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Introduction

Positivity (and preserving it) studied in many settings in the literature.

Different flavors of positivity:

PN : Positive semidefinite N ×N (real symmetric) matrices:

uTAu > 0, ∀u ∈ RN .

Positive definite sequences/Toeplitz matrices

Hilbert space kernels

Positive definite functions on metric spaces, topological (semi)groups

Question: Classify the positivity preservers in these settings.
Studied for the better part of a century.
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Some contributors to entrywise functions

K.T.W. Weierstrass E.E. Kummer

H.A. Schwarz F.G. Frobenius L.I. Fuchs L. Konigsberger

L. Fejer

G. Polya

I. Schur

I.J. Schoenberg

G. Pick

C. Loewner

R.A. Horn(Source: Math-Genealogy)

Apoorva Khare, IISc Bangalore 3



From entrywise positivity preservers to Schur polynomials
Majorization inequalities; Determinantal identities

Early results
Polynomial preservers and Schur polynomials

Entrywise functions preserving positivity

Definition: Given N > 1 and I ⊆ R, let PN (I) denote the N ×N positive
(semidefinite) matrices, with entries in I. (Say PN = PN (R).)

Problem: For which functions f : I → R is it true that

f [A] := (f(aij)) ∈ PN for all A ∈ PN (I)?

(Long history!) The Schur Product Theorem [Schur, Crelle 1911] says:
If A,B ∈ PN , then so is A ◦B := (aijbij).

As a consequence, f(x) = xk (k > 0) preserves positivity on PN for all N .

(Pólya–Szegö, 1925): Taking sums and limits, if f(x) =
∑∞
k=0 ckx

k is
convergent and ck > 0, then f [−] preserves positivity.

Question: Anything else?
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Schoenberg’s theorem

Surprisingly, the answer is no, if f [−] preserves positivity in all dimensions:

Theorem (Schoenberg, Duke Math. J. 1942)

Say I = [−1, 1] and f : I → R is continuous. The following are equivalent:

1 f [A] ∈ PN for all A ∈ PN (I) and all N .

2 f is analytic on I and has nonnegative Taylor coefficients.
In other words, f(x) =

∑∞
k=0 ckx

k on [−1, 1] with all ck > 0.

This continuity assumption was since removed,

and the test set
⋃
N>1 PN (I)

was greatly reduced, drawing from Fourier analysis and moment-problems:

Theorem (Rudin (Duke 1959); Belton–Guillot–K.–Putinar (JEMS 2022))

Suppose 0 < ρ 6∞. If f [−] preserves positivity on all Toeplitz (resp. Hankel)
matrices of rank 6 3 with entries in I = (−ρ, ρ), then f(x) =

∑∞
k=0 ckx

k with
all ck > 0.
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Entrywise positivity preservers in fixed dimension

Preserving positivity for fixed N :

Natural refinement of original problem of Schoenberg.

In applications: dimension of the problem is known.
Unnecessarily restrictive to preserve positivity in all dimensions.

Known for N = 2 (Vasudeva, IJPAM 1979):

f is nondecreasing and f(x)f(y) > f(
√
xy)2 on (0,∞).

Open for N > 3.

What is known in fixed dimension?

Essentially the only result is a necessary condition, by C. Loewner (in the
PhD thesis of his student Roger A. Horn, in Trans. AMS 1969).
Loewner had initially summarized these computations in a letter to Josephine
Mitchell (Penn. State) in 1967:
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Loewner’s computations
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Special case: Polynomials

Following Schoenberg (1942) and Rudin (1959), suppose

f(t) =

N∑
j=1

cjt
j−1 + c′tM , cj ∈ R, M > N

entrywise preserves positivity on PN .
By Loewner’s result, c1, . . . , cN > 0.

Q1: Can c′ be negative? Sharp bound?
(Not a single example known, until very recently.)

More generally, the first N nonzero Maclaurin coefficients must be positive.
Q2: Can the next one be negative?
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Polynomials preserving positivity in fixed dimension

Theorem (K.–Tao, Amer. J. Math. 2021)

Fix ρ > 0 and integers 0 6 n1 < · · · < nN < M, and let

f(t) =

N∑
j=1

cjt
nj + c′tM

be a polynomial with real coefficients. The following are equivalent.

1 f [−] preserves positivity on PN ((0, ρ)).

2 The coefficients cj satisfy either c1, . . . , cN , c′ > 0,

or c1, . . . , cN > 0 and c′ > −C−1, where

C :=

N∑
j=1

ρM−nj

cj

N∏
i=1,i6=j

(M − ni)2

(nj − ni)2
.

3 f [−] preserves positivity on rank-one Hankel matrices in PN ((0, ρ)).

This holds even if nj ,M are not integers.

“Baby case (Q1)”: Belton–Guillot–K.–Putinar in [Adv. Math. 2016].

Apoorva Khare, IISc Bangalore 9
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How does the number

 N∏
i=1,i 6=j

(M − ni)
(nj − ni)

2

occur in this?

Essentially, the Weyl dimension formula in representation theory – or the
principal specialization formula for Schur polynomials.

Schur polynomials (algebraic characters) – now treated as functions on
the positive orthant (0,∞)N – are the key tool used to prove the theorem.
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Schur polynomials
Given an increasing N -tuple of integers 0 6 n1 < · · · < nN ,
the corresponding Schur polynomial over a field F is the unique polynomial
extension to FN of

sn(u1, . . . , uN ) :=
det(u

nj
i )Ni,j=1

det(uj−1
i )

=
det(u

nj
i )Ni,j=1

V (u)

for pairwise distinct ui ∈ F.

Note that the denominator is precisely the
Vandermonde determinant

V ((u1, . . . , uN )) := det(uj−1
i ) =

∏
16i<j6N

(uj − ui).

Basis of homogeneous symmetric polynomials in u1, . . . , uN .

Characters of irreducible polynomial representations of GLN (C),

usually defined in terms of semi-standard Young tableaux.

Weyl Character (Dimension) Formula in Type A:

sn(1, . . . , 1) =
∏

16i<j6N

nj − ni
j − i =

V (n)

V ((0, 1, . . . , N − 1))
.

Apoorva Khare, IISc Bangalore 11
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Schur polynomials via semi-standard Young tableaux
Schur polynomials are also defined using semi-standard Young tableaux:

Example 1: Suppose N = 3 and m := (0, 2, 4). The tableaux are:

3 3

2

3 3

1

3 2

2

3 2

1

3 1

2

3 1

1

2 2

1

2 1

1

s(0,2,4)(u1, u2, u3)

= u2
3u2 + u2

3u1 + u3u
2
2 + 2u3u2u1 + u3u

2
1 + u2

2u1 + u2u
2
1

= (u1 + u2)(u2 + u3)(u3 + u1).

Example 2: Suppose N = 3 and n = (0, 2, 3): 3

2

3

1

2

1

Then s(0,2,3)(u1, u2, u3) = u1u2 + u2u3 + u3u1.

Note: Both polynomials are coordinate-wise non-decreasing on (0,∞)N .
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Schur polynomials are also defined using semi-standard Young tableaux:
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Schur Monotonicity Lemma

Example: The ratio sm(u)/sn(u) for m = (0, 2, 4), n = (0, 2, 3) is:

f(u1, u2, u3) =
(u1 + u2)(u2 + u3)(u3 + u1)

u1u2 + u2u3 + u3u1
, u1, u2, u3 > 0.

Note: both numerator and denominator are monomial-positive (in fact
Schur-positive, obviously) – hence non-decreasing in each coordinate.

Fact: Their ratio f(u) has the same property!

Theorem (K.–Tao, Amer. J. Math., 2021)

For integer tuples 0 6 n1 < · · · < nN and 0 6 m1 < · · · < mN such that
nj 6 mj ∀j, the function

f : (0,∞)N → R, f(u) :=
sm(u)

sn(u)

is non-decreasing in each coordinate.
(In fact, a stronger Schur positivity phenomenon holds.)

Apoorva Khare, IISc Bangalore 13
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Schur Monotonicity Lemma (cont.)

Claim: The ratio f(u1, u2, u3) =
(u1 + u2)(u2 + u3)(u3 + u1)

u1u2 + u2u3 + u3u1
,

treated as a function on the orthant (0,∞)3, is coordinate-wise non-decreasing.

(Why?) Applying the quotient rule of differentiation to f,

sn(u)∂u3sm(u)− sm(u)∂u3sn(u) = (u1 + u2)(u1u3 + 2u1u2 + u2u3)u3,

and this is monomial-positive (hence numerically positive).

In fact, upon writing this as
∑
j>0 pj(u1, u2)uj3, each pj is Schur-positive, i.e. a

sum of Schur polynomials:

p0(u1, u2) = 0,

p1(u1, u2) = 2u1u
2
2 + 2u2

1u2 = 2
2 2

1
+ 2

2 1

1
= 2s(1,3)(u1, u2),

p2(u1, u2) = (u1 + u2)2 =
2 2

+
2 1

+
1 1

+
2

1

= s(0,3)(u1, u2) + s(1,2)(u1, u2).

Apoorva Khare, IISc Bangalore 14
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Proof-sketch of Schur Monotonicity Lemma

The proof for general m > n is similar:

By symmetry, and the quotient rule of differentiation, it suffices to show that

sn · ∂uN (sm)− sm · ∂uN (sn)

is numerically positive on (0,∞)N . (Note, the coefficients in sn(u) of each ujN
are skew-Schur polynomials in u1, . . . , uN−1.)

The assertion would follow if this expression is monomial-positive.

Our Schur Monotonicity Lemma in fact shows that the coefficient of each ujN
is (also) Schur-positive.

Patrias–van Willigenburg [J. Combin., 2020], following F. Bergeron and Reiner:
This is relatively rare (conditional probability related to 1/Kostka numbers.)

Key ingredient: Schur-positivity result by Lam–Postnikov–Pylyavskyy
[Amer. J. Math. 2007].
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inequalities
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Majorization inequalities via symmetric functions
Determinantal identities from smooth functions

Weak majorization through Schur polynomials

Our Schur Monotonicity Lemma implies in particular:

sm(u)

sn(u)
>
sm(1, . . . , 1)

sn(1, . . . , 1)
=
V (m)

V (n)
, ∀u ∈ [1,∞)N .

if m dominates n coordinate-wise.

“Natural” to ask: for which other tuples m,n does this inequality hold?

Now extended to real tuples (generalized Vandermonde determinants):

Theorem (K.–Tao, Amer. J. Math., 2021)

Given reals n1 < · · · < nN and m1 < · · · < mN , TFAE:

1
det(u◦m)

det(u◦n)
>
V (m)

V (n)
, for all “distinct-coordinate” tuples u ∈ [1,∞)N6= .

2 m weakly majorizes n – i.e., mN + · · ·+mj > nN + · · ·+ nj ∀j.

Ingredients of proof: (a) “First-order” approximation of Schur polynomials;
(b) Harish-Chandra–Itzykson–Zuber integral; (c) Schur convexity result.
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Cuttler–Greene–Skandera conjecture

This problem was studied originally by Skandera and others in the 2010s,
for integer powers, and on the entire positive orthant (0,∞)N :

Theorem (Cuttler–Greene–Skandera and Sra, Eur. J. Comb., 2011, 2016)

Fix integers 0 6 n1 < · · · < nN and 0 6 m1 < · · · < mN . Then

sm(u)

sn(u)
>
sm(1, . . . , 1)

sn(1, . . . , 1)
, ∀u ∈ (0,∞)N ,

if and only if m majorizes n.

Majorization = (weak majorization ) +
(∑N

j=1mj =
∑N
j=1 nj

)
.

Questions:
1 Does this characterization extend to real powers?

2 Can one use a smaller subset than the full orthant (0,∞)N , to deduce
majorization?

Yes, and Yes:

Apoorva Khare, IISc Bangalore 17
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Majorization via Vandermonde determinants

Theorem (K.–Tao, Amer. J. Math., 2021)

Given reals n1 < · · · < nN and m1 < · · · < mN , TFAE:

1
det(u◦m)

det(u◦n)
>
V (m)

V (n)
, for all “distinct-coordinate” tuples u ∈ (0,∞)N6= .

2
det(u◦m)

det(u◦n)
>
V (m)

V (n)
, for all “distinct” tuples u ∈ (0, 1]N6= ∪ [1,∞)N6= .

3 m majorizes n.

Proof:
(1) =⇒ (2): Obvious. (3) =⇒ (1): Akin to Sra (2016).

(2)⇐⇒ (3): If u ∈ [1,∞)N6= , then by preceding result: m �w n.
If u ∈ (0, 1]N6= , let vj := 1/uj > 1. Now compute:

det(v◦(−m))

det(v◦(−n))
=

det(u◦m)

det(u◦n)
>
V (m)

V (n)
=
V (−m)

V (−n)
.

By preceding result: −m �w −n; and m �w n ⇐⇒ m majorizes n.

Apoorva Khare, IISc Bangalore 18
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Precursors to Cuttler-Greene-Skandera (and Sra, . . . )

Instead of using Schur polynomials, what if one uses other symmetric functions?

C-G-S:
sm(u1, . . . , uN )

sm(1, . . . , 1)
>
sn(u1, . . . , uN )

sn(1, . . . , 1)
on (0,∞)N ⇐⇒ m majorizes n.

Instead, if one uses the monomial symmetric polynomial

mλ(u1, . . . , uN ) :=
|SN · λ|
N !

∑
σ∈SN

N∏
j=1

u
λσ(j)
j ,

then:

Theorem (Muirhead, Proc. Edinburgh Math. Soc. 1903)

Fix scalars 0 6 n1 < · · · < nN and 0 6 m1 < · · · < mN . Then

mm(u)

mm(1, . . . , 1)
>

mn(u)

mn(1, . . . , 1)
, ∀u ∈ (0,∞)N

if and only if m majorizes n.

Question: What if one restricts to u ∈ [1,∞)N?
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Precursors to Cuttler-Greene-Skandera (and Sra, . . . )
(cont.)

The C-G-S–Sra inequality (and its follow-up by K.–Tao)
as well as Muirhead’s inequality, are examples of majorization inequalities.

Other majorization inequalities have been shown by:

Maclaurin (1729)

Newton (1732)

Schlömilch (1858)

Schur (1920s?)

Popoviciu (1934)

Gantmacher (1959)

Recent vast generalization by McSwiggen–Novak [IMRN 2022] to all Weyl
groups W  W -majorization.
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Going back. . . to Loewner, 1967

In his 1967 letter to Josephine Mitchell, Loewner’s approach was as follows:

Suppose f [−] entrywise preserves positivity on PN ([0,∞)).

Fix u = (u1, . . . , uN )T with ui > 0 pairwise distinct.

Set ∆(t) := det f [tuuT ], and compute its first
(
N
2

)
+ 1 derivatives at 0:

∆(0) = ∆′(0) = · · · = ∆((N2 )−1)(0) = 0, and

∆((N2 ))(0)(
N
2

)
!

= V (u)2 · 12 · f(0)

0!

f ′(0)

1!
· · · f

(N−1)(0)

(N − 1)!
,

where V (u) =
∏
i<j(uj − ui) is the Vandermonde determinant.

(Loewner stopped here for his purposes, but: ) What if Loewner had gone one
step further?

∆((N2 )+1)(0)

(
(
N
2

)
+ 1)!

= V (u)2 · (u1 + · · ·+ uN )2 · f(0)

0!

f ′(0)

1!
· · · f

(N−2)(0)

(N − 2)!
· f

(N)(0)

N !
.

Hidden inside this derivative is a Schur polynomial!
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From each smooth function to all Schur polynomials
This provides a novel bridge, between analysis and symmetric function theory:

Given f : [0, ε)→ R smooth, and u1, . . . , uN > 0 pairwise distinct
(for ε > 0 and N > 1),
set ∆(t) := det f [tuvT ] and compute ∆(M)(0) for all integers M > 0.

Uncovers all Schur polynomials:

Theorem (K., Trans. Amer. Math. Soc. 2022)

Suppose f, ε,N are as above. Fix u,v ∈ (0,∞)N and set ∆(t) := det f [tuvT ].
Then for all M > 0,

∆(M)(0)

M !
=

∑
n=(nN ,...,n1) `M

V (u)V (v) · sn(u)sn(v) ·
N∏
j=1

f (nj)(0)

nj !
.

All Schur polynomials “occur” inside each smooth function.

If f is a power series, then so is ∆. What is its expansion? (Long history!)
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Going further back. . . to Cauchy and Frobenius, 1800s

Theorem (Cauchy, 1841 memoir)

If f(t) = (1− t)−1 = 1 + t+ t2 + · · · = 1·t0 + 1·t1 + 1·t2 + · · · , then

det f [uvT ] =
∑
M>0

∑
n `M

V (u)V (v) · sn(u)sn(v) · 1N .

This is the c = 0 special case of:

Theorem (Frobenius, J. reine Angew. Math. 1882)

If f(t) =
1− ct
1− t for a scalar c, then

det f [uvT ] = det

(
1− cuivj
1− uivj

)n
i,j=1

= V (u)V (v)

( ∑
n : n1=0

sn(u)sn(v)(1− c)n−1 +
∑

n : n1>0

sn(u)sn(v)(1− c)n
)
.

What is the expansion for a general power series f(t)?
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Cauchy–Frobenius identity for all power series
Similar questions and follow-ups (on symmetric function identities) studied by

Andrews–Goulden–Jackson [Trans. Amer. Math. Soc. 1988].

Laksov–Lascoux–Thorup [Acta Math. 1989].

Kuperberg [Ann. of Math. 2002].

Ishikawa, Okado, and coauthors [Adv. Appl. Math. 2006, 2013].

Also Krattenthaler, Advanced determinantal calculus: I, II in 1998, 2005.

Theorem (K., Trans. Amer. Math. Soc. 2022)

Fix a commutative unital ring R and let t be an indeterminate.
Let f(t) :=

∑
M>0 fM t

M ∈ R[[t]] be an arbitrary formal power series.
Given vectors u,v ∈ RN for some N > 1, we have:

det f [tuvT ] = V (u)V (v)
∑

M>(N2 )

tM
∑

n=(nN ,...,n1) `M

sn(u)sn(v) ·
N∏
j=1

fnj .

With Sahi [Eur. J. Comb. 2023] – extended to bosonic+fermionic identities,
(a) for all immanants, (b) over all rings, (c) for all power series.
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