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Crowdsourced projects in the sciences
The sciences have seen very highly collaborative research projects – the
Genome Project (Nobel Prize 2002, Breakthrough Prize in Life Sciences 2013):

(200+ authors, some representing institutions!)
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Crowdsourced projects in the sciences

The Higgs Boson discovery (Fundamental Physics Prize 2012, Nobel Prize
2013, Copley Medal 2015) – 3000+ authors:
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Crowdsourced projects in the sciences

Gravitational waves (Nobel Prize 2017):

(100+ institutions, 800+ authors)
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Mathematics?

Mathematics has lagged behind. . . and (being theoretical?) still largely sees
individuals doing research

– romanticised in folklore:

Newton, Fermat, Gauss, Galois. . .

Srinivasa Ramanujan

Andrew Wiles worked secretly for many years, to prove Fermat’s Last
Theorem in the 1990s (before working with his student Richard Taylor to
fix a gap).

Grigori Perelman worked in isolation to prove the Poincaré and
Geometrisation conjectures, in the 2000s.

Yitang Zhang worked by himself to prove bounded gaps for Twin Primes,
in the 2010s.

. . .

I will describe a “modern” collaboration mechanism – the Polymath project – in
which I was involved, and which helped answer a basic question about groups.
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Groups
Groups are ubiquitous in science. . . as symmetries.

(Credit: Symmetry @ Otterbein site)

The group of rotations in the plane.
The rigid body motions (rotations, reflections, translations).

Physical laws of nature/spacetime −→ Lorentz group of symmetries.

The space of eigenvectors of a matrix (for some eigenvalue λ) −→
group under +,−.

Permutations of a set {1, 2, . . . , n} −→ symmetric group Sn (size = n!).
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Group notation + Abelian groups

Given two symmetries of a system α, β, one can:

compose them: α ◦ β, β ◦ α,
reverse them: α−1, β−1.

Composing α and α−1 does “nothing” , i.e. yields the identity symmetry e.

Do all compositions of symmetries always give the same answer? No:(
1 0
0 −1

)
◦
(
1 1
1 2

)
=

(
1 1
−1 −2

)
,(

1 1
1 2

)
◦
(
1 0
0 −1

)
=

(
1 −1
1 −2

)
.

.

Abelian group G: All pairs of elements/symmetries α, β ∈ G satisfy

α ◦ β = β ◦ α ⇐⇒ α ◦ β ◦ α−1 ◦ β−1 = e.

The quantity α ◦ β ◦ α−1 ◦ β−1 is called the commutator of α, β.
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Norms
The norm of a vector u in R2 is its
distance from (0, 0).

Notice: ‖u‖ is always positive (except at 0),
and ‖u+ · · ·+ u‖ (n times) = n ‖u‖.
(Scaling of length.)

(Credit: Wikidot)

Formal definition: A norm on a group G is a function ‖ · ‖ : G→ R, satisfying:
‖α‖ > 0 for all non-identity elements/symmetries α in G.
And ‖e‖ = 0.

‖α ◦ β‖ ≤ ‖α‖+ ‖β‖ (triangle inequality).

‖α ◦ · · · ◦ α‖ (n times) = n ‖α‖ for all n > 0.

Example: (As above!) R2 = all vectors u in the plane
(or translations by u, under +).
This has the usual norm/length function. And it is abelian.

In fact, every abelian “torsionfree” group has a norm. (Axiom of Choice)

Question (Khare): Does there exist a non-abelian group with a norm?
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Asking around. . .

I came to the above question (non-abelian group with a norm?) in 2015,
motivated by some work in probability theory.
[Khare & Rajaratnam, published in Annals of Probability 2017]

Starting from April 2015, I emailed several experts, in Canada, India,
Poland, USA (Courant, Harvard, Northwestern, Wisconsin, . . . ).

No such examples were found.

No such theorems were known.

What is the answer? Find at least one such group? Or prove that such a group
can never exist!
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Discussions with Tao
December 15–16, 2017: Then I visited a
collaborator, Terence Tao (UCLA).

(Credit: Quanta)

Our discussion:

Suppose G is any group with a norm.

Take any two elements α, β in G.

The key quantity (KQ) to understand is the norm of the commutator
element:

KQ := ‖α ◦ β ◦ α−1 ◦ β−1‖.

If KQ = 0 for all symmetries α, β,
then every commutator α ◦ β ◦ α−1 ◦ β−1 = e,

and so G is abelian.

Question: How to estimate KQ? Can we show it is very small?

We showed: KQ ≤ 4, 2, 4/3 . . . Go down to zero?
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Timeline of the reducing bound

(All times are in Indian Standard Time, in December 2017.
All progress is as recorded on Tao’s blog.)

17 Dec, 10:12 am: Blogpost 1 by Terence Tao – KQ = 4, 2, 4/3.

(next two days) Attempts to find such a non-abelian normed group;
did not work.

20 Dec, 2:54 am: KQ = 5/4 (improves over 4/3 from earlier).

20 Dec, 4:03 am: KQ = 19/16 (improves over 20/16 = 5/4).

(More attempts, to get KQ to go below one.) Finally. . .

20 Dec, 11:12 am: KQ = 22/23 ≈ 0.956522.

At this point, there was almost a 24-hour ‘barrier’. . .
which Siddhartha Gadgil and his computer broke through!
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Timeline of the reducing bound (cont.)

20 Dec, 11:12 am: KQ = 22/23 ≈ 0.956522.

21 Dec, 9:30 am: (Siddhartha Gadgil and his computer)
KQ ≈ 0.816. (Understood by Pace Nielsen.)
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Conclusion

20 Dec, 11:12 am: KQ = 22/23 ≈ 0.956522.

21 Dec, 9:30 am: (Gadgil) KQ ≈ 0.816. (Understood by Pace Nielsen.)

21 Dec, 1:45 pm: KQ = 8/11 ≈ 0.7272 . . .

21 Dec, 6:24 pm: KQ = 2/3 ≈ 0.666 . . .

22 Dec, 12:27 am: (Fritz) Write f(m, k) := ‖αm[α, β]k‖. Then,

f(m, k) 6
1

2
(f(m+ 1, k) + f(m− 1, k − 1)) .

22 Dec, 3:57 am: (Tao) Probabilistic argument finishes the proof.
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21 Dec, 6:24 pm: KQ = 2/3 ≈ 0.666 . . .

22 Dec, 12:27 am: (Fritz) Write f(m, k) := ‖αm[α, β]k‖. Then,

f(m, k) 6
1

2
(f(m+ 1, k) + f(m− 1, k − 1)) .

22 Dec, 3:57 am: (Tao) Probabilistic argument finishes the proof.
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The theorem and the paper

Theorem (D.H.J. Polymath, Algebra & Number Th. 2018)

Let G be a group. Then G has a norm if and only if G is abelian and torsion
free,

if and only if G is an additive subgroup of a Banach space.
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