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PSD and TP matrices

Definition. A real symmetric matrix A is positive definite if any of the
following equivalent conditions are satisfied.

1 The quadratic form of A is positive definite:
uTAu > 0 for all nonzero vectors u ∈ Rn.

2 All principal minors of A are positive.

3 All eigenvalues of A are positive.

These matrices are ubiquitous in the applied sciences (correlation/covariance
matrices), but also in analysis: Pick–Nevanlinna theory, the Hessian at local
minima, . . .

Definition. A rectangular matrix is totally positive (TP) if all minors are
positive. (Similarly, totally non-negative (TN).)

Thus all entries > 0, all 2× 2 minors > 0, . . .

These matrices occur widely in mathematics: analysis, probability and statitics,
differential equations, interpolation theory, matrix theory, representation
theory, cluster algebras, integrable systems, combinatorics, . . .
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Totally positive matrices in mathematics

TP and TN matrices occur in

analysis and differential equations (Aissen, Edrei, Schoenberg, Pólya,
Loewner, Whitney)

probability and statistics (Efron, Karlin, Pitman, Proschan, Rinott)

interpolation theory and splines (Curry, Schoenberg)

Gabor analysis (Gröchenig, Stöckler)

interacting particle systems (Gantmacher, Krein)

matrix theory (Ando, Cryer, Fallat, Garloff, Johnson, Pinkus, Sokal)

representation theory (Lusztig, Postnikov)

cluster algebras (Berenstein, Fomin, Zelevinsky)

integrable systems (Kodama, Williams)

quadratic algebras (Borger, Davydov, Grinberg, Hô Hai, Skryabin)

combinatorics (Brenti, Lindström–Gessel–Viennot, Skandera, Sturmfels)
...
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Spectral properties of PSD and TP matrices: I

Theorem (folklore)

Suppose An×n is a real symmetric matrix. The following are equivalent.

1 All principal minors of A are > 0 (or ≥ 0),
i.e. A is positive (semi)definite.

2 All eigenvalues of (all principal submatrices of) A are > 0 (or ≥ 0).

Theorem (Gantmacher–Krein, Compos. Math. 1937)

Suppose An×n is a real square matrix. The following are equivalent.

1 All minors of A are > 0 (or ≥ 0),
i.e. A is totally positive (or totally non-negative).

2 All eigenvalues of all square submatrices of A are > 0 (or ≥ 0).

The proof uses Perron’s theorem on positive matrices
+ Kronecker’s theorem on compound matrices:
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Spectral properties of PSD and TP matrices: II

Proof for totally positive matrices: The rth compound matrix Cr(A) is the(
n
r

)
×
(
n
r

)
matrix, with Cr(A)J,K := detAJ×K , where |J | = |K| = r.

(The subsets J ⊂ [n] are lexicographically ordered.)

Properties of compound matrices:

C0(A) := (1), C1(A) = A, and Cn(A) = det(A).

If A is upper/lower triangular, diagonal, or symmetric, then so is Cr(A).

Cauchy–Binet formula: Cr(AB) = Cr(A)Cr(B) for A,B ∈ Rn×n.

Corollary: If A = MJM−1 with J the Jordan canonical form, then
Cr(A) = Cr(M)Cr(J)Cr(M)−1, so the eigenvalues of Cr(A) are those of
Cr(J), i.e. r-fold products of eigenvalues of A.

Number the eigenvalues of An×n via: |λ1| ≥ |λ2| ≥ · · · ≥ |λn|.
Now if A is TP, every Cr(A) has positive entries, so a Perron eigenvalue,
which must be λ1 · · ·λr > 0. These inequalities give: λj ∈ (0,∞) ∀j.
Since each Perron eigenvalue is simple, λ1 > λ2 > · · · > λn > 0.
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Examples of TP/TN matrices

1 The lower-triangular matrix A = (1j≥k)nj,k=1 is TN.

2 Generalized Vandermonde matrices are TP: if 0 < x1 < · · · < xn and
y1 < y2 < · · · < yn are real, then

det(x
yk
j )nj,k=1 > 0.

This uses Descartes’ rule of signs (1637).

3 (Pólya:) The Gaussian kernel is TP: given σ > 0 and scalars

x1 < x2 < · · · < xn, y1 < y2 < · · · < yn,

the matrix G[x;y] := (e−σ(xj−yk)2)nj,k=1 is TP.

Proof: It suffices to show detG[x;y] > 0. Now factorize:

G[x;y] = diag(e−σx
2
j )nj=1 · ((e2σxj )yk )nj,k=1 · diag(e−σy

2
k )nk=1.

The middle matrix is a generalized Vandermonde matrix, so all three
factors have positive determinants.
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Whitney’s density theorem

Recall: every positive semidefinite matrix A can be approximated by a sequence
of positive definite matrices: A+ εId, ε→ 0+. (Consider the eigenvalues.)

In other words, positive definite matrices are dense in psd matrices.

A similar density was discovered by (Anne M.) Whitney:

Theorem (Whitney, J. d’Analyse Math. 1952)

The set of m× n TPr matrices is dense in the set of m× n TNr matrices.

Whitney’s proof goes through verbatim for symmetric matrices.
It also goes through for ‘continuous’ versions, i.e. kernels.
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Totally positive / non-negative kernels

Definition: Given totally ordered sets X,Y and a map (‘kernel’)
K : X × Y → R, we say that K is totally positive of order r (TPr)
if given any p ≤ r and arguments

x1 < · · · < xp in X, y1 < · · · < yp in Y,

the determinant det(K(xj , yk))pj,k=1 > 0.

We say K is totally positive if K is TPr for all r.

Similarly for TNr and TN kernels.

Examples:
(1) X,Y are finite  TPr and TNr matrices.

(2) Say X = Y = R. The kernel K(x, y) := exy is TP . (Why?)

(3) Say X = Y = R. The kernels K±(x, y) := exp(±(x± y)2) are TP .
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Structured kernels: I. Hankel kernels

The kernel K+(x, y) := exp((x+ y)2) is an example of a continuous Hankel
kernel on R× R,
i.e. there exists f such that K(x, y) = f(x+ y).

Theorem (Widder, Bull. Amer. Math. Soc. 1934)

Suppose X ⊂ R is an open interval. Every continuous Hankel TN kernel on
X ×X is of the form

K(x, y) =

∫
R

exp(−(x+ y)u) dσ(u), x, y ∈ X

where σ : R→ R is a non-decreasing function.
Moreover, K is TP if and only if the measure dσ has infinite support.

Thus, ‘Whitney’ density also holds for such kernels: K(x, y) is the limit of

Kε(x, y) := K(x, y) + ε

∫ 1

0

e−(x+y)u du, as ε→ 0+.
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Structured kernels: II. Toeplitz kernels

Similarly, the Gaussian kernel K−(x, y) := exp(−(x− y)2) is TP from above.
More generally, a totally non-negative function is Λ : R→ R such that the
Toeplitz kernel

TΛ(x, y) := Λ(x− y), x, y ∈ R
is totally non-negative.
‘Representative’ examples:

1 Λ(x) = e−x
2

.

2 Λ(x) = c1(x = a) for a ∈ R and c ≥ 0. (Draw any submatrix from TΛ; it
is either a diagonal matrix or has a zero row/column.)

3 Λ(x) = eax+b is TN . Indeed,

TΛ((xj , yk)) = (eaxj−ayk+b)j,k≥1

and this has rank-one, so all ‘larger’ minors vanish (hence are ≥ 0).

4 Λ(x) = 1x≥0. (Can be verified to be TN by explicit computation.)

Note: the last two examples are not integrable functions.
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Pólya frequency functions

A function Λ : R→ R is a Pólya frequency function if (a) it is integrable, (b) it
is nonzero at two points, and (c) the associated Toeplitz kernel TΛ is TN .

Pólya frequency functions have a beautiful structure theory, developed by
Schoenberg and others. They connect to real function theory, PDEs, Gabor
analysis, . . .

Examples:

1 The Gaussian kernel e−x
2

.

2 While 1x≥0 is not integrable, e−x1x≥0 is a Pólya frequency function.
This is because if Λ(x) is a TN function, then so is ∆(x) := eax+bΛ(x),
since

(T∆(xj , yk))nj,k=1 = diag(eaxj+b)nj=1(TΛ(xj , yk))nj,k=1diag(e−ayk )nk=1,

and so the left-side has determinant ≥ 0.
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Variation diminishing property

Totally non-negative matrices/kernels have the variation diminishing property:

Theorem (Schoenberg, Math. Z. 1930, J. d’Analyse Math. 1951)

1 If a matrix An×m is TN, then S−(Ax) ≤ S−(x) for all x ∈ Rm.
(‘Variation’ denotes the number of sign changes in the values taken by
the vector.)

2 (Continuous version: Now a Pólya frequency function is thought of as
a kernel , to integrate against. And the ‘variation’ denotes the
(possibly infinite) number of sign changes in the values of a function.)
If f : R→ R is integrable on all finite intervals, and Λ is a PF function,

S−(g) ≤ S−(f), where g(x) :=

∫
R

Λ(x− t)f(t) dt.

This has a ‘discrete’ variant for infinite sequences – discussed next.
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Pólya frequency sequences

Discrete version: Pólya frequency sequences. These are sequences
a = (an)n∈Z, such that for any integers

l1 < l2 < · · · < ln, m1 < m2 < · · · < mn,

the determinant det(alj−mk )nj,k=1 ≥ 0.

In other words, these are bi-infinite Toeplitz matrices

. . .
...

...
...

...
· · · a0 a−1 a−2 a−3 · · ·
· · · a1 a0 a−1 a−2 · · ·
· · · a2 a1 a0 a−1 · · ·
· · · a3 a2 a1 a0 · · ·

...
...

...
...

. . .


which are totally non-negative.
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History of total positivity / variation diminution: I

The term ‘variation diminishing property’ was coined by Pólya, with
‘variation’ denoting the number of sign changes in a vector/function.

This was in use since Descartes’ rule of signs. E.g. in 1883, Laguerre
proved several variants of the rule of signs. A sample result is:
Suppose f(x) is a real polynomial. Given γ ≥ 0, the number of variations
of the power series eγxf(x) is non-increasing in γ, and is always bounded
below by the number of positive roots of f .

Laguerre did not fully prove this; completed by Fekete (1912) – in
correspondence with Pólya – as a corollary of the following result:
Let p(t) =

∑
k≥0 ckt

k be a formal power series with all ck ∈ [0,∞). For
the standard monomial basis xk, the operator of multiplication by p(t) is:

Tc :=


c0 0 0 · · ·
c1 c0 0 · · ·
c2 c1 c0 · · ·
...

...
...

. . .


If Tc is TN, S−(Tcx) ≤ S−(x) for all ‘finite’ x. (Tcx can be infinite!)
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History of total positivity / variation diminution: II

Thus we go from Descartes (1637) to Laguerre (1883) to Fekete–Pólya (1912).

Next came Schoenberg (1930), who showed that if An×m is TN then it
has the variation diminishing property: S−(Ax) ≤ S−(x).

Clearly, so does −A. Characterize the matrices having this property?

Achieved by Motzkin in PhD thesis (1936)  sign-regular matrices.

Remarkably, Motzkin’s thesis also contained:

2 Motzkin transposition theorem

3 Fourier–Motzkin Elimination (FME) algorithm

4 A convex polyhedral set is the Minkowski sum of a compact (convex)
polytope and a polyhedral cone.

5 Beyond his PhD: studied what is now called the ‘Motzkin number’.

6 First example of PID that is not a Euclidean domain: Z[(1 +
√
−19)/2].

7 Provided the first explicit polynomial that is positive on R2, yet not a
sum-of-squares (Hilbert’s 17th problem): x4y2 + x2y4 − 3x2y2 + 1.

Apoorva Khare, IISc and APRG, Bangalore 15 / 24



History of total positivity / variation diminution: II

Thus we go from Descartes (1637) to Laguerre (1883) to Fekete–Pólya (1912).

Next came Schoenberg (1930), who showed that if An×m is TN then it
has the variation diminishing property: S−(Ax) ≤ S−(x).

Clearly, so does −A. Characterize the matrices having this property?

Achieved by Motzkin in PhD thesis (1936)  sign-regular matrices.

Remarkably, Motzkin’s thesis also contained:

2 Motzkin transposition theorem

3 Fourier–Motzkin Elimination (FME) algorithm

4 A convex polyhedral set is the Minkowski sum of a compact (convex)
polytope and a polyhedral cone.

5 Beyond his PhD: studied what is now called the ‘Motzkin number’.

6 First example of PID that is not a Euclidean domain: Z[(1 +
√
−19)/2].

7 Provided the first explicit polynomial that is positive on R2, yet not a
sum-of-squares (Hilbert’s 17th problem): x4y2 + x2y4 − 3x2y2 + 1.

Apoorva Khare, IISc and APRG, Bangalore 15 / 24



History of total positivity / variation diminution: II

Thus we go from Descartes (1637) to Laguerre (1883) to Fekete–Pólya (1912).

Next came Schoenberg (1930), who showed that if An×m is TN then it
has the variation diminishing property: S−(Ax) ≤ S−(x).

Clearly, so does −A. Characterize the matrices having this property?

Achieved by Motzkin in PhD thesis (1936)  sign-regular matrices.

Remarkably, Motzkin’s thesis also contained:

2 Motzkin transposition theorem

3 Fourier–Motzkin Elimination (FME) algorithm

4 A convex polyhedral set is the Minkowski sum of a compact (convex)
polytope and a polyhedral cone.

5 Beyond his PhD: studied what is now called the ‘Motzkin number’.

6 First example of PID that is not a Euclidean domain: Z[(1 +
√
−19)/2].

7 Provided the first explicit polynomial that is positive on R2, yet not a
sum-of-squares (Hilbert’s 17th problem): x4y2 + x2y4 − 3x2y2 + 1.

Apoorva Khare, IISc and APRG, Bangalore 15 / 24



Sign non-reversal property

In fact, TN and TP matrices are characterized by two properties together:

Variation diminishing property: S−(Ax) ≤ S−(x) for all x ∈ Rm;

Sign non-reversal property: If x 6= 0,∃j such that xj 6= 0, xj(Ax)j > 0.

It turns out that the latter property alone is sufficient!

Theorem (Choudhury–Kannan–K., Bull. London Math. Soc., in press)

Given m,n ≥ k ≥ 1, and A ∈ Rn×m, the following are equivalent:

1 The matrix A is TPk.

2 Every square submatrix of size r ≤ k has the sign non-reversal property.

Theorem (Choudhury–Kannan–K., Bull. London Math. Soc., in press)

Given m,n ≥ k ≥ 1, and A ∈ Rn×m, the following are equivalent:

1 The matrix A is TNk.

2 Every square submatrix of size r ≤ k has the non-strict sign non-reversal
property – for a single vector in Rr.
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Convolution

How to construct new examples of TP/TN kernels from old ones?

First consider the matrix/‘discrete’ case: given two matrices Am×n and Bn×p
which are both TNr, their product is also TNr.

Proof: Given sets I, J of rows/columns of size p ≤ r, use the Cauchy–Binet
identity:

det(AB)I×J = det(AI×[n]B[n]×J) =
∑

K⊂[n], |K|=p

detAI×K detBK×J ≥ 0.

The Cauchy–Binet formula has a continuous version  Basic composition
formula (Pólya–Szegő). This implies:

Corollary: If Λ1,Λ2 : R→ [0,∞) are integrable TNr functions, then so is their
convolution

(Λ1 ∗ Λ2)(x) :=

∫
R

Λ1(t)Λ2(x− t) dt, x ∈ R.

This will help construct additional examples of Pólya frequency functions.
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Pólya frequency functions and Laplace transforms

More examples:
1 If Λ(x) is a PF function, then so is Λ(ax+ b) for a 6= 0.

2 If Λn(x) is a PF function, and Λn → Λ pointwise, with Λ integrable and
nonzero on two points  Λ is a PF function.

The bilateral Laplace transform of a PF function Λ is

B(Λ)(s) :=

∫
R
e−sxΛ(x) dx, s ∈ C.

Fact: B is an algebra map: B(Λ1 ∗ Λ2) = B(Λ1)B(Λ2).

Now consider one-sided PF functions: ϕa(x) := 1
a
e−x/a1x≥0  Laplace

transform B(ϕa)(s) = 1/(1 + as).

Let aj > 0 with
∑∞
j=1 aj <∞. Then for each n, the convolution

ϕa1 ∗ · · · ∗ ϕan is a one-sided PF function, with Laplace transform

B(ϕa1 ∗ · · · ∗ ϕan)(s) =
1∏n

j=1(1 + ajs)
.
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Laguerre–Pólya class and Schoenberg’s results: I. One-sided

Shifting the origin of ϕa1 ∗ · · · ∗ ϕan to δ ≥ 0 yields a one-sided PF
function with Laplace transform e−δs/

∏n
j=1(1 + ajs).

Taking limits of PF functions gives a PF function  a PF function with
Laplace transform e−δs/

∏∞
j=1(1 + ajs).

Its reciprocal is the analytic (entire) function eδs
∏∞
j=1(1 + ajs).

Remarkably, every one-sided PF function shares this property:

Theorem (Schoenberg, J. d’Analyse Math. 1951)

A function Λ : R→ R, continuous on (0,∞) and with
∫
R Λ(x) dx = 1, is a

one-sided PF function vanishing on (−∞, 0), if and only if

1

B(Λ)(s)
= eδs

∞∏
j=1

(1 + ajs), where δ, aj ≥ 0,
∑
j

aj <∞.

This is the limit of the polynomials (1 +
δs

n
)n

n∏
j=1

(1 + ajs), with negative roots.
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Laguerre–Pólya class and Schoenberg’s results: II. Two-sided

Similarly, using the Gaussian kernel and ‘oppositely directed’ variants of
e−x1x≥0, Schoenberg proved:

Theorem (Schoenberg, J. d’Analyse Math. 1951)

A function Λ : R→ R with
∫
R Λ(x) dx = 1 is a PF function, if and only if

1

B(Λ)(s)
= e−γs

2+δs
∞∏
j=1

(1 + ajs)e
−ajs,

where γ ≥ 0 and δ, aj ∈ R are such that 0 < γ +
∑
j a

2
j <∞.

These two classes of entire functions were very well-studied by Laguerre, Pólya,
and Schur in the early 20th century:

1 The first class of entire functions are limits – uniform on compact sets –
of real polynomials with real non-positive roots. (‘One-sided’)

2 The second class  limits of real polynomials with real roots.

 Laguerre–Pólya functions (allowing for a factor of csm, c ≥ 0,m ∈ Z≥0).
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From the Laguerre–Pólya class to the Riemann Hypothesis

Pólya (1927) initiated the study of functions Λ(t) such that B(Λ)(s) has only
real zeros. His work contains the following result:

Theorem (Pólya, 1927)

The following statements are equivalent:

1 The Riemann Xi-function Ξ(s) = ξ(1/2 + iz) is in the Laguerre–Pólya
class, where ξ(s) :=

(
s
2

)
π−s/2Γ(s/2)ζ(s).

2 The Riemann Hypothesis is true.

Combined with Schoenberg’s result above, this yields:

Theorem (Gröchenig, 2020)

Let ξ(s) =
(
s
2

)
π−s/2Γ(s/2)ζ(s) be the Riemann xi-function. If

Λ(x) :=

∫
R
ξ(u+ 1/2)−1e−ixu du

is a Pólya frequency function, then the Riemann Hypothesis is true.

The Laguerre–Pólya class is thus a distinguished one in several areas.
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From Pólya–Schur multipliers to Laguerre–Pólya

The Laguerre–Pólya class is also related to Pólya–Schur multipliers. Given a
multiplier sequence

Γ = (γ0, γ1, . . . ) ∈ RN, γn ≥ 0,

consider linear transformations of polynomials:

P (t) := p0 + p1t+ · · ·+ pnt
n 7→ Γ[P (t)] := γ0p0 + γ1p1t+ · · ·+ γnpnt

n.

We say that Γ is a multiplier sequence of the first kind (or second kind) if for
all polynomials with real (or negative) roots, Γ[P ] has all real roots.

Theorem (Pólya–Schur, J. reine angew. Math. 1914)

A sequence Γ is a multiplier sequence of the first (or second) kind,
if and only if its generating function ΨΓ(t) :=

∑
j≥0 γjt

j/j! is in the first (or
second) Laguerre–Pólya class.

Now by Schoenberg’s results:
if and only if 1/ΨΓ(s) is the Laplace transform of a Pólya frequency function.
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Modern incarnations of the Laguerre–Pólya–Schur program

Recently, Borcea–Branden (late 2000s) studied

higher-dimensional versions of Pólya–Schur multipliers,

linear operators on spaces of (multivariate) polynomials that preserved
(higher dimensional) versions of stability / hyperbolicity.

This enabled them to characterize linear operators preserving Ω-stability for
domains Ω ⊂ C (studied+open since late 1800s at least); prove conjectures of
C.R. Johnson; prove many Lee–Yang type theorems. . .

Borcea–Branden–Liggett: developed the theory of negative dependence
for ‘strongly Rayleigh’ (probability) measures  proving conjectures of
Liggett, Pemantle, Wagner.

Taken forward by Marcus–Spielman–Srivastava (2010s):

Kadison–Singer conjecture.
Existence of bipartite Ramanujan (expander) graphs of every degree
and every order.
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