Polymath 14: A crowd-sourced, computer-aided analysis-definition of abelian groups

Apoorva Khare Indian Institute of Science

Indian Academy of Sciences
Mid-Year Meeting (IISc), July 2022

Crowdsourced projects in the sciences

The sciences have seen very highly collaborative research projects - the Genome Project (Nobel Prize 2002, Breakthrough Prize in Life Sciences 2013):

(200+ authors, some representing institutions!)

Crowdsourced projects in the sciences

The Higgs Boson discovery (Fundamental Physics Prize 2012, Nobel Prize 2013, Copley Medal 2015) - 3000+ authors:

Physics Letters B

Volume 716, Issue 1, 17 September 2012, Pages 1-29

Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC \&

```
This paper is dedicated to the memory of our ATLAS colleagues who did not live to see the full impact and significance of
their contributions to the experiment.
ATLAS Collaboration *,G. Aad 48, T. Abajyan 21, B. Abbott }\mp@subsup{}{}{111}\mathrm{ ,J. Abdallah }\mp@subsup{}{}{12},\textrm{S}.\mathrm{ Abdel Khalek }\mp@subsup{}{}{115},\mathrm{ A.A.
Abdelalim }\mp@subsup{}{}{49}\mathrm{ , O. Abdinov }\mp@subsup{}{}{11}\mathrm{ , R. Aben }\mp@subsup{}{}{105}\mathrm{ , B. Abi }\mp@subsup{}{}{112},\mathrm{ M. Abolins }\mp@subsup{}{}{88}\mathrm{ , O.S. AbouZeid }\mp@subsup{}{}{158},\textrm{H}.\mathrm{ Abramowicz }\mp@subsup{}{}{153}\mathrm{ ,
H. Abreu }\mp@subsup{}{}{136},\mathrm{ B.S. Acharya }\mp@subsup{}{}{164a,164b},\mathrm{ L. Adamczyk }\mp@subsup{}{}{38}\mathrm{ , D.L. Adams }\mp@subsup{}{}{25}\mathrm{ , T.N. Addy }\mp@subsup{}{}{56}\ldots.\mathrm{ L. Zwalinski }\mp@subsup{}{}{30
Show more
+ Add to Mendeley &o Share my Cite
```


Crowdsourced projects in the sciences

Gravitational waves (Nobel Prize 2017):

(100+ institutions, 800+ authors)

Mathematics?

Mathematics has lagged behind. . . and (being theoretical?) still largely sees individuals doing research

Mathematics?

Mathematics has lagged behind. . . and (being theoretical?) still largely sees individuals doing research - romanticised in folklore:

- Newton, Fermat, Gauss, Galois...
- Srinivasa Ramanujan

Mathematics?

Mathematics has lagged behind. . . and (being theoretical?) still largely sees individuals doing research - romanticised in folklore:

- Newton, Fermat, Gauss, Galois...
- Srinivasa Ramanujan
- Andrew Wiles worked secretly for many years, to prove Fermat's Last Theorem in the 1990s (before working with his student Richard Taylor to fix a gap).
- Grigori Perelman worked in isolation to prove the Poincaré and Geometrisation conjectures, in the 2000s.

Mathematics?

Mathematics has lagged behind. . . and (being theoretical?) still largely sees individuals doing research - romanticised in folklore:

- Newton, Fermat, Gauss, Galois...
- Srinivasa Ramanujan
- Andrew Wiles worked secretly for many years, to prove Fermat's Last Theorem in the 1990s (before working with his student Richard Taylor to fix a gap).
- Grigori Perelman worked in isolation to prove the Poincaré and Geometrisation conjectures, in the 2000s.
- Yitang Zhang worked by himself to prove bounded gaps for Twin Primes, in the 2010s.
- ...

Mathematics?

Mathematics has lagged behind. . . and (being theoretical?) still largely sees individuals doing research - romanticised in folklore:

- Newton, Fermat, Gauss, Galois...
- Srinivasa Ramanujan
- Andrew Wiles worked secretly for many years, to prove Fermat's Last Theorem in the 1990s (before working with his student Richard Taylor to fix a gap).
- Grigori Perelman worked in isolation to prove the Poincaré and Geometrisation conjectures, in the 2000s.
- Yitang Zhang worked by himself to prove bounded gaps for Twin Primes, in the 2010s.
- ...

I will describe a "modern" collaboration mechanism - the Polymath project - in which I was involved, and which helped answer a basic question about groups.

Groups

Groups are ubiquitous in science. . . as symmetries.

(Credit: Symmetry @ Otterbein site)

- The group of rotations in the plane.

The rigid body motions (rotations, reflections, translations).

- Physical laws of nature/spacetime \longrightarrow Lorentz group of symmetries.
- The space of eigenvectors of a matrix (for some eigenvalue λ) \longrightarrow group under,+- .
- Permutations of a set $\{1,2, \ldots, n\} \longrightarrow$ symmetric group S_{n} (size $=n$!).

Group notation + Abelian groups

Given two symmetries of a system α, β, one can:

- compose them: $\alpha \circ \beta, \beta \circ \alpha$,
- reverse them: α^{-1}, β^{-1}.
- Composing α and α^{-1} does "nothing", i.e. yields the identity symmetry e.

Group notation + Abelian groups

Given two symmetries of a system α, β, one can:

- compose them: $\alpha \circ \beta, \beta \circ \alpha$,
- reverse them: α^{-1}, β^{-1}.
- Composing α and α^{-1} does "nothing", i.e. yields the identity symmetry e.

Do all compositions of symmetries always give the same answer? No:

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \circ\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
-1 & -2
\end{array}\right), \\
& \left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) \circ\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
1 & -2
\end{array}\right) .
\end{aligned}
$$

Abelian group G : All pairs of elements/symmetries $\alpha, \beta \in G$ satisfy $\alpha \circ \beta=\beta \circ \alpha$

Group notation + Abelian groups

Given two symmetries of a system α, β, one can:

- compose them: $\alpha \circ \beta, \beta \circ \alpha$,
- reverse them: α^{-1}, β^{-1}.
- Composing α and α^{-1} does "nothing", i.e. yields the identity symmetry e.

Do all compositions of symmetries always give the same answer? No:

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \circ\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
-1 & -2
\end{array}\right), \\
& \left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) \circ\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
1 & -2
\end{array}\right) .
\end{aligned}
$$

Abelian group G : All pairs of elements/symmetries $\alpha, \beta \in G$ satisfy

$$
\alpha \circ \beta=\beta \circ \alpha \quad \Longleftrightarrow \quad \alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}=e .
$$

The quantity $\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}$ is called the commutator of α, β.

The norm of a vector \mathbf{u} in \mathbb{R}^{2} is its distance from $(0,0)$.

Norms

The norm of a vector \mathbf{u} in \mathbb{R}^{2} is its distance from $(0,0)$.

Notice: $\|\mathbf{u}\|$ is always positive (except at $\mathbf{0}$), and $\|\mathbf{u}+\cdots+\mathbf{u}\|(n$ times $)=n\|\mathbf{u}\|$. (Scaling of length.)

(Credit: Wikidot)

Norms

The norm of a vector \mathbf{u} in \mathbb{R}^{2} is its distance from (0,0).

Notice: $\|\mathbf{u}\|$ is always positive (except at $\mathbf{0}$), and $\|\mathbf{u}+\cdots+\mathbf{u}\|(n$ times $)=n\|\mathbf{u}\|$. (Scaling of length.)

(Credit: Wikidot)

Formal definition: A norm on a group G is a function $\|\cdot\|: G \rightarrow \mathbb{R}$, satisfying:

- $\|\alpha\|>0$ for all non-identity elements/symmetries α in G. And $\|e\|=0$.
- $\|\alpha \circ \beta\| \leq\|\alpha\|+\|\beta\|$ (triangle inequality).
- $\|\alpha \circ \cdots \circ \alpha\|$ (n times $)=n\|\alpha\|$ for all $n>0$.

The norm of a vector \mathbf{u} in \mathbb{R}^{2} is its distance from $(0,0)$.

Notice: $\|\mathbf{u}\|$ is always positive (except at $\mathbf{0}$), and $\|\mathbf{u}+\cdots+\mathbf{u}\|(n$ times $)=n\|\mathbf{u}\|$. (Scaling of length.)

(Credit: Wikidot)

Formal definition: A norm on a group G is a function $\|\cdot\|: G \rightarrow \mathbb{R}$, satisfying:

- $\|\alpha\|>0$ for all non-identity elements/symmetries α in G. And $\|e\|=0$.
- $\|\alpha \circ \beta\| \leq\|\alpha\|+\|\beta\|$ (triangle inequality).
- $\|\alpha \circ \cdots \circ \alpha\|$ (n times $)=n\|\alpha\|$ for all $n>0$.

Example: (As above!) $\mathbb{R}^{2}=$ all vectors \mathbf{u} in the plane (or translations by \mathbf{u}, under +).
This has the usual norm/length function. And it is abelian.
In fact, every abelian "torsionfree" group has a norm. (Axiom of Choice)

Norms

The norm of a vector \mathbf{u} in \mathbb{R}^{2} is its distance from $(0,0)$.

Notice: $\|\mathbf{u}\|$ is always positive (except at $\mathbf{0}$), and $\|\mathbf{u}+\cdots+\mathbf{u}\|(n$ times $)=n\|\mathbf{u}\|$. (Scaling of length.)

(Credit: Wikidot)

Formal definition: A norm on a group G is a function $\|\cdot\|: G \rightarrow \mathbb{R}$, satisfying:

- $\|\alpha\|>0$ for all non-identity elements/symmetries α in G. And $\|e\|=0$.
- $\|\alpha \circ \beta\| \leq\|\alpha\|+\|\beta\|$ (triangle inequality).
- $\|\alpha \circ \cdots \circ \alpha\|$ (n times $)=n\|\alpha\|$ for all $n>0$.

Example: (As above!) $\mathbb{R}^{2}=$ all vectors \mathbf{u} in the plane (or translations by \mathbf{u}, under +).
This has the usual norm/length function. And it is abelian.
In fact, every abelian "torsionfree" group has a norm. (Axiom of Choice)
Question (Khare): Does there exist a non-abelian group with a norm?

Asking around. . .

- I came to the above question (non-abelian group with a norm?) in 2015, motivated by some work in probability theory. [Khare \& Rajaratnam, published in Annals of Probability 2017]
- Starting from April 2015, I emailed several experts, in Canada, India, Poland, USA (Courant, Harvard, Northwestern, Wisconsin, ...).

Asking around. . .

- I came to the above question (non-abelian group with a norm?) in 2015, motivated by some work in probability theory. [Khare \& Rajaratnam, published in Annals of Probability 2017]
- Starting from April 2015, I emailed several experts, in Canada, India, Poland, USA (Courant, Harvard, Northwestern, Wisconsin, ...).
- No such examples were found.
- No such theorems were known.

What is the answer? Find at least one such group? Or prove that such a group can never exist!

Discussions with Tao

December 15-16, 2017: Then I visited a collaborator, Terence Tao (UCLA).

Discussions with Tao

December 15-16, 2017: Then I visited a collaborator, Terence Tao (UCLA).

Our discussion:

- Suppose G is any group with a norm.
- Take any two elements α, β in G.
- The key quantity $(K Q)$ to understand is the norm of the commutator element:

$$
K Q:=\left\|\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}\right\| .
$$

Discussions with Tao

December 15-16, 2017: Then I visited a collaborator, Terence Tao (UCLA).

Our discussion:

- Suppose G is any group with a norm.
- Take any two elements α, β in G.
- The key quantity $(K Q)$ to understand is the norm of the commutator element:

$$
K Q:=\left\|\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}\right\| .
$$

- If $K Q=0$ for all symmetries α, β, then every commutator $\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}=e$, and so G is abelian.

Discussions with Tao

December 15-16, 2017: Then I visited a collaborator, Terence Tao (UCLA).

Our discussion:

- Suppose G is any group with a norm.
- Take any two elements α, β in G.
- The key quantity $(K Q)$ to understand is the norm of the commutator element:

$$
K Q:=\left\|\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}\right\| .
$$

- If $K Q=0$ for all symmetries α, β, then every commutator $\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}=e$, and so G is abelian.

Question: How to estimate $K Q$? Can we show it is very small?
We showed: $K Q \leq 4$,

Discussions with Tao

December 15-16, 2017: Then I visited a collaborator, Terence Tao (UCLA).

Our discussion:

- Suppose G is any group with a norm.
- Take any two elements α, β in G.
- The key quantity $(K Q)$ to understand is the norm of the commutator element:

$$
K Q:=\left\|\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}\right\| .
$$

- If $K Q=0$ for all symmetries α, β, then every commutator $\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}=e$, and so G is abelian.

Question: How to estimate $K Q$? Can we show it is very small?
We showed: $K Q \leq 4, \quad 2$,

Discussions with Tao

December 15-16, 2017: Then I visited a collaborator, Terence Tao (UCLA).

Our discussion:

- Suppose G is any group with a norm.
- Take any two elements α, β in G.
- The key quantity $(K Q)$ to understand is the norm of the commutator element:

$$
K Q:=\left\|\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}\right\| .
$$

- If $K Q=0$ for all symmetries α, β, then every commutator $\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}=e$, and so G is abelian.

Question: How to estimate $K Q$? Can we show it is very small?
We showed: $K Q \leq 4, \quad 2, \quad 4 / 3$

Discussions with Tao

December 15-16, 2017: Then I visited a collaborator, Terence Tao (UCLA).

Our discussion:

- Suppose G is any group with a norm.
- Take any two elements α, β in G.
- The key quantity $(K Q)$ to understand is the norm of the commutator element:

$$
K Q:=\left\|\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}\right\| .
$$

- If $K Q=0$ for all symmetries α, β, then every commutator $\alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}=e$, and so G is abelian.

Question: How to estimate $K Q$? Can we show it is very small?
We showed: $K Q \leq 4, \quad 2,4 / 3 \quad \ldots$ Go down to zero?

RECENT COMMENTS

Terence Tao on 254A, Notes
8: The circular...
keej on 254A, Notes 8: The circular...
Siddhartha Gadgil on Homogeneous length functions o...
stuff list-i... on Books

Tobias Fritz on Homogeneous length functions o...
Anonymous on Homogeneous length functions o...
Tobias Fritz on Homogeneous length functions o...
Terence Tao on Homogeneous length functions $0 . .$.
Homogeneous length f... on Metrics of linear growth...
Apoorva Khare on Metrics of linear growth...
Toronce Thn on Motrice of

Scott Aaronson - Ten signs a claimed mathematical proof is wrong
Timothy Gowers - Elsevier - my part in its downfall
Timothy Gowers - The two cultures of mathematics

William Thurston - On proof and progress in mathematics

Bi-invariant metrics of linear growth on the free group

16 December, 2017 in math.GR, math.MG, question | Tags: free group, geometric group theory, polymath14
Here is a curious question posed to me by Apoorva Khare that I do not know the answer to. Let F_{2} be the free group on two generators a, b. Does there exist a metric d on this group which is

- bi-invariant, thus $d(x g, y g)=d(g x, g y)=d(x, y)$ for all $x, y, g \in F_{2}$; and
- linear growth in the sense that $d\left(x^{n}, 1\right)=n d(x, 1)$ for all $x \in F_{2}$ and all natural numbers n ?

By defining the "norm" of an element $x \in F_{2}$ to be $\|x\|:=d(x, 1)$, an equivalent formulation of the problem asks if there exists a non-negative norm function $\left\|\|: F_{2} \rightarrow \mathbf{R}^{+}\right.$that obeys the conjugation invariance

$$
\begin{equation*}
\left\|g x g^{-1}\right\|=\|x\| \tag{1}
\end{equation*}
$$

for all $x, g \in F_{2}$, the triangle inequality

$$
\begin{equation*}
\|x y\| \leq\|x\|+\|y\| \tag{2}
\end{equation*}
$$

for all $x, y \in F_{2}$, and the linear growth

$$
\begin{equation*}
\left\|x^{n}\right\|=|n|\|x\| \tag{3}
\end{equation*}
$$

What is not clear to me is if one can keep arguing like this to continually improve the upper bounds on the norm $\|g\|$ of a given non-trivial group element g to the point where this norm must in fact vanish, which would demonstrate that no metric with the above properties on F_{2} would exist (and in fact would impose strong constraints on similar metrics existing on other groups as well). It is also tempting to use some ideas from geometric group theory (e.g. asymptotic cones) to try to understand these metrics further, though I wasn't able to get very far with this approach. Anyway, this feels like a problem that might be somewhat receptive to a more crowdsourced attack, so I am posing it here in case any readers wish to try to make progress on it.

Timeline of the reducing bound

(All times are in Indian Standard Time, in December 2017. All progress is as recorded on Tao's blog.)

- 17 Dec, 10:12 am: Blogpost 1 by Terence Tao $-K Q=4,2,4 / 3$.

Timeline of the reducing bound

(All times are in Indian Standard Time, in December 2017. All progress is as recorded on Tao's blog.)

- 17 Dec, 10:12 am: Blogpost 1 by Terence Tao $-K Q=4,2,4 / 3$.
- (next two days) Attempts to find such a non-abelian normed group; did not work.

Timeline of the reducing bound

(All times are in Indian Standard Time, in December 2017. All progress is as recorded on Tao's blog.)

- 17 Dec, 10:12 am: Blogpost 1 by Terence Tao $-K Q=4,2,4 / 3$.
- (next two days) Attempts to find such a non-abelian normed group; did not work.
- 20 Dec, 2:54 am: $K Q=5 / 4$ (improves over $4 / 3$ from earlier).

Timeline of the reducing bound

(All times are in Indian Standard Time, in December 2017. All progress is as recorded on Tao's blog.)

- 17 Dec, 10:12 am: Blogpost 1 by Terence Tao $-K Q=4,2,4 / 3$.
- (next two days) Attempts to find such a non-abelian normed group; did not work.
- 20 Dec, 2:54 am: $K Q=5 / 4$ (improves over $4 / 3$ from earlier).
- $20 \mathrm{Dec}, 4: 03 \mathrm{am}: K Q=19 / 16$ (improves over $20 / 16=5 / 4$).

Timeline of the reducing bound

(All times are in Indian Standard Time, in December 2017. All progress is as recorded on Tao's blog.)

- 17 Dec, 10:12 am: Blogpost 1 by Terence Tao $-K Q=4,2,4 / 3$.
- (next two days) Attempts to find such a non-abelian normed group; did not work.
- 20 Dec, 2:54 am: $K Q=5 / 4$ (improves over $4 / 3$ from earlier).
- 20 Dec, 4:03 am: $K Q=19 / 16$ (improves over $20 / 16=5 / 4$).
- (More attempts, to get $K Q$ to go below one.) Finally...

Timeline of the reducing bound

(All times are in Indian Standard Time, in December 2017. All progress is as recorded on Tao's blog.)

- 17 Dec, 10:12 am: Blogpost 1 by Terence Tao $-K Q=4,2,4 / 3$.
- (next two days) Attempts to find such a non-abelian normed group; did not work.
- 20 Dec, 2:54 am: $K Q=5 / 4$ (improves over $4 / 3$ from earlier).
- 20 Dec, 4:03 am: $K Q=19 / 16$ (improves over $20 / 16=5 / 4$).
- (More attempts, to get $K Q$ to go below one.) Finally...
- 20 Dec, 11:12 am: $K Q=22 / 23 \approx 0.956522$.

Timeline of the reducing bound

(All times are in Indian Standard Time, in December 2017. All progress is as recorded on Tao's blog.)

- 17 Dec, 10:12 am: Blogpost 1 by Terence Tao $-K Q=4,2,4 / 3$.
- (next two days) Attempts to find such a non-abelian normed group; did not work.
- 20 Dec, 2:54 am: $K Q=5 / 4$ (improves over $4 / 3$ from earlier).
- 20 Dec, 4:03 am: $K Q=19 / 16$ (improves over $20 / 16=5 / 4$).
- (More attempts, to get $K Q$ to go below one.) Finally...
- 20 Dec, 11:12 am: $K Q=22 / 23 \approx 0.956522$.
- At this point, there was almost a 24 -hour 'barrier'...

Timeline of the reducing bound

(All times are in Indian Standard Time, in December 2017. All progress is as recorded on Tao's blog.)

- 17 Dec, 10:12 am: Blogpost 1 by Terence Tao $-K Q=4,2,4 / 3$.
- (next two days) Attempts to find such a non-abelian normed group; did not work.
- 20 Dec, 2:54 am: $K Q=5 / 4$ (improves over $4 / 3$ from earlier).
- 20 Dec, 4:03 am: $K Q=19 / 16$ (improves over $20 / 16=5 / 4$).
- (More attempts, to get $K Q$ to go below one.) Finally...
- 20 Dec, 11:12 am: $K Q=22 / 23 \approx 0.956522$.
- At this point, there was almost a 24 -hour 'barrier'... which Siddhartha Gadgil and his computer broke through!

Timeline of the reducing bound (cont.)

- 20 Dec, 11:12 am: $K Q=22 / 23 \approx 0.956522$.
- 21 Dec, 9:30 am: (Siddhartha Gadgil and his computer) $K Q \approx 0.816$. (Understood by Pace Nielsen.)

20 December, 2017 at 8:00 pm

 Siddhartha GadgilOne can get a bound on the commutator of 0.816 with a brutal proof (not optimized by any means). The proof (computer generated but
formatted to be readable) is at
https://github.com/siddhartha-gadgil/Superficial/wiki/A-commutator-bound
Comments welcome. Someone cleverer may extract useful inequalities from this (or find an error).

Reply

20 December, 2017 at $9: 40 \mathrm{pm}$ Pace Nielsen This was beautiful! My intuition was, before scouring your file, that we now have strong evidence that the norm will be forced to

equal zero on commutators. Thus, elements like $x y x^{-1} y^{-1} x$ should have norm the same as x. Our job is then to bound the norm of words like $\left(x y x^{-1} y^{-1}\right)^{k} x$ (for larger and larger values of k) nearer and nearer the norm of x.

I was surprised, when reading your file, that this seems to be the path that the computer has taken, with a few additional ideas thrown in. The first 43 lines establish
$\left\|\left(x y x^{-1} y^{-1}\right)^{2} x\right\| \leq \frac{1}{18}(20\|x\|+18\|y\|)$
and lines 44 to 73 establish
$\left\|x y x^{-1} y^{-1} x\right\| \leq \frac{1}{18}(18\|x\|+10\|y\|)$
(which, incidentally, gives a new $(\gamma, \delta)=(1,5 / 9)$ value). Lines 74 to 119 , using these previous bounds, establishe a similar type of bound on $\left\|\left(x y x^{-1} y^{-1}\right)^{6} x\right\|$. And the last few lines use this information to bound the norm of a commutator.

This was very well done!
We can improve the first computation to the bound
$\left\|\left(x y x^{-1} y^{-1}\right)^{2} x\right\| \leq\|x\|+\|y\|$

A commutator bound

Siddhartha Gadgil edited this page on Dec 21, 2017 - 2 revisions

Gross proof time

Here is a computer generated proof of a bound on the length of the commutator abā̄ for a linear norm on the free group with the lengths of the generators bounded above by 1 .

1. $\circ|\overline{\mathrm{a}}| \leq 1.0$
2. $\circ \mid$ $\overline{\mathrm{a}} \mathrm{b} \mid \leq 1.0$ using $|\overline{\mathrm{a}}| \leq 1.0$
3. $\circ|\bar{\square}| \leq 1.0$
4. $\circ|\mathrm{ab} \overline{\mathrm{a}}| \leq 1.0$ using $|\overline{\mathrm{b}}| \leq 1.0$
 12.859649122807017 using |БabāБabāБabā̄abāDabā̄abābab| 4.9298245614035086

 13.859649122807017 using |abā| ≤ 1.0 and
 12.859649122807017
5. $\circ|a b \bar{a} \bar{b}| \leq 0.8152734778121775$ using
 13.859649122807017 by taking 17th power

Conclusion

- 20 Dec, 11:12 am: $K Q=22 / 23 \approx 0.956522$.

Conclusion

- 20 Dec, 11:12 am: $K Q=22 / 23 \approx 0.956522$.
- 21 Dec, 9:30 am: (Gadgil) $K Q \approx 0.816$. (Understood by Pace Nielsen.)

Conclusion

- 20 Dec, 11:12 am: $K Q=22 / 23 \approx 0.956522$.
- 21 Dec, 9:30 am: (Gadgil) $K Q \approx 0.816$. (Understood by Pace Nielsen.)
- $21 \mathrm{Dec}, 1: 45 \mathrm{pm}: K Q=8 / 11 \approx 0.7272 \ldots$

Conclusion

- 20 Dec, 11:12 am: $K Q=22 / 23 \approx 0.956522$.
- $21 \mathrm{Dec}, 9: 30 \mathrm{am}$: (Gadgil) $K Q \approx 0.816$. (Understood by Pace Nielsen.)
- 21 Dec, 1:45 pm: $K Q=8 / 11 \approx 0.7272 \ldots$
- $21 \mathrm{Dec}, 6: 24 \mathrm{pm}: K Q=2 / 3 \approx 0.666 \ldots$

Conclusion

- 20 Dec, 11:12 am: $K Q=22 / 23 \approx 0.956522$.
- 21 Dec, 9:30 am: (Gadgil) $K Q \approx 0.816$. (Understood by Pace Nielsen.)
- 21 Dec, $1: 45$ pm: $K Q=8 / 11 \approx 0.7272 \ldots$
- $21 \mathrm{Dec}, 6: 24 \mathrm{pm}: K Q=2 / 3 \approx 0.666 \ldots$
- 22 Dec, 12:27 am: (Fritz) Write $f(m, k):=\left\|\alpha^{m}[\alpha, \beta]^{k}\right\|$. Then,

$$
f(m, k) \leqslant \frac{1}{2}(f(m+1, k)+f(m-1, k-1))
$$

Conclusion

- 20 Dec, 11:12 am: $K Q=22 / 23 \approx 0.956522$.
- 21 Dec, 9:30 am: (Gadgil) $K Q \approx 0.816$. (Understood by Pace Nielsen.)
- 21 Dec, $1: 45$ pm: $K Q=8 / 11 \approx 0.7272 \ldots$
- $21 \mathrm{Dec}, 6: 24 \mathrm{pm}: K Q=2 / 3 \approx 0.666 \ldots$
- 22 Dec, 12:27 am: (Fritz) Write $f(m, k):=\left\|\alpha^{m}[\alpha, \beta]^{k}\right\|$. Then,

$$
f(m, k) \leqslant \frac{1}{2}(f(m+1, k)+f(m-1, k-1))
$$

- 22 Dec, 3:57 am: (Tao) Probabilistic argument finishes the proof.

Conclusion

- 20 Dec, 11:12 am: $K Q=22 / 23 \approx 0.956522$.
- $21 \mathrm{Dec}, 9: 30 \mathrm{am}$: (Gadgil) $K Q \approx 0.816$. (Understood by Pace Nielsen.)
- 21 Dec, $1: 45 \mathrm{pm}: K Q=8 / 11 \approx 0.7272 \ldots$
- $21 \mathrm{Dec}, 6: 24 \mathrm{pm}: K Q=2 / 3 \approx 0.666 \ldots$
- 22 Dec, 12:27 am: (Fritz) Write $f(m, k):=\left\|\alpha^{m}[\alpha, \beta]^{k}\right\|$. Then,

$$
f(m, k) \leqslant \frac{1}{2}(f(m+1, k)+f(m-1, k-1))
$$

- 22 Dec, 3:57 am: (Tao) Probabilistic argument finishes the proof.

> 21 December, 2017 at $2: 27 \mathrm{pm}$ Terence Tao
> I think this does indeed work to give arbitrarily small bounds on $\|[x, y]\|$, killing off
> the problem! One can work with some m between \sqrt{k} and k, say $m \approx k^{2 / 3}$. A simple random walk that starts at (m, k) and repeatedly moves by a step $(-1,0)$ or $(1,-1)$ with a $1 / 2$ probability of each will end up hitting $\left(m^{\prime}, 0\right)$ for some $m^{\prime} \approx m$ with exponentially high probability by the Chernoff bound, which implies the bound
> $\left\|x^{m}[x, y]^{k}\right\| \ll m\|x\|+\|[x, y]\|$, which by the triangle inequality gives $\|[x, y]\| \ll \frac{m}{k}\|x\|$, and sending $k \rightarrow \infty$ we win. Ill write the details on the Wiki. EDIT: now available at http://michaelnielsen.org /polymath 1 /index.php?title=Linear_norm\#Solution
> 略 30 Rate This

The theorem and the paper

Theorem (D.H.J. Polymath, Algebra \& Number Th. 2018)
 Let G be a group. Then G has a norm if and only if G is abelian and torsion free,

The theorem and the paper

Theorem (D.H.J. Polymath, Algebra \& Number Th. 2018)

Let G be a group. Then G has a norm if and only if G is abelian and torsion free, if and only if G is an additive subgroup of a Banach space.

