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Nim and Graph Nim games

• Nim is a mathematical game of strategy which is played with
several heaps of objects, and two players alternate taking one or
more objects from a single heap.

• The game ends when all the objects are removed and the player
who makes the last move wins.

• Nim has been solved for any number of initial heaps and objects,
meaning there is a winning strategy for the first player provided
the game meets one initial condition.

Example Game of Nim.PNG

Figure 1: An Example Game of Nim
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• Let N be the total no. of heaps, ai > 0 be the initial no of objects
in ith heap and ⊕ be the XOR sum operator. Then the game is in
losing position iff a1 ⊕ a2 ⊕ · · · ⊕ aN = 0 (call it the Nim-sum)

• Let Nim-sum be 0. Suppose that Player 1 removes objects from
ith heap, only ai will change to a′i(6= ai) which implies
a1 ⊕ a2 ⊕ · · · ⊕ ai ⊕ · · · ⊕ aN 6= 0. Now, player 2 can always make
a move s.t. Nim-sum becomes 0 and the process repeats until
ai = 0 ∀i (Note that 0⊕ · · · ⊕ 0 = 0 i.e., when all heaps are empty,
Nim-sum is 0)

Game of Nim in a Losing Position.PNG

Figure 2: A Game of Nim in a Losing Position
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• Graph nim is a generalization of nim where the idea is to
associate some of the heaps. Then, instead of selecting a single
heap to remove objects from, a player can now select heaps that
are associated and remove any number of tokens from any of
those heaps.

• Graph Nim consists of a graph where in each turn, a player must
select one of the vertices and then remove weights from any
number of edges incident to that vertex

weighted graph on 4 vertices.PNG

Figure 3: Complete weighted graph on 4 vertices
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• Again the game ends when all the weights are made 0 and the
player who makes the last move wins.

• Now, interestingly Graph Nim on path graphs Pn of length (= no
of edges) n ∈ N with equal weights on all edges is always
winning.

• Also, Graph Nim on Cn with equal weights is winning if n is even
and losing if n is odd

graph with equal weights.PNG

Figure 4: path graph with equal weights
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• In fact in general setups, Graph Nim on any graphs on v ≤ 4
vertices has been completely analysed into winning and losing
positions.

• It has been found that Graph Nim on Pn of length ≤ 5 is always
winning for any configuration of weights.

• Analysing more complex positions and other variants of graph
nim is an active field of research in combinatorial game theory.
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On Percolation Games

• Fix p, q ∈ [0, 1] with p + q 6 1. Each site of the lattice Z2 is either a
trap with probability p, a target with probability q, or simply open with
probability 1− p− q, independently of all other sites.

• Two players (let’s call them P1 and P2) take turns to move a token,
which begins at some initial vertex (for example, the origin (0, 0)).

• Suppose the current position of the token is (i, j). The player whose
turn it is to move can now move the token to one of the available
vertices defined by a function A(i, j). In general, A(i, j) may depend on
the player who is making the move at (i, j).

• In our paper, we consider A(i, j) to be the set of vertices whose graph
distance from (i, j) is at most two, that is,

A(i, j) = (i + 1, j), (i, j + 1), (i + 2, j), (i + 1, j + 1), (i, j + 2).

• If a player is forced to move the token to a trap, they lose immediately.
If a player is able to move the token to a target, they win immediately.
Otherwise the game goes on.
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Existing results

• Holroyd, Markovici and Martin (henceforth HMM) consider a simpler
game where the available moves from (i, j) are (i + 1, j) and (i, j + 1).

• They show if p > 0 or q > 0, then the PCA Ap,q is ergodic and the draw
probability of the percolation game is 0.
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Connection between percolation games and probabilistic cellular au-
tomata

• The PCA, denoted Ap,q, studied in HMM involves:
• the alphabet {0, 1},
• the universe Z,
• so that at any point of time, we are considering a configuration in the

space Ω = {0, 1}Z.

• Let ηt denote the configuration at time t (this is discrete time), where
ηt(n) denotes the state of the site n at time t.
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Connection between percolation games and probabilistic cellular au-
tomata

• Given ηt, the configuration ηt+1 is obtained by updating the state of
each site in Z independently, according to the following rule:
• if ηt(n− 1) = ηt(n) = 0, then we set ηt+1(n) to be 0 with probability p

and 1 with probability 1− p;
• otherwise, i.e. if at least one of ηt(n) and ηt(n− 1) equals 1, we set
ηt+1(n) to be 0 with probability 1− q and 1 with probability q.
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Connection between percolation games and probabilistic cellular au-
tomata

• If σ ∈ Ω is a random configuration with given probability distribution
µ, then Ap,qµ is the distribution of the (random) configuration we obtain
by applying Ap,q to σ, i.e. by updating σ via the rules of Ap,q for one
time-step.

• We call µ an invariant or stationary distribution for Ap,q if Ap,qµ = µ.
More generally, µ is said to be k-periodic for Ap,q for some k ∈ N if
Ak

p,qµ = µ, where Ak
p,q implies that given a random configuration σ

whose distribution is µ, we update σ according to the rules of Ap,q for k
time steps, and the resulting random configuration has distribution
Ak

p,qµ.

• We say that µ is periodic for Ap,q if it is k-periodic for Ap,q for some
k ∈ N.
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Connection between percolation games and probabilistic cellular au-
tomata

Definition

A PCA Ap,q is ergodic if

• it has a unique stationary distribution µp,q,

• given any probability distribution µ over Ω, the distributions Ak
p,qµ

converge to µp,q as k→∞.
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Our model induces a more generalized, 3-step PCA

Consider the PCA Ap,q as follows:

• it has alphabet {0, 1},
• its configurations come from the state space Ω = {0, 1}Z,

• given a configuration ηt = (ηt(n) : n ∈ Z) at time t, we update the state
ηt+1(n) at each site n for time t + 1, independently of all other sites, as
follows:
• if ηt(n) = ηt(n− 1) = ηt(n− 2) = 0, then we set ηt+1(n) = 0 with

probability p and ηt+1n) = 1 with probability 1− p;
• otherwise, we set ηt+1(n) = 0 with probability 1− q and ηt+1(n) = 1

with probability q.

Objective: To understand the ergodicity of this PCA.

• In another project, we are working on edge percolation games, which
appears to be even “harder”.
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A problem on cycle monotonicity

• A := {a1, . . . , am} is the set of m choices/objects/outcomes.

• D ⊆ Rm is a domain.

• f : D → A is a decision rule.

• A decision rule f satisfies k-cycle monotonicity (k-CM) if
∀t1, t2, . . . , tk ∈ D,

k∑
j=1

tj(f (tj)) ≥
k∑

j=1

tj(f (tj+1))

where tk+1 = t1.
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A problem on cycle monotonicity

Definition

A decision rule f is implementable if there exists a payment function
p : D → R such that ∀ti, t′i ∈ D,

ti (f (ti))− p(ti) ≥ ti (f (t′i))− p(t′i).

Question: What are all implementable decision rules?

Theorem

A decision rule is implementable if and only if it satisfies k-CM for all k ≥ 2.
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A problem on cycle monotonicity

• Checking k-CM for a given decision rule is hard–can we relax this
requirement further? More precisely, what is the maximum length of
cycles one needs to check to ensure k-CM for all k ≥ 2?

• In particular, is it possible that 2-CM (or 3-CM or so) implies k-CM for
all k ≥ 2?
- It depends on D.

• If D is convex, then 2-CM implies k-CM for all k ≥ 2.

• There are (non-convex) domains D on which 2-CM and 3-CM together
imply k-CM for all k ≥ 2.

• An important problem in game theory is to characterize all domains on
which 2-CM implies k-CM for all k ≥ 2.

15



On local-global equivalent domains

• A is the finite set of objects/choices/outcomes.

• P: set of all strict preferences/orderings on A.

• D ⊆ P is a domain. Typical elements are denoted by ≺,≺′,≺1,≺2, ...

etc.
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On local-global equivalent domains

• Let G = 〈D, E〉 be an undirected graph where (≺,≺′) ∈ E if and only
if ≺ and ≺′ differ only in the ranking of two consecutive objects.

• For example:
≺1 ≺2 ≺3 ≺4 ≺5

a b b b a
b a a a b
c c c e e
d d e c c
e e d d d

• A choice function is a map f : D → A.
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On local-global equivalent domains

• f is strategy-proof on (≺,≺′) if f (≺′) � f (≺).

• f is locally strategy-proof if it is strategy-proof on each (≺,≺′) ∈ E .

• f is strategy-proof if it is strategy-proof on each (≺,≺′) ∈ D ×D.
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On local-global equivalent domains

• A domain is called Local-Global-Equivalence(LGE) domain if
every locally strategy-proof choice function on it is strategy-proof.

• Question: When is a domain an LGE domain?

• Is P an LGE domain?

• We have provided a characterization of LGE domains in Kumar
et al. (Theoretical Economics, 2021).

• This problem is open for random choice functions.
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Extreme point characterization problem

• N := {1, . . . , n}, n ≥ 2 is the set of players.

• A := {a1, a2, . . . , an} is the set of objects.

• ≺i: a strict preference/ordering on A of player i.

• D: A set of (admissible) preferences.

• ≺N := (≺1, . . . ,≺n) ∈ DN is a preference profile of all players.
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Extreme point characterization problem

• A random matching is a n× n bi-stochastic matrix M = (mij)
n
i,j=1

where the rows represent the players and the columns represent the
objects. A deterministic matching is a deterministic bi-stochastic
matrix M = (mij)

n
i,j=1, that is, mij ∈ {0, 1} for all i, j ∈ {1, . . . , n}.

• For a matching M, by Mi we denote the i-th row of M.

• M is the set of all n× n bi-stochastic matrices.

• µ : Dn →M is a matching function.
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Extreme point characterization problem

• rk(≺): k-th ranked object in preference ≺.

• Let p, q be two probability distributions on A and let ≺ be a preference
on A.
p first order stochastically dominates q at ≺ if

l∑
k=1

p(rk(≺)) ≥
l∑

k=1

q(rk(≺), l = 1, . . . , n.

Definition

A matching function µ is strategy-proof if for all i ∈ N, all ≺N∈ Dn, and all
≺′i∈ D, µi(≺i,≺−i) first-order stochastically dominates µi(≺′i ,≺−i)

according to ≺i.
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Extreme point characterization problem

Definition

A matching function µ is efficient if for all ≺N∈ Dn and all M ∈M with
µ(≺N) 6= M there exists an agent i ∈ N such that µi(≺N) strictly first order
stochastically dominates Mi.
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Extreme point characterization problem

Question:

• Is every efficient and strategy-proof random matching function a
convex combination of efficient and strategy-proof deterministic
matching function?
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Thank You
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