Analysis applications of Schur polynomials

ILAS Invited Address 2023 Joint Math Meetings

Apoorva Khare IISc and APRG (Bangalore, India) Entrywise positivity preservers and Schur polynomials

Introduction

Positivity (and preserving it) studied in many settings in the literature.

Different flavors of positivity:

• \mathbb{P}_N : Positive semidefinite $N \times N$ (real symmetric) matrices:

 $u^T A u \geqslant 0, \quad \forall u \in \mathbb{R}^N.$

- Positive definite sequences/Toeplitz matrices
- Hilbert space kernels
- Positive definite functions on metric spaces, topological (semi)groups

Introduction

Positivity (and preserving it) studied in many settings in the literature.

Different flavors of positivity:

• \mathbb{P}_N : Positive semidefinite $N \times N$ (real symmetric) matrices:

 $u^T A u \ge 0, \quad \forall u \in \mathbb{R}^N.$

- Positive definite sequences/Toeplitz matrices
- Hilbert space kernels
- Positive definite functions on metric spaces, topological (semi)groups

Question: Classify the positivity preservers in these settings. Studied for the better part of a century.

Some contributors to entrywise functions

Entrywise functions preserving positivity

Definition: Given $N \ge 1$ and $I \subseteq \mathbb{R}$, let $\mathbb{P}_N(I)$ denote the $N \times N$ positive (semidefinite) matrices, with entries in I. (Say $\mathbb{P}_N = \mathbb{P}_N(\mathbb{R})$.)

Problem: For which functions $f: I \to \mathbb{R}$ is it true that

 $f[A] := (f(a_{ij})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I)?$

Entrywise functions preserving positivity

Definition: Given $N \ge 1$ and $I \subseteq \mathbb{R}$, let $\mathbb{P}_N(I)$ denote the $N \times N$ positive (semidefinite) matrices, with entries in I. (Say $\mathbb{P}_N = \mathbb{P}_N(\mathbb{R})$.)

Problem: For which functions $f: I \to \mathbb{R}$ is it true that

 $f[A] := (f(a_{ij})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I)?$

- (Long history!) The Schur Product Theorem [Schur, Crelle 1911] says: If $A, B \in \mathbb{P}_N$, then so is $A \circ B := (a_{ij}b_{ij})$.
- As a consequence, $f(x) = x^k$ ($k \ge 0$) preserves positivity on \mathbb{P}_N for all N.

Entrywise functions preserving positivity

Definition: Given $N \ge 1$ and $I \subseteq \mathbb{R}$, let $\mathbb{P}_N(I)$ denote the $N \times N$ positive (semidefinite) matrices, with entries in I. (Say $\mathbb{P}_N = \mathbb{P}_N(\mathbb{R})$.)

Problem: For which functions $f: I \to \mathbb{R}$ is it true that

 $f[A] := (f(a_{ij})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I)?$

- (Long history!) The Schur Product Theorem [Schur, Crelle 1911] says: If $A, B \in \mathbb{P}_N$, then so is $A \circ B := (a_{ij}b_{ij})$.
- As a consequence, $f(x) = x^k$ ($k \ge 0$) preserves positivity on \mathbb{P}_N for all N.
- (Pólya–Szegö, 1925): Taking sums and limits, if $f(x) = \sum_{k=0}^{\infty} c_k x^k$ is convergent and $c_k \ge 0$, then f[-] preserves positivity.

Question: Anything else?

Schoenberg's theorem

Surprisingly, the answer is **no**, if f[-] preserves positivity in *all* dimensions:

Theorem (Schoenberg, Duke Math. J. 1942)

Say I = [-1, 1] and $f : I \to \mathbb{R}$ is continuous. The following are equivalent:

- $I f[A] \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I) \text{ and all } N.$
- In other words, f(x) = ∑_{k=0}[∞] c_kx^k on [-1,1] with all c_k ≥ 0.

This continuity assumption was since removed,

Schoenberg's theorem

Surprisingly, the answer is **no**, if f[-] preserves positivity in *all* dimensions:

Theorem (Schoenberg, Duke Math. J. 1942)

Say I = [-1, 1] and $f : I \to \mathbb{R}$ is continuous. The following are equivalent:

- $I f[A] \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N(I) \text{ and all } N.$
- In other words, f(x) = ∑_{k=0}[∞] c_kx^k on [-1,1] with all c_k ≥ 0.

This continuity assumption was since removed, and the test set $\bigcup_{N \geqslant 1} \mathbb{P}_N(I)$ was greatly reduced, drawing from Fourier analysis and moment-problems:

Theorem (Rudin (Duke 1959); Belton–Guillot–K.–Putinar (JEMS 2022))

Suppose $0 < \rho \leq \infty$. If f[-] preserves positivity on all Toeplitz (resp. Hankel) matrices of rank ≤ 3 with entries in $I = (-\rho, \rho)$, then $f(x) = \sum_{k=0}^{\infty} c_k x^k$ with all $c_k \geq 0$.

Preserving positivity for fixed N:

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
 Unnecessarily restrictive to preserve positivity in all dimensions.

Preserving positivity for fixed N:

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
 Unnecessarily restrictive to preserve positivity in all dimensions.
- Known for N = 2 (Vasudeva, *IJPAM* 1979):

f is nondecreasing and $f(x)f(y) \ge f(\sqrt{xy})^2$ on $(0,\infty)$.

Preserving positivity for fixed N:

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
 Unnecessarily restrictive to preserve positivity in all dimensions.
- Known for N = 2 (Vasudeva, *IJPAM* 1979):

f is nondecreasing and $f(x)f(y) \ge f(\sqrt{xy})^2$ on $(0,\infty)$.

• Open for $N \ge 3$.

Preserving positivity for fixed N:

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.
 Unnecessarily restrictive to preserve positivity in all dimensions.
- Known for N = 2 (Vasudeva, *IJPAM* 1979):

f is nondecreasing and $f(x)f(y) \ge f(\sqrt{xy})^2$ on $(0,\infty)$.

• Open for $N \ge 3$.

What is known in fixed dimension?

Essentially the only result is a necessary condition, by C. Loewner (in the PhD thesis of his student Roger A. Horn, in *Trans. AMS* 1969). Loewner had initially summarized these computations in a letter to Josephine Mitchell (Penn. State) in 1967:

From entrywise positivity preservers to Schur polynomials Majorization inequalities; Determinantal identities Early results Polynomial preservers and Schur polynomials

Loewner's computations

when I got interested in the following question : het fit , he a function defined in cominternal (0, 6), a 20 and consider all real symmetric watries (og) > 0 of order a with elements ay a (4 a). Wheel proportion must for have incarder that the matrices (7(2)) >0. I found as necessary conditions. Alles, file, that of is mistimes differentiable the following conditions are necescence (C) \$(+) =0, \$(+)=0, -- \$(m'(+)=0 The functions to (971) do not salisfy these counditioner for all 97 if m73. The proof is obtained by coundering watrices of the form ay = a row, a with a cl (g a) y 20 and the or, arbitrary Then (f (ag)) > Varied Level to make a contraction of (day) 20 To first they term inthe Taylor expansion of Allo) at 10 -0 is flas flas - fta). (TT (a; -ag)) and hence flas flas - flas a) =0, from what one easily derives that (C) manthold.

Apoorva Khare, IISc Bangalore

Special case: Polynomials

Following Schoenberg (1942) and Rudin (1959), suppose

$$f(t) = \sum_{j=1}^{N} c_j t^{j-1} + c' t^M, \qquad c_j \in \mathbb{R}, \ M \ge N$$

entrywise preserves positivity on \mathbb{P}_N .

• By Loewner's result, $c_1, \ldots, c_N \ge 0$.

Special case: Polynomials

Following Schoenberg (1942) and Rudin (1959), suppose

$$f(t) = \sum_{j=1}^{N} c_j t^{j-1} + c' t^M, \qquad c_j \in \mathbb{R}, \ M \ge N$$

entrywise preserves positivity on \mathbb{P}_N .

• By Loewner's result, $c_1, \ldots, c_N \ge 0$.

Q1: Can c' be negative? Sharp bound?

(Not a single example known, until very recently.)

Special case: Polynomials

Following Schoenberg (1942) and Rudin (1959), suppose

$$f(t) = \sum_{j=1}^{N} c_j t^{j-1} + c' t^M, \qquad c_j \in \mathbb{R}, \ M \ge N$$

entrywise preserves positivity on \mathbb{P}_N .

• By Loewner's result, $c_1, \ldots, c_N \ge 0$.

Q1: Can c' be negative? Sharp bound?

(Not a single example known, until very recently.)

More generally, the first N nonzero Maclaurin coefficients must be positive. **Q2:** Can the next one be negative?

Theorem (K.-Tao, Amer. J. Math. 2021)

Fix $\rho > 0$ and integers $0 \leq n_1 < \cdots < n_N < M$, and let

$$f(t) = \sum_{j=1}^{N} c_j t^{n_j} + c' t^M$$

be a polynomial with real coefficients. The following are equivalent.

Theorem (K.-Tao, Amer. J. Math. 2021)

Fix $\rho > 0$ and integers $0 \leq n_1 < \cdots < n_N < M$, and let

$$f(t) = \sum_{j=1}^{N} c_j t^{n_j} + c' t^M$$

be a polynomial with real coefficients. The following are equivalent.

- f[-] preserves positivity on $\mathbb{P}_N((0,\rho))$.
- 2 The coefficients c_j satisfy either $c_1, \ldots, c_N, c' \ge 0$,

Theorem (K.-Tao, Amer. J. Math. 2021)

Fix $\rho > 0$ and integers $0 \leq n_1 < \cdots < n_N < M$, and let

$$f(t) = \sum_{j=1}^{N} c_j t^{n_j} + c' t^M$$

be a polynomial with real coefficients. The following are equivalent.

• f[-] preserves positivity on $\mathbb{P}_N((0,\rho))$.

2 The coefficients c_j satisfy either c₁,..., c_N, c' ≥ 0, or c₁,..., c_N > 0 and c' ≥ -C⁻¹, where

$$\mathcal{C} := \sum_{j=1}^{N} \frac{\rho^{M-n_j}}{c_j} \prod_{i=1, i \neq j}^{N} \frac{(M-n_i)^2}{(n_j - n_i)^2}.$$

Theorem (K.-Tao, Amer. J. Math. 2021)

Fix $\rho > 0$ and integers $0 \leq n_1 < \cdots < n_N < M$, and let

$$f(t) = \sum_{j=1}^{N} c_j t^{n_j} + c' t^M$$

be a polynomial with real coefficients. The following are equivalent.

• f[-] preserves positivity on $\mathbb{P}_N((0,\rho))$.

2 The coefficients c_j satisfy either $c_1, \ldots, c_N, c' \ge 0$, or $c_1, \ldots, c_N > 0$ and $c' \ge -C^{-1}$, where

$$\mathcal{C} := \sum_{j=1}^{N} \frac{\rho^{M-n_j}}{c_j} \prod_{i=1, i \neq j}^{N} \frac{(M-n_i)^2}{(n_j - n_i)^2}.$$

3 f[-] preserves positivity on rank-one Hankel matrices in $\mathbb{P}_N((0, \rho))$.

Theorem (K.-Tao, Amer. J. Math. 2021)

Fix $\rho > 0$ and integers $0 \leq n_1 < \cdots < n_N < M$, and let

$$f(t) = \sum_{j=1}^{N} c_j t^{n_j} + c' t^M$$

be a polynomial with real coefficients. The following are equivalent.

• f[-] preserves positivity on $\mathbb{P}_N((0,\rho))$.

2 The coefficients c_j satisfy either $c_1, \ldots, c_N, c' \ge 0$, or $c_1, \ldots, c_N > 0$ and $c' \ge -C^{-1}$, where

$$\mathcal{C} := \sum_{j=1}^{N} \frac{\rho^{M-n_j}}{c_j} \prod_{i=1, i \neq j}^{N} \frac{(M-n_i)^2}{(n_j - n_i)^2}.$$

3 f[-] preserves positivity on rank-one Hankel matrices in $\mathbb{P}_N((0, \rho))$.

- This holds even if n_j, M are not integers.
- "Baby case (Q1)": Belton-Guillot-K.-Putinar in [Adv. Math. 2016].

Apoorva Khare, IISc Bangalore

How does the number
$$\left(\prod_{i=1,i\neq j}^{N} \frac{(M-n_i)}{(n_j-n_i)}\right)^2$$
 occur in this?

How does the number
$$\left(\prod_{i=1,i\neq j}^{N} \frac{(M-n_i)}{(n_j-n_i)}\right)^2$$
 occur in this?

- Essentially, the *Weyl dimension formula* in representation theory or the *principal specialization formula* for Schur polynomials.
- Schur polynomials (algebraic characters) now treated as *functions* on the positive orthant $(0, \infty)^N$ are the key tool used to prove the theorem.

Given an increasing N-tuple of integers $0 \leq n_1 < \cdots < n_N$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^N of

$$s_{\mathbf{n}}(u_1, \dots, u_N) := - rac{\det(u_i^{n_j})_{i,j=1}^N}{\det(u_i^{j-1})} = - rac{\det(u_i^{n_j})_{i,j=1}^N}{V(\mathbf{u})}$$

for pairwise distinct $u_i \in \mathbb{F}$.

Given an increasing N-tuple of integers $0 \leq n_1 < \cdots < n_N$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^N of

$$s_{\mathbf{n}}(u_1, \dots, u_N) := \frac{\det(u_i^{n_j})_{i,j=1}^N}{\det(u_i^{j-1})} = \frac{\det(u_i^{n_j})_{i,j=1}^N}{V(\mathbf{u})}$$

for pairwise distinct $u_i \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$V((u_1, \dots, u_N)) := \det(u_i^{j-1}) = \prod_{1 \le i < j \le N} (u_j - u_i).$$

Given an increasing N-tuple of integers $0 \leq n_1 < \cdots < n_N$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^N of

$$s_{\mathbf{n}}(u_1, \dots, u_N) := \frac{\det(u_i^{n_j})_{i,j=1}^N}{\det(u_i^{j-1})} = \frac{\det(u_i^{n_j})_{i,j=1}^N}{V(\mathbf{u})}$$

for pairwise distinct $u_i \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$V((u_1, \dots, u_N)) := \det(u_i^{j-1}) = \prod_{1 \le i < j \le N} (u_j - u_i).$$

- Basis of homogeneous symmetric polynomials in u_1, \ldots, u_N .
- Characters of irreducible polynomial representations of $GL_N(\mathbb{C})$, usually defined in terms of semi-standard Young tableaux.

Given an increasing N-tuple of integers $0 \leq n_1 < \cdots < n_N$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^N of

$$s_{\mathbf{n}}(u_1, \dots, u_N) := \frac{\det(u_i^{n_j})_{i,j=1}^N}{\det(u_i^{j-1})} = \frac{\det(u_i^{n_j})_{i,j=1}^N}{V(\mathbf{u})}$$

for pairwise distinct $u_i \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$V((u_1,\ldots,u_N)) := \det(u_i^{j-1}) = \prod_{1 \leq i < j \leq N} (u_j - u_i).$$

- Basis of homogeneous symmetric polynomials in u_1, \ldots, u_N .
- Characters of irreducible polynomial representations of GL_N(C), usually defined in terms of semi-standard Young tableaux.
- Weyl Character (Dimension) Formula in Type A:

$$s_{\mathbf{n}}(1,\ldots,1) = \prod_{1 \leq i < j \leq N} \frac{n_j - n_i}{j-i} = \frac{V(\mathbf{n})}{V((0,1,\ldots,N-1))}.$$

Apoorva Khare, IISc Bangalore

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose N = 3 and $\mathbf{m} := (0, 2, 4)$. The tableaux are:

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose N = 3 and $\mathbf{m} := (0, 2, 4)$. The tableaux are:

$$s_{(0,2,4)}(u_1, u_2, u_3)$$

= $u_3^2 u_2 + u_3^2 u_1 + u_3 u_2^2 + 2u_3 u_2 u_1 + u_3 u_1^2 + u_2^2 u_1 + u_2 u_1^2$
= $(u_1 + u_2)(u_2 + u_3)(u_3 + u_1).$

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose N = 3 and $\mathbf{m} := (0, 2, 4)$. The tableaux are:

$$s_{(0,2,4)}(u_1, u_2, u_3) = u_3^2 u_2 + u_3^2 u_1 + u_3 u_2^2 + 2u_3 u_2 u_1 + u_3 u_1^2 + u_2^2 u_1 + u_2 u_1^2 = (u_1 + u_2)(u_2 + u_3)(u_3 + u_1).$$

 $(u_2 + u_3)(u_3 + u_1).$

Example 2: Suppose N = 3 and $\mathbf{n} = (0, 2, 3)$:

Then $s_{(0,2,3)}(u_1, u_2, u_3) = u_1u_2 + u_2u_3 + u_3u_1$.

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose N = 3 and $\mathbf{m} := (0, 2, 4)$. The tableaux are:

$$s_{(0,2,4)}(u_1, u_2, u_3) = u_3^2 u_2 + u_3^2 u_1 + u_3 u_2^2 + 2u_3 u_2 u_1 + u_3 u_1^2 + u_2^2 u_1 + u_2 u_1^2 = (u_1 + u_2)(u_2 + u_3)(u_3 + u_1).$$

Example 2: Suppose N = 3 and n = (0, 2, 3):

Then $s_{(0,2,3)}(u_1, u_2, u_3) = u_1u_2 + u_2u_3 + u_3u_1$.

Note: Both polynomials are coordinate-wise non-decreasing on $(0, \infty)^N$.

Apoorva Khare, IISc Bangalore

Schur Monotonicity Lemma

Example: The ratio
$$s_{\mathbf{m}}(\mathbf{u})/s_{\mathbf{n}}(\mathbf{u})$$
 for $\mathbf{m}=(0,2,4),\ \mathbf{n}=(0,2,3)$ is:

$$f(u_1, u_2, u_3) = \frac{(u_1 + u_2)(u_2 + u_3)(u_3 + u_1)}{u_1 u_2 + u_2 u_3 + u_3 u_1}, \qquad u_1, u_2, u_3 > 0.$$

Note: both numerator and denominator are **monomial-positive** (in fact Schur-positive, obviously) – hence non-decreasing in each coordinate.

Fact: Their ratio $f(\mathbf{u})$ has the same property!

Schur Monotonicity Lemma

Example: The ratio
$$s_{\mathbf{m}}(\mathbf{u})/s_{\mathbf{n}}(\mathbf{u})$$
 for $\mathbf{m}=(0,2,4), \ \mathbf{n}=(0,2,3)$ is:

$$f(u_1, u_2, u_3) = \frac{(u_1 + u_2)(u_2 + u_3)(u_3 + u_1)}{u_1 u_2 + u_2 u_3 + u_3 u_1}, \qquad u_1, u_2, u_3 > 0.$$

Note: both numerator and denominator are **monomial-positive** (in fact Schur-positive, obviously) – hence non-decreasing in each coordinate.

Fact: Their ratio $f(\mathbf{u})$ has the same property!

Theorem (K.–Tao, Amer. J. Math., 2021)

For integer tuples $0 \le n_1 < \cdots < n_N$ and $0 \le m_1 < \cdots < m_N$ such that $n_j \le m_j \ \forall j$, the function

$$f: (0,\infty)^N \to \mathbb{R}, \qquad f(\mathbf{u}) := \frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})}$$

is non-decreasing in each coordinate. (In fact, a stronger Schur positivity phenomenon holds.) From entrywise positivity preservers to Schur polynomials Majorization inequalities; Determinantal identities

Schur Monotonicity Lemma (cont.)

Claim: The ratio
$$f(u_1, u_2, u_3) = \frac{(u_1 + u_2)(u_2 + u_3)(u_3 + u_1)}{u_1 u_2 + u_2 u_3 + u_3 u_1}$$
,

treated as a function on the orthant $(0,\infty)^3$, is coordinate-wise non-decreasing.
Schur Monotonicity Lemma (cont.)

Claim: The ratio
$$f(u_1, u_2, u_3) = \frac{(u_1 + u_2)(u_2 + u_3)(u_3 + u_1)}{u_1 u_2 + u_2 u_3 + u_3 u_1}$$
,

treated as a function on the orthant $(0,\infty)^3$, is coordinate-wise non-decreasing.

(Why?) Applying the quotient rule of differentiation to f,

 $s_{\mathbf{n}}(\mathbf{u})\partial_{u_3}s_{\mathbf{m}}(\mathbf{u}) - s_{\mathbf{m}}(\mathbf{u})\partial_{u_3}s_{\mathbf{n}}(\mathbf{u}) = (u_1 + u_2)(u_1u_3 + 2u_1u_2 + u_2u_3)u_3,$

and this is monomial-positive (hence numerically positive).

Schur Monotonicity Lemma (cont.)

Claim: The ratio
$$f(u_1, u_2, u_3) = \frac{(u_1 + u_2)(u_2 + u_3)(u_3 + u_1)}{u_1 u_2 + u_2 u_3 + u_3 u_1},$$

treated as a function on the orthant $(0,\infty)^3$, is coordinate-wise non-decreasing.

(Why?) Applying the quotient rule of differentiation to f,

 $s_{\mathbf{n}}(\mathbf{u})\partial_{u_3}s_{\mathbf{m}}(\mathbf{u}) - s_{\mathbf{m}}(\mathbf{u})\partial_{u_3}s_{\mathbf{n}}(\mathbf{u}) = (u_1 + u_2)(u_1u_3 + 2u_1u_2 + u_2u_3)u_3,$ and this is monomial-positive (hence numerically positive).

In fact, upon writing this as $\sum_{j \ge 0} p_j(u_1, u_2) u_3^j$, each p_j is Schur-positive, i.e. a sum of Schur polynomials:

$$p_{0}(u_{1}, u_{2}) = 0,$$

$$p_{1}(u_{1}, u_{2}) = 2u_{1}u_{2}^{2} + 2u_{1}^{2}u_{2} = 2 \boxed{2 \ 2} + 2 \boxed{2 \ 1} = 2s_{(1,3)}(u_{1}, u_{2}),$$

$$p_{2}(u_{1}, u_{2}) = (u_{1} + u_{2})^{2} = \boxed{2 \ 2} + \boxed{2 \ 1} + \boxed{1 \ 1} + \boxed{2} \\ 1$$

$$= s_{(0,3)}(u_{1}, u_{2}) + s_{(1,2)}(u_{1}, u_{2}).$$

Apoorva Khare, IISc Bangalore

The proof for general $\mathbf{m} \geqslant \mathbf{n}$ is similar:

By symmetry, and the quotient rule of differentiation, it suffices to show that

$$s_{\mathbf{n}} \cdot \partial_{u_N}(s_{\mathbf{m}}) - s_{\mathbf{m}} \cdot \partial_{u_N}(s_{\mathbf{n}})$$

is numerically positive on $(0,\infty)^N$. (Note, the coefficients in $s_n(\mathbf{u})$ of each u_N^j are skew-Schur polynomials in u_1, \ldots, u_{N-1} .)

The proof for general $\mathbf{m} \geqslant \mathbf{n}$ is similar:

By symmetry, and the quotient rule of differentiation, it suffices to show that

$$s_{\mathbf{n}} \cdot \partial_{u_N}(s_{\mathbf{m}}) - s_{\mathbf{m}} \cdot \partial_{u_N}(s_{\mathbf{n}})$$

is numerically positive on $(0,\infty)^N$. (Note, the coefficients in $s_n(\mathbf{u})$ of each u_N^j are skew-Schur polynomials in u_1, \ldots, u_{N-1} .)

The assertion would follow if this expression is monomial-positive.

The proof for general $\mathbf{m} \geqslant \mathbf{n}$ is similar:

By symmetry, and the quotient rule of differentiation, it suffices to show that

$$s_{\mathbf{n}} \cdot \partial_{u_N}(s_{\mathbf{m}}) - s_{\mathbf{m}} \cdot \partial_{u_N}(s_{\mathbf{n}})$$

is numerically positive on $(0,\infty)^N$. (Note, the coefficients in $s_n(\mathbf{u})$ of each u_N^j are skew-Schur polynomials in u_1, \ldots, u_{N-1} .)

The assertion would follow if this expression is monomial-positive.

Our Schur Monotonicity Lemma in fact shows that the coefficient of each u_N^j is (also) Schur-positive.

Patrias–van Willigenburg [J. Combin., 2020], *following F. Bergeron and Reiner:* This is relatively rare (conditional probability related to 1/Kostka numbers.)

The proof for general $\mathbf{m} \geqslant \mathbf{n}$ is similar:

By symmetry, and the quotient rule of differentiation, it suffices to show that

$$s_{\mathbf{n}} \cdot \partial_{u_N}(s_{\mathbf{m}}) - s_{\mathbf{m}} \cdot \partial_{u_N}(s_{\mathbf{n}})$$

is numerically positive on $(0,\infty)^N$. (Note, the coefficients in $s_n(\mathbf{u})$ of each u_N^j are skew-Schur polynomials in u_1, \ldots, u_{N-1} .)

The assertion would follow if this expression is monomial-positive.

Our Schur Monotonicity Lemma in fact shows that the coefficient of each u_N^j is (also) Schur-positive.

Patrias–van Willigenburg [J. Combin., 2020], *following F. Bergeron and Reiner:* This is relatively rare (conditional probability related to 1/Kostka numbers.)

Key ingredient: Schur-positivity result by Lam–Postnikov–Pylyavskyy [*Amer. J. Math.* 2007].

Apoorva Khare, IISc Bangalore

2. (Weak) Majorization inequalities

Majorization inequalities via symmetric functions Determinantal identities from smooth functions

Weak majorization through Schur polynomials

• Our Schur Monotonicity Lemma implies in particular:

$$\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \ge \frac{s_{\mathbf{m}}(1,\dots,1)}{s_{\mathbf{n}}(1,\dots,1)} = \frac{V(\mathbf{m})}{V(\mathbf{n})}, \qquad \forall \mathbf{u} \in [1,\infty)^{N}.$$

if ${\bf m}$ dominates ${\bf n}$ coordinate-wise.

• "Natural" to ask: for which other tuples m, n does this inequality hold?

Weak majorization through Schur polynomials

• Our Schur Monotonicity Lemma implies in particular:

$$\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \ge \frac{s_{\mathbf{m}}(1,\ldots,1)}{s_{\mathbf{n}}(1,\ldots,1)} = \frac{V(\mathbf{m})}{V(\mathbf{n})}, \qquad \forall \mathbf{u} \in [1,\infty)^{N}.$$

if ${\bf m}$ dominates ${\bf n}$ coordinate-wise.

 ${\ensuremath{\bullet}}$ "Natural" to ask: for which other tuples ${\ensuremath{\mathbf{m}}}, {\ensuremath{\mathbf{n}}}$ does this inequality hold?

Now extended to real tuples (generalized Vandermonde determinants):

Theorem (K.-Tao, Amer. J. Math., 2021)
Given reals
$$n_1 < \cdots < n_N$$
 and $m_1 < \cdots < m_N$, TFAE:
a $\frac{\det(\mathbf{u}^{\circ \mathbf{m}})}{\det(\mathbf{u}^{\circ \mathbf{n}})} \ge \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct-coordinate" tuples $\mathbf{u} \in [1, \infty)_{\neq}^N$.
a m weakly majorizes $\mathbf{n} - i.e., m_N + \cdots + m_j \ge n_N + \cdots + n_j \ \forall j$.

Weak majorization through Schur polynomials

• Our Schur Monotonicity Lemma implies in particular:

$$\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \ge \frac{s_{\mathbf{m}}(1,\ldots,1)}{s_{\mathbf{n}}(1,\ldots,1)} = \frac{V(\mathbf{m})}{V(\mathbf{n})}, \qquad \forall \mathbf{u} \in [1,\infty)^{N}.$$

if ${\bf m}$ dominates ${\bf n}$ coordinate-wise.

ullet "Natural" to ask: for which other tuples \mathbf{m},\mathbf{n} does this inequality hold?

Now extended to real tuples (generalized Vandermonde determinants):

Theorem (K.-Tao, Amer. J. Math., 2021)
Given reals
$$n_1 < \cdots < n_N$$
 and $m_1 < \cdots < m_N$, TFAE:
 $\underbrace{\det(\mathbf{u}^{\circ \mathbf{n}})}_{\det(\mathbf{u}^{\circ \mathbf{n}})} \ge \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct-coordinate" tuples $\mathbf{u} \in [1, \infty)_{\neq}^N$.
 \textcircled{m} meakly majorizes $\mathbf{n} - i.e., m_N + \cdots + m_j \ge n_N + \cdots + n_j \forall j$.

Ingredients of proof: (a) "First-order" approximation of Schur polynomials; (b) Harish-Chandra–Itzykson–Zuber integral; (c) Schur convexity result.

Apoorva Khare, IISc Bangalore

Majorization inequalities via symmetric functions Determinantal identities from smooth functions

Cuttler-Greene-Skandera conjecture

This problem was studied originally by Skandera and others in the 2010s, for integer powers, and *on the entire positive orthant* $(0, \infty)^N$:

Majorization inequalities via symmetric functions Determinantal identities from smooth functions

Cuttler–Greene–Skandera conjecture

This problem was studied originally by Skandera and others in the 2010s, for integer powers, and *on the entire positive orthant* $(0, \infty)^N$:

Theorem (Cuttler–Greene–Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers $0 \leq n_1 < \cdots < n_N$ and $0 \leq m_1 < \cdots < m_N$. Then

$$\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \ge \frac{s_{\mathbf{m}}(1,\ldots,1)}{s_{\mathbf{n}}(1,\ldots,1)}, \qquad \forall \mathbf{u} \in (0,\infty)^{N},$$

if and only if \mathbf{m} majorizes \mathbf{n} .

Majorization = (weak majorization) +
$$\left(\sum_{j=1}^{N} m_j = \sum_{j=1}^{N} n_j\right)$$
.

Majorization inequalities via symmetric functions Determinantal identities from smooth functions

Cuttler–Greene–Skandera conjecture

This problem was studied originally by Skandera and others in the 2010s, for integer powers, and on the entire positive orthant $(0, \infty)^N$:

Theorem (Cuttler–Greene–Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers $0 \leq n_1 < \cdots < n_N$ and $0 \leq m_1 < \cdots < m_N$. Then

$$\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \ge \frac{s_{\mathbf{m}}(1,\ldots,1)}{s_{\mathbf{n}}(1,\ldots,1)}, \qquad \forall \mathbf{u} \in (0,\infty)^{N},$$

if and only if \mathbf{m} majorizes \mathbf{n} .

Majorization = (weak majorization) +
$$\left(\sum_{j=1}^{N} m_j = \sum_{j=1}^{N} n_j\right)$$
.

Questions:

- Does this characterization extend to real powers?
- **2** Can one use a smaller subset than the full orthant $(0,\infty)^N$, to deduce majorization?

Cuttler–Greene–Skandera conjecture

This problem was studied originally by Skandera and others in the 2010s, for integer powers, and on the entire positive orthant $(0,\infty)^N$:

Theorem (Cuttler–Greene–Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers $0 \leq n_1 < \cdots < n_N$ and $0 \leq m_1 < \cdots < m_N$. Then

$$\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \ge \frac{s_{\mathbf{m}}(1,\ldots,1)}{s_{\mathbf{n}}(1,\ldots,1)}, \qquad \forall \mathbf{u} \in (0,\infty)^{N},$$

if and only if \mathbf{m} majorizes \mathbf{n} .

Majorization = (weak majorization) +
$$\left(\sum_{j=1}^{N} m_j = \sum_{j=1}^{N} n_j\right)$$
.

Questions:

- Does this characterization extend to real powers?
- ⁽²⁾ Can one use a smaller subset than the full orthant $(0,\infty)^N$, to deduce majorization?

Yes, and Yes:

Majorization via Vandermonde determinants

Theorem (K.-Tao, Amer. J. Math., 2021)

Given reals $n_1 < \cdots < n_N$ and $m_1 < \cdots < m_N$, TFAE:

Majorization via Vandermonde determinants

Theorem (K.-Tao, Amer. J. Math., 2021)

Given reals $n_1 < \cdots < n_N$ and $m_1 < \cdots < m_N$, TFAE:

Proof:

- (1) \implies (2): Obvious. (3) \implies (1): Akin to Sra (2016).
- (2) \iff (3): If $\mathbf{u} \in [1, \infty)^N_{\neq}$, then by preceding result: $\mathbf{m} \succ_w \mathbf{n}$.

Majorization via Vandermonde determinants

Theorem (K.-Tao, Amer. J. Math., 2021)

Given reals $n_1 < \cdots < n_N$ and $m_1 < \cdots < m_N$, TFAE:

Proof:

- (1) \implies (2): Obvious. (3) \implies (1): Akin to Sra (2016).
- (2) \iff (3): If $\mathbf{u} \in [1, \infty)^N_{\neq}$, then by preceding result: $\mathbf{m} \succ_w \mathbf{n}$. If $\mathbf{u} \in (0, 1]^N_{\neq}$, let $v_j := 1/u_j \ge 1$. Now compute:

$$\frac{\det(\mathbf{v}^{\circ(-\mathbf{m})})}{\det(\mathbf{v}^{\circ(-\mathbf{n})})} = \frac{\det(\mathbf{u}^{\circ\mathbf{m}})}{\det(\mathbf{u}^{\circ\mathbf{n}})} \ge \frac{V(\mathbf{m})}{V(\mathbf{n})} = \frac{V(-\mathbf{m})}{V(-\mathbf{n})}$$

By preceding result: $-\mathbf{m} \succ_w -\mathbf{n}$;

Majorization via Vandermonde determinants

Theorem (K.-Tao, Amer. J. Math., 2021)

Given reals $n_1 < \cdots < n_N$ and $m_1 < \cdots < m_N$, TFAE:

Proof:

- (1) \implies (2): Obvious. (3) \implies (1): Akin to Sra (2016).
- (2) \iff (3): If $\mathbf{u} \in [1, \infty)^N_{\neq}$, then by preceding result: $\mathbf{m} \succ_w \mathbf{n}$. If $\mathbf{u} \in (0, 1]^N_{\neq}$, let $v_j := 1/u_j \ge 1$. Now compute:

$$\frac{\det(\mathbf{v}^{\circ(-\mathbf{m})})}{\det(\mathbf{v}^{\circ(-\mathbf{n})})} = \frac{\det(\mathbf{u}^{\circ\mathbf{m}})}{\det(\mathbf{u}^{\circ\mathbf{n}})} \ge \frac{V(\mathbf{m})}{V(\mathbf{n})} = \frac{V(-\mathbf{m})}{V(-\mathbf{n})}$$

By preceding result: $-\mathbf{m} \succ_w -\mathbf{n}$; and $\mathbf{m} \succ_w \mathbf{n} \iff \mathbf{m}$ majorizes \mathbf{n} .

Majorization inequalities via symmetric functions Determinantal identities from smooth functions

Precursors to Cuttler-Greene-Skandera (and Sra, ...)

Instead of using Schur polynomials, what if one uses other symmetric functions?

$$\mathsf{C-G-S:}\ \frac{s_{\mathbf{m}}(u_1,\ldots,u_N)}{s_{\mathbf{m}}(1,\ldots,1)} \geqslant \frac{s_{\mathbf{n}}(u_1,\ldots,u_N)}{s_{\mathbf{n}}(1,\ldots,1)} \text{ on } (0,\infty)^N \iff \mathbf{m} \text{ majorizes } \mathbf{n}.$$

Precursors to Cuttler-Greene-Skandera (and Sra, ...)

Instead of using Schur polynomials, what if one uses other symmetric functions?

$$\mathsf{C-G-S:}\ \frac{s_{\mathbf{m}}(u_1,\ldots,u_N)}{s_{\mathbf{m}}(1,\ldots,1)} \geqslant \frac{s_{\mathbf{n}}(u_1,\ldots,u_N)}{s_{\mathbf{n}}(1,\ldots,1)} \text{ on } (0,\infty)^N \iff \mathbf{m} \text{ majorizes } \mathbf{n}.$$

Instead, if one uses the monomial symmetric polynomial

$$m_{\lambda}(u_1,\ldots,u_N) := \frac{|S_N \cdot \lambda|}{N!} \sum_{\sigma \in S_N} \prod_{j=1}^N u_j^{\lambda_{\sigma(j)}},$$

then:

Theorem (Muirhead, Proc. Edinburgh Math. Soc. 1903)

Fix scalars $0 \leq n_1 < \cdots < n_N$ and $0 \leq m_1 < \cdots < m_N$. Then

$$\frac{m_{\mathbf{m}}(\mathbf{u})}{m_{\mathbf{m}}(1,\ldots,1)} \ge \frac{m_{\mathbf{n}}(\mathbf{u})}{m_{\mathbf{n}}(1,\ldots,1)}, \qquad \forall \mathbf{u} \in (0,\infty)^{N}$$

if and only if \mathbf{m} majorizes \mathbf{n} .

Precursors to Cuttler-Greene-Skandera (and Sra, ...)

Instead of using Schur polynomials, what if one uses other symmetric functions?

$$\mathsf{C-G-S:}\ \frac{s_{\mathbf{m}}(u_1,\ldots,u_N)}{s_{\mathbf{m}}(1,\ldots,1)} \geqslant \frac{s_{\mathbf{n}}(u_1,\ldots,u_N)}{s_{\mathbf{n}}(1,\ldots,1)} \text{ on } (0,\infty)^N \iff \mathbf{m} \text{ majorizes } \mathbf{n}.$$

Instead, if one uses the monomial symmetric polynomial

$$m_{\lambda}(u_1,\ldots,u_N) := \frac{|S_N \cdot \lambda|}{N!} \sum_{\sigma \in S_N} \prod_{j=1}^N u_j^{\lambda_{\sigma(j)}},$$

then:

Theorem (Muirhead, Proc. Edinburgh Math. Soc. 1903)

Fix scalars $0 \leq n_1 < \cdots < n_N$ and $0 \leq m_1 < \cdots < m_N$. Then

$$\frac{m_{\mathbf{m}}(\mathbf{u})}{m_{\mathbf{m}}(1,\ldots,1)} \ge \frac{m_{\mathbf{n}}(\mathbf{u})}{m_{\mathbf{n}}(1,\ldots,1)}, \qquad \forall \mathbf{u} \in (0,\infty)^{N}$$

if and only if \mathbf{m} majorizes \mathbf{n} .

Question: What if one restricts to $\mathbf{u} \in [1, \infty)^N$?

Apoorva Khare, IISc Bangalore

Majorization inequalities via symmetric functions Determinantal identities from smooth functions

Precursors to Cuttler-Greene-Skandera (and Sra, ...) (cont.)

The C-G-S–Sra inequality (and its follow-up by K.–Tao) as well as Muirhead's inequality, are examples of *majorization inequalities*.

Other majorization inequalities have been shown by:

- Maclaurin (1729)
- Newton (1732)
- Schlömilch (1858)
- Schur (1920s?)
- Popoviciu (1934)
- Gantmacher (1959)

Majorization inequalities via symmetric functions Determinantal identities from smooth functions

Precursors to Cuttler-Greene-Skandera (and Sra, ...) (cont.)

The C-G-S–Sra inequality (and its follow-up by K.–Tao) as well as Muirhead's inequality, are examples of *majorization inequalities*.

Other majorization inequalities have been shown by:

- Maclaurin (1729)
- Newton (1732)
- Schlömilch (1858)
- Schur (1920s?)
- Popoviciu (1934)
- Gantmacher (1959)

Recent vast generalization by McSwiggen–Novak [*IMRN* 2022] to all Weyl groups $W \rightarrow W$ -majorization.

3. Symmetric function identities

In his 1967 letter to Josephine Mitchell, Loewner's approach was as follows:

- Suppose f[-] entrywise preserves positivity on $\mathbb{P}_N([0,\infty))$.
- Fix $\mathbf{u} = (u_1, \dots, u_N)^T$ with $u_i > 0$ pairwise distinct.
- Set Δ(t) := det f[tuu^T], and compute its first ^N₂ + 1 derivatives at 0:

In his 1967 letter to Josephine Mitchell, Loewner's approach was as follows:

- Suppose f[-] entrywise preserves positivity on $\mathbb{P}_N([0,\infty))$.
- Fix $\mathbf{u} = (u_1, \dots, u_N)^T$ with $u_i > 0$ pairwise distinct.
- Set $\Delta(t) := \det f[t\mathbf{u}\mathbf{u}^T]$, and compute its first $\binom{N}{2} + 1$ derivatives at 0:

$$\Delta(0) = \Delta'(0) = \dots = \Delta^{\binom{N}{2}-1}(0) = 0, \text{ and}$$
$$\frac{\Delta^{\binom{N}{2}}(0)}{\binom{N}{2}!} = V(\mathbf{u})^2 \cdot \mathbf{1}^2 \cdot \frac{f(0)}{0!} \frac{f'(0)}{1!} \cdots \frac{f^{\binom{N-1}{0}}(0)}{(N-1)!},$$

where $V(\mathbf{u}) = \prod_{i < j} (u_j - u_i)$ is the Vandermonde determinant.

In his 1967 letter to Josephine Mitchell, Loewner's approach was as follows:

- Suppose f[-] entrywise preserves positivity on $\mathbb{P}_N([0,\infty))$.
- Fix $\mathbf{u} = (u_1, \dots, u_N)^T$ with $u_i > 0$ pairwise distinct.
- Set $\Delta(t) := \det f[t\mathbf{u}\mathbf{u}^T]$, and compute its first $\binom{N}{2} + 1$ derivatives at 0:

$$\Delta(0) = \Delta'(0) = \dots = \Delta^{\binom{N}{2}-1}(0) = 0, \text{ and}$$
$$\frac{\Delta^{\binom{N}{2}}(0)}{\binom{N}{2}!} = V(\mathbf{u})^2 \cdot \mathbf{1}^2 \cdot \frac{f(0)}{0!} \frac{f'(0)}{1!} \cdots \frac{f^{\binom{N-1}{0}}(0)}{(N-1)!},$$

where $V(\mathbf{u}) = \prod_{i < j} (u_j - u_i)$ is the Vandermonde determinant.

(Loewner stopped here for his purposes, but:) What if Loewner had gone one step further?

In his 1967 letter to Josephine Mitchell, Loewner's approach was as follows:

- Suppose f[-] entrywise preserves positivity on $\mathbb{P}_N([0,\infty))$.
- Fix $\mathbf{u} = (u_1, \dots, u_N)^T$ with $u_i > 0$ pairwise distinct.
- Set $\Delta(t) := \det f[t\mathbf{u}\mathbf{u}^T]$, and compute its first $\binom{N}{2} + 1$ derivatives at 0:

$$\Delta(0) = \Delta'(0) = \dots = \Delta^{\binom{N}{2}-1}(0) = 0, \text{ and}$$
$$\frac{\Delta^{\binom{N}{2}}(0)}{\binom{N}{2}!} = V(\mathbf{u})^2 \cdot \mathbf{1}^2 \cdot \frac{f(0)}{0!} \frac{f'(0)}{1!} \cdots \frac{f^{\binom{N-1}{0}}(0)}{(N-1)!},$$

where $V(\mathbf{u}) = \prod_{i < j} (u_j - u_i)$ is the Vandermonde determinant.

(Loewner stopped here for his purposes, but:) What if Loewner had gone one step further?

$$\frac{\Delta^{(\binom{N}{2}+1)}(0)}{\binom{N}{2}+1!} = V(\mathbf{u})^2 \cdot \left(u_1 + \dots + u_N\right)^2 \cdot \frac{f(0)}{0!} \frac{f'(0)}{1!} \cdots \frac{f^{(N-2)}(0)}{(N-2)!} \cdot \frac{f^{(N)}(0)}{N!}$$

Hidden inside this derivative is a Schur polynomial!

Apoorva Khare, IISc Bangalore

From each smooth function to all Schur polynomials

This provides a novel bridge, between analysis and symmetric function theory:

Given $f : [0, \epsilon) \to \mathbb{R}$ smooth, and $u_1, \ldots, u_N > 0$ pairwise distinct (for $\epsilon > 0$ and $N \ge 1$), set $\Delta(t) := \det f[tuv^T]$ and compute $\Delta^{(M)}(0)$ for all integers $M \ge 0$.

From each smooth function to all Schur polynomials

This provides a novel bridge, between analysis and symmetric function theory: Given $f: [0, \epsilon) \to \mathbb{R}$ smooth, and $u_1, \ldots, u_N > 0$ pairwise distinct (for $\epsilon > 0$ and $N \ge 1$), set $\Delta(t) := \det f[t\mathbf{uv}^T]$ and compute $\Delta^{(M)}(0)$ for all integers $M \ge 0$.

Uncovers all Schur polynomials:

Theorem (K., Trans. Amer. Math. Soc. 2022) Suppose f, ϵ, N are as above. Fix $\mathbf{u}, \mathbf{v} \in (0, \infty)^N$ and set $\Delta(t) := \det f[t\mathbf{u}\mathbf{v}^T]$. Then for all $M \ge 0$, $\frac{\Delta^{(M)}(0)}{M!} = \sum_{\mathbf{n}=(n_N,...,n_1) \vdash M} V(\mathbf{u})V(\mathbf{v}) \cdot s_{\mathbf{n}}(\mathbf{u})s_{\mathbf{n}}(\mathbf{v}) \cdot \prod_{j=1}^N \frac{f^{(n_j)}(0)}{n_j!}.$

• All Schur polynomials "occur" inside each smooth function.

From each smooth function to all Schur polynomials

This provides a novel bridge, between analysis and symmetric function theory: Given $f: [0, \epsilon) \to \mathbb{R}$ smooth, and $u_1, \ldots, u_N > 0$ pairwise distinct (for $\epsilon > 0$ and $N \ge 1$), set $\Delta(t) := \det f[t\mathbf{uv}^T]$ and compute $\Delta^{(M)}(0)$ for all integers $M \ge 0$.

Uncovers all Schur polynomials:

Theorem (K., Trans. Amer. Math. Soc. 2022) Suppose f, ϵ, N are as above. Fix $\mathbf{u}, \mathbf{v} \in (0, \infty)^N$ and set $\Delta(t) := \det f[t\mathbf{u}\mathbf{v}^T]$. Then for all $M \ge 0$, $\Delta^{(M)}(0)$

$$\frac{\underline{\Delta}^{(n)}(\mathbf{0})}{M!} = \sum_{\mathbf{n}=(n_N,\dots,n_1) \vdash M} V(\mathbf{u})V(\mathbf{v}) \cdot s_{\mathbf{n}}(\mathbf{u})s_{\mathbf{n}}(\mathbf{v}) \cdot \prod_{j=1} \frac{f^{(n_j)}(\mathbf{0})}{n_j!}.$$

- All Schur polynomials "occur" inside each smooth function.
- If f is a power series, then so is Δ . What is its expansion? (Long history!)

Majorization inequalities via symmetric functions Determinantal identities from smooth functions

Going further back...to Cauchy and Frobenius, 1800s

Theorem (Cauchy, 1841 memoir)

If
$$f(t) = (1-t)^{-1} = 1 + t + t^2 + \dots = 1 \cdot t^0 + 1 \cdot t^1 + 1 \cdot t^2 + \dots$$
, then

$$\det f[\mathbf{u}\mathbf{v}^T] = \sum_{M \ge 0} \sum_{\mathbf{n} \vdash M} V(\mathbf{u}) V(\mathbf{v}) \cdot s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v}) \cdot 1^N.$$

Majorization inequalities via symmetric functions Determinantal identities from smooth functions

Going further back... to Cauchy and Frobenius, 1800s

Theorem (Cauchy, 1841 memoir)

If
$$f(t) = (1-t)^{-1} = 1 + t + t^2 + \dots = 1 \cdot t^0 + 1 \cdot t^1 + 1 \cdot t^2 + \dots$$
, then

$$\det f[\mathbf{u}\mathbf{v}^T] = \sum_{M \ge 0} \sum_{\mathbf{n} \vdash M} V(\mathbf{u}) V(\mathbf{v}) \cdot s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v}) \cdot 1^N.$$

This is the c = 0 special case of:

Theorem (Frobenius, J. reine Angew. Math. 1882)

If
$$f(t) = \frac{1-ct}{1-t}$$
 for a scalar c, then

$$\det f[\mathbf{u}\mathbf{v}^T] = \det \left(\frac{1-cu_iv_j}{1-u_iv_j}\right)_{i,j=1}^n$$

$$= V(\mathbf{u})V(\mathbf{v}) \left(\sum_{\mathbf{n}: n_1=0} s_{\mathbf{n}}(\mathbf{u})s_{\mathbf{n}}(\mathbf{v})(1-c)^{n-1} + \sum_{\mathbf{n}: n_1>0} s_{\mathbf{n}}(\mathbf{u})s_{\mathbf{n}}(\mathbf{v})(1-c)^n\right).$$

What is the expansion for a general power series f(t)?

Apoorva Khare, IISc Bangalore

Cauchy–Frobenius identity for all power series

Similar questions and follow-ups (on symmetric function identities) studied by

- Andrews-Goulden-Jackson [Trans. Amer. Math. Soc. 1988].
- Laksov–Lascoux–Thorup [Acta Math. 1989].
- Kuperberg [Ann. of Math. 2002].
- Ishikawa, Okado, and coauthors [Adv. Appl. Math. 2006, 2013].
- Also Krattenthaler, Advanced determinantal calculus: I, II in 1998, 2005.

Cauchy–Frobenius identity for all power series

Similar questions and follow-ups (on symmetric function identities) studied by

- Andrews-Goulden-Jackson [Trans. Amer. Math. Soc. 1988].
- Laksov–Lascoux–Thorup [Acta Math. 1989].
- Kuperberg [Ann. of Math. 2002].
- Ishikawa, Okado, and coauthors [Adv. Appl. Math. 2006, 2013].
- Also Krattenthaler, Advanced determinantal calculus: I, II in 1998, 2005.

Theorem (K., Trans. Amer. Math. Soc. 2022)

Fix a commutative unital ring R and let t be an indeterminate. Let $f(t) := \sum_{M \ge 0} f_M t^M \in R[[t]]$ be an arbitrary formal power series. Given vectors $\mathbf{u}, \mathbf{v} \in R^N$ for some $N \ge 1$, we have: $\det f[t\mathbf{u}\mathbf{v}^T] = V(\mathbf{u})V(\mathbf{v}) \sum_{M \ge \binom{N}{2}} t^M \sum_{\mathbf{n} = (n_N, ..., n_1) \vdash M} s_{\mathbf{n}}(\mathbf{u})s_{\mathbf{n}}(\mathbf{v}) \cdot \prod_{j=1}^N f_{n_j}.$

Cauchy–Frobenius identity for all power series

Similar questions and follow-ups (on symmetric function identities) studied by

- Andrews-Goulden-Jackson [Trans. Amer. Math. Soc. 1988].
- Laksov–Lascoux–Thorup [Acta Math. 1989].
- Kuperberg [Ann. of Math. 2002].
- Ishikawa, Okado, and coauthors [Adv. Appl. Math. 2006, 2013].
- Also Krattenthaler, Advanced determinantal calculus: I, II in 1998, 2005.

Theorem (K., Trans. Amer. Math. Soc. 2022)

Fix a commutative unital ring R and let t be an indeterminate. Let $f(t) := \sum_{M \ge 0} f_M t^M \in R[[t]]$ be an arbitrary formal power series. Given vectors $\mathbf{u}, \mathbf{v} \in R^N$ for some $N \ge 1$, we have: det $f[t\mathbf{u}\mathbf{v}^T] = V(\mathbf{u})V(\mathbf{v}) \sum_{M \ge {\binom{N}{2}}} t^M \sum_{\mathbf{n}=(n_N,...,n_1) \vdash M} s_{\mathbf{n}}(\mathbf{u})s_{\mathbf{n}}(\mathbf{v}) \cdot \prod_{j=1}^N f_{n_j}.$

With Sahi [*Eur. J. Comb.* 2023] – extended to bosonic+fermionic identities, (a) for *all immanants*, (b) over all rings, (c) for all power series.

Apoorva Khare, IISc Bangalore
References I: Entrywise positivity preservers

- I. Schur, J. reine Angew. Math., 1911.
 Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen.
- [2] I.J. Schoenberg, *Duke Math. J.*, 1942. Positive definite functions on spheres.
- W. Rudin, *Duke Math. J.*, **1959**.
 Positive definite sequences and absolutely monotonic functions.
- [4] J.P.R. Christensen and P. Ressel. *Trans. Amer. Math. Soc.*, 1978.
 Functions operating on positive definite matrices and a theorem of Schoenberg.
- [5] A. Belton, D. Guillot, A. Khare, and M. Putinar. Adv. in Math., 2016. Matrix positivity preservers in fixed dimension. I.
- [6] A. Khare and T. Tao. *Amer. J. Math.*, 2021. On the sign patterns of entrywise positivity preservers in fixed dimension.
- [7] A. Belton, D. Guillot, A. Khare, and M. Putinar. J. Eur. Math. Soc., 2022. Moment-sequence transforms.
- [8] A. Khare. Cambridge University Press / TRIM, 2022.
 Matrix analysis and entrywise positivity preservers (book, ~300 pp.) + lecture notes on website.

References II: Majorization inequalities

[1] C. Maclaurin. Philos. Trans., 1729.

A second letter to Martin Foulkes, Esq., concerning the roots of equations with the demonstrations of other rules in algebra.

[2] I. Newton. *Memoir*, **1732**.

Arithmetica universalis: sive de compositione et resolutione arithmetica liber.

- [3] O. Schlömilch. Z. Math. Phys., 1858.
 Über Mittel grössen verschiedener Ordnung.
- [4] R.F. Muirhead. *Proc. Edinburgh Math. Soc.*, **1903**.
 Some methods applicable to identities of symmetric algebraic functions of n letters.
- [5] A. Cuttler, C. Greene, and M. Skandera. *Eur. J. Combin.*, 2011. Inequalities for symmetric means.
- [6] S. Sra. *Eur. J. Combin.*, 2016. On inequalities for normalized Schur functions.
- [7] A. Khare and T. Tao. *Amer. J. Math.*, 2021.
 On the sign patterns of entrywise positivity preservers in fixed dimension.
- [8] C. McSwiggen and J. Novak. Int. Res. Math. Not. IMRN, 2022. Majorization and spherical functions.

References III: Symmetric function identities

- A.-L. Cauchy. *Memoir*, 1841. Mémoire sur les fonctions alternées et sur les sommes alternées.
- F.G. Frobenius. J. reine Angew. Math., 1882.
 Über die elliptischen Funktionen zweiter Art.
- C. Loewner. Letter to J. Mitchell, 1967.
 (Published+attributed in paper by R.A. Horn, in Trans. Amer. Math. Soc., 1969.)
- [4] G.E. Andrews, I.P. Goulden, and D.M. Jackson. *Trans. Amer. Math. Soc.*, 1988. Generalizations of Cauchy's summation theorem for Schur functions.
- [5] D. Laksov, A. Lascoux, and A. Thorup. Acta Math., 1989. On Giambelli's theorem for complete correlations.
- [6] G. Kuperberg. Ann. of Math., 2002. Symmetry classes of alternating-sign matrices under one roof.
- H. Rosengren and M. Schlosser. *Compos. Math.*, 2006.
 Elliptic determinant evaluations and Macdonald identities for affine root systems.
- [8] A. Khare. *Trans. Amer. Math. Soc.*, 2022.
 Smooth entrywise positivity preservers, a Horn–Loewner master theorem, and symmetric function identities.
- [9] A. Khare and S. Sahi. *Eur. J. Comb.*, 2023.
 From Cauchy's determinant formula to bosonic/fermionic immanant identities.

Apoorva Khare, IISc Bangalore

Thank you for your attention.

