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Nim and Graph Nim games

e Nim is a mathematical game of strategy which is played with
several heaps of objects, and two players alternate taking one or
more objects from a single heap.

e The game ends when all the objects are removed and the player
who makes the last move wins.

e Nim has been solved for any number of initial heaps and objects,
meaning there is a winning strategy for the first player provided
the game meets one initial condition.
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Figure 1: An Example Game of Nim



e Let N be the total no. of heaps, a; > 0 be the initial no of objects
in i heap and @ be the XOR sum operator. Then the game is in
losing position iff a; G a, & - - - & ay = 0 (call it the Nim-sum)

e Let Nim-sum be 0. Suppose that Player 1 removes objects from
i heap, only a; will change to a’(# a;) which implies
QB an®--®ad - Day #0. Now, player 2 can always make
a move s.t. Nim-sum becomes 0 and the process repeats until
a; =0Vi(Notethat0 & --- ® 0 = 0i.e., when all heaps are empty,
Nim-sum is 0)
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Figure 2: A Game of Nim in a Losing Position



e Graph nim is a generalization of nim where the idea is to
associate some of the heaps. Then, instead of selecting a single
heap to remove objects from, a player can now select heaps that
are associated and remove any number of tokens from any of
those heaps.

e Graph Nim consists of a graph where in each turn, a player must
select one of the vertices and then remove weights from any
number of edges incident to that vertex
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e Again the game ends when all the weights are made 0 and the
player who makes the last move wins.

e Now, interestingly Graph Nim on path graphs P, of length (= no
of edges) n € N with equal weights on all edges is always
winning.

e Also, Graph Nim on C, with equal weights is winning if n is even
and losing if n is odd
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Figure 4: path graph with equal weights



e In fact in general setups, Graph Nim on any graphs on v < 4
vertices has been completely analysed into winning and losing
positions.

e It has been found that Graph Nim on P, of length < 5 is always
winning for any configuration of weights.

e Analysing more complex positions and other variants of graph
nim is an active field of research in combinatorial game theory.



On Percolation Games

e Fix p,q € [0, 1] with p + ¢ < 1. Each site of the lattice Z? is either a
trap with probability p, a target with probability g, or simply open with
probability 1 — p — ¢, independently of all other sites.

e Two players (let’s call them P1 and P2) take turns to move a token,
which begins at some initial vertex (for example, the origin (0, 0)).

e Suppose the current position of the token is (i,). The player whose
turn it is to move can now move the token to one of the available
vertices defined by a function A(i, ;). In general, A(i,j) may depend on
the player who is making the move at (i, ).

e In our paper, we consider A(7, ) to be the set of vertices whose graph
distance from (i, ) is at most two, that is,

A ) =G+ 1,),6 7+ 1), +2,)), @+ 1,j+1),(,j+2).

e [f a player is forced to move the token to a trap, they lose immediately.
If a player is able to move the token to a target, they win immediately.
Otherwise the game goes on.



Existing results

e Holroyd, Markovici and Martin (henceforth HMM) consider a simpler
game where the available moves from (i,j) are (i + 1,j) and (i,j + 1).

e They show if p > 0 or g > 0, then the PCA A, , is ergodic and the draw
probability of the percolation game is 0.



Connection between percolation games and probabilistic cellular au-

tomata

e The PCA, denoted A, ,, studied in HMM involves:
e the alphabet {0, 1},
e the universe Z,
e so that at any point of time, we are considering a configuration in the
space Q = {0, 1}2.
e Let 1, denote the configuration at time ¢ (this is discrete time), where
1:(n) denotes the state of the site n at time 7.



Connection between percolation games and probabilistic cellular au-

tomata

e Given 7, the configuration 7, is obtained by updating the state of
each site in Z independently, according to the following rule:
e if n,(n— 1) = n(n) = 0, then we set 741 (n) to be 0 with probability p
and 1 with probability 1 — p;
e otherwise, i.e. if at least one of 77,(n) and 1,(n — 1) equals 1, we set
Mr+1(n) to be 0 with probability 1 — ¢ and 1 with probability ¢.



Connection between percolation games and probabilistic cellular au-

tomata

e If 0 € () is a random configuration with given probability distribution
4, then A, ,pu is the distribution of the (random) configuration we obtain
by applying A, , to o, i.e. by updating o via the rules of A, ; for one
time-step.

e We call  an invariant or stationary distribution for A, , if A, jp = p1.
More generally, y is said to be k-periodic for A, , for some k € N if
AX 1w = pi, where AX  implies that given a random configuration o
whose distribution is 4, we update o according to the rules of A, , for k
time steps, and the resulting random configuration has distribution
Ap gh-

e We say that p is periodic for A, , if it is k-periodic for A, , for some
ke N.



Connection between percolation games and probabilistic cellular au-

tomata

Definition
APCA A, , is ergodic if

e it has a unique stationary distribution i, 4,

e given any probability distribution . over 2, the distributions A;",_ gH
converge to (i, 4 as k — oo.



Our model induces a more generalized, 3-step PCA

Consider the PCA A, , as follows:

e it has alphabet {0, 1},
e its configurations come from the state space 2 = {0, 1}Z,

e given a configuration 1, = (7,(n) : n € Z) at time ¢, we update the state
N+1(n) at each site n for time 7 + 1, independently of all other sites, as
follows:

e if n,(n) =ni(n—1) =n(n—2) =0, then we set 7,41 (n) = 0 with
probability p and 7,41n) = 1 with probability 1 — p;

e otherwise, we set 7,41(n) = 0 with probability 1 — g and 1,41 (n) = 1
with probability g.

Objective: To understand the ergodicity of this PCA.

e In another project, we are working on edge percolation games, which
appears to be even “harder”.



A problem on cycle monotonicity

A:={ay,...,a,} is the set of m choices/objects/outcomes.

e D C R™is a domain.

f :D — Ais adecision rule.

A decision rule f satisfies k-cycle monotonicity (k-CM) if
Vll,tz,...,tk e D,

k k
Z () > Z (f(ti+1))

where t41 = 1.



A problem on cycle monotonicity

Definition

A decision rule f is implementable if there exists a payment function
p : D — Rsuch that V;, 1/ € D,

1 (f (1) — p(t:) = 1 (£(1)) — p(ti)-
Question: What are all implementable decision rules?

Theorem

A decision rule is implementable if and only if it satisfies k-CM for all £ > 2.



A problem on cycle monotonicity

e Checking k-CM for a given decision rule is hard—can we relax this
requirement further? More precisely, what is the maximum length of
cycles one needs to check to ensure k-CM for all k > 2?

e In particular, is it possible that 2-CM (or 3-CM or so) implies k-CM for
all k > 27
- It depends on D.

e If D is convex, then 2-CM implies k-CM for all k£ > 2.

e There are (non-convex) domains D on which 2-CM and 3-CM together
imply k-CM for all k£ > 2.

e An important problem in game theory is to characterize all domains on
which 2-CM implies k-CM for all k > 2.



On local-global equivalent domains

e A is the finite set of objects/choices/outcomes.
e P: set of all strict preferences/orderings on A.

e D C P is a domain. Typical elements are denoted by <, <’, <!, <2, ...
etc.



On local-global equivalent domains

e Let G = (D, &) be an undirected graph where (<, <’) € & if and only
if < and <’ differ only in the ranking of two consecutive objects.

e For example:
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e A choice functionisamap f: D — A.



On local-global equivalent domains

e fis strategy-proof on (<, =<")if f(<") = f(=).
e fis locally strategy-proofif it is strategy-proof on each (<, <’) € &.
e [ is strategy-proofif it is strategy-proof on each (<, <) € D x D.



On local-global equivalent domains

e A domain is called Local-Global-Equivalence(LGE) domain if
every locally strategy-proof choice function on it is strategy-proof.

e Question: When is a domain an LGE domain?
e /sP an LGE domain?

e We have provided a characterization of LGE domains in Kumar
et al. (Theoretical Economics, 2021).

e This problem is open for random choice functions.



Extreme point characterization problem

N :={1,...,n},n > 2is the set of players.

A:={a,ay,...,a,} is the set of objects.

e <;: astrict preference/ordering on A of player i.

D: A set of (admissible) preferences.

o <y:=(=<1,...,=n) € DV is a preference profile of all players.
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Extreme point characterization problem

e A random matching is a n X n bi-stochastic matrix M = (my)};_,
where the rows represent the players and the columns represent the
objects. A deterministic matching is a deterministic bi-stochastic
that is, m; € {0,1} forall i,j € {1,...,n}.

matrix M = (mij)Z,-: flo

e For a matching M, by M; we denote the i-th row of M.

e M is the set of all n X n bi-stochastic matrices.

w2 D" — M is a matching function.
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Extreme point characterization problem

e r;(<): k-th ranked object in preference <.

e Let p, g be two probability distributions on A and let < be a preference
onA.
p first order stochastically dominates g at < if

l

!
Y pr(<) = Y a(n(=), I=1,...,n.
k=1

k=1
Definition

A matching function y is strategy-proof if for all i € N, all <y€ D", and all
<!e D, wi(=;, <—;) first-order stochastically dominates (<}, <_;)
according to <;.
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Extreme point characterization problem

Definition

A matching function  is efficient if for all <y€ D" and all M € M with
1(<y) # M there exists an agent i € N such that u;(<y) strictly first order
stochastically dominates M;.
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Extreme point characterization problem

Question:

e [s every efficient and strategy-proof random matching function a
convex combination of efficient and strategy-proof deterministic
matching function?
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Thank You
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