Total positivity: history, basics, and modern connections

Apoorva Khare

Indian Institute of Science, Bangalore
Analysis \& Probability Research Group, Bangalore

Definition. A real symmetric matrix A is positive definite if any of the following equivalent conditions are satisfied.
(1) The quadratic form of A is positive definite:

$$
u^{T} A u>0 \text { for all nonzero vectors } u \in \mathbb{R}^{n}
$$

(2) All principal minors of A are positive.
(3) All eigenvalues of A are positive.

These matrices are ubiquitous in the applied sciences (correlation/covariance matrices), but also in analysis: Pick-Nevanlinna theory, the Hessian at local minima, ...

Definition. A real symmetric matrix A is positive definite if any of the following equivalent conditions are satisfied.
(1) The quadratic form of A is positive definite:

$$
u^{T} A u>0 \text { for all nonzero vectors } u \in \mathbb{R}^{n}
$$

(2) All principal minors of A are positive.
(3) All eigenvalues of A are positive.

These matrices are ubiquitous in the applied sciences (correlation/covariance matrices), but also in analysis: Pick-Nevanlinna theory, the Hessian at local minima, ...

Definition. A rectangular matrix is totally positive (TP) if all minors are positive. (Similarly, totally non-negative (TN).)

Thus all entries >0, all 2×2 minors $>0, \ldots$
These matrices occur widely in mathematics: analysis, probability and statitics, differential equations, interpolation theory, matrix theory, representation theory, cluster algebras, integrable systems, combinatorics, ...

Totally positive matrices in mathematics

TP and TN matrices occur in

- analysis and differential equations (Aissen, Edrei, Schoenberg, Pólya, Loewner, Whitney)
- probability and statistics (Efron, Karlin, Pitman, Proschan, Rinott)
- interpolation theory and splines (Curry, Schoenberg)
- Gabor analysis (Gröchenig, Stöckler)
- interacting particle systems (Gantmacher, Krein)
- matrix theory (Ando, Cryer, Fallat, Garloff, Johnson, Pinkus, Sokal)
- representation theory (Lusztig, Postnikov)
- cluster algebras (Berenstein, Fomin, Zelevinsky)
- integrable systems (Kodama, Williams)
- quadratic algebras (Borger, Davydov, Grinberg, Hô Hai, Skryabin)
- combinatorics (Brenti, Lindström-Gessel-Viennot, Skandera, Sturmfels)

Spectral properties of PSD and TP matrices: I

Theorem (folklore)

Suppose $A_{n \times n}$ is a real symmetric matrix. The following are equivalent.
(1) All principal minors of A are >0 (or ≥ 0), i.e. A is positive (semi)definite.
(2) All eigenvalues of (all principal submatrices of) A are >0 (or ≥ 0).

Spectral properties of PSD and TP matrices: I

Theorem (folklore)

Suppose $A_{n \times n}$ is a real symmetric matrix. The following are equivalent.
(1) All principal minors of A are >0 (or ≥ 0), i.e. A is positive (semi)definite.
(2) All eigenvalues of (all principal submatrices of) A are >0 (or ≥ 0).

Theorem (Gantmacher-Krein, Compos. Math. 1937)

Suppose $A_{n \times n}$ is a real square matrix. The following are equivalent.
(1) All minors of A are >0 (or ≥ 0),
i.e. A is totally positive (or totally non-negative).
(2) All eigenvalues of all square submatrices of A are >0 (or ≥ 0).

The proof uses Perron's theorem on positive matrices + Kronecker's theorem on compound matrices:

Spectral properties of PSD and TP matrices: II

Proof for totally positive matrices: The r th compound matrix $C_{r}(A)$ is the $\binom{n}{r} \times\binom{ n}{r}$ matrix, with $C_{r}(A)_{J, K}:=\operatorname{det} A_{J \times K}$, where $|J|=|K|=r$.
(The subsets $J \subset[n]$ are lexicographically ordered.)
Properties of compound matrices:

- $C_{0}(A):=(1), \quad C_{1}(A)=A, \quad$ and $C_{n}(A)=\operatorname{det}(A)$.
- If A is upper/lower triangular, diagonal, or symmetric, then so is $C_{r}(A)$.
- Cauchy-Binet formula: $C_{r}(A B)=C_{r}(A) C_{r}(B)$ for $A, B \in \mathbb{R}^{n \times n}$.

Spectral properties of PSD and TP matrices: II

Proof for totally positive matrices: The r th compound matrix $C_{r}(A)$ is the $\binom{n}{r} \times\binom{ n}{r}$ matrix, with $C_{r}(A)_{J, K}:=\operatorname{det} A_{J \times K}$, where $|J|=|K|=r$.
(The subsets $J \subset[n]$ are lexicographically ordered.)
Properties of compound matrices:

- $C_{0}(A):=(1), \quad C_{1}(A)=A, \quad$ and $C_{n}(A)=\operatorname{det}(A)$.
- If A is upper/lower triangular, diagonal, or symmetric, then so is $C_{r}(A)$.
- Cauchy-Binet formula: $C_{r}(A B)=C_{r}(A) C_{r}(B)$ for $A, B \in \mathbb{R}^{n \times n}$.

Corollary: If $A=M J M^{-1}$ with J the Jordan canonical form, then $C_{r}(A)=C_{r}(M) C_{r}(J) C_{r}(M)^{-1}$, so the eigenvalues of $C_{r}(A)$ are those of $C_{r}(J)$, i.e. r-fold products of eigenvalues of A.

Spectral properties of PSD and TP matrices: II

Proof for totally positive matrices: The r th compound matrix $C_{r}(A)$ is the $\binom{n}{r} \times\binom{ n}{r}$ matrix, with $C_{r}(A)_{J, K}:=\operatorname{det} A_{J \times K}$, where $|J|=|K|=r$.
(The subsets $J \subset[n]$ are lexicographically ordered.)
Properties of compound matrices:

- $C_{0}(A):=(1), \quad C_{1}(A)=A, \quad$ and $C_{n}(A)=\operatorname{det}(A)$.
- If A is upper/lower triangular, diagonal, or symmetric, then so is $C_{r}(A)$.
- Cauchy-Binet formula: $C_{r}(A B)=C_{r}(A) C_{r}(B)$ for $A, B \in \mathbb{R}^{n \times n}$.

Corollary: If $A=M J M^{-1}$ with J the Jordan canonical form, then $C_{r}(A)=C_{r}(M) C_{r}(J) C_{r}(M)^{-1}$, so the eigenvalues of $C_{r}(A)$ are those of $C_{r}(J)$, i.e. r-fold products of eigenvalues of A.

- Number the eigenvalues of $A_{n \times n}$ via: $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|$.
- Now if A is $T P$, every $C_{r}(A)$ has positive entries, so a Perron eigenvalue, which must be $\lambda_{1} \cdots \lambda_{r}>0$. These inequalities give: $\lambda_{j} \in(0, \infty) \forall j$.

Spectral properties of PSD and TP matrices: II

Proof for totally positive matrices: The r th compound matrix $C_{r}(A)$ is the $\binom{n}{r} \times\binom{ n}{r}$ matrix, with $C_{r}(A)_{J, K}:=\operatorname{det} A_{J \times K}$, where $|J|=|K|=r$.
(The subsets $J \subset[n]$ are lexicographically ordered.)
Properties of compound matrices:

- $C_{0}(A):=(1), \quad C_{1}(A)=A, \quad$ and $C_{n}(A)=\operatorname{det}(A)$.
- If A is upper/lower triangular, diagonal, or symmetric, then so is $C_{r}(A)$.
- Cauchy-Binet formula: $C_{r}(A B)=C_{r}(A) C_{r}(B)$ for $A, B \in \mathbb{R}^{n \times n}$.

Corollary: If $A=M J M^{-1}$ with J the Jordan canonical form, then $C_{r}(A)=C_{r}(M) C_{r}(J) C_{r}(M)^{-1}$, so the eigenvalues of $C_{r}(A)$ are those of $C_{r}(J)$, i.e. r-fold products of eigenvalues of A.

- Number the eigenvalues of $A_{n \times n}$ via: $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|$.
- Now if A is $T P$, every $C_{r}(A)$ has positive entries, so a Perron eigenvalue, which must be $\lambda_{1} \cdots \lambda_{r}>0$. These inequalities give: $\lambda_{j} \in(0, \infty) \forall j$.
- Since each Perron eigenvalue is simple, $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{n}>0$.

Examples of TP/TN matrices

(1) The lower-triangular matrix $A=\left(\mathbf{1}_{j \geq k}\right)_{j, k=1}^{n}$ is TN.
(2) Generalized Vandermonde matrices are TP: if $0<x_{1}<\cdots<x_{n}$ and $y_{1}<y_{2}<\cdots<y_{n}$ are real, then

$$
\operatorname{det}\left(x_{j}^{y_{k}}\right)_{j, k=1}^{n}>0
$$

This uses Descartes' rule of signs (1637).

Examples of TP/TN matrices

(1) The lower-triangular matrix $A=\left(\mathbf{1}_{j \geq k}\right)_{j, k=1}^{n}$ is TN.
(2) Generalized Vandermonde matrices are TP: if $0<x_{1}<\cdots<x_{n}$ and $y_{1}<y_{2}<\cdots<y_{n}$ are real, then

$$
\operatorname{det}\left(x_{j}^{y_{k}}\right)_{j, k=1}^{n}>0
$$

This uses Descartes' rule of signs (1637).
(3) (Pólya:) The Gaussian kernel is TP: given $\sigma>0$ and scalars

$$
x_{1}<x_{2}<\cdots<x_{n}, \quad y_{1}<y_{2}<\cdots<y_{n}
$$

the matrix $G[\mathbf{x} ; \mathbf{y}]:=\left(e^{-\sigma\left(x_{j}-y_{k}\right)^{2}}\right)_{j, k=1}^{n}$ is TP.

Examples of TP/TN matrices

(1) The lower-triangular matrix $A=\left(\mathbf{1}_{j \geq k}\right)_{j, k=1}^{n}$ is TN.
(2) Generalized Vandermonde matrices are TP: if $0<x_{1}<\cdots<x_{n}$ and $y_{1}<y_{2}<\cdots<y_{n}$ are real, then

$$
\operatorname{det}\left(x_{j}^{y_{k}}\right)_{j, k=1}^{n}>0
$$

This uses Descartes' rule of signs (1637).
(3) (Pólya:) The Gaussian kernel is TP: given $\sigma>0$ and scalars

$$
x_{1}<x_{2}<\cdots<x_{n}, \quad y_{1}<y_{2}<\cdots<y_{n}
$$

the matrix $G[\mathbf{x} ; \mathbf{y}]:=\left(e^{-\sigma\left(x_{j}-y_{k}\right)^{2}}\right)_{j, k=1}^{n}$ is TP.
Proof: It suffices to show $\operatorname{det} G[\mathbf{x} ; \mathbf{y}]>0$. Now factorize:

$$
G[\mathbf{x} ; \mathbf{y}]=\operatorname{diag}\left(e^{-\sigma x_{j}^{2}}\right)_{j=1}^{n} \cdot\left(\left(e^{2 \sigma x_{j}}\right)^{y_{k}}\right)_{j, k=1}^{n} \cdot \operatorname{diag}\left(e^{-\sigma y_{k}^{2}}\right)_{k=1}^{n} .
$$

The middle matrix is a generalized Vandermonde matrix, so all three factors have positive determinants.

Whitney's density theorem

Recall: every positive semidefinite matrix A can be approximated by a sequence of positive definite matrices: $A+\varepsilon \operatorname{Id}, \varepsilon \rightarrow 0^{+}$. (Consider the eigenvalues.)

In other words, positive definite matrices are dense in psd matrices.

Whitney's density theorem

Recall: every positive semidefinite matrix A can be approximated by a sequence of positive definite matrices: $A+\varepsilon \mathrm{Id}, \varepsilon \rightarrow 0^{+}$. (Consider the eigenvalues.)

In other words, positive definite matrices are dense in psd matrices.
A similar density was discovered by (Anne M.) Whitney:
Theorem (Whitney, J. d'Analyse Math. 1952)
The set of $m \times n T P_{r}$ matrices is dense in the set of $m \times n T N_{r}$ matrices.

Whitney's density theorem

Recall: every positive semidefinite matrix A can be approximated by a sequence of positive definite matrices: $A+\varepsilon \mathrm{Id}, \varepsilon \rightarrow 0^{+}$. (Consider the eigenvalues.)

In other words, positive definite matrices are dense in psd matrices.
A similar density was discovered by (Anne M.) Whitney:

Theorem (Whitney, J. d'Analyse Math. 1952)

The set of $m \times n T P_{r}$ matrices is dense in the set of $m \times n T N_{r}$ matrices.

Whitney's proof goes through verbatim for symmetric matrices. It also goes through for 'continuous' versions, i.e. kernels.

Totally positive / non-negative kernels

Definition: Given totally ordered sets X, Y and a map ('kernel') $K: X \times Y \rightarrow \mathbb{R}$, we say that K is totally positive of order $r\left(T P_{r}\right)$ if given any $p \leq r$ and arguments

$$
x_{1}<\cdots<x_{p} \text { in } X, \quad y_{1}<\cdots<y_{p} \text { in } Y,
$$

the determinant $\operatorname{det}\left(K\left(x_{j}, y_{k}\right)\right)_{j, k=1}^{p}>0$.

Totally positive / non-negative kernels

Definition: Given totally ordered sets X, Y and a map ('kernel') $K: X \times Y \rightarrow \mathbb{R}$, we say that K is totally positive of order $r\left(T P_{r}\right)$ if given any $p \leq r$ and arguments

$$
x_{1}<\cdots<x_{p} \text { in } X, \quad y_{1}<\cdots<y_{p} \text { in } Y
$$

the determinant $\operatorname{det}\left(K\left(x_{j}, y_{k}\right)\right)_{j, k=1}^{p}>0$.

- We say K is totally positive if K is $T P_{r}$ for all r.
- Similarly for $T N_{r}$ and $T N$ kernels.

Examples:

(1) X, Y are finite $\rightsquigarrow T P_{r}$ and $T N_{r}$ matrices.

Totally positive / non-negative kernels

Definition: Given totally ordered sets X, Y and a map ('kernel') $K: X \times Y \rightarrow \mathbb{R}$, we say that K is totally positive of order $r\left(T P_{r}\right)$ if given any $p \leq r$ and arguments

$$
x_{1}<\cdots<x_{p} \text { in } X, \quad y_{1}<\cdots<y_{p} \text { in } Y
$$

the determinant $\operatorname{det}\left(K\left(x_{j}, y_{k}\right)\right)_{j, k=1}^{p}>0$.

- We say K is totally positive if K is $T P_{r}$ for all r.
- Similarly for $T N_{r}$ and $T N$ kernels.

Examples:

(1) X, Y are finite $\rightsquigarrow T P_{r}$ and $T N_{r}$ matrices.
(2) Say $X=Y=\mathbb{R}$. The kernel $K(x, y):=e^{x y}$ is $T P$. (Why?)
(3) Say $X=Y=\mathbb{R}$. The kernels $K_{ \pm}(x, y):=\exp \left(\pm(x \pm y)^{2}\right)$ are $T P$.

Structured kernels: I. Hankel kernels

The kernel $K_{+}(x, y):=\exp \left((x+y)^{2}\right)$ is an example of a continuous Hankel kernel on $\mathbb{R} \times \mathbb{R}$,
i.e. there exists f such that $K(x, y)=f(x+y)$.

Structured kernels: I. Hankel kernels

The kernel $K_{+}(x, y):=\exp \left((x+y)^{2}\right)$ is an example of a continuous Hankel kernel on $\mathbb{R} \times \mathbb{R}$, i.e. there exists f such that $K(x, y)=f(x+y)$.

Theorem (Widder, Bull. Amer. Math. Soc. 1934)

Suppose $X \subset \mathbb{R}$ is an open interval. Every continuous Hankel TN kernel on $X \times X$ is of the form

$$
K(x, y)=\int_{\mathbb{R}} \exp (-(x+y) u) d \sigma(u), \quad x, y \in X
$$

where $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is a non-decreasing function.
Moreover, K is TP if and only if the measure $d \sigma$ has infinite support.

The kernel $K_{+}(x, y):=\exp \left((x+y)^{2}\right)$ is an example of a continuous Hankel kernel on $\mathbb{R} \times \mathbb{R}$, i.e. there exists f such that $K(x, y)=f(x+y)$.

Theorem (Widder, Bull. Amer. Math. Soc. 1934)

Suppose $X \subset \mathbb{R}$ is an open interval. Every continuous Hankel TN kernel on $X \times X$ is of the form

$$
K(x, y)=\int_{\mathbb{R}} \exp (-(x+y) u) d \sigma(u), \quad x, y \in X
$$

where $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is a non-decreasing function.
Moreover, K is TP if and only if the measure d σ has infinite support.

Thus, 'Whitney' density also holds for such kernels: $K(x, y)$ is the limit of

$$
K_{\varepsilon}(x, y):=K(x, y)+\varepsilon \int_{0}^{1} e^{-(x+y) u} d u, \quad \text { as } \quad \varepsilon \rightarrow 0^{+}
$$

Structured kernels: II. Toeplitz kernels

Similarly, the Gaussian kernel $K_{-}(x, y):=\exp \left(-(x-y)^{2}\right)$ is $T P$ from above. More generally, a totally non-negative function is $\Lambda: \mathbb{R} \rightarrow \mathbb{R}$ such that the Toeplitz kernel

$$
T_{\Lambda}(x, y):=\Lambda(x-y), \quad x, y \in \mathbb{R}
$$

is totally non-negative.
'Representative’ examples:
(1) $\Lambda(x)=e^{-x^{2}}$.

Structured kernels: II. Toeplitz kernels

Similarly, the Gaussian kernel $K_{-}(x, y):=\exp \left(-(x-y)^{2}\right)$ is $T P$ from above. More generally, a totally non-negative function is $\Lambda: \mathbb{R} \rightarrow \mathbb{R}$ such that the Toeplitz kernel

$$
T_{\Lambda}(x, y):=\Lambda(x-y), \quad x, y \in \mathbb{R}
$$

is totally non-negative.
'Representative’ examples:
(1) $\Lambda(x)=e^{-x^{2}}$.
(2) $\Lambda(x)=c \mathbf{1}(x=a)$ for $a \in \mathbb{R}$ and $c \geq 0$. (Draw any submatrix from T_{Λ}; it is either a diagonal matrix or has a zero row/column.)

Structured kernels: II. Toeplitz kernels

Similarly, the Gaussian kernel $K_{-}(x, y):=\exp \left(-(x-y)^{2}\right)$ is $T P$ from above. More generally, a totally non-negative function is $\Lambda: \mathbb{R} \rightarrow \mathbb{R}$ such that the Toeplitz kernel

$$
T_{\Lambda}(x, y):=\Lambda(x-y), \quad x, y \in \mathbb{R}
$$

is totally non-negative.
'Representative’ examples:
(1) $\Lambda(x)=e^{-x^{2}}$.
(2) $\Lambda(x)=c \mathbf{1}(x=a)$ for $a \in \mathbb{R}$ and $c \geq 0$. (Draw any submatrix from T_{Λ}; it is either a diagonal matrix or has a zero row/column.)
(3) $\Lambda(x)=e^{a x+b}$ is $T N$. Indeed,

$$
T_{\Lambda}\left(\left(x_{j}, y_{k}\right)\right)=\left(e^{a x_{j}-a y_{k}+b}\right)_{j, k \geq 1}
$$

and this has rank-one, so all 'larger' minors vanish (hence are ≥ 0).

Structured kernels: II. Toeplitz kernels

Similarly, the Gaussian kernel $K_{-}(x, y):=\exp \left(-(x-y)^{2}\right)$ is $T P$ from above. More generally, a totally non-negative function is $\Lambda: \mathbb{R} \rightarrow \mathbb{R}$ such that the Toeplitz kernel

$$
T_{\Lambda}(x, y):=\Lambda(x-y), \quad x, y \in \mathbb{R}
$$

is totally non-negative.
'Representative’ examples:
(1) $\Lambda(x)=e^{-x^{2}}$.
(2) $\Lambda(x)=c \mathbf{1}(x=a)$ for $a \in \mathbb{R}$ and $c \geq 0$. (Draw any submatrix from T_{Λ}; it is either a diagonal matrix or has a zero row/column.)
(3) $\Lambda(x)=e^{a x+b}$ is $T N$. Indeed,

$$
T_{\Lambda}\left(\left(x_{j}, y_{k}\right)\right)=\left(e^{a x_{j}-a y_{k}+b}\right)_{j, k \geq 1}
$$

and this has rank-one, so all 'larger' minors vanish (hence are ≥ 0).
(4) $\Lambda(x)=\mathbf{1}_{x \geq 0}$. (Can be verified to be $T N$ by explicit computation.)

Note: the last two examples are not integrable functions.

Pólya frequency functions

A function $\Lambda: \mathbb{R} \rightarrow \mathbb{R}$ is a Pólya frequency function if (a) it is integrable, (b) it is nonzero at two points, and (c) the associated Toeplitz kernel T_{Λ} is $T N$.

Pólya frequency functions

A function $\Lambda: \mathbb{R} \rightarrow \mathbb{R}$ is a Pólya frequency function if (a) it is integrable, (b) it is nonzero at two points, and (c) the associated Toeplitz kernel T_{Λ} is $T N$.

Pólya frequency functions have a beautiful structure theory, developed by Schoenberg and others. They connect to real function theory, PDEs, Gabor analysis, ...

Examples:

(1) The Gaussian kernel $e^{-x^{2}}$.
(2) While $\mathbf{1}_{x \geq 0}$ is not integrable, $e^{-x} \mathbf{1}_{x \geq 0}$ is a Pólya frequency function.

Pólya frequency functions

A function $\Lambda: \mathbb{R} \rightarrow \mathbb{R}$ is a Pólya frequency function if (a) it is integrable, (b) it is nonzero at two points, and (c) the associated Toeplitz kernel T_{Λ} is $T N$.

Pólya frequency functions have a beautiful structure theory, developed by Schoenberg and others. They connect to real function theory, PDEs, Gabor analysis, ...

Examples:

(1) The Gaussian kernel $e^{-x^{2}}$.
(2) While $\mathbf{1}_{x \geq 0}$ is not integrable, $e^{-x} \mathbf{1}_{x \geq 0}$ is a Pólya frequency function. This is because if $\Lambda(x)$ is a $T N$ function, then so is $\Delta(x):=e^{a x+b} \Lambda(x)$, since

$$
\left(T_{\Delta}\left(x_{j}, y_{k}\right)\right)_{j, k=1}^{n}=\operatorname{diag}\left(e^{a x_{j}+b}\right)_{j=1}^{n}\left(T_{\Lambda}\left(x_{j}, y_{k}\right)\right)_{j, k=1}^{n} \operatorname{diag}\left(e^{-a y_{k}}\right)_{k=1}^{n}
$$

and so the left-side has determinant ≥ 0.

Variation diminishing property

Totally non-negative matrices/kernels have the variation diminishing property:
Theorem (Schoenberg, Math. Z. 1930, J. d'Analyse Math. 1951)
(1) If a matrix $A_{n \times m}$ is $T N$, then $S^{-}(A \mathbf{x}) \leq S^{-}(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{m}$. ('Variation' denotes the number of sign changes in the values taken by the vector.)

Variation diminishing property

Totally non-negative matrices/kernels have the variation diminishing property:

Theorem (Schoenberg, Math. Z. 1930, J. d'Analyse Math. 1951)

(1) If a matrix $A_{n \times m}$ is $T N$, then $S^{-}(A \mathbf{x}) \leq S^{-}(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{m}$. ('Variation' denotes the number of sign changes in the values taken by the vector.)
(2) Continuous version: Now a Pólya frequency function is thought of as a kernel, to integrate against. And the 'variation' denotes the (possibly infinite) number of sign changes in the values of a function.) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is integrable on all finite intervals, and Λ is a PF function,

$$
S^{-}(g) \leq S^{-}(f), \quad \text { where } \quad g(x):=\int_{\mathbb{R}} \Lambda(x-t) f(t) d t
$$

Variation diminishing property

Totally non-negative matrices/kernels have the variation diminishing property:

Theorem (Schoenberg, Math. Z. 1930, J. d'Analyse Math. 1951)

(1) If a matrix $A_{n \times m}$ is $T N$, then $S^{-}(A \mathbf{x}) \leq S^{-}(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{m}$. ('Variation' denotes the number of sign changes in the values taken by the vector.)
(2) Continuous version: Now a Pólya frequency function is thought of as a kernel, to integrate against. And the 'variation' denotes the (possibly infinite) number of sign changes in the values of a function.) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is integrable on all finite intervals, and Λ is a PF function,

$$
S^{-}(g) \leq S^{-}(f), \quad \text { where } \quad g(x):=\int_{\mathbb{R}} \Lambda(x-t) f(t) d t
$$

This has a 'discrete' variant for infinite sequences - discussed next.

Pólya frequency sequences

Discrete version: Pólya frequency sequences. These are sequences $\mathbf{a}=\left(a_{n}\right)_{n \in \mathbb{Z}}$, such that for any integers

$$
l_{1}<l_{2}<\cdots<l_{n}, \quad m_{1}<m_{2}<\cdots<m_{n}
$$

the determinant $\operatorname{det}\left(a_{l_{j}-m_{k}}\right)_{j, k=1}^{n} \geq 0$.

Pólya frequency sequences

Discrete version: Pólya frequency sequences. These are sequences $\mathbf{a}=\left(a_{n}\right)_{n \in \mathbb{Z}}$, such that for any integers

$$
l_{1}<l_{2}<\cdots<l_{n}, \quad m_{1}<m_{2}<\cdots<m_{n}
$$

the determinant $\operatorname{det}\left(a_{l_{j}-m_{k}}\right)_{j, k=1}^{n} \geq 0$.
In other words, these are bi-infinite Toeplitz matrices

$$
\left(\begin{array}{cccccc}
\ddots & \vdots & \vdots & \vdots & \vdots & \\
\cdots & a_{0} & a_{-1} & a_{-2} & a_{-3} & \cdots \\
\cdots & a_{1} & a_{0} & a_{-1} & a_{-2} & \cdots \\
\cdots & a_{2} & a_{1} & a_{0} & a_{-1} & \cdots \\
\cdots & a_{3} & a_{2} & a_{1} & a_{0} & \cdots \\
& \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

which are totally non-negative.

History of total positivity / variation diminution: I

- The term 'variation diminishing property' was coined by Pólya, with 'variation' denoting the number of sign changes in a vector/function.
- The term 'variation diminishing property' was coined by Pólya, with 'variation' denoting the number of sign changes in a vector/function.
- This was in use since Descartes' rule of signs. E.g. in 1883, Laguerre proved several variants of the rule of signs. A sample result is: Suppose $f(x)$ is a real polynomial. Given $\gamma \geq 0$, the number of variations of the power series $e^{\gamma x} f(x)$ is non-increasing in γ, and is always bounded below by the number of positive roots of f.
- The term 'variation diminishing property' was coined by Pólya, with 'variation' denoting the number of sign changes in a vector/function.
- This was in use since Descartes' rule of signs. E.g. in 1883, Laguerre proved several variants of the rule of signs. A sample result is:
Suppose $f(x)$ is a real polynomial. Given $\gamma \geq 0$, the number of variations of the power series $e^{\gamma x} f(x)$ is non-increasing in γ, and is always bounded below by the number of positive roots of f.
- Laguerre did not fully prove this; completed by Fekete (1912) - in correspondence with Pólya - as a corollary of the following result: Let $p(t)=\sum_{k \geq 0} c_{k} t^{k}$ be a formal power series with all $c_{k} \in[0, \infty)$. For the standard monomial basis x^{k}, the operator of multiplication by $p(t)$ is:

$$
T_{\mathbf{c}}:=\left(\begin{array}{cccc}
c_{0} & 0 & 0 & \cdots \\
c_{1} & c_{0} & 0 & \cdots \\
c_{2} & c_{1} & c_{0} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

If $T_{\mathbf{c}}$ is $T N, S^{-}\left(T_{\mathbf{c}} \mathbf{x}\right) \leq S^{-}(\mathbf{x})$ for all 'finite' \mathbf{x}. ($T_{\mathbf{c}} \mathbf{x}$ can be infinite!)

Thus we go from Descartes (1637) to Laguerre (1883) to Fekete-Pólya (1912).

- Next came Schoenberg (1930), who showed that if $A_{n \times m}$ is TN then it has the variation diminishing property: $S^{-}(A \mathbf{x}) \leq S^{-}(\mathbf{x})$.
- Clearly, so does $-A$. Characterize the matrices having this property?

History of total positivity / variation diminution: II

Thus we go from Descartes (1637) to Laguerre (1883) to Fekete-Pólya (1912).

- Next came Schoenberg (1930), who showed that if $A_{n \times m}$ is TN then it has the variation diminishing property: $S^{-}(A \mathbf{x}) \leq S^{-}(\mathbf{x})$.
- Clearly, so does $-A$. Characterize the matrices having this property?
- Achieved by Motzkin in PhD thesis (1936) \rightsquigarrow sign-regular matrices.

Remarkably, Motzkin's thesis also contained:
(2) Motzkin transposition theorem
(3) Fourier-Motzkin Elimination (FME) algorithm
(4) A convex polyhedral set is the Minkowski sum of a compact (convex) polytope and a polyhedral cone.

History of total positivity / variation diminution: II

Thus we go from Descartes (1637) to Laguerre (1883) to Fekete-Pólya (1912).

- Next came Schoenberg (1930), who showed that if $A_{n \times m}$ is TN then it has the variation diminishing property: $S^{-}(A \mathbf{x}) \leq S^{-}(\mathbf{x})$.
- Clearly, so does $-A$. Characterize the matrices having this property?
- Achieved by Motzkin in PhD thesis (1936) \rightsquigarrow sign-regular matrices.

Remarkably, Motzkin's thesis also contained:
(2) Motzkin transposition theorem
(3) Fourier-Motzkin Elimination (FME) algorithm
(4) A convex polyhedral set is the Minkowski sum of a compact (convex) polytope and a polyhedral cone.
(5) Beyond his PhD: studied what is now called the 'Motzkin number'.
(6) First example of PID that is not a Euclidean domain: $\mathbb{Z}[(1+\sqrt{-19}) / 2]$.
(7) Provided the first explicit polynomial that is positive on \mathbb{R}^{2}, yet not a sum-of-squares (Hilbert's 17 th problem): $x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2}+1$.

Sign non-reversal property

In fact, TN and TP matrices are characterized by two properties together:

- Variation diminishing property: $S^{-}(A \mathbf{x}) \leq S^{-}(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{m}$;
- Sign non-reversal property: If $\mathbf{x} \neq 0, \exists j$ such that $x_{j} \neq 0, x_{j}(A \mathbf{x})_{j}>0$.

Sign non-reversal property

In fact, TN and TP matrices are characterized by two properties together:

- Variation diminishing property: $S^{-}(A \mathbf{x}) \leq S^{-}(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{m}$;
- Sign non-reversal property: If $\mathbf{x} \neq 0, \exists j$ such that $x_{j} \neq 0, x_{j}(A \mathbf{x})_{j}>0$.

It turns out that the latter property alone is sufficient!

Theorem (Choudhury-Kannan-K., Bull. London Math. Soc., in press)

Given $m, n \geq k \geq 1$, and $A \in \mathbb{R}^{n \times m}$, the following are equivalent:
(1) The matrix A is $T P_{k}$.
(2) Every square submatrix of size $r \leq k$ has the sign non-reversal property.

Sign non-reversal property

In fact, TN and TP matrices are characterized by two properties together:

- Variation diminishing property: $S^{-}(A \mathbf{x}) \leq S^{-}(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^{m}$;
- Sign non-reversal property: If $\mathbf{x} \neq 0, \exists j$ such that $x_{j} \neq 0, x_{j}(A \mathbf{x})_{j}>0$.

It turns out that the latter property alone is sufficient!

Theorem (Choudhury-Kannan-K., Bull. London Math. Soc., in press)

Given $m, n \geq k \geq 1$, and $A \in \mathbb{R}^{n \times m}$, the following are equivalent:
(1) The matrix A is $T P_{k}$.
(2) Every square submatrix of size $r \leq k$ has the sign non-reversal property.

Theorem (Choudhury-Kannan-K., Bull. London Math. Soc., in press)

Given $m, n \geq k \geq 1$, and $A \in \mathbb{R}^{n \times m}$, the following are equivalent:
(1) The matrix A is $T N_{k}$.
(2) Every square submatrix of size $r \leq k$ has the non-strict sign non-reversal property - for a single vector in \mathbb{R}^{r}.

Convolution

How to construct new examples of TP/TN kernels from old ones?

Convolution

How to construct new examples of TP/TN kernels from old ones?
First consider the matrix/'discrete' case: given two matrices $A_{m \times n}$ and $B_{n \times p}$ which are both $T N_{r}$, their product is also $T N_{r}$.

Proof: Given sets I, J of rows/columns of size $p \leq r$, use the Cauchy-Binet identity:

$$
\operatorname{det}(A B)_{I \times J}=\operatorname{det}\left(A_{I \times[n]} B_{[n] \times J}\right)=\sum_{K \subset[n],|K|=p} \operatorname{det} A_{I \times K} \operatorname{det} B_{K \times J} \geq 0
$$

Convolution

How to construct new examples of TP/TN kernels from old ones?
First consider the matrix/'discrete' case: given two matrices $A_{m \times n}$ and $B_{n \times p}$ which are both $T N_{r}$, their product is also $T N_{r}$.

Proof: Given sets I, J of rows/columns of size $p \leq r$, use the Cauchy-Binet identity:

$$
\operatorname{det}(A B)_{I \times J}=\operatorname{det}\left(A_{I \times[n]} B_{[n] \times J}\right)=\sum_{K \subset[n],|K|=p} \operatorname{det} A_{I \times K} \operatorname{det} B_{K \times J} \geq 0
$$

The Cauchy-Binet formula has a continuous version \rightsquigarrow Basic composition formula (Pólya-Szegő). This implies:

Corollary: If $\Lambda_{1}, \Lambda_{2}: \mathbb{R} \rightarrow[0, \infty)$ are integrable $T N_{r}$ functions, then so is their convolution

$$
\left(\Lambda_{1} * \Lambda_{2}\right)(x):=\int_{\mathbb{R}} \Lambda_{1}(t) \Lambda_{2}(x-t) d t, \quad x \in \mathbb{R}
$$

This will help construct additional examples of Pólya frequency functions.

Pólya frequency functions and Laplace transforms

More examples:

(1) If $\Lambda(x)$ is a PF function, then so is $\Lambda(a x+b)$ for $a \neq 0$.
(2) If $\Lambda_{n}(x)$ is a PF function, and $\Lambda_{n} \rightarrow \Lambda$ pointwise, with Λ integrable and nonzero on two points $\rightsquigarrow \Lambda$ is a PF function.

Pólya frequency functions and Laplace transforms

More examples:

(1) If $\Lambda(x)$ is a PF function, then so is $\Lambda(a x+b)$ for $a \neq 0$.
(2) If $\Lambda_{n}(x)$ is a PF function, and $\Lambda_{n} \rightarrow \Lambda$ pointwise, with Λ integrable and nonzero on two points $\rightsquigarrow \Lambda$ is a PF function.

The bilateral Laplace transform of a PF function Λ is

$$
\mathcal{B}(\Lambda)(s):=\int_{\mathbb{R}} e^{-s x} \Lambda(x) d x, \quad s \in \mathbb{C}
$$

Fact: \mathcal{B} is an algebra map: $\mathcal{B}\left(\Lambda_{1} * \Lambda_{2}\right)=\mathcal{B}\left(\Lambda_{1}\right) \mathcal{B}\left(\Lambda_{2}\right)$.

Pólya frequency functions and Laplace transforms

More examples:

(1) If $\Lambda(x)$ is a PF function, then so is $\Lambda(a x+b)$ for $a \neq 0$.
(2) If $\Lambda_{n}(x)$ is a PF function, and $\Lambda_{n} \rightarrow \Lambda$ pointwise, with Λ integrable and nonzero on two points $\rightsquigarrow \Lambda$ is a PF function.

The bilateral Laplace transform of a PF function Λ is

$$
\mathcal{B}(\Lambda)(s):=\int_{\mathbb{R}} e^{-s x} \Lambda(x) d x, \quad s \in \mathbb{C}
$$

Fact: \mathcal{B} is an algebra map: $\mathcal{B}\left(\Lambda_{1} * \Lambda_{2}\right)=\mathcal{B}\left(\Lambda_{1}\right) \mathcal{B}\left(\Lambda_{2}\right)$.

Now consider one-sided PF functions: $\varphi_{a}(x):=\frac{1}{a} e^{-x / a} \mathbf{1}_{x \geq 0} \rightsquigarrow$ Laplace transform $\mathcal{B}\left(\varphi_{a}\right)(s)=1 /(1+a s)$.

- Let $a_{j}>0$ with $\sum_{j=1}^{\infty} a_{j}<\infty$. Then for each n, the convolution $\varphi_{a_{1}} * \cdots * \varphi_{a_{n}}$ is a one-sided PF function, with Laplace transform

$$
\mathcal{B}\left(\varphi_{a_{1}} * \cdots * \varphi_{a_{n}}\right)(s)=\frac{1}{\prod_{j=1}^{n}\left(1+a_{j} s\right)}
$$

Laguerre-Pólya class and Schoenberg's results: I. One-sided

- Shifting the origin of $\varphi_{a_{1}} * \cdots * \varphi_{a_{n}}$ to $\delta \geq 0$ yields a one-sided PF function with Laplace transform $e^{-\delta s} / \prod_{j=1}^{n}\left(1+a_{j} s\right)$.

Laguerre-Pólya class and Schoenberg's results: I. One-sided

- Shifting the origin of $\varphi_{a_{1}} * \cdots * \varphi_{a_{n}}$ to $\delta \geq 0$ yields a one-sided PF function with Laplace transform $e^{-\delta s} / \prod_{j=1}^{n}\left(1+a_{j} s\right)$.
- Taking limits of PF functions gives a PF function \rightsquigarrow a PF function with Laplace transform $e^{-\delta s} / \prod_{j=1}^{\infty}\left(1+a_{j} s\right)$.
- Its reciprocal is the analytic (entire) function $e^{\delta s} \prod_{j=1}^{\infty}\left(1+a_{j} s\right)$.

Laguerre-Pólya class and Schoenberg's results: I. One-sided

- Shifting the origin of $\varphi_{a_{1}} * \cdots * \varphi_{a_{n}}$ to $\delta \geq 0$ yields a one-sided PF function with Laplace transform $e^{-\delta s} / \prod_{j=1}^{n}\left(1+a_{j} s\right)$.
- Taking limits of PF functions gives a PF function \rightsquigarrow a PF function with Laplace transform $e^{-\delta s} / \prod_{j=1}^{\infty}\left(1+a_{j} s\right)$.
- Its reciprocal is the analytic (entire) function $e^{\delta s} \prod_{j=1}^{\infty}\left(1+a_{j} s\right)$.

Remarkably, every one-sided PF function shares this property:

Theorem (Schoenberg, J. d'Analyse Math. 1951)

A function $\Lambda: \mathbb{R} \rightarrow \mathbb{R}$, continuous on $(0, \infty)$ and with $\int_{\mathbb{R}} \Lambda(x) d x=1$, is a one-sided PF function vanishing on $(-\infty, 0)$, if and only if

$$
\frac{1}{\mathcal{B}(\Lambda)(s)}=e^{\delta s} \prod_{j=1}^{\infty}\left(1+a_{j} s\right), \quad \text { where } \quad \delta, a_{j} \geq 0, \sum_{j} a_{j}<\infty
$$

Laguerre-Pólya class and Schoenberg's results: I. One-sided

- Shifting the origin of $\varphi_{a_{1}} * \cdots * \varphi_{a_{n}}$ to $\delta \geq 0$ yields a one-sided PF function with Laplace transform $e^{-\delta s} / \prod_{j=1}^{n}\left(1+a_{j} s\right)$.
- Taking limits of PF functions gives a PF function \rightsquigarrow a PF function with Laplace transform $e^{-\delta s} / \prod_{j=1}^{\infty}\left(1+a_{j} s\right)$.
- Its reciprocal is the analytic (entire) function $e^{\delta s} \prod_{j=1}^{\infty}\left(1+a_{j} s\right)$.

Remarkably, every one-sided PF function shares this property:

Theorem (Schoenberg, J. d'Analyse Math. 1951)

A function $\Lambda: \mathbb{R} \rightarrow \mathbb{R}$, continuous on $(0, \infty)$ and with $\int_{\mathbb{R}} \Lambda(x) d x=1$, is a one-sided PF function vanishing on $(-\infty, 0)$, if and only if

$$
\frac{1}{\mathcal{B}(\Lambda)(s)}=e^{\delta s} \prod_{j=1}^{\infty}\left(1+a_{j} s\right), \quad \text { where } \quad \delta, a_{j} \geq 0, \sum_{j} a_{j}<\infty
$$

This is the limit of the polynomials $\left(1+\frac{\delta s}{n}\right)^{n} \prod_{j=1}^{n}\left(1+a_{j} s\right)$, with negative roots.

Laguerre-Pólya class and Schoenberg's results: II. Two-sided

Similarly, using the Gaussian kernel and 'oppositely directed' variants of $e^{-x} \mathbf{1}_{x \geq 0}$, Schoenberg proved:

Theorem (Schoenberg, J. d'Analyse Math. 1951)

A function $\Lambda: \mathbb{R} \rightarrow \mathbb{R}$ with $\int_{\mathbb{R}} \Lambda(x) d x=1$ is a PF function, if and only if

$$
\frac{1}{\mathcal{B}(\Lambda)(s)}=e^{-\gamma s^{2}+\delta s} \prod_{j=1}^{\infty}\left(1+a_{j} s\right) e^{-a_{j} s}
$$

where $\gamma \geq 0$ and $\delta, a_{j} \in \mathbb{R}$ are such that $0<\gamma+\sum_{j} a_{j}^{2}<\infty$.

Laguerre-Pólya class and Schoenberg's results: II. Two-sided

Similarly, using the Gaussian kernel and 'oppositely directed' variants of $e^{-x} \mathbf{1}_{x \geq 0}$, Schoenberg proved:

Theorem (Schoenberg, J. d'Analyse Math. 1951)

A function $\Lambda: \mathbb{R} \rightarrow \mathbb{R}$ with $\int_{\mathbb{R}} \Lambda(x) d x=1$ is a PF function, if and only if

$$
\frac{1}{\mathcal{B}(\Lambda)(s)}=e^{-\gamma s^{2}+\delta s} \prod_{j=1}^{\infty}\left(1+a_{j} s\right) e^{-a_{j} s}
$$

where $\gamma \geq 0$ and $\delta, a_{j} \in \mathbb{R}$ are such that $0<\gamma+\sum_{j} a_{j}^{2}<\infty$.

These two classes of entire functions were very well-studied by Laguerre, Pólya, and Schur in the early 20th century:
(1) The first class of entire functions are limits - uniform on compact sets of real polynomials with real non-positive roots. ('One-sided')

Laguerre-Pólya class and Schoenberg's results: II. Two-sided

Similarly, using the Gaussian kernel and 'oppositely directed' variants of $e^{-x} \mathbf{1}_{x \geq 0}$, Schoenberg proved:

Theorem (Schoenberg, J. d'Analyse Math. 1951)

A function $\Lambda: \mathbb{R} \rightarrow \mathbb{R}$ with $\int_{\mathbb{R}} \Lambda(x) d x=1$ is a PF function, if and only if

$$
\frac{1}{\mathcal{B}(\Lambda)(s)}=e^{-\gamma s^{2}+\delta s} \prod_{j=1}^{\infty}\left(1+a_{j} s\right) e^{-a_{j} s}
$$

where $\gamma \geq 0$ and $\delta, a_{j} \in \mathbb{R}$ are such that $0<\gamma+\sum_{j} a_{j}^{2}<\infty$.

These two classes of entire functions were very well-studied by Laguerre, Pólya, and Schur in the early 20th century:
(1) The first class of entire functions are limits - uniform on compact sets of real polynomials with real non-positive roots. ('One-sided')
(2) The second class \rightsquigarrow limits of real polynomials with real roots.
\rightsquigarrow Laguerre-Pólya functions (allowing for a factor of $c s^{m}, c \geq 0, m \in \mathbb{Z}^{\geq 0}$).

From the Laguerre-Pólya class to the Riemann Hypothesis

Pólya (1927) initiated the study of functions $\Lambda(t)$ such that $\mathcal{B}(\Lambda)(s)$ has only real zeros. His work contains the following result:

Theorem (Pólya, 1927)

The following statements are equivalent:
(1) The Riemann Xi-function $\Xi(s)=\xi(1 / 2+i z)$ is in the Laguerre-Pólya class, where $\xi(s):=\binom{s}{2} \pi^{-s / 2} \Gamma(s / 2) \zeta(s)$.
(2) The Riemann Hypothesis is true.

From the Laguerre-Pólya class to the Riemann Hypothesis

Pólya (1927) initiated the study of functions $\Lambda(t)$ such that $\mathcal{B}(\Lambda)(s)$ has only real zeros. His work contains the following result:

Theorem (Pólya, 1927)

The following statements are equivalent:
(1) The Riemann Xi-function $\Xi(s)=\xi(1 / 2+i z)$ is in the Laguerre-Pólya class, where $\xi(s):=\binom{s}{2} \pi^{-s / 2} \Gamma(s / 2) \zeta(s)$.
(2) The Riemann Hypothesis is true.

Combined with Schoenberg's result above, this yields:

Theorem (Gröchenig, 2020)

Let $\xi(s)=\binom{s}{2} \pi^{-s / 2} \Gamma(s / 2) \zeta(s)$ be the Riemann xi-function. If

$$
\Lambda(x):=\int_{\mathbb{R}} \xi(u+1 / 2)^{-1} e^{-i x u} d u
$$

is a Pólya frequency function, then the Riemann Hypothesis is true.
The Laguerre-Pólya class is thus a distinguished one in several areas.

From Pólya-Schur multipliers to Laguerre-Pólya

The Laguerre-Pólya class is also related to Pólya-Schur multipliers. Given a multiplier sequence

$$
\Gamma=\left(\gamma_{0}, \gamma_{1}, \ldots\right) \in \mathbb{R}^{\mathbb{N}}, \quad \gamma_{n} \geq 0,
$$

consider linear transformations of polynomials:

$$
P(t):=p_{0}+p_{1} t+\cdots+p_{n} t^{n} \quad \mapsto \quad \Gamma[P(t)]:=\gamma_{0} p_{0}+\gamma_{1} p_{1} t+\cdots+\gamma_{n} p_{n} t^{n} .
$$

From Pólya-Schur multipliers to Laguerre-Pólya

The Laguerre-Pólya class is also related to Pólya-Schur multipliers. Given a multiplier sequence

$$
\Gamma=\left(\gamma_{0}, \gamma_{1}, \ldots\right) \in \mathbb{R}^{\mathbb{N}}, \quad \gamma_{n} \geq 0
$$

consider linear transformations of polynomials:
$P(t):=p_{0}+p_{1} t+\cdots+p_{n} t^{n} \quad \mapsto \quad \Gamma[P(t)]:=\gamma_{0} p_{0}+\gamma_{1} p_{1} t+\cdots+\gamma_{n} p_{n} t^{n}$.
We say that Γ is a multiplier sequence of the first kind (or second kind) if for all polynomials with real (or negative) roots, $\Gamma[P]$ has all real roots.

From Pólya-Schur multipliers to Laguerre-Pólya

The Laguerre-Pólya class is also related to Pólya-Schur multipliers. Given a multiplier sequence

$$
\Gamma=\left(\gamma_{0}, \gamma_{1}, \ldots\right) \in \mathbb{R}^{\mathbb{N}}, \quad \gamma_{n} \geq 0
$$

consider linear transformations of polynomials:
$P(t):=p_{0}+p_{1} t+\cdots+p_{n} t^{n} \quad \mapsto \quad \Gamma[P(t)]:=\gamma_{0} p_{0}+\gamma_{1} p_{1} t+\cdots+\gamma_{n} p_{n} t^{n}$.
We say that Γ is a multiplier sequence of the first kind (or second kind) if for all polynomials with real (or negative) roots, $\Gamma[P]$ has all real roots.

Theorem (Pólya-Schur, J. reine angew. Math. 1914)

A sequence Γ is a multiplier sequence of the first (or second) kind, if and only if its generating function $\Psi_{\Gamma}(t):=\sum_{j \geq 0} \gamma_{j} t^{j} / j$! is in the first (or second) Laguerre-Pólya class.

Now by Schoenberg's results: if and only if $1 / \Psi_{\Gamma}(s)$ is the Laplace transform of a Pólya frequency function.

Modern incarnations of the Laguerre-Pólya-Schur program

Recently, Borcea-Branden (late 2000s) studied

- higher-dimensional versions of Pólya-Schur multipliers,
- linear operators on spaces of (multivariate) polynomials that preserved (higher dimensional) versions of stability / hyperbolicity.

This enabled them to characterize linear operators preserving Ω-stability for domains $\Omega \subset \mathbb{C}$ (studied+open since late 1800 s at least); prove conjectures of C.R. Johnson; prove many Lee-Yang type theorems. . .

Modern incarnations of the Laguerre-Pólya-Schur program

Recently, Borcea-Branden (late 2000s) studied

- higher-dimensional versions of Pólya-Schur multipliers,
- linear operators on spaces of (multivariate) polynomials that preserved (higher dimensional) versions of stability / hyperbolicity.

This enabled them to characterize linear operators preserving Ω-stability for domains $\Omega \subset \mathbb{C}$ (studied+open since late 1800 s at least); prove conjectures of C.R. Johnson; prove many Lee-Yang type theorems. . .

- Borcea-Branden-Liggett: developed the theory of negative dependence for 'strongly Rayleigh' (probability) measures \rightsquigarrow proving conjectures of Liggett, Pemantle, Wagner.

Modern incarnations of the Laguerre-Pólya-Schur program

Recently, Borcea-Branden (late 2000s) studied

- higher-dimensional versions of Pólya-Schur multipliers,
- linear operators on spaces of (multivariate) polynomials that preserved (higher dimensional) versions of stability / hyperbolicity.

This enabled them to characterize linear operators preserving Ω-stability for domains $\Omega \subset \mathbb{C}$ (studied+open since late 1800s at least); prove conjectures of C.R. Johnson; prove many Lee-Yang type theorems...

- Borcea-Branden-Liggett: developed the theory of negative dependence for 'strongly Rayleigh' (probability) measures \rightsquigarrow proving conjectures of Liggett, Pemantle, Wagner.
- Taken forward by Marcus-Spielman-Srivastava (2010s):
- Kadison-Singer conjecture.
- Existence of bipartite Ramanujan (expander) graphs of every degree and every order.

References

[1] A.K.
Matrix analysis and preservers of (total) positivity.
Lecture notes (website); forthcoming book with Cambridge Univ. Press, 2021.
[2] P.N. Choudhury, M.R. Kannan, and A.K.
Sign non-reversal property for TN/TP matrices; testing TP on their interval hull. Bull. London Math. Soc., in press.
[3] E. Laguerre.
Sur les fonctions du genre zéro et du genre un. C. R. Acad. Sci. Paris, 1882.
[4] E. Laguerre.
Mémoire sur la théorie des équations numériques. J. Math. Pures. Appl., 1883.
[5] M. Fekete and G. Pólya.
Über ein Problem von Laguerre. Rend. Circ. Mat. Palermo., 1912.
[6] G. Pólya.
Über Annäherung durch Polynome mit lauter reellen Wurzeln. Rend. Circ. Mat. Palermo, 1913.
[7] G. Pólya and I. Schur.
Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen. J. reine angew. Math., 1914.
[8] I.J. Schoenberg.
On Pólya frequency functions. I. J. d'Analyse Math., 1951.

