t(x) := t \sum_{j=0}^{N-1} c_{n_j} x^{n_j} - x^M$$

entrywise preserve positivity on $\mathbb{P}_N((0,\rho))$ for any t > 0?

Analogue of Loewner's necessary condition implies: Suppose $c_0, c_2, c_3 \neq 0$ are real, $M \ge 4$, and $c_0 + c_2 x^2 + c_3 x^3 + c_M x^M$ entrywise preserves positivity on 3×3 correlation matrices. Then $c_0, c_2, c_3 > 0$. Can c_M be negative? (Not known.)

<u>General case</u>: Fix integers $N \ge 3$ and $0 \le n_0 < \cdots < n_{N-1} < M$, not all n_j consecutive. Also fix real scalars $\rho > 0$ and $c_{n_0}, \ldots, c_{n_{N-1}} \ne 0$. Suppose

$$f(x) = \sum_{j=0}^{N-1} c_{n_j} x^{n_j} + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_N((0,\rho))$. Then $c_{n_j} > 0 \ \forall j$. Can $c_M < 0$?

<u>*Reformulation:*</u> Multiplying by $t = |c_M|^{-1}$, does

$$p_t(x) := t \sum_{j=0}^{N-1} c_{n_j} x^{n_j} - x^M$$

entrywise preserve positivity on $\mathbb{P}_N((0,\rho))$ for any t > 0? No example known.

Reminders; Improved main result Extensions to real powers; (Weak) Majorization

Recap The main result, and the Schur monotonicity lemma

Main result (for integer powers)

Theorem (K.-Tao, Amer. J. Math., in press)

Fix integers $N \ge 1$ and $0 \le n_0 < \cdots < n_{N-1} < M$, and real scalars $\rho > 0$ and $c_{n_0}, \ldots, c_{n_{N-1}}$. For t > 0, define $p_t(x) := t \sum_{j=0}^{N-1} c_{n_j} x^{n_j} - x^M$.

Main result (for integer powers)

Theorem (K.-Tao, Amer. J. Math., in press)

Fix integers $N \ge 1$ and $0 \le n_0 < \cdots < n_{N-1} < M$, and real scalars $\rho > 0$ and $c_{n_0}, \ldots, c_{n_{N-1}}$. For t > 0, define $p_t(x) := t \sum_{j=0}^{N-1} c_{n_j} x^{n_j} - x^M$.

Then the following are equivalent.

- $p_t[-]$ preserves positivity on $\mathbb{P}_N((0,\rho))$.
- 2 All coefficients $c_{n_i} > 0$, and

Main result (for integer powers)

Theorem (K.-Tao, Amer. J. Math., in press)

Fix integers $N \ge 1$ and $0 \le n_0 < \cdots < n_{N-1} < M$, and real scalars $\rho > 0$ and $c_{n_0}, \ldots, c_{n_{N-1}}$. For t > 0, define $p_t(x) := t \sum_{j=0}^{N-1} c_{n_j} x^{n_j} - x^M$. Then the following are equivalent.

- $p_t[-]$ preserves positivity on $\mathbb{P}_N((0,\rho))$.
- 2 All coefficients $c_{n_i} > 0$, and

$$t \geqslant \mathcal{K}_{\rho,\mathbf{n},M} := \sum_{j=0}^{N-1} \frac{V(\mathbf{n}_j)^2}{V(\mathbf{n})^2} \frac{\rho^{M-n_j}}{c_{n_j}},$$

where $\mathbf{n} := (n_0, \ldots, n_{N-1})$, the tuples

$$\mathbf{n}_j := (n_0, \dots, n_{j-1}, \widehat{n_j}, n_{j+1}, \dots, n_{N-1}, M), \quad 0 \leqslant j \leqslant N-1,$$

and given a vector $\mathbf{u} = (u_1, \dots, u_N)$, its 'Vandermonde determinant' is

$$V((u_1, ..., u_N)) := \det(u_i^{j-1}) = \prod_{1 \le i < j \le N} (u_j - u_i).$$

Main result (for integer powers)

Theorem (K.-Tao, Amer. J. Math., in press)

Fix integers $N \ge 1$ and $0 \le n_0 < \cdots < n_{N-1} < M$, and real scalars $\rho > 0$ and $c_{n_0}, \ldots, c_{n_{N-1}}$. For t > 0, define $p_t(x) := t \sum_{j=0}^{N-1} c_{n_j} x^{n_j} - x^M$. Then the following are equivalent.

- $p_t[-]$ preserves positivity on $\mathbb{P}_N((0,\rho))$.
- 2 All coefficients $c_{n_i} > 0$, and

$$t \geqslant \mathcal{K}_{\rho,\mathbf{n},M} := \sum_{j=0}^{N-1} \frac{V(\mathbf{n}_j)^2}{V(\mathbf{n})^2} \frac{\rho^{M-n_j}}{c_{n_j}},$$

where $\mathbf{n} := (n_0, \ldots, n_{N-1})$, the tuples

$$\mathbf{n}_j := (n_0, \dots, n_{j-1}, \widehat{n_j}, n_{j+1}, \dots, n_{N-1}, M), \quad 0 \leqslant j \leqslant N-1,$$

and given a vector $\mathbf{u} = (u_1, \dots, u_N)$, its 'Vandermonde determinant' is

$$V((u_1,\ldots,u_N)) := \det(u_i^{j-1}) = \prod_{1 \leq i < j \leq N} (u_j - u_i).$$

3 $p_t[-]$ preserves positivity on Hankel rank-one matrices in $\mathbb{P}_N((0, \rho))$.

() For the 'initial', consecutive powers $n_j = j$ as in previous talk,

$$\mathcal{K}_{\rho,\mathbf{n},M} = \sum_{j=0}^{N-1} {\binom{M}{j}}^2 {\binom{M-j-1}{N-j-1}}^2 \frac{\rho^{M-j}}{c_j} = \mathcal{K}_{\rho,M}.$$

() For the 'initial', consecutive powers $n_j = j$ as in previous talk,

$$\mathcal{K}_{\rho,\mathbf{n},M} = \sum_{j=0}^{N-1} \binom{M}{j}^2 \binom{M-j-1}{N-j-1}^2 \frac{\rho^{M-j}}{c_j} = \mathcal{K}_{\rho,M}.$$

Quantitative version of Schoenberg's theorem in fixed dimension: first examples of polynomials that work for P_N but not for P_{N+1}. ("The Loewner–Horn theorem is sharp.")

() For the 'initial', consecutive powers $n_j = j$ as in previous talk,

$$\mathcal{K}_{\rho,\mathbf{n},M} = \sum_{j=0}^{N-1} \binom{M}{j}^2 \binom{M-j-1}{N-j-1}^2 \frac{\rho^{M-j}}{c_j} = \mathcal{K}_{\rho,M}.$$

- Quantitative version of Schoenberg's theorem in fixed dimension: first examples of polynomials that work for P_N but not for P_{N+1}. ("The Loewner–Horn theorem is sharp.")
- **3** Complete characterization of 'fewnomials' with at most N + 1 terms, which preserve positivity on \mathbb{P}_N .

() For the 'initial', consecutive powers $n_j = j$ as in previous talk,

$$\mathcal{K}_{\rho,\mathbf{n},M} = \sum_{j=0}^{N-1} \binom{M}{j}^2 \binom{M-j-1}{N-j-1}^2 \frac{\rho^{M-j}}{c_j} = \mathcal{K}_{\rho,M}.$$

- Quantitative version of Schoenberg's theorem in fixed dimension: first examples of polynomials that work for P_N but not for P_{N+1}. ("The Loewner–Horn theorem is sharp.")
- **3** Complete characterization of 'fewnomials' with at most N + 1 terms, which preserve positivity on \mathbb{P}_N .
- Surprisingly, the sharp bound on the negative threshold is obtained on rank 1 matrices.

Theorem (K.–Tao, in press)

Let $N \ge 1$ and $0 \le n_0 < \cdots < n_{N-1} < M$ be integers. If $\rho, t, c_{n_0}, \dots, c_{n_{N-1}} > 0$, and $p_t(x) := t \sum_{j < N} c_{n_j} x^{n_j} - x^M$, TFAE: **1** $p_t[-]$ preserves positivity on $\mathbb{P}_N((0, \rho))$. **2** $t \ge \mathcal{K}_{\rho, \mathbf{n}, M}$. **3** $p_t[-]$ preserves positivity on Hankel rank one matrices in $\mathbb{P}_N((0, \rho))$.

Theorem (K.–Tao, in press)

Let $N \ge 1$ and $0 \le n_0 < \cdots < n_{N-1} < M$ be integers. If $\rho, t, c_{n_0}, \dots, c_{n_{N-1}} > 0$, and $p_t(x) := t \sum_{j < N} c_{n_j} x^{n_j} - x^M$, TFAE: 1 $p_t[-]$ preserves positivity on $\mathbb{P}_N((0, \rho))$. 2 $t \ge \mathcal{K}_{\rho, \mathbf{n}, M}$. 3 $p_t[-]$ preserves positivity on Hankel rank one matrices in $\mathbb{P}_N((0, \rho))$.

(1) \implies (3): Immediate.

Theorem (K.–Tao, in press)

Let $N \ge 1$ and $0 \le n_0 < \cdots < n_{N-1} < M$ be integers. If $\rho, t, c_{n_0}, \dots, c_{n_{N-1}} > 0$, and $p_t(x) := t \sum_{j < N} c_{n_j} x^{n_j} - x^M$, TFAE: 1 $p_t[-]$ preserves positivity on $\mathbb{P}_N((0, \rho))$. 2 $t \ge \mathcal{K}_{\rho, \mathbf{n}, M}$. 3 $p_t[-]$ preserves positivity on Hankel rank one matrices in $\mathbb{P}_N((0, \rho))$.

(1)
$$\implies$$
 (3): Immediate.

(3) \implies (2): How does the constant $\mathcal{K}_{\rho,\mathbf{n},M}$ appear from rank-one matrices?

Theorem (K.–Tao, in press)

Let $N \ge 1$ and $0 \le n_0 < \cdots < n_{N-1} < M$ be integers. If $\rho, t, c_{n_0}, \dots, c_{n_{N-1}} > 0$, and $p_t(x) := t \sum_{j < N} c_{n_j} x^{n_j} - x^M$, TFAE: **1** $p_t[-]$ preserves positivity on $\mathbb{P}_N((0, \rho))$. **2** $t \ge \mathcal{K}_{\rho,\mathbf{n},M}$. **3** $p_t[-]$ preserves positivity on Hankel rank one matrices in $\mathbb{P}_N((0, \rho))$.

(1)
$$\implies$$
 (3): Immediate.

(3) \implies (2): How does the constant $\mathcal{K}_{\rho,\mathbf{n},M}$ appear from rank-one matrices? Study the determinants of linear pencils

$$\det p_t[A] = \det \left(t(c_{n_0}A^{\circ n_0} + \dots + c_{n_{N-1}}A^{\circ n_{N-1}}) - A^{\circ M} \right)$$

for rank-one matrices $A = \mathbf{u}\mathbf{v}^T$.

Apoorva Khare, IISc Bangalore

Given an increasing N-tuple of integers $0 \leq n_0 < \cdots < n_{N-1}$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^N of

$$s_{\mathbf{n}}(u_1,\ldots,u_N) := \frac{\det(u_i^{n_{j-1}})_{i,j=1}^N}{\det(u_i^{j-1})} = \frac{\det(u_i^{n_{j-1}})_{i,j=1}^N}{V(\mathbf{u})}$$

for pairwise distinct $u_i \in \mathbb{F}$.

Given an increasing N-tuple of integers $0 \leq n_0 < \cdots < n_{N-1}$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^N of

$$s_{\mathbf{n}}(u_1,\ldots,u_N) := \frac{\det(u_i^{n_{j-1}})_{i,j=1}^N}{\det(u_i^{j-1})} = \frac{\det(u_i^{n_{j-1}})_{i,j=1}^N}{V(\mathbf{u})}$$

for pairwise distinct $u_i \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$V((u_1, \dots, u_N)) := \det(u_i^{j-1}) = \prod_{1 \le i < j \le N} (u_j - u_i).$$

Given an increasing N-tuple of integers $0 \leq n_0 < \cdots < n_{N-1}$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^N of

$$s_{\mathbf{n}}(u_1,\ldots,u_N) := \frac{\det(u_i^{n_{j-1}})_{i,j=1}^N}{\det(u_i^{j-1})} = \frac{\det(u_i^{n_{j-1}})_{i,j=1}^N}{V(\mathbf{u})}$$

for pairwise distinct $u_i \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$V((u_1,\ldots,u_N)) := \det(u_i^{j-1}) = \prod_{1 \leq i < j \leq N} (u_j - u_i).$$

- Basis of homogeneous symmetric polynomials in u_1, \ldots, u_N .
- Characters of irreducible polynomial representations of $GL_N(\mathbb{C})$, usually defined in terms of semi-standard Young tableaux.

Given an increasing N-tuple of integers $0 \leq n_0 < \cdots < n_{N-1}$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^N of

$$s_{\mathbf{n}}(u_1,\ldots,u_N) := \frac{\det(u_i^{n_{j-1}})_{i,j=1}^N}{\det(u_i^{j-1})} = \frac{\det(u_i^{n_{j-1}})_{i,j=1}^N}{V(\mathbf{u})}$$

for pairwise distinct $u_i \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$V((u_1,\ldots,u_N)) := \det(u_i^{j-1}) = \prod_{1 \leq i < j \leq N} (u_j - u_i).$$

- Basis of homogeneous symmetric polynomials in u_1, \ldots, u_N .
- Characters of irreducible polynomial representations of $GL_N(\mathbb{C})$, usually defined in terms of semi-standard Young tableaux.
- Weyl Character (Dimension) Formula in Type A:

$$s_{\mathbf{n}}(1,\ldots,1) = \prod_{1 \leq i < j \leq N} \frac{n_j - n_i}{j-i} = \frac{V(\mathbf{n})}{V((0,1,\ldots,N-1))}$$

Apoorva Khare, IISc Bangalore

Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose N = 3 and $\mathbf{m} := (0, 2, 4)$. The tableaux are:

3	3	3	3	3	2		3	2	3	1	3	1	2	2	2	1
2		1		2		-	1		2		1		1		1	

Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose N = 3 and $\mathbf{m} := (0, 2, 4)$. The tableaux are:

$$s_{(0,2,4)}(u_1, u_2, u_3)$$

= $u_3^2 u_2 + u_3^2 u_1 + u_3 u_2^2 + 2u_3 u_2 u_1 + u_3 u_1^2 + u_2^2 u_1 + u_2 u_1^2$
= $(u_1 + u_2)(u_2 + u_3)(u_3 + u_1).$

Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose N = 3 and $\mathbf{m} := (0, 2, 4)$. The tableaux are:

$$s_{(0,2,4)}(u_1, u_2, u_3) = u_3^2 u_2 + u_3^2 u_1 + u_3 u_2^2 + 2u_3 u_2 u_1 + u_3 u_1^2 + u_2^2 u_1 + u_2 u_1^2 = (u_1 + u_2)(u_2 + u_3)(u_3 + u_1).$$

Example 2: Suppose N = 3 and $\mathbf{n} = (0, 2, 3)$:

Then $s_{(0,2,3)}(u_1, u_2, u_3) = u_1u_2 + u_2u_3 + u_3u_1$.

Apoorva Khare, IISc Bangalore

Sketch of the proof of the main result (cont.)

Technical result used in the proof: Jacobi–Trudi type identity for p_t :

Theorem (K.–Tao, in press)

Let $N \ge 1$ and $0 \le n_0 < \cdots < n_{N-1} < M$ be integers. Suppose $c_0, \ldots, c_{N-1} \in \mathbb{F}^{\times}$ are non-zero scalars in a field \mathbb{F} . Define the polynomial

$$p_t(x) := t(c_{n_0}x^{n_0} + \dots + c_{n_{N-1}}x^{n_{N-1}}) - x^M,$$

and the partitions $\mathbf{n} = (n_0, \dots, n_{N-1})$ and $\mathbf{n}_j = (n_0, \dots, \widehat{n_j}, \dots, n_{N-1}, M)$ as above.

Sketch of the proof of the main result (cont.)

Technical result used in the proof: Jacobi–Trudi type identity for p_t :

Theorem (K.–Tao, in press)

Let $N \ge 1$ and $0 \le n_0 < \cdots < n_{N-1} < M$ be integers. Suppose $c_0, \ldots, c_{N-1} \in \mathbb{F}^{\times}$ are non-zero scalars in a field \mathbb{F} . Define the polynomial

$$p_t(x) := t(c_{n_0}x^{n_0} + \dots + c_{n_{N-1}}x^{n_{N-1}}) - x^M,$$

and the partitions $\mathbf{n} = (n_0, \ldots, n_{N-1})$ and $\mathbf{n}_j = (n_0, \ldots, \widehat{n_j}, \ldots, n_{N-1}, M)$ as above. The following identity holds for all $\mathbf{u}, \mathbf{v} \in \mathbb{F}^N$:

$$\det p_t[\mathbf{u}\mathbf{v}^T] = t^{N-1}V(\mathbf{u})V(\mathbf{v})s_{\mathbf{n}}(\mathbf{u})s_{\mathbf{n}}(\mathbf{v})\prod_{j=0}^{N-1}c_{n_j}\times\Big(t-\sum_{j=0}^{N-1}\frac{s_{\mathbf{n}_j}(\mathbf{u})s_{\mathbf{n}_j}(\mathbf{v})}{c_{n_j}s_{\mathbf{n}}(\mathbf{u})s_{\mathbf{n}}(\mathbf{v})}\Big).$$
Recap The main result, and the Schur monotonicity lemma

The negative threshold

Proof of (3) \implies (2).

Recap The main result, and the Schur monotonicity lemma

The negative threshold

Proof of (3)
$$\implies$$
 (2).
• If $p_t[\mathbf{u}\mathbf{u}^T] \in \mathbb{P}_N$ for all $\mathbf{u} \in (0, \sqrt{\rho})_{\neq}^N$, and $t, c_{n_0}, \dots, c_{n_{N-1}} > 0$, then

$$0 \leqslant \frac{\det p_t[\mathbf{u}\mathbf{u}^T]}{t^{N-1}V(\mathbf{u})^2 s_{\mathbf{n}}(\mathbf{u})^2 c_{n_0} \cdots c_{n_{N-1}}} = t - \sum_{j=0}^{N-1} \frac{s_{\mathbf{n}_j}(\mathbf{u})^2}{c_{n_j} s_{\mathbf{n}}(\mathbf{u})^2}.$$

The negative threshold

Proof of (3)
$$\implies$$
 (2).
• If $p_t[\mathbf{u}\mathbf{u}^T] \in \mathbb{P}_N$ for all $\mathbf{u} \in (0, \sqrt{\rho})_{\neq}^N$, and $t, c_{n_0}, \dots, c_{n_{N-1}} > 0$, then

$$0 \leqslant \frac{\det p_t[\mathbf{u}\mathbf{u}^T]}{t^{N-1}V(\mathbf{u})^2 s_{\mathbf{n}}(\mathbf{u})^2 c_{n_0} \cdots c_{n_{N-1}}} = t - \sum_{j=0}^{N-1} \frac{s_{\mathbf{n}_j}(\mathbf{u})^2}{c_{n_j} s_{\mathbf{n}}(\mathbf{u})^2}.$$

- In previous talk / 'baby case', we have $\mathbf{n} = (0, 1, \dots, N-1)$. Thus the denominator is $c_{n_j} \cdot 1^2 \rightsquigarrow \text{maximize } s_{\mathbf{n}_j}(\mathbf{u})^2$ over $[0, \sqrt{\rho}]^N$.
- This is easy, since every Schur polynomial is a *sum* of monomials. *What to do in the general case?*

The negative threshold

Proof of (3)
$$\implies$$
 (2).
• If $p_t[\mathbf{u}\mathbf{u}^T] \in \mathbb{P}_N$ for all $\mathbf{u} \in (0, \sqrt{\rho})_{\neq}^N$, and $t, c_{n_0}, \dots, c_{n_{N-1}} > 0$, then

$$0 \leqslant \frac{\det p_t[\mathbf{u}\mathbf{u}^T]}{t^{N-1}V(\mathbf{u})^2 s_{\mathbf{n}}(\mathbf{u})^2 c_{n_0} \cdots c_{n_{N-1}}} = t - \sum_{j=0}^{N-1} \frac{s_{\mathbf{n}_j}(\mathbf{u})^2}{c_{n_j} s_{\mathbf{n}}(\mathbf{u})^2}.$$

- In previous talk / 'baby case', we have $\mathbf{n} = (0, 1, \dots, N-1)$. Thus the denominator is $c_{n_j} \cdot 1^2 \rightsquigarrow \text{maximize } s_{\mathbf{n}_j}(\mathbf{u})^2 \text{ over } [0, \sqrt{\rho}]^N$.
- This is easy, since every Schur polynomial is a *sum* of monomials. *What to do in the general case?*
- ("Wishful thinking!")

If the ratios s_{n_j}/s_n were coordinate-wise non-decreasing, the maximum would again occur (like last time) at $(\sqrt{\rho}, \ldots, \sqrt{\rho})$, and we could proceed.

The negative threshold

Proof of (3)
$$\implies$$
 (2).
• If $p_t[\mathbf{u}\mathbf{u}^T] \in \mathbb{P}_N$ for all $\mathbf{u} \in (0, \sqrt{\rho})_{\neq}^N$, and $t, c_{n_0}, \dots, c_{n_{N-1}} > 0$, then

$$0 \leqslant \frac{\det p_t[\mathbf{u}\mathbf{u}^T]}{t^{N-1}V(\mathbf{u})^2 s_{\mathbf{n}}(\mathbf{u})^2 c_{n_0} \cdots c_{n_{N-1}}} = t - \sum_{j=0}^{N-1} \frac{s_{\mathbf{n}_j}(\mathbf{u})^2}{c_{n_j} s_{\mathbf{n}}(\mathbf{u})^2}.$$

- In previous talk / 'baby case', we have $\mathbf{n} = (0, 1, \dots, N-1)$. Thus the denominator is $c_{n_j} \cdot 1^2 \rightsquigarrow \text{maximize } s_{\mathbf{n}_j}(\mathbf{u})^2$ over $[0, \sqrt{\rho}]^N$.
- This is easy, since every Schur polynomial is a *sum* of monomials. *What to do in the general case?*
- ("Wishful thinking!")

If the ratios s_{n_j}/s_n were coordinate-wise non-decreasing, the maximum would again occur (like last time) at $(\sqrt{\rho}, \ldots, \sqrt{\rho})$, and we could proceed.

• Need to take a closer look at (ratios of) Schur polynomials. Toy example: use $n_j = (0, 2, 4)$ and n = (0, 2, 3), worked out above.

Schur Monotonicity Lemma

Example: The ratio
$$s_{n_j}(\mathbf{u})/s_{\mathbf{n}}(\mathbf{u})$$
 for $\mathbf{n}_j = (0, 2, 4), \ \mathbf{n} = (0, 2, 3)$ is:

$$f(u_1, u_2, u_3) = \frac{(u_1 + u_2)(u_2 + u_3)(u_3 + u_1)}{u_1 u_2 + u_2 u_3 + u_3 u_1}, \qquad u_1, u_2, u_3 > 0.$$

Note: both numerator and denominator are monomial-positive (in fact *Schur-positive*, obviously) – hence non-decreasing in each coordinate.

'Miracle'(?): Their ratio $f(\mathbf{u})$ indeed has the same property!

Schur Monotonicity Lemma

Example: The ratio
$$s_{n_j}(\mathbf{u})/s_n(\mathbf{u})$$
 for $n_j = (0, 2, 4), n = (0, 2, 3)$ is:

$$f(u_1, u_2, u_3) = \frac{(u_1 + u_2)(u_2 + u_3)(u_3 + u_1)}{u_1 u_2 + u_2 u_3 + u_3 u_1}, \qquad u_1, u_2, u_3 > 0.$$

Note: both numerator and denominator are monomial-positive (in fact *Schur-positive*, obviously) – hence non-decreasing in each coordinate.

'Miracle'(?): Their ratio $f(\mathbf{u})$ indeed has the same property!

Theorem (K.-Tao, Amer. J. Math., in press)

For integer tuples $0 \le n_0 < \cdots < n_{N-1}$ and $0 \le m_0 < \cdots < m_{N-1}$ such that $n_j \le m_j \ \forall j$, the function

$$f: (0,\infty)^N \to \mathbb{R}, \qquad f(\mathbf{u}) := \frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})}$$

is non-decreasing in each coordinate.

Schur Monotonicity Lemma (cont.)

Claim: The ratio
$$f(u_1, u_2, u_3) = \frac{(u_1 + u_2)(u_2 + u_3)(u_3 + u_1)}{u_1 u_2 + u_2 u_3 + u_3 u_1}$$
,

treated as a function on the orthant $(0,\infty)^3$, is coordinatewise non-decreasing.

Schur Monotonicity Lemma (cont.)

Claim: The ratio
$$f(u_1, u_2, u_3) = \frac{(u_1 + u_2)(u_2 + u_3)(u_3 + u_1)}{u_1 u_2 + u_2 u_3 + u_3 u_1},$$

treated as a function on the orthant $(0,\infty)^3$, is coordinatewise non-decreasing.

(Why?) Applying the quotient rule of differentiation to f,

 $s_{\mathbf{n}}(\mathbf{u})\partial_{u_3}s_{\mathbf{m}}(\mathbf{u}) - s_{\mathbf{m}}(\mathbf{u})\partial_{u_3}s_{\mathbf{n}}(\mathbf{u}) = (u_1 + u_2)(u_1u_3 + 2u_1u_2 + u_2u_3)u_3,$ and this is monomial-positive.

Schur Monotonicity Lemma (cont.)

Claim: The ratio
$$f(u_1, u_2, u_3) = \frac{(u_1 + u_2)(u_2 + u_3)(u_3 + u_1)}{u_1 u_2 + u_2 u_3 + u_3 u_1},$$

treated as a function on the orthant $(0,\infty)^3$, is coordinatewise non-decreasing.

(Why?) Applying the quotient rule of differentiation to f,

 $s_{\mathbf{n}}(\mathbf{u})\partial_{u_3}s_{\mathbf{m}}(\mathbf{u}) - s_{\mathbf{m}}(\mathbf{u})\partial_{u_3}s_{\mathbf{n}}(\mathbf{u}) = (u_1 + u_2)(u_1u_3 + 2u_1u_2 + u_2u_3)u_3,$ and this is monomial-positive.

Now if we write this as $\sum_{j \ge 0} p_j(u_1, u_2)u_3^j$, then each p_j is Schur-positive, i.e. a sum of Schur polynomials:

$$p_{0}(u_{1}, u_{2}) = 0,$$

$$p_{1}(u_{1}, u_{2}) = 2u_{1}u_{2}^{2} + 2u_{1}^{2}u_{2} = 2\underbrace{2 \ 2}_{1} + 2\underbrace{2 \ 1}_{1} = 2s_{(1,3)}(u_{1}, u_{2}),$$

$$p_{2}(u_{1}, u_{2}) = (u_{1} + u_{2})^{2} = \underbrace{2 \ 2}_{1} + \underbrace{2 \ 1}_{1} + \underbrace{1 \ 1}_{1} + \underbrace{2}_{1}$$

$$= s_{(0,3)}(u_{1}, u_{2}) + s_{(1,2)}(u_{1}, u_{2}).$$

Apoorva Khare, IISc Bangalore

The proof for general $\mathbf{m} \geqslant \mathbf{n}$ is similar:

By symmetry, and the quotient rule of differentiation, it suffices to show that

$$s_{\mathbf{n}} \cdot \partial_{u_N}(s_{\mathbf{m}}) - s_{\mathbf{m}} \cdot \partial_{u_N}(s_{\mathbf{n}})$$

is numerically positive on $(0,\infty)^N$. (Note, the coefficients in $s_n(\mathbf{u})$ of each u_N^j are skew-Schur polynomials in u_1, \ldots, u_{N-1} .)

The proof for general $\mathbf{m} \geqslant \mathbf{n}$ is similar:

By symmetry, and the quotient rule of differentiation, it suffices to show that

$$s_{\mathbf{n}} \cdot \partial_{u_N}(s_{\mathbf{m}}) - s_{\mathbf{m}} \cdot \partial_{u_N}(s_{\mathbf{n}})$$

is numerically positive on $(0,\infty)^N$. (Note, the coefficients in $s_n(\mathbf{u})$ of each u_N^j are skew-Schur polynomials in u_1, \ldots, u_{N-1} .)

The assertion would follow if this expression is monomial-positive.

The proof for general $\mathbf{m} \ge \mathbf{n}$ is similar:

By symmetry, and the quotient rule of differentiation, it suffices to show that

$$s_{\mathbf{n}} \cdot \partial_{u_N}(s_{\mathbf{m}}) - s_{\mathbf{m}} \cdot \partial_{u_N}(s_{\mathbf{n}})$$

is numerically positive on $(0,\infty)^N$. (Note, the coefficients in $s_n(\mathbf{u})$ of each u_N^j are skew-Schur polynomials in u_1, \ldots, u_{N-1} .)

The assertion would follow if this expression is monomial-positive.

Our Schur Monotonicity Lemma in fact shows that the coefficient of each u_N^j is (also) Schur-positive.

The proof for general $\mathbf{m} \ge \mathbf{n}$ is similar:

By symmetry, and the quotient rule of differentiation, it suffices to show that

$$s_{\mathbf{n}} \cdot \partial_{u_N}(s_{\mathbf{m}}) - s_{\mathbf{m}} \cdot \partial_{u_N}(s_{\mathbf{n}})$$

is numerically positive on $(0,\infty)^N$. (Note, the coefficients in $s_n(\mathbf{u})$ of each u_N^j are skew-Schur polynomials in u_1, \ldots, u_{N-1} .)

The assertion would follow if this expression is monomial-positive.

Our Schur Monotonicity Lemma in fact shows that the coefficient of each u_N^j is (also) Schur-positive.

Key ingredient: Schur-positivity result by Lam-Postnikov-Pylyavskyy (2007). (In turn, this emerged out of Skandera's 2004 results on determinant inequalities for totally non-negative matrices.)

Proof-sketch of main result (concl.)

Returning to the proof of the main result:

• If $p_t[\mathbf{u}\mathbf{u}^T] \in \mathbb{P}_N$ for all $\mathbf{u} \in (0, \sqrt{\rho})^N$, and $t, c_{n_0}, \dots, c_{n_{N-1}} > 0$, then

$$0 \leqslant \frac{\det p_t[\mathbf{u}\mathbf{u}^T]}{t^{N-1}V(\mathbf{u})^2 s_{\mathbf{n}}(\mathbf{u})^2 c_{n_0} \cdots c_{n_{N-1}}} = t - \sum_{j=0}^{N-1} \frac{s_{\mathbf{n}_j}(\mathbf{u})^2}{c_{n_j} s_{\mathbf{n}}(\mathbf{u})^2}.$$

Proof-sketch of main result (concl.)

Returning to the proof of the main result:

• If $p_t[\mathbf{u}\mathbf{u}^T] \in \mathbb{P}_N$ for all $\mathbf{u} \in (0, \sqrt{\rho})^N$, and $t, c_{n_0}, \ldots, c_{n_{N-1}} > 0$, then

$$0 \leqslant \frac{\det p_t[\mathbf{u}\mathbf{u}^T]}{t^{N-1}V(\mathbf{u})^2 s_{\mathbf{n}}(\mathbf{u})^2 c_{n_0} \cdots c_{n_{N-1}}} = t - \sum_{j=0}^{N-1} \frac{s_{\mathbf{n}_j}(\mathbf{u})^2}{c_{n_j} s_{\mathbf{n}}(\mathbf{u})^2}.$$

• By the Schur Monotonicity Lemma, this is if and only if

$$t \ge \sum_{j=0}^{N-1} \frac{s_{\mathbf{n}_j} (\sqrt{\rho}, \dots, \sqrt{\rho})^2}{c_{n_j} s_{\mathbf{n}} (\sqrt{\rho}, \dots, \sqrt{\rho})^2} = \sum_{j=0}^{N-1} \frac{V(\mathbf{n}_j)^2}{V(\mathbf{n})^2} \frac{\rho^{M-n_j}}{c_{n_j}} = \mathcal{K}_{\rho, \mathbf{n}, M},$$

by the Weyl Dimension Formula.

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies: Suppose $c_0, c_e, c_{\pi} \neq 0$ are real, $M \in (\pi, \infty)$, and

$$c_0 + c_e x^e + c_\pi x^\pi + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_3((0, \rho))$. Then $c_0, c_e, c_\pi > 0$. Can c_M be negative? (Not known.)

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies: Suppose $c_0, c_e, c_{\pi} \neq 0$ are real, $M \in (\pi, \infty)$, and

$$c_0 + c_e x^e + c_\pi x^\pi + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_3((0, \rho))$. Then $c_0, c_e, c_\pi > 0$. Can c_M be negative? (Not known.)

General case:

Fix an integer $N \ge 3$ and real powers $0 \le n_0 < \cdots < n_{N-1} < M$. Also fix positive real scalars $\rho, c_{n_0}, \ldots, c_{n_{N-1}} > 0$. Suppose

$$f(x) = \sum_{j=0}^{N-1} c_{n_j} x^{n_j} + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_N((0,\rho))$. Then $c_{n_j} > 0$ for all j.

Outstanding questions: 2. Real powers

Analogue of Loewner's necessary condition implies: Suppose $c_0, c_e, c_{\pi} \neq 0$ are real, $M \in (\pi, \infty)$, and

$$c_0 + c_e x^e + c_\pi x^\pi + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_3((0, \rho))$. Then $c_0, c_e, c_\pi > 0$. Can c_M be negative? (Not known.)

General case:

Fix an integer $N \ge 3$ and real powers $0 \le n_0 < \cdots < n_{N-1} < M$. Also fix positive real scalars $\rho, c_{n_0}, \ldots, c_{n_{N-1}} > 0$. Suppose

$$f(x) = \sum_{j=0}^{N-1} c_{n_j} x^{n_j} + c_M x^M$$

entrywise preserves positivity on $\mathbb{P}_N((0,\rho))$. Then $c_{n_j} > 0$ for all j.

Can c_M be negative? How about a sharp bound, as above? (More generally, which coefficients in such a preserver can be negative?)

Generalized Vandermonde determinants

The technical heart of the proof is similar:

Theorem (K.–Tao, in press)

Let $N \in \mathbb{N}$ and $0 \leq n_0 < \cdots < n_{N-1} < M$ be real. Suppose $c_0, \ldots, c_{N-1} \in (0, \infty)$, and define

$$p_t(x) := t(c_{n_0}x^{n_0} + \dots + c_{n_{N-1}}x^{n_{N-1}}) - x^M$$

Then for $\mathbf{u} \in (0,\infty)^N_{\neq}$,

$$\det p_t[\mathbf{u}\mathbf{u}^T] = t^{N-1} \det(\mathbf{u}^{\circ \mathbf{n}})^2 \prod_{j=0}^{N-1} c_{n_j} \times \left(t - \sum_{j=0}^{N-1} \frac{\det(\mathbf{u}^{\circ \mathbf{n}_j})^2}{\det(\mathbf{u}^{\circ \mathbf{n}})^2}\right),$$

where $\mathbf{u}^{\circ \mathbf{n}} := (u_i^{n_{j-1}})_{i,j=1}^N$ is a generalized Vandermonde matrix.

Now need to maximize a ratio of Vandermonde determinants, again with $\mathbf{n}_{j} \geqslant \mathbf{n}$ coordinate-wise.

Apoorva Khare, IISc Bangalore

Theorem (K.–Tao, in press)

For real tuples $n_0 < \cdots < n_{N-1}$ and $m_0 < \cdots < m_{N-1}$ such that $n_j \leqslant m_j \ \forall j$,

$$f: (0,\infty)^N_{\neq} \to \mathbb{R}, \qquad f(\mathbf{u}) := \frac{\det \mathbf{u}^{\circ \mathbf{m}}}{\det \mathbf{u}^{\circ \mathbf{n}}}$$

defined over 'pairwise distinct' u_j , is non-decreasing in each coordinate.

Theorem (K.–Tao, in press)

For real tuples $n_0 < \cdots < n_{N-1}$ and $m_0 < \cdots < m_{N-1}$ such that $n_j \leqslant m_j \ \forall j$,

$$f: (0,\infty)^N_{\neq} \to \mathbb{R}, \qquad f(\mathbf{u}) := \frac{\det \mathbf{u}^{\circ \mathbf{m}}}{\det \mathbf{u}^{\circ \mathbf{n}}}$$

defined over 'pairwise distinct' u_j , is non-decreasing in each coordinate.

Proof:

• By multiplying by $(u_1 \cdots u_N)^{-n_0}$, we may assume all $m_j, n_j \ge 0$.

Theorem (K.–Tao, in press)

For real tuples $n_0 < \cdots < n_{N-1}$ and $m_0 < \cdots < m_{N-1}$ such that $n_j \leqslant m_j \ \forall j$,

$$f: (0,\infty)^N_{\neq} \to \mathbb{R}, \qquad f(\mathbf{u}) := \frac{\det \mathbf{u}^{\circ \mathbf{m}}}{\det \mathbf{u}^{\circ \mathbf{n}}}$$

defined over 'pairwise distinct' u_j , is non-decreasing in each coordinate.

Proof:

- By multiplying by $(u_1 \cdots u_N)^{-n_0}$, we may assume all $m_j, n_j \ge 0$.
- W.l.o.g., $u_1 < \cdots < u_N$. Now if m_j, n_j are rational, say with common denominator $K \in \mathbb{N}$, work with $y_j = u_j^{1/K}$: $f(\mathbf{u}) = \frac{\det \mathbf{u}^{\circ \mathbf{m}}}{\det \mathbf{u}^{\circ \mathbf{n}}} = \frac{\det \mathbf{y}^{\circ (K \cdot \mathbf{m})}}{\det \mathbf{y}^{\circ (K \cdot \mathbf{n})}} = \frac{V(\mathbf{y}) \cdot s_{K \cdot \mathbf{m}}(\mathbf{y})}{V(\mathbf{y}) \cdot s_{K \cdot \mathbf{n}}(\mathbf{y})}.$

This is coordinate-wise non-decreasing in ${\bf y}$ by the Schur Monotonicity Lemma, hence in ${\bf u}.$

Theorem (K.–Tao, in press)

For real tuples $n_0 < \cdots < n_{N-1}$ and $m_0 < \cdots < m_{N-1}$ such that $n_j \leqslant m_j \ \forall j$,

$$f: (0,\infty)^N_{\neq} \to \mathbb{R}, \qquad f(\mathbf{u}) := \frac{\det \mathbf{u}^{\circ \mathbf{m}}}{\det \mathbf{u}^{\circ \mathbf{n}}}$$

defined over 'pairwise distinct' u_j , is non-decreasing in each coordinate.

Proof:

- By multiplying by $(u_1 \cdots u_N)^{-n_0}$, we may assume all $m_j, n_j \ge 0$.
- W.l.o.g., $u_1 < \cdots < u_N$. Now if m_j, n_j are rational, say with common denominator $K \in \mathbb{N}$, work with $y_j = u_j^{1/K}$: $f(\mathbf{u}) = \frac{\det \mathbf{u}^{\circ \mathbf{m}}}{\det \mathbf{u}^{\circ \mathbf{n}}} = \frac{\det \mathbf{y}^{\circ (K \cdot \mathbf{m})}}{\det \mathbf{y}^{\circ (K \cdot \mathbf{n})}} = \frac{V(\mathbf{y}) \cdot s_{K \cdot \mathbf{m}}(\mathbf{y})}{V(\mathbf{y}) \cdot s_{K \cdot \mathbf{n}}(\mathbf{y})}.$

This is coordinate-wise non-decreasing in ${\bf y}$ by the Schur Monotonicity Lemma, hence in ${\bf u}.$

• Finally, extend to real tuples \mathbf{m}, \mathbf{n} by rational approximation.

Extensions to real powers and power series (Weak) Majorization, via Schur polynomials

Main result (for real powers)

This helps show:

Theorem (K.-Tao, Amer. J. Math., in press)

Fix $N \in \mathbb{N}$ and real scalars

 $n_0 < \cdots < n_{N-1} < M, \qquad \rho > 0, \qquad c_{n_0}, \dots, c_{n_{N-1}}.$

For t > 0, define $p_t(x) := t \sum_{j=0}^{N-1} c_{n_j} x^{n_j} - x^M$. The following are equivalent.

Main result (for real powers)

This helps show:

Theorem (K.–Tao, Amer. J. Math., in press) Fix $N \in \mathbb{N}$ and real scalars $n_0 < \cdots < n_{N-1} < M, \qquad \rho > 0, \qquad c_{n_0}, \ldots, c_{n_{N-1}}.$ For t > 0, define $p_t(x) := t \sum_{i=0}^{N-1} c_{n_i} x^{n_j} - x^M$. The following are equivalent. **1** $p_t[-]$ preserves positivity on rank-one matrices in $\mathbb{P}_N((0,\rho))$. 2 All coefficients $c_{n_i} > 0$, and $t \ge \mathcal{K}_{\rho,\mathbf{n},M} := \sum_{i=0}^{N-1} \frac{V(\mathbf{n}_j)^2}{V(\mathbf{n})^2} \frac{\rho^{M-n_j}}{c_{n_j}}.$ 3 $p_t[-]$ preserves positivity on Hankel rank-one matrices in $\mathbb{P}_N((0,\rho))$.

Main result (for real powers)

This helps show:

Theorem (K.–Tao, Amer. J. Math., in press) Fix $N \in \mathbb{N}$ and real scalars $n_0 < \cdots < n_{N-1} < M, \qquad \rho > 0, \qquad c_{n_0}, \ldots, c_{n_{N-1}}.$ For t > 0, define $p_t(x) := t \sum_{i=0}^{N-1} c_{n_i} x^{n_j} - x^M$. The following are equivalent. **1** $p_t[-]$ preserves positivity on rank-one matrices in $\mathbb{P}_N((0,\rho))$. 2 All coefficients $c_{n_i} > 0$, and $t \ge \mathcal{K}_{\rho,\mathbf{n},M} := \sum_{i=0}^{N-1} \frac{V(\mathbf{n}_j)^2}{V(\mathbf{n})^2} \frac{\rho^{M-n_j}}{c_{n_j}}.$ **3** $p_t[-]$ preserves positivity on Hankel rank-one matrices in $\mathbb{P}_N((0,\rho))$. If all $n_i \in \mathbb{Z}^{\geq 0} \cup [N-2,\infty)$, then the rank-constraint in (1) can be removed.

The above results say that if $f(x) := \sum_{j=0}^{N-1} c_{n_j} x^{n_j}$ and $g(x) := x^M$ for an integer $M > n_{N-1}$, then we have the **linear matrix inequality**

$$f[A] \ge \mathcal{K}_{\rho,\mathbf{n},M}^{-1} \cdot A^{\circ M} = \mathcal{K}_{\rho,\mathbf{n},M}^{-1} \cdot g[A], \qquad \forall A \in \mathbb{P}_N((0,\rho)).$$

The above results say that if $f(x) := \sum_{j=0}^{N-1} c_{n_j} x^{n_j}$ and $g(x) := x^M$ for an integer $M > n_{N-1}$, then we have the **linear matrix inequality**

$$f[A] \ge \mathcal{K}_{\rho,\mathbf{n},M}^{-1} \cdot A^{\circ M} = \mathcal{K}_{\rho,\mathbf{n},M}^{-1} \cdot g[A], \qquad \forall A \in \mathbb{P}_N((0,\rho)).$$

By summing finitely many such inequalities, if $g(x) = \sum_{M > n_{N-1}} c_M x^M$, then

$$f[A] \ge \mathcal{K}_{\rho,\mathbf{n},g}^{-1} \cdot g[A],$$

for a *finite* constant $\mathcal{K}_{\rho,\mathbf{n},g}$.

The above results say that if $f(x) := \sum_{j=0}^{N-1} c_{n_j} x^{n_j}$ and $g(x) := x^M$ for an integer $M > n_{N-1}$, then we have the **linear matrix inequality**

$$f[A] \ge \mathcal{K}_{\rho,\mathbf{n},M}^{-1} \cdot A^{\circ M} = \mathcal{K}_{\rho,\mathbf{n},M}^{-1} \cdot g[A], \qquad \forall A \in \mathbb{P}_N((0,\rho)).$$

By summing finitely many such inequalities, if $g(x) = \sum_{M > n_{N-1}} c_M x^M,$ then

$$f[A] \ge \mathcal{K}_{\rho,\mathbf{n},g}^{-1} \cdot g[A],$$

for a *finite* constant $\mathcal{K}_{\rho,\mathbf{n},g}$.

Question: Is it possible to upper-bound g[A] by $\mathcal{K}_{\rho,\mathbf{n},g} \cdot f[A]$, for an *arbitrary* power series that is convergent on $(0, \rho)$?

$$g(x) = \sum_{M = \lfloor n_{N-1} \rfloor + 1}^{\infty} c_M x^M$$

The above results say that if $f(x) := \sum_{j=0}^{N-1} c_{n_j} x^{n_j}$ and $g(x) := x^M$ for an integer $M > n_{N-1}$, then we have the **linear matrix inequality**

$$f[A] \ge \mathcal{K}_{\rho,\mathbf{n},M}^{-1} \cdot A^{\circ M} = \mathcal{K}_{\rho,\mathbf{n},M}^{-1} \cdot g[A], \qquad \forall A \in \mathbb{P}_N((0,\rho)).$$

By summing finitely many such inequalities, if $g(x) = \sum_{M > n_{N-1}} c_M x^M,$ then

$$f[A] \ge \mathcal{K}_{\rho,\mathbf{n},g}^{-1} \cdot g[A],$$

for a *finite* constant $\mathcal{K}_{\rho,\mathbf{n},g}$.

Question: Is it possible to upper-bound g[A] by $\mathcal{K}_{\rho,\mathbf{n},g} \cdot f[A]$, for an *arbitrary* power series that is convergent on $(0, \rho)$?

$$g(x) = \sum_{M = \lfloor n_{N-1} \rfloor + 1}^{\infty} c_M x^M$$

Proposition (K.–Tao)

Yes.

Apoorva Khare, IISc Bangalore

Further applications

In fact we work with more general 'Laplace transforms'

$$g(x) = \int_{n_{N-1}+\varepsilon}^{\infty} x^t \ d\mu(t), \qquad \varepsilon > 0,$$

which are absolutely convergent at ρ . The sharp threshold bounds above imply here as well, that a finite constant $\mathcal{K}_{\rho,\mathbf{n},g}$ exists.

Further applications

In fact we work with more general 'Laplace transforms'

$$g(x) = \int_{n_{N-1}+\varepsilon}^{\infty} x^t \ d\mu(t), \qquad \varepsilon > 0,$$

which are absolutely convergent at ρ . The sharp threshold bounds above imply here as well, that a finite constant $\mathcal{K}_{\rho,\mathbf{n},g}$ exists.

Othese results lead to (sharp) linear matrix inequalities, for Hadamard powers.

Further applications

In fact we work with more general 'Laplace transforms'

$$g(x) = \int_{n_{N-1}+\varepsilon}^{\infty} x^t \ d\mu(t), \qquad \varepsilon > 0,$$

which are absolutely convergent at ρ . The sharp threshold bounds above imply here as well, that a finite constant $\mathcal{K}_{\rho,\mathbf{n},g}$ exists.

- Othese results lead to (sharp) linear matrix inequalities, for Hadamard powers.
- Application to spectrahedra and matrix cubes: Upper and lower bounds, which are asymptotically equal.
- 4 Reformulation in terms of generalized Rayleigh quotients.

Weak majorization through Schur polynomials

• Our Schur Monotonicity Lemma implies in particular:

$$\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1,\ldots,1)}{s_{\mathbf{n}}(1,\ldots,1)}, \qquad \forall \mathbf{u} \in [1,\infty)^{N}.$$

if ${\bf m}$ dominates ${\bf n}$ coordinatewise.

 $\bullet\,$ 'Natural' to ask: for which other tuples ${\bf m}, {\bf n}$ does this inequality hold?

Weak majorization through Schur polynomials

• Our Schur Monotonicity Lemma implies in particular:

$$\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1,\ldots,1)}{s_{\mathbf{n}}(1,\ldots,1)}, \qquad \forall \mathbf{u} \in [1,\infty)^{N}.$$

if ${\bf m}$ dominates ${\bf n}$ coordinatewise.

 $\bullet\,$ 'Natural' to ask: for which other tuples ${\bf m}, {\bf n}$ does this inequality hold?

We extend this to *real* tuples (generalized Vandermonde determinants):

Theorem (K.-Tao, Amer. J. Math., in press)
Given reals
$$n_0 < \cdots < n_{N-1}$$
 and $m_0 < \cdots < m_{N-1}$, TFAE:
We have $\frac{\det(\mathbf{u}^{\circ \mathbf{m}})}{\det(\mathbf{u}^{\circ \mathbf{n}})} \ge \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all 'distinct' tuples $\mathbf{u} \in [1, \infty)^N_{\neq}$.
meta meta matrix $\mathbf{n} = \mathbf{n} + \mathbf{n} + \mathbf{n} + \mathbf{n} = \mathbf{n} + \mathbf{n} + \mathbf{n} + \mathbf{n} + \mathbf{n} = \mathbf{n} + \mathbf{n} + \mathbf{n} + \mathbf{n} + \mathbf{n} = \mathbf{n} + \mathbf{n} +$
Weak majorization through Schur polynomials

• Our Schur Monotonicity Lemma implies in particular:

$$\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1,\ldots,1)}{s_{\mathbf{n}}(1,\ldots,1)}, \qquad \forall \mathbf{u} \in [1,\infty)^{N}.$$

if ${\bf m}$ dominates ${\bf n}$ coordinatewise.

• 'Natural' to ask: for which other tuples \mathbf{m}, \mathbf{n} does this inequality hold?

We extend this to *real* tuples (generalized Vandermonde determinants):

Theorem (K.-Tao, Amer. J. Math., in press)
Given reals
$$n_0 < \cdots < n_{N-1}$$
 and $m_0 < \cdots < m_{N-1}$, TFAE:
We have $\frac{\det(\mathbf{u}^{\circ \mathbf{m}})}{\det(\mathbf{u}^{\circ \mathbf{n}})} \ge \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all 'distinct' tuples $\mathbf{u} \in [1, \infty)_{\neq}^N$.
means \mathbf{m} meakly majorizes $\mathbf{n} - i.e.$, $m_{N-1} + \cdots + m_j \ge n_{N-1} + \cdots + n_j \forall j$.

This problem was studied originally by Skandera and others in the 2010s, for integer powers, and on the entire positive orthant $(0,\infty)^N$:

Cuttler-Greene-Skandera conjecture

Theorem (Cuttler–Greene–Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers $0 \leq n_0 < \cdots < n_{N-1}$ and $0 \leq m_0 < \cdots < m_{N-1}$. Then

$$\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1,\ldots,1)}{s_{\mathbf{n}}(1,\ldots,1)}, \qquad \forall \mathbf{u} \in (0,\infty)^{N},$$

if and only if m majorizes n.

Majorization = (weak majorization) + $\left(\sum_{j} m_{j} = \sum_{j} n_{j}\right)$.

Cuttler-Greene-Skandera conjecture

Theorem (Cuttler–Greene–Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers $0 \leq n_0 < \cdots < n_{N-1}$ and $0 \leq m_0 < \cdots < m_{N-1}$. Then

$$\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1,\ldots,1)}{s_{\mathbf{n}}(1,\ldots,1)}, \qquad \forall \mathbf{u} \in (0,\infty)^{N},$$

if and only if \mathbf{m} majorizes \mathbf{n} .

Majorization = (weak majorization) +
$$\left(\sum_{j} m_{j} = \sum_{j} n_{j}\right)$$
.

Questions:

- Does this characterization extend to real powers?
- 2 Can we use a smaller subset than the full orthant $(0,\infty)^N$, to deduce majorization?

Cuttler-Greene-Skandera conjecture

Theorem (Cuttler–Greene–Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers $0 \leq n_0 < \cdots < n_{N-1}$ and $0 \leq m_0 < \cdots < m_{N-1}$. Then

$$\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1,\ldots,1)}{s_{\mathbf{n}}(1,\ldots,1)}, \qquad \forall \mathbf{u} \in (0,\infty)^{N},$$

if and only if \mathbf{m} majorizes \mathbf{n} .

Majorization = (weak majorization) +
$$\left(\sum_{j} m_{j} = \sum_{j} n_{j}\right)$$
.

Questions:

- Does this characterization extend to real powers?
- 2 Can we use a smaller subset than the full orthant $(0,\infty)^N$, to deduce majorization?

Yes, and Yes:

Majorization via Vandermonde determinants

Theorem (K.-Tao, Amer. J. Math., in press)

Given reals
$$n_0 < \cdots < n_{N-1}$$
 and $m_0 < \cdots < m_{N-1}$, TFAE:

Majorization via Vandermonde determinants

Theorem (K.-Tao, Amer. J. Math., in press)

Given reals
$$n_0 < \cdots < n_{N-1}$$
 and $m_0 < \cdots < m_{N-1}$, TFAE:

Proof:

- (1) \implies (2): Obvious. (3) \implies (1): Akin to Sra (2016).
- (2) \implies (3): If $\mathbf{u} \in [1,\infty)^N_{\neq}$, then by our preceding result: $\mathbf{m} \succ_w \mathbf{n}$.

Majorization via Vandermonde determinants

Theorem (K.-Tao, Amer. J. Math., in press)

Given reals
$$n_0 < \cdots < n_{N-1}$$
 and $m_0 < \cdots < m_{N-1}$, TFAE:

Proof:

- (1) \implies (2): Obvious. (3) \implies (1): Akin to Sra (2016).
- (2) \implies (3): If $\mathbf{u} \in [1, \infty)^N_{\neq}$, then by our preceding result: $\mathbf{m} \succ_w \mathbf{n}$. If $\mathbf{u} \in (0, 1]^N_{\neq}$, let $v_j := 1/u_j \ge 1$; then we get:

$$\frac{\det(\mathbf{v}^{\circ(-\mathbf{m})})}{\det(\mathbf{v}^{\circ(-\mathbf{n})})} = \frac{\det(\mathbf{u}^{\circ\mathbf{m}})}{\det(\mathbf{u}^{\circ\mathbf{n}})} \ge \frac{V(\mathbf{m})}{V(\mathbf{n})} = \frac{V(-\mathbf{m})}{V(-\mathbf{n})}.$$

Our preceding result: $-\mathbf{m} \succ_w -\mathbf{n}$;

Majorization via Vandermonde determinants

Theorem (K.-Tao, Amer. J. Math., in press)

Given reals
$$n_0 < \cdots < n_{N-1}$$
 and $m_0 < \cdots < m_{N-1}$, TFAE:

Proof:

- (1) \implies (2): Obvious. (3) \implies (1): Akin to Sra (2016).
- (2) \implies (3): If $\mathbf{u} \in [1, \infty)^N_{\neq}$, then by our preceding result: $\mathbf{m} \succ_w \mathbf{n}$. If $\mathbf{u} \in (0, 1]^N_{\neq}$, let $v_j := 1/u_j \ge 1$; then we get:

$$\frac{\det(\mathbf{v}^{\circ(-\mathbf{m})})}{\det(\mathbf{v}^{\circ(-\mathbf{n})})} = \frac{\det(\mathbf{u}^{\circ\mathbf{m}})}{\det(\mathbf{u}^{\circ\mathbf{n}})} \ge \frac{V(\mathbf{m})}{V(\mathbf{n})} = \frac{V(-\mathbf{m})}{V(-\mathbf{n})}.$$

Our preceding result: $-\mathbf{m} \succ_w -\mathbf{n}$; and $\mathbf{m} \succ_w \mathbf{n} \iff \mathbf{m}$ majorizes \mathbf{n} .

Open question: Optimizing over $[-1, 1]^N$?

- The previous talk and this talk concerned polynomials/power series that entrywise preserve positive semidefiniteness in a fixed dimension.
- The maximization of $s_{\mathbf{m}}(\mathbf{u})/s_{\mathbf{n}}(\mathbf{u})$ over $(0,1]^N$ reveals tight bounds on certain polynomial preservers, acting on $\mathbb{P}_N([0,1])$. (By homogeneity and continuity, maximize only over the cube-boundary $(0,1]^N \cap \partial(0,1]^N$.)

Open question: Optimizing over $[-1, 1]^N$?

- The previous talk and this talk concerned polynomials/power series that entrywise preserve positive semidefiniteness in a fixed dimension.
- The maximization of s_m(u)/s_n(u) over (0,1]^N reveals tight bounds on certain polynomial preservers, acting on P_N([0,1]). (By homogeneity and continuity, maximize only over the cube-boundary (0,1]^N ∩ ∂(0,1]^N.)
- What about on *all* correlation matrices? Need to upper-bound $s_{\mathbf{m}}(\mathbf{u})^2/s_{\mathbf{n}}(\mathbf{u})^2$ over all of $[-1,1]^N \setminus \{0\}$.
- For this, need to ensure s_n(u) does not vanish except at 0. Facts:
 (1) The only such n = (0, 1, ..., N 2, N 1 + 2r) for r ∈ Z^{≥0}.
 (2) All such s_n(u) are complete symmetric homogeneous polynomials h_{2r}(u), and they are positive on ℝ^N \ {0}.

Open question: Optimizing over $[-1,1]^N$?

- The previous talk and this talk concerned polynomials/power series that entrywise preserve positive semidefiniteness in a fixed dimension.
- The maximization of s_m(u)/s_n(u) over (0,1]^N reveals tight bounds on certain polynomial preservers, acting on P_N([0,1]). (By homogeneity and continuity, maximize only over the cube-boundary (0,1]^N ∩ ∂(0,1]^N.)
- What about on *all* correlation matrices? Need to upper-bound $s_{\mathbf{m}}(\mathbf{u})^2/s_{\mathbf{n}}(\mathbf{u})^2$ over all of $[-1, 1]^N \setminus \{0\}$.
- For this, need to ensure s_n(u) does not vanish except at 0. Facts:
 (1) The only such n = (0, 1, ..., N 2, N 1 + 2r) for r ∈ Z^{≥0}.
 (2) All such s_n(u) are complete symmetric homogeneous polynomials h_{2r}(u), and they are positive on ℝ^N \ {0}.

Question: Say $m_j \ge j$ for j = 0, 1, ..., N-2, and $m_{N-1} \ge N-1+2r$. Maximize $\frac{s_m(\mathbf{u})^2}{h_{2r}(\mathbf{u})^2}$ on $[-1, 1]^N \setminus \{0\}$ – or just on its cube-boundary.

27 / 27

Selected publications

- A. Belton, D. Guillot, A. Khare, and M. Putinar:
- [1] Matrix positivity preservers in fixed dimension. I, Advances in Math., 2016.
- [2] *Moment-sequence transforms*, J. Eur. Math. Soc., accepted.
- [3] A panorama of positivity (survey), Shimorin volume + Ransford-60 proc.
- [4] On the sign patterns of entrywise positivity preservers in fixed dimension, (With T. Tao) Amer. J. Math., in press.
- [5] Matrix analysis and preservers of (total) positivity, 2020+, Lecture notes (website); forthcoming book – Cambridge Press + TRIM.

