Analysis applications of Schur polynomials

ILAS Invited Address
2023 Joint Math Meetings

Apoorva Khare
IISc and APRG (Bangalore, India)

1. Entrywise positivity preservers and Schur polynomials

Introduction

Positivity (and preserving it) studied in many settings in the literature.

Different flavors of positivity:

- \mathbb{P}_{N} : Positive semidefinite $N \times N$ (real symmetric) matrices:

$$
u^{T} A u \geqslant 0, \quad \forall u \in \mathbb{R}^{N}
$$

- Positive definite sequences/Toeplitz matrices
- Hilbert space kernels
- Positive definite functions on metric spaces, topological (semi)groups

Introduction

Positivity (and preserving it) studied in many settings in the literature.
Different flavors of positivity:

- \mathbb{P}_{N} : Positive semidefinite $N \times N$ (real symmetric) matrices:

$$
u^{T} A u \geqslant 0, \quad \forall u \in \mathbb{R}^{N}
$$

- Positive definite sequences/Toeplitz matrices
- Hilbert space kernels
- Positive definite functions on metric spaces, topological (semi)groups

Question: Classify the positivity preservers in these settings. Studied for the better part of a century.

Some contributors to entrywise functions

Entrywise functions preserving positivity

Definition: Given $N \geqslant 1$ and $I \subseteq \mathbb{R}$, let $\mathbb{P}_{N}(I)$ denote the $N \times N$ positive (semidefinite) matrices, with entries in $I .\left(\right.$ Say $\mathbb{P}_{N}=\mathbb{P}_{N}(\mathbb{R})$.)

Problem: For which functions $f: I \rightarrow \mathbb{R}$ is it true that

$$
f[A]:=\left(f\left(a_{i j}\right)\right) \in \mathbb{P}_{N} \text { for all } A \in \mathbb{P}_{N}(I) ?
$$

Entrywise functions preserving positivity

Definition: Given $N \geqslant 1$ and $I \subseteq \mathbb{R}$, let $\mathbb{P}_{N}(I)$ denote the $N \times N$ positive (semidefinite) matrices, with entries in I. (Say $\left.\mathbb{P}_{N}=\mathbb{P}_{N}(\mathbb{R}).\right)$

Problem: For which functions $f: I \rightarrow \mathbb{R}$ is it true that

$$
f[A]:=\left(f\left(a_{i j}\right)\right) \in \mathbb{P}_{N} \text { for all } A \in \mathbb{P}_{N}(I) ?
$$

- (Long history!) The Schur Product Theorem [Schur, Crelle 1911] says: If $A, B \in \mathbb{P}_{N}$, then so is $A \circ B:=\left(a_{i j} b_{i j}\right)$.
- As a consequence, $f(x)=x^{k}(k \geqslant 0)$ preserves positivity on \mathbb{P}_{N} for all N.

Entrywise functions preserving positivity

Definition: Given $N \geqslant 1$ and $I \subseteq \mathbb{R}$, let $\mathbb{P}_{N}(I)$ denote the $N \times N$ positive (semidefinite) matrices, with entries in I. (Say $\left.\mathbb{P}_{N}=\mathbb{P}_{N}(\mathbb{R}).\right)$

Problem: For which functions $f: I \rightarrow \mathbb{R}$ is it true that

$$
f[A]:=\left(f\left(a_{i j}\right)\right) \in \mathbb{P}_{N} \text { for all } A \in \mathbb{P}_{N}(I) ?
$$

- (Long history!) The Schur Product Theorem [Schur, Crelle 1911] says: If $A, B \in \mathbb{P}_{N}$, then so is $A \circ B:=\left(a_{i j} b_{i j}\right)$.
- As a consequence, $f(x)=x^{k}(k \geqslant 0)$ preserves positivity on \mathbb{P}_{N} for all N.
- (Pólya-Szegö, 1925): Taking sums and limits, if $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ is convergent and $c_{k} \geqslant 0$, then $f[-]$ preserves positivity.

Question: Anything else?

Schoenberg's theorem

Surprisingly, the answer is no, if $f[-]$ preserves positivity in all dimensions:

Theorem (Schoenberg, Duke Math. J. 1942)

Say $I=[-1,1]$ and $f: I \rightarrow \mathbb{R}$ is continuous. The following are equivalent:
(1) $f[A] \in \mathbb{P}_{N}$ for all $A \in \mathbb{P}_{N}(I)$ and all N.
(2) f is analytic on I and has nonnegative Taylor coefficients. In other words, $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ on $[-1,1]$ with all $c_{k} \geqslant 0$.

This continuity assumption was since removed,

Schoenberg's theorem

Surprisingly, the answer is no, if $f[-]$ preserves positivity in all dimensions:

Theorem (Schoenberg, Duke Math. J. 1942)

Say $I=[-1,1]$ and $f: I \rightarrow \mathbb{R}$ is continuous. The following are equivalent:
(1) $f[A] \in \mathbb{P}_{N}$ for all $A \in \mathbb{P}_{N}(I)$ and all N.
(2) f is analytic on I and has nonnegative Taylor coefficients.

In other words, $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ on $[-1,1]$ with all $c_{k} \geqslant 0$.

This continuity assumption was since removed, and the test set $\bigcup_{N \geqslant 1} \mathbb{P}_{N}(I)$ was greatly reduced, drawing from Fourier analysis and moment-problems:

Theorem (Rudin (Duke 1959); Belton-Guillot-K.-Putinar (JEMS 2022))

Suppose $0<\rho \leqslant \infty$. If $f[-]$ preserves positivity on all Toeplitz (resp. Hankel) matrices of rank $\leqslant 3$ with entries in $I=(-\rho, \rho)$, then $f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ with all $c_{k} \geqslant 0$.

Entrywise positivity preservers in fixed dimension

Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

Entrywise positivity preservers in fixed dimension

Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

- Known for $N=2$ (Vasudeva, IJPAM 1979):

$$
f \text { is nondecreasing and } f(x) f(y) \geqslant f(\sqrt{x y})^{2} \text { on }(0, \infty) .
$$

Entrywise positivity preservers in fixed dimension

Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

- Known for $N=2$ (Vasudeva, IJPAM 1979):

$$
f \text { is nondecreasing and } f(x) f(y) \geqslant f(\sqrt{x y})^{2} \text { on }(0, \infty) .
$$

- Open for $N \geqslant 3$.

Entrywise positivity preservers in fixed dimension

Preserving positivity for fixed N :

- Natural refinement of original problem of Schoenberg.
- In applications: dimension of the problem is known.

Unnecessarily restrictive to preserve positivity in all dimensions.

- Known for $N=2$ (Vasudeva, IJPAM 1979):

$$
f \text { is nondecreasing and } f(x) f(y) \geqslant f(\sqrt{x y})^{2} \text { on }(0, \infty) .
$$

- Open for $N \geqslant 3$.

What is known in fixed dimension?
Essentially the only result is a necessary condition, by C. Loewner (in the PhD thesis of his student Roger A. Horn, in Trans. AMS 1969).
Loewner had initially summarized these computations in a letter to Josephine Mitchell (Penn. State) in 1967:

Loewner's computations

$$
\text { Te fut ther tern intle Tuglar exparion of } \Delta\left(e_{0}\right) \text { at } c=0
$$

$$
\text { is } f(\alpha) f^{\prime}(\mu)-f^{(r)}(\alpha) \cdot\left(\Pi\left(\alpha_{1}-\alpha_{\beta}\right)\right)^{2} \text { and hence }
$$

$$
\begin{aligned}
& f(n) f(n)-f^{(n-1)}(\alpha) \geq 0 \text {, frow where owe eavily } \\
& \text { desives that }(C) \text { maxthold. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { wheu I got interestedin the folloming question: Let } f(x) \text { be a furuction } \\
& \text { defined in oonuinterxal }(a, b), a \geq 0 \text { and consiter all reol og-meretaic } \\
& \text { nuatrics }\left(a_{i j}\right)>0 \text { of arder a rill elenvents } a_{i j} \in(a, b) \text {. Which } \\
& \text { properties must for fove incirder (hoet the vuabicer }\left(f\left(o_{i}\right)\right)>0 \text {. } \\
& \text { I found as recenary conditions. } f(t)=30, f(t) \text { that if is } \\
& (m-1) \text { tinues differeutiable the folloming coudilicus are } \\
& \text { necenctry } \\
& \text { (C) } f(t) \geq 0, f^{\prime}(t) \geq 0, \ldots f^{(n-1)}(t) \geq 0 \\
& \text { The function } t \rho(\rho>1) \text { do unt oulisfy these canditioner for } \\
& \text { allg> if } x>3 \text {. } \\
& \text { The proof } \rightarrow \text { oftained by considering valivices of the }
\end{aligned}
$$

Special case: Polynomials

Following Schoenberg (1942) and Rudin (1959), suppose

$$
f(t)=\sum_{j=1}^{N} c_{j} t^{j-1}+c^{\prime} t^{M}, \quad c_{j} \in \mathbb{R}, M \geqslant N
$$

entrywise preserves positivity on \mathbb{P}_{N}.

- By Loewner's result, $c_{1}, \ldots, c_{N} \geqslant 0$.

Special case: Polynomials

Following Schoenberg (1942) and Rudin (1959), suppose

$$
f(t)=\sum_{j=1}^{N} c_{j} t^{j-1}+c^{\prime} t^{M}, \quad c_{j} \in \mathbb{R}, M \geqslant N
$$

entrywise preserves positivity on \mathbb{P}_{N}.

- By Loewner's result, $c_{1}, \ldots, c_{N} \geqslant 0$.

Q1: Can c^{\prime} be negative? Sharp bound?

(Not a single example known, until very recently.)

Special case: Polynomials

Following Schoenberg (1942) and Rudin (1959), suppose

$$
f(t)=\sum_{j=1}^{N} c_{j} t^{j-1}+c^{\prime} t^{M}, \quad c_{j} \in \mathbb{R}, M \geqslant N
$$

entrywise preserves positivity on \mathbb{P}_{N}.

- By Loewner's result, $c_{1}, \ldots, c_{N} \geqslant 0$.

Q1: Can c^{\prime} be negative? Sharp bound?

 (Not a single example known, until very recently.)More generally, the first N nonzero Maclaurin coefficients must be positive. Q2: Can the next one be negative?

Polynomials preserving positivity in fixed dimension

Theorem (K.-Tao, Amer. J. Math. 2021)

Fix $\rho>0$ and integers $0 \leqslant n_{1}<\cdots<n_{N}<M$, and let

$$
f(t)=\sum_{j=1}^{N} c_{j} t^{n_{j}}+c^{\prime} t^{M}
$$

be a polynomial with real coefficients. The following are equivalent.

Polynomials preserving positivity in fixed dimension

Theorem (K.-Tao, Amer. J. Math. 2021)

Fix $\rho>0$ and integers $0 \leqslant n_{1}<\cdots<n_{N}<M$, and let

$$
f(t)=\sum_{j=1}^{N} c_{j} t^{n_{j}}+c^{\prime} t^{M}
$$

be a polynomial with real coefficients. The following are equivalent.
(1) $f[-]$ preserves positivity on $\mathbb{P}_{N}((0, \rho))$.
(2) The coefficients c_{j} satisfy either $c_{1}, \ldots, c_{N}, c^{\prime} \geqslant 0$,

Polynomials preserving positivity in fixed dimension

Theorem (K.-Tao, Amer. J. Math. 2021)

Fix $\rho>0$ and integers $0 \leqslant n_{1}<\cdots<n_{N}<M$, and let

$$
f(t)=\sum_{j=1}^{N} c_{j} t^{n_{j}}+c^{\prime} t^{M}
$$

be a polynomial with real coefficients. The following are equivalent.
(1) $f[-]$ preserves positivity on $\mathbb{P}_{N}((0, \rho))$.
(2) The coefficients c_{j} satisfy either $c_{1}, \ldots, c_{N}, c^{\prime} \geqslant 0$, or $c_{1}, \ldots, c_{N}>0$ and $c^{\prime} \geqslant-\mathcal{C}^{-1}$, where

$$
\mathcal{C}:=\sum_{j=1}^{N} \frac{\rho^{M-n_{j}}}{c_{j}} \prod_{i=1, i \neq j}^{N} \frac{\left(M-n_{i}\right)^{2}}{\left(n_{j}-n_{i}\right)^{2}} .
$$

Polynomials preserving positivity in fixed dimension

Theorem (K.-Tao, Amer. J. Math. 2021)

Fix $\rho>0$ and integers $0 \leqslant n_{1}<\cdots<n_{N}<M$, and let

$$
f(t)=\sum_{j=1}^{N} c_{j} t^{n_{j}}+c^{\prime} t^{M}
$$

be a polynomial with real coefficients. The following are equivalent.
(1) $f[-]$ preserves positivity on $\mathbb{P}_{N}((0, \rho))$.
(2) The coefficients c_{j} satisfy either $c_{1}, \ldots, c_{N}, c^{\prime} \geqslant 0$, or $c_{1}, \ldots, c_{N}>0$ and $c^{\prime} \geqslant-\mathcal{C}^{-1}$, where

$$
\mathcal{C}:=\sum_{j=1}^{N} \frac{\rho^{M-n_{j}}}{c_{j}} \prod_{i=1, i \neq j}^{N} \frac{\left(M-n_{i}\right)^{2}}{\left(n_{j}-n_{i}\right)^{2}} .
$$

(3) $f[-]$ preserves positivity on rank-one Hankel matrices in $\mathbb{P}_{N}((0, \rho))$.

Polynomials preserving positivity in fixed dimension

Theorem (K.-Tao, Amer. J. Math. 2021)

Fix $\rho>0$ and integers $0 \leqslant n_{1}<\cdots<n_{N}<M$, and let

$$
f(t)=\sum_{j=1}^{N} c_{j} t^{n_{j}}+c^{\prime} t^{M}
$$

be a polynomial with real coefficients. The following are equivalent.
(1) $f[-]$ preserves positivity on $\mathbb{P}_{N}((0, \rho))$.
(2) The coefficients c_{j} satisfy either $c_{1}, \ldots, c_{N}, c^{\prime} \geqslant 0$, or $c_{1}, \ldots, c_{N}>0$ and $c^{\prime} \geqslant-\mathcal{C}^{-1}$, where

$$
\mathcal{C}:=\sum_{j=1}^{N} \frac{\rho^{M-n_{j}}}{c_{j}} \prod_{i=1, i \neq j}^{N} \frac{\left(M-n_{i}\right)^{2}}{\left(n_{j}-n_{i}\right)^{2}}
$$

(3) $f[-]$ preserves positivity on rank-one Hankel matrices in $\mathbb{P}_{N}((0, \rho))$.

- This holds even if n_{j}, M are not integers.
- "Baby case (Q1)": Belton-Guillot-K.-Putinar in [Adv. Math. 2016].

How does the number $\left(\prod_{i=1, i \neq j}^{N} \frac{\left(M-n_{i}\right)}{\left(n_{j}-n_{i}\right)}\right)^{2}$ occur in this?

How does the number $\left(\prod_{i=1, i \neq j}^{N} \frac{\left(M-n_{i}\right)}{\left(n_{j}-n_{i}\right)}\right)^{2}$ occur in this?

- Essentially, the Weyl dimension formula in representation theory - or the principal specialization formula for Schur polynomials.
- Schur polynomials (algebraic characters) - now treated as functions on the positive orthant $(0, \infty)^{N}$ - are the key tool used to prove the theorem.

Schur polynomials

Given an increasing N-tuple of integers $0 \leqslant n_{1}<\cdots<n_{N}$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^{N} of

$$
s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right):=\frac{\operatorname{det}\left(u_{i}^{n_{j}}\right)_{i, j=1}^{N}}{\operatorname{det}\left(u_{i}^{j-1}\right)}=\frac{\operatorname{det}\left(u_{i}^{n_{j}}\right)_{i, j=1}^{N}}{V(\mathbf{u})}
$$

for pairwise distinct $u_{i} \in \mathbb{F}$.

Schur polynomials

Given an increasing N-tuple of integers $0 \leqslant n_{1}<\cdots<n_{N}$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^{N} of

$$
s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right):=\frac{\operatorname{det}\left(u_{i}^{n_{j}}\right)_{i, j=1}^{N}}{\operatorname{det}\left(u_{i}^{j-1}\right)}=\frac{\operatorname{det}\left(u_{i}^{n_{j}}\right)_{i, j=1}^{N}}{V(\mathbf{u})}
$$

for pairwise distinct $u_{i} \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$
V\left(\left(u_{1}, \ldots, u_{N}\right)\right):=\operatorname{det}\left(u_{i}^{j-1}\right)=\prod_{1 \leqslant i<j \leqslant N}\left(u_{j}-u_{i}\right) .
$$

Schur polynomials

Given an increasing N-tuple of integers $0 \leqslant n_{1}<\cdots<n_{N}$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^{N} of

$$
s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right):=\frac{\operatorname{det}\left(u_{i}^{n_{j}}\right)_{i, j=1}^{N}}{\operatorname{det}\left(u_{i}^{j-1}\right)}=\frac{\operatorname{det}\left(u_{i}^{n_{j}}\right)_{i, j=1}^{N}}{V(\mathbf{u})}
$$

for pairwise distinct $u_{i} \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$
V\left(\left(u_{1}, \ldots, u_{N}\right)\right):=\operatorname{det}\left(u_{i}^{j-1}\right)=\prod_{1 \leqslant i<j \leqslant N}\left(u_{j}-u_{i}\right) .
$$

- Basis of homogeneous symmetric polynomials in u_{1}, \ldots, u_{N}.
- Characters of irreducible polynomial representations of $G L_{N}(\mathbb{C})$, usually defined in terms of semi-standard Young tableaux.

Schur polynomials

Given an increasing N-tuple of integers $0 \leqslant n_{1}<\cdots<n_{N}$, the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^{N} of

$$
s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right):=\frac{\operatorname{det}\left(u_{i}^{n_{j}}\right)_{i, j=1}^{N}}{\operatorname{det}\left(u_{i}^{j-1}\right)}=\frac{\operatorname{det}\left(u_{i}^{n_{j}}\right)_{i, j=1}^{N}}{V(\mathbf{u})}
$$

for pairwise distinct $u_{i} \in \mathbb{F}$. Note that the denominator is precisely the Vandermonde determinant

$$
V\left(\left(u_{1}, \ldots, u_{N}\right)\right):=\operatorname{det}\left(u_{i}^{j-1}\right)=\prod_{1 \leqslant i<j \leqslant N}\left(u_{j}-u_{i}\right) .
$$

- Basis of homogeneous symmetric polynomials in u_{1}, \ldots, u_{N}.
- Characters of irreducible polynomial representations of $G L_{N}(\mathbb{C})$, usually defined in terms of semi-standard Young tableaux.
- Weyl Character (Dimension) Formula in Type A:

$$
s_{\mathbf{n}}(1, \ldots, 1)=\prod_{1 \leqslant i<j \leqslant N} \frac{n_{j}-n_{i}}{j-i}=\frac{V(\mathbf{n})}{V((0,1, \ldots, N-1))}
$$

Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose $N=3$ and $\mathbf{m}:=(0,2,4)$. The tableaux are:

3	3
2	

3	1
2	

3	1
1	

2	2
1	

2	1
1	

Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose $N=3$ and $\mathbf{m}:=(0,2,4)$. The tableaux are:

3	3
2	

3	1
2	

3	1
1	

2	2
1	

2	1
1	

$$
\begin{aligned}
& s(0,2,4)\left(u_{1}, u_{2}, u_{3}\right) \\
= & u_{3}^{2} u_{2}+u_{3}^{2} u_{1}+u_{3} u_{2}^{2}+2 u_{3} u_{2} u_{1}+u_{3} u_{1}^{2}+u_{2}^{2} u_{1}+u_{2} u_{1}^{2} \\
= & \left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)
\end{aligned}
$$

Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose $N=3$ and $\mathbf{m}:=(0,2,4)$. The tableaux are:

3	3
2	

2	2
1	

2	1
1	

$$
\begin{aligned}
& s_{(0,2,4)}\left(u_{1}, u_{2}, u_{3}\right) \\
= & u_{3}^{2} u_{2}+u_{3}^{2} u_{1}+u_{3} u_{2}^{2}+2 u_{3} u_{2} u_{1}+u_{3} u_{1}^{2}+u_{2}^{2} u_{1}+u_{2} u_{1}^{2} \\
= & \left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)
\end{aligned}
$$

Example 2: Suppose $N=3$ and $\mathbf{n}=(0,2,3)$:

Then $s_{(0,2,3)}\left(u_{1}, u_{2}, u_{3}\right)=u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}$.

Schur polynomials via semi-standard Young tableaux

Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose $N=3$ and $\mathbf{m}:=(0,2,4)$. The tableaux are:

3	3
2	

2	2
1	

2	1
1	

$$
\begin{aligned}
& s_{(0,2,4)}\left(u_{1}, u_{2}, u_{3}\right) \\
= & u_{3}^{2} u_{2}+u_{3}^{2} u_{1}+u_{3} u_{2}^{2}+2 u_{3} u_{2} u_{1}+u_{3} u_{1}^{2}+u_{2}^{2} u_{1}+u_{2} u_{1}^{2} \\
= & \left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)
\end{aligned}
$$

Example 2: Suppose $N=3$ and $\mathbf{n}=(0,2,3)$:

3
2
:---
1
:---

Then $s_{(0,2,3)}\left(u_{1}, u_{2}, u_{3}\right)=u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}$.
Note: Both polynomials are coordinate-wise non-decreasing on $(0, \infty)^{N}$.

Schur Monotonicity Lemma

Example: The ratio $s_{\mathbf{m}}(\mathbf{u}) / s_{\mathbf{n}}(\mathbf{u})$ for $\mathbf{m}=(0,2,4), \mathbf{n}=(0,2,3)$ is:

$$
f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}, \quad u_{1}, u_{2}, u_{3}>0
$$

Note: both numerator and denominator are monomial-positive (in fact Schur-positive, obviously) - hence non-decreasing in each coordinate.

Fact: Their ratio $f(\mathbf{u})$ has the same property!

Schur Monotonicity Lemma

Example: The ratio $s_{\mathbf{m}}(\mathbf{u}) / s_{\mathbf{n}}(\mathbf{u})$ for $\mathbf{m}=(0,2,4), \mathbf{n}=(0,2,3)$ is:

$$
f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}, \quad u_{1}, u_{2}, u_{3}>0
$$

Note: both numerator and denominator are monomial-positive (in fact Schur-positive, obviously) - hence non-decreasing in each coordinate.

Fact: Their ratio $f(\mathbf{u})$ has the same property!

Theorem (K.-Tao, Amer. J. Math., 2021)

For integer tuples $0 \leqslant n_{1}<\cdots<n_{N}$ and $0 \leqslant m_{1}<\cdots<m_{N}$ such that $n_{j} \leqslant m_{j} \forall j$, the function

$$
f:(0, \infty)^{N} \rightarrow \mathbb{R}, \quad f(\mathbf{u}):=\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})}
$$

is non-decreasing in each coordinate.
(In fact, a stronger Schur positivity phenomenon holds.)

Schur Monotonicity Lemma (cont.)

Claim: The ratio $f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}$,
treated as a function on the orthant $(0, \infty)^{3}$, is coordinate-wise non-decreasing.

Schur Monotonicity Lemma (cont.)

Claim: The ratio $f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}$,
treated as a function on the orthant $(0, \infty)^{3}$, is coordinate-wise non-decreasing.
(Why?) Applying the quotient rule of differentiation to f,

$$
s_{\mathbf{n}}(\mathbf{u}) \partial_{u_{3}} s_{\mathbf{m}}(\mathbf{u})-s_{\mathbf{m}}(\mathbf{u}) \partial_{u_{3}} s_{\mathbf{n}}(\mathbf{u})=\left(u_{1}+u_{2}\right)\left(u_{1} u_{3}+2 u_{1} u_{2}+u_{2} u_{3}\right) u_{3}
$$

and this is monomial-positive (hence numerically positive).

Schur Monotonicity Lemma (cont.)

Claim: The ratio $f\left(u_{1}, u_{2}, u_{3}\right)=\frac{\left(u_{1}+u_{2}\right)\left(u_{2}+u_{3}\right)\left(u_{3}+u_{1}\right)}{u_{1} u_{2}+u_{2} u_{3}+u_{3} u_{1}}$,
treated as a function on the orthant $(0, \infty)^{3}$, is coordinate-wise non-decreasing.
(Why?) Applying the quotient rule of differentiation to f,

$$
s_{\mathbf{n}}(\mathbf{u}) \partial_{u_{3}} s_{\mathbf{m}}(\mathbf{u})-s_{\mathbf{m}}(\mathbf{u}) \partial_{u_{3}} s_{\mathbf{n}}(\mathbf{u})=\left(u_{1}+u_{2}\right)\left(u_{1} u_{3}+2 u_{1} u_{2}+u_{2} u_{3}\right) u_{3}
$$ and this is monomial-positive (hence numerically positive).

In fact, upon writing this as $\sum_{j \geqslant 0} p_{j}\left(u_{1}, u_{2}\right) u_{3}^{j}$, each p_{j} is Schur-positive, i.e. a sum of Schur polynomials:

$$
\begin{aligned}
p_{0}\left(u_{1}, u_{2}\right) & =0 \\
p_{1}\left(u_{1}, u_{2}\right) & =2 u_{1} u_{2}^{2}+2 u_{1}^{2} u_{2}=2 \begin{array}{|c|c}
\hline 2 & 2 \\
\hline 1 \\
\hline
\end{array}+2 \begin{array}{|c|c|}
\hline 2 & 1 \\
\hline 1 & =2 s_{(1,3)}\left(u_{1}, u_{2}\right) \\
p_{2}\left(u_{1}, u_{2}\right) & =\left(u_{1}+u_{2}\right)^{2}=\begin{array}{|l|l|}
\hline 2 & 2 \\
\hline
\end{array}+\begin{array}{|c|c|}
\hline 2 & 1 \\
\hline
\end{array} \\
& =s_{(0,3)}\left(u_{1}, u_{2}\right)+s_{(1,2)}\left(u_{1}, u_{2}\right)
\end{array}
\end{aligned}
$$

Proof-sketch of Schur Monotonicity Lemma

The proof for general $\mathbf{m} \geqslant \mathbf{n}$ is similar:
By symmetry, and the quotient rule of differentiation, it suffices to show that

$$
s_{\mathbf{n}} \cdot \partial_{u_{N}}\left(s_{\mathbf{m}}\right)-s_{\mathbf{m}} \cdot \partial_{u_{N}}\left(s_{\mathbf{n}}\right)
$$

is numerically positive on $(0, \infty)^{N}$. (Note, the coefficients in $s_{\mathbf{n}}(\mathbf{u})$ of each u_{N}^{j} are skew-Schur polynomials in u_{1}, \ldots, u_{N-1}.)

Proof-sketch of Schur Monotonicity Lemma

The proof for general $\mathbf{m} \geqslant \mathbf{n}$ is similar:
By symmetry, and the quotient rule of differentiation, it suffices to show that

$$
s_{\mathbf{n}} \cdot \partial_{u_{N}}\left(s_{\mathbf{m}}\right)-s_{\mathbf{m}} \cdot \partial_{u_{N}}\left(s_{\mathbf{n}}\right)
$$

is numerically positive on $(0, \infty)^{N}$. (Note, the coefficients in $s_{\mathbf{n}}(\mathbf{u})$ of each u_{N}^{j} are skew-Schur polynomials in u_{1}, \ldots, u_{N-1}.)

The assertion would follow if this expression is monomial-positive.

Proof-sketch of Schur Monotonicity Lemma

The proof for general $\mathbf{m} \geqslant \mathbf{n}$ is similar:
By symmetry, and the quotient rule of differentiation, it suffices to show that

$$
s_{\mathbf{n}} \cdot \partial_{u_{N}}\left(s_{\mathbf{m}}\right)-s_{\mathbf{m}} \cdot \partial_{u_{N}}\left(s_{\mathbf{n}}\right)
$$

is numerically positive on $(0, \infty)^{N}$. (Note, the coefficients in $s_{\mathbf{n}}(\mathbf{u})$ of each u_{N}^{j} are skew-Schur polynomials in u_{1}, \ldots, u_{N-1}.)

The assertion would follow if this expression is monomial-positive.

Our Schur Monotonicity Lemma in fact shows that the coefficient of each u_{N}^{j} is (also) Schur-positive.
Patrias-van Willigenburg [J. Combin., 2020], following F. Bergeron and Reiner: This is relatively rare (conditional probability related to 1 /Kostka numbers.)

Proof-sketch of Schur Monotonicity Lemma

The proof for general $\mathbf{m} \geqslant \mathbf{n}$ is similar:
By symmetry, and the quotient rule of differentiation, it suffices to show that

$$
s_{\mathbf{n}} \cdot \partial_{u_{N}}\left(s_{\mathbf{m}}\right)-s_{\mathbf{m}} \cdot \partial_{u_{N}}\left(s_{\mathbf{n}}\right)
$$

is numerically positive on $(0, \infty)^{N}$. (Note, the coefficients in $s_{\mathbf{n}}(\mathbf{u})$ of each u_{N}^{j} are skew-Schur polynomials in u_{1}, \ldots, u_{N-1}.)

The assertion would follow if this expression is monomial-positive.

Our Schur Monotonicity Lemma in fact shows that the coefficient of each u_{N}^{j} is (also) Schur-positive.
Patrias-van Willigenburg [J. Combin., 2020], following F. Bergeron and Reiner: This is relatively rare (conditional probability related to 1 /Kostka numbers.)

Key ingredient: Schur-positivity result by Lam-Postnikov-Pylyavskyy [Amer. J. Math. 2007].

2. (Weak) Majorization inequalities

Weak majorization through Schur polynomials

- Our Schur Monotonicity Lemma implies in particular:

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}=\frac{V(\mathbf{m})}{V(\mathbf{n})}, \quad \forall \mathbf{u} \in[1, \infty)^{N}
$$

if \mathbf{m} dominates \mathbf{n} coordinate-wise.

- "Natural" to ask: for which other tuples \mathbf{m}, \mathbf{n} does this inequality hold?

Weak majorization through Schur polynomials

- Our Schur Monotonicity Lemma implies in particular:

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}=\frac{V(\mathbf{m})}{V(\mathbf{n})}, \quad \forall \mathbf{u} \in[1, \infty)^{N}
$$

if \mathbf{m} dominates \mathbf{n} coordinate-wise.

- "Natural" to ask: for which other tuples \mathbf{m}, \mathbf{n} does this inequality hold?

Now extended to real tuples (generalized Vandermonde determinants):

Theorem (K.-Tao, Amer. J. Math., 2021)

Given reals $n_{1}<\cdots<n_{N}$ and $m_{1}<\cdots<m_{N}$, TFAE:
(1) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct-coordinate" tuples $\mathbf{u} \in[1, \infty)_{\neq}^{N}$.
(2) \mathbf{m} weakly majorizes \mathbf{n}-i.e., $m_{N}+\cdots+m_{j} \geqslant n_{N}+\cdots+n_{j} \forall j$.

Weak majorization through Schur polynomials

- Our Schur Monotonicity Lemma implies in particular:

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}=\frac{V(\mathbf{m})}{V(\mathbf{n})}, \quad \forall \mathbf{u} \in[1, \infty)^{N}
$$

if \mathbf{m} dominates \mathbf{n} coordinate-wise.

- "Natural" to ask: for which other tuples \mathbf{m}, \mathbf{n} does this inequality hold?

Now extended to real tuples (generalized Vandermonde determinants):

Theorem (K.-Tao, Amer. J. Math., 2021)

Given reals $n_{1}<\cdots<n_{N}$ and $m_{1}<\cdots<m_{N}$, TFAE:
(1) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct-coordinate" tuples $\mathbf{u} \in[1, \infty)_{\neq}^{N}$.
(2) \mathbf{m} weakly majorizes $\mathbf{n}-i . e ., m_{N}+\cdots+m_{j} \geqslant n_{N}+\cdots+n_{j} \forall j$.

Ingredients of proof: (a) "First-order" approximation of Schur polynomials;
(b) Harish-Chandra-Itzykson-Zuber integral; (c) Schur convexity result.

Cuttler-Greene-Skandera conjecture

This problem was studied originally by Skandera and others in the 2010s, for integer powers, and on the entire positive orthant $(0, \infty)^{N}$:

Cuttler-Greene-Skandera conjecture

This problem was studied originally by Skandera and others in the 2010s, for integer powers, and on the entire positive orthant $(0, \infty)^{N}$:

Theorem (Cuttler-Greene-Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers $0 \leqslant n_{1}<\cdots<n_{N}$ and $0 \leqslant m_{1}<\cdots<m_{N}$. Then

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in(0, \infty)^{N}
$$

if and only if \mathbf{m} majorizes \mathbf{n}.
Majorization $=($ weak majorization $)+\left(\sum_{j=1}^{N} m_{j}=\sum_{j=1}^{N} n_{j}\right)$.

Cuttler-Greene-Skandera conjecture

This problem was studied originally by Skandera and others in the 2010s, for integer powers, and on the entire positive orthant $(0, \infty)^{N}$:

Theorem (Cuttler-Greene-Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers $0 \leqslant n_{1}<\cdots<n_{N}$ and $0 \leqslant m_{1}<\cdots<m_{N}$. Then

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in(0, \infty)^{N}
$$

if and only if \mathbf{m} majorizes \mathbf{n}.
Majorization $=($ weak majorization $)+\left(\sum_{j=1}^{N} m_{j}=\sum_{j=1}^{N} n_{j}\right)$.

Questions:

(1) Does this characterization extend to real powers?
(2) Can one use a smaller subset than the full orthant $(0, \infty)^{N}$, to deduce majorization?

Cuttler-Greene-Skandera conjecture

This problem was studied originally by Skandera and others in the 2010s, for integer powers, and on the entire positive orthant $(0, \infty)^{N}$:

Theorem (Cuttler-Greene-Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers $0 \leqslant n_{1}<\cdots<n_{N}$ and $0 \leqslant m_{1}<\cdots<m_{N}$. Then

$$
\frac{s_{\mathbf{m}}(\mathbf{u})}{s_{\mathbf{n}}(\mathbf{u})} \geqslant \frac{s_{\mathbf{m}}(1, \ldots, 1)}{s_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in(0, \infty)^{N}
$$

if and only if \mathbf{m} majorizes \mathbf{n}.
Majorization $=($ weak majorization $)+\left(\sum_{j=1}^{N} m_{j}=\sum_{j=1}^{N} n_{j}\right)$.

Questions:

(1) Does this characterization extend to real powers?
(2) Can one use a smaller subset than the full orthant $(0, \infty)^{N}$, to deduce majorization?

Yes, and Yes:

Majorization via Vandermonde determinants

Theorem (K.-Tao, Amer. J. Math., 2021)

Given reals $n_{1}<\cdots<n_{N}$ and $m_{1}<\cdots<m_{N}$, TFAE:
(1) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct-coordinate" tuples $\mathbf{u} \in(0, \infty)_{\neq}^{N}$.
(2) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct" tuples $\mathbf{u} \in(0,1]_{\neq}^{N} \cup[1, \infty)_{\neq}^{N}$.
(3) m majorizes n .

Majorization via Vandermonde determinants

Theorem (K.-Tao, Amer. J. Math., 2021)

Given reals $n_{1}<\cdots<n_{N}$ and $m_{1}<\cdots<m_{N}$, TFAE:
(1) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct-coordinate" tuples $\mathbf{u} \in(0, \infty)_{\neq}^{N}$.
(2) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct" tuples $\mathbf{u} \in(0,1]_{\neq}^{N} \cup[1, \infty)_{\neq}^{N}$.
(3) majorizes \mathbf{n}.

Proof:

- $(1) \Longrightarrow(2)$: Obvious. $\quad(3) \Longrightarrow(1)$: Akin to Sra (2016).
- $(2) \Longleftrightarrow(3)$: If $\mathbf{u} \in[1, \infty) \neq$, then by preceding result: $\mathbf{m} \succ_{w} \mathbf{n}$.

Majorization via Vandermonde determinants

Theorem (K.-Tao, Amer. J. Math., 2021)

Given reals $n_{1}<\cdots<n_{N}$ and $m_{1}<\cdots<m_{N}$, TFAE:
(1) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct-coordinate" tuples $\mathbf{u} \in(0, \infty)_{\neq}^{N}$.
(2) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct" tuples $\mathbf{u} \in(0,1]_{\neq}^{N} \cup[1, \infty)_{\neq}^{N}$.
(3) majorizes \mathbf{n}.

Proof:

- $(1) \Longrightarrow(2)$: Obvious. $\quad(3) \Longrightarrow(1)$: Akin to Sra (2016).
- $(2) \Longleftrightarrow(3)$: If $\mathbf{u} \in[1, \infty) \neq$, then by preceding result: $\mathbf{m} \succ_{w} \mathbf{n}$. If $\mathbf{u} \in(0,1]_{\neq}^{N}$, let $v_{j}:=1 / u_{j} \geqslant 1$. Now compute:

$$
\frac{\operatorname{det}\left(\mathbf{v}^{\circ(-\mathbf{m})}\right)}{\operatorname{det}\left(\mathbf{v}^{\circ(-\mathbf{n})}\right)}=\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}=\frac{V(-\mathbf{m})}{V(-\mathbf{n})}
$$

By preceding result: $-\mathbf{m} \succ_{w}-\mathbf{n}$;

Majorization via Vandermonde determinants

Theorem (K.-Tao, Amer. J. Math., 2021)

Given reals $n_{1}<\cdots<n_{N}$ and $m_{1}<\cdots<m_{N}$, TFAE:
(1) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct-coordinate" tuples $\mathbf{u} \in(0, \infty)_{\neq}^{N}$.
(2) $\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}$, for all "distinct" tuples $\mathbf{u} \in(0,1]_{\neq}^{N} \cup[1, \infty)_{\neq}^{N}$.
(3) majorizes \mathbf{n}.

Proof:

- $(1) \Longrightarrow(2)$: Obvious. $\quad(3) \Longrightarrow(1)$: Akin to Sra (2016).
- $(2) \Longleftrightarrow(3)$: If $\mathbf{u} \in[1, \infty) \neq$, then by preceding result: $\mathbf{m} \succ_{w} \mathbf{n}$. If $\mathbf{u} \in(0,1]_{\neq}^{N}$, let $v_{j}:=1 / u_{j} \geqslant 1$. Now compute:

$$
\frac{\operatorname{det}\left(\mathbf{v}^{\circ(-\mathbf{m})}\right)}{\operatorname{det}\left(\mathbf{v}^{\circ(-\mathbf{n})}\right)}=\frac{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{m}}\right)}{\operatorname{det}\left(\mathbf{u}^{\circ \mathbf{n}}\right)} \geqslant \frac{V(\mathbf{m})}{V(\mathbf{n})}=\frac{V(-\mathbf{m})}{V(-\mathbf{n})}
$$

By preceding result: $-\mathbf{m} \succ_{w}-\mathbf{n}$; and $\mathbf{m} \succ_{w} \mathbf{n} \Longleftrightarrow \mathbf{m}$ majorizes \mathbf{n}.

Precursors to Cuttler-Greene-Skandera (and Sra, ...)

Instead of using Schur polynomials, what if one uses other symmetric functions?
C-G-S: $\frac{s_{\mathrm{m}}\left(u_{1}, \ldots, u_{N}\right)}{s_{\mathbf{m}}(1, \ldots, 1)} \geqslant \frac{s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right)}{s_{\mathbf{n}}(1, \ldots, 1)}$ on $(0, \infty)^{N} \Longleftrightarrow$ m majorizes \mathbf{n}.

Precursors to Cuttler-Greene-Skandera (and Sra, ...)

Instead of using Schur polynomials, what if one uses other symmetric functions?
C-G-S: $\frac{s_{\mathbf{m}}\left(u_{1}, \ldots, u_{N}\right)}{s_{\mathbf{m}}(1, \ldots, 1)} \geqslant \frac{s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right)}{s_{\mathbf{n}}(1, \ldots, 1)}$ on $(0, \infty)^{N} \Longleftrightarrow \mathbf{m}$ majorizes \mathbf{n}.
Instead, if one uses the monomial symmetric polynomial
then:

$$
m_{\lambda}\left(u_{1}, \ldots, u_{N}\right):=\frac{\left|S_{N} \cdot \lambda\right|}{N!} \sum_{\sigma \in S_{N}} \prod_{j=1}^{N} u_{j}^{\lambda_{\sigma(j)}}
$$

Theorem (Muirhead, Proc. Edinburgh Math. Soc. 1903)

Fix scalars $0 \leqslant n_{1}<\cdots<n_{N}$ and $0 \leqslant m_{1}<\cdots<m_{N}$. Then

$$
\frac{m_{\mathbf{m}}(\mathbf{u})}{m_{\mathbf{m}}(1, \ldots, 1)} \geqslant \frac{m_{\mathbf{n}}(\mathbf{u})}{m_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in(0, \infty)^{N}
$$

if and only if \mathbf{m} majorizes \mathbf{n}.

Precursors to Cuttler-Greene-Skandera (and Sra, ...)

Instead of using Schur polynomials, what if one uses other symmetric functions? C-G-S: $\frac{s_{\mathbf{m}}\left(u_{1}, \ldots, u_{N}\right)}{s_{\mathbf{m}}(1, \ldots, 1)} \geqslant \frac{s_{\mathbf{n}}\left(u_{1}, \ldots, u_{N}\right)}{s_{\mathbf{n}}(1, \ldots, 1)}$ on $(0, \infty)^{N} \Longleftrightarrow \mathbf{m}$ majorizes \mathbf{n}.

Instead, if one uses the monomial symmetric polynomial
then:

$$
m_{\lambda}\left(u_{1}, \ldots, u_{N}\right):=\frac{\left|S_{N} \cdot \lambda\right|}{N!} \sum_{\sigma \in S_{N}} \prod_{j=1}^{N} u_{j}^{\lambda_{\sigma(j)}}
$$

Theorem (Muirhead, Proc. Edinburgh Math. Soc. 1903)

Fix scalars $0 \leqslant n_{1}<\cdots<n_{N}$ and $0 \leqslant m_{1}<\cdots<m_{N}$. Then

$$
\frac{m_{\mathbf{m}}(\mathbf{u})}{m_{\mathbf{m}}(1, \ldots, 1)} \geqslant \frac{m_{\mathbf{n}}(\mathbf{u})}{m_{\mathbf{n}}(1, \ldots, 1)}, \quad \forall \mathbf{u} \in(0, \infty)^{N}
$$

if and only if \mathbf{m} majorizes \mathbf{n}.

Question: What if one restricts to $\mathbf{u} \in[1, \infty)^{N}$?

Precursors to Cuttler-Greene-Skandera (and Sra, ...) (cont.)

The C-G-S-Sra inequality (and its follow-up by K.-Tao) as well as Muirhead's inequality, are examples of majorization inequalities.

Other majorization inequalities have been shown by:

- Maclaurin (1729)
- Newton (1732)
- Schlömilch (1858)
- Schur (1920s?)
- Popoviciu (1934)
- Gantmacher (1959)

Precursors to Cuttler-Greene-Skandera (and Sra, ...) (cont.)

The C-G-S-Sra inequality (and its follow-up by K.-Tao) as well as Muirhead's inequality, are examples of majorization inequalities.

Other majorization inequalities have been shown by:

- Maclaurin (1729)
- Newton (1732)
- Schlömilch (1858)
- Schur (1920s?)
- Popoviciu (1934)
- Gantmacher (1959)

Recent vast generalization by McSwiggen-Novak [IMRN 2022] to all Weyl groups $W \quad W$-majorization.

3. Symmetric function identities

Majorization inequalities; Determinantal identities

Going back. . . to Loewner, 1967

In his 1967 letter to Josephine Mitchell, Loewner's approach was as follows:

- Suppose $f[-]$ entrywise preserves positivity on $\mathbb{P}_{N}([0, \infty))$.
- Fix $\mathbf{u}=\left(u_{1}, \ldots, u_{N}\right)^{T}$ with $u_{i}>0$ pairwise distinct.
- Set $\Delta(t):=\operatorname{det} f\left[t \mathbf{u u}^{T}\right]$, and compute its first $\binom{N}{2}+1$ derivatives at 0 :

Going back. . . to Loewner, 1967

In his 1967 letter to Josephine Mitchell, Loewner's approach was as follows:

- Suppose $f[-]$ entrywise preserves positivity on $\mathbb{P}_{N}([0, \infty))$.
- Fix $\mathbf{u}=\left(u_{1}, \ldots, u_{N}\right)^{T}$ with $u_{i}>0$ pairwise distinct.
- Set $\Delta(t):=\operatorname{det} f\left[t \mathbf{u u}^{T}\right]$, and compute its first $\binom{N}{2}+1$ derivatives at 0 :

$$
\begin{gathered}
\Delta(0)=\Delta^{\prime}(0)=\cdots=\Delta^{\left(\binom{N}{2}-1\right)}(0)=0, \quad \text { and } \\
\frac{\Delta^{\left(\binom{N}{2}\right)}(0)}{\binom{N}{2}!}=V(\mathbf{u})^{2} \cdot 1^{2} \cdot \frac{f(0)}{0!} \frac{f^{\prime}(0)}{1!} \cdots \frac{f^{(N-1)}(0)}{(N-1)!},
\end{gathered}
$$

where $V(\mathbf{u})=\prod_{i<j}\left(u_{j}-u_{i}\right)$ is the Vandermonde determinant.

Going back. . . to Loewner, 1967

In his 1967 letter to Josephine Mitchell, Loewner's approach was as follows:

- Suppose $f[-]$ entrywise preserves positivity on $\mathbb{P}_{N}([0, \infty))$.
- Fix $\mathbf{u}=\left(u_{1}, \ldots, u_{N}\right)^{T}$ with $u_{i}>0$ pairwise distinct.
- Set $\Delta(t):=\operatorname{det} f\left[t \mathbf{u u}^{T}\right]$, and compute its first $\binom{N}{2}+1$ derivatives at 0 :

$$
\begin{gathered}
\Delta(0)=\Delta^{\prime}(0)=\cdots=\Delta^{\left(\binom{N}{2}-1\right)}(0)=0, \quad \text { and } \\
\frac{\Delta^{\left(\binom{N}{2}\right)}(0)}{\binom{N}{2}!}=V(\mathbf{u})^{2} \cdot 1^{2} \cdot \frac{f(0)}{0!} \frac{f^{\prime}(0)}{1!} \cdots \frac{f^{(N-1)}(0)}{(N-1)!}
\end{gathered}
$$

where $V(\mathbf{u})=\prod_{i<j}\left(u_{j}-u_{i}\right)$ is the Vandermonde determinant.
(Loewner stopped here for his purposes, but:) What if Loewner had gone one step further?

Going back. . . to Loewner, 1967

In his 1967 letter to Josephine Mitchell, Loewner's approach was as follows:

- Suppose $f[-]$ entrywise preserves positivity on $\mathbb{P}_{N}([0, \infty))$.
- Fix $\mathbf{u}=\left(u_{1}, \ldots, u_{N}\right)^{T}$ with $u_{i}>0$ pairwise distinct.
- Set $\Delta(t):=\operatorname{det} f\left[t \mathbf{u u}^{T}\right]$, and compute its first $\binom{N}{2}+1$ derivatives at 0 :

$$
\begin{gathered}
\Delta(0)=\Delta^{\prime}(0)=\cdots=\Delta^{\left(\binom{N}{2}-1\right)}(0)=0, \quad \text { and } \\
\frac{\Delta^{\left(\binom{N}{2}\right)}(0)}{\binom{N}{2}!}=V(\mathbf{u})^{2} \cdot 1^{2} \cdot \frac{f(0)}{0!} \frac{f^{\prime}(0)}{1!} \cdots \frac{f^{(N-1)}(0)}{(N-1)!}
\end{gathered}
$$

where $V(\mathbf{u})=\prod_{i<j}\left(u_{j}-u_{i}\right)$ is the Vandermonde determinant.
(Loewner stopped here for his purposes, but:) What if Loewner had gone one step further?

$$
\frac{\Delta^{\left(\binom{N}{2}+1\right)}(0)}{\left(\binom{N}{2}+1\right)!}=V(\mathbf{u})^{2} \cdot\left(u_{1}+\cdots+u_{N}\right)^{2} \cdot \frac{f(0)}{0!} \frac{f^{\prime}(0)}{1!} \cdots \frac{f^{(N-2)}(0)}{(N-2)!} \cdot \frac{f^{(N)}(0)}{N!}
$$

Hidden inside this derivative is a Schur polynomial!

From each smooth function to all Schur polynomials

This provides a novel bridge, between analysis and symmetric function theory:
Given $f:[0, \epsilon) \rightarrow \mathbb{R}$ smooth, and $u_{1}, \ldots, u_{N}>0$ pairwise distinct (for $\epsilon>0$ and $N \geqslant 1$), set $\Delta(t):=\operatorname{det} f\left[\operatorname{tuv}^{T}\right]$ and compute $\Delta^{(M)}(0)$ for all integers $M \geqslant 0$.

From each smooth function to all Schur polynomials

This provides a novel bridge, between analysis and symmetric function theory:
Given $f:[0, \epsilon) \rightarrow \mathbb{R}$ smooth, and $u_{1}, \ldots, u_{N}>0$ pairwise distinct (for $\epsilon>0$ and $N \geqslant 1$),
set $\Delta(t):=\operatorname{det} f\left[\operatorname{tuv}^{T}\right]$ and compute $\Delta^{(M)}(0)$ for all integers $M \geqslant 0$.
Uncovers all Schur polynomials:

Theorem (K., Trans. Amer. Math. Soc. 2022)

Suppose f, ϵ, N are as above. Fix $\mathbf{u}, \mathbf{v} \in(0, \infty)^{N}$ and set $\Delta(t):=\operatorname{det} f\left[t \mathbf{u v}^{T}\right]$. Then for all $M \geqslant 0$,

$$
\frac{\Delta^{(M)}(0)}{M!}=\sum_{\mathbf{n}=\left(n_{N}, \ldots, n_{1}\right) \vdash M} V(\mathbf{u}) V(\mathbf{v}) \cdot s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v}) \cdot \prod_{j=1}^{N} \frac{f^{\left(n_{j}\right)}(0)}{n_{j}!}
$$

- All Schur polynomials "occur" inside each smooth function.

From each smooth function to all Schur polynomials

This provides a novel bridge, between analysis and symmetric function theory:
Given $f:[0, \epsilon) \rightarrow \mathbb{R}$ smooth, and $u_{1}, \ldots, u_{N}>0$ pairwise distinct (for $\epsilon>0$ and $N \geqslant 1$),
set $\Delta(t):=\operatorname{det} f\left[\operatorname{tuv}^{T}\right]$ and compute $\Delta^{(M)}(0)$ for all integers $M \geqslant 0$.
Uncovers all Schur polynomials:

Theorem (K., Trans. Amer. Math. Soc. 2022)

Suppose f, ϵ, N are as above. Fix $\mathbf{u}, \mathbf{v} \in(0, \infty)^{N}$ and set $\Delta(t):=\operatorname{det} f\left[t \mathbf{u v}^{T}\right]$. Then for all $M \geqslant 0$,

$$
\frac{\Delta^{(M)}(0)}{M!}=\sum_{\mathbf{n}=\left(n_{N}, \ldots, n_{1}\right) \vdash M} V(\mathbf{u}) V(\mathbf{v}) \cdot s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v}) \cdot \prod_{j=1}^{N} \frac{f^{\left(n_{j}\right)}(0)}{n_{j}!}
$$

- All Schur polynomials "occur" inside each smooth function.
- If f is a power series, then so is Δ. What is its expansion? (Long history!)

Going further back. . . to Cauchy and Frobenius, 1800s

Theorem (Cauchy, 1841 memoir)

$$
\text { If } f(t)=(1-t)^{-1}=1+t+t^{2}+\cdots=1 \cdot t^{0}+1 \cdot t^{1}+1 \cdot t^{2}+\cdots \text {, then }
$$

$$
\operatorname{det} f\left[\mathbf{u} \mathbf{v}^{T}\right]=\sum_{M \geqslant 0} \sum_{\mathbf{n} \vdash M} V(\mathbf{u}) V(\mathbf{v}) \cdot s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v}) \cdot 1^{N} .
$$

Going further back. . . to Cauchy and Frobenius, 1800s

Theorem (Cauchy, 1841 memoir)

$$
\begin{aligned}
& \text { If } f(t)=(1-t)^{-1}=1+t+t^{2}+\cdots=1 \cdot t^{0}+1 \cdot t^{1}+1 \cdot t^{2}+\cdots \text {, then } \\
& \qquad \operatorname{det} f\left[\mathbf{u v}^{T}\right]=\sum_{M \geqslant 0} \sum_{\mathbf{n} \vdash M} V(\mathbf{u}) V(\mathbf{v}) \cdot s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v}) \cdot 1^{N} .
\end{aligned}
$$

This is the $c=0$ special case of:
Theorem (Frobenius, J. reine Angew. Math. 1882)
If $f(t)=\frac{1-c t}{1-t}$ for a scalar c, then
$\operatorname{det} f\left[\mathbf{u v}^{T}\right]=\operatorname{det}\left(\frac{1-c u_{i} v_{j}}{1-u_{i} v_{j}}\right)_{i, j=1}^{n}$
$=V(\mathbf{u}) V(\mathbf{v})\left(\sum_{\mathbf{n}: n_{1}=0} s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v})(1-c)^{n-1}+\sum_{\mathbf{n}: n_{1}>0} s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v})(1-c)^{n}\right)$.
What is the expansion for a general power series $f(t)$?

Cauchy-Frobenius identity for all power series

Similar questions and follow-ups (on symmetric function identities) studied by

- Andrews-Goulden-Jackson [Trans. Amer. Math. Soc. 1988].
- Laksov-Lascoux-Thorup [Acta Math. 1989].
- Kuperberg [Ann. of Math. 2002].
- Ishikawa, Okado, and coauthors [Adv. Appl. Math. 2006, 2013].
- Also Krattenthaler, Advanced determinantal calculus: I, II in 1998, 2005.

Cauchy-Frobenius identity for all power series

Similar questions and follow-ups (on symmetric function identities) studied by

- Andrews-Goulden-Jackson [Trans. Amer. Math. Soc. 1988].
- Laksov-Lascoux-Thorup [Acta Math. 1989].
- Kuperberg [Ann. of Math. 2002].
- Ishikawa, Okado, and coauthors [Adv. Appl. Math. 2006, 2013].
- Also Krattenthaler, Advanced determinantal calculus: I, II in 1998, 2005.

Theorem (K., Trans. Amer. Math. Soc. 2022)

Fix a commutative unital ring R and let t be an indeterminate. Let $f(t):=\sum_{M \geqslant 0} f_{M} t^{M} \in R[[t]]$ be an arbitrary formal power series. Given vectors $\mathbf{u}, \mathbf{v} \in R^{N}$ for some $N \geqslant 1$, we have:

$$
\operatorname{det} f\left[t \mathbf{u} \mathbf{v}^{T}\right]=V(\mathbf{u}) V(\mathbf{v}) \sum_{M \geqslant\binom{ N}{2}} t^{M} \sum_{\mathbf{n}=\left(n_{N}, \ldots, n_{1}\right) \vdash M} s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v}) \cdot \prod_{j=1}^{N} f_{n_{j}}
$$

Cauchy-Frobenius identity for all power series

Similar questions and follow-ups (on symmetric function identities) studied by

- Andrews-Goulden-Jackson [Trans. Amer. Math. Soc. 1988].
- Laksov-Lascoux-Thorup [Acta Math. 1989].
- Kuperberg [Ann. of Math. 2002].
- Ishikawa, Okado, and coauthors [Adv. Appl. Math. 2006, 2013].
- Also Krattenthaler, Advanced determinantal calculus: I, II in 1998, 2005.

Theorem (K., Trans. Amer. Math. Soc. 2022)

Fix a commutative unital ring R and let t be an indeterminate. Let $f(t):=\sum_{M \geqslant 0} f_{M} t^{M} \in R[[t]]$ be an arbitrary formal power series. Given vectors $\mathbf{u}, \mathbf{v} \in R^{N}$ for some $N \geqslant 1$, we have:

$$
\operatorname{det} f\left[t \mathbf{u v}^{T}\right]=V(\mathbf{u}) V(\mathbf{v}) \sum_{M \geqslant\binom{ N}{2}} t^{M} \sum_{\mathbf{n}=\left(n_{N}, \ldots, n_{1}\right) \vdash M} s_{\mathbf{n}}(\mathbf{u}) s_{\mathbf{n}}(\mathbf{v}) \cdot \prod_{j=1}^{N} f_{n_{j}} .
$$

With Sahi [Eur. J. Comb. 2023] - extended to bosonic+fermionic identities, (a) for all immanants, (b) over all rings, (c) for all power series.

References I: Entrywise positivity preservers

[1] I. Schur, J. reine Angew. Math., 1911.
Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen.
[2] I.J. Schoenberg, Duke Math. J., 1942.
Positive definite functions on spheres.
[3] W. Rudin, Duke Math. J., 1959.
Positive definite sequences and absolutely monotonic functions.
[4] J.P.R. Christensen and P. Ressel. Trans. Amer. Math. Soc., 1978.
Functions operating on positive definite matrices and a theorem of Schoenberg.
[5] A. Belton, D. Guillot, A. Khare, and M. Putinar. Adv. in Math., 2016. Matrix positivity preservers in fixed dimension. I.
[6] A. Khare and T. Tao. Amer. J. Math., 2021.
On the sign patterns of entrywise positivity preservers in fixed dimension.
[7] A. Belton, D. Guillot, A. Khare, and M. Putinar. J. Eur. Math. Soc., 2022. Moment-sequence transforms.
[8] A. Khare. Cambridge University Press / TRIM, 2022. Matrix analysis and entrywise positivity preservers (book, ~300 pp.) + lecture notes on website.

References II: Majorization inequalities

[1] C. Maclaurin. Philos. Trans., 1729.
A second letter to Martin Foulkes, Esq., concerning the roots of equations with the demonstrations of other rules in algebra.
[2] I. Newton. Memoir, 1732.
Arithmetica universalis: sive de compositione et resolutione arithmetica liber.
[3] O. Schlömilch. Z. Math. Phys., 1858.
Über Mittel grössen verschiedener Ordnung.
[4] R.F. Muirhead. Proc. Edinburgh Math. Soc., 1903.
Some methods applicable to identities of symmetric algebraic functions of n letters.
[5] A. Cuttler, C. Greene, and M. Skandera. Eur. J. Combin., 2011. Inequalities for symmetric means.
[6] S. Sra. Eur. J. Combin., 2016.
On inequalities for normalized Schur functions.
[7] A. Khare and T. Tao. Amer. J. Math., 2021.
On the sign patterns of entrywise positivity preservers in fixed dimension.
[8] C. McSwiggen and J. Novak. Int. Res. Math. Not. IMRN, 2022. Majorization and spherical functions.

References III: Symmetric function identities

[1] A.-L. Cauchy. Memoir, 1841.
Mémoire sur les fonctions alternées et sur les sommes alternées.
[2] F.G. Frobenius. J. reine Angew. Math., 1882.
Über die elliptischen Funktionen zweiter Art.
[3] C. Loewner. Letter to J. Mitchell, 1967.
(Published+attributed in paper by R.A. Horn, in Trans. Amer. Math. Soc., 1969.)
[4] G.E. Andrews, I.P. Goulden, and D.M. Jackson. Trans. Amer. Math. Soc., 1988. Generalizations of Cauchy's summation theorem for Schur functions.
[5] D. Laksov, A. Lascoux, and A. Thorup. Acta Math., 1989.
On Giambelli's theorem for complete correlations.
[6] G. Kuperberg. Ann. of Math., 2002.
Symmetry classes of alternating-sign matrices under one roof.
[7] H. Rosengren and M. Schlosser. Compos. Math., 2006.
Elliptic determinant evaluations and Macdonald identities for affine root systems.
[8] A. Khare. Trans. Amer. Math. Soc., 2022.
Smooth entrywise positivity preservers, a Horn-Loewner master theorem, and symmetric function identities.
[9] A. Khare and S. Sahi. Eur. J. Comb., 2023.
From Cauchy's determinant formula to bosonic/fermionic immanant identities.

Thank you for your attention.

[L 나 $]$
Algato Society

