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1. Introduction

This text arose out of the course notes for Math 341: Matrix Analysis and Positivity, a
one-semester course offered in Spring 2018 and Fall 2019 at the Indian Institute of Science
(IISc). Owing to the subsequent inclusion of additional topics, the text has now grown to
cover roughly a two-semester course in analysis and matrix positivity preservers – or, more
broadly, composition operators preserving various kinds of positive kernels. Thus in this
text, we briefly describe some notions of positivity in matrix theory, followed by our main
focus: a detailed study of the operations that preserve these notions (and, in the process,
an understanding of some aspects of real functions). Several different notions of positivity in
analysis, studied for classical and modern reasons, are touched upon in the text:

• Positive semidefinite and positive definite matrices.
• Entrywise positive matrices.
• A common strengthening of the first two notions, which involves totally positive (TP )
and totally non-negative (TN) matrices.
• Settings somewhat outside matrix theory. For instance, consider discrete data asso-
ciated with positive measures on locally compact abelian groups G. E.g., for G = R,
one obtains moment sequences, which are intimately related to positive semidefinite
Hankel matrices. For G = S1, the circle group, one obtains Fourier–Stieltjes se-
quences, which are connected to positive semidefinite Toeplitz matrices. (See works
of Carathéodory, Hamburger, Hausdorff, Herglotz, and Stieltjes, among others.)
• More classically, functions and kernels with positivity structures have long been stud-
ied in analysis, including on locally compact groups and metric spaces (see Bochner,
Schoenberg, von Neumann, Pólya). Distinguished examples include positive definite
functions and Pólya frequency functions and sequences.

The text begins by discussing the above notions, focussing on their properties and some
results in matrix theory. The next two parts then study, in detail, the preservers of several
of these notions of positivity. Among other things, this journey involves going through
many beautiful classical results by leading experts in analysis during the first half of the
twentieth century. Apart from also covering several different tools required in proving these
results, an interesting outcome also is that several classes of “positive” matrices repeatedly get
highlighted by way of studying positivity preservers – these include generalized Vandermonde
matrices, Hankel moment matrices and kernels, and Toeplitz kernels on the line or the integers
(aka Pólya frequency functions and sequences).

In this text, we will study the post-composition transforms that preserve (total) positivity
on various classes of kernels. When the kernel has finite domain – i.e., is a matrix – then
this amounts to studying entrywise preservers of various notions of positivity. The question
of why entrywise calculus was studied – as compared to the usual holomorphic functional
calculus – has a rich and classical history in the analysis literature, beginning with the
work of Schoenberg, Rudin, Loewner, and Horn (these results are proved in Part 3 of the
text), but also drawing upon earlier works of Menger, Schur, Bochner, and others. (In
fact, the entrywise calculus was introduced, and the first such result proved, by Schur in
1911.) Interestingly, this entrywise calculus also arises in modern-day applications from
high-dimensional covariance estimation; we elaborate on this in Section 13.1, and briefly also
in Section 14. Furthermore, this evergreen area of mathematics continues to be studied in the
literature, drawing techniques from – and also contributing to – symmetric function theory,
statistics and graphical models, combinatorics, and linear algebra (in addition to analysis).
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As a historical curiosity, the course and this text arose in a sense out of research car-
ried out in significant measure by mathematicians at Stanford University (including their
students) over the years. This includes Loewner, Karlin, and their students: FitzGerald,
Horn, Micchelli, and Pinkus. Less directly, there was also Katznelson, who had previously
worked with Helson, Kahane, and Rudin, leading to Rudin’s strengthening of Schoenberg’s
theorem. (Coincidentally, Pólya and Szegő, who made the original observation on entrywise
preservers of positivity using the Schur product theorem, were again colleagues at Stanford.)
On a personal note, the author’s contributions to this area also have their origins in his time
spent at Stanford University, collaborating with Alexander Belton, Dominique Guillot, Mihai
Putinar, Bala Rajaratnam, and Terence Tao (though the collaboration with the last-named
colleague was carried out almost entirely at IISc).

We now discuss the course, the notes that led to this text, and their mathematical contents.
The notes were scribed by the students taking the course in Spring 2018 at IISc, followed by
extensive “homogenization” by the author – and, in several sections, addition of material.
Each section was originally intended to cover the notes of roughly one 90-minute lecture, or
occasionally two; that said, some material has subsequently been moved around for logical,
mathematical, and expositional reasons. The notes, and the course itself, require an under-
standing of basic linear algebra and analysis, with a bit of measure theory as well. Beyond
these basic topics, we have tried to keep these notes as self-contained as possible, with full
proofs. To that end, we have included proofs of “preliminary” results, including:

(i) results of Schoenberg, Menger, von Neumann, Fréchet, and others connecting metric
geometry and positive definite functions to matrix positivity;

(ii) results in Euclidean geometry, including on triangulation, Heron’s formula for the
area of a triangle, and connecting Cayley–Menger matrices to simplicial volumes;

(iii) Boas–Widder and Bernstein’s theorems on functions with positive forward differences;
(iv) Sierpińsky’s result: mid-convexity and measurability imply continuity;
(v) an extension to normed linear spaces, of (a special case of) a classical result of Os-

trowski on mid-convexity and local boundedness implying continuity;
(vi) Whitney’s density of totally positive matrices inside totally non-negative matrices;
(vii) Descartes’ rule of signs – several variants;
(viii) a follow-up to Descartes, by Laguerre, on variation diminution in power series, and

its follow-up by Fekete involving Pólya frequency sequences;
(ix) Fekete’s result on totally positive matrices via positive contiguous minors;
(x) (on a related note:) results on real and complex polynomials, their “compositions”,

and zeros of these: by Gauss–Lucas, Hermite–Kakeya–Obrechkoff, Hermite–Biehler,
Routh–Hurwitz, Hermite–Poulain, Laguerre, Maló, Jensen, Schur, Weisner, de Bruijn,
and Pólya;

(xi) a detailed sketch of Pólya and Schur’s characterizations of multiplier sequences;
(xii) Mercer’s lemma, identifying positive semidefinite kernels with kernels of positive type;
(xiii) Perron’s theorem for matrices with positive entries (the precursor to Perron–Frobenius);
(xiv) compound matrices and Kronecker’s theorem on their spectra;
(xv) Sylvester’s criterion and the Schur product theorem on positive (semi)definiteness

(also, the Jacobi formula);
(xvi) the Jacobi complementary minor formula;
(xvii) the Rayleigh–Ritz theorem;
(xviii) a special case of Weyl’s inequality on eigenvalues;
(xix) matrix identities by Andréief and Cauchy–Binet, and a continuous generalization;
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(xx) the discreteness of zeros of real analytic functions (and a sketch of the continuity of
roots of complex polynomials); and

(xxi) the equivalence of Cauchy’s and Littlewood’s definitions of Schur polynomials (and
of the Jacobi–Trudi and von Nägelsbach–Kostka identities) via Lindstr̈om–Gessel–
Viennot bijections.

Owing to considerations of time, we had to leave out some proofs. These include proofs
of theorems by Hamburger/Hausdorff/Stieltjes, Fubini, Tonelli, Cauchy, Montel, Morera,
and Hurwitz; a Schur positivity phenomenon for ratios of Schur polynomials; Lebesgue’s
dominated convergence theorem; as well as the closure of real analytic functions under com-
position. Most of these can be found in standard textbooks in mathematics. We also omit
the proofs of several classical results on Laplace transforms and Pólya frequency functions,
found in textbooks, in papers by Schoenberg and his co-authors, and in Karlin’s compre-
hensive monograph on total positivity. Nevertheless, as the previous and current paragraphs
indicate, these notes cover many classical results by past experts and acquaint the reader with
a variety of tools in analysis (especially the study of real functions) and in matrix theory –
many of these tools are not found in more “traditional” courses on these subjects.

This text is broadly divided into six parts, with detailed bibliographic notes following each
part. In Part 1, the key objects of interest – namely, positive semidefinite / totally positive
/ totally non-negative matrices – are introduced, together with some basic results as well as
some important classes of examples. (The analogous kernels are also studied.) In Part 2, we
begin the study of functions acting entrywise on such matrices, and preserving the relevant
notion of positivity. Here, we will mostly restrict ourselves to studying power functions that
act on various sets of matrices of a fixed size. This is a long-studied question, including by
Bhatia, Elsner, Fallat, FitzGerald, Hiai, Horn, Jain, Johnson, and Sokal; as well as by the
author in collaboration with Guillot and Rajaratnam. In particular, an interesting highlight
is the construction by Jain of individual (pairs of) matrices, which turn out to encode the
entire set of entrywise powers preserving Loewner positivity, monotonicity, and convexity.
We also obtain certain necessary conditions on general entrywise functions that preserve
positivity, including multiplicative mid-convexity and continuity, as well as a classification of
all functions preserving total non-negativity or total positivity in each fixed dimension. We
explain some of the modern motivations, and we end with some unsolved problems.

Part 3 deals with some of the foundational results on matrix positivity preservers. After
mentioning some of the early history – including work by Menger, Fréchet, Bochner, and
Schoenberg – we classify the entrywise functions that preserve positive semidefiniteness (=
positivity) in all dimensions, or total non-negativity on Hankel matrices of all sizes. This is
a celebrated result of Schoenberg – later strengthened by Rudin – which is a converse to the
Schur product theorem, and we prove a stronger version by using a rank-constrained test set.
The proof given in these notes is different from the previous approaches of Schoenberg and
Rudin, is essentially self-contained, and uses relatively less sophisticated machinery compared
to the works of Schoenberg and Rudin. Moreover, it first proves a variant by Vasudeva for
matrices with only positive entries, and it lends itself to a multivariate generalization (which
will not be covered here). The starting point of these proofs is a necessary condition for
entrywise preservers in a fixed dimension, proved by Loewner (and Horn) in the late 1960s.
To this day, this result remains essentially the only known condition in a fixed dimension
n ≥ 3, and a proof of a (rank-constrained, as above) stronger version is also provided in these
notes. In addition to techniques and ingredients introduced by the above authors, the text
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also borrows from the author’s joint work with Belton, Guillot, and Putinar. This part ends
with several appendices:

(1) The first appendix covers a result by Boas and Widder, which shows a converse “mean
value theorem” for divided differences.

(2) We next cover recent work by Vishwakarma on an “off-diagonal” variant of the posi-
tivity preserver problem.

(3) The third and fourth appendices classify preservers of Loewner positivity, monotonic-
ity, and convexity on “dimension-free matrices”, or on kernels over infinite domains.

(4) The fifth appendix explores the theme of Euclidean distance geometry, with a focus
on some classical results by Menger.

In Parts 4 and 5, we formulate the preserver problem in analysis terms, using composition
operators on kernels. This allows one to consider such questions not only for matrices of a
fixed or arbitrary size, but also over more general, infinite domains. It also makes available for
use, the powerful analysis machinery developed by Bernstein, Pólya, Schoenberg, Widder, and
others. Thus in Part 5, we provide characterizations of such composition operators preserving
total positivity or non-negativity on structured kernels – specifically Toeplitz kernels on
various sub-domains of R. Two distinguished classes of such kernels are Pólya frequency
functions and Pólya frequency sequences, i.e., Toeplitz kernels on R×R and Z×Z, respectively.

Before solving the preserver problem in this paradigm, we begin by developing some of the
results by Schoenberg and others on Pólya frequency functions and sequences. In fact we
begin even more classically: with a host of root-location results for zeros of real and complex
polynomials, which motivated the study of the Laguerre–Pólya class of entire functions and
the Pólya–Schur classification of multiplier sequences. After presenting these, we briefly
discuss modern offshoots of the Laguerre–Pólya–Schur program, followed by Schoenberg’s
results. (Similarly, in the next part we also briefly discuss the Wallach set in representation
theory and probability.)

In Part 5, we return to the question studied in Part 2 above, of classifying the preservers
of all TN or TP kernels, on X × Y for arbitrary totally ordered sets X,Y . Here we provide
a complete resolution of this question. In a sense, the total positivity preserver problem
is the culmination of all that has come before in this text; it uses many of the tools and
techniques from the previous parts. These include (i) Vandermonde kernels, TP kernel
completions of 2×2 matrices, and Fekete’s result, from Part 1; (ii) entrywise powers preserving
positivity (via a trick of Jain to use Toeplitz cosine matrices), and the classification of total-
positivity preservers in finite dimension, from Part 2; (iii) the stronger Vasudeva theorem
classifying entrywise positivity preservers on low-rank Hankel matrices, from Part 3; and
(iv) preservers of Toeplitz kernels, including of Pólya frequency functions and sequences,
from Part 4. We also develop as needed, set-theoretic tools and Whitney-type density results
– as well as understanding the structure and preservers of continuous Hankel kernels defined
on an interval. This latter requires results of Mercer, Bernstein, Hamburger, and Widder.

We remark that Part 4 contains – in addition to theorems found e.g. in Karlin’s book – very
recent results from 2020+ on Pólya frequency functions (and not merely their preservers),
which in particular are not found in previous treatments of the subject. To name a few:

• a characterization of Pólya frequency functions of order p, for any p ≥ 3;
• strengthenings of multiple results of Karlin (1955) and of Schoenberg (1964);
• a converse to the same result of Karlin (1955);
• a critical exponent phenomenon in total positivity;
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• a closer look at a multiparameter family of density functions introduced by Hirschman
and Widder (1949); and
• a connection between Pólya frequency functions and the Riemann hypothesis.

(Similarly, Part 2 of this text contains recent results on totally non-negative/positive matrices,
which are not found in earlier books on total positivity.) Thus, in a sense Parts 4 and 5 can
be viewed as “one possible sequel” to Karlin’s book and to the body of work by Schoenberg
on Pólya frequency functions, since they present novel material on these classes of functions,
then use the “structural” results by the aforementioned authors about various families of
Toeplitz kernels to classify the preservers of various sub-families of these objects. In addition
to results of Schoenberg and his coauthors, as well as an authoritative survey of these results,
compiled in Karlin’s majestic monograph, both parts borrow from the author’s 2020 works
(one with Belton, Guillot, and Putinar).

In the final Part 6, we return to the study of entrywise functions preserving positivity in
a fixed dimension. This is a challenging problem – it is still open in general, even for 3 × 3
matrices – and we restrict ourselves in this part to studying polynomial preservers. According
to the Schur product theorem (1911), if the polynomial has all non-negative coefficients, then
it is easily seen to be a preserver; but, interestingly, until 2016 not a single example was
known of any other entrywise polynomial preserver of positivity in a fixed dimension n ≥ 3.
Very recently, this question has been answered to some degree of satisfaction by the author,
in collaboration first with Belton, Guillot, and Putinar, and subsequently with Tao. The text
ends by covering some of this recent progress, and it comes back full circle to Schur through
symmetric function theory.

A quick note on the logical structure: Parts 1–5 are best read sequentially; note that
some sections do not get used later in the text, e.g. Sections 8 and 31, and the Appendices.
That said, Part 4, which involves non-preserver results on Pólya frequency functions and
sequences, can be read from scratch, requiring only Sections 6 and 12.1 and Lemma 26.3 as
pre-requisites. The final Part 6 can be read following Section 9 (also see the Schoenberg–
Rudin theorem 16.2 and the Horn–Loewner theorem 17.1). We also point out the occurrence
of Historical notes and Further questions, which serve to acquaint the reader with past
work(er)s as well as related areas; and possible avenues for future work – and which can be
accessed from the Index at the end. (See also the Bibliographic notes at the end of each part
of the text.)

To conclude, thanks are owed to the scribes (listed below), as well as to Sayan Adhikari,
Alexander Belton, Shabarish Chenakkod, Projesh Nath Choudhury, Julian R. D’Costa, Sudip
Dolai, Dominique Guillot, Prakhar Gupta, Roger A. Horn, Sarvesh Ravichandran Iyer, Poor-
nendu Kumar, Gadadhar Misra, Frank Oertel, Aaradhya Pandey, Vamsi Pritham Pingali,
Paramita Pramanick, Mihai Putinar, Shubham Rastogi, Ritul, Aditya Guha Roy, Siddhartha
Sahi, Kartik Singh, Naren Sundaravaradan, G.V. Krishna Teja, Akaki Tikaradze, Raghaven-
dra Tripathi, Prateek Kumar Vishwakarma, Pranjal Warade, and Upamanyu Yaddanapudi
for helpful suggestions that improved the text. I am, of course, deeply indebted to my col-
laborators for their support and all of their research efforts in positivity – but also for many
stimulating discussions, which helped shape my thinking about the field as a whole and the
structure of this text in particular. Finally, I am grateful to the University Grants Commis-
sion (UGC, Government of India), the Science and Engineering Research Board (SERB) and
the Department of Science and Technology (DST) of the Government of India, the Council
for Scientific and Industrial Research (CSIR, Government of India), the Infosys Foundation,
and the Tata Trusts – for their support through a CAS-II grant, through a MATRICS grant
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and the Ramanujan and Swarnajayanti Fellowships and a DST-FIST grant, through a Shanti
Swarup Bhatnagar Prize, through a Young Investigator Award, and through their Travel
Grants, respectively.

Department of Mathematics, Indian Institute of Science
& Analysis and Probability Research Group

Bangalore, India
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6. Hankel moment matrices are TP . Andréief’s identity. Density of TP in TN . 39
7. (Non-)Symmetric TP completion problems. 43
8. Theorems of Perron and Kronecker. Spectra of TP and TN matrices. 47
Bibliographic notes and references 52

Part 2: Entrywise powers preserving (total) positivity in a fixed dimension 55

9. Entrywise powers preserving positivity in a fixed dimension: I. 55
10. Entrywise powers preserving total positivity: I. 59
11. Entrywise powers preserving total positivity: II. 63
12. Entrywise functions preserving total positivity. Mid-convex implies continuity.

The test set of Hankel TN matrices. 67
13. Entrywise powers (and functions) preserving positivity: II. Matrices with zero

patterns. 77
14. Entrywise powers preserving positivity: III. Chordal graphs. Loewner

monotonicity and super-additivity. 83
15. Loewner convexity. Single matrix encoders of entrywise power-preservers of

Loewner properties. 89
Bibliographic notes and references 97

Part 3: Entrywise functions preserving positivity in all dimensions 101

16. History – Schoenberg’s theorem. Rudin, Herz, Vasudeva. Metric geometry,
positive definite functions, spheres, and correlation matrices. 101

17. Horn’s thesis: a determinant calculation. Proof for smooth functions. 113
18. The stronger Horn–Loewner theorem. Mollifiers. 117
19. The stronger Vasudeva and Schoenberg theorems. Bernstein’s theorem. Moment

sequence transforms. 121
20. Proof of stronger Schoenberg Theorem: I. Continuity. The positivity-certificate

trick. 127
21. Proof of stronger Schoenberg Theorem: II. Smoothness implies real analyticity. 133
22. Proof of stronger Schoenberg Theorem: III. Complex analysis. Further remarks. 137
23. Appendix A: The Boas–Widder theorem on functions with positive differences. 139
24. Appendix B: Functions acting outside forbidden diagonal blocks. Dimension-free

non-absolutely-monotonic preservers. 149
25. Appendix C. Preservers of positivity on kernels. 155
26. Appendix D. Preservers of Loewner monotonicity and convexity on kernels. 159
27. Appendix E. Menger’s results and Euclidean distance geometry. 165
Bibliographic notes and references 173



12 1. Introduction
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34. Schoenberg’s results on Pólya frequency functions. 241
35. Further one-sided examples: The Hirschman–Widder densities. Discontinuous

PF functions. 247
Bibliographic notes and references 248

Part 5: Composition operators preserving totally positive kernels 253

36. Critical exponent for powers preserving TNp. The Jain–Karlin–Schoenberg
kernel. 253
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Part 1: Preliminaries

2. The cone of positive semidefinite matrices. Examples. Schur complements.

A kernel is a function K : X × Y → R. Broadly speaking, the goal of this text is to
understand: Which functions F : R→ R, when applied to kernels with some notion
of positivity, preserve that notion? To do so, we first study the test sets of such kernels
K themselves, and then the post-composition operators F that preserve these test sets. We
begin by understanding such kernels when the domains X,Y are finite, i.e., matrices.

In this text, we will assume familiarity with linear algebra and a first course in calcu-
lus/analysis. To set notation: an uppercase letter with a two-integer subscript (such as Am×n)
represents a matrix with m rows and n columns. If m,n are clear from context or unim-
portant, then they will be omitted. Three examples of real matrices are 0m×n,1m×n, Idn×n,
which are the (rectangular) matrix consisting of all zeros, all ones, and the identity matrix,
respectively. The entries of a matrix A will be denoted aij , ajk, etc. Vectors are denoted by
lowercase letters (occasionally in bold), and are columnar in nature. All matrices, unless spec-
ified otherwise, are real; and similarly, all functions, unless specified otherwise, are defined
on – and take values in – Rm for some m ≥ 1. As is standard, we let C,R,Q,Z,N denote the
complex numbers, reals, rationals, integers, and positive integers respectively. Given S ⊂ R,
let S≥0 := S ∩ [0,∞).

2.1. Preliminaries. We begin with several basic definitions.

Definition 2.1. A matrix An×n is said to be symmetric if ajk = akj for all 1 ≤ j, k ≤ n.

A real symmetric matrix An×n is said to be positive semidefinite) if the real number xTAx
is non-negative for all x ∈ Rn – in other words, the quadratic form given by A is positive
semidefinite. If, furthermore, xTAx > 0 for all x ̸= 0 then A is said to be positive definite.
Denote the set of (real symmetric) positive semidefinite matrices by Pn.

We state the spectral theorem for symmetric (i.e., self-adjoint) operators without proof.

Theorem 2.2 (Spectral theorem for symmetric matrices). For An×n a real symmetric matrix,
A = UTDU for some orthogonal matrix U (i.e., UTU = Id) and real diagonal matrix D. D
contains all the eigenvalues of A (counting multiplicities) along its diagonal.

As a consequence, A =
∑n

j=1 λjvjv
T
j , where each vj is an eigenvector for A with real

eigenvalue λj , and the vj (which are the columns of UT ) form an orthonormal basis of Rn.

We also have the following related results, stated here without proof: the spectral theorem
for two commuting matrices, and the singular value decomposition.

Theorem 2.3 (Spectral theorem for commuting symmetric matrices). Let An×n and Bn×n

be two commuting real symmetric matrices. Then A and B are simultaneously diagonalizable,
i.e., for some common orthogonal matrix U , A = UTD1U and B = UTD2U for D1 and D2

diagonal matrices (whose diagonal entries comprise the eigenvalues of A,B respectively).

Theorem 2.4 (Singular value decomposition). Every real matrix Am×n ̸= 0 decomposes as

A = Pm×m

(
Σr 0
0 0

)
m×n

Qn×n, where P,Q are orthogonal and Σr is a diagonal matrix with

positive eigenvalues. The entries of Σr are called the singular values of A, and are the square
roots of the non-zero eigenvalues of AAT (or ATA).
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2.2. Criteria for positive (semi)definiteness. We write down several equivalent criteria
for positive (semi)definiteness. There are three initial criteria which are easy to prove, and a
final criterion which requires separate treatment.

Theorem 2.5 (Criteria for positive (semi)definiteness). Given An×n a real symmetric matrix
of rank 0 ≤ r ≤ n, the following are equivalent:

(1) A is positive semidefinite (respectively, positive definite).
(2) All eigenvalues of A are non-negative (respectively, positive).
(3) There exists a matrix B ∈ Rr×n of rank r, such that BTB = A. (In particular, if A

is positive definite then B is square and non-singular.)

Proof. We prove only the positive semidefinite statements; minor changes show the corre-
sponding positive definite variants. If (1) holds and λ is an eigenvalue – for an eigenvector x
– then xTAx = λ∥x∥2 ≥ 0. Hence, λ ≥ 0, proving (2). Conversely, if (2) holds then by the
spectral theorem, A =

∑
j λjvjv

T
j with all λj ≥ 0, so A is positive semidefinite:

xTAx =
∑
j

λjx
T vjv

T
j x =

∑
j

λj(x
T vj)

2 ≥ 0, ∀x ∈ Rn.

Next if (1) holds then write A = UTDU by the spectral theorem; note that D = UAUT has

the same rank as A. Since D has non-negative diagonal entries djj , it has a square root
√
D,

which is a diagonal matrix with diagonal entries
√
djj . Write D =

(
D′

r×r 0
0 0(n−r)×(n−r)

)
,

where D′ is a diagonal matrix with positive diagonal entries. Correspondingly, write U =(
Pr×r Q
R S(n−r)×(n−r)

)
. If we set B := (

√
D′P |

√
D′Q)r×n, then it is easily verified that

BTB =

(
P TD′P P TD′Q
QTD′P QTD′Q

)
= UTDU = A.

Hence, (1) =⇒ (3). Conversely, if (3) holds then xTAx = ∥Bx∥2 ≥ 0 for all x ∈ Rn.
Hence, A is positive semidefinite. Moreover, we claim that B and BTB have the same null
space and hence the same rank. Indeed, if Bx = 0 then BTBx = 0, while

BTBx = 0 =⇒ xTBTBx = 0 =⇒ ∥Bx∥2 = 0 =⇒ Bx = 0. □

Corollary 2.6. For any real symmetric matrix An×n, the matrix A− λmin Idn×n is positive
semidefinite, where λmin denotes the smallest eigenvalue of A.

We now state Sylvester’s criterion for positive (semi)definiteness. (Incidentally, Sylvester
is believed to have first introduced the use of “matrix” in mathematics, in the nineteenth
century.) This requires some additional notation.

Definition 2.7. Given an integer n ≥ 1, define [n] := {1, . . . , n}. Now given a matrix Am×n

and subsets J ⊂ [m],K ⊂ [n], define AJ×K to be the submatrix of A with entries ajk for
j ∈ J, k ∈ K (always considered to be arranged in increasing order in this text). If J,K
have the same size then detAJ×K is called a minor of A. If A is square and J = K then
AJ×K is called a principal submatrix of A, and detAJ×K is a principal minor. The principal
submatrix (and principal minor) are leading if J = K = {1, . . . ,m} for some 1 ≤ m ≤ n.

Theorem 2.8 (Sylvester’s criterion). A symmetric matrix is positive semidefinite (definite)
if and only if all its principal minors are non-negative (positive).

We will show Theorem 2.8 with the help of a few preliminary results.
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Lemma 2.9. If An×n is a positive semidefinite (respectively, positive definite) matrix, then
so are all principal submatrices of A.

Proof. Fix a subset J ⊂ [n] = {1, . . . , n} (so B := AJ×J is the corresponding principal
submatrix of A), and let x ∈ RJ . Define x′ ∈ Rn to be the vector, such that x′j = xj for

all j ∈ J and 0 otherwise. It is easy to see that xTBx = (x′)TAx′. Hence, B is positive
(semi)definite if A is. □

As a corollary, all the principal minors of a positive semidefinite (positive definite) matrix
are non-negative (positive) since the corresponding principal submatrices have non-negative
(positive) eigenvalues and hence non-negative (positive) determinants. So one direction of
Sylvester’s criterion holds trivially.

Lemma 2.10. Sylvester’s criterion is true for positive definite matrices.

Proof. We induct on the dimension of the matrix A. Suppose n = 1. Then A is just an
ordinary real number, so its only principal minor is A itself, and so the result is trivial.

Now, suppose the result is true for matrices of dimension ≤ n− 1. We claim that A has at
least n− 1 positive eigenvalues. To see this, let λ1, λ2 ≤ 0 be eigenvalues of A. Let W be the
n− 1 dimensional subspace of Rn with last entry 0. If vj are orthogonal eigenvectors for λj ,
j = 1, 2, then the span of the vj must intersect W nontrivially, since the sum of dimensions
of these two subspaces of Rn exceeds n. Define u := c1v1 + c2v2 ∈ W ; then uTAu > 0 by
Lemma 2.9. However,

uTAu = (c1v
T
1 + c2v

T
2 )A(c1v1 + c2v2) = c21λ1||v1||2 + c22λ2||v2||2 ≤ 0

thereby giving a contradiction and proving the claim.
Now since the determinant of A is positive (it is the minor corresponding to A itself), it

follows that all eigenvalues are positive, completing the proof. □

We will now prove the Jacobi formula, an important result in its own right. A corollary of
this result will be used, along with the previous result and the idea that positive semidefinite
matrices can be expressed as entrywise limits of positive definite matrices, to prove Sylvester’s
criterion for all positive semidefinite matrices.

Theorem 2.11 (Jacobi formula). Let At : R → Rn×n be a matrix-valued differentiable
function. Letting adj(At) denote the adjugate matrix of At, we have:

d

dt
(detAt) = tr

(
adj(At)

dAt

dt

)
. (2.12)

Proof. The first step is to compute the differential of the determinant. We claim that

d(det)(A)(B) = tr(adj(A)B), ∀A,B ∈ Rn×n.

As a special case, at A = Idn×n, the differential of the determinant is precisely the trace.
To show the claim, we need to compute the directional derivative

lim
ϵ→0

det(A+ ϵB)− detA

ϵ
.

The fraction is a polynomial in ϵ with vanishing constant term (e.g., set ϵ = 0 to see this);
and we need to compute the coefficient of the linear term. Expand det(A + ϵB) using
the Laplace expansion as a sum over permutations σ ∈ Sn; now each individual summand
(−1)σ

∏n
k=1(akσ(k) + ϵbkσ(k)) splits as a sum of 2n terms. (It may be illustrative to try and

work out the n = 3 case by hand.) From these 2n · n! terms, choose the ones that are linear
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in ϵ. For each 1 ≤ i, j ≤ n, there are precisely (n − 1)! terms corresponding to ϵbij ; and
added together, they equal the (i, j)th cofactor Cij of A – which equals adj(A)ji. Thus, the
coefficient of ϵ is

d(det)(A)(B) =

n∑
i,j=1

Cijbij ,

and this is precisely tr(adj(A)B), as claimed.
More generally, the above argument shows that if B(ϵ) is any family of matrices, with limit

B(0) as ϵ→ 0, then

lim
ϵ→0

det(A+ ϵB(ϵ))− detA

ϵ
= tr(adj(A)B(0)). (2.13)

Returning to the proof of the theorem, for ϵ ∈ R small and t ∈ R we write

At+ϵ = At + ϵB(ϵ)

where B(ϵ)→ B(0) := dAt
dt as ϵ→ 0, by definition. Now compute using (2.13):

d

dt
(detAt) = lim

ϵ→0

det(At + ϵB(ϵ))− detAt

ϵ
= tr(adj(At)

dAt

dt
). □

With these results in hand, we can finish the proof of Sylvester’s criterion for positive
semidefinite matrices.

Proof of Theorem 2.8. For positive definite matrices, the result was proved in Lemma 2.10.
Now suppose An×n is positive semidefinite. One direction follows by the remarks preceding
Lemma 2.10. We show the converse by induction on n, with an easy argument for n = 1
similar to the positive definite case.

Now suppose the result holds for matrices of dimension ≤ n − 1 and let An×n have all
principal minors non-negative. Let B be any principal submatrix of A, and define f(t) :=
det(B + t Id). Note that f ′(t) = tr(adj(B + t Id)) by the Jacobi formula (2.12).

We claim that f ′(t) > 0 ∀t > 0. Indeed, each diagonal entry of adj(B + t Id) is the
determinant of a proper principal submatrix of A+ t Idn×n, say A

′+ t Idk×k. This submatrix
is positive definite since A′ is positive semidefinite by the induction hypothesis, and so xT (A′+
t Idk×k)x = xTA′x+ t∥x∥2 > 0 for x ∈ Rk and t > 0. Hence its determinant is positive, and
so f ′(t) > 0.

The claim implies: f(t) > f(0) = detB ≥ 0 ∀t > 0. Thus all principal minors of A+ t Id
are positive, and by Sylvester’s criterion for positive definite matrices, A + t Id is positive
definite for all t > 0. Now note that xTAx = limt→0+ x

T (A + t Idn×n)x; therefore the non-
negativity of the right-hand side implies that of the left-hand side for all x ∈ Rn, completing
the proof. □

2.3. Examples of positive semidefinite matrices. We next discuss several examples.

2.3.1. Gram matrices.

Definition 2.14. For any finite set of vectors x1, . . . ,xn ∈ Rm, their Gram matrix is given
by Gram((xj)j) := (⟨xj ,xk⟩)1≤j,k≤n.

A correlation matrix is a positive semidefinite matrix with ones on the diagonal.

In fact, we need not use Rm here; any inner product space/Hilbert space is sufficient.

Proposition 2.15. Given a real symmetric matrix An×n, it is positive semidefinite if and
only if there exist an integer m > 0 and vectors x1, . . . ,xn ∈ Rm, such that A = Gram((xj)j).
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As a special case, correlation matrices precisely correspond to those Gram matrices for
which the xj are unit vectors. We also remark that a “continuous” version of this result is
given by a well-known result of Mercer [261]. See Theorem 39.9.

Proof. If A is positive semidefinite, then by Theorem 2.5 we can write A = BTB for some
matrix Bm×n. It is now easy to check that A is the Gram matrix of the columns of B.

Conversely, if A = Gram(x1, . . . ,xn) with all xj ∈ Rm, then to show that A is positive
semidefinite, we compute for any u = (u1, . . . , un)

T ∈ Rn:

uTAu =
n∑

j,k=1

ujuk⟨xj ,xk⟩ =

∥∥∥∥∥∥
n∑

j=1

ujxj

∥∥∥∥∥∥
2

≥ 0. □

2.3.2. (Toeplitz) Cosine matrices.

Definition 2.16. A matrix A = (ajk) is Toeplitz if ajk depends only on j − k.

Lemma 2.17. Let θ1, . . . , θn ∈ [0, 2π]. Then the matrix C := (cos(θj − θk))nj,k=1 is positive

semidefinite, with rank at most 2. In particular, α1n×n + βC has rank at most 3 (for scalars
α, β), and it is positive semidefinite if α, β ≥ 0.

Proof. Define the vectors u, v ∈ Rn via uT = (cos θ1, . . . , cos θn), v
T = (sin θ1, . . . , sin θn).

Then C = uuT +vvT via the identity cos(a− b) = cos a cos b+sin a sin b, and clearly the rank
of C is at most 2. (For instance, it can have rank 1 if the θj are equal.) As a consequence,

α1n×n + βC = α1n1
T
n + βuuT + βvvT

has rank at most 3; the final assertion is straightforward. □

As a special case, if θ1, . . . , θn are in arithmetic progression, i.e., θj+1− θj = θ ∀j for some
θ, then we obtain a positive semidefinite Toeplitz matrix

C =


1 cos θ cos 2θ . . .

cos θ 1 cos θ cos 2θ . . .
cos 2θ cos θ 1 cos θ cos 2θ . . .

cos 2θ cos θ 1 cos θ cos 2θ . . .
...

. . .
. . .

. . .

 .

This family of Toeplitz matrices was used by Rudin in a 1959 paper [306] on entrywise
positivity preservers; see Theorem 16.3 for his result.

2.3.3. Hankel matrices.

Definition 2.18. A matrix A = (ajk) is Hankel if ajk depends only on j + k.

Example 2.19.

(
0 1
1 0

)
is Hankel but not positive semidefinite.

Example 2.20. For each x ≥ 0, the matrix

 1 x x2

x x2 x3

x2 x3 x4

 =

 1
x
x2

(1 x x2
)
is Hankel

and positive semidefinite of rank 1.
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A more general perspective is as follows. Define Hx :=


1 x x2 · · ·
x x2 x3 · · ·
x2 x3 x4 · · ·
...

...
...

. . .

, and let δx

be the Dirac measure at x ∈ R. The moments of this measure are given by sk(δx) =∫
R y

k dδx(y) = xk, k ≥ 0. Thus, Hx is the “moment matrix” of δx. More generally, given any
non-negative measure µ supported on R, with all moments finite, the corresponding Hankel
moment matrix is the bi-infinite “matrix” given by

Hµ :=


s0 s1 s2 · · ·
s1 s2 s3 · · ·
s2 s3 s4 · · ·
...

...
...

. . .

 , where sk = sk(µ) :=

∫
R
yk dµ(y). (2.21)

Lemma 2.22. The matrix Hµ is positive semidefinite. In other words, every finite principal
submatrix is positive semidefinite.

Note, this is equivalent to every leading principal submatrix being positive semidefinite.

Proof. Fix n ≥ 1 and consider the finite principal (Hankel) submatrix H ′
µ with the first n

rows and columns. Let H ′
δx

be the Hankel matrix defined in a similar manner for the measure

δx, x ∈ R. Now to show that H ′
µ is positive semidefinite, we compute for any vector u ∈ Rn:

uTH ′
µu =

∫
R
uTH ′

δxu dµ(x) =

∫
R
((1, x, . . . , xn−1)u)2 dµ(x) ≥ 0,

where the final equality holds because H ′
δx

has rank 1 and factorizes as in Example 2.20.
(Note that the first equality holds because we are taking finite linear combinations of the
integrals in the entries of H ′

µ.) □

Remark 2.23. Lemma 2.22 is (the easier) half of a famous classical result by Hamburger.
The harder converse result says that if a semi-infinite Hankel matrix is positive semidefinite,
with (j, k)-entry sj+k for j, k ≥ 0, then there exists a non-negative Borel measure on the
real line whose kth moment is sk for all k ≥ 0. This theorem will be useful later; it was
shown by Hamburger in 1920–21, when he extended the Stieltjes moment problem to the
entire real line in the series of papers [162]. These works established the moment problem in
its own right, as opposed to being a tool used to determine the convergence or divergence of
continued fractions (as previously developed by Stieltjes – see Remark 4.4).

There is also a multivariate version of Lemma 2.22 which is no harder than the lemma,
modulo notation:

Lemma 2.24. Given a measure µ on Rd for some integer d ≥ 1, we define its moments for
tuples of non-negative integers n = (n1, . . . , nd) via

sn(µ) :=

∫
Rd

xn dµ(x) =

∫
Rd

d∏
j=1

x
nj

j dµ,

if these integrals converge. (Here, xn :=
∏

j x
nj

j .) Now suppose µ ≥ 0 on Rd and let Ψ :

(Z≥0)d → Z≥0 be any bijection, such that Ψ(0) = 0 (although this restriction is not really
required). Define the semi-infinite matrix Hµ := (ajk)

∞
j,k=0 via ajk := sΨ−1(j)+Ψ−1(k), where

we assume that all moments of µ exist. Then Hµ is positive semidefinite.
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Proof. Given a real vector u = (u0, u1, . . . )
T with finitely many non-zero coordinates, we

have

uTHµu =
∑
j,k≥0

∫
Rd

ujukx
Ψ−1(j)+Ψ−1(k) dµ(x) =

∫
Rd

((1,xΨ−1(1),xΨ−1(2), . . . )u)2 dµ(x) ≥ 0.

□

2.3.4. Matrices with sparsity. Another family of positive semidefinite matrices involves matri-
ces with a given zero pattern, i.e., structure of (non)zero entries. Such families are important
in applications, as well as in combinatorial linear algebra, spectral graph theory, and graphical
models/Markov random fields.

Definition 2.25. A graph G = (V,E) is simple if the sets of vertices/nodes V and edges E
are finite, and E contains no self-loops (v, v) or multi-edges. In this text, all graphs will be
finite and simple. Given such a graph G = (V,E), with node set V = [n] = {1, . . . , n}, define

PG := {A ∈ Pn : ajk = 0 if j ̸= k and (j, k) /∈ E}, (2.26)

where Pn comprises the (real symmetric) positive semidefinite matrices of dimension n.
Also, a subset C ⊂ X of a real vector space X is convex if λv + (1 − λ)w ∈ C for all

v, w ∈ C and λ ∈ [0, 1]. If instead αC ⊂ C for all α ∈ (0,∞), then we say C is a cone.

Remark 2.27. The set PG is a natural mathematical generalization of the cone Pn (and
shares several of its properties). In fact, two “extreme” special cases are: (i) G is the
complete graph, in which case PG is the full cone Pn for n = |V |; and (ii) G is the empty
graph, in which case PG is the cone of |V | × |V | diagonal matrices with non-negative entries.

Akin to both of these cases, for all graphs G, the set PG is in fact a closed convex cone.

Example 2.28. Let G = {{v1, v2, v3}, {(v1, v3), (v2, v3)}}. The adjacency matrix is given by

AG =

0 0 1
0 0 1
1 1 0

. This is not in PG (but AG − λmin(AG) Id3×3 ∈ PG, see Corollary 2.6).

Example 2.29. For any graph G with node set [n], let DG be the diagonal matrix with (j, j)
entry the degree of node j, i.e., the number of edges adjacent to j. Then the graph Laplacian,
defined to be LG := DG −AG (where AG is the adjacency matrix), is in PG.

Example 2.30. An important class of examples of positive semidefinite matrices arises from
the Hessian matrix of (suitably differentiable) functions. In particular, if the Hessian is
positive definite at a point, then this is an isolated local minimum.

2.4. Schur complements. We mention some more preliminary results here; these may be
skipped for now but will get used in Lemma 9.5 below.

Definition 2.31. Given a matrix M =

(
P Q
R S

)
, where P and S are square and S is non-

singular, the Schur complement of M with respect to S is given by M/S := P −QS−1R.

Schur complements arise naturally in theory and applications. As an important ex-
ample, suppose X1, . . . , Xn and Y1, . . . , Ym are random variables with covariance matrix

Σ =

(
A B
BT C

)
, with C non-singular. Then the conditional covariance matrix of X given Y

is Cov(X|Y ) := A − BC−1BT = Σ/C. That such a matrix is also positive semidefinite is
implied by the following folklore result by Albert in SIAM J. Appl. Math in 1969.
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Theorem 2.32. Given a symmetric matrix Σ =

(
A B
BT C

)
, with C positive definite, the

matrix Σ is positive (semi)definite if and only if the Schur complement Σ/C is thus.

Proof. We first write down a more general matrix identity: for a non-singular matrix C and
a square matrix A, one uses a factorization shown by Schur in 1917 in J. reine angew. Math.:(

A B
B′ C

)
=

(
Id BC−1

0 Id

)(
A−BC−1B′ 0

0 C

)(
Id 0

C−1B′ Id

)
. (2.33)

(Note, the identity matrices on the right have different sizes.) Now set B′ = BT ; then

Σ = XTY X, where X =

(
Id 0

C−1BT Id

)
is non-singular, and Y =

(
A−BC−1BT 0

0 C

)
is

block diagonal (and real symmetric). The result is not hard to show from here. □

Akin to Sylvester’s criterion, the above characterization has a variant for when C is positive
semidefinite; however, this is not as easy to prove, and requires a more flexible “inverse”:

Definition 2.34 (Moore–Penrose inverse). Given any realm×nmatrix A, the pseudo-inverse
or Moore–Penrose inverse of A is an n×m matrix A† satisfying: AA†A = A, A†AA† = A†,
and (AA†)m×m, (A

†A)n×n are symmetric.

Lemma 2.35. For every Am×n, the matrix A† exists and is unique.

Proof. By Theorem 2.4, write A = P

(
Σr 0
0 0

)
Q, with Pm×m, Qn×n orthogonal, and Σr

containing the non-zero singular values of A. It is easily verified that QT

(
Σ−1
r 0
0 0

)T

P T

works as a choice of A†. To show the uniqueness: if A†
1, A

†
2 are both choices of Moore–

Penrose inverse for a matrix Am×n, then first compute using the defining properties:

AA†
1 = (AA†

2A)A
†
1 = (AA†

2)
T (AA†

1)
T = (A†

2)
T (AT (A†

1)
TAT ) = (A†

2)
TAT = (AA†

2)
T = AA†

2.

Similarly, A†
1A = A†

2A, so A
†
1 = A†

1(AA
†
1) = A†

1(AA
†
2) = (A†

1A)A
†
2 = (A†

2A)A
†
2 = A†

2. □

Example 2.36. Here are some examples of the Moore–Penrose inverse of square matrices.

(1) If D = diag(λ1, . . . , λr, 0, . . . , 0), with all λj ̸= 0, then D† = diag( 1
λ1
, . . . , 1

λr
, 0, . . . , 0).

(2) If A is positive semidefinite, then A = UTDU where D is a diagonal matrix. It is
easy to verify that A† = UTD†U .

(3) If A is non-singular then A† = A−1.

We now mention the connection between the positivity of a matrix and its Schur comple-
ment with respect to a singular submatrix. First, note that the Schur complement is now
defined in the expected way (here S,M are square), i.e., as follows:

M =

(
P Q
R S

)
=⇒ M/S := P −QS†R, (2.37)

Now the proof of the following result can be found in standard textbooks on matrix analysis.

Theorem 2.38. Given a symmetric matrix Σ =

(
A B
BT C

)
, with C not necessarily invertible,

the matrix Σ is positive semidefinite if and only if the following conditions hold:

(1) C is positive semidefinite.
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(2) The Schur complement Σ/C is positive semidefinite.
(3) (Id−CC†)BT = 0.
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3. Schur product theorem. Totally positive/non-negative matrices.
Examples.

3.1. The Schur product. We now make some straightforward observations about the set
Pn. The first is that Pn is topologically closed, convex, and closed under scaling by positive
multiples (a “cone”).

Lemma 3.1. Pn is a closed, convex cone in Rn×n.

Proof. All properties are easily verified using the definition of positive semidefiniteness. □

If A and B are positive semidefinite matrices, then we expect the product AB to also be
positive semidefinite. This is true if AB is symmetric.

Lemma 3.2. For A,B ∈ Pn, if AB is symmetric then AB ∈ Pn.

Proof. In fact, AB = (AB)T = BTAT = BA, so A and B commute. Writing A = UTD1U
and B = UTD2U as per the Spectral theorem 2.3 for commuting matrices, we have

xT (AB)x = xT (UTD1U · UTD2U)x = xTUT (D1D2)Ux = ∥
√
D1D2Ux∥2 ≥ 0.

Hence, AB ∈ Pn. □

Note, however, that AB need not be symmetric even if A and B are symmetric. In this
case, the matrix AB certainly cannot be positive semidefinite; however, it still satisfies one of
the equivalent conditions for positive semidefiniteness (shown above for symmetric matrices),
namely, having a non-negative spectrum. We prove this with the help of another result,
which shows the “tracial” property of the spectrum.

Lemma 3.3. Given An×m, Bm×n, the non-zero eigenvalues of AB and BA (and their mul-
tiplicities) agree.

(Here, “tracial” suggests that the expression for AB equals that for BA, as does the trace.)

Proof. Assume without loss of generality that 1 ≤ m ≤ n. The result will follow if we can
show that det(λ Idn×n−AB) = λn−m det(λ Idm×m−BA) for all λ. In turn, this follows from
the equivalence of characteristic polynomials of AB and BA up to a power of λ, which is why
we must take the union of both spectra with zero. (In particular, the sought-for equivalence
would also imply that the non-zero eigenvalues of AB and BA are equal up to multiplicity).

The proof finishes by considering the two following block matrix identities(
Idn×n −A

0 λ Idm×m

)(
λ Idn×n A
B Idm×m

)
=

(
λ Idn×n−AB 0

λB λ Idm×m

)
,(

Idn×n 0
−B λ Idm×m

)(
λ Idn×n A
B Idm×m

)
=

(
λ Idn×n A

0 λ Idm×m−BA

)
.

Note that the determinants on the two left-hand sides are equal. Now, equating the deter-
minants on the right-hand sides and canceling λm shows the desired identity

det(λ Idn×n−AB) = λn−m det(λ Idm×m−BA) (3.4)

for λ ̸= 0. But since both sides here are polynomial (hence continuous) functions of λ, taking
limits implies the identity for λ = 0 as well. (Alternately, AB is singular if n > m, which
shows the identity for λ = 0.) □

With Lemma 3.3 at hand, we can prove the following:

Proposition 3.5. For A,B ∈ Pn, AB has non-negative eigenvalues.
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Proof. Let X =
√
A and Y =

√
AB, where A = UTDU =⇒

√
A = UT

√
DU . Then

XY = AB and Y X =
√
AB
√
A. In fact, Y X is (symmetric and) positive semidefinite, since

xTY Xx = ∥
√
B
√
Ax∥2, ∀x ∈ Rn.

It follows that Y X has non-negative eigenvalues, so the same holds by Lemma 3.3 for XY =
AB, even if AB is not symmetric. □

We next introduce a different multiplication operation on matrices (possibly rectangular,
including row or column matrices), which features extensively in this text.

Definition 3.6. Given positive integers m,n, the Schur product of Am×n and Bm×n is the
matrix Cm×n with cjk = ajkbjk for 1 ≤ j ≤ m, 1 ≤ k ≤ n. We denote the Schur product by
◦ (to distinguish it from the conventional matrix product).

Lemma 3.7. Given integers m,n ≥ 1, (Rm×n,+, ◦) is a commutative associative algebra.

Proof. The easy proof is omitted. More formally, Rm×n under coordinatewise addition and
multiplication is the direct sum (or direct product) of copies of R under these operations. □

Remark 3.8. Schur products occur in a variety of settings in mathematics. These include
the theory of Schur multipliers (introduced by Schur himself in 1911 [329], in the same paper
where he shows the Schur product theorem 3.12), association schemes in combinatorics,
characteristic functions in probability theory, and the weak minimum principle in partial
differential equations. Another application is to products of integral equation kernels and
the connection to Mercer’s theorem (see Theorem 39.9). Yet another, well-known result
connects the functional calculus to this entrywise product: the Daletskii–Krein formula (1956)
expresses the Fréchet derivative of f(·) (the usual “functional calculus”) at a diagonal matrix
A as the Schur product/multiplier against the Loewner matrix Lf of f (see Theorem 16.8).
More precisely, let (a, b) ⊂ R be open, and f : (a, b) → R be C1. Choose scalars a < x1 <
· · · < xk < b and let A := diag(x1, . . . , xk). Then Daletskii and Krein [98] showed:

(Df)(A)(C) :=
d

dλ
f(A+ λC)

∣∣∣∣
λ=0

= Lf (x1, . . . , xk) ◦ C, ∀C = C∗ ∈ Ck×k, (3.9)

where Lf has (j, k) entry
f(xj)−f(xk)

xj−xk
if j ̸= k, and f ′(xj) otherwise. A final appearance of the

Schur product that we mention here is to trigonometric moments. Suppose f1, f2 : R → R
are continuous and 2π-periodic, with Fourier coefficients / trigonometric moments

a
(k)
j :=

∫ 2π

0
e−ikθ fj(θ) dθ, j = 1, 2, k ∈ Z.

If one defines the convolution product of f1, f2, via

(f1 ∗ f2)(θ) :=
∫ 2π

0
f1(t)f2(θ − t) dt,

then this function has corresponding kth Fourier coefficient a
(k)
1 a

(k)
2 . Thus, the bi-infinite

Toeplitz matrix of Fourier coefficients for f1 ∗ f2 equals the Schur product of the Toeplitz

matrices (a
(p−q)
1 )p,q∈Z and (a

(p−q)
2 )p,q∈Z.

Remark 3.10. The Schur product is also called the entrywise product or the Hadamard
product in the literature; the latter is likely owing to the famous paper by Hadamard [160]
in Acta Math. (1899), in which he shows (among other things) the Hadamard multiplication
theorem. This relates the radii of convergence and singularities of two power series

∑
j≥0 ajz

j
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and
∑

j≥0 bjz
j with those of

∑
j≥0 ajbjz

j . This “coefficientwise product” will recur later in

this text, when we discuss Maló’s theorem 33.8(3), in the context of Pólya–Schur multipliers.

Before proceeding further, we define another product on matrices of any dimensions.

Definition 3.11. Given matrices Am×n, Bp×q, the Kronecker product of A and B, denoted
A⊗B is the mp× nq block matrix, defined as:

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...
am1B am2B · · · amnB


While the Kronecker product (as defined) is asymmetric in its arguments, it is easily seen

that the analogous matrix B⊗A is obtained from A⊗B by permuting its rows and columns.
The next result, by Schur in J. reine angew. Math. (1911), is important later in this text.

We provide four proofs.

Theorem 3.12 (Schur product theorem). Pn is closed under ◦.
Proof. Suppose A,B ∈ Pn; we present four proofs that A ◦B ∈ Pn.

(1) Let A,B ∈ Pn have eigenbases (λj , vj) and (µk, wk), respectively. Then,

(A⊗B)(vj ⊗ wk) = λjµk(vj ⊗ wk), ∀1 ≤ j, k ≤ n. (3.13)

It follows that the Kronecker product has spectrum {λjµk}, and hence is positive
(semi)definite if A,B are positive (semi)definite. Hence, every principal submatrix
is also positive (semi)definite by Lemma 2.9. But now observe that the principal
submatrix of A⊗B with entries ajkbjk is precisely the Schur product A ◦B.

(2) By the spectral theorem and the bilinearity of the Schur product,

A =

n∑
j=1

λjvjv
T
j , B =

n∑
k=1

µkwkw
T
k =⇒ A ◦B =

n∑
j,k=1

λjµk(vj ◦ wk)(vj ◦ wk)
T .

This is a non-negative linear combination of rank-1 positive semidefinite matrices,
hence lies in Pn by Lemma 3.1.

(3) This proof uses a clever computation. Given any commutative ring R, square matrices
A,B ∈ Rn×n and vectors u, v ∈ Rn, we have

uT (A ◦B)v = tr(BTDuADv), (3.14)

where Dv denotes the diagonal matrix with diagonal entries the coordinates of v (in
the same order). Now if R = R and A,B ∈ Pn(R), then

vT (A ◦B)v = tr(ADvB
TDv) = tr(A1/2DvB

TDvA
1/2).

But A1/2DvBDvA
1/2 is positive semidefinite, so its trace is non-negative, as desired.

(4) Given t > 0, let X,Y be independent multivariate normal vectors centered at 0 and
with covariance matrices A+t Idn×n, B+t Idn×n respectively. (Note that these always
exist.) The Schur product of X and Y is then a random vector with mean zero and
covariance matrix (A+ t Idn×n) ◦ (B + t Idn×n). Now the result follows from the fact
that covariance matrices are positive semidefinite, by letting t→ 0+. □

Remark 3.15. The first of the above proofs also shows the Schur product theorem for
(complex) positive definite matrices: If A,B ∈ Pn(C) are positive definite, then so is their
Kronecker product A⊗B, hence also its principal submatrix A ◦B, the Schur product.
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The Schur product theorem is “qualitative” – it says M ◦ N ≥ 0 if M,N ≥ 0. In the
century after its formulation, tight quantitative non-zero lower bounds have been discovered.
For instance, in Linear Algebra Appl., Fiedler–Markham (1995) and Reams (1999) showed

M ◦N ≥ λmin(N)(M ◦ Idn×n),

M ◦N ≥ 1

1TN−11
M, if det(N) > 0.

(3.16)

We now give a lower bound by Khare, first obtained in a weaker form by Vyb́ıral (2020):

Theorem 3.17. Fix integers a, n ≥ 1 and non-zero matrices A,B ∈ Cn×a. Then we have
the (rank ≤ 1) lower bound

AA∗ ◦BB∗ ≥ 1

min(rkAA∗, rkBB∗)
dABT d∗ABT ,

where given a square matrix M = (mjk), the column vector dM := (mjj). Moreover, the
coefficient 1/min(·, ·) is best possible.

We make several remarks here. First, if A,B are rank 1, then a stronger result holds: we
get equality above (say unlike in (3.16), for instance). Second, reformulating the result in
terms of M = AA∗, N = BB∗ says that M ◦ N is bounded below by many possible rank-1
submatrices, one for every (square) matrix decomposition M = AA∗, N = BB∗. Third, the
result extends to Hilbert–Schmidt operators, in which case it again provides non-zero positive
lower bounds – and in a more general form even on Pn(C); see a 2021 paper in Proc. Amer.
Math. Soc. by Khare (following its special case in 2020 in Adv. Math. by Vyb́ıral). Finally,

specializing to the positive semidefinite square roots A =
√
M and B =

√
N yields a novel

connection between the matrix functional calculus and entrywise operations on matrices:

M ◦N ≥ 1

min(rk(M), rk(N))
d√

M
√

N
d∗√

M
√

N
, ∀M,N ∈ Pn(C), n ≥ 1.

Proof. We write down the proof as it serves to illustrate another important tool in matrix
analysis: the trace form on matrix space Ca×a. Compute using (3.14):

u∗(AA∗ ◦BB∗)u = tr(BBTDuAA
∗Du) = tr(T ∗T ), where T := A∗DuB.

Use the inner product on Ca×a, given by ⟨X,Y ⟩ := tr(X∗Y ). Define the projection operator

P := proj(kerA)⊥ |im(BT );

thus, P ∈ Ca×a. Now compute

⟨P, P ⟩ ≤ min(dim(kerA)⊥,dim im(BT )) = min(rk(A∗), rk(B∗)) = min(rk(AA∗), rk(BB∗)).

Here we use that AA∗ and A∗ have the same null space, since

A∗x = 0 =⇒ AA∗x = 0 =⇒ ∥A∗x∥2 = 0 =⇒ A∗x = 0,

and hence the same rank. Now using the Cauchy–Schwarz inequality (for this tracial inner
product) and the above computations, we have

u∗(AA∗ ◦BB∗)u = ⟨T, T ⟩ ≥ |⟨T, P ⟩|
2

⟨P, P ⟩
=
| tr(APBTDu)|2

⟨P, P ⟩
=
|u∗dAPBT |2

⟨P, P ⟩

≥ 1

min(rk(AA∗), rk(BB∗))
u∗dAPBT d∗APBT u.

As this holds for all vectors u, the result follows because by the choice of P , we have APBT =
ABT .
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Finally, to see the tightness of the lower bound, choose integers 1 ≤ r, s ≤ a with r, s ≤ n,
and complex block diagonal matrices

An×a :=

(
Dr×r 0
0 0

)
, Bn×a :=

(
D′

s×s 0
0 0

)
,

with both D,D′ non-singular. Now P = Idmin(r,s)⊕0a−min(r,s), and the inequality is indeed
tight, as can be verified using the Cauchy–Schwarz identity. □

Remark 3.18. Vyb́ıral also provided a simpler lower bound for Schur products for square
matrix decompositions: if A,B ∈ Cn×n, then

AA∗ ◦BB∗ ≥ (A ◦B)(A ◦B)∗,

where both sides are positive semidefinite. Indeed, if vj , wk denote the columns of A,B
respectively, then AA∗ =

∑
j vjv

∗
j and BB∗ =

∑
k wkw

∗
k, so

AA∗ ◦BB∗ =

n∑
j,k=1

(vjv
∗
j ) ◦ (wkw

∗
k) ≥

n∑
j=1

(vj ◦ wj)(v
∗
j ◦ w∗

j ) = (A ◦B)(A ◦B)∗.

3.2. Totally Positive (TP ) and Totally Non-negative (TN) matrices.

Definition 3.19. Given an integer p ≥ 1, we say a matrix is totally positive (totally non-
negative) of order p, denoted TPp (TNp), if all its 1 × 1, 2 × 2, . . . , and p × p minors are
positive (non-negative). We will also abuse notation and write A ∈ TPp (A ∈ TNp) if A is
TPp (TNp). A matrix is totally positive (TP ) (respectively, totally non-negative (TN)) if A
is TPp (respectively TNp) for all p ≥ 1.

Remark 3.20. In classical works, as well as the books by Karlin and Pinkus, totally non-
negative and totally positive matrices were referred to, respectively, as totally positive and
strictly totally positive matrices.

Here are some distinctions between TP/TN matrices and positive (semi)definite ones:

• For TP/TN matrices we consider all minors, not just the principal ones.
• As a consequence of considering the 1 × 1 minors, it follows that the entries of TP
(TN) matrices are all positive (non-negative).
• TP/TN matrices need not be symmetric, unlike positive semidefinite matrices.

Example 3.21. The matrix

(
1 2
3 16

)
is totally positive, while the matrix

(
1 0
0 1

)
is totally

non-negative but not totally positive.

Totally positive matrices and kernels have featured in the mathematics literature in a
variety of classical and modern topics. A few of these topics are now listed, as well as a few
of the experts who have worked/written on them:

• Interacting particle systems, mechanics, and physics (Gantmacher–Krein), see [137,
138] and follow-up papers, as well as [74] and the references therein.
• Analysis (Aissen, Edrei, Pólya, Schoenberg, Whitney, Hirschman and Widder), see
Part 4 for details. (Also Loewner [241] and the author, including with Belton–Guillot–
Putinar [32, 29] and [215].)
• Differential equations and applications – see, e.g., Loewner [241], Schwarz [332], the
book of Karlin [200], and numerous follow-ups, e.g. [254].
• Probability and statistics (Efron, Karlin, McGregor, Pitman, Rinott), see, e.g., [109,
199, 200, 201, 202, 204, 205, 218, 283] and numerous follow-ups.
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• Matrix theory and applications (Ando, Cryer, Fallat, Garloff, Johnson, Pinkus, Sokal,
Wagner), see, e.g., [12, 93, 94, 112, 113, 139, 140, 141, 282, 357].
• Gabor analysis (Gröchenig, Romero, Stöckler), see [148, 149] and related references.
• Interpolation theory and splines – see, e.g., numerous works by Schoenberg (e.g., with
Curry, Whitney), de Boor, Karlin, Micchelli (e.g., [59, 95, 96, 206, 262, 319, 327]).
• Combinatorics (Brenti, Gessel–Viennot, Karlin–McGregor, Lindström, Skandera, Sturm-
fels), see, e.g., [69, 70, 142, 202, 238, 339, 349] and follow-up works, for example, [362].
• Representation theory, flag varieties, and canonical bases (Goodearl–Launois–Lenagan,
Lusztig, Postnikov, Rietsch), e.g., [146, 245, 246, 292, 299, 300] and follow-up papers.
• Cluster algebras (Berenstein, Fomin, Zelevinsky), see, for example, [35, 36, 37, 125,
126, 127] and numerous follow-up papers.
• Quadratic algebras, Witt vector theory (Borger, Davydov, Grinberg, Hô Hai, Skryabin),
see [66, 67, 99, 177, 340].
• Integrable systems (Kodama, Williams), see, e.g., [221, 222].

A very important, and widely used, property of TNp matrices and kernels K is their
variation diminishing property. Roughly speaking, if a vector u (or a function f on an
interval J) has finitely many sign changes in its values, say s, then the vector Ku (or the
function

∫
J K(u, x) dx) has at most min(p, s) sign changes. In Math. Z. in 1930, Schoenberg

showed that if K is a TN matrix, then S−(Kx) ≤ S−(x) ∀x ∈ Rn. (See Section 29.1 for a
proof.) A characterization of such matrices was then shown by Motzkin in his thesis:

Theorem 3.22 (Motzkin, 1936, [263]). The following are equivalent for a matrix K ∈ Rm×n:

(1) K is variation diminishing: S−(Kx) ≤ S−(x) ∀x ∈ Rn. Here, S−(x) for a vector x
denotes the number of changes in sign, after removing all zero entries in x.

(2) Let K have rank r. Then K should not have two minors of equal size < r but opposite
signs; and K should not have two minors of equal size = r but opposite signs if these
minors come from the same rows or columns of K.

In this section and the next two, we discuss examples of TN matrices. We begin by
showing that the (positive semidefinite) Toeplitz cosine matrices and Hankel moment matrices
considered above are in fact totally non-negative.

Example 3.23 (Toeplitz cosine matrices). We claim that the following matrices are TN :

C(θ) := (cos(j − k)θ)nj,k=1, where θ ∈ [0, π
2(n−1) ].

Indeed, all 1× 1 minors are non-negative, and as discussed above, C(θ) has rank at most 2,
and so all 3×3 and larger minors vanish. It remains to consider all 2×2 minors. Now a 2×2

submatrix of C(θ) is of the form C ′ =

(
Cab Cac

Cdb Cdc

)
, where 1 ≤ a < d ≤ n, 1 ≤ b < c ≤ n,

and Cab denotes the matrix entry cos((a − b)θ). Writing a, b, c, d in place of aθ, bθ, cθ, dθ in
the next computation for ease of exposition, the corresponding minor is

detC ′ =
1

2

{
2 cos(a− b) cos(d− c)− 2 cos(a− c) cos(d− b)

}
=

1

2

{
cos(a− b+ d− c) + cos(a− b− d+ c)− cos(a− c+ d− b)− cos(a− c− d+ b)

}
=

1

2

{
cos(a− b− d+ c)− cos(a− c− d+ b)

}
=

1

2
(−2) sin(a− d) sin(c− b).

Thus, detC ′ = sin(dθ − aθ) sin(cθ − bθ), which is non-negative because a < d, b < c, and
θ ∈ [0, π

2(n−1) ]. This shows that C(θ) is totally non-negative.
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4. Fekete’s result. Hankel moment matrices are TN . Hankel positive
semidefinite and TN matrices.

Continuing from the previous section, we show that the Hankel moment matrices Hµ

studied above are not only positive semidefinite, but more strongly, totally non-negative
(TN). Akin to the Toeplitz cosine matrices (where the angle θ is restricted to ensure the
entries are non-negative), we restrict the support of the measure to [0,∞), which guarantees
that the entries are non-negative.

To achieve these goals, we prove the following result, which is crucial in relating positive
semidefinite matrices (and kernels) and their preservers, to Hankel TN matrices (and kernels)
and their preservers, (later in this text):

Theorem 4.1. If 1 ≤ p ≤ n are integers, and An×n is a real Hankel matrix, then A is TPp

(TNp) if and only if all contiguous principal submatrices of both A and A(1), of order ≤ p,

are positive (semi)definite, Here A(1) is obtained from A by removing the first row and last
column; and by a contiguous submatrix (or minor) we mean (the determinant of) a square
submatrix corresponding to successive rows and to successive columns.

In particular, A is TP (TN) if and only if A and A(1) are positive (semi)definite.

From this theorem, we derive the following two consequences, both of which are useful
later. The first follows from the fact that all contiguous submatrices of a Hankel matrix are
Hankel, hence symmetric:

Corollary 4.2. For all integers 1 ≤ p ≤ n, the set of Hankel TNp n×n matrices is a closed,
convex cone, further closed under taking Schur products.

The second corollary of Theorem 4.1 provides a large class of examples of such Hankel TN
matrices:

Corollary 4.3. Suppose µ is a non-negative measure supported in [0,∞), with all moments
finite. Then Hµ is TN .

The proofs are left as easy exercises; the second proof uses Lemma 2.22.

Remark 4.4. Akin to Lemma 2.22 and the remark following its proof, Corollary 4.3 is also
the easy half of a well-known classical result on moment problems – this time, by Stieltjes.
The harder converse of Stieltjes’ result says (in particular) that if a semi-infinite Hankel
matrix H is TN, with (j, k)-entry sj+k ≥ 0 for j, k ≥ 0, then there exists a non-negative
Borel measure µ on R with support in [0,∞), whose kth moment is sk for all k ≥ 0. By

Theorem 4.1, this is equivalent to both H as well as H(1) being positive semidefinite, where
H(1) is obtained by truncating the first row (or the first column) of H.

In the 1890s, Stieltjes was working on continued fractions and divergent series, following
Euler, Laguerre, Hermite, and others. One result that is relevant here is that Stieltjes pro-
duced a non-zero function φ : [0,∞) → R, such that

∫∞
0 xkφ(x) dx = 0 for all k = 0, 1, . . .

– an indeterminate moment problem. (The work in this setting also led him to develop the
Stieltjes integral; see, e.g., [220] for a detailed historical account.) This marks the beginning
of his exploration of the moment problem, which he resolved in his well-known memoir [347].

A curious follow-up, by Boas in Bull. Amer. Math. Soc. in 1939, is that if one replaces the
non-negativity of the Borel measure µ by the hypothesis of being of the form dα(t) on [0,∞)
with α of bounded variation, then this recovers all real sequences! See [53].
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The remainder of this section is devoted to showing Theorem 4.1. The proof uses a sequence

of lemmas shown by Gantmacher–Krein, Fekete, Schoenberg, and others. The first of these
lemmas may be (morally) attributed to Laplace.

Lemma 4.5. Let r ≥ 1 be an integer and U = (ujk) an (r + 2) × (r + 1) matrix. Given
subsets [a, b], [c, d] ⊂ (0,∞), let U[a,b]×[c,d] denote the submatrix of U with entries ujk, such
that j, k are integers and a ≤ j ≤ b, c ≤ k ≤ d. Then

detU[1,r]∪{r+2}×[1,r+1] · detU[2,r+1]×[1,r]

= detU[2,r+2]×[1,r+1] · detU[1,r]×[1,r]

+ detU[1,r+1]×[1,r+1] · detU[2,r]∪{r+2}×[1,r].

(4.6)

Note that in each of the three products of determinants, the second factor in the subscript
for the first (respectively second) determinant terms is the same: [1, r+1] (respectively [1, r]).

To give a feel for the result, the special case of r = 1 asserts that

u11

∣∣∣∣u21 u22
u31 u32

∣∣∣∣− u21 ∣∣∣∣u11 u12
u31 u32

∣∣∣∣+ u31

∣∣∣∣u11 u12
u21 u22

∣∣∣∣ = 0.

But this is precisely the Laplace expansion along the third column of the singular matrix

det

u11 u12 u11
u21 u22 u21
u31 u32 u31

 = 0.

Proof. Consider the (2r + 1)× (2r + 1) block matrix of the form

M =


bT u1,r+1 | bT

A a | A
cT ur+1,r+1 | cT

dT ur+2,r+1 | dT

A a | 0(r−1)×r

 =

(
(ujk)j∈[1,r+2], k∈[1,r+1] (ujk)j∈[1,r+2], k∈[1,r]
(ujk)j∈[2,r], k∈[1,r+1] 0(r−1)×r

)
;

that is, where

a = (u2,r+1, . . . , ur,r+1)
T , b =(u1,1, . . . , u1,r)

T , c = (ur+1,1, . . . , ur+1,r)
T ,

d = (ur+2,1, . . . , ur+2,r)
T , A = (ujk)2≤j≤r, 1≤k≤r.

Notice that M is a square matrix whose first r + 2 rows have column space of dimension
at most r + 1; hence detM = 0. Now we compute detM using the (generalized) Laplace
expansion by complementary minors: choose all possible (r+1)-tuples of rows from the first
r + 1 columns to obtain a submatrix M ′

(r+1), and deleting these rows and columns from M

yields the complementary r × r submatrix M ′′
(r) from the final r columns. The generalized

Laplace expansion says that if one multiplies detM ′
(r+1) · detM

′′
(r) by (−1)Σ, with Σ the sum

of the row numbers in M ′
(r+1), then summing over all such products (running over subsets of

rows) yields detM – which vanishes for this particular matrix M .
Now in the given matrix, to avoid obtaining zero terms, the rows in M ′

(r+1) must include

all entries from the final r − 1 rows (and the first r + 1 columns). But then it, moreover,
cannot include entries from the rows of M labeled 2, . . . , r; and it must include two of the
remaining three rows (and entries from only the first r + 1 columns).

Thus, we obtain three product terms that sum to: detM = 0. Upon carefully examining
the terms and computing the companion signs (by row permutations), we obtain (4.6). □
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The next two results are classical facts about totally positive matrices, first shown by
Fekete in his correspondence [118] with Pólya, published in Rend. Circ. Mat. Palermo. (As

an aside, that correspondence was published in 1912 under the title “Über ein Problem von
Laguerre”. This problem – from Laguerre’s 1883 paper – and its connection to TN matrices
and to the variation diminishing property alluded to in the preceding section, are discussed
in detail in Section 29.3.)

Lemma 4.7. Given integers m ≥ n ≥ 1 and a real matrix Am×n, such that

(a) all (n− 1)× (n− 1) minors detAJ×[1,n−1] > 0 for J ⊂ [1,m] of size n− 1, and
(b) all n× n minors detA[j+1,j+n]×[1,n] > 0 for 0 ≤ j ≤ m− n,
we have that all n× n minors of A are positive.

Proof. Define the gap, or “index” of a subset of integers J = {j1 < j2 < · · · < jn} ⊂ [1,m],
to be gJ := jn − j1 − (n − 1). Thus, the gap is zero if and only if J consists of successive
integers, and in general it counts precisely the number of integers between j1 and jn that are
missing from J .

We claim that detAJ×[1,n] > 0 for |J | = n, by induction on the gap gJ ≥ 0; the base case

gJ = 0 is given as hypothesis. For the induction step, suppose j0 is a missing index (or row
number) in J = {j1 < · · · < jn}. By suitably specializing the identity (4.6), we obtain

detA(j1,...,jn)×[1,n] · detA(j2,...,jn−1,j0)×[1,n−1]

= detA(j1,...,jn−1,j0)×[1,n] · detA(j2,...,jn)×[1,n−1] (4.8)

− detA(j2,...,jn,j0)×[1,n] · detA(j1,...,jn−1)×[1,n−1].

Consider the six factors in serial order. The first, fourth, and sixth factors have indices
listed in increasing order, while the other three factors have j0 listed at the end, so their
indices are not listed in increasing order. For each of the six factors, the number of “bubble
sorts” required to rearrange indices in increasing order (by moving j0 down the list) equals the
number of row exchanges in the corresponding determinants; label these numbers n1, . . . , n6.
Thus, n1 = n4 = n6 = 0 as above, while n2 = n3 (since j1 < j0 < jn), and |n2 − n5| = 1.
Now multiply Equation (4.8) by (−1)n2 , and divide both sides by

c0 := (−1)n2 detA(j2,...,jn−1,j0)×[1,n−1] > 0.

Using the given hypotheses as well as the induction step (since all terms involving j0 have a
gap equal to gJ − 1), it follows that

detA(j1,...,jn)×[1,n]

= c−1
0

(
(−1)n2 detA(j1,...,jn−1,j0)×[1,n] · detA(j2,...,jn)×[1,n−1]

+ (−1)n2+1 detA(j2,...,jn,j0)×[1,n] · detA(j1,...,jn−1)×[1,n−1]

)
> 0.

This completes the induction step, and with it, the proof. □

We can now state and prove another 1912 result by Fekete for TP matrices – extended to
TPp matrices by Schoenberg in Ann. of Math. 1955:

Lemma 4.9 (Fekete–Schoenberg lemma). Suppose m,n ≥ p ≥ 1 are integers, and A ∈ Rm×n

is a matrix, all of whose contiguous minors of order at most p are positive. Then A is TPp.

Notice that the analogous statement for TNp is false, e.g., p = 2 and A =

(
1 0 2
1 0 1

)
.
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Hankel positive semidefinite and TN matrices.
Proof. We show that for any integer s ∈ [1, p], every s× s minor of A is positive. The proof
is by induction on s (and running over all real matrices satisfying the hypotheses); note that
the base case of s = 1 is immediate from the assumptions. For the induction step, suppose

2 ≤ s = |J | = |K| ≤ p, J ⊂ Z ∩ [1,m], K ⊂ Z ∩ [1, n].

First fix a subset K that consists of consecutive rows, i.e., has gap gK = 0 (as in the proof of
Lemma 4.7). Let B denote the submatrix A[1,m]×K . Then all s× s minors of B are positive,
by Lemma 4.7. In particular, it follows for all J that all s× s minors detAJ×K′ are positive,
whenever K ′ ⊂ [1, n] has size s and gap gK′ = 0. Now apply Lemma 4.7 to the matrix
B := (AJ×[1,n])

T to obtain: det(AJ,K)T > 0 for (possibly non-consecutive subsets) K. This
concludes the proof. □

The final ingredient required to prove Theorem 4.1 is the following result:

Lemma 4.10. If An×n is a Hankel matrix, then every contiguous minor of A (see Lemma 4.9)

is a contiguous principal minor of A or of A(1).

Recall that A(1) was defined in Theorem 4.1.

Proof. Let the first row (respectively, last column) of A contain the entries s0, s1, . . . , sn−1

(respectively, sn−1, sn, . . . , s2n−2). Then every contiguous minor is the determinant of a
submatrix of the form

M =

 sj · · · sj+m
...

. . .
...

sj+m · · · sj+2m

 , 0 ≤ j ≤ j +m ≤ n− 1.

It is now immediate that if j is even (respectively odd), then M is a contiguous principal

submatrix of A (respectively A(1)). □

With these results in hand, we conclude by proving the above theorem.

Proof of Theorem 4.1. If the Hankel matrix A is TNp (TPp), then all contiguous minors of
A of order ≤ p are non-negative (positive), proving one implication. Conversely, suppose

all contiguous principal minors of A and A(1) of order ≤ p are positive. By Lemma 4.10,
this implies every contiguous minor of A of order ≤ p is positive. By the Fekete–Schoenberg
Lemma 4.9, A is TPp as desired.

Finally, suppose all contiguous principal minors of A,A(1) or size ≤ p are non-negative. It
follows by Lemma 4.10 that every contiguous square submatrix of A of order ≤ p is positive
semidefinite. Also choose and fix an n×n Hankel TP matrix B (note by (5.9) or Lemma 6.9

below that such matrices exist for all n ≥ 1). Applying Lemma 4.10, B,B(1) are positive
definite, hence so is every contiguous square submatrix of B. Now for ϵ > 0, it follows (by
Sylvester’s criterion, Theorem 2.8) that every contiguous principal minor of A + ϵB of size
≤ p is positive. Again applying Lemma 4.9, the Hankel matrix A + ϵB is necessarily TPp,
and taking ϵ→ 0+ finishes the proof.

The final statement is the special case p = n. □
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5. Generalized Vandermonde matrices. Cauchy–Binet formula and its
generalization.

The previous sections discussed examples (Toeplitz, Hankel) of totally non-negative (TN)
matrices. These examples consisted of symmetric matrices.

• We will now look at some examples of non-symmetric matrices that are totally positive
(TP ). We then prove the Cauchy–Binet formula, which will lead to the construction
of additional examples of symmetric TP matrices.
• Let Hµ := (sj+k(µ))j,k≥0 denote the moment matrix associated to a non-negative
measure µ supported on [0,∞). We have already seen that this matrix is Hankel and
positive semidefinite – in fact, TN . We will show in this section and the next that
Hµ is in fact TP in many cases. The proof will use a continuous generalization of the
Cauchy–Binet formula.

5.1. Generalized Vandermonde Matrices. A generalized Vandermonde matrix is a ma-
trix (xαk

j )nj,k=1, where xj > 0 and αj ∈ R for all j. If the xj are pairwise distinct, as are
the αk, then the corresponding generalized Vandermonde matrix is non-singular. In fact, a
stronger result holds:

Theorem 5.1. If 0 < x1 < · · · < xm and α1 < · · · < αn are real numbers, then the
generalized Vandermonde matrix Vm×n := (xαk

j ) is totally positive.

As an illustration, consider the special case m = n and αk = k − 1, which recovers the
usual Vandermonde matrix

V =


1 x1 · · · xn−1

1

1 x2 · · · xn−1
2

...
...

. . .
...

1 xn · · · xn−1
n

 .

This matrix has determinant
∏

1≤j<k≤n

(xk − xj) > 0. Thus, if 0 < x1 < x2 < · · · < xn then

detV > 0. However, note this is not enough to prove that the matrix is totally positive.
Thus, more work is required to prove total positivity, even for usual Vandermonde matrices.
The following 1637 result by Descartes will help in the proof. (Curiously, this preliminary
result is also the beginning of a mathematical journey that led to both total positivity and
to the variation diminishing property! See Section 29.3 for the details.)

Lemma 5.2 (Descartes’ rule of signs, weaker version). Fix pairwise distinct real numbers
α1, α2, . . . , αn ∈ R and n scalars c1, c2, . . . , cn ∈ R, such that not all scalars are 0. Then the
function f(x) :=

∑n
k=1 ckx

αk can have at most (n− 1) distinct positive roots.

The following proof is due to Laguerre (1883); that said, the trick of multiplying by a
faster-decaying function and applying Rolle’s theorem was previously employed by Poulain
in 1867. See Theorem 33.3.

Proof. By induction on n. For n = 1, clearly f(x) has no positive root. For the induction
step, without loss of generality we may assume α1 < α2 < · · · < αn and that all cj are
non-zero. If f has n distinct positive roots, then so does the function

g(x) := x−α1f(x) = c1 +

n∑
k=2

ckx
αk−α1 .



36 5. Generalized Vandermonde matrices. Cauchy–Binet formula and its generalization.

But then Rolle’s theorem implies that g′(x) =
∑n

k=2 ck(αk−α1)x
αk−α1−1 has (n−1) distinct

positive roots. This contradicts the induction hypothesis, completing the proof. □

With this result in hand, we can prove that generalized Vandermonde matrices are TP .

Proof of Theorem 5.1. As any submatrix of V is also a generalized Vandermonde matrix, it
suffices to show that the determinant of V is positive when m = n.

We first claim that detV ̸= 0. Indeed, suppose for contradiction that V is singular.
Then there is a non-zero vector c = (c1, c2, . . . , cn)

T , such that V c = 0. But then there
exist n distinct positive numbers x1, x2, . . . , xn, such that

∑n
k=1 ckx

αk
j = 0, which contradicts

Lemma 5.2 for f(x) =
∑n

k=1 ckx
αk . Thus, the claim follows.

We now prove the theorem via a homotopy argument. Consider a (continuous) path
γ : [0, 1] → Rn going from γ(0) = (0, 1, . . . , n − 1) to γ(1) = (α1, α2, . . . , αn), such that at
each timepoint t ∈ [0, 1], the coordinates of γ(t) are in increasing order. It is possible to
choose such a path; indeed, the straight line geodesic path is one such path.

Now let W (t) := det (x
γk(t)
j )nj,k=1. Then W : [0, 1] → R is a continuous map that never

vanishes. Since [0, 1] is connected and W (0) > 0 (see remarks above), it follows that W (1) =
detV > 0. □

Remark 5.3. If we have 0 < xn < xn−1 < · · · < x1 and αn < αn−1 < · · · < α1, then
observe that the corresponding generalized Vandermonde matrix V ′ := (xαk

j )nj,k=1 is also TP .

Indeed, once again we only need to show detV ′ > 0, and this follows from applying the same
permutation to the rows and to the columns of V ′ to reduce it to the situation in Theorem 5.1
(since then the determinant does not change in sign).

5.2. The Cauchy–Binet formula. The following is a recipe to construct new examples of
TP/TN matrices from known ones.

Proposition 5.4. If Am×n, Bn×k are both TN , then so is the matrix (AB)m×k. This asser-
tion is also valid upon replacing “TN” by “TP”, provided n ≥ min{m, k}.

To prove this proposition, we require the following important result.

Theorem 5.5 (Cauchy–Binet formula). Given matrices Am×n and Bn×m, we have

det(AB)m×m =
∑

J⊂[n] of size m

det(A[m]×J↑) det(BJ↑×[m]), (5.6)

where J↑ reiterates the fact that the elements of J are arranged in increasing order.

For example, if m = n, this theorem just reiterates the fact that the determinant map is
multiplicative on square matrices. If m > n, the theorem says that determinants of singular
matrices are zero. If m = 1, we obtain the inner product of a row and column vector.

Proof. Notice that

det(AB) = det



n∑
j1=1

a1j1bj11 · · ·
n∑

jm=1

a1jmbjmm

...
. . .

...
n∑

j1=1

amj1bj11 · · ·
n∑

jm=1

amjmbjmm


m×m

.
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By the multilinearity of the determinant, expanding det(AB) as a sum over all jl yields

det(AB) =
∑

(j1,j2,...,jm)∈[n]m
bj11bj22 · · · bjmm · det

a1j1 · · · a1jm
...

. . .
...

amj1 · · · amjm

 .

The determinant in the summand vanishes if jk = jm for any k ̸= m. Therefore,

det(AB) =
∑

(j1,j2,...,jm)∈[n]m,
all jl are distinct

bj11bj22 · · · bjmm · det

a1j1 · · · a1jm
...

. . .
...

amj1 · · · amjm


=

∑
(j1,j2,...,jm)∈[n]m,
all jl are distinct

bj11bj22 · · · bjmm · detA[m]×(j1,j2,...,jm).

We split this sum into two subsummations. One part runs over all collections of indices,
while the other runs over all possible orderings – that is, permutations – of each fixed collection
of indices. Thus, for each ordering j = (j1, . . . , jm) of J = {j1, . . . , jm}, there exists a unique
permutation σj ∈ Sm, such that (j1, . . . , jm) = σj(J

↑). Now,

det(AB) =
∑

J={j1,j2,...,jm}⊂[n], all jl distinct

∑
σ=σj∈Sm

bj11bj22 · · · bjmm(−1)σj detA[m]×J↑

=
∑

J⊂[n] of size m

det(A[m]×J↑) det(BJ↑×[m]). □

Proof of Proposition 5.4. Suppose two matrices Am×n and Bn×k are both TN . Let I ⊂ [m]
and K ⊂ [k] be index subsets of the same size; we are to show det(AB)I×K is non-negative.
Define matrices, A′ := AI×[n] and B′ := B[n]×K . Now it is easy to show that (AB)I×K =
A′B′. In particular, det(AB)I×K = det(A′B′). Hence, the Cauchy–Binet theorem implies

det(AB)I×K =
∑

J⊂[n],
|J |=|K|=|I|

detA′
I×J↑ detB

′
J↑×K =

∑
J⊂[n],

|J |=|K|=|I|

detAI×J↑ detBJ↑×K ≥ 0. (5.7)

It follows that AB is TN if both A and B are TN . For the corresponding TP -version, the
above proof works as long as the sums in the preceding equation are always over non-empty
sets; but this happens whenever n ≥ min{m, k}. □

Remark 5.8. This proof shows that Proposition 5.4 holds upon replacing TN/TP by TPp

for any 1 ≤ p ≤ n. (E.g. the condition TPn coincides with TPn−1 if min{m, k} < n.)

5.3. Generalized Cauchy–Binet formula. We showed in Section 5.1 that generalized
Vandermonde matrices are examples of totally positive but non-symmetric matrices. Using
these, we can construct additional examples of totally positive symmetric matrices: let V =
(xαk

j )nj,k=1 be a be a generalized Vandermonde matrix with 0 < x1 < x2 < · · · < xn and

α1 < α2 < · · · < αn. Then Proposition 5.4 implies that the symmetric matrices V TV and
V V T are totally positive.

For instance, if we take n = 3 and αk = k − 1, then

V =

1 x1 x21
1 x2 x22
1 x3 x23

 , V TV =

 3
∑3

j=1 xj
∑3

j=1 x
2
j∑3

j=1 xj
∑3

j=1 x
2
j

∑3
j=1 x

3
j∑3

j=1 x
2
j

∑3
j=1 x

3
j

∑3
j=1 x

4
j

 (5.9)
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This is clearly the Hankel moment matrixHµ for the counting measure on the set {x1, x2, x3}.
Moreover, V TV is (symmetric and) totally positive by the Cauchy–Binet formula. More gen-
erally, for all increasing αk which are in arithmetic progression, the matrix V TV (defined
similarly as above) is a totally positive Hankel moment matrix for some non-negative mea-
sure on [0,∞) – more precisely, supported on {xα2−α1

1 , xα2−α1
2 , . . . , xα2−α1

n }.
The following discussion aims to show (among other things) that the moment matrices Hµ

defined in (2.21) are totally positive for “most” non-negative measures µ supported in [0,∞).
We begin with by studying functions that are TP or TN .

Definition 5.10. Let X,Y ⊂ R and K : X × Y → R be a function. Given p ∈ N, we say
K(x, y) is a totally non-negative/totally positive kernel of order p (denoted TNp or TPp) if
for any integer 1 ≤ n ≤ p and elements x1 < x2 < · · · < xn ∈ X and y1 < y2 < · · · < yn ∈ Y ,
we have detK(xj , yk)

n
j,k=1 is non-negative (positive). Similarly, we say that the kernel K :

X × Y → R is totally non-negative/totally positive if K is TNp (or TPp) for all p ≥ 1.

Example 5.11. The kernel K(x, y) = exy is totally positive, with X = Y = R. Indeed,
choosing real numbers x1 < x2 < · · · < xn and y1 < y2 < · · · < yn, the matrix (exjyk)nj,k=1 =

((exj )yk)nj,k=1 is a generalized Vandermonde matrix, hence TP , so its determinant is positive.

We next generalize the Cauchy–Binet formula to TP/TN kernels. Let X,Y, Z ⊂ R and
µ be a non-negative Borel measure on Y . Let K(x, y) and L(y, z) be “nice” functions (i.e.,
Borel measurable with respect to Y ), and assume the following function is well defined:

M : X × Z → R, M(x, z) :=

∫
Y
K(x, y)L(y, z)dµ(y). (5.12)

For example, consider K(x, y) = exy and L(y, z) = eyz. Take X = Z = {α1, α2, . . . , αn}
and Y = {log(x1), log(x2), . . . , log(xn)}, such that 0 < x1 < x2 < · · · < xn and α1 < α2 <
· · · < αn. Finally, let µ denote the counting measure on Y . Then M(αi, αk) =

∑n
j=1 x

αi
j x

αk
j .

So (M(αi, αk))
n
i,k=1 = V TV , where V = (xαk

j )nj,k=1 is a generalized Vandermonde matrix.

In this “discrete” example (i.e., where the support of µ is a discrete set), detM is shown
to be positive using the total positivity of V, V T and the Cauchy–Binet formula. In fact, this
phenomenon extends to the more general setting above as follows:

Exercise 5.13 (Pólya–Szegő, Basic Composition formula, or Generalized Cauchy–Binet for-
mula). Suppose X,Y, Z ⊂ R and K(x, y), L(y, z),M(x, z) are as above. Then using an
argument similar to the above proof of the Cauchy–Binet formula, show that

det

M(x1, z1) . . . M(x1, zm)
...

. . .
...

M(xm, z1) . . . M(xm, zm)


=

∫
· · ·
∫

y1<y2<···<ym in Y

det(K(xi, yj))
m
i,j=1 · det(L(yj , zk))mj,k=1

m∏
j=1

dµ(yj).

(5.14)

Remark 5.15. In the right-hand side of Equation (5.14), we may also integrate over the
region y1 ≤ · · · ≤ ym in Y , since matrices with equal rows or columns are singular.
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Density of TP matrices in TN matrices. 39
6. Hankel moment matrices are TP . Andréief’s identity. Density of TP in

TN .

6.1. Total positivity of Hµ for ‘most’ measures; Andréief ’s identity. Continuing from
the previous section with the generalized Cauchy–Binet formula of Pólya–Szegő, from (5.14)
and Remark 5.8 we obtain the following consequence:

Corollary 6.1. (Notation as in the previous section.) If the kernels K and L are both TNp

for some integer p > 0 (or even TN), then so is M , where M was defined in (5.12). If
instead, K and L are TPp kernels, where p ≤ |supp(µ)|, then so is M .

We will apply this result to the moment matrices Hµ defined in (2.21). We begin more
generally: suppose Y ⊂ R and u : Y → (0,∞) is a positive and strictly increasing function,
all of whose moments exist with respect to some non-negative measure µ:∫

Y
u(y)n dµ(y) <∞, ∀n ≥ 0.

Then we claim:

Proposition 6.2. The kernel M : R× R→ R, given by

M(n,m) :=

∫
Y
u(y)n+m dµ(y)

is TN as well as TP|Y+|, where Y+ := supp(µ) ⊂ Y is finite or infinite.

Proof. To showM is TP|Y+|, the first claim is that the kernelK(n, y) := u(y)n is TP on R×Y .

Indeed, we can rewrite K(n, y) = en log(u(y)). Now given increasing tuples of elements nj ∈ R
and yk ∈ Y , the matrix K(nj , yk) is TP , by the total positivity of exy (see Example 5.11).

Similarly, L(y,m) := u(y)m is also TP on Y ×R. The result now follows by Corollary 6.1.
That M is TN follows from the same arguments, via Remark 5.15. □

This result implies the total positivity of the Hankel moment matrices (2.21). Indeed,
setting u(y) = y on domains Y ⊂ [0,∞), we obtain:

Corollary 6.3. Suppose Y ⊂ [0,∞) and µ is a non-negative measure on Y with infinite
support. Then the moment matrix Hµ is totally positive (of all orders).

We now show a result that will be used to provide another proof of the preceding corollary.

Theorem 6.4 (Andréief’s identity, 1883). Suppose Y ⊂ R is a bounded interval, n > 0 is
an integer, and f1, f2, . . . , fn; g1, g2, . . . , gn : Y → R are integrable functions with respect to
a positive measure µ on Y . Define y := (y1, . . . , yn), and

K(y) := (fi(yj))
n
i,j=1, L(y) := (gk(yj))

n
j,k=1, M ′ :=

(∫
Y
fi(y)gk(y) dµ(y)

)n

i,k=1

.

Then,

detM ′ =
1

n!

∫
· · ·
∫

Y n

det(K(y)) det(L(y))

n∏
j=1

dµ(yj). (6.5)
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Proof. We compute, beginning with the right-hand side:∫

· · ·
∫

Y n

det(K(y)) det(L(y))

n∏
j=1

dµ(yj)

=
∑

σ,τ∈Sn

sgn(σ) sgn(τ)
n∏

j=1

∫
Y
fσ(j)(yj)gτ(j)(yj) dµ(yj).

Let β = στ−1. Then a change of variables shows that this expression equals

=
∑

τ,β∈Sn

sgn(β)
n∏

j=1

∫
Y
gτ(j)(y)fβτ(j)(y) dµ(y)

=
∑
τ∈Sn

det

(∫
Y
fτ(i)(y)gτ(k)(y) dµ(y)

)n

i,k=1

= n! detM ′. □

As a special case, let u : Y → R be positive and strictly increasing, and set fi(y) =
u(y)ni , gk(y) = u(y)mk for all 1 ≤ i, k ≤ n and increasing sequences of integers n1 < n2 < · · ·
and m1 < m2 < · · · . Then the matrix M ′ has (i, k) entry

∫
Y
u(y)ni+mk dµ(y). Now using

Andréief’s identity – and the analysis from earlier in this section – we obtain a second proof
of Proposition 6.2.

In particular, specializing to u(y) = y and Y ⊂ [0,∞) reproves the total positivity of
moment matrices Hµ for measures µ ≥ 0 with infinite support in Y . In this case we have
nj = mj = j − 1 for j = 1, . . . , n. The advantage of this proof (over using the generalized
Cauchy–Binet formula) is that we can compute detM ′ ‘explicitly’ using Andréief’s identity:

M ′ = (si+k−2(µ))
n
i,k=1, si+k−2(µ) =

∫
Y
yi−1yk−1 dµ(y),

detM ′ =
1

n!

∫
Y n

∏
1≤r<s≤n

(ys − yr)2 dµ(y1)dµ(y2) · · · dµ(yn).
(6.6)

(This uses the Vandermonde determinant identity detK(y) = detL(y) =
∏

1≤r<s≤n

(ys − yr).)

6.2. Density of TP matrices in TN matrices. We will now prove an important density
result due to Whitney in J. d’Analyse Math. (1952). Standard/well-known examples of such
results are:

(1) Every square real matrix can be approximated by non-singular real matrices.
(2) Symmetric non-singular real matrices are dense in symmetric real matrices.
(3) n× n positive definite matrices are dense in Pn.

The goal of this section is to prove the following

Theorem 6.7 (Whitney density). Given positive integers m,n ≥ p, the set of TPp m × n
matrices is (entrywise) dense in the set of TNp m× n matrices.

In order to prove this theorem, we first prove a lemma by Pólya.

Lemma 6.8 (Pólya). For all σ > 0, the Gaussian kernel TGσ : R× R→ R given by

TGσ(x, y) := e−σ(x−y)2
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is totally positive.

Note that the function f(x) = e−σx2
is such that the TP kernel TGσ(x, y) can be rewritten

as f(x− y). Such (integrable) functions on the real line are known as Pólya frequency (PF)
functions, and we will study these functions – and their preservers – in detail in Sections 37
and 38.

Proof. Given real numbers x1 < x2 < · · · < xn and y1 < y2 < · · · < yn, we have:

(TGσ(xj , yk))
n
j,k=1 = (e−σxj

2
e2σxjyke−σyk

2
)nj,k=1

= diag(e−σxj
2
)nj=1

e
2σx1y1 · · · e2σx1yn

...
. . .

...
e2σxny1 · · · e2σxnyn

diag(e−σyk
2
)nk=1,

and this has positive determinant by the previous section (see Example 5.11). □

In a similar vein, we have the following:

Lemma 6.9. For all σ > 0, the kernel H ′
σ : R× R→ R, given by

H ′
σ(x, y) := eσ(x+y)2

is totally positive. In particular, the kernels TGσ (from Lemma 6.8) and H ′
σ provide examples

of TP Toeplitz and Hankel matrices, respectively.

Proof. The proof of the total positivity of H ′
σ is similar to that of TGσ above, and hence left

as an exercise. To obtain TP Toeplitz and Hankel matrices, akin to Example 3.23, we choose
any arithmetic progression x1, . . . , xn of finite length, and consider the matrices with (j, k)th
entry TGσ(xj , xk) and H

′
σ(xj , xk), respectively. □

Now we come to the main proof of this section.

Proof of Theorem 6.7. Let Am×n be TNp of rank r. Define for each integer m > 0 the matrix

(Gσ,m)m×m = (e−σ(j−k)2)mj,k=1,

A(σ) = Gσ,mAGσ,n.
(6.10)

Note that Gσ,m is TP by Lemma 6.8, and Gσ,m → Idm×m as σ → ∞. Now as the product
of totally non-negative matrices is totally non-negative (Proposition 5.4), and Gσ,m is non-
singular for all m, we have that A(σ) is TNp of rank r.

Claim 6.11. A(σ) is TPmin(r,p).

Proof. For any s ≤ min(r, p), let J ⊂ [m], K ⊂ [n] of size s. Using the Cauchy–Binet
Formula, we compute:

detA(σ)J×K =
∑

L⊂[m], M⊂[n]
|L|=|M |=s

det(Gσ,m)J×L detAL×M det(Gσ,n)M×K .

Now note that for all 1 ≤ k ≤ min(r, p), at least one k × k minor of A is positive, and all
other k × k minors are non-negative. Combined with the total positivity of Gσ,m and Gσ,n,
this shows that detA(σ)J×K > 0. This concludes the proof. □
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Returning to the proof of the theorem, if r ≥ p then the TP matrices A(σ) approximate

A as σ →∞; thus the proof is complete.
For the remainder of the proof, assume that A and A(σ) both have rank r < p. Define

A(1) := A(σ) +
1

σ
E11,

where E11 is the elementary m× n matrix with (1, 1) entry 1, and all other entries 0.

Claim 6.12. A(1) is TNp of rank r + 1.

Proof. Fix an integer 1 ≤ s ≤ p and subsets J ⊂ [m],K ⊂ [n] of size s. Now consider the

s × s submatrix A
(1)
J×K . If 1 ̸∈ J or 1 ̸∈ K, then we have: detA

(1)
J×K = detA(σ)J×K ≥ 0,

whereas if 1 ∈ J ∩K, then expanding along the first row or column shows that A(1) is TNp:

detA
(1)
J×K = detA(σ)J×K +

1

σ
det(A(σ))J\{1}×K\{1} ≥ 0.

As A,A(σ) have rank r, and we are changing only one entry, all the (r+2)× (r+2) minors

of A(1) have determinant 0. Now an easy computation yields:

detA
(1)
[r+1]×[r+1] = detA(σ)[r+1]×[r+1] +

1

σ
detA(σ)[r+1]\{1}×[r+1]\{1} > 0,

where the last inequality occurs because A(σ) is TPr (shown above) and detA(σ)[r+1]×[r+1] =

0. Thus the rank of A(1) is r + 1. □

Returning to the proof: note that A(1) also converges to A as σ →∞. Inductively repeating
this procedure, after (p− r) iterations we obtain a matrix A(p−r), via the procedure

A(k)(σ) := Gσ,mA
(k)Gσ,n, A(k+1) := A(k)(σ) +

1

σ
E11. (6.13)

Moreover, A(p−r) is a TNp matrix with rank p. As min(r, p) = p for this matrix, it follows

that A(p−r)(σ) is TPp with A(p−r)(σ)→ A(p−r−1)(σ)→ · · · → A as σ →∞. Thus, A can be
approximated by TPp matrices, and the proof is complete. □

We now make some observations that further Whitney’s theorem. First, this density
phenomenon also holds upon restricting to symmetric matrices:

Proposition 6.14. Given positive integers n ≥ p, the set of symmetric TPp n× n matrices
is (entrywise) dense in the set of symmetric TNp n× n matrices.

Proof. The proof of Theorem 6.7 goes through verbatim; at each step, the resulting matrix
is symmetric. □

Second, a careful analysis of the above proof further shows that

A(σ)jk =
∑
l,m

e−σ(j−l)2alme
−σ(m−k)2 ≥ ajk.

Thus, given Am×n that is TNp (possibly symmetric) and ϵ > 0, there exists Bm×n that is
TPp (possibly symmetric) such that 0 ≤ bjk − ajk < ϵ for all j, k.

Remark 6.15. In fact we can further refine this: by working with B(σ) for such B, we can
insist on 0 < bjk−ajk < ϵ. From this it follows that given a (possibly symmetric) TNp matrix
Am×n, there exists a sequence Bl of m × n matrices, all of them TPp (and symmetric if A
is), such that Bl → A entrywise as l→∞, and moreover for all j, k,

(B1)jk > (B2)jk > · · · > (Bl)jk > · · · > ajk.
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7. (Non-)Symmetric TP completion problems.

The main question in matrix completion problems is as follows. Given a partially filled
matrix (that is, a partial matrix), do there exist choices for the ‘missing’ entries such that
the resulting matrix has specified properties?

For example: can

1 0 ?
2 ? ?
? ? ?

 be completed to a Toeplitz matrix? Yes:

1 0 a
2 1 0
b 2 1

,

for arbitrary a, b. Similarly, the above partial matrix can be completed to a non-singular,
singular, or totally non-negative matrix. However, it cannot be completed to a Hankel or a
symmetric Toeplitz matrix, nor to a positive (semi)definite or totally positive matrix. These
are examples of some matrix completion problems. Similarly, one can ask if matrices with
specified entries extend to kernels on more general domains.

In this section, we discuss three TP completion problems. The first is to understand which
2× 2 matrices can ‘embed in’ (or ‘extend to’) TP matrices – or even TP kernels:

Theorem 7.1 (2× 2 TP kernel completions). Suppose A =

(
a b
c d

)
∈ R2×2. The following

are equivalent:

(1) For any m,n ≥ 2 and specified pairs of rows and columns J ⊂ [m],K ⊂ [n] respec-
tively, the matrix A can be completed to a multiple of a generalized Vandermonde

(and hence TP ) matrix Ãm×n such that (Ã)J×K = A.
(2) For any totally ordered sets X,Y with sizes |X|, |Y | ≥ 2 which admit a TP kernel on

X × Y , and pairs of indices (x1 < x2) in X and (y1 < y2) in Y , the matrix A can be
completed to a TP kernel K on X × Y , such that K[(x1, x2); (y1, y2)] = A.

(3) A is TP .

We will also show in Theorem 7.4 below, a ‘symmetric’ variant of this equivalence. To
show these results, we first need to understand for which totally ordered sets X,Y do there
exist TP kernels on X × Y . Note, this is not possible for all X,Y . For instance, if |Y | > |R|
(e.g. Y is the power set of R) and |X| ≥ 2, then fix x1 < x2 in X. Now any real kernel on
X × Y cannot be TP or even TP2, since when restricted to {x1, x2} × Y , it contains two
equal columns by the pigeonhole principle as |Y | > |R2|.

At the same time, TP1 kernels can exist on X ×Y for any totally ordered sets X,Y – e.g.,
the constant kernel 1X×Y .

Thus, we begin by classifying all domains on which TP2 kernels exist. Interestingly, they
always embed in the positive semi-axis:

Lemma 7.2. Given non-empty totally ordered sets X, Y , the following are equivalent:

(1) There exists a TP kernel on X × Y .
(2) There exists a TP2 kernel on X × Y .
(3) At least one of X,Y is a singleton, or there exist order-preserving maps from X,Y

into (0,∞).

The same equivalence holds if Y = X and K is symmetric: K(x, y) = K(y, x) for all x, y ∈ X.

Proof. We prove a chain of cyclic implications. Clearly (1) implies (2). Now suppose (3)
holds. If X or Y is a singleton then the kernel K ≡ 1X×Y proves (1). Otherwise, we
identify X,Y with subsets of (0,∞) as given; now (1) follows by considering the kernels
K±(x, y) := exp±(x± y)2 as in Lemmas 6.8 and 6.9.
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Finally, we assume (2) and show (3). Suppose |X|, |Y | ≥ 2. Fix x1 < x2 in X; since K is
TP2, it is an easy exercise to show that the ‘ratio function’

ψ(y) := K(x2, y)/K(x1, y), y ∈ Y
is a strictly increasing function of y. This yields the desired order-preserving injection ψ :
Y ↪→ (0,∞); the same argument works for X, implying (3).

This proof applies verbatim if Y = X and we consider symmetric kernels K. □

Proof of Theorem 7.1. Clearly, (1) or (2) both imply (3); and (1) is a special case of (2), so
we will show (3) =⇒ (2). (In fact with Lemma 7.2 at hand, we first embed X,Y into R and
then extend A to a generalized Vandermonde kernel, thereby proving a stronger statement
than (2), which now clearly implies/specializes to (1).) First use Lemma 7.2 to identify X,Y

with subsets of (0,∞); then work with the TP matrix

(
βa βb
βc βd

)
for some scalar β > 0. We

claim there exists β > 0 such that this matrix is of the form (xαk
j )2j,k=1 = (exp(αk·log xj))2j,k=1

– i.e., a generalized Vandermonde matrix – where either x1 < x2, α1 < α2 or x1 > x2, α1 > α2.
But the latter case reduces to the former, by using 1/xj and −αk instead.

Thus, if the claim holds, then we may suppose A embeds in / can be completed to the
rescaled Vandermonde kernel K(x, y) = β−1exy (noting that xy = ey log x). Now consider
the two unique (increasing) linear maps φX , φY : R→ R, which change the ‘position’ of the
chosen rows and columns to the specified positions, either to draw from K an m × n TP
matrix as in (1), or a TP kernel K on X × Y as in (2): K(x, y) := β−1 exp(φX(x)φY (y)).

Thus, it remains to show the above claim. For this, we repeatedly appeal to the total
positivity of generalized Vandermonde matrices (xαk

j ) with xj and αk either both increasing
or both decreasing. See Theorem 5.1 and Remark 5.3.

Case 1: Suppose three of the four entries a, b, c, d are equal (note that all four cannot be
equal). Then up to rescaling, the possible matrices are

A1 =

(
λ 1
1 1

)
, A2 =

(
1 1
µ 1

)
, A3 =

(
1 µ
1 1

)
, A4 =

(
1 1
1 λ

)
,

where λ > 1 > µ > 0. Now A1, . . . , A4 are of the form (xαk
j ) with (respectively)

(x1, x2, α1, α2) = (λ, 1, 1, 0), (1, µ, 1, 0), (µ, 1, 0, 1), (1, λ, 0, 1).

For A1, A2, choosing any x2 > x3 > · · · > xm > 0 and 0 > α3 > · · · > αn, we are done. The
other two cases are treated similarly.

Case 2: Suppose two entries in a row or column are equal (but three entries are not). Up
to rescaling, the possible matrices are

A′
1 =

(
1 1
γ δ

)
, A′

2 =

(
δ γ
1 1

)
, A′

3 =

(
δ 1
γ 1

)
, A′

4 =

(
1 γ
1 δ

)
, γ, δ ̸= 1,

and 0 < γ < δ. Now A′
1, . . . , A

′
4 are generalized Vandermonde matrices (xαk

j ) with

(x1, x2, α1, α2) = (1, e, log γ, log δ), (e, 1, log δ, log γ), (δ, γ, 1, 0), (γ, δ, 0, 1),

respectively. The result follows as in the previous case.

Case 3: In all remaining cases, {a, d} is disjoint from {b, c}. Set α1 = 1, and claim that
there exist scalars β, x1, x2 > 0 and α2 ∈ R such that

β

(
a b
c d

)
=

(
x1 xα2

1
x2 xα2

2

)
. (7.3)
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To see why, denote L := log(β) for β > 0, as well as A = log(a) (this is used locally only in
the claim of this proof), B = log(b) etc. Now applying log entrywise to both sides of (7.3),(

L+A L+B
L+ C L+D

)
=

(
log x1 α2 log x1
log x2 α2 log x2

)
.

Taking determinants, we obtain:

(L+A)(L+D)− (L+B)(L+ C) = 0 =⇒ L =
BC −AD

(A+D)− (B + C)
,

where A+D > B +C since ad > bc. Now check that x1 = eLa, x2 = eLc, α2 =
L+B
L+A satisfies

the conditions in (7.3). (Note here that by the assumptions on a, b, c, d, the sum L + A is
non-zero, as are L+B,L+ C,L+D also.) This shows the claim.

To complete the proof, we need to check that β

(
x1 xα2

1
x2 xα2

2

)
is a generalized Vandermonde

matrix. Since x1 ̸= x2 by choice of a, c, there are two cases. If x1 < x2, then a < c, so

(x1/x2)
α2 = b/d < a/c = x1/x2 < 1 =⇒ α2 > 1.

Hence we indeed get a generalized Vandermonde matrix (xαk
j )2×2 with increasing xj and

increasing αk. The case when x1 > x2 is similarly verified. □

The second TP completion result embeds symmetric 2 × 2 TP matrices into symmetric
TP matrices or kernels, again in ‘any position’. This result, like Theorem 7.1, is used in a
later part of this text to classify total-positivity preservers of kernels on general domains.

Theorem 7.4 (Symmetric 2 × 2 kernel completions). Suppose A =

(
a b
b c

)
∈ R2×2. The

following are equivalent:

(1) For any n ≥ 2 and specified pair J ⊂ [n] of rows and columns, the matrix A can be

completed to a symmetric (in fact Hankel) TP matrix Ãn×n such that (Ã)J×J = A.
(2) For any totally ordered set X of size at least 2 which admits a TP kernel on X ×X,

and any pair of indices (x1 < x2) in X, the matrix A can be completed to a symmetric
TP kernel K on X ×X, such that K[(x1, x2); (x1, x2)] = A.

(3) A is TP .

As a special case, consider the assertion (3) =⇒ (1), where we want to show that A

embeds in the leading principal positions. It suffices to embed the matrix

(
1 b
b c

)
, where

0 < b <
√
c, inside the square matrix

1

K
V TV =

1

K


1 1 · · · 1
x1 x2 · · · xK
...

...
. . .

...
xn−1
1 xn−1

2 · · · xn−1
K



1 x1 · · · xn−1

1

1 x2 · · · xn−1
2

...
...

. . .
...

1 xK · · · xn−1
K

 ,

where K ≥ n and VK×n is (part of) a ‘usual’ Vandermonde matrix (xk−1
j ). In terms of

probability, this amounts to finding a uniform random variable, supported on {x1, . . . , xK},
with mean b and variance c− b2. (See e.g. [1].) That is, a discrete inverse moment problem.

In fact this motivates the proof-strategy, even for the stronger result (3) =⇒ (2), which
should similarly involve continuous distributions. Thus, the proof involves continuous ran-
dom variables, and uses the Generalized Cauchy–Binet formula (one can also use Andréief’s
identity).
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Proof. Clearly (1) or (2) implies (3), and (1) is a special case of (2), so it suffices to show
(3) =⇒ (2). The proof is similar to that of Theorem 7.1: first embed X inside R via
Lemma 7.2. Now it suffices to embed any A as above in a continuous Hankel (hence sym-
metric) TP kernel K : R× R→ (0,∞), and then use an increasing linear map φX : X → R
to ‘change locations’. To construct K, we use Proposition 6.2. Thus, we need an increasing
function u : R→ (0,∞), scalars s < t ∈ R, and a positive measure µ on R such that∫

R
u(y)2s dµ(y) = a,

∫
R
u(y)s+t dµ(y) = b,

∫
R
u(y)2t dµ(y) = c.

A solution is as follows, verified via direct computations. Define B := log(b/a), C := log(c/a)
and note that (C/2)−B = 1

2 log(ac/b
2) > 0. Now verify that the following works:

s :=
4B − C

8
√
(C/2)−B

, t :=
3C − 4B

8
√
(C/2)−B

, u(y) := e2y, µ(y) :=
a

√
πe4s2

e−y2 dy. □

The third TP completion problem in this section extends Theorem 7.1 differently, to
completions of matrices of arbitrary sizes that are totally positive of arbitrary order:

Theorem 7.5. Suppose m,n ≥ 1 and 1 ≤ p ≤ min(m,n) are integers, and J ⊂ [m], K ⊂ [n]
are ‘sub-intervals’ containing m′, n′ consecutive integers, respectively. A real m′ × n′ matrix
A′ can be completed to a TPp real m×n matrix, in positions J ×K, if and only if A′ is TPp.

Proof. One implication is obvious. Conversely, suppose A′
m′×n′ is TPp. It suffices to show

that one can add an extra row either above or below A′ and obtain a TPp matrix. Then the
result follows by induction and taking transposes.

We first show how to add a row (a1, . . . , an′) at the bottom. Choose any a1 > 0; having
defined a1, . . . , ak > 0 for some 0 < k < n′, we inductively define ak+1 as follows. Define

the (m′ + 1)× (k + 1) matrix Bk :=

(
A′

[m′]×[k+1]

a1 · · · ak+1

)
(with unknown ak+1 > 0), and consider

the 1 × 1, . . . , p × p submatrices B′ of Bk which contain entries from the last row and
last column, whence ak+1. Compute det(B′) by expanding along the last row, and from
right to left. Requiring det(B′) > 0 yields a strict lower bound for ak+1, since the cofactor
corresponding to ak+1 is a lower-order minor of A′, hence positive. Working over all such
minors det(B′) yields a finite set of lower bounds, so that it is possible to define ak+1 and
obtain all minors with ‘bottom corner’ ak+1 and size at most p × p to be positive. By the
induction hypothesis, all other minors of Bk of size at most p× p are positive, so Bk is TPp.
Proceeding inductively, we obtain the desired (m′ + 1)× n′ completion of A′ that is TPp.

The argument is similar to add a row (a1, . . . , an′) on top of A′: this time we proceed
sequentially from right to left. First, an′ is arbitrary; then to define ak (given ak+1, . . . , an′),
we require ak to satisfy a finite set of inequalities (obtained by expanding det(B′) along the
first row from left to right), and each inequality is again a strict lower bound. □

Remark 7.6. To conclude, we explain how Whitney density and the above TP completion
problems are used in a later part of the text, in classifying the preservers F ◦− of TP matrices
and kernels on arbitrary domains X × Y . The first step will be to deduce from Theorem 7.1
that any 2× 2 TP matrix can be embedded in a TP kernel on X × Y . This will help show
that the preserver F must be continuous. We then use results akin to Whitney’s density
theorem 6.7 to show that F preserves TN kernels on X × Y . These latter will turn out to
be easier to classify. Similarly for the preservers of symmetric TP kernels on X ×X.
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8. Theorems of Perron and Kronecker. Spectra of TP and TN matrices.

We conclude this part by studying the spectra of TP/TN matrices. For real square sym-
metric matrices An×n, recall Sylvester’s criterion 2.8, which says modulo Theorem 2.5 that
such a matrix An×n has all principal minors non-negative (or positive), if and only if all
eigenvalues of A are non-negative (positive).

The goal in this section is to show a similar result for TP/TN matrices. More precisely,
we will show the same statement as above, removing the words ‘symmetric’ and ‘principal’
from the preceding paragraph. In particular, not only are all minors of TP and TN matrices
positive and non-negative respectively, but moreover, so are their eigenvalues. A slightly
more involved formulation of this result is:

Theorem 8.1. Given integers m,n ≥ p ≥ 1 and A ∈ Rm×n, the following are equivalent:

(1) For every square submatrix B of A of size ≤ p, we have det(B) is non-negative
(respectively positive). In other words, A is TNp (respectively TPp).

(2) For every square submatrix B of A of size ≤ p, the eigenvalues of B are non-negative
(respectively positive and simple).

Note that the analogous statement for positive semidefinite matrices clearly holds (as
mentioned above), by Sylvester’s theorem.

We will follow the original proof, written out by Gantmacher and Krein in their 1937 paper
in Compositio Math. This approach is also found in Chapter XIII.9 of F.R. Gantmacher’s
book The theory of matrices; and in an expository account by A. Pinkus [279] found in
the conference proceedings Total positivity and its applications (of the 1994 Jaca meeting in
honor of Sam Karlin), edited by M. Gasca and C.A. Micchelli. (The above paper of Pinkus
also features at the end of this section, when we discuss spectra of TN kernels.)

This approach relies on two well-known theorems, which are interesting in their own right.
The first was shown by O. Perron in his 1907 paper in Math. Ann.:

Theorem 8.2 (Perron). Let An×n be a square, real matrix with all positive elements. Then
A has a simple, positive eigenvalue λ with an eigenvector u0 ∈ Rn, such that:

(a) For the remaining n− 1 eigenvalues µ ∈ C, we have |µ| < λ.
(b) The coordinates of u0 are all non-zero and of the same sign.

This result has been studied and extended by many authors in the literature; notably, the
Perron–Frobenius theorem is a key tool used in one of the approaches to studying discrete
time Markov chains over finite state-space. As these extensions are not central to the present
discussion, we do not pursue them further.

Proof. Write v ≥ u (or v > u) for u, v ∈ Rn to denote the (strict) coordinatewise ordering:
vj ≥ uj (or vj > uj) for all 1 ≤ j ≤ n. A first observation, used below, is:

u ≤ v in Rn, u ̸= v =⇒ Au < Av. (8.3)

We now proceed to the proof. Define

λ := sup{µ ∈ R : Au ≥ µu for some non-zero vector 0 ≤ u ∈ Rn}.
Now verify that

0 < nmin
j,k

ajk ≤ λ ≤ nmax
j,k

ajk;

in particular, λ is well-defined. Now for each k ≥ 1, there exist (rescaled) vectors uk ≥ 0 in
Rn whose coordinates sum to 1, and such that Auk ≥ (λ − 1/k)uk. But then the uk belong
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to a compact simplex S, so there exists a subsequence converging to some vector u0 ∈ S. It
follows that Au0 ≥ λu0; if Au0 ̸= λu0, then an application of (8.3) leads to a contradiction
to the maximality of λ. Thus Au0 = λu0 for non-zero u0 ≥ 0. But then Au0 > 0, hence
u0 = λ−1Au0 has all positive coordinates. This proves part (b).

It remains to show part (a) and the simplicity of λ. First if Av = µv for any eigenvalue µ
of A (and v ̸= 0), then defining |v| := (|v1|, . . . , |vn|)T , we deduce:

A|v| ≥ |Av| = |µv| = |µ||v| =⇒ λ ≥ |µ|.

Suppose for the moment that |µ| = λ. Then A|v| = λ|v|, else (as above) an application
of (8.3) leads to a contradiction to the maximality of λ. But then A|v| = |Av| from the
preceding computation. By the triangle inequality over C, this shows all coordinates of v
have the same argument, which we can take to be ei0 = 1 by normalizing v. It follows that
Av = λv from above, since now v = |v|. Hence µ = λ.

Thus we have shown that if Av = µv for |µ| = λ (and v ̸= 0), then µ = λ and we may rescale
to get v ≥ 0. In particular, this shows part (a) modulo the simplicity of the eigenvalue λ.
Moreover, if u0, u

′
0 are linearly independent λ-eigenvectors for A, then one can come up with

a linear combination v ∈ Ru0 + Ru′0 with at least one positive and one negative coordinate.
This contradicts the previous paragraph, so it follows that λ has geometric multiplicity one.

The final remaining task is to show that λ is a simple eigenvalue of A. If not, then by the
preceding paragraph there exists u1 ̸∈ Ru0 such that (Au0 = λu0 and) Au1 = λu1 + µu0 for
some non-zero scalar µ. Now since AT has the same eigenvalues as A, the above analysis
there exists v0 ∈ Rn such that vT0 A = λvT0 . Hence:

λvT0 u1 = vT0 Au1 = vT0 (λu1 + µu0).

But then µ · vT0 u0 = 0, which is impossible since µ ̸= 0 and u0, v0 > 0. This shows that λ is
simple, and concludes the proof. □

The second result we require is folklore: Kronecker’s theorem on compound matrices. We
begin by introducing this family of auxiliary matrices, associated to each given matrix.

Definition 8.4. Fix a matrix Am×n (which we take to be real, but the entries can lie in any
unital commutative ring), and an integer 1 ≤ r ≤ min(m,n).

(1) Let S1, . . . , S(mr )
denote the r-element subsets of [m] = {1, . . . ,m}, ordered lexico-

graphically. (Thus S1 = {1, . . . , r} and S(mr )
= {m − r + 1, . . . ,m}.) Similarly, let

T1, . . . , T(nr)
denote the r-element subsets of [n] in lexicographic order.

Now define the rth compound matrix of A to be a matrix Cr(A) of dimension(
m
r

)
×
(
n
r

)
, whose (j, k)th entry is the minor det(ASj×Tk

).
(2) For r = 0, define C0(A) := Id1×1.

We now collect together some basic properties of compound matrices:

Lemma 8.5. Suppose m,n ≥ 1 and 0 ≤ r ≤ min(m,n) are integers, and Am×n a matrix.

(1) Then C1(A) = A, and Cr(cA) = crCr(A) for all scalars c.
(2) Cr(A

T ) = Cr(A)
T .

(3) Cr(Idn×n) = Id(nr)×(
n
r)
.

(4) The Cauchy–Binet formula essentially says:

Cr(AB) = Cr(A)Cr(B), ∀A ∈ Rm×n, B ∈ Rn×p, p ≥ 1.
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(5) As a consequence, det(Cr(AB)) = det(Cr(A)) det(Cr(B)) when m = n = p (i.e.,
A,B are square).

(6) As another consequence of the multiplicativity of Cr, if A has rank 0 ≤ r ≤ min(m,n),
then Cj(A) has rank

(
r
j

)
for j = 0, 1; r, r + 1, . . . ,min(m,n).

(7) If A is square, then Cn(A) = det(A); if A is moreover invertible, then Cr(A)
−1 =

Cr(A
−1).

(8) If A is upper/lower triangular, diagonal, symmetric, orthogonal, or normal, then
Cr(A) has the same property.

Proof. We only sketch a couple of the proofs, and leave the others as exercises. If A has rank
r, then one can write A =Mm×rNr×n, where the columns of M are linearly independent, as
are the rows of N . But then Cr(A) is the product of a non-zero column vector Cr(M) and a
non-zero row vector Cr(N), hence has rank 1. (Here we require the underlying ground ring
to be an integral domain.)

The other case we consider here is when A is (n × n and) upper triangular. In this case
let J = {j1 < · · · < jr} and K = {k1 < · · · < kr} be subsets of [n], with J > K in the
lexicographic order. Hence there exists a unique l ∈ [1, r] such that

j1 = k1, · · · , jl−1 = kl−1, kl < jl < jl+1 < · · · < jr.

It follows thatAJ×K is a block triangular matrix of the form

(
C(l−1)×(l−1) D

0 E(r−l+1)×(r−l+1)

)
,

and that the leftmost column of E is the zero vector. Hence det(AJ×K) = 0 if J > K. □

With Lemma 8.5 in hand, one can state and prove

Theorem 8.6 (Kronecker). Let n ≥ 1 and suppose the complex matrix An×n has the multiset
of eigenvalues {λ1, . . . , λn}. For all 0 ≤ r ≤ n, the

(
n
r

)
eigenvalues of Cr(A) are precisely of

the form
∏

j∈S λj, where S runs over all r-element subsets of [n].

In words, the eigenvalues of Cr(A) are the
(
n
r

)
products of r distinct eigenvalues of A.

Proof. Let J denote an (upper triangular) Jordan canonical form of A. That is, there exists
an invertible matrix M satisfying: MJM−1 = A, with the diagonal entries of J given by
λ1, . . . , λn. Applying various parts of Lemma 8.5,

Cr(A) = Cr(M) Cr(J) Cr(M)−1,

with Cr(J) upper triangular. Thus the eigenvalues of Cr(A) are precisely the diagonal entries
of Cr(J), and these are precisely the claimed set of scalars. □

These ingredients help show that TP square matrices have simple, positive eigenvalues:

Proof of Theorem 8.1. Clearly, (2) implies (1). Conversely, first note that by focussing on
a fixed square submatrix B and all of its minors, the implication (1) =⇒ (2) for general
m,n ≥ p reduces to the special case m = p = n, which we assume henceforth.

First suppose An×n is TP . Relabel its eigenvalues λ1, . . . , λn such that |λ1| ≥ · · · ≥ |λn|.
Now let 1 ≤ r ≤ n; then the compound matrix Cr(A) has positive entries, so by Perron’s
theorem 8.2, there exists a unique largest positive eigenvalue λmax,r, and all others are smaller
in modulus. Hence by Kronecker’s theorem 8.6, λmax,r = λ1 · · ·λr, and we have

λ1 · · ·λr > 0, ∀1 ≤ r ≤ n.
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It follows that each λj is (real and) positive. Moreover, from Perron and Kronecker’s results
it also follows for each 1 ≤ r ≤ n− 1 that

λ1 · · ·λr > λ1 · · ·λr−1 · λr+1,

and so λr > λr+1, as desired.
This shows the result for TP matrices. Now suppose An×n is TN . By Whitney’s density

theorem 6.7, we may approximate A by a sequence Ak of TP matrices. Hence the character-
istic polynomials converge: pAk

(t) := det(t Idn×n−Ak) → pA(t) coefficientwise, as k → ∞.
Since deg(pAk

) = n for all k ≥ 1, it follows by the ‘continuity of roots’ – proved below – that
the eigenvalues of pA also avoid the open set C \ [0,∞). This concludes the proof. □

Thus, it remains to show that the roots of a real or complex polynomial are continuous
functions of its coefficients. This is in fact a consequence of Hurwitz’s theorem in complex
analysis, but we restrict ourselves here to mentioning a simpler result. We provide two proofs,
which can both be found online or in books.

Proposition 8.7. Suppose pk ∈ C[t] is a sequence of polynomials, with deg(pk) uniformly
bounded over all k ≥ 1. If U ⊂ C is an open set on which no pk vanishes, and pk(t) → p(t)
coefficientwise, then either p ≡ 0 on U , or p is nonvanishing on U .

Proof. We restrict ourselves to outlining this argument, as this direction is not our main
focus. Suppose p|U is not identically zero, and p(w) = 0 for some w ∈ U . Choose δ > 0 such

that the closed disk D := D(w, δ) ⊂ U and p(t) has no roots in D \ {w}. Then each pk is
uniformly continuous on the compact boundary ∂D = D \D, where D = D(w, δ) is the open
disk. For sufficiently large k, deg(pk) = deg(p) ≥ 0 by the hypotheses. This is used to show
that the pk converge uniformly on ∂D to p, and similarly, p′k → p′ uniformly on ∂D.

Since p is nonvanishing on ∂D, we have

m := min
z∈∂D

|p(z)| > 0,

and hence for sufficiently large k, we have

min
z∈∂D

|pk(z)| >
m

2
, ∀k ≫ 0.

Using this, one shows that the sequence {p′k/pk : k > 0} converges uniformly on ∂D to p′/p.
Now integrate on ∂D: since p′k/pk equals

∑
j 1/(z − λj(pk)) where one sums over the

multiset of roots λj of each pk, and since pk does not vanish in U ⊃ D, we have

0 =

∮
∂D

p′k(z)

pk(z)
dz →

∮
∂D

p′(z)

p(z)
dz.

Hence the right-hand integral vanishes. On the other hand, that same integral equals a
positive integer – namely, the multiplicity of the root w of p(t). This yields the desired
contradiction, and so p does not vanish on U . □

Alternate proof. This proof is even simpler, and does not use complex analysis – but assum-
ing that the polynomials are all monic. In this case, the hypotheses imply that deg pk is
independent of k, say equal to m ≥ 0. (This indeed subsumes the case when each pk is the
characteristic polynomial of an m × m complex matrix Ak, and Ak → A entrywise.) Now
if m = 0 or m = 1 then the result is immediate – e.g. for m = 1, if pk(x) = x − αk, then
αk ∈ C \ U . But then limk αk also lies outside U , as desired.
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Henceforth, we supposem ≥ 2. The first claim is that every root α of a complex polynomial

a0 + a1z + · · ·+ am−1z
m−1 + zm

satisfies: |α| < 1 +mmaxj<m |aj |. Indeed, if a0 = · · · = am−1 = 0, then we have αm = 0,
so α = 0. Else if maxj<m |aj | > 0, then there are two cases. If |α| ≤ 1 then the result is
immediate. Otherwise |α| > 1, and we compute via the triangle inequality in C:

1 =
|αm|
|αm|

=

∣∣∣∣∣∣
m−1∑
j=0

ajα
j−m

∣∣∣∣∣∣ ≤
m−1∑
j=0

max
j<m
|aj | · |α|j−m < max

j<m
|aj | ·m|α|−1.

This shows |α| < mmaxj<m |aj |, proving the claim in the case |α| > 1.
We now come to the proof of the continuity of roots (for the case m ≥ 2). Thus, here pk

is monic of degree m ≥ 2, for all k ≥ 1. Denote the roots of pk by α
(1)
k , . . . , α

(m)
k , for each

k ≥ 1. Since pk → p coefficientwise, the coefficients of all pk, p are uniformly bounded, say in

D(0,M) for some M > 0. By the claim above, it follows that all roots α
(j)
k lie in a bounded

disk:
|α(j)

k | < 1 +mM, ∀1 ≤ j ≤ m, k ≥ 1.

Thus, there exists a subsequence kl, l ≥ 1 and a tuple (α(1), . . . , α(m)) ∈ Cm such that

lim
l→∞

α
(j)
kl

= α(j), ∀1 ≤ j ≤ m.

But then,

p(z) = lim
l→∞

pkl(z) = lim
l→∞

m∏
j=1

(z − α(j)
kl

) =
m∏
j=1

(z − α(j)).

Now since α
(j)
kl
̸∈ U for all j, l, the same holds for all α(j), and the result follows. □

Remark 8.8 (Spectra of continuous TN kernels). We conclude with some remarks on the
spectral properties of totally non-negative kernels. These were studied even before the 1937
paper of Gantmacher–Krein on the spectra of TN matrices; for a detailed historical account
with complete proofs, see the article by Pinkus [279] in the compilation [141]. As Pinkus
mentions, the case of symmetric kernels was studied by Kellogg in his 1918 paper [211] in
Amer. J. Math. The non-symmetric case was studied in 1936 by Gantmacher [135], following
prior work by the 1909 work [328] of Schur in Math. Ann. and the 1912 work [195] of Jentzsch
in J. reine angew. Math.
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Bibliographic notes and references

Most of the material in the first four sections is standard and can be found in other
textbooks on matrix theory; see e.g. Bapat and Raghavan [18], Bhatia [45, 46], Fallat and
Johnson [112], Gantmacher [136], Hiai and Petz [172], Horn and Johnson [183, 184], Horn
and Johnson [183, 184], Karlin [200], Pinkus [282], Zhan [376], and Zhang [378].

About the rest: the matrix factorization in (2.33) involving Schur complements was ob-
served by Schur in [331]. Theorems 2.32 and 2.38, on the positivity of a block-matrix in
terms of Schur complements, were shown by Albert [9]. Remark 3.8 on applications of Schur
products to other areas is taken from discussions in the books [183, 184]. More broadly, a
discussion of the legacy of Schur’s contributions in analysis can be found in the comprehensive
survey [105].

The Schur product theorem 3.12 was shown by Schur [329] (the proof involving Kronecker
products is by Marcus and Khan [253]), and its non-zero lower bound, Theorem 3.17, is by
Khare [213] (following a prior bound by Vyb́ıral [356]). Remark 3.18 is by Vyb́ıral [356]; and
the previous non-zero lower bounds on the Schur product in (3.16) are from [120] and [296].
For more on the Hamburger and Stieltjes moment problems (see Remarks 2.23 and 4.4,
respectively), see the monographs [8, 310, 335].

The notion of TN and TP matrices and kernels was introduced by Schoenberg in [311],
where he showed that TN matrices satisfy the variation diminishing property. (Schoenberg
then proved in [312] the Budan–Fourier theorem 10.6 using TN matrices.) The character-
ization in Theorem 3.22 of this property is from Motzkin’s thesis [263]. (Instances of total
non-negativity and of variation diminution had appeared in earlier works, e.g., by Fekete [118],
Hurwitz [188], Laguerre [229], and others.) Theorem 4.1, relating positivity and total non-
negativity for a Hankel matrix, appears first in [282] for TP Hankel matrices, then in detail
in [113] for the TN, TPp, and TNp variants. (Neither of these works uses contiguous minors,
which have the advantage of only needing to work with Hankel submatrices.) The lemmas
used in the proof above are given in [136, 137], and the result of Fekete and its extension by
Schoenberg are in [118] and [325], respectively. Corollary 4.3 – on the total non-negativity of
moment matrices of measures on [0,∞) – is the easy half of the Stieltjes moment problem,
and was also proved differently, by Heiligers [163].

Theorem 5.1 on the total positivity of generalized Vandermonde matrices is found in [136].
The “weak” Descartes’ rule of signs (Lemma 5.2) was first shown by Descartes in 1637 [100] for
polynomials; the proof given in this text via Rolle’s theorem is by Laguerre in 1883 [229] and
holds equally well for the extension to real powers. The Basic Composition formula (5.14) can
be found in the book by Pólya and Szegő [289] (see also Karlin [200]), while Andréief’s identity
is from [13]. The subsequent observations on the total positivity of “most” Hankel moment
matrices are taken from [200]. Whitney’s density theorem is from [368]. Theorem 7.5 is due
to Johnson and Smith [196]; all other results in Section 7, on TP completions of 2×2 matrices
to TP matrices/kernels on arbitrary domains, are from Belton–Guillot–Khare–Putinar [32].
Theorem 8.1 on the eigenvalues of TP and TN matrices is due to Gantmacher and Krein [137],
and is also found in numerous sources – to list a few, [136, 138], and Pinkus’s article [279] in
the collection [141]. (The original result was for oscillatory matrices, and immediately follows
from Theorem 8.1.) Perron’s theorem 8.2 is from [278]. Hurwitz’s theorem, or the continuity
of zeros shown in Proposition 8.7, can be found in in standard textbooks on complex analysis,
see e.g. [88].
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Part 2: Entrywise powers preserving (total) positivity in a fixed dimension

9. Entrywise powers preserving positivity in a fixed dimension: I.

In the rest of this text (except Part 4), we discuss operations that preserve the notions of
positivity that have been discussed earlier. Specifically, we will study functions that preserve
positive semidefiniteness, or TP/TN , when applied via composition operators on positive
kernels. In this part and the next, we deal with kernels on finite domains – aka matrices –
which translates to the functions being applied entrywise to various classes of matrices. This
part of the text discusses the important special case of entrywise powers preserving positivity
on matrices; to understand some of the modern and classical motivations behind this study,
we refer the reader to Sections 13.1 and 16.1 below, respectively.

We begin with some preliminary definitions.

Definition 9.1. Given a subset I ⊂ R, define Pn(I) := Pn ∩ In×n to be the set of n × n
positive semidefinite matrices, all of whose entries are in I.

A function f : I → R acts entrywise on vectors/matrices with entries in I via A = (ajk) 7→
f [A] := (f(ajk)). We say f is Loewner positive on Pn(I) if f [A] ∈ Pn whenever A ∈ Pn(I).

Note that the entrywise operator f [−] differs from the usual holomorphic calculus (except
when acting on diagonal matrices by functions that vanish at the origin).

Remark 9.2. The entrywise calculus was initiated by Schur in the same paper [329] in J.
reine angew. Math. (1911) where he proved the Schur product theorem. Schur defined f [A]
– but using different notation – and proved the first result involving entrywise maps; see
e.g. [105, Page cxii] for additional commentary.

We fix the following notation for future use. If f(x) = xα for some α ≥ 0 and I ⊂ [0,∞),
then we write A◦α for f [A], where A is any vector or matrix. By convention we shall take
00 = 1 whenever required, so that A◦0 is the matrix 1 of all ones, and this is positive
semidefinite whenever A is square.

At this point, one can ask the following question: Which entrywise power functions preserve
positive semidefiniteness, total positivity or total-negativity on n×n matrices? (We will also
study in Sections 17 and 18, the case of general functions.) The first of these questions was
considered by Loewner [242, 243] while studying the Green’s function of the unit circle and
schlicht/univalent functions (on a separate note, the coefficients of such functions feature in
the Bieberbach conjecture). The question – i.e., which entrywise powers preserve positivity
– was eventually answered in J. Math. Anal. Appl. (1977) by two of Loewner’s students,
C.H. FitzGerald and R.A. Horn:

Theorem 9.3 (FitzGerald–Horn). Given an integer n ≥ 2 and a scalar α ∈ R, f(x) = xα

preserves positive semidefiniteness on Pn((0,∞)) if and only if α ∈ Z≥0 ∪ [n− 2,∞).

Remark 9.4. We will in fact show that if α is not in this set, there exists a rank-2 Hankel
TN matrix An×n, such that A◦α ̸∈ Pn. (In fact, it is the (partial) moment matrix of a non-
negative measure on two points.) Also notice that Theorem 9.3 holds for entrywise powers
applied to Pn([0,∞)), since as we show, α < 0 never works while α = 0 always does work by
convention; and for α > 0 the power xα is continuous on [0,∞), and we use the density of
Pn((0,∞)) in Pn([0,∞)).

The “phase transition” at n− 2 in Theorem 9.3 is a remarkable and oft-repeated phenom-
enon in the entrywise calculus (we will see additional examples of such events in Section 14).
The value n− 2 is called the critical exponent for the given problem of preserving positivity.
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(Loewner’s aforementioned papers [242, 243] are perhaps the first time that the term critical
exponent was used in this context.)

To prove Theorem 9.3, we require a preliminary lemma, also by FitzGerald and Horn.
Recall the preliminaries in Section 2.4.

Lemma 9.5. Given a matrix A ∈ Pn(R) with last column ζ, the matrix A−a†nnζζT is positive
semidefinite with last row and column zero.

Here, a†nn denotes the Moore–Penrose inverse of the 1× 1 matrix (ann).

Proof. If ann = 0, then ζ = 0 by positive semidefiniteness and a†nn = 0 as well. The

result follows. Now suppose ann > 0 and write A =

(
B ω
ωT ann

)
. Then a straightforward

computation shows that

A− a−1
nnζζ

T =

(
B − ωωT

ann
0

0 0

)
.

Notice that B − ωωT

ann
is the Schur complement of A with respect to ann > 0. Now since A is

positive semidefinite, so is B − ωωT

ann
by Theorem 2.32. □

Proof of Theorem 9.3. Notice that xα preserves positivity on Pn((0,∞)) for all α ∈ Z≥0, by
the Schur product theorem 3.12. Now we prove by induction on n ≥ 2 that if α ≥ n − 2,

then xα preserves positivity on Pn((0,∞)). If n = 2 and A =

(
a b
b c

)
∈ P2((0,∞)), then

ac ≥ b2 =⇒ (ac)α ≥ b2α for all α ≥ 0. It follows that A◦α ∈ P2((0,∞)), proving the base
case.

For the induction step, assume that the result holds for n− 1 ≥ 2. Suppose α ≥ n− 2 and
A ∈ Pn((0,∞)); thus, ann > 0. Consider the following elementary definite integral

xα − yα = α(x− y)
∫ 1

0
(λx+ (1− λ)y)α−1 dλ. (9.6)

Let ζ denote the final column of A; applying (9.6) entrywise to x, an entry of A, and y, the

corresponding entry of B := ζζT

ann
yields

A◦α −B◦α = α

∫ 1

0
(A−B) ◦ (λA+ (1− λ)B)◦(α−1) dλ. (9.7)

By the induction hypothesis, the leading principal (n− 1)× (n− 1) submatrix of the matrix

(λA+(1−λ)B)◦(α−1) is positive semidefinite (even though the entire matrix need not be so).
By Lemma 9.5, A−B is positive semidefinite and has last row and column zero. It follows by
the Schur product theorem that the integrand on the right-hand side is positive semidefinite.
Since B◦α is a rank-1 positive semidefinite matrix (this is easy to verify), it follows that A◦α

is also positive. This concludes one direction of the proof.
To prove the other half, suppose α /∈ Z≥0∪ [n−2,∞); now consider Hµ where µ = δ1+ ϵδx

for ϵ, x > 0, x ̸= 1. Note that (Hµ)jk = sj+k(µ) = 1+ ϵxj+k; and as shown previously, Hµ is
positive semidefinite of rank 2.

First, suppose α < 0. Then consider the leading principal 2× 2 submatrix of H◦α
µ

B :=

(
(1 + ϵ)α (1 + ϵx)α

(1 + ϵx)α (1 + ϵx2)α

)
.
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We claim that detB < 0, which shows H◦α
µ is not positive semidefinite. Indeed, note that

(1 + ϵ)(1 + ϵx2)− (1 + ϵx)2 = ϵ(x− 1)2 > 0,

so detB = (1 + ϵ)α(1 + ϵx2)α − (1 + ϵx)2α < 0 because α < 0.
Next, suppose that α ∈ (0, n − 2) \ N. Given x > 0, for small ϵ we know by the binomial

theorem that

(1 + ϵx)α = 1 +
∑
k≥1

(
α

k

)
ϵkxk, where

(
α

k

)
=
α(α− 1) · · · (α− k + 1)

k!
.

We will produce u ∈ Rn, such that uTH◦α
µ u < 0; note this shows that H◦α

µ ̸∈ Pn.

Starting with the matrix Hµ = 11T + ϵvvT where v = (1, x, . . . , xn−1)T , we obtain:

H◦α
µ = 11T +

⌊α⌋+2∑
k=1

ϵk
(
α

k

)
(v◦k)(v◦k)T + o(ϵ⌊α⌋+2), (9.8)

where o(ϵ⌊α⌋+2) is a matrix, such that the quotient of any entry by ϵ⌊α⌋+2 goes to zero as
ϵ→ 0+.

Note that the first term and the sum together contain at most n terms. Since the corre-
sponding vectors 1, v, v◦2, . . . , v◦(⌊α⌋+2) are linearly independent (by considering the – possibly
partial – usual Vandermonde matrix formed by them), there exists a vector u ∈ Rn satisfying

uT1 = uT v = uT v◦2 = · · · = uT v◦(⌊α⌋+1) = 0, uT v◦(⌊α⌋+2) = 1.

Substituting these into the above computation, we obtain

uTH◦α
µ u = ϵ⌊α⌋+2

(
α

⌊α⌋+ 2

)
+ uT · o(ϵ⌊α⌋+2) · u.

Since
(

α
⌊α⌋+2

)
is negative if α is not an integer, it follows that lim

ϵ→0+

uTH◦α
µ u

ϵ⌊α⌋+2
< 0. Hence one can

choose a small ϵ > 0, such that uTH◦α
µ u < 0. For this ϵ, H◦α

µ is not positive semidefinite. □

Remark 9.9. As the above proof reveals, the following are equivalent for n ≥ 2 and α ∈ R:
(1) The entrywise map xα preserves positivity on Pn((0,∞)) (or Pn([0,∞))).
(2) α ∈ Z≥0 ∪ [n− 2,∞).
(3) The entrywise map xα preserves positivity on the (leading principal n×n truncations

of) Hankel moment matrices of non-negative measures supported on {1, x}, for any
fixed x > 0, x ̸= 1.

The use of the Hankel moment matrix counterexample 11T +ϵvvT for v = (1, x, . . . , xn−1)T

and small ϵ > 0 was not due to FitzGerald and Horn – who used v = (1, 2, . . . , n)T instead –
but due to Fallat, Johnson, and Sokal [113]. In fact, the above proof can be made to work if
one uses any vector v with distinct positive real coordinates, and small enough ϵ > 0.

As these remarks show, to isolate the entrywise powers preserving positivity on Pn((0,∞)),
it suffices to consider a much smaller family – namely, the one-parameter family of truncated
moment matrices of the measures δ1+ ϵδx – or the one-parameter family 1n×n+ ϵvvT , where
v = (x1, . . . , xn)

T for pairwise distinct xj > 0. In fact, a stronger result is true. In her 2017
paper [191] in Linear Algebra Appl., Jain was able to eliminate the dependence on ϵ:

Theorem 9.10 (Jain). Suppose n > 0 is an integer, and x1, x2, . . . , xn are pairwise distinct
positive real numbers. Let C := (1+xjxk)

n
j,k=1. Then C◦α is positive semidefinite if and only

if α ∈ Z≥0 ∪ [n− 2,∞).
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In other words, this result identifies a multiparameter family of matrices, each one of which
encodes the positivity preserving powers in the original result of FitzGerald–Horn.

We defer the proof of Theorem 9.10 (in fact, a stronger form shown by Jain in 2020,
[192]) to Section 15. We then use this stronger variant to prove the corresponding result for
entrywise powers preserving other Loewner properties: monotonicity (again shown by Jain
in 2020), and hence convexity, both with the same multiparameter family of matrices.

The next result is an application of Theorem 9.3 to classify the entrywise powers that
preserve positive definiteness:

Corollary 9.11. Given an integer n ≥ 2 and a scalar α ∈ R, the following are equivalent:

(1) The entrywise αth power preserves positive definiteness for n×n matrices with positive
entries.

(2) The entrywise αth power preserves positive definiteness for n × n Hankel matrices
with positive entries.

(3) α ∈ Z>0 ∪ [n− 2,∞).

Proof. Clearly, (1) =⇒ (2). Next, if α = 0 then xα sends every matrix with positive
entries to 1n×n, which is not positive definite. Now suppose α is not in Z≥0 ∪ [n − 2,∞).
Then given 1 ̸= x ∈ (0,∞), there exists ϵ > 0, such that A◦α has a negative principal
minor, where A := (1 + ϵxj+k)n−1

j,k=0 is Hankel. Now perturb A by δH ′
1 for small enough

δ > 0, where H ′
1 := (e(j+k)2)n−1

j,k=0 is a Hankel “principal submatrix” drawn from the kernel

in Lemma 6.9. By Theorem 4.1, A+ δH ′
1 is TP Hankel for all δ > 0, hence positive definite;

and for small enough δ > 0, its αth power also has a negative principal minor. This shows
the contrapositive to (2) =⇒ (3).

Finally, suppose (3) holds. Since the Schur product is a principal submatrix of the Kro-
necker product, it follows from the first proof of Theorem 3.12 that positive integer powers
entrywise preserve positive definiteness. Now suppose α ≥ n−2 and An×n is positive definite.
Then all eigenvalues of A are positive, so there exists ϵ > 0, such that A−ϵ Idn×n ∈ Pn([0,∞)).
Now we have

A◦α = (A− ϵ Id)◦α + diag(aαjj − (ajj − ϵ)α)nj=1,

and the first term on the right-hand side is in Pn by Theorem 9.3, so A◦α is positive definite.
□

We conclude by highlighting the power and applicability of the “integration trick” (9.7) of
FitzGerald and Horn. First, it in fact applies to general functions, not just to powers. The
following observation (by the author and Tao, [217]) will be useful below:

Theorem 9.12 (Extension principle). Let 0 < ρ ≤ ∞ and I = (0, ρ) or (−ρ, ρ). Fix
an integer n ≥ 2 and a continuously differentiable function h : I → R. If h[−] preserves
positivity on rank-1 matrices in Pn(I) and h′[−] preserves positivity on Pn−1(I), then h[−]
preserves positivity on Pn(I).

The proof is exactly as before, but now using the more general integral identity:

h(x)− h(y) =
∫ x

y
h′(t) dt =

∫ 1

0
(x− y)h′(λx+ (1− λ)y) dλ.

Second, this integration trick is even more powerful, in that it further applies to classify
the entrywise powers that preserve other properties of Pn, including monotonicity and super-
additivity. See Section 14 for details on these properties, their power-preservers, and their
further application to the distinguished sub-cones PG for non-complete graphs G.
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10. Entrywise powers preserving total positivity: I.

The next goal is to study which entrywise power functions preserve total positivity and
total non-negativity. The present section is devoted to proving:

Theorem 10.1. If Am×n is TP3, then so is A◦t for all t ≥ 1.

The proof relies on Descartes’ rule of signs (also known as Laguerre’s rule of signs –
for the connection, see Section 29.3). Recall that we had shown a ‘weak’ variant of this in
Lemma 5.2. The next variant is stronger, and relies on the following notion.

Definition 10.2. Suppose F : R → R is infinitely differentiable. Given an integer k ≥ 0,
we say F has a zero of order k at t0 ∈ R, if F (t0) = F ′(t0) = · · · = F (k−1)(t0) = 0 and

F (k)(t0) ̸= 0. (Note that a zero of order 0 means that F (t0) ̸= 0.)

Descartes’ rule of signs bounds the number of real zeros of generalized Dirichlet polynomials,
which are functions of the form

F : R→ R, F (t) =
n∑

j=1

cje
αjt, cj , αj ∈ R.

These functions are so named because changing variables to x = et gives

f(x) =

n∑
j=1

cjx
αj : (0,∞)→ R,

which are known as generalized polynomials. Another special case of F (t) is when one uses
αj = − log(j), to obtain F (t) =

∑n
j=1 cj/j

t; these are called Dirichlet polynomials. The
generalized Dirichlet polynomials subsume both of these families of examples.

We can now state

Theorem 10.3 (Decartes’ rule of signs). Suppose F (t) =
∑n

j=1 cje
αjt as above, with cj ∈ R

not all zero, and α1 > α2 > · · · > αn also real. Then the number of real zeros of F ,
counting multiplicities, is at most the number of sign changes, or ‘variations’, in the sequence
c1, c2, . . . , cn (after removing all zero terms).

For instance, the polynomial x6 − 8 = (x2 − 2)(x4 + 2x2 + 4) has only one sign change, so
at most one positive root – which is at x = et = 2.

To prove Theorem 10.3, we require a couple of preliminary lemmas.

Lemma 10.4 (Generalized Rolle’s theorem). Given an open interval I and a smooth function
F : I → R, let Z(F, I) denote the number of zeros of F in I, counting orders. If Z(F, I) is
finite, then we have Z(F ′, I) ≥ Z(F, I)− 1.

Proof. Suppose F has a zero of order kr > 0 at xr, 1 ≤ r ≤ n. Then F ′ has a zero of order
kr − 1 ≥ 0 at xr. These add up to :

n∑
r=1

(kr − 1) = Z(F, I)− n

We may also suppose x1 < x2 < · · · < xn. Now by Rolle’s theorem, F ′ also has at least
n−1 zeros in the intervals (xr, xr+1) between the points xr. Together, we obtain: Z(F

′, I) ≥
Z(F, I)− 1. □

Lemma 10.5. Let F,G : I → R be smooth and G ̸= 0 on I. If F has a zero of order k at t0
then so does F ·G.
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Proof. This is straightforward: use Leibnitz’s rule to compute (F ·G)(j)(t0) for 0 ≤ j ≤ k. □

With these lemmas in hand, we can prove Descartes’ rule of signs.

Proof of Theorem 10.3. The proof again follows Laguerre’s argument (1883), by induction on
the number s of sign changes in the sequence c1, c2, . . . , cn. (Note that not all cj are zero.)
The base case is s = 0, in which case F (t) =

∑n
j=1 cje

αjt has all non-zero coefficients of the
same sign, and hence never vanishes.

For the induction step, we first assume without loss of generality that all cj are non-zero.
Suppose the last sign change occurs at ck, i.e., ckck−1 < 0. Choose and fix α ∈ (αk, αk−1),
and define G(t) := e−αt. Then,

H(t) := F (t) ·G(t) =
n∑

j=1

cje
(αj−α)t

has the same zeros (with orders) as F (t), by Lemma 10.5. Moreover,

H ′(t) =
n∑

j=1

cj(αj − α)e(αj−α)t

has exactly one less sign change than F (t), namely, s−1. It follows by the induction hypothesis
that Z(H ′,R) ≤ s − 1. Hence by Lemma 10.4, Z(F,R) = Z(H,R) ≤ 1 + Z(H ′,R) ≤ s, and
the proof is complete by induction. □

We remark that there are numerous strengthenings of Descartes’ rule of signs in the liter-
ature, obtained by Budan [75], Fourier [129], Laguerre [229], Segner [333], Sturm [348], and
many others – this was popular even in the 20th century, see e.g. the articles by Curtiss [97] in
Ann. of Math. (1918) and by Hurwitz [189] in Math. Ann. (1920). Here we restrict ourselves
to mentioning some of these variants without proofs (although we remark that their proofs
are quite accessible – see for instance the 2006 survey [193] by Jameson in Math. Gazette).
As above, let F (t) =

∑n
j=1 cje

αjt with α1 > α2 > · · · > αn.

(1) Then not only is Z(F,R) ≤ s, but s−Z(F,R) is an even integer. This was shown by
Budan [75] and Fourier [129], and is also attributed to Le Gua. In fact, Budan–Fourier
showed a more general result, stated here for polynomials:

Theorem 10.6 (Budan–Fourier). Suppose f is a polynomial, and −∞ < α < β <∞.
Denoting by V (x) the number of sign changes in the sequence (f(x), f ′(x), f ′′(x), . . . ),

V (α)− V (β)− Z(f, (α, β))

is a non-negative integer, which is moreover even if α, β are not zeros of f .

Notice that V (β)→ 0 as β →∞, e.g. by considering f monic. From this the above
assertion for Z(f, (0,∞)) – or Z(F,R) (for rational αj) – follows. Curiously, in his
1934 paper [312] in Math. Z., Schoenberg proved this result using totally non-negative
matrices.

(2) Define the partial sums

C1 := c1, C2 := c1 + c2, . . . , Cn := c1 + c2 + · · ·+ cn.

Then the number of positive roots of F (t), counting orders, is at most the number of
sign changes in C1, C2, . . . , Cn.
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(3) Similarly, the number of negative roots of F (t), counting orders, is the number of
positive roots of F (−t), hence at most the number of sign changes in the ‘reverse
sequence’

D1 := cn, D2 := cn + cn−1, . . . , Dn := cn + cn−1 + · · ·+ c1.

Finally, we use Descartes’ rule of signs to show the result stated above: that all powers
≥ 1 preserve total positivity of order 3.

Proof of Theorem 10.1. It is easy to check that all entrywise powers α ≥ 1 preserve the TP2

property. We now show that the positivity of all 3× 3 minors is also preserved by entrywise
applying xt, t ≥ 1. Without loss of generality, we may assume m = n = 3 and work with a
TP matrix B3×3 = (bjk)

3
j,k=1.

The first claim is that we may assume B =

1 1 1
1 a b
1 c d

. Indeed, define the diagonal

matrices

D1 :=

1/b11 0 0
0 1/b21 0
0 0 1/b31

 , D2 :=

1 0 0
0 b11/b12 0
0 0 b11/b13

 .

Using the Cauchy–Binet formula, one shows that B = (bjk)
3
j,k=1 is totally positive if and

only if D1BD2 is TP . But check that D1BD2 has only ones in its first row and column, as
desired.

The next observation is that a matrix A =

1 1 1
1 a b
1 c d

 is TP2 if and only if b, c > a > 1

and ad > bc. (This is easily verified, and in turn implies d > b, c.)
Now consider A◦t. For t ≥ 1 this is TP2 by above, so we only need to consider detA◦t for

t ≥ 1. Define the generalized Dirichlet polynomial

F (t) := det(A◦t) = (ad)t − dt − (bc)t + bt + ct − at, t ∈ R.

Notice from the above inequalities involving a, b, c, d that regardless of whether or not d > bc,
and whether or not b > c, the sign sequence remains unchanged when arranging the exponents
in F (namely, log ad, log d, log bc, log b, . . . ) in decreasing order. It follows by Theorem 10.3
that F has at most three real roots.

As t→∞, F (t)→∞. Now one can carry out a Taylor expansion of F and check that the
constant and linear terms vanish, yielding:

F (t) = et log(ad) − et log(d) − · · · = t2(log(a) log(d)− log(b) log(c)) + o(t2).

It follows that F has (at least) a double root at 0. Now claim that F is indeed positive on
(1,∞), as desired. For if F is negative on (1,∞), then since F (1) = detA > 0, it follows
by continuity that F has at least two more roots in (1,∞), which is false. Hence F ≥ 0 on
(1,∞). If F (t0) = 0 for some t0 > 1, then t0 is a global minimum point in [1, t0 + 1] for F ,
hence F ′(t0) = 0. But then F has at least two zeros at t0 ∈ (1,∞), which is false. □

While Theorem 10.3 sufficed in proving Theorem 10.1, we will need in Section 30.4 below
a similar variant for ‘usual’ polynomials – more precisely, for Laurent series with degrees
bounded below. This is now shown:
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Theorem 10.7. Fix an integer n0 ≥ 0 and an open interval I ⊂ (0,∞). Suppose F : I → R,
sending t 7→

∑∞
j=−n0

cjt
j is a convergent power series with not all cj ∈ R zero. Then the

number of zeros of F in I, counting multiplicities, is either infinite or at most the number of
sign changes in the sequence c−n0 , c1−n0 , . . . (after removing all zero terms).

Proof. If the Maclaurin coefficients cj have infinitely many sign changes then the result is
immediate. Otherwise suppose there are only finitely many sign changes in the cj , say s
many. We show the result by induction on 0 ≤ s <∞, with the result immediate for s = 0.
For the induction step, suppose the last sign change occurs sat ck, i.e., ck has sign opposite
to the immediately preceding non-zero Maclaurin coefficient of F .

Now let R > 0 denote the radius of convergence of the power series tn0F (t), so that F is
smooth on (0, R) by (repeatedly) using the quotient rule. Consider the function

G(u) := u1−2kF (u2), 0 < u <
√
R.

Then G is smooth on (0,
√
R), and we now proceed as in (Laguerre’s 1883) proof of Theo-

rem 10.3 via Rolle’s theorem – now working solely in (0,
√
R). The Laurent series G′(u) has

one less sign change than does F , so at most s− 1 roots (counting multiplicities) in (0,
√
R)

by the induction hypothesis. Hence, G has at most s roots in (0,
√
R). But then so does F

in (0, R), hence in I. □
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11. Entrywise powers preserving total positivity: II.

In the previous section, we used Descartes’ rule of signs to show that xα entrywise preserves
the 3 × 3 TP matrices, for all α ≥ 1. Here the goal is twofold: first, to completely classify
the entrywise powers that preserve TP/TN for m× n matrices for each fixed m,n ≥ 1; and
second, to then classify all continuous functions that do the same (at present, only for TN).

Corollary 11.1. If α ≥ 1, then xα entrywise preserves the 3× 3 TN matrices.

Proof. Let A3×3 be TN and α ≥ 1. By Whitney’s density theorem 6.7, there exist 3× 3 TP
matrices Bm that entrywise converge to A, as m → ∞. Hence B◦α

m → A◦α for α ≥ 1. Since
B◦α

m is TP by Theorem 10.1, it follows that A◦α is TN , as claimed. □

The next result classifies all entrywise powers preserving total non-negativity for matrices
of any fixed size.

Theorem 11.2. Given integers m,n > 0, define d := min(m,n). The following are equiva-
lent for α ∈ R.

(1) xα preserves (entrywise) the m× n TN matrices.
(2) xα preserves (entrywise) the d× d TN matrices.
(3) Either α = 0 (where we set 00 := 1), or

(a) For d = 1, 2: α ≥ 0.
(b) For d = 3: α ≥ 1.
(c) For d ≥ 4: α = 1.

Thus we see that in contrast to the entrywise preservers of positive semidefiniteness (see
Theorem 9.3), almost no powers preserve the TN matrices – nor the TP matrices, as we
show presently.

Proof. That (2) =⇒ (1) is straightforward, as is (1) =⇒ (2) by padding by zeros –
noting that negative powers are not allowed (given zero entries of TN matrices). To show
(3) =⇒ (2), we use Theorem 10.1 as well as that x0 applied to any TN matrix yields the
matrix of all ones.

It remains to prove (2) =⇒ (3). We may rule out negative powers since (0d×d)
◦α is not

defined for d ≥ 1. Similarly, x0 always preserves total non-negativity. This shows (3) for
d = 1, 2. For d = 3, suppose α ∈ (0, 1) and consider the matrix

A =

 1 1√
2

0
1√
2

1 1√
2

0 1√
2

1

 . (11.3)

This is a Toeplitz cosine matrix, hence TN (see Example 3.23, or verify directly). Now
compute:

detA◦α = det

 1 (
√
2)−α 0

(
√
2)−α 1 (

√
2)−α

0 (
√
2)−α 1

 = 1− 21−α,

which is negative if α < 1. So A◦α is not TN (not even positive semidefinite, in fact), for
α < 1, which shows (3) for d = 3.
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Next suppose d = 4 and consider the matrix

N(x) = 14×4 + x


0 0 0 0
0 1 2 3
0 2 4 6
0 3 8 14

 , x ≥ 0.

One verifies that: all 2× 2 minors are of the form ax + bx2, where a > 0, b ≥ 0; all 3× 3
minors are of the form cx2, where c ≥ 0; and detN(x) = 0. This implies N(x) is TN for
x ≥ 0. Moreover, for small x > 0, computations similar to the proof of Theorem 10.1 show
that

detN(x)◦t = 2(t3 − t4)x4 + o(x4),

so given t > 1, it follows that detN(x)◦t < 0 for sufficiently small x > 0. Thus N(x)◦t is not
TN , hence xα does not preserve 4×4 TN matrices for α > 1. If on the other hand α ∈ (0, 1),

then we work with the 4 × 4 TN matrix C =


1 1√

2
0 0

1√
2

1 1√
2

0

0 1√
2

1 0

0 0 0 0

, proceeding as in the

d = 3 case. This concludes the proof for d = 4.

Finally if d > 4 then we use the TN matrices

(
N(x) 0
0 0

)
d×d

; for small x > 0 this rules

out the powers α > 1 as above. Similarly, using the TN matrix

(
C 0
0 0

)
d×d

rules out the

powers in (0, 1). □

In turn, Theorem 11.2 helps classify the powers preserving total positivity in each fixed
size.

Corollary 11.4. Given m,n > 0, define d := min(m,n) as in Theorem 11.2. The following
are equivalent for α ∈ R:

(1) xα preserves entrywise the m× n TP matrices.
(2) xα preserves entrywise the d× d TP matrices.
(3) We have:

(a) For d = 1: α ∈ R.
(b) For d = 2: α > 0.
(c) For d = 3: α ≥ 1.
(d) For d ≥ 4: α = 1.

Proof. That (2) =⇒ (1) is straightforward, as is (1) =⇒ (2) (as above) by now using
Theorem 7.5. That (3) =⇒ (2) was shown in Theorem 10.1 for d = 3, and is obvious for
d ̸= 3. Finally, we show (2) =⇒ (3). The d = 1 case is trivial, while the d = 2 case follows

by considering

(
2 1
1 2

)
, say. Next, if d ≥ 3 and if xα preserves the d× d TP matrices, then

α > 0, by considering any TP matrix and applying xα to any of its 2 × 2 minors. Hence
xα extends continuously to x = 0; now xα preserves the d × d TN matrices by continuity.
Theorem 11.2 now finishes the proof. □

Next, we tackle the more challenging question of classifying all functions that entrywise
preserve total positivity or total non-negativity in fixed dimension m×n. We will show that
(i) every such function must be continuous (barring a one-parameter exceptional family of
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TN preservers), and in turn, this implies that (ii) it must be a power function. We first
show (ii), beginning with an observation on the (additive) Cauchy functional equation.

Remark 11.5 (Additive continuous functions). Suppose g : R→ R is continuous and satisfies
the Cauchy functional equation g(x+ y) = g(x) + g(y) for all x, y ∈ R. Then we claim that
g(x) = cx for some c ∈ R (and all x). Indeed, g(0 + 0) = g(0) + g(0), and hence g(0) = 0.
Next, one shows by induction that g(n) = ng(1) for integers n > 0, and hence for all integers
n < 0 as well. Now one shows that pg(1) = g(p) = g(q · p/q) = q · g(p/q) for integers p, q
with q ̸= 0, from which it follows that g(p/q) = (p/q)g(1) for all rationals p/q. Finally, using
continuity we conclude that g(x) = xg(1) for all x ∈ R.

Proposition 11.6. Suppose f : [0,∞)→ R is continuous and entrywise preserves the 2× 2
TN matrices. Then f(x) = f(1)xα for some α ≥ 0.

We recall here that 00 := 1 by convention.

Proof. Define the matrices

A(x, y) =

(
x xy
1 y

)
, B(x, y) =

(
xy x
y 1

)
, x, y ≥ 0.

Clearly, these matrices are TN , so by the hypotheses,

det f [A(x, y)] = f(x)f(y)− f(1)f(xy) ≥ 0,

det f [B(x, y)] = f(1)f(xy)− f(x)f(y) ≥ 0.

It follows that
f(x)f(y) = f(1)f(xy), ∀x, y ≥ 0. (11.7)

There are two cases. First if f(1) = 0 then choosing x = y ≥ 0 in (11.7) gives f ≡ 0
on [0,∞). Else if f(1) > 0 then we claim that f is always positive on (0,∞). Indeed, if
f(x0) = 0 for x0 > 0, then set x = x0, y = 1/x0 in (11.7) to get: 0 = f(1)2, which is false.

Now define the functions

g(x) := f(x)/f(1), x > 0, h(y) := log g(ey), y ∈ R.
Then (11.7) can be successively reformulated as:

g(xy) = g(x)g(y), ∀x, y > 0,

h(a+ b) = h(a) + h(b), ∀a, b ∈ R.
(11.8)

Moreover, both g, h are continuous. Since h satisfies the additive Cauchy functional equa-
tion, it follows by Remark 11.5 that h(y) = yh(1) for all y ∈ R. Translating back, we get

g(x) = xh(1) for all x > 0. It follows that f(x) = f(1)xα for x > 0, where α = h(1). Finally,
since f is also continuous at 0+, it follows that α ≥ 0; and either α = 0 and f ≡ 1 (so we set
00 := 1), or f(0) = 0 < α. (Note that α cannot be negative, since f [−] preserves TN on the
zero matrix, say.) □

Corollary 11.9. Suppose f : [0,∞) → R is continuous and entrywise preserves the m × n
TN matrices, for some m,n ≥ 2. Then f(x) = f(1)xα for some α ≥ 0, with f(1) ≥ 0.

Proof. Given m,n ≥ 2, every 2 × 2 TN matrix can be embedded as a leading principal
submatrix in a m × n TN matrix, by padding it with (all other) zero entries. Hence the
hypotheses imply that f [−] preserves the 2× 2 TN matrices, and we are done by the above
Proposition 11.6. □
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12. Entrywise functions preserving total positivity. Mid-convex implies
continuity. The test set of Hankel TN matrices.

We continue working toward the classification of all entrywise functions preserving m× n
TP/TN matrices. Thus far, we have classified the power functions among these preservers;
and we also showed that every continuous map that preservesm×n TN matrices is a multiple
of a power function.

We now show that every function that entrywise preserves the m × n TP/TN matrices
is automatically continuous on (0,∞) – which allows us to classify all such preservers. The
continuity will follow from a variant of a 1929 result by Ostrowski [275] on mid-convex
functions on normed linear spaces, and we begin by proving this result.

12.1. Mid-convex functions and continuity.

Definition 12.1. Given a convex subset U of a real vector space, a function f : U → R is
said to be mid-convex if

f

(
x+ y

2

)
≤ f(x) + f(y)

2
, ∀x, y ∈ U ;

and f is convex if f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all x, y ∈ U and λ ∈ (0, 1).

Notice that convex functions are automatically mid-convex. The converse need not be true
in general. However, if a mid-convex function is continuous, then it is easy to see that it is
also convex. Thus, a natural question for mid-convex functions is to find sufficient conditions
under which they are continuous. We now discuss two such conditions, both classical results.
The first condition is mild: f is locally bounded, on one neighborhood of one point.

Theorem 12.2. Let B be a normed linear space (over R) and let U be a convex open subset.
Suppose f : U → R is mid-convex and f is bounded above in an open neighborhood of a single
point x0 ∈ U . Then f is continuous on U , and hence convex.

This generalizes to normed linear spaces a special case of a result by Ostrowski, who showed
in Jber. Deut. Math. Ver. (1929) the same conclusion, but over B = R and assuming f is
bounded above in a measurable subset.

The proof requires the following useful observation:

Lemma 12.3. If f : U → R is mid-convex, then f is rationally convex, i.e., f(λx+(1−λ)y) ≤
λf(x) + (1− λ)f(y) for all x, y ∈ U and λ ∈ (0, 1) ∩Q.

Proof. Inductively using mid-convexity, it follows that

f

(
x1 + x2 + · · ·+ x2n

2n

)
≤ f(x1) + · · ·+ f(x2n)

2n
, ∀n ∈ N, x1, . . . , x2n ∈ U.

Now suppose that λ = p
q ∈ (0, 1), where p, q > 0 are integers and 2n−1 ≤ q < 2n for some

n ∈ N. Let x1, . . . , xq ∈ U and define x = 1
q (x1 + · · ·+ xq). Setting xq+1 = · · · = x2n = x, we

obtain

f

(
x1 + · · ·+ xq + (2n − q)x̄

2n

)
≤ f(x1) + · · ·+ f(xq) + (2n − q)f(x)

2n

=⇒ 2nf(x) ≤ f(x1) + · · ·+ f(xq) + (2n − q)f(x)
=⇒ qf(x) ≤ f(x1) + · · ·+ f(xq)

=⇒ f

(
x1 + · · ·+ xq

q

)
≤ f(x1) + · · ·+ f(xq)

q
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In this inequality, set x1 = · · · = xp = x and xp+1 = · · · = xq = y to complete the proof:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). □

With Lemma 12.3 in hand, we can prove the theorem above.

Proof of Theorem 12.2. We may assume without loss of generality that x0 = 0 ∈ U ⊂ B, and
also that f(x0) = f(0) = 0.

We claim that f is continuous at 0, where f was assumed to be bounded above in an open
neighborhood of 0. Write this as: f(B(0, r)) < M for some r,M > 0, where B(x, r) ⊂ B
denotes the open ball of radius r centered at x ∈ B. Now given ϵ ∈ (0, 1) ∩ Q rational and
x ∈ B(0, ϵr), we compute using Lemma 12.3:

x = ϵ
(x
ϵ

)
+ (1− ϵ)0 =⇒ f(x) ≤ ϵf

(x
ϵ

)
+ 0 < ϵM.

Moreover,

0 =

(
ϵ

1 + ϵ

)(
−x
ϵ

)
+

x

1 + ϵ
,

so applying Lemma 12.3 once again, we obtain:

0 ≤
(

ϵ

1 + ϵ

)
f

(
−x
ϵ

)
+
f(x)

1 + ϵ
<

ϵM

1 + ϵ
+
f(x)

1 + ϵ
=⇒ f(x) > −ϵM.

Therefore, we have x ∈ B(0, ϵr) =⇒ |f(x)| < ϵM .
Now given ϵ > 0, choose 0 < ϵ′ < min(M, ϵ), such that ϵ′/M is rational, and set δ := rϵ′/M .

Then δ < r, so |f(x)| < δM/r = ϵ′ < ϵ whenever x ∈ B(0, δ). Hence, f is continuous at x0.
We have shown that if f is bounded above in some open neighborhood of x0 ∈ U , then f

is continuous at x0. To finish the proof, we claim that for all y ∈ U, f is bounded above on
some open neighborhood of y. This would show that f is continuous on U , which combined
with mid-convexity implies convexity.

To show the claim, choose a rational ρ > 1, such that ρy ∈ U (this is possible as U is
open), and set Uy := B(y, (1− 1/ρ)r). Note that Uy ⊂ U since for every v ∈ Uy there exists
x ∈ B(0, r), such that

v = y + (1− 1/ρ)x =
1

ρ
(ρy) +

(
1− 1

ρ

)
x.

Thus, v is a convex combination of ρy ∈ U and x ∈ B(0, r) ⊂ U . Hence, Uy ⊂ U ; in turn,

f(v) ≤ 1

ρ
f(ρy) +

(
1− 1

ρ

)
f(x) ≤ f(ρy)

ρ
+

(
1− 1

ρ

)
M, ∀v ∈ Uy

by Lemma 12.3. Since the right-hand side is independent of v ∈ Uy, the above claim follows.
Hence, by the first claim, f is indeed continuous at every point in U . □

The second condition, which will be used in a later part in this text, is that f is Lebesgue
measurable. Its sufficiency was proved a decade before Ostrowski’s result, independently by
Blumberg in Trans. Amer. Math. Soc. (1919) and Sierpińsky in Fund. Math. (1920).
However, the following proof goes via Theorem 12.2:

Theorem 12.4. If I ⊂ R is an open interval and f : I → R is Lebesgue measurable and
mid-convex, then f is continuous, hence convex.
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Proof. Suppose f is not continuous at a point x0 ∈ I. Fix c > 0, such that (x0−2c, x0+2c) ⊂
I. By Theorem 12.2, f is unbounded on (x0 − c, x0 + c). Now let Bn := {x ∈ I : f(x) > n}
for n ≥ 1; note this is Lebesgue measurable. Choose un ∈ Bn ∩ (x0− c, x0 + c) and λ ∈ [0, 1];
then by mid-convexity,

n < f(un) = f

[
un + λc

2
+
un − λc

2

]
≤ 1

2
(f(un + λc) + f(un − λc)).

Thus, Bn contains at least one of the points un±λc ∈ I, i.e., one of ±λc lies in Bn−un. We
now claim that each Bn has Lebesgue measure µ(Bn) ≥ c. Assuming this claim,

c ≤ lim
n→∞

µ(Bn) = µ (∩n≥1Bn) ,

since the Bn are a nested family of subsets. But then S := ∩n≥1Bn is non-empty, so for any
v ∈ S, we have f(v) > n for all n, which produces the desired contradiction.

Thus, it remains to show the above claim. Fix n ≥ 1 and note from above that Mn :=
Bn − un is a Lebesgue measurable set, such that for every λ ∈ [0, 1], at least one of λc,−λc
lies in Mn. Define the measurable sets A1 := Mn ∩ [−c, 0] and A2 := Mn ∩ [0, c], so that
−A1 ∪A2 = [0, c]. This implies

c ≤ µ(−A1) + µ(A2) = µ(A1) + µ(A2) = µ(A1 ∪A2) ≤ µ(Mn). □

12.2. Functions preserving total non-negativity. With Theorem 12.2 in hand, it is
possible to classify all entrywise functions that preserve total non-negativity or total positivity
in a fixed size, or even positive semidefiniteness on 2 × 2 matrices. A major portion of the
work is carried out by the next result. To state this result, we need the following notion.

Definition 12.5. Suppose I ⊂ [0,∞) is an interval. A function f : I → [0,∞) is multiplica-

tively mid-convex on I if and only if f(
√
xy) ≤

√
f(x)f(y) for all x, y ∈ I.

Remark 12.6. A straightforward computation yields that if f : I → R is always positive
and 0 ̸∈ I, then f is multiplicatively mid-convex on I if and only if the auxiliary function
g(y) := log f(ey) is mid-convex on log(I).

We now prove the following important result, which is also crucial later.

Theorem 12.7. Suppose I = [0,∞) and I+ := I \ {0}. A function f : I → R satisfies(
f(a) f(b)
f(b) f(c)

)
is positive semidefinite whenever a, b, c ∈ I and

(
a b
b c

)
is TN , if and only if

f is non-negative, non-decreasing, and multiplicatively mid-convex on I. In particular,

(1) f |I+ is never zero or always zero.
(2) f |I+ is continuous.

The same results hold if I = [0,∞) is replaced by I = (0,∞), [0, ρ), or (0, ρ) for 0 < ρ <∞.

This result was essentially proved by H.L. Vasudeva [353], under some reformulation. In
the result, note that TN is the same as ‘positive semidefinite with non-negative entries’, since
we are dealing with 2 × 2 matrices; thus, the test set of matrices is precisely P2(I), and the
hypothesis can be rephrased as:

f [−] : P2(I)→ P2 = P2(R).

Moreover, all of these matrices are clearly Hankel. This result will therefore also play an
important role when we classify the entrywise preservers of positive semidefiniteness on low-
rank Hankel matrices (see Theorems 17.1 and 19.1).
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Proof. Let I be any of the domains mentioned in the theorem. We begin by showing the
equivalence. Given a TN matrix(

a b
b c

)
, a, b, c ∈ I, 0 ≤ b ≤

√
ac,

compute via the non-negativity, monotonicity, and multiplicative mid-convexity respectively:

0 ≤ f(b) ≤ f(
√
ac) ≤

√
f(a)f(c).

It follows that

(
f(a) f(b)
f(b) f(c)

)
is TN and hence positive semidefinite.

Conversely, if (via the above remarks) f [−] : P2(I)→ P2, then apply f [−] entrywise to the
matrices (

a b
b a

)
,

(
a

√
ac√

ac c

)
, a, b, c ∈ I, (12.8)

with 0 ≤ b ≤ a. From the hypotheses, it successively (and respectively) follows that f is
non-negative, non-decreasing, and multiplicatively mid-convex. This proves the equivalence.

As a brief digression that will be useful later, we remark that the test matrices

(
a b
b a

)
can be replaced by (

a b
b b

)
,

(
a

√
ac√

ac c

)
, a, b, c ∈ I, (12.9)

with 0 ≤ b ≤ a, to conclude as above that f is non-decreasing and multiplicatively mid-convex
on I. Indeed, we obtain f(a), f(b) ≥ 0, and either f(b) = 0 ≤ f(a), or 0 < f(b)2 ≤ f(b)f(a),
leading to the same conclusion.

We now show the two final assertions (1) and (2) in the theorem, again on I+ for any of
the domains I above; in other words, I+ = (0, ρ) for 0 < ρ ≤ ∞. For (1), suppose f(x) = 0
for some x ∈ I+. Since f is non-negative and non-decreasing on I+, it follows that f ≡ 0 on
(0, x). Now claim that f(y) = 0 if y > x, y ∈ I+ = (0, ρ). Indeed, choose a large enough

n > 0, such that y n
√
y/x < ρ. Set ζ := n

√
y/x > 1 and consider the following rank-1 matrices

in P2(I
+):

A1 :=

(
x xζ
xζ xζ2

)
, A2 :=

(
xζ xζ2

xζ2 xζ3

)
, . . . , An :=

(
xζn−1 xζn

xζn xζn+1

)
.

The inequalities det f [Ak] ≥ 0, 1 ≤ k ≤ n yield:

0 ≤ f(xζk) ≤
√
f(xζk−1)f(xζk+1), k = 1, 2, . . . , n.

From this inequality for k = 1, it follows that f(xζ) = 0. Similarly, these inequalities
inductively yield: f(xζk) = 0 for all 1 ≤ k ≤ n. In particular, we have f(y) = f(xζn) = 0.
This shows that f ≡ 0 on I+, as claimed.

We provide two proofs of (2). If f ≡ 0 on I+, then f is continuous on I+. Otherwise by
(1), f is strictly positive on (0, ρ) = I+. Now the “classical” proof uses the above “Ostrowski-
result”: define the function g : log I+ := (−∞, log ρ)→ R via

g(y) := log f(ey), y < log ρ.

By the assumptions on f and the observation in Remark 12.6, g is mid-convex and non-
decreasing on (−∞, log ρ). In particular, g is bounded above on compact sets. Now apply
Theorem 12.2 to deduce that g is continuous. It follows that f is continuous on (0, ρ).
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A more recent, shorter proof is by Hiai in 2009 [171]: given f as above which is strictly
positive and non-decreasing on (0, ρ), fix t ∈ (0, ρ) and let 0 < ϵ < min(t/5, (ρ− t)/4). Then
0 < t+ ϵ ≤

√
(t+ 4ϵ)(t− ϵ) < ρ, so

f(t+ ϵ) ≤ f
(√

(t+ 4ϵ)(t− ϵ)
)
≤
√
f(t+ 4ϵ)f(t− ϵ).

Now letting ϵ→ 0+, this implies f(t+) ≤ f(t−), so
0 < f(t) ≤ f(t+) ≤ f(t−) ≤ f(t), ∀t ∈ (0, ρ).

Since t ∈ (0, ρ) was arbitrary, this shows f is continuous as claimed. □

Remark 12.10. From the proof – see (12.8) – it follows that the assumptions may be
further weakened to not work with all symmetric 2 × 2 TN matrices, but with only the
rank-1 symmetric and the Toeplitz symmetric 2× 2 TN matrices.

As an application, Theorem 12.7 allows us to complete the classification of all entrywise
maps that preserve total non-negativity in each fixed size.

Theorem 12.11. Suppose m,n ≥ 2 and f : [0,∞) → R entrywise preserves the m× n TN
matrices. Then either f(x) = f(1)xα for f(1), α ≥ 0 and all x ≥ 0 (and these powers were
classified in Theorem 11.2), or min(m,n) = 2 and f(x) = f(1)sgn(x) for x ≥ 0 and f(1) > 0.

If instead min(m,n) = 1, then f can be any function that maps [0,∞) into itself.

Proof. The result is trivial for min(m,n) = 1, so we assume henceforth that m,n ≥ 2. By
embedding 2×2 TN matrices insidem×n TN matrices, it follows that f [−] preserves the 2×2
TN matrices. In particular, f is continuous on (0,∞) by Theorem 12.7, and non-negative
and non-decreasing on [0,∞). Now one can repeat the proof of Proposition 11.6 above, to
show that

f(x)f(y) = f(xy)f(1), ∀x, y ≥ 0, (12.12)

and moreover, either f ≡ 0 on [0,∞), or f(x) = f(1)xα for x > 0 and some α ≥ 0.
We assume henceforth that f ̸≡ 0 on [0,∞), so f(x) = f(1)xα as above, with f(1) > 0.

If now f(0) ̸= 0, then substituting x = 0, y ̸= 1 in (12.12) shows that α = 0, and now using
x = y = 0 in (12.12) shows f(0) = f(1), i.e., f |[0,∞) is constant (and positive).

Otherwise f(0) = 0. Now if α > 0 then f(x) = f(1)xα for all x ≥ 0 and f is continuous on
[0,∞). The final case is where f(0) = 0 = α, but f ̸≡ 0. Then f(0) = 0 while f(x) = f(1) > 0
for all x > 0. Now if min(m,n) = 2 then it is easy to verify that f [−] preserves TNm×n. On

the other hand, if m,n ≥ 3, then computing det f [A] for the matrix A =

 1 1√
2

0
1√
2

1 1√
2

0 1√
2

1


shows that f [−] is not a positivity preserver on A⊕ 0(m−3)×(n−3) ∈ TNm×n. □

12.3. Functions preserving total positivity. Akin to the above results, we can also clas-
sify the entrywise functions preserving total positivity in any fixed size, and they too are
essentially power functions.

Theorem 12.13. Suppose f : (0,∞)→ R is such that f [−] preserves the m×n TP matrices
for some m,n ≥ 2. Then f is continuous and f(x) = f(1)xα, with α > 0 and f(1) > 0.

Recall that the powers preserving the m× n TP matrices were classified in Corollary 11.4.
To show the theorem, we make use of the following intermediate lemma, which is also

useful later in studying preservers of TP Hankel kernels. A cruder version of the next result
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says that if f [−] preserves total positivity on 2 × 2 matrices, then f is continuous. More
strongly, we have:

Lemma 12.14. Suppose p ∈ (1,∞), and f : (0,∞)→ R. The following are equivalent:

(1) f [−] preserves total positivity on all symmetric 2× 2 TP matrices.
(2) f [−] preserves positive definiteness on the symmetric TP Hankel matrices(

a b
b c

)
, a, c > 0,

√
ac/p < b <

√
ac.

(3) f is positive, increasing, and multiplicatively mid-convex on (0,∞).

In particular, f is continuous.

Proof. Clearly, (1) =⇒ (2), and that (3) =⇒ (1) is left to the reader as it is similar to the
proof of Theorem 12.7. We now assume (2) and show (3). The first step is to claim that f is
positive and strictly increasing on (0,∞). Suppose 0 < x < y < ∞. Choose n > logp(y/x),
and define the increasing sequence

x0 = x, x1 = x(y/x)1/n, x2 = x(y/x)2/n, . . . , xn = y.

Now the matrix

(
xk+1 xk
xk xk

)
is in the given test set, by choice of n, so applying f [−] and

taking determinants, we have

f(xk), f(xk+1), f(xk)(f(xk+1)− f(xk)) > 0, 0 ≤ k ≤ n− 1.

It follows that f is positive on (0,∞), hence also strictly increasing, since f(x) = f(x0) <
f(x1) < · · · < f(xn) = f(y).

We next show continuity, proceeding indirectly. From above, f : (0,∞) → (0,∞) has at
most countably many discontinuities, and they are all jump discontinuities. Let f(x+) :=
limy→x+ f(y), for x > 0. Then f(x+) ≥ f(x) ∀x, and f(x+) coincides with f(x) at all points
of right continuity and has the same jumps as f . Thus, it suffices to show that f(x+) is
continuous (since this implies f is also continuous).

Now given 0 < x < y <∞, apply f [−] to the matrices

M(x, y, ϵ) :=

(
x+ ϵ

√
xy + ϵ√

xy + ϵ y + ϵ

)
, x, y, ϵ > 0,

where ϵ > 0 is small enough that (x + ϵ)(y + ϵ) < p(
√
xy + ϵ)2. Then an easy verification

shows that M(x, y, ϵ) is in the given test set. It follows that det f [M(x, y, ϵ)] > 0, i.e.,
f(x+ ϵ)f(y + ϵ) > f(

√
xy + ϵ)2. Taking ϵ→ 0+, we obtain

f(x+)f(y+) ≥ f(√xy+)2, ∀x, y > 0.

Thus, f(x+) is positive, non-decreasing and multiplicatively mid-convex on (0,∞). From the
proof of Theorem 12.7(2), we conclude that f(x+) is continuous on (0,∞), so f(x) = f(x+)
is also continuous and multiplicatively mid-convex on (0,∞). □

Using this lemma, we now show:

Proof of Theorem 12.13. We first show the result for m = n = 2. By Lemma 12.14, f is
continuous, positive, and strictly increasing on (0,∞). Now claim that f(x) = f(1)xα for all
x > 0 (and some α > 0). For this, consider the matrices

A(x, y, ϵ) :=

(
x xy

1− ϵ y

)
, B(x, y, ϵ) :=

(
xy y
x 1 + ϵ

)
, where x, y, ϵ > 0.
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These are both TP matrices, hence so are f [A(x, y, ϵ)] and f [B(x, y, ϵ)]. The positivity of
both determinants yields:

f(x)f(y) > f(xy)f(1− ϵ), f(xy)f(1 + ϵ) > f(x)f(y), ∀x, y, ϵ > 0.

Taking ϵ → 0+, the continuity of f and the assumptions imply that f(x)
f(1) is multiplicative,

continuous, positive, non-constant, and strictly increasing on (0,∞). Hence (e.g. as in the
proof of Proposition 11.6), f(x) = f(1)xα for all x > 0, where α > 0 and f(1) > 0.

This completes the proof for m = n = 2. Now suppose more generally that m,n ≥ 2.
Recall by a TP completion problem (see Theorem 7.1) that every 2 × 2 TP matrix can be
completed to an m× n TP matrix. It follows from the assumptions that f [−] must preserve
the 2× 2 TP matrices, and we are done. □

12.4. Symmetric TN and TP matrix preservers. Having classified the preservers of
total positivity on all matrices of a fixed size, we turn to TN symmetric matrices:

Theorem 12.15. Suppose f : [0,∞) → R and d ≥ 1. Then f [−] preserves the symmetric
TN d× d matrices if and only if f is a non-negative constant, or:

(1) (d = 1). The function f is non-negative.
(2) (d = 2). f is non-negative, non-decreasing, and multiplicatively mid-convex on [0,∞).

In particular, f is continuous on (0,∞).
(3) (d = 3). f(x) = cxα for some c > 0 and α ≥ 1.
(4) (d = 4). f(x) = cxα for some c > 0 and α ∈ {1} ∪ [2,∞).
(5) (d = 5). f(x) = cx for some c > 0.

Proof. For d = 1 the result is immediate. If d = 2, the result follows from Theorem 12.7. Now
suppose d = 3. One implication follows from Theorem 12.11. Conversely, every symmetric
2× 2 can be padded by a row and column of zeros to remain TN , so by Theorem 12.7, f is
continuous, non-negative, and non-decreasing on (0,∞). We next show that f is continuous
at 0 and that f(0) = 0 for non-constant f . First, the matrix f [x Id3×3] is TN for each x > 0.
If f(0) > 0, considering various 2×2 minors yields f(x) = f(0) for all x > 0, so f is constant.
The remaining case is f(0) = 0. Now let A3×3 be as in Equation (11.3). By the hypotheses,
f [xA] is TN for all x > 0, so

0 ≤ det f [xA] = −f(0+)3.
Thus f(0+) = 0 = f(0), and f is continuous.

Next, consider the symmetric TN matrices

A′(x, y) :=

x2 x xy
x 1 y
xy y y2

 , B′(x, y) :=

x2y xy x
xy y 1
x 1 1/y

 , x ≥ 0, y > 0.

Since these contain

(
x xy
1 y

)
and

(
xy x
y 1

)
as non-principal submatrices, we can repeat the

proof of Proposition 11.6 to conclude that f is either a constant or f(x) = cxα for some
c > 0, α ≥ 0. Finally, again using the matrix A in (11.3) and the computations following it,
we conclude that α ≥ 1.

The next case is d = 4. As above, embedding 3 × 3 matrices via padding by zeros shows
that f(x) = cxα, with c > 0 and α ≥ 1. From the proof of Theorem 9.3, given α ∈ (1, 2)
one obtains a 4× 4 Hankel moment matrix (hence this is TN), corresponding to the measure
δ1 + ϵδx for 1 ̸= x ∈ (0,∞) and small ϵ > 0, whose αth entrywise power is not positive
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semidefinite. This proves one implication; for the reverse, the preceding parts for d = 2, 3
imply that the determinants of all proper submatrices of f [A] are non-negative, for every
4× 4 symmetric TN matrix A. That det f [A] ≥ 0 follows from Theorem 9.3.

The final case is d ≥ 5. In this case, one implication is trivial, and the reverse implication
for d = 5 implies the same for all d > 5, by padding 5 × 5 TN matrices by zeros. Thus,
it suffices to classify the non-constant preservers of 5 × 5 symmetric TN matrices. By the
preceding part, these are of the form cxα for α = 1 or α ≥ 2, and c > 0. Now suppose α ≥ 2,
and consider the family of 5× 5 matrices

T (x) := 15×5 + x


2 3 6 14 36
3 6 14 36 98
6 14 36 98 276
14 36 98 284 842
36 98 276 842 2604

 , x > 0. (12.16)

Straightforward computations show that all k×k minors ofM(x) are of the form axk−1+bxk

for a, b ≥ 0, for 1 ≤ k ≤ 4, and detM(x) = 0. Thus M(x) is TN for all x > 0. Let

N(x) :=M(x)(1) be the truncation of M(x), i.e., with its first row and last column removed.
Another computation reveals that for small x > 0,

detN(x)◦α = 28584(α3 − α4)x4 +O(x5),

so if α > 1, then there exists small x > 0 such that M(x)◦α is not TN . □

From this result, it is possible to deduce the classification of TP preservers on symmetric
matrices of each fixed size:

Corollary 12.17. Suppose f : (0,∞) → (0,∞). Then f [−] preserves total positivity on
symmetric TP d× d matrices, if and only if f satisfies:

(1) (d = 1). The function f is positive.
(2) (d = 2). f is positive, increasing, and multiplicatively mid-convex on (0,∞). In

particular, f is continuous.
(3) (d = 3). f(x) = cxα for some c > 0 and α ≥ 1.
(4) (d = 4). f(x) = cxα for some c > 0 and α ∈ {1} ∪ [2,∞).
(5) (d = 5). f(x) = cx for some c > 0.

Proof. The equivalence is obvious for d = 1, and was shown for d = 2 in Lemma 12.14.
Now suppose d ≥ 3 and A is any symmetric TP 2 × 2 matrix. By Theorem 7.4, A extends
to a symmetric TP d × d matrix, hence f [A] is TP . The d = 2 case now implies that f
is continuous, increasing, and positive on (0,∞), and hence extends to a continuous, non-

negative, increasing function f̃ : [0,∞)→ [0,∞). By Whitney density for symmetric matrices

(Proposition 6.14), f̃ [−] preserves symmetric TN 2× 2 matrices, so f is of the desired form
for each d ≥ 3 by Theorem 12.15. Conversely, the d = 3 case follows from Theorem 10.1; the
d ≥ 5 case is obvious; and for d = 4, given A4×4 symmetric TP and α ≥ 2, note that all 3×3
submatrices of A◦α are TP by Theorem 10.1, while detA◦α > 0 by Corollary 9.11. □

12.5. Totally non-negative Hankel matrices – entrywise preservers. We have seen
that if the entrywise map f [−] preserves the m × n TP/TN matrices for m,n ≥ 4, then f
is either constant on (0,∞) (and f(0) equals either this constant or zero) or f(x) = f(1)x
for all x. In contrast, the powers xα that entrywise preserve positive semidefiniteness on
Pn((0,∞)) (for fixed n ≥ 2) are Z≥0 ∪ [n− 2,∞).
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This discrepancy is also supported by the fact that Pn is closed under the Schur (or
entrywise) product, but already the 3 × 3 TN matrices are not. (Hence neither are the
m× n TN or TP matrices for m,n ≥ 3, by using completions and density arguments.) For

example, A :=

1 1 1
1 1 1
0 1 1

 , B := AT =

1 1 0
1 1 1
1 1 1

 are both TN , but A ◦B =

1 1 0
1 1 1
0 1 1


has determinant −1, and hence cannot be TN .

Thus, a more refined (albeit technical) question would be to isolate and work with a class
of TN matrices that is a closed, convex cone, and which is further closed under the Schur
product. In fact, such a class has already been discussed earlier: the family of Hankel TN
matrices (see Corollary 4.2). With those results in mind, and for future use, we introduce
the following notation:

Definition 12.18. Given an integer n ≥ 1, let HTNn denote the n× n Hankel TN matrices.

We also study in this text the entrywise preservers of TN on HTNn for a fixed n and for
all n – see Remark 9.9, Corollary 44.11, and Corollary 19.4. This study turns out to be
remarkably similar (and related) to the study of positivity preservers on Pn – which is not
surprising, given Theorem 4.1. For now, we work in the setting under current consideration:
entrywise power-preservers.

Theorem 12.19. For n ≥ 2 and α ∈ R, xα entrywise preserves TN on HTNn, if and only if
α ∈ Z≥0 ∪ [n− 2,∞).

In other words, xα preserves total non-negativity on HTNn if and only if it preserves positive
semidefiniteness on Pn([0,∞)).

Proof. If α ∈ Z≥0 ∪ [n − 2,∞), then we use Theorem 4.1 together with Theorem 9.3. Con-
versely, suppose α ∈ (0, n − 2) \ Z. We have previously shown that the moment matrix
H := (1 + ϵxj+k−2)nj,k=1 lies in HTNn for x, ϵ > 0; but if x ̸= 1 and ϵ > 0 is small, then

H◦α ̸∈ Pn, as shown in the proof of Theorem 9.3. (Alternately, this holds for all ϵ > 0 by
Theorem 9.10.) It follows that H◦α ̸∈ TNn. □





13. Entrywise powers (and functions) preserving positivity: II.
Matrices with zero patterns. 77
13. Entrywise powers (and functions) preserving positivity: II. Matrices with

zero patterns.

Having completed the classification of entrywise functions preserving the TP/TN matrices
in any fixed size, in this part of the text and the next we restrict ourselves to understanding
the entrywise functions preserving positive semidefiniteness – henceforth termed positivity –
either in a fixed dimension or in all dimensions. (As mentioned above, there will be minor
detours studying the related notion of entrywise preservers of HTNn.)

In this section and the next, we continue to study entrywise powers preserving positivity
in a fixed dimension, by refining the test set of positive semidefinite matrices. The plan for
these two sections is as follows:

(1) We begin by recalling the test set PG([0,∞)) associated to any graphG, and discussing
some of the modern-day motivations in studying entrywise functions (including pow-
ers) that preserve positivity.

(2) We then prove some results on general entrywise functions preserving positivity on
PG for arbitrary non-complete graphs. (The case of complete graphs is the subject
of the remainder of the text.) As a consequence, the powers – in fact, the functions
– preserving PG([0,∞)) where G is any tree (or collection of trees) are completely
classified.

(3) We show how the integration trick of FitzGerald and Horn (see the discussion around
Equations (9.6) and (9.7)) extends to help classify the entrywise powers preserving
other Loewner properties, including monotonicity, and in turn, super-additivity.

(4) Using these results, we classify the powers preserving PG for G the almost complete
graph (i.e., the complete graph minus any one edge).

(5) We then state some recent results on powers preserving PG for other G (all chordal
graphs; cycles), and conclude with some questions for general graphs G, which arise
naturally from these results.

13.1. Modern-day motivations: graphical models and high-dimensional covariance
estimation. As we discuss in Section 16, the question of which functions preserve positivity
when applied entrywise has a long history, having been studied for the best part of a century
within the analysis literature. For now, we explain why this question has attracted renewed
attention owing to its importance in high-dimensional covariance estimation.

In modern-day scientific applications, one of the most important challenges involves un-
derstanding complex multivariate structures and dependencies. Such questions naturally
arise in various domains: understanding the interactions of financial instruments, studying
markers of climate parameters to understand climate patterns, and modeling gene-gene as-
sociations in cancer and cardiovascular disease, to name a few. In such applications, one
works with very large random vectors X ∈ Rp, and a fundamental measure of dependency
that is commonly used (given a sample of vectors) is the covariance matrix (or correlation
matrix) and its inverse. Unlike traditional regimes, where the sample size n far exceeds the
dimension of the problem p (i.e., the number of random variables in the model), these mod-
ern applications – among others – involve the reverse situation: n ≪ p. This is due to the
high cost of making, storing, and working with observations, for instance; but moreover, an
immediate consequence is that the corresponding covariance matrix built out of the samples
x1, . . . , xn ∈ Rp

Σ̂ :=
1

n− 1

n∑
j=1

(xj − x)(xj − x)T ,
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is highly singular. (Its rank is bounded above by the sample size n ≪ p.) This makes Σ̂ a
poor estimator of the true underlying covariance matrix Σ.

A second shortcoming of the sample covariance matrix has to do with zero patterns. In the
underlying model, there is often additional domain-specific knowledge which leads to sparsity.
In other words, certain pairs of variables are known to be independent, or conditionally
independent given other variables. For instance, in probability theory one has the notion of
a Markov random field, or graphical model, in which the nodes of a graph represent random
variables and the edges the dependency structure between them. Or, in the aforementioned
climate-related application – specifically, temperature reconstruction – the temperature at
one location is assumed to not influence that at another (perhaps far away) location, at least
when conditioned on the neighboring points. Such (conditional) independences are reflected
in zero entries in the associated (inverse) covariance matrix. In fact, in the aforementioned
applications, several models assume most of the entries (∼ 90% or more) to be zero.

However, in the observed sample covariance matrix, there is almost always some noise, as
a result of which very few entries are zero. This is another reason why sample covariance is
a poor estimator in modern applications.

For such reasons, it is common for statistical practitioners to regularize the sample covari-
ance matrix (or other estimators), in order to improve its properties for a given application.
Popular state-of-the-art methods involve inducing sparsity – i.e., zero entries – via convex
optimization techniques that impose an ℓ1-penalty (since ℓ0-penalties are not amenable to
such techniques). While these methods induce sparsity and are statistically consistent as
n, p → ∞, they are iterative and hence require solving computationally expensive optimiza-
tion problems. In particular, they are not scalable to ultra high-dimensional data, say for
p ∼ 100, 000 or 500, 000, as one often encounters in the aforementioned situations.

A recent promising alternative is to apply entrywise functions on the entries of sample
covariance matrices (see, e.g., [15, 48, 110, 167, 168, 236, 304, 377] and numerous follow-up
papers). For example, the hard and soft thresholding functions set very small entries to zero
(operating under the assumption that these often come from noise, and do not represent
the most important associations). Another popular family of functions used in applications
consists of entrywise powers. Indeed, powering up the entries provides an effective way in
applications to separate signal from noise.

Note that these entrywise operations do not suffer from the same drawback of scalability,
since they operate directly on the entries of the matrix, and do not involve optimization-based
techniques. The key question now, is to understand when such entrywise operations preserve
positive semidefiniteness. Indeed, the regularized matrix that these operations yield must
serve as a proxy for the sample covariance matrix in further statistical analyses, and hence
is required to be positive semidefinite.

It is thus crucial to understand when these entrywise operations preserve positivity – and
in a fixed dimension, since in a given application one knows the dimension of the problem.
Note that while the motivation here comes from downstream applications, the heart of the
issue is very much a mathematical question involving analysis on the cone Pn.

With these motivations, the current and last/next few sections deal with entrywise powers
preserving positivity in a fixed dimension; progress on these questions impacts applied fields.
At the same time, the question of when entrywise powers and functions preserve positivity,
has been studied in the mathematics literature for almost a century. Thus (looking slightly
ahead), in the next part and the last part of this text, we return to the mathematical advances,
both classical and recent. This includes proving some of the celebrated characterization
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results in this area – by Schoenberg, Rudin, Loewner/Horn, and Vasudeva – using fairly
accessible mathematical machinery.

13.2. Entrywise functions preserving positivity on PG for non-complete graphs.
In this section and the next, we continue with the theme of entrywise powers and functions
preserving positivity in a fixed dimension, now under additional sparsity constraints – i.e.,
on PG for a fixed graph G. In this section, we obtain certain necessary conditions on general
functions preserving positivity on PG.

As we will see in Section 16.1, the functions preserving positive semidefiniteness on Pn for
all n (and those preserving TN on HTNn) for all integers n ≥ 1 can be classified, and they are
precisely the power series with non-negative coefficients

f(x) =
∞∑
k=0

ckx
k, with ck ≥ 0 ∀ k.

This is a celebrated result of Schoenberg and Rudin (see Theorems 16.2 and 16.3). However,
the situation is markedly different for entrywise preservers of Pn for a fixed dimension n ≥ 1:

• For n = 1, clearly any f : [0,∞)→ [0,∞) works.
• For n = 2, the entrywise preservers of positive semidefiniteness (or of total non-
negativity) on P2((0,∞)) have been classified by Vasudeva in Ind. J. Pure Appl.
Math. (1979): see Theorem 12.7.
• For n ≥ 3, the problem remains open to date.

Given the open (and challenging!) nature of the problem in fixed dimension, efforts along
this direction have tended to work on refinements of the problem: either restricting the
class of entrywise functions (to, e.g., power functions, or polynomials as we study later),
or restricting the class of matrices: to TP/TN matrices, to Toeplitz matrices (by Rudin),
or Hankel TN matrices, or to matrices with rank bounded above (by Schoenberg, Rudin,
Loewner and Horn, and subsequent authors), or to matrices with a given sparsity pattern –
i.e., PG for fixed G. It is this last approach that we focus on, in this section and Section 14.

Given a (finite simple) graph G = (V,E), with V = [n] = {1, . . . , n} for some n ≥ 1, and
a subset 0 ∈ I ⊂ R, the subset PG(I) is defined to be:

PG(I) := {A ∈ Pn(I) : ajk = 0 if j ̸= k and (j, k) /∈ E}. (13.1)

For example, when G = A3 (the path graph on three nodes), PG =


a b e
d b 0
e 0 c

 ∈ P3

,

and when G = Kn (the complete graph on n vertices), we have PG(I) = Pn(I).
We now study the entrywise preservers of PG for a graph G. To begin, we extend the

notion of entrywise functions to PG, by acting only on the “unconstrained” entries:

Definition 13.2. Let 0 ∈ I ⊂ R. Given a graph G with vertex set [n], and f : I → R, define
fG[−] : PG(I)→ Rn×n via

(fG[A])jk :=

{
0, if j ̸= k, (j, k) ̸∈ E,
f(ajk), otherwise.

Here are some straightforward observations on entrywise preservers of PG([0,∞)):

(1) WhenG is the empty graph, i.e., G = (V, ∅), the functions f , such that fG[−] preserves
PG are precisely the functions sending [0,∞) to itself.
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(2) When G is the disjoint union of a positive number of disconnected copies of K2 and

isolated nodes, PG consists of block diagonal matrices of the form ⊕k
j=1Aj , where the

Aj are either 2×2 or 1×1 matrices (blocks), corresponding to copies of K2 or isolated
points respectively, and ⊕ denotes a block diagonal matrix of the form

A1

A2

. . .

Ak

 .

(The remaining entries are zero.) By assumption, at least one of the Aj must be a
2×2 block. For such graphs, we conclude by Theorem 12.7 that fG[−] : PG([0,∞))→
PG([0,∞)) if and only if f is non-negative, non-decreasing, multiplicatively mid-
convex, and 0 ≤ f(0) ≤ limx→0+ f(x).

(3) More generally, if G is a disconnected union of graphs: G =
⊔

j∈J Gj , then fG[−] :
PG([0,∞))→ PG([0,∞)) if and only if the entrywise map fGj [−] preserves PGj ([0,∞))
for all j.

In light of these examples, we shall henceforth consider only connected, non-complete
graphs G, and the functions f , such that fG[−] preserves PG([0,∞)). We begin with the
following necessary conditions:

Proposition 13.3. Let I = [0,∞) and G be a connected, non-complete graph. Suppose
f : I → R is such that fG[−] : PG(I)→ PG(I). Then the following statements hold:

(1) f(0) = 0.
(2) f is continuous on I (and not just on (0,∞)).
(3) f is super-additive on I, i.e., f(x+ y) ≥ f(x) + f(y) ∀ x, y ≥ 0.

Remark 13.4. In particular, fG[−] = f [−] for (non-)complete graphs G. Thus, following
the proof of Proposition 13.3, we use f [−] in the sequel.

Proof. Clearly, f : I → I. Assume that G has at least three nodes, since for connected graphs
with two nodes, the proposition is vacuous. A small observation – made by Horn [182], if not
earlier – reveals that there exist three nodes, which we may relabel as 1, 2, and 3 without loss
of generality, such that 2 and 3 are adjacent to 1 but not to each other. Since P2(I) ↪→ PG(I)
via (

a b
b c

)
7→
(
a b
b c

)
⊕ 0(|V |−2)×(|V |−2),

it follows from Theorem 12.7 that f |(0,∞) is non-negative, non-decreasing, and multiplicatively
mid-convex; moreover, f |(0,∞) is continuous and is identically zero or never zero.

To prove (1), define

B(α, β) :=

α+ β α β
α α 0
β 0 β

 , α, β ≥ 0.

Note that B(α, β)⊕0(|V |−3)×(|V |−3) ∈ PG(I). Hence, fG[B(α, β)⊕0] ∈ PG(I), from which we
obtain:

fG[B(α, β)] =

f(α+ β) f(α) f(β)
f(α) f(α) 0
f(β) 0 f(β)

 ∈ P3(I), ∀α, β ≥ 0. (13.5)
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For α = β = 0, (13.5) yields that det fG[B(0, 0)] = −f(0)3 ≥ 0. But since f is non-negative,
it follows that f(0) = 0, proving (1).

Now if f |(0,∞) ≡ 0, the remaining assertions immediately follow. Thus, we assume in the
sequel that f |(0,∞) is always positive.

To prove (2), let α = β > 0. Then (13.5) gives:

det fG[B(α, α)] ≥ 0 =⇒ f(α)2(f(2α)− 2f(α)) ≥ 0 =⇒ f(2α)− 2f(α) ≥ 0.

Taking the limit as t→ 0+, we obtain −f(0+) ≥ 0. Since f is non-negative, f(0+) = 0 = f(0),
so f is continuous at 0. The continuity of f on I now follows from the above discussion.

Finally, to prove (3), let α, β > 0. Invoking (13.5) and again starting with det fG[B(α, β)] ≥
0, we obtain

f(α)f(β)(f(α+ β)− f(α)− f(β)) ≥ 0 =⇒ f(α+ β) ≥ f(α) + f(β).

This shows that f is super-additive on (0,∞); since f(0) = 0, we obtain super-additivity on
all of I. □

Proposition 13.3 is the key step in classifying all entrywise functions preserving positivity
on PG for every tree G. In fact, apart from the case of P2 = PK2 , this is perhaps the
only known case (i.e., family of individual graphs) for which a complete classification of the
entrywise preservers of PG is available – and proved in the next result.

Recall that a tree is a connected graph in which there is a unique path between any two
vertices; equivalently, where the number of edges is one less than the number of nodes; or
also where there are no cycle subgraphs. For example, the graph A3 considered above (with
V = {1, 2, 3} and E = {(1, 2), (1, 3)}) is a tree.

Theorem 13.6. Suppose I = [0,∞) and a function f : I → I. Let G be a tree on at least
three vertices. Then the following are equivalent:

(1) f [−] : PG(I)→ PG(I).
(2) f [−] : PT (I)→ PT (I) for all trees T .
(3) f [−] : PA3(I)→ PA3(I).
(4) f is multiplicatively mid-convex and super-additive on I.

Proof. Note that G contains three vertices on which the induced subgraph is A3 (consider
any induced connected subgraph on three vertices). By padding PA3 by zeros to embed inside
P|G|, we obtain (1) =⇒ (3). Moreover, that (2) =⇒ (1) is clear.

To prove that (3) =⇒ (4), note that K2 ↪→ A3. Hence, f is multiplicatively mid-convex
on (0,∞) by Theorem 12.7. By Proposition 13.3, f(0) = 0 and f is super-additive on I. In
particular, f is also multiplicatively mid-convex on all of I.

Finally, we show that (4) =⇒ (2) by induction on n for all trees T with at least n ≥ 2
nodes. For the case n = 2 by Theorem 12.7, it suffices to show that f is non-decreasing.
Given γ ≥ α ≥ 0, by super-additivity we have

f(γ) ≥ f(α) + f(γ − α) ≥ f(α),

proving the result.
For the induction step, suppose that (2) holds for all trees on n nodes and let G′ = (V,E)

be a tree on n + 1 nodes. Without loss of generality, let V = [n + 1] = {1, . . . , n + 1}, such
that node n+ 1 is adjacent only to node n. (Note: there always exists such a node in every
tree.) Let G be the induced subgraph on the subset [n] of vertices. Then, any A ∈ PG′(I)
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can be written as

A =

(
B ben
beTn c

)
(n+1)×(n+1)

, where b ∈ R, c ∈ I, B ∈ PG(I),

and en := ((0, 0, . . . , 0, 1)1×n)
T is a standard basis vector. Since f is non-negative and super-

additive, f(0) = f(0 + 0) ≥ 2f(0) ≥ 0, hence f(0) = 0. If f ≡ 0, we are done. Thus, we
assume that f ̸≡ 0, so f |(0,∞) is positive by Theorem 12.7.

If c = 0, then bnnc − b2 ≥ 0 implies b = 0, and so f [A] =

(
f [B] 0n×1

01×n 0

)
∈ PG ⊕ 01×1

by the induction hypothesis. Otherwise, c > 0, hence f(c) > 0. From the properties of
Schur complements (Theorem 2.32) we obtain that A is positive semidefinite if and only if

B− b2

c Enn is positive semidefinite, where Enn is the elementary n×n matrix with (j, k) entry

δj,nδk,n; and similarly, f [A] is positive semidefinite if and only if f [B] − f(b)2

f(c) Enn is positive

semidefinite.
By the induction hypothesis, we have that f [B − b2

c Enn] is positive semidefinite. Thus, it

suffices to prove that f [B]− f(b)2

f(c) Enn− f [B− b2

c Enn] is positive semidefinite. Now compute:

f [B]− f(b)2

f(c)
Enn − f [B −

b2

c
Enn] = αEnn, where α = f(bnn)−

f(b)2

f(c)
− f(bnn −

b2

c
).

Therefore, it suffices to show that α ≥ 0. But by super-additivity, we have

α = f(bnn)−
f(b)2

f(c)
− f(bnn −

b2

c
)

= f(bnn −
b2

c
+
b2

c
)− f(b)2

f(c)
− f(bnn −

b2

c
)

≥ f(bnn −
b2

c
) + f(

b2

c
)− f(b)2

f(c)
− f(bnn −

b2

c
)

= f(
b2

c
)− f(b)2

f(c)
.

Moreover, by multiplicative mid-convexity, we obtain that f( b
2

c )f(c) ≥ f(b)2. Hence, α ≥ 0
and f [A] is positive semidefinite, as desired. □

An immediate consequence is the complete classification of entrywise powers preserving
positivity on PT ([0,∞)) for T a tree.

Corollary 13.7. f(x) = xα preserves PT ([0,∞)) for a tree on at least three nodes, if and
only if α ≥ 1.

The proof follows from the observation that xα is super-additive on [0,∞) if and only if
α ≥ 1.
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monotonicity and super-additivity.

We next study the set of entrywise powers preserving positivity on matrices with zero
patterns. Recall the closed convex cone PG([0,∞)) studied in Section 13, for a (finite simple)
graph G. Now define

HG := {α ≥ 0 : A◦α ∈ PG([0,∞)) ∀A ∈ PG([0,∞))}, (14.1)

with the convention that 00 := 1. Thus, HG is the set of entrywise, or Hadamard, powers
that preserve positivity on PG.

Observe that if G ⊂ H are graphs, then HG ⊃ HH . In particular, by the FitzGerald–Horn
classification in Theorem 9.3,

HG ⊃ HKn = Z≥0 ∪ [n− 2,∞) (14.2)

whenever G has n vertices. Specifically, there is always a point β ≥ 0 beyond which every
real power preserves positivity on PG. We are interested in the smallest such point, which
leads us to the next definition (following the FitzGerald–Horn theorem 9.3 in the special case
G = Kn):

Definition 14.3. The critical exponent of a graph G is

αG := min{β ≥ 0 : α ∈ HG ∀α ≥ β}.

Example 14.4. We saw earlier that if G is a tree (but not a disjoint union of copies of K2),
then αG = 1; and FitzGerald–Horn [123] showed that αKn = n− 2 for all n ≥ 2.

In this section we are interested in closed-form expressions for αG and HG. Not only is
this a natural mathematical refinement of Theorem 9.3, but as discussed in Section 13.1,
this moreover impacts applied fields, providing modern motivation to study the question.
Somewhat remarkably, the above examples were the only known cases until very recently.

On a more mathematical note, we are also interested in understanding a combinatorial
interpretation of the critical exponent αG. This is a graph invariant that arises out of posi-
tivity; it is natural to ask if it is related to previously known (combinatorial) graph invariants,
and more broadly, how it relates to the geometry of the graph.

We explain in this section that there is a uniform answer for a large family of graphs, which
includes complete graphs, trees, split graphs, banded graphs, cycles, and other classes; and
moreover, there are no known counterexamples to this answer. Before stating the results,
we remark that the question of computing HG, αG for a given graph is easy to formulate,
and one can carry out easy numerical simulations by running (software code) over large sets
of matrices in PG (possibly chosen randomly), to better understand which powers preserve
PG. This naturally leads to accessible research problems for various classes of graphs: say
triangle-free graphs, or graphs with small numbers of vertices. For instance, there is a graph
on five vertices for which the critical exponent is not known!

Now on to the known results. We begin by computing the critical exponent αG – and HG,
more generally – for a family of graphs that turns out to be crucial in understanding several
other families (split, Apollonian, banded, and in fact all chordal graphs).

Definition 14.5. The almost complete graph K
(1)
n is the complete graph on n nodes, with

one edge missing.
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We will choose a specific labeling of the nodes in K

(1)
n ; note this does not affect the set

HG or the threshold αG. Specifically, we set the (1, n) and (n, 1) entries to be zero, so that

P
K

(1)
n

consists of matrices of the form

 · · · 0
...

. . .
...

0 · · ·

 ∈ Pn. Our goal is to prove:

Theorem 14.6. For all n ≥ 2, we have H
K

(1)
n

= HKn = Z≥0 ∪ [n− 2,∞).

14.1. Other Loewner properties. In order to prove Theorem 14.6, we need to understand
the powers that preserve super-additivity on n × n matrices under the positive semidefinite
ordering. We now define this notion, as well as a related notion of monotonicity.

Definition 14.7. Let I ⊂ R and n ∈ N. A function f : I → R is said to be

(1) Loewner monotone on Pn(I) if we have A ≥ B ≥ 0n×n =⇒ f [A] ≥ f [B].
(2) Loewner super-additive on Pn(I) if f [A+B] ≥ f [A] + f [B] for all A,B ∈ Pn(I).

In these definitions, we are using the Loewner ordering (or positive semidefinite ordering) on
n× n matrices: A ≥ B if A−B ∈ Pn(R).

Remark 14.8. A few comments to clarify these definitions are in order. First, if n = 1,
then these notions both reduce to their usual counterparts for real functions defined on
[0,∞). Second, if f(0) ≥ 0, then Loewner monotonicity implies Loewner positivity. Third,
a Loewner monotone function differs from – in fact is the entrywise analogue of – the more
commonly studied operator monotone functions, which have the same property but for the
functional calculus: A ≥ B ≥ 0 =⇒ f(A) ≥ f(B) ≥ 0.

Note that if n = 1 and f is continuously differentiable, then f is non-decreasing if and only
if f ′ is non-negative. The following result generalizes this fact to powers acting entrywise on
Pn and classifies the Loewner monotone powers.

Theorem 14.9 (FitzGerald–Horn). Given an integer n ≥ 2 and a scalar α ∈ R, the power
xα is Loewner monotone on Pn([0,∞)) if and only if α ∈ Z≥0 ∪ [n− 1,∞). In particular, the
critical exponent for Loewner monotonicity on Pn is n− 1.

We will see in Section 15 a strengthening of Theorem 14.9 by using individual matrices from
a multiparameter family, in the spirit of Jain’s theorem 9.10 for Loewner positive powers.

Proof. The proof strategy is similar to that of Theorem 9.3: use the Schur product theorem
for non-negative integer powers, perform induction on n for the powers above the critical
exponent, and employ (the same) rank-2 Hankel moment matrix counterexample for the
remaining powers. First, if α ∈ N and 0 ≤ B ≤ A, then repeated application of the Schur
product theorem yields

0n×n ≤ B◦α ≤ B◦(α−1) ◦A ≤ B◦(α−2) ◦A◦2 ≤ · · · ≤ A◦α.

Now, suppose α ≥ n − 1. We prove that xα is Loewner monotone on Pn by induction
on n; the base case of n = 1 is clear. For the induction step, if α ≥ n − 1, then recall the
integration trick (9.7) of FitzGerald and Horn:

A◦α −B◦α = α

∫ 1

0
(A−B) ◦ (λA+ (1− λ)B)◦(α−1) dλ.

Since α−1 ≥ n−2, the matrix (λA+(1−λ)B)◦(α−1) is positive semidefinite by Theorem 9.3,
and thus, A◦α −B◦α ∈ Pn. Therefore, A

◦α ≥ B◦α, and we are done by induction.
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Finally, to show that the threshold α = n− 1 is sharp, suppose α ∈ (0, n− 1) \N (we leave
the case of α < 0 as an easy exercise). Consider again the Hankel moment matrices

A(ϵ) := Hµ for µ = δ1 + ϵδx, B := A(0) = 1n×n,

where x, ϵ > 0, x ̸= 1, and Hµ is understood to denote the leading principal n × n sub-
matrix of the Hankel moment matrix for µ. Clearly, A(ϵ) ≥ B ≥ 0n×n. As above, let
v = (1, x, . . . , xn−1)T , so that A(ϵ) = 11T + ϵvvT . Choose a vector u ∈ Rn that is orthog-

onal to v, v◦2, . . . , v◦(⌊α⌋+1), and uT v◦(⌊α⌋+2) = 1. (Note, this is possible since the vectors

v, v◦2, . . . , v◦(⌊α⌋+2) are linearly independent, forming the columns of a possibly partial gen-
eralized Vandermonde matrix.)

We claim that uT (A(ϵ)◦α − B◦α)u < 0 for small ϵ > 0, which will show that xα is not
Loewner monotone on Pn([0,∞)). Indeed, compute using the binomial series for (1 + x)α:

uTA(ϵ)◦αu− uTBu = uT (11T + ϵvvT )◦αu− uT11Tu

= uT ·
⌊α⌋+2∑
k=1

(
α

k

)
ϵkv◦k(v◦k)T · u+ uT · o(ϵ⌊α⌋+2) · u

=

(
α

⌊α⌋+ 2

)
ϵ⌊α⌋+2 + uT o(ϵ⌊α⌋+2)u

= ϵ⌊α⌋+2

((
α

⌊α⌋+ 2

)
+ uT · o(1) · u

)
,

and this is negative for small ϵ > 0. (Here, o(·) always denotes a matrix, as in (9.8).) □

Theorem 14.9 is now used to classify the powers preserving Loewner super-additivity. Note
that if n = 1, then xα is super-additive on Pn([0,∞)) = [0,∞) if and only if α ≥ n = 1. The
following result generalizes this to all integers n ≥ 1:

Theorem 14.10 (Guillot, Khare, and Rajaratnam, [151]). Given an integer n ≥ 1 and
a scalar α ∈ R, the power xα is Loewner super-additive on Pn([0,∞)) if and only if α ∈
N ∪ [n,∞). Moreover, for each α ∈ (0, n) \ N and x ∈ (0, 1), for ϵ > 0 small enough the
matrix

(11T + ϵvvT )◦α − 11T − (ϵvvT )◦α

is not positive semidefinite, where v = (1, x, . . . , xn−1)T . In particular, the critical exponent
for Loewner super-additivity on Pn is n.

Thus, once again the same rank-2 Hankel moment matrices provide the desired counterex-
amples, for non-integer powers α below the critical exponent.

Proof. As above, we leave the proof of the case α < 0 or n = 1 to the reader. Next, if α = 0,
then super-additivity fails, since we always get −11T from the super-additivity condition,
and this is not positive semidefinite.

Thus, henceforth α > 0 and n ≥ 2. If α is an integer, then by the binomial theorem and
the Schur product theorem,

(A+B)◦α =
α∑

k=0

(
α

k

)
A◦k ◦B◦(α−k) ≥ A◦α +B◦α, ∀A,B ∈ Pn.
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Next, if α ≥ n and A,B ∈ Pn([0,∞)), then xα−1 preserves Loewner monotonicity on Pn,

by Theorem 14.9. Again, use the integration trick (9.7) to compute

(A+B)◦α −A◦α = α

∫ 1

0
B ◦ (λ(A+B) + (1− λ)A)◦(α−1) dλ

≥ α

∫ 1

0
B ◦ (λB)◦(α−1) dλ = B◦α.

The final case is if α ∈ (0, n) \ Z. As above, we fix x > 0, x ̸= 1, and define

v := (1, x, . . . , xn−1)T , A(ϵ) := ϵvvT (ϵ > 0), B := A(0) = 1n×n.

Clearly, A(ϵ), B ≥ 0n×n. Now, since α ∈ (0, n), the vectors v, v◦2, . . . , v◦⌊α⌋, v◦α are linearly
independent (since the matrix with these columns is part of a generalized Vandermonde

matrix). Thus, we may choose u ∈ Rn that is orthogonal to v, . . . , v◦⌊α⌋ (if α ∈ (0, 1), this is
vacuous) and such that uT v◦α = 1. Now compute as in the previous proof, using the binomial
theorem

(A(ϵ) +B)◦α −A(ϵ)◦α −B◦α =

⌊α⌋∑
k=1

(
α

k

)
ϵkv◦k(v◦k)T − ϵαv◦α(v◦α)T + o(ϵα);

the point here is that the last term shrinks at least as fast as ϵ⌊α⌋+1. Hence, by the choice of
u,

uT ((A(ϵ) +B)◦α −A(ϵ)◦α −B◦α)u = −ϵα + uT · o(ϵα) · u,
and this is negative for small ϵ > 0. Hence, xα is not Loewner super-additive even on rank-1
matrices in Pn((0, 1]). □

Remark 14.11. The above proofs of Theorems 14.9 and 14.10 apply for arbitrary v =
(v1, . . . , vn)

T , consisting of pairwise distinct positive real scalars.

14.2. Entrywise powers preserving PG. We now apply the above results to compute the
set of entrywise powers preserving positivity on P

K
(1)
n

(the almost complete graph).

Proof of Theorem 14.6. The result is straightforward for n = 2, so we assume henceforth that
n ≥ 3. It suffices to show that H

K
(1)
n
⊂ Z≥0 ∪ [n − 2,∞), since the reverse inclusion follows

from Theorem 9.3 via (14.2). Fix x > 0, x ̸= 1, and define

v := (1, x, . . . , xn−3)T ∈ Rn−2, A(ϵ) :=

1 1T 0
1 11T + ϵvvT

√
ϵv

0
√
ϵvT 1


n×n

, ϵ > 0.

Note that if p, q > 0 are scalars, a,b ∈ Rn−2 are vectors, and B is an (n−2)× (n−2) matrix,
then using Schur complements (Theorem 2.32),p aT 0

a B b
0 bT q

 ∈ Pn ⇐⇒
(
p aT

a B − q−1bbT

)
∈ Pn−1

⇐⇒ B − p−1aaT − q−1bbT ∈ Pn−2.

(14.12)

Applying this to the matrices A(ϵ) and A(ϵ)◦α, we obtain: A(ϵ) ∈ Pn, and

A(ϵ)◦α ∈ Pn ⇐⇒ (11T + ϵvvT )◦α − (11T )◦α − (ϵvvT )◦α ∈ Pn−2.

For small ϵ > 0, Theorem 14.10 now shows that α ∈ Z≥0 ∪ [n− 2,∞), as desired. □
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In the remainder of this section, we present what is known about the critical exponents
αG and power-preserver sets HG for various graphs. We do not provide proofs below, instead
referring the reader to the 2016 paper [153] by Guillot, Khare, and Rajaratnam in J. Combin.
Theory, Ser. A.

The first family of graphs is that of chordal graphs, and it subsumes not only complete
graphs, trees, and almost complete graphs (for all of which we have computed HG, αG with
full proofs above), but also other graphs including split, banded, and Apollonian graphs,
which we shall now discuss.

Definition 14.13. A graph is chordal if it has no induced cycle of length ≥ 4.

Chordal graphs are important in many fields. They are also known as triangulated graphs,
decomposable graphs, and rigid circuit graphs. They occur in spectral graph theory, but
also in network theory, optimization, and Gaussian graphical models. Chordal graphs play a
fundamental role in areas including maximum likelihood estimation in Markov random fields,
perfect Gaussian elimination, and the matrix completion problem.

The following is the main result of the aforementioned 2016 paper [153], and it computes
HG for every chordal graph:

Theorem 14.14. Let G be a chordal graph with n ≥ 2 nodes and at least one edge. Let r

denote the largest integer, such that Kr or K
(1)
r ⊂ G. Then HG = Z≥0 ∪ [r − 2,∞).

The point of the theorem is that the study of powers preserving positivity reduces solely
to the geometry of the graph and can be understood combinatorially rather than through
matrix analysis (given the theorem). While we do not prove this result here, we remark that
the proof crucially uses Theorem 14.6 and the “clique-tree decomposition” of a chordal graph.

As applications of Theorem 14.14, we mention several examples of chordal graphs G and
their critical exponents αG; by the preceding theorem, the only powers below αG that preserve
positivity on PG are the non-negative integers.

(1) The complete and almost complete graph on n vertices are chordal and have critical
exponent n− 2.

(2) Trees are chordal and have critical exponent 1.
(3) Let Cn denote a cycle graph (for n ≥ 4), which is clearly not chordal. Any minimal

planar triangulation G of Cn is chordal, and one can check that αG = 2 regardless of
the size of the original cycle graph or the locations of the additional chords drawn.

(4) A banded graph with bandwidth d > 0 is a graph with vertex set [n] = {1, . . . , n}
and edges (j, j + x) for x ∈ {−d,−d + 1, . . . , d − 1, d}, such that 1 ≤ j, j + x ≤ n.
Such graphs are chordal, and one checks (combinatorially) that αG = min(d, n − 2)
if n > d.

(5) A split graph consists of a clique C ⊂ V and an independent (i.e., pairwise discon-
nected) set V \C, whose nodes are connected to various nodes of C. Split graphs are
an important class of chordal graphs, because it can be shown that the proportion of
(connected) chordal graphs with n nodes that are split graphs grows to 1 as n→∞.
Theorem 14.14 implies that for a split graph G,

αG = max(|C| − 2,maxdeg(V \ C)).
(6) Apollonian graphs are constructed as follows: start with a triangle as the first itera-

tion. Given any iteration, which is a subdivision of the original triangle by triangles,
choose an interior point of any of these “atomic” triangles, and connect it to the three
vertices of the corresponding atomic triangle. This increases the number of atomic
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triangles by 2 at each step. If G is an Apollonian graph on n ≥ 3 nodes, one shows
that αG = min(2, n − 2). Notice, for n ≥ 4 this is independent of n or the specific
triangulation.

It is natural to ask what is known for non-chordal graphs. We mention one such result,
also shown in the aforementioned 2016 paper [153].

Theorem 14.15. Let Cn denote the cycle graph on n vertices (which is non-chordal for
n ≥ 4). Then HCn = [1,∞) for all n ≥ 4.

Remarkably, this is the same combinatorial recipe as for chordal graphs (in Theorem 14.14)!
We end with some questions, which can be avenues for further research into this nascent

topic.

Question 14.16.

(1) Compute the critical exponent (and set of powers preserving positivity) for graphs
other than the ones discussed above. In particular, compute αG for all G = (V,E)
with |V | ≤ 5.

(2) For all graphs G with known critical exponent, the critical exponent turns out to be

r − 2, where r is the largest integer, such that G contains either Kr or K
(1)
r . Does

the same result hold for all graphs?
(3) In fact, more is true in all known cases: HG = Z≥0 ∪ [αG,∞). Is this true for all

graphs?
(4) Taking a step back: can one show that the critical exponent of a graph is an integer

(perhaps without computing it explicitly)?
(5) Does the critical exponent have connections to – or can it be expressed in terms of –

other, purely combinatorial graph invariants?
(6) More generally, is it possible to classify the entrywise functions that preserve positivity

on PG, for G a non-complete, non-tree graph? Perhaps the simplest example is a cycle
G = Cn.
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15. Loewner convexity. Single matrix encoders of entrywise
power-preservers of Loewner properties.

In Section 14, we classified the entrywise powers that are Loewner monotone or super-
additive on all matrices in Pn([0,∞)). In this section, we similarly classify the Loewner
convex powers on Pn (a notion that is not yet defined). Before doing so, we show that there
exist individual matrices that turn out to encode the sets of entrywise powers preserving
Loewner positivity and monotonicity.

15.1. Matrices encoding Loewner positive powers. We begin with the Loewner positive
powers and recall Jain’s Theorem 9.10. This was strengthened by Jain in her 2020 paper in
Adv. Oper. Theory :

Theorem 15.1 (Jain). Suppose n ≥ 2 is an integer, and x1, x2, . . . , xn are pairwise distinct
real numbers, such that 1 + xjxk > 0 for all j, k. Let C := (1 + xjxk)

n
j,k=1. Then C◦α is

positive semidefinite if and only if α ∈ Z≥0 ∪ [n− 2,∞).

The remainder of this subsection is devoted to proving Theorem 15.1, beginning with the
following notation:

Definition 15.2. Given a real tuple x = (x1, . . . , xn), define Ax := −∞ if all xj ≤ 0, and
−1/maxj xj otherwise. Similarly, define Bx :=∞ if all xj ≥ 0, and −1/minj xj otherwise.

Here are a few properties of Ax, Bx; the details are straightforward verifications, which are
left to the reader.

Lemma 15.3.

(1) Suppose x ∈ R. Then 1 + yx > 0 for a real scalar y, if and only if sgn(x)y ∈
(−1/|x|,∞), where we set 1/|x| :=∞ if x = 0.

(2) Given real scalars x1, . . . , xn, y, we have 1 + yxj > 0 for all j if and only if y ∈
(Ax, Bx).

(3) A−x = −Bx and Ax < 0 < Bx for all x ∈ Rn.

Proof sketch. The first part follows by using x = sgn(x)|x|; the second follows by intersecting
the solution-intervals for each xj . The final assertion is a consequence of the first two. □

We now show an intermediate result that resembles Descartes’ rule of signs (Lemma 5.2),
except that it holds for powers of 1 + ux rather than exp(ux):

Proposition 15.4. Fix a real number r, an integer n ≥ 1, and two real tuples c = (c1, . . . , cn) ̸=
0 and x = (x1, . . . , xn) with pairwise distinct xj. Then the function

φx,c,r : (Ax, Bx)→ R, u 7→
n∑

j=1

cj(1 + uxj)
r

either is identically zero or has at most n− 1 zeros, counting multiplicities.

Proof. The proof of this Descartes-type result once again employs the trick by Poulain and
Laguerre – namely, to use Rolle’s theorem and induct. If r = 0, then the result is straight-
forward, so assume henceforth that r ̸= 0. Let s = S−(c) denote the number of sign changes
in the non-zero tuple c = (c1, . . . , cn). Now claim more strongly that the number of zeros is
at most s. The proof is by induction on n ≥ 1 and then on s ∈ [0, n − 1]. The base case of
n = 1 is clear; and, for any n, the base case of s = 0 is also immediate. Thus, suppose n ≥ 2
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and s ≥ 1, and suppose the result holds for all tuples c of length < n, as well as for all tuples
c ∈ Rn \ {0} with at most s− 1 sign changes. Because of this, we may also assume that all
cj are non-zero and S−(c) = s.

We begin by relabeling the xj if required, to lie in increasing order:

x1 < · · · < xn.

Now, suppose there does not exist 0 < k ≤ n, such that ck−1ck < 0 (there is a sign change
here in the tuple c, which is also relabeled corresponding to the xj if required) and xk > 0.
Then xk ≤ 0, so that xk−1 < 0. Now work with the tuples −x and c′ := (cn, . . . , c1), i.e.,

−xn < −xn−1 < · · · < −x1, φ−x,c′,r(v) :=

1∑
j=n

cj(1− uxj)r.

Here v = −u ∈ (−Bx,−Ax) = (A−x, B−x) by Lemma 15.3, so the result for φ−x,c′,r(v)
would prove that for φx,c,r(u). Using this workaround if needed, it follows that there exists
1 ≤ k ≤ n, such that ck−1ck < 0 and xk > 0. In particular, there exists v > 0, such that

1− vxn < · · · < 1− vxk < 0 < 1− vxk−1 < · · · < 1− vx1.

Define

ψ : (Ax, Bx)→ R, ψ(u) :=

n∑
j=1

cj(1− vxj)(1 + uxj)
r−1.

By choice of v, the sequence (c1(1− vx1), . . . , cn(1− vxn)) has precisely s− 1 sign changes,
so ψ has at most s− 1 zeros. Now, for u ∈ (Ax, Bx), we compute

ψ(u) =
n∑

j=1

cj(1 + uxj − (u+ v)xj)(1 + uxj)
r−1

= φx,c,r(u)− (u+ v)

n∑
j=1

cjxj(1 + uxj)
r−1 = −(u+ v)r+1

r
h′(u),

where h(u) := (u+ v)−rφx,c,r(u) and r ̸= 0. Since xk > 0, we obtain from above

u ∈ (Ax, Bx) =⇒ u+ v > Ax + v = v − x−1
n > v − x−1

k > 0.

Thus, u 7→ u+v is positive on (Ax, Bx), hence h : (Ax, Bx)→ R is well defined. From above,
ψ has at most s− 1 zeros on (Ax, Bx), hence so does h′. But then by Rolle’s theorem, h has
at most s zeros on (Ax, Bx), and hence, so does φx,c,r. □

A second intermediate result involves a homotopy argument that will be crucial in proving
Theorem 15.1:

Proposition 15.5. Let n ≥ 2 be an integer and fix real scalars

x1 < · · · < xn, 0 < y1 < · · · < yn,

such that 1 + xjxk > 0 for all j, k. Then there exists ϵ0 > 0, such that for all 0 < ϵ ≤ ϵ0, the
linear homotopies (between xj and ϵyj)

x
(ϵ)
j (t) := xj + t(ϵyj − xj), t ∈ [0, 1]

all satisfy

1 + x
(ϵ)
j (t)x

(ϵ)
k (t) > 0, ∀j, k = 1, . . . , n, t ∈ [0, 1].
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Notice that this is not immediate, nor even true for arbitrary ϵ. For instance, suppose
n = 2, ϵ = 1, and (y1, y2) = (1, 2). If, say, (x1, x2) = (−199, 0), then an easy “completion of
squares” shows that the assertion is false at most times in the homotopy:

1+x
(1)
1 (t)x

(1)
2 (t) ≤ 0, ∀t ∈

[
398

800
− 1

20

√
3982

402
− 1,

398

800
+

1

20

√
3982

402
− 1

]
⊃ [0.0026, 0.9924].

Similarly, if, say, (x1, x2) = (−8.5, 0.1), then

1 + x
(1)
1 (t)x

(1)
2 (t) ≤ 0, ∀t ∈

[
8−
√
61

19
,
8 +
√
61

19

]
⊃ [0.01, 0.8321].

Thus, the ϵ in the statement is crucial for the result to hold.

Proof of Proposition 15.5. We begin with three observations; in all of them, xj(t) = x
(ϵ)
j (t)

for some fixed ϵ > 0, and all j, t. First, we have x1(t) < · · · < xn(t) for all t ∈ [0, 1].
Second, if x1 ≥ 0, then it is clear that xj(t) ≥ 0 for all j ∈ [1, n] and all t ∈ [0, 1], and the

result is immediate. Thus, we suppose henceforth that x1 < 0.
Third, if there exist integers j < k and a time t ∈ [0, 1], such that 1 + xj(t)xk(t) ≤ 0, then

xj(t) < 0 < xk(t), and hence x1(t) < 0 < xn(t). One then verifies easily that 1+x1(t)xn(t) ≤
1 + xj(t)xk(t) ≤ 0.

Thus, for every choice of xj , yj as above, with x1 < 0, it suffices to produce ϵ0 > 0, such

that 1+ x
(ϵ)
1 (t)x

(ϵ)
n (t) > 0 for all t ∈ (0, 1) and all 0 < ϵ ≤ ϵ0. There are two cases, depending

on the sign of xn:

Case 1: xn ≥ 0. Then xn < 1/|x1|. We claim that ϵ0 := 1/(|x1|yn) works; to see this,
compute using the known inequalities on xj , yj :

1 + x
(ϵ)
1 (t)x(ϵ)n (t) = 1 + (tϵy1 + (1− t)x1)(tϵyn + (1− t)xn)

> 1 + (1− t)x1(tϵyn + (1− t)xn) > 1 + (1− t)x1(tϵyn + (1− t)/|x1|),

where the (final) two inequalities are strict because t ∈ (0, 1). Continuing, this last expression
equals

= 1− (1− t)2 + t(1− t)ϵynx1 ≥ t (2− t− (1− t)ϵ0yn|x1|) = t > 0.

Case 2: xn < 0. For ϵ close to 0, define

f(ϵ) := 1− ϵ2(xny1 − x1yn)2

4(ϵy1 − x1)(ϵyn − xn)
.

This function is continuous in ϵ and f(0) > 0. Hence, there exists ϵ0 > 0, such that f(ϵ) > 0
for all 0 ≤ ϵ ≤ ϵ0.

We show that ϵ0 satisfies the desired properties. Let 0 < ϵ ≤ ϵ0, and set

t
(ϵ)
j := −xj/(ϵyj − xj), 1 ≤ j ≤ n.

Note that x
(ϵ)
j (t) is negative, zero, or positive when t < t

(ϵ)
j , t = t

(ϵ)
j , or t > t

(ϵ)
j , respectively.

Also note by the observations above, and since t
(ϵ)
j is the time at which x

(ϵ)
j (·) vanishes, that

0 < t(ϵ)n < t
(ϵ)
n−1 < · · · < t

(ϵ)
1 < 1.

Now, if 0 ≤ t ≤ t(ϵ)n or t
(ϵ)
1 ≤ t ≤ 1, then x

(ϵ)
1 (t), x

(ϵ)
n (t) are both non-positive or non-negative,

respectively. Hence, 1 + x
(ϵ)
1 (t)x

(ϵ)
n (t) ≥ 1, as desired.
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Next, suppose t ∈ (t

(ϵ)
n , t

(ϵ)
1 ). Observe that

x
(ϵ)
j (t) = tϵyj + (1− t)xj = (t− t(ϵ)j )(ϵyj − xj), ∀j ∈ [1, n], t ∈ [0, 1].

Now, using the AM–GM inequality, the proof is complete:

1 + x
(ϵ)
1 (t)x(ϵ)n (t) = 1 + (t− t(ϵ)1 )(t− t(ϵ)n )(ϵy1 − x1)(ϵyn − xn)

≥ 1− 1

4
(t

(ϵ)
1 − t

(ϵ)
n )2(ϵy1 − x1)(ϵyn − xn) = f(ϵ) > 0. □

With all of the above results at hand, we can proceed:

Proof of Theorem 15.1. For ease of exposition, we break up the proof into steps.

Step 1: The first observation is slightly more general than applies here. Suppose y1, . . . , yn
are distinct real numbers, such that 1 + ykxj > 0 for all 1 ≤ j, k ≤ n. Let S := (1 + ykxj),
and let r be real. If r ∈ {0, 1, . . . , n− 2}, then S◦r has rank r + 1, else S◦r is non-singular.

Indeed, for r ∈ {0, . . . , n− 2}, we have

S◦r = (W
(r)
y )TDW

(r)
x , where W

(r)
x :=


1 1 · · · 1
x1 x2 · · · xn
...

...
. . .

...
xr1 xr2 · · · xrn

 ,

and where D(r+1)×(r+1) is a diagonal matrix with entries
(
r
0

)
,
(
r
1

)
, . . . ,

(
r
r

)
. Now D is non-

singular, and W
(r)
x ,W

(r)
y are submatrices of Vandermonde matrices and hence of full rank –

so S◦r has rank r + 1.
Now suppose r ̸= 0, 1, . . . , n−2 and S◦rcT = 0 for some tuple c = (c1, . . . , cn) ̸= 0. Rewrite

S◦rcT = 0 to obtain

φx,c,r(yk) =
n∑

j=1

cj(1 + ykxj)
r = 0, k = 1, . . . , n.

Since 1 + ykxj > 0 for all j, k, we have yk ∈ (Ax, Bx) by Lemma 15.3(2). So φx,c,r ≡ 0 on

(Ax, Bx), by Proposition 15.4, and hence φ
(l)
x,c,r(0) = 0 for l = 0, 1, . . . , n−1 by Lemma 15.3(3).

Reformulating this,

n∑
j=1

(cjr(r − 1) · · · (r − l + 1))xlj = 0, ∀l = 0, 1, . . . , n− 1,

i.e.,W
(n−1)
x DcT = 0, whereD is a diagonal matrix with diagonal entries 1, r, r(r−1), . . . , r(r−

1) · · · (r− n+ 2). Now W
(n−1)
x is a non-singular (Vandermonde) matrix, as is D by choice of

r. Thus, the tuple c is zero, i.e., S◦r is non-singular.

Step 2: We now turn to the proof of the theorem. First, if α ∈ Z≥0∪ [n− 2,∞), then C◦α is
positive semidefinite by Theorem 9.3. Next, if α < 0, then the leading 2× 2 principal minor
of C(x)◦α is easily seen to be negative. Finally, suppose α ∈ (0, n − 2) \ Z. Given a real
vector y ∈ Rn, define C(y) := 1n×n + yyT . Now apply the previous step, fixing r = α and
all yj = xj . Thus, detC(x)

◦α ̸= 0 for every x with all 1 + xjxk > 0.
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Now recall the proof of Theorem 9.3, and the subsequent remarks. Thus, if x0 < minj xj ,
then there exists ϵ1 > 0, such that C(

√
ϵ(x − x01))

◦α has a negative eigenvalue for all
0 < ϵ < ϵ1. Now consider the linear homotopy

x(t) := (1− t+ t
√
ϵ2)x− t

√
ϵ2x01, t ∈ [0, 1],

which goes from x to
√
ϵ2(x − x01) as t goes from 0 to 1. Here we choose ϵ2 ∈ (0, ϵ1), such

that ϵ0 :=
√
ϵ2 satisfies the conclusions of Proposition 15.5 for xj as above and yj := xj − x0

(suitably relabeled to be in increasing order if desired).
Again applying the previous step (for the same fixed r = α), detC(x(t))◦α ̸= 0 for all

t ∈ [0, 1]. We also know that C(x(1))◦α has a negative eigenvalue, hence λmin(C(x(1))) < 0.
Now claim by the “continuity of eigenvalues” that λmin(C(x(t))) < 0 for all t ∈ [0, 1], and in
particular at t = 0. This is shown in the next step and completes the proof.

Step 3: The claim in the preceding paragraph follows from this more general fact: Suppose
C : [0, 1] → Cn×n is a continuous Hermitian matrix-valued function, such that each C(t) is
non-singular. If C(1) has a negative eigenvalue, then so does C(t) for all t ∈ [0, 1].

It remains to show this statement, and we use a simpler approach (than the full power of
‘continuity of roots’ in Proposition 8.7 above) to do so. Let X := {t ∈ [0, 1] : λmin(C(t)) ≥ 0}.
Since the cone of positive semidefinite matrices is closed, it follows that X is closed in [0, 1].
Now the claim follows from the sub-claim that Xc := [0, 1] \X is also closed: since [0, 1] is
connected and 1 ∈ Xc, it follows that Xc = [0, 1] and so 0 ∈ Xc as desired.

To show the sub-claim, let ∥C(t)∥ :=
(∑n

j,k=1 |cjk|2
)1/2

. It is clear using the Cauchy–

Schwartz inequality that all eigenvalues of C(t) lie in [−∥C(t)∥, ∥C(t)∥]. Now, given a se-
quence tn ∈ Xc that converges to t0 ∈ [0, 1], all entries of {C(tn) : n ≥ 1} lie in a compact
set, hence so do the corresponding minimum eigenvalues λmin(C(tn)). Pick a subsequence
nk, such that the sequence λmin(C(tnk

)) is convergent, with limit λ0, say. Now λ0 ≤ 0. Also
pick a unit-length eigenvector vn of C(tn) corresponding to the eigenvalue λmin(C(tn)); as the
unit complex sphere is compact, there is a further subsubsequence nkl , such that vnkl

→ v0
as l→∞, with v0 also of unit norm.

With these choices at hand, write the equation C(tnkl
)vnkl

= λmin(C(tnkl
))vnkl

and let l→
∞. Then C(t0)v0 = λ0v0, with λ0 ≤ 0. It follows from the hypotheses that λmin(C(t0)) < 0,
and the proof is complete. □

15.2. Matrices encoding Loewner monotone powers. We now turn to Loewner mono-
tonicity (recall Theorem 14.9). The next result – again by Jain in 2020 [192] – shows that,
akin to Theorem 15.1, there exist individual matrices that encode the Loewner monotone
powers:

Corollary 15.6. Suppose n ≥ 1 and x1, . . . , xn are distinct non-zero real numbers, such that
1 + xjxk > 0 for all j, k. Let x := (x1, . . . , xn)

T and α ∈ R. Then (1n×n + xxT )◦α ≥ 1n×n if
and only if α ∈ Z≥0 ∪ [n− 1,∞), if and only if xα is Loewner monotone on Pn((0,∞)).

Notice that here we cannot take xj = 0 for any j; if, for instance, xn = 0 and we call the
matrix X, then the monotonicity of X◦α over 1n×n is actually equivalent to the positivity of
X◦α, and so the result fails to hold.

Proof. If α ∈ Z≥0 ∪ [n − 1,∞), then Theorem 14.9 implies xα is Loewner monotone on
Pn((0,∞)), hence on X := 1n×n+xxT ≥ 1n×n. Conversely, suppose x

α is Loewner monotone
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on X ≥ 1n×n. Let x

′ := (xT , 0)T ∈ Rn+1, then

X̃ := 1(n+1)×(n+1) + x′(x′)T =

(
X 1
1T 1

)
satisfies the hypotheses of Theorem 15.1. Now, by the theory of Schur complements (Theo-

rem 2.32),X◦α ≥ 1n×n if and only if X̃◦α ∈ Pn+1. But this is if and only if α ∈ Z≥0∪[n−1,∞),
by Theorem 15.1. □

15.3. Loewner convex powers, and individual matrices encoding them. Finally, we
turn to the entrywise powers preserving Loewner convexity.

Definition 15.7. Let I ⊂ R and n ∈ N. A function f : I → R is said to be Loewner convex
on a subset V ⊂ Pn(I) if f [λA+ (1− λ)B] ≤ λf [A] + (1− λ)f [B], whenever A ≥ B ≥ 0n×n

lie in V , and λ ∈ [0, 1].

The final theorem in this section classifies the Loewner convex powers in the spirit of
Theorems 9.3, 14.9, and 14.10. It shows in particular that there is a critical exponent for
convexity as well. It also shows the encoding of these powers by individual matrices, in the
spirit of Corollary 15.6:

Theorem 15.8 (Loewner convex entrywise powers). Fix an integer n ≥ 1 and a scalar
α ∈ R. The following are equivalent:

(1) The entrywise power xα is Loewner convex on Pn([0,∞)).
(2) Fix distinct non-zero real numbers x1, . . . , xn, such that 1 + xjxk > 0 for all j, k.

Then xα is Loewner convex on A := (1 + xjxk)
n
j,k=1 ≥ B = 1n×n ≥ 0.

(3) α ∈ Z≥0 ∪ [n,∞).

In particular, the critical exponent for Loewner convexity on Pn is n.

Thus, there are rank-2 Hankel TN matrices (with xj = xj0 for x0 ∈ (0,∞) \ {1}), which
encode the Loewner convex powers.

To prove this result, we require a preliminary result connecting Loewner convex functions
with Loewner monotone ones. We also prove a parallel result connecting monotone maps to
positive ones.

Proposition 15.9. Suppose n ≥ 1 and A ≥ B ≥ 0n×n are positive semidefinite matrices
with real entries, such that A − B = uuT , with u having all non-zero entries. Fix any open
interval I containing the entries of A,B, and suppose f : I → R is differentiable.

(1) Then both notions of the “interval” [B,A] agree, i.e.,

{C : B ≤ C ≤ A} = {λA+ (1− λ)B : λ ∈ [0, 1]}.
(2) If f [−] is Loewner monotone on the interval [B,A], then f ′[−] is Loewner positive on

(B,A). The converse holds for arbitrary matrices 0 ≤ B ≤ A.
(3) If f [−] is Loewner convex on the interval [B,A], then f ′[−] is Loewner monotone on

(B,A). The converse holds for arbitrary matrices 0 ≤ B ≤ A.

Proof.

(1) That the left-hand side contains the right is straightforward. Conversely, if B ≤
C ≤ A, then 0 ≤ C − B ≤ A − B, which has rank 1. Write A − B = uuT ; now, if
uT v = 0, then ∥

√
C −B · v∥2 = vT (C − B)v = 0, so (C − B)v = 0. This inclusion

of kernels shows that ker(C − B) has a codimension of at most one. If C ̸= B, then
ker(C−B) = keruT and C−B has column space spanned by u, by the orthogonality
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of eigenspaces of Hermitian matrices for different eigenvalues. Thus, C − B = λuuT

for some λ ∈ (0, 1]. But then,

C = B + λ(A−B) = λA+ (1− λ)B,

as desired.
(2) Suppose f ′ is Loewner positive on (B,A) (for any 0 ≤ B ≤ A). We show that f is

monotone on this interval by using the integration trick (9.7) (see also Theorem 9.12).
Indeed,

f [A]− f [B] =

∫ 1

0
(A−B) ◦ f ′[λA+ (1− λ)B] dλ.

By assumption and the Schur product theorem, the integrand is positive semidefinite,
hence so is the left-hand side, as desired. The same argument applies to show that
f [Aλ] ≥ f [Aµ], where Aλ := λA+ (1− λ)B and 0 ≤ µ ≤ λ ≤ 1.

Conversely, suppose f [Aλ] ≥ f [Aµ] for all 0 ≤ µ ≤ λ ≤ 1. Now, given λ ∈ (0, 1),
let 0 < h ≤ 1− λ, then f [Aλ+h] ≥ f [Aλ], so

0 ≤ lim
h→0+

1

h
(f [Aλ+h]− f [Aλ])

= lim
h→0+

1

h
(f [λA+ (1− λ)B + h(A−B)]− f [λA+ (1− λ)B])

= f ′[Aλ] ◦ (A−B).

By the assumptions, (A − B)◦(−1) is also a rank-1 positive semidefinite matrix with
all non-zero entries, so taking the Schur product, we have f ′[Aλ] ≥ 0 for all λ ∈ (0, 1),
as desired.

(3) Suppose f ′ is Loewner monotone on (B,A) (for any 0 ≤ B ≤ A). As above, we use
the integration trick to show that f is convex, beginning with:

f [(A+B)/2]− f [B] =
1

2

∫ 1

0
(A−B) ◦ f ′

[
λ
A+B

2
+ (1− λ)B

]
dλ,

f [A] + f [B]

2
− f [B] =

f [A]− f [B]

2
=

1

2

∫ 1

0
(A−B) ◦ f ′ [λA+ (1− λ)B] dλ.

(15.10)

Now, by the hypotheses on f ′ and the Schur product theorem, it follows that

(A−B) ◦ f ′[λA+ (1− λ)B] ≥ (A−B) ◦ f ′
[
λ
A+B

2
+ (1− λ)B

]
.

This, combined with (15.10), yields f [(A+B)/2] ≤ (f [A] + f [B])/2. One now proves
by induction – first on N and then on j – that

f

[
j

2N
A+

(
1− j

2N

)
B

]
≤ j

2N
f [A] +

(
1− j

2N

)
f [B], ∀N ≥ 1, 1 ≤ j ≤ 2N .

Now, given any λ ∈ [0, 1], approximate λ by a sequence of dyadic rationals j/2N as
above, and use the continuity of f [−] and the preceding inequality to conclude that
f [−] is Loewner convex on {B,A}. The same argument can be adapted to show that
f [−] is Loewner convex on {Aλ, Aµ}, as in the preceding part.
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Conversely, since we have f [λA+ (1− λ)B] ≤ λf [A] + (1− λ)f [B] for 0 ≤ λ ≤ 1,

it follows for λ ∈ (0, 1) that

f [B + λ(A−B)]− f [B]

λ
≤ f [A]− f [B],

f [A+ (1− λ)(B −A)]− f [A]
1− λ

≤ f [B]− f [A].

Letting λ→ 0+ and λ→ 1−, respectively, yields

(A−B) ◦ f ′[B] ≤ f [A]− f [B], (B −A) ◦ f ′[A] ≤ f [B]− f [A].
Adding these yields (A − B) ◦ (f ′[A] − f ′[B]) ≥ 0. Finally, A − B has all non-
zero entries, so has a rank-1 Schur-inverse; taking the Schur product with this yields
f ′[A] ≥ f ′[B]. As above, the same argument can be adapted to show that f ′[−] is
Loewner monotone on {Aλ, Aµ}. □

Finally, we have:

Proof of Theorem 15.8. Clearly, (1) =⇒ (2). Now setting f(x) := xα, both (2) =⇒ (3)
and (3) =⇒ (1) follow via Proposition 15.9(3) and Corollary 15.6. □

The above results on individual (pairs of) matrices encoding the entrywise powers preserv-
ing Loewner positivity, monotonicity, and convexity naturally lead to the following question.

Question 15.11. Given an integer n ≥ 1, do there exist matrices A,B ∈ Pn((0,∞)), such
that (A+B)◦α ≥ A◦α +B◦α if and only if α ∈ Z≥0 ∪ [n,∞)? In other words, for each n ≥ 1,
is the set of Loewner super-additive entrywise powers on Pn([0,∞)) (see Theorem 14.10) also
encoded by a single pair of matrices?

We provide a partial solution here, for the matrices studied above. Suppose u = (u1, . . . , un)
T ∈

(0,∞)n has pairwise distinct coordinates. Let A := 1n×n, B := uuT . By computations similar
to the proof of Theorem 14.6, it follows that

(A+B)◦α ≥ A◦α +B◦α ⇐⇒

1+ uuT 1n×1 u
11×n 1 0
uT 0 1

◦α

∈ Pn+2. (15.12)

When α = 1, denote the matrix on the right in (15.12) by M(u); this is easily seen to have
rank 2. Now considering any diagonal entry of the inequality on the left in (15.12), we obtain
α ≥ 1. By Theorem 14.10 and Remark 14.11, it suffices to now assume α ∈ (1, n) \ Z. But
if α ∈ (1, n − 1), then Theorem 15.1 yields the desired result, by considering the leading
principal (n+ 1)× (n+ 1) submatrices in the preceding inequality on the right in (15.12).

Thus, it remains to show that for α ∈ (n − 1, n), the matrix M(u)◦α ̸∈ Pn for all u
with pairwise distinct, positive coordinates. In fact, we claim that it suffices to show for
α ∈ (n − 1, n) that M(u)◦α is non-singular for all u as above. Indeed, this would imply by
a different homotopy argument that M(

√
ϵu)◦α is non-singular for all ϵ > 0; but for small

enough ϵ > 0 the proof of Theorem 14.10 shows that M(
√
ϵu)◦α has a negative eigenvalue,

so the same holds for all ϵ > 0 by the continuity of eigenvalues (or see Step 3 in the proof of
Theorem 15.1).

In light of this discussion, we end this section with a question closely related to the pre-
ceding question above.

Question 15.13. Suppose n ≥ 2 and α ∈ (n− 1, n). Is M(u)◦α ∈ Pn+2, where u ∈ (0,∞)n

has pairwise distinct coordinates and M(u) is as in (15.12)?
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Bibliographic notes and references

Entrywise calculus was initiated by Schur in 1911, when he defined the map f [A] (although
he did not use this notation), in the same paper [329] where he proved the Schur product
theorem. Schur also proved the first result involving entrywise maps; see also page cxii of the
survey [105].

Theorem 9.3 and Lemma 9.5, which help classify the Loewner positive powers, are by
FitzGerald and Horn [123]. The use of the rank-2 Hankel matrices in the proof, as well as the
powers preserving positive definiteness in Corollary 9.11 are by Fallat–Johnson–Sokal [113].
The “individual” matrices encoding Loewner positive powers were constructed in Theo-
rem 9.10 by Jain [191]; the extension principle in Theorem 9.12 is by Khare–Tao [217]. Also
note the related papers by Bhatia–Elsner [47], Hiai [171], and Guillot–Khare–Rajaratnam [151],
which study “two-sided” powers : R→ R, and which of these are Loewner positive on Pn(R)
for fixed n ≥ 1.

The historical account of Descartes’ rule of signs in Theorem 10.3 is taken in part from
Jameson’s article [193]; once again the proof of this result – via Rolle’s theorem – can be
attributed to Laguerre [229]. The proof provided of Theorem 10.1 – which classifies the
powers preserving totally positive 3 × 3 matrices – is by Fallat–Johnson–Sokal [113]. The
Cauchy functional equation (see Remark 11.5) has been studied in numerous papers; we
mention Banach [17] and Sierpińsky [337], both papers appearing in the same volume of
Fund. Math. in 1920. The results in Section 11 prior to Remark 11.5 are shown by Fallat–
Johnson–Sokal [113], or essentially follow from there. The results following Remark 11.5 are
by Belton–Guillot–Khare–Putinar [32].

Section 12.1 on the continuity of bounded mid-convex functions is taken from the book of
Roberts and Varberg [301]; the first main Theorem 12.2 there closely resembles a result by
Ostrowski [275], while the second Theorem 12.4 was proved independently by Blumberg [51]
and Sierpińsky [337]. Theorem 12.7, classifying the Loewner positive maps on P2((0,∞))
and P2([0,∞)), is essentially by Vasudeva [353]; see also [30, 155] for the versions that led
to the present formulation. The short argument for mid-convexity implying continuity, at
the end of that proof, is due to Hiai [171]. The remainder of Section 12, classifying all
entrywise maps preserving TN and TP in each fixed dimension (for all matrices and for all
symmetric matrices) is taken from Belton–Guillot–Khare–Putinar [32]. The two exceptions
are the example in (12.16) due to Fallat–Johnson–Sokal [113], and Theorem 12.19 which
classifies the powers preserving Hankel TN n× n matrices; this latter is from [30].

Section 13 on the entrywise functions preserving positivity on PG for G a non-complete
graph (and specifically, a tree) follows Guillot–Khare–Rajaratnam [152]. Section 14 classify-
ing the Loewner positive powers on PG for G a chordal graph – and hence, computing the criti-
cal exponent of G for Loewner positivity – is due to Guillot–Khare–Rajaratnam [153] (see also
the summary in [154]). The two exceptions are Theorem 14.9 by FitzGerald and Horn [123]
and Theorem 14.10 by Guillot–Khare–Rajaratnam [151], which classify the Loewner mono-
tone and super-additive powers on Pn((0,∞)), respectively. Also see [197] for a survey of
critical exponents in the matrix theory literature.

Theorem 15.1 and Corollary 15.6, about individual matrices encoding the Loewner positive
and monotone powers respectively, are by Jain [192]. The arguments proving these results
are taken from [192] (some of these are variants of results in her earlier works) and from
Khare [215] – specifically, the homotopy argument in Proposition 15.5, which differs from
Jain’s similar assertion in [192] and avoids SSR (strictly sign regular) matrices. Finally,
the classification of the Loewner convex powers on Pn (i.e., the equivalence (1) ⇐⇒ (3)



98 Part 2: Bibliographic notes and references

in Theorem 15.8) was shown by Hiai [171], via the intermediate Proposition 15.9; see also
Guillot–Khare–Rajaratnam [151] for a rank-constrained version of Theorem 15.8. The further
equivalence to Theorem 15.8(2), which obtains individual matrix-encoders of the Loewner
convex powers, is taken from [215].
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16. History – Schoenberg’s theorem. Rudin, Herz, Vasudeva. Metric
geometry, positive definite functions, spheres, and correlation matrices.

In the forthcoming sections in this part, we take a step back and explore the foundational
results on entrywise preservers of positive semidefiniteness – as well as the rich history that
motivated these results.

16.1. History of the problem. In the forthcoming sections, we will answer the question:

“Which functions, when applied entrywise, preserve positivity (positive semidefiniteness)?”

(Henceforth, we use the word ‘positivity’ to denote “positive semidefiniteness.”) This
question has been the focus of a concerted effort and significant research activity over the
past century. It began with the Schur product theorem (1911, [329]) and the following
consequence:

Lemma 16.1 (Pólya and Szegő, 1925, [289]). Suppose a power series f(x) =
∑∞

k=0 ckx
k is

convergent on I ⊂ R and ck ≥ 0 for all k ≥ 0. Then f [−] : Pn(I)→ Pn(R) for all n ≥ 1.

Proof. By induction and the Schur product theorem 3.12, f(x) = xk preserves positivity on
Pn(R) for all integers k ≥ 0 and n ≥ 1, and hence sends Pn(I) to Pn(R). From this the lemma
follows, using that Pn(R) is a closed convex cone. □

With Lemma 16.1 in hand, Pólya and Szegő asked if there exist any other functions that
preserve positivity on Pn for all n ≥ 1. A negative answer would essentially constitute
the converse result to the Schur product theorem; and indeed, this was shown by Schur’s
student Schoenberg (who features extensively in the next part, and is also well known for his
substantial contribution to the theory of splines), for continuous functions:

Theorem 16.2 (Schoenberg, 1942, [318]). Suppose I = [−1, 1] and f : I → R is continuous.
The following are equivalent:

(1) The entrywise map f [−] preserves positivity on Pn(I) for all n ≥ 1.
(2) The function f equals a convergent power series

∑∞
k=0 ckx

k for all x ∈ I, with the
Maclaurin coefficients ck ≥ 0 for all k ≥ 0.

Schoenberg’s 1942 paper (in Duke Math. J.) is well-known in the analysis literature.
In a sense, his Theorem 16.2 is the (harder) converse to the Schur product theorem, i.e.,
Lemma 16.1, which is the implication (2) =⇒ (1). Some of these points were discussed in
Section 13.2.

Schoenberg’s theorem can also be stated for I = (−1, 1). In this setting, the continuity
hypothesis was subsequently removed from assertion (1) by Rudin, who, moreover, showed
that in order to prove assertion (2) in Theorem 16.2, one does not need to work with the full
test set

⋃
n≥1 Pn(I). Instead, it is possible to work only with low-rank Toeplitz matrices:

Theorem 16.3 (Rudin, 1959, [306]). Suppose I = (−1, 1) and f : I → R. Then the
assertions in Schoenberg’s theorem 16.2 are equivalent on I, and further equivalent to:

(3) f [−] preserves positivity on the Toeplitz matrices in Pn(I) of rank ≤ 3, for all n ≥ 1.

Schoenberg’s theorem also has a one-sided variant, over the semi-axis I = (0,∞):

Theorem 16.4 (Vasudeva, 1979, [353]). Suppose I = (0,∞) and f : I → R. Then the two
assertions of Schoenberg’s theorem 16.2 are equivalent on I as well.
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Our goal in this part of the text is to prove stronger versions of the theorems of Schoenberg

and Vasudeva. Specifically, we will (i) remove the continuity hypothesis, and (ii) work with
severely reduced test sets in each dimension, consisting of only the Hankel matrices of rank
at most 3. For instance, we will show Theorem 16.3, but with the word “Toeplitz” replaced
by “Hankel.” Similarly, we will show a strengthening of Theorem 16.4, using totally non-
negative Hankel matrices of rank at most 2. These results are stated and proved in this part
of the text.

16.2. Digression: the complex case. In the aforementioned 1959 paper in Duke Math. J.,
Rudin made some observations about the complex case a la Pólya–Szegő, and presented a
conjecture, which is now explained. First, observe that the Schur product theorem holds for
complex Hermitian matrices as well, with the same proof via the spectral theorem:

“If A,B are n× n complex (Hermitian) positive semidefinite matrices, then so is A ◦B.”

As a consequence, every monomial z 7→ zk preserves positivity on Pn(C) for all integers
k ≥ 0 and n ≥ 1. (Here Pn(C) comprises the complex Hermitian matrices An×n, such that
u∗Au ≥ 0 for all u ∈ Cn.) But more is true: the (entrywise) conjugation map also preserves
positivity on Pn(C) for all n ≥ 1. Now using the Schur product theorem, the functions

z 7→ zk(z)m, k,m ≥ 0

each preserve positivity on Pn(C), for all n ≥ 1. Since Pn(C) is easily seen to be a closed
convex cone as well, Rudin observed that if a series

f(z) =
∑

k,m≥0

ck,mz
k(z)m, with ck,m ≥ 0,

is convergent on the open disk D(0, ρ) := {z ∈ C : |z| < ρ}, then f [−] entrywise preserves
positivity on Pn(D(0, ρ)) for n ≥ 1. Rudin conjectured that there are no other preservers.
This was proved soon after:

Theorem 16.5 (Herz, Ann. Inst. Fourier, 1963). Suppose I = D(0, 1) ⊂ C and f : I → C.
The following are equivalent:

(1) The entrywise map f [−] preserves positivity on Pn(I) for all n ≥ 1.
(2) f is of the form f(z) =

∑
k,m≥0 ck,mz

k(z)m on I, with ck,m ≥ 0 for all k,m ≥ 0.

For completeness, we also point out [276] for a recent, non-commutative variant of the Schur
product and Schoenberg’s theorem.

The real and complex cases of Schoenberg/Herz’s theorems have been since proved using
alternate tools. Christensen and Ressel showed Schoenberg’s theorem 16.2 using Choquet’s
representation theorem, in 1978 in Trans. Amer. Math. Soc. [82]. In fact, they removed the
continuity assumption of Schoenberg, while continuing to work over the domain [−1, 1]. In
this case, the preservers turn out to be almost the same as in Schoenberg’s theorem – i.e.,
limits of functions in the convex hull of the monomials – but now, one needs to include the
pointwise limits on [−1, 1] of the odd powers and of the even powers:

Theorem 16.6 (Christensen and Ressel, 1978, [82]). Suppose I = [−1, 1] and f : I → R.
The following are equivalent:

(1) The entrywise map f [−] preserves positivity on Pn(I) for all n ≥ 1.
(2) The function f equals a power series plus two other terms:

f(x) =
∞∑
k=0

ckx
k + c−1[1{1}(x)− 1{−1}(x)] + c−21{−1,1}(x), x ∈ I,
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with the Maclaurin coefficients ck ≥ 0 for all k ≥ −2 and
∑

k≥−2 ck <∞.

Christensen and Ressel also proved the complex analogue: namely, for preservers of posi-
tivity on Gram matrices from unit complex spheres, in Math. Z. in 1982:

Theorem 16.7 (Christensen and Ressel, 1982, [83]). Suppose f : D(0, 1)→ C is continuous
on the closed unit disk, and H is an infinite-dimensional complex Hilbert space with unit
sphere S. Then the following are equivalent:

(1) f is “positive definite” on S, in that for all n ≥ 1 and points z1, . . . , zn ∈ S, the
matrix with (j, k)-entry f(⟨zj , zk⟩) is positive semidefinite.

(2) f(z) has the unique series representation f(z) =
∑

k,m≥0 ck,mz
k(z)m, with all ck,m ≥ 0

and
∑

k,m≥0 ck,m <∞.

This resembles Herz’s theorem 16.5 (which proved Rudin’s conjecture) similar to the rela-
tion between Schoenberg’s theorem 16.2 and Rudin’s theorem 16.3.

As a final remark, the Schoenberg/Rudin/Vasudeva/Herz results are reminiscent of an
earlier, famous result, by Loewner in the parallel (and well studied) setting of the matrix
functional calculus. Namely, given a complex Hermitian matrix A with eigenvalues in a real
interval (a, b), a function f : (a, b) → R acts on A as follows: let A = UDU∗ be a spectral
decomposition of A; then f(A) := Uf(D)U∗, where f(D) is the diagonal matrix with diagonal
entries f(djj). Now, Loewner showed in Math. Z. (1934) even before Schoenberg:

Theorem 16.8 (Loewner). Let −∞ ≤ a < b ≤ ∞, and f : (a, b) → R. The following are
equivalent:

(1) f is matrix monotone: if A ≤ B are square matrices with eigenvalues in (a, b), then
f(A) ≤ f(B).

(2) f is C1 on (a, b), and given a < x1 < · · · < xk < b for any k ≥ 1, the Loewner matrix

given by Lf (xj , xk) :=
f(xj)−f(xk)

xj−xk
if j ̸= k, else f ′(xj), is positive semidefinite.

(3) There exist real constants p ≥ 0 and q, and a finite measure µ on R \ (a, b), such that

f(x) = q + px+

∫
R\(a,b)

1 + xy

y − x
dµ(y).

(4) There exists a function f̃ that is analytic on (C \R)⊔ (a, b), such that (a) f ≡ f̃ |(a,b)
and (b) if ℑz > 0 then ℑf̃(z) > 0.

Notice similar to the preceding results, the emergence of analyticity from the dimension-
free preservation of a matrix property. (In fact, one shows that Loewner monotone functions
on n × n matrices are automatically C2n−3.) This is also the case with a prior result of
Rudin with Helson, Kahane, and Katznelson in Acta Math. in 1959, which directly motivated
Rudin’s 1959 paper discussed above. (The bibliographic notes at the end of this part provide
a few more details.)

16.3. Origins of positive matrices: Menger, Fréchet, Schoenberg, and metric ge-
ometry. In this subsection and the next two, we study some of the historical origins of
positive (semi)definite matrices. This class of matrices of course arises as Hessians of twice-
differentiable functions at local minima; however, the branch of early twentieth-century math-
ematics that led to the development of positivity preservers is metric geometry. More pre-
cisely, the notion of a metric space – emerging from the works of Fréchet and Hausdorff –
and isometric embeddings of such structures into Euclidean and Hilbert spaces, spheres, and



104
16. History – Schoenberg’s theorem. Rudin, Herz, Vasudeva. Metric geometry,

positive definite functions, spheres, and correlation matrices.
hyperbolic and homogeneous spaces, were studied by Schoenberg, Bochner, and von Neu-
mann among others; and it is this work that led to the study of matrix positivity and its
preservation.

Definition 16.9. A metric space is a set X together with a metric d : X×X → R, satisfying:
(1) Positivity: d(x, y) ≥ 0 for all x, y ∈ X, with equality if and only if x = y.
(2) Symmetry: d(x, y) = d(y, x) for all x, y ∈ X.
(3) Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

In this section, we will state and prove three results by Schoenberg, which explain his
motivations in studying positivity and its preservers, and serve to illustrate the (by now
well explored) connection between metric geometry and matrix positivity. We begin with a
sample result on metric embeddings, shown by Fréchet in Math. Ann. in 1910: If (X, d) is
a metric space with |X| = n+ 1, then (X, d) isometrically embeds into (Rn, ∥ · ∥∞).

Such results led to exploring which metric spaces isometrically embed into Euclidean
spaces. Specifically, in Menger’s 1931 paper [260] in Amer. J. Math., and Fréchet’s 1935
paper [131] in Ann. of Math., the authors explored the following question: Given integers

n, r ≥ 1, characterize the tuples of
(
n+1
2

)
positive real numbers that can denote the distances

between the vertices of an (n + 1)-simplex in Rr but not in Rr−1. In other words, given a
finite metric space X, what is the smallest r, if any, such that X isometrically embeds into
Rr?

In his 1935 paper in Ann. of Math., Schoenberg gave an alternate characterization of all
such “admissible” tuples of distances. This characterization used . . .matrix positivity!

Theorem 16.10 (Schoenberg, 1935, [313]). Fix integers n, r ≥ 1, and a finite set X =
{x0, . . . , xn} together with a metric d on X. Then (X, d) isometrically embeds into some Rr

(with the Euclidean distance/norm), if and only if the n× n matrix

A := (d(x0, xj)
2 + d(x0, xk)

2 − d(xj , xk)2)nj,k=1 (16.11)

is positive semidefinite. Moreover, the smallest such r is precisely the rank of the matrix A.

This classical theorem is at the heart of multidimensional scaling; see, e.g., [90]. Addition-
ally, the matrix A features later in this text when we study a result of Menger in Appendix E;
it is an alternate form of the Cayley–Menger matrix associated to the metric space X. See
Section 27, where we also extend this theorem to embeddings of separable metric spaces.

Proof. If (X, d) isometrically embeds into (Rr, ∥ · ∥ = ∥ · ∥2), then

d(x0, xj)
2 + d(x0, xk)

2 − d(xj , xk)2 = ∥x0 − xj∥2 + ∥x0 − xk∥2 − ∥(x0 − xj)− (x0 − xk)∥2

= 2⟨x0 − xj , x0 − xk⟩. (16.12)

But then the matrix A in (16.11) is the Gram matrix of a set of vectors in Rr, and hence,
is positive semidefinite. In the rest of this section, we use Theorem 2.5 and Proposition 2.15
(and their proofs) without further reference. Thus, 1

2A = BTB, where the columns of B are
x0 − xj ∈ Rr. But then A has rank at most the rank of B, hence at most r. Since (X, d)
does not embed in Rr−1, by the same argument A has rank precisely r.

Conversely, suppose the matrix A in (16.11) is positive semidefinite of rank r. First,
consider the case when r = n, i.e., A is positive definite. By Theorem 2.5, 1

2A = BTB for a
square invertible matrix B. Thus, left-multiplication by B sends the r-simplex with vertices
0, e1, . . . , er to an r-simplex, where ej comprise the standard basis of Rr.
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Now claim that the assignment x0 7→ 0, xj 7→ Bej for 1 ≤ j ≤ r, is an isometry : X → Rr

whose image, being the vertex set of an r-simplex, necessarily cannot embed inside Rr−1.
Indeed, computing these distances proves the claim, and hence the theorem for r = n:

d(Bej ,0)
2 = ∥Bej∥2 =

1

2
eTj Aej =

ajj
2

= d(x0, xj)
2,

d(Bej , Bek)
2 = ∥Bej −Bek∥2 =

ajj + akk
2

− ajk

= d(x0, xj)
2 + d(x0, xk)

2 − (d(x0, xj)
2 + d(x0, xk)

2 − d(xj , xk)2) = d(xj , xk)
2.

Next, suppose r < n. Then 1
2A = BTPB for some invertible matrix B, where P is the

projection operator

(
Idr×r 0
0 0(n−r)×(n−r)

)
. Let ∆ := {PBej , 1 ≤ j ≤ n} ⊔ {0} denote the

projection under P of the vertices of an (n + 1) simplex. Repeating the above proof shows
that the map : x0 7→ 0, xj 7→ PBej for 1 ≤ j ≤ n, is an isometry from X onto ∆. By
construction, ∆ lies in the image of the projection P , hence in a copy of Rr. But being the
image under P of the vertex set of an n-simplex, ∆ cannot lie in a copy of Rr−1 (otherwise
so would its span, which is all of P (Rn) ∼= Rr). □

We end this part with an observation. A (real symmetric square) matrix A′
(n+1)×(n+1)

is said to be conditionally positive semidefinite if (u′)TA′u′ ≥ 0 whenever
∑n

j=0 u
′
j = 0.

Such matrices are also studied in the literature (though not as much as positive semidefinite
matrices). The following lemma reformulates Theorem 16.10 into the conditional positivity
of a related matrix:

Lemma 16.13. Let X = {x0, . . . , xn} be a finite set equipped with a metric d. Then the
matrix An×n as in (16.11) is positive semidefinite if and only if the (n+ 1)× (n+ 1) matrix

A′ := (−d(xj , xk)2)nj,k=0 (16.14)

is conditionally positive semidefinite.

In particular, Schoenberg’s papers in the 1930s feature both positive semidefinite matrices
(Theorem 16.10) and conditionally positive semidefinite matrices (Theorem 16.17). Certainly,
the former class of matrices were a popular and recurrent theme in the analysis literature,
with contributions from Carathéodory, Hausdorff, Hermite, Nevanlinna, Pick, Schur, and
many others.

Proof of Lemma 16.13. Let u1, . . . , un ∈ R be arbitrary, and set u0 := −(u1 + · · · + un).
Defining u := (u1, . . . , un)

T and u′ := (u0, . . . , un)
T , we compute using that the diagonal

entries of A′ are zero:

(u′)TA′u′ =
n∑

k=1

 n∑
j=1

uj

 d(x0, xk)
2uk +

n∑
j=1

ujd(xj , x0)
2

(
n∑

k=1

uk

)
−

n∑
j,k=1

ujd(xj , xk)
2uk

=
n∑

j,k=1

ujuk
(
d(x0, xk)

2 + d(xj , x0)
2 − d(xj , xk)2

)
= uTAu,

for all u ∈ Rn. This proves the result. □
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16.4. Origins of positivity preservers: Schoenberg, Bochner, and positive defi-
nite functions. We continue with our historical journey, this time into the origins of the
entrywise calculus on positive matrices. As Theorem 16.10 and Lemma 16.13 show, apply-
ing entrywise the function −x2 to any distance matrix (d(xj , xk))

n
j,k=0 from Euclidean space

yields a conditionally positive semidefinite matrix A′.
It is natural to want to remove the word “conditionally” from the above result. Namely:

which entrywise maps send distance matrices to positive semidefinite matrices? These are
precisely the positive definite functions:

Definition 16.15. Given a metric space (X, d), a function f : [0,∞)→ R is positive definite
on X if for any finite set of points x1, x2, . . . xn ∈ X, the matrix f [(d(xj , xk))

n
j,k=1] is positive

semidefinite.

By considering 2 × 2 distance matrices, note that positive definite functions are not the
same as positivity preservers; no distance matrix is positive semidefinite unless all xj are
equal (in which case we get the zero matrix). On a different note, given any metric space
(X, d), the positive definite functions on X form a closed convex cone, by Lemma 3.1.

In arriving at Theorem 16.2, Schoenberg was motivated by metric geometry – as we just
studied – as well as the study of positive definite functions. The latter was also of interest to
other mathematicians in that era: Bochner, Pólya, and von Neumann, to name a few. In fact,
positive definite functions are what led to Schoenberg’s Theorem 16.2 and the development of
the entrywise calculus. Note that Bochner – and previously Carathéodory, Herglotz, Mathias,
and others – studied functions on groups G that were positive definite in the “more standard”
sense – namely, where in the above definition f : G → C, and one substitutes d(xj , xk) by

x−1
j xk. The above definition seems due to Schoenberg, in his 1938 paper in Trans. Amer.

Math. Soc.
We now present – from this paper – another characterization by Schoenberg of metric

embeddings into a Euclidean space Rr, this time via positive definite functions. This requires
a preliminary observation involving the positive definiteness of an even kernel:

Lemma 16.16. Given σ > 0, the Gaussian kernel TGσ(x, y) := exp(−σ∥x− y∥2) – in other
words, the function exp(−σx2) – is positive definite on Rr for all r ≥ 1.

Proof. Observe that the case of Rr for general r follows from the r = 1 case, via the Schur
product theorem. In turn, the r = 1 case is a consequence of Pólya’s lemma 6.8. □

The following result of Schoenberg in Trans. Amer. Math. Soc. relates metric space em-
beddings with this positive definiteness of the Gaussian kernel:

Theorem 16.17 (Schoenberg, 1938, [317]). A finite metric space (X, d) with X = {x0, . . . , xn}
embeds isometrically into Rr for some r > 0 (which turns out to be at most n), if and only if
the (n+ 1)× (n+ 1) matrix with (j, k) entry

exp(−σ2d(xj , xk)2), 0 ≤ j, k ≤ n

is positive semidefinite, along any sequence of non-zero scalars σm decreasing to 0+ (equiva-
lently, for all σ ∈ R).

For another application of this result and those in the previous Section 16.3, see Sec-
tion 27.3.
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Proof. Clearly, if (X, d) embeds isometrically into Rr, then identifying the xj with their
images in Rr, it follows by Lemma 16.16 that the matrix with (j, k) entry

exp(−σ2∥xj − xk∥2) = TG1(σxj , σxk)

is positive semidefinite for all σ ∈ R.
Conversely, let σm ↓ 0+. From the positivity of the exponentiated distance matrices for

σm, it follows for any vector u := (u0, . . . , un)
T ∈ Rn+1 that

n∑
j,k=0

ujuk exp(−σ2md(xj , xk)2) ≥ 0.

Expanding into Taylor series and interchanging the infinite sum with the two finite sums,
∞∑
l=0

(−σ2m)l

l!

n∑
j,k=0

ujukd(xj , xk)
2l ≥ 0, ∀m ≥ 1.

Suppose we restrict to the vectors u′ satisfying:
∑n

j=0 uj = 0. Then the l = 0 term vanishes.

Now dividing throughout by σ2m and taking m→∞, the “leading term” in σm must be non-
negative. It follows that if A′ := (−d(xj , xk)2)nj,k=0, then (u′)TA′u′ ≥ 0 whenever

∑
j uj = 0.

By Lemma 16.13 and Theorem 16.10, (X, d) embeds isometrically into Rr, where r ≤ n
denotes the rank of the matrix An×n as in (16.11). □

16.5. Schoenberg: from spheres to correlation matrices, to positivity preservers.
The previous result, Theorem 16.17, says that Euclidean spaces Rr – or their direct limit
/ union R∞ (which should more accurately be denoted RN), or even its completion ℓ2 of
square-summable real sequences (which Schoenberg and others called Hilbert space) – can be
characterized by the property that the maps

exp(−σ2x2), σ ∈ (0, ρ) (16.18)

are all positive definite on each (finite) metric subspace. As we saw, such a characterization
holds for each ρ > 0.1

Given this characterization, it is natural to seek out similar characterizations of distin-
guished submanifoldsM in Rr or R∞ or ℓ2. In fact, in the aforementioned 1935 Ann. of Math.
paper, Schoenberg showed the first such classification result, forM = Sr−1 a unit sphere – as
well as for the Hilbert sphere S∞. Note here that the unit sphere Sr−1 := {x ∈ Rr : ∥x∥2 = 1},
while the Hilbert sphere S∞ ⊂ ℓ2 is the subset of all square-summable sequences with unit
ℓ2-norm. (This is the closure of the set of all real sequences with finitely many non-zero
coordinates and unit ℓ2-norm – which is the unit sphere

⋃
r≥1 S

r−1 in
⋃

r≥1Rr.)

One defines a rotationally invariant metric on S∞ (hence on each Sr−1) as follows. The
distance between x and −x is π, and given points x ̸= ±y in S∞, there exists a unique plane
passing through x, y, and the origin. This plane intersects the sphere S∞ in a unit circle S1

given by

{αx+ βy : α, β ∈ R, 1 = ∥αx+ βy∥2 = α2 + β2 + 2αβ⟨x, y⟩} ⊂ S∞,

and we let d(x, y) denote the angle – i.e., arclength – between x and y:

d(x, y) := ∢(x, y) = arccos(⟨x, y⟩) ∈ [0, π].

1A related result on positive definite functions on – or Hilbert space embeddings of – a topological space
X is by Kolmogorov around 1940 [223]. He showed that a continuous function K : X × X → C is positive
definite if and only if there exists a Hilbert space H and a norm-continuous map φ : X → H, such that
K(x1, x2) = ⟨φ(x1), φ(x2)⟩ for all x1, x2 ∈ X.
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Now we come to Schoenberg’s characterization for metric embeddings into Euclidean

spheres. He showed that in contrast to the family (16.18) of positive definite functions
for Euclidean spaces, for spheres it suffices to consider a single function! This function is the
cosine:

Proposition 16.19 (Schoenberg, 1935, [313]). Let (X, d) be a finite metric space with X =
{x1, . . . , xn}. Fix an integer r ≥ 2. Then X isometrically embeds into Sr−1 but not Sr−2, if
and only if d(xj , xk) ≤ π for all 1 ≤ j, k ≤ n and the matrix (cos d(xj , xk))

n
j,k=1 is positive

semidefinite of rank r.
In particular, X embeds isometrically into the Hilbert sphere S∞ – with the spherical metric

– if and only if (a) diam(X) ≤ π and (b) cos(·) is positive definite on X.

Thus, matrix positivity is also intimately connected with spherical embeddings, which may
not be surprising given Theorem 16.10.

Proof. If there exists an isometric embedding φ : X ↪→ Sr−1 as claimed, we have as above

cos d(xj , xk) = cos∢(φ(xj), φ(xk)) = ⟨φ(xj), φ(xk)⟩,
which yields a Gram matrix of rank at most r, hence exactly r (since X does not embed
isometrically into Sr−2). Moreover, the spherical distance between xj , xk (for j, k > 0) is at
most π, as desired.

Conversely, since A := (cos d(xj , xk))
n
j,k=1 is positive, it is a Gram matrix (of rank r), and

hence A = BTB for some Br×n of rank r by Theorem 2.5. Let yj ∈ Rr denote the columns
of B; then clearly yj ∈ Sr−1 ∀j; moreover,

cos∢(yj , yk) = ⟨yj , yk⟩ = ajk = cos d(xj , xk), ∀1 ≤ j, k ≤ n.
Since d(xj , xk) lies in [0, π] by assumption, as does ∢(yj , yk), we obtain an isometry φ : X →
Sr−1, sending xj 7→ yj for all j > 0. Finally, im(φ) is not contained in Sr−2, for otherwise A
would have rank at most r− 1. This shows the result for Sr−1; the case of S∞ is similar. □

The proof of Proposition 16.19 shows that cos(·) is a positive definite function on unit
spheres of all dimensions.

Note that Proposition 16.19 and the preceding two theorems by Schoenberg in the 1930s:

(1) characterize metric space embeddings into Euclidean spaces via matrix positivity;
(2) characterize metric space embeddings into Euclidean spaces via the positive definite

functions exp(−σ2(·)2) on Rr or R∞ (so this involves positive matrices); and
(3) characterize metric space embeddings into Euclidean spheres Sr−1 or S∞ (with the

spherical metric) via the positive definite function cos(·) on S∞.

Around the same time (in the 1930s), S. Bochner [56, 57] had classified all of the positive
definite functions on R. This result was extended in 1940 simultaneously by Weil, Povzner,
and Raikov to classify the positive definite functions on any locally compact abelian group.
Amid this backdrop, in his 1942 paper [318] Schoenberg was interested in understanding the
positive definite functions of the form f ◦cos : [−1, 1]→ R on a unit sphere Sr−1 ⊂ Rr, where
r ≥ 2.

To present Schoenberg’s result, first consider the r = 2 case. As mentioned above, distance
(i.e., angle) matrices are not positive semidefinite; but if one applies the cosine function
entrywise, then we obtain the matrix with (j, k) entry cos(θj − θk), and this is positive
semidefinite by Lemma 2.17. But now f [−] preserves positivity on a set of Toeplitz matrices
(among others), by Lemma 2.17 and the subsequent discussion. For general dimension r ≥ 2,
we have cos(d(xj , xk)) = ⟨xj , xk⟩ (see also the proof of Proposition 16.19), so cos[(d(xj , xk))j,k]
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always yields Gram matrices. Hence, f [−] would once again preserve positivity on a set of
positive matrices. It was this class of functions that Schoenberg characterized:

Theorem 16.20 (Schoenberg, 1942, [318]). Suppose f : [−1, 1]→ R is continuous, and r ≥ 2
is an integer. Then the following are equivalent:

(1) (f ◦ cos) is positive definite on Sr−1.

(2) The function f(x) =
∑∞

k=0 ckC
( r−2

2
)

k (x), where ck ≥ 0, ∀k, and {C( r−2
2

)

k (x) : k ≥ 0}
comprise the first Chebyshev or Gegenbauer family of orthogonal polynomials.

Remark 16.21. Theorem 16.20 has an interesting reformulation in terms of entrywise pos-
itivity preservers on correlation matrices. Recall that on the unit sphere Sr−1, applying
cos[−] entrywise to a distance matrix of points xj yields precisely the Gram matrix with
entries ⟨xj , xk⟩, which is positive of rank at most r. Moreover, as the vectors xj lie on the
unit sphere, the diagonal entries are all 1 and hence we obtain a correlation matrix. Putting
these facts together, f ◦ cos is positive definite on Sr−1 if and only f [−] preserves positivity
on all correlation matrices of arbitrary size but rank at most r. Thus, Schoenberg’s works
in 1935 [313] and 1942 [318] already contained connections to entrywise preservers of cor-
relation matrices, which brings us around to the modern-day motivations that arise from
precisely this question (now arising in high-dimensional covariance estimation, and discussed
in Section 13.1).

Remark 16.22. Schoenberg’s work has been followed by numerous papers attempting to
understand positive definite functions on locally compact groups, spheres, two-point homo-
geneous metric spaces, and products of these. See, for example, [19, 21, 22, 41, 42, 58, 79,
111, 150, 256, 257, 373, 374, 379] for a selection of works. The connection to spheres has also
led to work in statistics on spatio-temporal covariance functions on spheres, modeling the
earth as a sphere [144, 291, 367]. (Note that a metric space X is n-point homogeneous [361]
if for all 1 ≤ p ≤ n and subsets X1, X2 ⊂ X of size p, every isometry : X1 → X2 extends
to a self-isometry of X. This was first studied by Birkhoff [50] and differs from the more
widespread usage for spaces G/H. We will study this further in Section 27.)

Remark 16.23. Schoenberg’s (and subsequent) work on finite- and infinite-dimensional
spheres has many other applications. One area of recent activity involves sphere packing,
spherical codes, and configurations of points on spheres that maximize the minimal distance
or some potential function. See, for example, the work of Cohn with coauthors in J. Amer.
Math. Soc. 2007, 2012 [84, 85] and in Duke Math. J. 2014, 2018 [86, 87]; and Musin in Ann.
of Math. 2008 [268].

Returning to the above discussion on Theorem 16.20, if instead we let r = ∞, then the
corresponding result would classify positivity preservers on all correlation matrices (without
rank constraints) by Remark 16.21. And indeed, Schoenberg achieves this goal in the same
paper:

Theorem 16.24 (Schoenberg, 1942, [318]). Suppose f : [−1, 1] → R is continuous. Then
f ◦ cos is positive definite on S∞ if and only if there exist scalars ck ≥ 0, such that

f(cos θ) =
∑
k≥0

ck cos
k θ, θ ∈ [0, π].

Notice here that cosk θ is positive definite on S∞ for all integers k ≥ 0, by Proposition 16.19
and the Schur product theorem. Hence, so is

∑
k≥0 ck cos

k θ if all ck ≥ 0.
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Freed from the sphere context, the preceding theorem says that a continuous function

f : [−1, 1] → R preserves positivity when applied entrywise to all correlation matrices, if
and only if f(x) =

∑
k≥0 ckx

k on [−1, 1] with all ck ≥ 0. This finally explains how and
why Schoenberg arrived at his celebrated converse to the Schur product theorem – namely,
Theorem 16.2 on entrywise positivity preservers.

16.6. Digression on ultraspherical polynomials. Before proceeding further, we describe

the orthogonal polynomials C
(α)
k (x) for k ≥ 0, where α = α(r) = (r − 2)/2. Given r ≥ 2,

note that α(r) ranges over the non-negative half-integers. Though not used below, here are

several different (equivalent) definitions of the polynomials C
(α)
k for general real α ≥ 0.

First, if α = 0, then C
(0)
k (x) := Tk(x), the Chebyshev polynomials of the first kind

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, . . . , Tk(cos(θ)) = cos(kθ) ∀k ≥ 0.

A second way to compute the polynomials C
(0)
k (x) is through their generating function

1− xt
1− 2xt+ t2

=

∞∑
k=0

C
(0)
k (x)tk.

For higher α: setting α = 1
2 yields the family of Legendre polynomials. If α = 1, we obtain

the Chebyshev polynomials of the second kind. For general α > 0, the functions (C
(α)
k (x))k≥0

are the Gegenbauer/ultraspherical polynomials, defined via their generating function

(1− 2xt+ t2)−α =

∞∑
k=0

C
(α)
k (x)tk.

For all α ≥ 0, the polynomials (C
(α)
k (x))k≥0 form a complete orthogonal set in the Hilbert

space L2([−1, 1], wα), where wα is the weight function

wα(x) := (1− x2)α−
1
2 , x ∈ (−1, 1).

Thus, another definition of C
(α)
k (x) is that it is a polynomial of degree k, with C

(α)
0 (x) = 1,

and such that the C
(α)
k are orthogonal with respect to the bilinear form

⟨f, g⟩ :=
∫ 1

−1
f(x)g(x)wα(x) dx, f, g ∈ L2([−1, 1], wα),

and satisfy:

⟨C(α)
k , C

(α)
k ⟩ =

π21−2αΓ(k + 2α)

k!(k + α)(Γ(α))2
.

Yet another definition is that the Gegenbauer polynomials C
(α)
k (x) for α > 0 satisfy the

differential equation

(1− x2)y′′ − (2α+ 1)xy′ + k(k + 2α)y = 0.

We also have a direct formula

C
(α)
k (x) :=

⌊k/2⌋∑
j=0

(−1)j Γ(k − j + α)

Γ(α)j!(k − 2j)!
(2x)k−2j ,



16. History – Schoenberg’s theorem. Rudin, Herz, Vasudeva. Metric geometry,
positive definite functions, spheres, and correlation matrices. 111
as well as a recursion

C
(α)
0 (x) := 1, C

(α)
1 (x) := 2αx,

C
(α)
k (x) :=

1

k

(
2x(k + α− 1)C

(α)
k−1(x)− (k + 2α− 2)C

(α)
k−2(x)

)
∀k ≥ 2.

16.7. Sketch of proof of Theorem 16.20. Schoenberg’s theorem 16.20 has subsequently
been studied by many authors, and in a variety of settings over the years. This includes
classifying the positive definite functions on different kinds of spaces: locally compact groups,
spheres, and products of these. We next give a proof-sketch of this result. In what follows, we
use without reference the observation that (akin to Lemma 3.1), the set of functions f , such
that f ◦ cos is positive definite on Sr−1, also forms a closed convex cone, which is, moreover,
closed under entrywise products.

We first outline why (2) =⇒ (1) in Theorem 16.20. By the above observation, it suffices

to show that C
(α)
k ◦ cos is positive definite on Sr−1. The proof is by induction on r. For the

base case r = 2, let θ1, θ2, . . . , θn ∈ S1 = [0, 2π). Up to the sign, their distance matrix has
(i, j) entry d(θi, θj) = θi − θj (or a suitable translate modulo 2π). Now, by Lemma 2.17, the
matrix (cos(k(θi−θj)))ni,j=1 is positive semidefinite. But this is precisely the matrix obtained

by applying C
(0)
k ◦ cos to the distance matrix above. This proves one implication for d = 2.

The induction step (for general r ≥ 2) follows from addition formulas for C
(α)
k .

For the converse implication, set α := (r− 2)/2 and note that f ∈ L2([−1, 1], wα). Hence,

f has a series expansion
∑∞

k=0 ckC
(α)
k (x), with ck ∈ R. Now recover the ck via

ck =

∫ 1

−1
f(x)C

(α)
k (x)wα(x) dx,

since the C
(α)
k form an orthonormal family. Note that C

(α)
k and f are both positive definite

(upon precomposing with the cosine function), hence so is their product by the Schur product
theorem. A result of W.H. Young now shows that ck ≥ 0 for all k ≥ 0. □

16.8. Entrywise preservers in a fixed dimension. We conclude by discussing a natural
mathematical refinement of Schoenberg’s theorem:

“Which functions entrywise preserve positivity in a fixed dimension?”

This turns out to be a challenging, yet important question from the point of view of
applications (see Section 13.1 for more on this.) In particular, note that there exist functions
which preserve positivity on Pn but not on Pn+1: the power functions x

α with α ∈ (n−3, n−2)
for n ≥ 3, by Theorem 9.3. By Vasudeva’s theorem 16.4, it follows that these non-integer
power functions cannot be absolutely monotonic.

Surprisingly, while Schoenberg’s theorem is classical and provides a complete description
in the dimension-free case, not much is known about the fixed-dimension case: namely, the
classification of functions f : I → R, such that f [−] : Pn(I) → Pn(R) for a fixed integer
n ≥ 1.

• If n = 1, then clearly, any function f : [0,∞)→ [0,∞) works.
• For n = 2 and I = (0,∞), these are precisely the functions f : (0,∞) → R that are
non-negative, non-decreasing, and multiplicatively mid-convex. This was shown by
Vasudeva (see Theorem 12.7), and it implies similar results for I = [0,∞) and I = R.
• For every integer n ≥ 3, the question is open to date.
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Given the scarcity of results in this direction, a promising line of attack has been to study

refinements of the problem. These can involve restricting the test set of matrices in fixed
dimension (say, under rank or sparsity constraints) or the test set of functions (say, to only
the entrywise powers) as was studied in Sections 9, 13, 14, and 15; or to use both restrictions.
See Section 13.2 for more on this discussion, as well as the final part of the text, where we
study polynomial preservers in a fixed dimension.

To conclude: while the general problem in fixed dimension n ≥ 3 is open to date, there
is a known result: a necessary condition satisfied by positivity preservers on Pn, shown by
R.A. Horn in his 1969 paper [182] in Trans. Amer. Math. Soc. and attributed to his advisor,
Loewner. The result is over 50 years old; yet even today, it remains essentially the only
known result for general preservers f on Pn. In the next two sections, we will state and prove
this result – in fact, a stronger version. We will then show (stronger versions of) Vasudeva’s
and Schoenberg’s theorems, via a different approach than the one by Schoenberg, Rudin, or
others: we crucially use the fixed-dimension theory, via the result of Horn and Loewner.
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17. Horn’s thesis: a determinant calculation. Proof for smooth functions.

As mentioned in the previous section 16, the goal in this part is to prove a stronger form
of Schoenberg’s theorem 16.2, in the spirit of Rudin’s theorem 16.3 but replacing the word
“Toeplitz” by “Hankel”. In order to do so, we will first prove a stronger version of Vasudeva’s
theorem 16.4, in which the test set is once again reduced to only low-rank Hankel matrices.

In turn, our proof of this version of Vasudeva’s theorem relies on a fixed-dimension result,
alluded to at the end of Section 16. Namely, we state and prove a stronger version of a 1969
theorem of Horn (attributed by him to Loewner), in this section and the next (Section 18).

Theorem 17.1 (Horn–Loewner theorem, stronger version). Let I = (0,∞), and fix u0 ∈
(0, 1) and an integer n ≥ 1. Define u := (1, u0, . . . , u

n−1
0 )T . Suppose f : I → R is such

that f [−] preserves positivity on the set {a1n×n + buuT : a, b > 0} as well as on the rank-1
matrices in P2(I) and the Toeplitz matrices in P2(I). Then

(1) f ∈ Cn−3(I) and f, f ′, . . . , f (n−3) are non-negative on I. Moreover, f (n−3) is convex
and non-decreasing on I.

(2) If, moreover, f ∈ Cn−1(I), then f (n−2), f (n−1) are also non-negative on I.

All test matrices here are Hankel of rank ≤ 2 – and are, moreover, totally non-negative by
Corollary 4.3 since they arise as the truncated moment matrices of the measures aδ1 + bδu0 .
This is used later in this part, to prove stronger versions of Vasudeva’s and Schoenberg’s
theorems (see Section 19), with similarly reduced test sets of low-rank Hankel matrices.

Remark 17.2. In the original result by Horn (and Loewner), f was assumed to be continuous
and to preserve positivity on all of PN ((0,∞)). In Theorem 17.1, we have removed the
continuity hypothesis, in the spirit of Rudin’s work, and also greatly reduced the test set.

Remark 17.3. We also observe that Theorem 17.1 is the “best possible,” in that the number
of non-zero derivatives that must be positive is sharp. For example, let n ≥ 2, I = (0,∞),
and f : I → R be given by: f(x) := xα, where α ∈ (n − 2, n − 1). Using Theorem 9.3,
f [−] preserves positivity on the test sets {a1n×n + buuT : a, b > 0} and P2(I). Moreover,

f ∈ Cn−1(I) and f, f ′, . . . , f (n−1) are strictly positive on I. However, f (n) is negative on I.
This low-rank Hankel example (and more generally, Theorem 9.3) also shows that there

exist (power) functions that preserve positivity on Pn but not on Pn+1. In the final Part of
these notes, we will show that there also exist polynomial preservers with the same property.

We now proceed toward the proof of Theorem 17.1 for general functions. A major step is
the next calculation, which essentially proves the result for smooth functions. In the sequel,
define the Vandermonde determinant of a vector u = (u1, . . . , un)

T to be 1 if n = 1, and

V (u) :=
∏

1≤j<k≤n

(uk − uj) = det


1 u1 · · · un−1

1

1 u2 · · · un−1
2

...
...

. . .
...

1 un · · · un−1
n

 , if n > 1. (17.4)

Proposition 17.5. Fix an integer n > 0 and define N :=
(
n
2

)
. Suppose a ∈ R and let a

function f : (a− ϵ, a+ ϵ)→ R be N -times differentiable for some fixed ϵ > 0. Now fix vectors
u,v ∈ Rn, and define ∆ : (−ϵ′, ϵ′) → R via ∆(t) := det f [a1n×n + tuvT ] for a sufficiently

small ϵ′ ∈ (0, ϵ). Then ∆(0) = ∆′(0) = · · · = ∆(N−1)(0) = 0, and

∆(N)(0) =

(
N

0, 1, . . . , n− 1

)
V (u)V (v)

n−1∏
k=0

f (k)(a),
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where the first factor on the right is the multinomial coefficient.

This computation was originally due to Loewner. While the result seemingly involves
(higher) derivatives, it is in fact a completely algebraic phenomenon, valid over any ground
ring. For the interested reader, we isolate this phenomenon in Proposition 17.8; its proof is
more or less the same as the one now provided for Proposition 17.5. To gain some feel for
the computations, the reader may wish to work out the N = 3 case first.

Proof. Let wk denote the kth column of a1n×n+ tuvT ; thus, wk has jth entry a+ tujvk. To
differentiate ∆(t), we will use the multilinearity of the determinant and the Laplace expansion
of ∆(t) into a linear combination of n! “monomials”, each of which is a product of n terms
f(·). Using the product rule, taking the derivative yields n terms from each monomial, and
we may rearrange all of these terms into n “clusters” of terms (grouping by the column which
gets differentiated), and regroup back using the Laplace expansion to obtain

∆′(t) =
n∑

k=1

det(f [w1] | · · · | f [wk−1] | vku ◦ f ′[wk] | f [wk+1] | · · · | f [wn]).

Now apply the derivative repeatedly, using this principle. Using the chain rule, for M ≥ 0
the derivative ∆(M)(t) – evaluated at t = 0 – is an integer linear combination of terms of the
form

det(vm1
1 u◦m1 ◦ f (m1)[a1] | · · · | vmn

n u◦mn ◦ f (mn)[a1])

= det(f (m1)(a)vm1
1 u◦m1 | · · · | f (mn)(a)vmn

n u◦mn), m1 + · · ·+mn =M,
(17.6)

where 1 = (1, . . . , 1)T ∈ Rn and all mj ≥ 0. Notice that if any mj = mk for j ̸= k, then

the corresponding determinant (17.6) vanishes. Thus, the lowest degree derivative ∆(M)(0)
whose expansion contains a non-vanishing determinant is whenM = 0+1+ · · ·+(n−1) = N .
This proves the first part of the result.

To show the second part, consider ∆(N)(0). Once again, the only determinant terms that
do not vanish in its expansion correspond to applying 0, 1, . . . , n−1 derivatives to the columns
in some order. We first compute the integer multiplicity of each such determinant, noting
by symmetry that these multiplicities are all equal. As we are applying N derivatives to ∆
(before evaluating at 0), the derivative applied to get f ′ in some column can be any of

(
N
1

)
;

now the two derivatives applied to get f ′′ in a (different) column can be chosen in
(
N−1
2

)
ways; and so on. Thus, the multiplicity is precisely(

N

1

)(
N − 1

2

)(
N − 3

3

)
· · ·
(
2n− 3

n− 2

)
=

n−1∏
k=0

(
N −

(
k
2

)
k

)
=

N !∏n−1
k=0 k!

=

(
N

0, 1, . . . , n− 1

)
.

We next compute the sum of all determinant terms. Each term corresponds to a unique
permutation of the columns σ ∈ Sn, with say σk − 1 the order of the derivative applied to
the kth column f [wk]. Using (17.6), the determinant corresponding to σ equals

n−1∏
k=0

f (k)(a)vσk−1
k · (−1)σ · det(u◦0 | u◦1 | · · · | u◦(n−1))

= V (u)

n−1∏
k=0

f (k)(a) · (−1)σ
n−1∏
k=0

vσk−1
k .
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Summing this term over all σ ∈ Sn yields precisely

V (u)
n−1∏
k=0

f (k)(a)
∑
σ∈Sn

(−1)σ
n−1∏
k=0

vσk−1
k = V (u)

n−1∏
k=0

f (k)(a) · V (v).

Now, multiply by the (common) integer multiplicity computed above, to finish the proof. □

We next present the promised algebraic formulation of Proposition 17.5. For this, some
notation is required. Fix a commutative (unital) ring R and an R-algebra S. The first step
is to formalize the notion of the derivative, on a subclass of S-valued functions. This involves
more structure than the more common notion of a derivation, so we give it a different name.

Definition 17.7. Given a commutative ring R, a commutative R-algebra S (with R ⊂ S),
and an R-module X, a differential calculus is a pair (A, ∂), where A is an R-subalgebra of
functions : X → S (under pointwise addition and multiplication and R-action) which contains
the constant functions, and ∂ : A→ A satisfies the following properties:

(1) ∂ is R-linear, i.e., ∂
∑
j

rjfj =
∑
j

rj∂fj for all rj ∈ R, fj ∈ A (and all j).

(2) ∂ is a derivation (product rule): ∂(fg) = f · (∂g) + (∂f) · g for f, g ∈ A.
(3) ∂ satisfies a variant of the chain rule for composing with linear functions. Namely, if

x′ ∈ X, r ∈ R, and f ∈ A, then the function g : X → S, g(x) := f(x′ + rx) also lies
in A, and moreover, (∂g)(x) = r · (∂f)(x′ + rx).

With this definition in hand, we can now state the desired algebraic generalization of
Proposition 17.5; the proof is essentially the same.

Proposition 17.8. Suppose R,S, and X are as in Definition 17.7, with an associated dif-
ferential calculus (A, ∂). Now, fix an integer n > 0, two vectors u,v ∈ Rn, a vector a ∈ X,
and a function f ∈ A. Define N ∈ N and ∆ : X → R via

N :=

(
n

2

)
, ∆(t) := det f [a1n×n + tuvT ], t ∈ X.

Then ∆(0X) = (∂∆)(0X) = · · · = (∂N−1∆)(0X) = 0R, and

(∂N∆)(0X) =

(
N

0, 1, . . . , n− 1

)
V (u)V (v)

n−1∏
k=0

(∂kf)(a).

Notice that the algebra A is supposed to remind the reader of “smooth functions”, and is
used here for ease of exposition. One can instead work with an appropriate algebraic notion
of “N -times differentiable functions” in order to truly generalize Proposition 17.5; we leave
the details to the interested reader.

Remark 17.9. Note that Proposition 17.5 is slightly more general than the original argument
of Horn and Loewner, which involved the special case u = v. As the above proof (and
Proposition 17.8) shows, the argument is essentially algebraic, hence holds for any u,v.

Finally, we use Proposition 17.5 to prove the Horn–Loewner theorem 17.1 for smooth
functions. The remainder of the proof – for arbitrary functions – will be discussed in the
next section (Section 18).

Proof of Theorem 17.1 for smooth functions. Suppose f is smooth – or more generally, CN

whereN =
(
n
2

)
. Then the result is shown by induction on n. For n = 1 the result says that f is

non-negative if it preserves positivity on the given test set, which is obvious. For the induction
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step, we know that f, f ′, . . . , f (n−2) ≥ 0 on I, since the given test set of (n − 1) × (n − 1)
matrices can be embedded into the test set of n× n matrices. (Here we do not use the test
matrices in P2(I).) Now define fϵ(x) := f(x) + ϵxn for each ϵ > 0, and note by the Schur
product theorem 3.12 (or Lemma 16.1) that fϵ also satisfies the hypotheses.

Given a, t > 0 and the vector u = (1, u0, . . . , u
n−1
0 )T as in the theorem, define ∆(t) :=

det fϵ[a1n×n + tuuT ] as in Proposition 17.5 (but replacing f,v by fϵ,u respectively). Then
∆(t) ≥ 0 for t > 0 by assumption, so

0 ≤ lim
t→0+

∆(t)

tN
, where N =

(
n

2

)
.

On the other hand, by Proposition 17.5 and applying L’Hôpital’s rule,

lim
t→0+

∆(t)

tN
=

∆(N)(0)

N !
=

1

N !

(
N

0, 1, . . . , n− 1

)
V (u)2

n−1∏
k=0

f (k)ϵ (a) = V (u)2
n−1∏
k=0

f
(k)
ϵ (a)

k!
.

Thus, the right-hand side here is non-negative. Since u has distinct coordinates, we can
cancel all positive factors to conclude that

n−1∏
k=0

f (k)ϵ (a) ≥ 0, ∀ϵ, a > 0.

But f
(k)
ϵ (a) = f (k)(a) + ϵn(n− 1) · · · (n− k+1)an−k, and this is positive for k = 0, . . . , n− 2

by the induction hypothesis. Hence,

f (n−1)
ϵ (a) = f (n−1)(a) + ϵ a n! ≥ 0, ∀ϵ, a > 0.

It follows that f (n−1)(a) ≥ 0, hence f (n−1) is non-negative on (0,∞), as desired. □

We conclude this line of proof by mentioning that the Horn–Loewner theorem, as well
as Proposition 17.5 and its algebraic avatar in Proposition 17.8 afford generalizations; the
latter results reveal a surprising and novel application to Schur polynomials and to symmetric
function identities. For more details, the reader is referred to the recent paper [214] in Trans.
Amer. Math. Soc. by the author.

The final remark is that there is a different, simpler proof of Theorem 17.1 for smooth
functions, essentially by Vasudeva (1979, [353]) and along the lines of FitzGerald–Horn’s
1977 argument ([123] and see also the proof of Theorem 9.3). Vasudeva’s proof is direct, so
does not lead to the connections to Schur polynomials mentioned in the preceding paragraph.

Simpler proof of Theorem 17.1 for smooth functions. This proof in fact works for f ∈ Cn−1(I).
Akin to the previous proof, this argument also works more generally than for u = (1, u0, . . . , u

n−1
0 )T :

choose arbitrary distinct real scalars v1, . . . , vn and write v := (v1, . . . , vn)
T . Then for a > 0

and small t > 0, a1n×n + tvvT ∈ Pn(I). Now, given 0 ≤ m ≤ n− 1, choose a vector u ∈ Rn

which is orthogonal to the vectors 1, v, v◦2, v◦(m−1) but not to v◦m, and compute using the
hypotheses and the Taylor expansion of f at a:

0 ≤ uT f [a1n×n + tvvT ]u = uT

(
m−1∑
l=0

f (l)(a)
tl

l!
v◦l(v◦l)T +

tm

m!
C

)
u =

tm

m!
uTCu,

where Cn×n has (j, k) entry (vjvk)
mf (m)(a+ θjktvjvk) with all θj,k ∈ (0, 1). Divide by tm/m!

and let t → 0+; since f is Cm, we obtain 0 ≤ (uT v◦m)2f (m)(a). As this holds for all
0 ≤ m ≤ n− 1, the proof is complete. □
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18. The stronger Horn–Loewner theorem. Mollifiers.

We continue with the proof of the Horn–Loewner theorem 17.1. This is in three steps:

(1) Theorem 17.1 holds for smooth functions. This was proved in the previous section.
(2) If Theorem 17.1 holds for smooth functions, then it holds for continuous functions.

Here, we need to assume n ≥ 3.
(3) If f satisfies the hypotheses in Theorem 17.1, then it is continuous. This follows from

Vasudeva’s 2× 2 result – see (the proof of) Theorem 12.7 and Remark 12.10.

To carry out the second step – as well as a similar step in proving Schoenberg’s theorem,
see Section 22.2 – we will use a standard tool in analysis called mollifiers.

18.1. An introduction to (one-variable) mollifiers. In this subsection, we examine some
basic properties of mollifiers of one variable: the theory extends to Rn for all n > 1, but that
is not required in what follows.

First, recall that one can construct smooth functions g : R → R, such that g and all its
derivatives vanish on (−∞, 0]: for instance, g(x) = exp(−1/x) · 1(x > 0). Indeed, one shows

that g(n)(x) = pn(1/x)g(x) for some polynomial pn; hence, g
(n)(x)→ 0 as x→ 0. Hence:

Lemma 18.1. Given scalars −1 < a < b < 0, there exists a smooth function ϕ that vanishes
outside [a, b], is positive on (a, b), and is a probability distribution on R.

Of course, the assumption [a, b] ⊂ (−1, 0) is completely unused in the proof of the lemma,
but is included for easy reference since we will require it in what follows.

Proof. The function φ(x) := g(x−a)g(b−x) is non-negative, smooth, and supported precisely
on (a, b). In particular,

∫
R φ > 0, so the normalization ϕ := φ/

∫
R φ has the desired properties.

□

We now introduce mollifiers.

Definition 18.2. A mollifier is a one-parameter family of functions (in fact probability
distributions)

{ϕδ(x) := 1
δϕ(

x
δ ) : δ > 0},

with real domain and range, corresponding to any function ϕ satisfying Lemma 18.1.
A continuous, real-valued function f (with suitable domain inside R) is said to be mollified

by convolving with the family ϕδ. In this case, we define

fδ(x) :=

∫
R
f(t)ϕδ(x− t) dt,

where one extends f outside its domain by zero. (This is called convolution: fδ = f ∗ ϕδ.)

Remark 18.3. Mollifiers, or Friedrichs mollifiers, were used by Horn and Loewner in the
late 1960s, as well as previously by Rudin in his 1959 proof of Schoenberg’s theorem. They
were a relatively modern tool at the time, having been introduced by Friedrichs in his seminal
1944 paper [132] on PDEs in Trans. Amer. Math. Soc., as well as slightly earlier by Sobolev
in his famous 1938 paper [343] in Mat. Sbornik (which contained the proof of the Sobolev
embedding theorem).

Returning to the definition of a mollifier, notice by the change of variables u = x− t and
Lemma 18.1 that

fδ(x) =
1

δ

∫
R
f(x− u)ϕ

(u
δ

)
du =

∫ 0

−δ
f(x− u)ϕδ(u) du. (18.4)
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In particular, fδ is a “weighted average” of the image set f([x, x+δ]), since ϕ is a probability
distribution. Now it is not hard to see that fδ is continuous and converges to f pointwise as
δ → 0+. In fact, more is true:

Proposition 18.5. If I ⊂ R is a right open interval and f : I → R is continuous, then for
all δ > 0, the mollified functions fδ are smooth on R (where we extend f outside I by zero),
and converge uniformly to f on compact subsets of I as δ → 0+.

To prove this result, we show two lemmas in somewhat greater generality. First, some
notation: a (Lebesgue measurable) function f : R → R is said to be locally L1 if it is L1 on
each compact subset of R.

Lemma 18.6. If f : R→ R is locally L1, and ψ : R→ R is continuous with compact support,
then f ∗ ψ : R→ R is also continuous.

Proof. Suppose xn → x in R; without loss of generality |xn−x| < 1 for all n > 0. Also choose
r,M > 0, such that ψ is supported on [−r, r] and M = ∥ψ∥L∞(R) = maxR |ψ(x)|. Then for
each t ∈ R, we have

f(t)ψ(xn − t)→ f(t)ψ(x− t), |f(t)ψ(xn − t)| ≤M |f(t)| · 1(|x− t| ≤ r + 1)

(the second inequality follows by considering separately the cases |x− t| ≤ r+1 and |x− t| >
r + 1). Since the right-hand side is integrable, Lebesgue’s dominated convergence theorem
applies:

lim
n→∞

(f ∗ ψ)(xn) = lim
n→∞

∫
R
f(t)ψ(xn − t) dt =

∫
R

lim
n→∞

f(t)ψ(xn − t) dt

=

∫
R
f(t)ψ(x− t) dt = (f ∗ ψ)(x),

so f ∗ ψ is continuous on R. □

Lemma 18.7. If f : R → R is locally L1, and ψ : R → R is C1 with compact support, then
f ∗ ψ : R→ R is also C1 and (f ∗ ψ)′ = f ∗ ψ′ on R.

Proof. We compute

(f ∗ ψ)′(x) = lim
h→0

1

h

∫
R
f(y)ψ(x+ h− y) dy − 1

h

∫
R
f(y)ψ(x− y) dy

= lim
h→0

∫
R
f(y)

ψ(x+ h− y)− ψ(x− y)
h

dy

= lim
h→0

∫
R
f(y)ψ′(x− y + c(h, y)) dy,

where for each y ∈ R, c(h, y) ∈ [0, h] is chosen using the Mean Value Theorem. While
c(h, y)→ 0 as h→ 0, the problem is that y is not fixed inside the integral. Thus, to proceed,
we argue as follows: suppose ψ is supported inside [−r, r] as above, hence so is ψ′. Choose
any sequence hn → 0. Now claim that the last integral above, evaluated at hn, converges to
(f ∗ ψ′)(x) as n → ∞ – hence so does the limit of the last integral above. Indeed, we may
first assume all hn ∈ (−1, 1); and then check for each n that the above integral equals∫

R
f(y)ψ′(x− y + c(hn, y)) dy =

∫ x+(r+1)

x−(r+1)
f(y)ψ′(x− y + c(hn, y)) dy
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by choice of r. Now the integrand on the right-hand side is bounded above by M1|f(y)| in
absolute value, where M1 := ∥ψ′∥L∞(R). Hence, by the dominated convergence theorem,

lim
n→∞

∫ x+(r+1)

x−(r+1)
f(y)ψ′(x− y + c(hn, y)) dy =

∫ x+(r+1)

x−(r+1)
f(y)ψ′(x− y) dy = (f ∗ ψ′)(x),

where the first equality also uses that ψ is C1 and the second is by choice of r. Since this
happens for every sequence hn → 0, it follows that (f ∗ψ)′(x) = (f ∗ψ′)(x). Moreover, f ∗ψ′

is continuous by Lemma 18.6, since ψ is C1. This shows f ∗ ψ is C1 as claimed. □

Finally, we show the claimed properties of mollified functions.

Proof of Proposition 18.5. Extending f by zero outside I, it follows that f is locally L1 on
R. Repeatedly applying Lemma 18.7 to ψ = ϕδ, ϕ

′
δ, ϕ

′′
δ , . . . , we conclude that fδ ∈ C∞(R).

To prove local uniform convergence, let K be a compact subset of I and ϵ > 0. Denote
b := supK and a := infK. Since I is right open, there is a number l > 0, such that
J := [a, b + l] ⊂ I. Since f is uniformly continuous on J , given ϵ > 0 there exists δ ∈ (0, l),
such that |x− y| < δ, x, y ∈ J =⇒ |f(x)− f(y)| < ϵ.

Now claim that if 0 < ξ < δ then ∥fξ − f∥L∞(K) ≤ ϵ; note this proves the uniform
convergence of the family fδ to f on K. To show the claim, compute using (18.4) for x ∈ K:

|fξ(x)− f(x)| =
∣∣∣∣∫ 0

−ξ
(f(x− u)− f(x))ϕξ(u) du

∣∣∣∣
≤
∫ 0

−ξ
|f(x− u)− f(x)|ϕξ(u)du ≤ ϵ

∫ 0

−ξ
ϕξ(u) du = ϵ.

This is true for all x ∈ K by the choice of ξ < δ < l, and hence, proves the claim. □

18.2. Completing the proof of the Horn–Loewner theorem. With mollifiers in hand,
we finish the proof of Theorem 17.1. As mentioned at the start of this section, the proof can
be divided into three steps, and two are now already worked out. It remains to show the
second step, that is, if n ≥ 3 and if the result holds for smooth functions, then it holds for
continuous functions.

Thus, suppose I = (0,∞) and f : I → R is continuous. Define the mollified functions
fδ, δ > 0 as above; note each fδ is smooth. Moreover, given a, b > 0, by (18.4) the function
fδ satisfies

fδ[a1n×n + buuT ] =

∫ 0

−δ
ϕδ(y) · f [(a+ |y|)1n×n + buuT ] dy, (18.8)

and this is positive semidefinite by the assumptions for f . Thus, fδ[−] preserves positivity
on the given test set in Pn(I); a similar argument shows that fδ[−] preserves positivity on

P2(I). Hence, by the proof in the previous section, fδ, f
′
δ, . . . , f

(n−1)
δ are non-negative on I.

Observe that the theorem amounts to deducing a similar statement for f ; however, as f
is a priori known only to be continuous, we can only deduce non-negativity for a discrete
version of the derivatives – namely, divided differences:

Definition 18.9. Suppose I is a real interval and a function f : I → R. Given h > 0 and an
integer k ≥ 0, the kth order forward differences with step size h > 0 are defined as follows:

(∆0
hf)(x) := f(x), (∆k

hf)(x) := (∆k−1
h f)(x+h)−(∆k−1

h f)(x) =
k∑

j=0

(
k

j

)
(−1)k−jf(x+jh),
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whenever k > 0 and x, x+ kh ∈ I. Similarly, the kth order divided differences with step size
h > 0 are

(Dk
hf)(x) :=

1

hk
(∆k

hf)(x), ∀k ≥ 0, x, x+ kh ∈ I.

The key point is that if a function is differentiable to some order, and its derivatives of that
order are non-negative on an open interval, then using the mean value theorem for divided
differences, one shows the corresponding divided differences are also non-negative, hence so
are the corresponding forward differences. Remarkably, the converse also holds, including
differentiability ! This is a classical result by Boas and Widder:

Theorem 18.10. Suppose I ⊂ R is an open interval, bounded or not, and f : I → R.
(1) (Cauchy’s mean value theorem for divided differences: special case.) If f is k-times

differentiable in I for some integer k > 0, and x, x + kh ∈ I for h > 0, then there
exists y ∈ (x, x+ kh), such that (Dk

hf)(x) = f (k)(y)/k!.
(2) (Boas–Widder, Duke Math. J., 1940.) Suppose k ≥ 2 is an integer, and f : I → R is

continuous and has all forward differences of order k non-negative on I:

(∆k
hf)(x) ≥ 0, whenever h > 0 and x, x+ kh ∈ I.

Then on all of I, the function f (k−2) exists, is continuous and convex, and has non-
decreasing left- and right-hand derivatives.

We make a few remarks on Boas and Widder’s result. First, for k = 2 the result seems
similar to Ostrowski’s theorem 12.2, except for the local boundedness being strengthened

to continuity. Second, note that while f
(k−1)
± is non-decreasing by the theorem, one cannot

claim here that the lower-order derivatives f, . . . , f (k−2) are non-decreasing on I. Indeed, a
counterexample for such an assertion for f (l), where 0 ≤ l ≤ k−2, is f(x) = −xl+1 on I ⊂ R.
Finally, we refer the reader to Section 23.1 for additional related observations and results.

Proof. The second part will be proved in detail in Section 23. For the first, consider the
Newton form of the Lagrange interpolation polynomial P (X) for f(X) atX = x, x+h, . . . , x+
kh. The highest term of P (X) is

(Dk
hf)(x) · (X − xk−1) · · · (X − x1)(X − x0), where xj = x0 + jh ∀j ≥ 0.

Writing g(X) := f(X)− P (X) to be the remainder function, note that g vanishes at x, x+

h, . . . , x + kh. By successively applying Rolle’s theorem to g, g′, . . . , g(k−1), it follows that
g(k) has a root in (x, x+ kh), say y. But then,

0 = g(k)(y) = f (k)(y)− (Dk
hf)(x)k!,

which concludes the proof. □

Returning to our proof of the stronger Horn–Loewner theorem 17.1, since fδ, f
′
δ, . . . , f

(n−1)
δ ≥

0 on I, by the above theorem the divided differences of fδ up to order n− 1 are non-negative
on I, hence the same holds for the forward differences of fδ. Applying Proposition 18.5,
the forward differences of f of orders k = 0, . . . , n − 1 are also non-negative on I. Finally,
invoke the Boas–Widder theorem for k = 2, . . . , n− 1 to conclude the proof of the (stronger)
Horn–Loewner theorem – noting for “low orders” that f is non-negative and non-decreasing
on I by using forward differences of orders k = 0, 1 respectively, and hence f, f ′ ≥ 0 on I as
well. □
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Moment sequence transforms.

19.1. The theorems of Vasudeva and Bernstein. Having shown (the stronger form of)
the Horn–Loewner theorem 17.1, we use it to prove the following strengthening of Vasudeva’s
theorem 16.4. In it, recall from Definition 12.18 that HTNn denotes the set of n × n Hankel
totally non-negative matrices. (These are automatically positive semidefinite.)

Theorem 19.1 (Vasudeva’s theorem, stronger version – also see Remark 19.18). Suppose
I = (0,∞) and f : I → R. The following are equivalent:

(1) The entrywise map f [−] preserves positivity on Pn(I) for all n ≥ 1.
(2) The entrywise map f [−] preserves positivity on all matrices in HTNn with positive

entries and rank at most 2 for all n ≥ 1.
(3) The function f equals a convergent power series

∑∞
k=0 ckx

k for all x ∈ I, with the
Maclaurin coefficients ck ≥ 0 for all k ≥ 0.

To show the theorem, we require the following well-known classical result by Bernstein:

Definition 19.2. If I ⊂ R is open, we say that f : I → R is absolutely monotonic if f is
smooth on I and f (k) ≥ 0 on I for all k ≥ 0.

Theorem 19.3 (Bernstein, [44]). Suppose −∞ < a < b ≤ ∞. If f : [a, b)→ R is continuous
at a and absolutely monotonic on (a, b), then f can be extended analytically to the complex
disk D(a, b− a).

With Bernstein’s theorem in hand, the “stronger Vasudeva theorem” follows easily:

Proof of Theorem 19.1. By the Schur product theorem or Lemma 16.1, (3) =⇒ (1); and
clearly (1) =⇒ (2). Now suppose (2) holds. By the stronger Horn–Loewner theorem 17.1,

f (k) ≥ 0 on I for all k ≥ 0, i.e., f is absolutely monotonic on I. In particular, f is non-
negative and non-decreasing on I = (0,∞), so it can be continuously extended to the origin
via f(0) := limx→0+ f(x) ≥ 0. Now apply Bernstein’s theorem with a = 0 and b = ∞ to

deduce that f agrees on [0,∞) with an entire function
∑∞

k=0 ckx
k. Moreover, since f (k) ≥ 0

on I for all k, it follows that f (k)(0) ≥ 0, i.e., ck ≥ 0 ∀k ≥ 0. Restricting to I, we obtain (3),
as desired. □

On a related note, recall Theorems 9.3 and 12.19, which showed that when studying entry-
wise powers preserving the two closed convex cones Pn([0,∞)) and HTNn, the answers were
identical. This is perhaps not surprising, given Theorem 4.1. In this vein, we observe that
such an equality of preserver sets also holds when classifying the entrywise maps preserving
Hankel TN matrices with positive entries:

Corollary 19.4. With I = (0,∞) and f : I → R, the three assertions in Theorem 19.1 are
further equivalent to:

(4) The entrywise map f [−] preserves total non-negativity on all matrices in HTNn with
positive entries, for all n ≥ 1.

(5) The entrywise map f [−] preserves total non-negativity on the matrices in HTNn with
positive entries and rank at most 2, for all n ≥ 1.

Proof. Clearly (4) =⇒ (5) =⇒ (2), where (1)–(3) are as in Theorem 19.1. That (3) =⇒
(4) follows from Lemma 16.1 and Theorem 4.1. □
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Remark 19.5. Here is one situation where the two sets of preservers – of positivity on Pn

for all n, and of total non-negativity on HTNn for all n – differ: if we also allow zero entries,
as opposed to only positive entries as in the preceding corollary and Theorem 19.1. In this
case, one shows that the preservers of HTNn for all n are the functions f , such that f |(0,∞)

is absolutely monotonic, and hence a power series with non-negative Maclaurin coefficients;
and, such that 0 ≤ f(0) ≤ limx→0+ f(x), since the only Hankel TN matrices with a zero entry
arise as truncated moment matrices of measures aδ0. On the other hand, by considering the

rank-2 Hankel positive semidefinite matrix A :=

2 1 1
1 1 0
1 0 1

, and considering the inequality

lim
x→0+

det f [xA] ≥ 0,

it follows that f is continuous at 0+. (Note, A is not TN .) In particular, the entrywise
preservers of positivity on

⋃
n≥1 Pn([0,∞)) are precisely the functions

∑
k≥0 ckx

k, with all
ck ≥ 0.

Remark 19.6. As a reminder, we recall that if one instead tries to classify the entrywise
preservers of total non-negativity on all (possibly symmetric) TN matrices, then one obtains
only the constant or linear functions f(x) = c, cx for c, x ≥ 0. See Theorem 12.11 above.

To complete the proof of the stronger Vasudeva theorem 19.1 as well as its corollary
(Corollary 19.4), it remains to show Bernstein’s theorem.

Proof of Bernstein’s theorem 19.3. First we claim that f (k)(a+) exists and equals limx→a+ f
(k)(x)

for all k ≥ 0. The latter limit here exists because f (k+1) ≥ 0 on (a, b), so f (k)(x) is non-
negative and non-decreasing on [a, b).

It suffices to show the claim for k = 1. But here we compute:

f ′(a+) = lim
h→0+

f(a+ h)− f(a)
h

= lim
h→0+

f ′(a+ c(h)),

where c(h) ∈ [0, h] exists and goes to zero as h → 0+, by the Mean Value Theorem. The

claim now follows from the previous paragraph. In particular, f (k) exists and is continuous,
non-negative, and non-decreasing on [a, b).

Applying Taylor’s theorem, we have

f(x) = f(a+) + f ′(a+)(x− a) + · · ·+ f (n)(a+)
(x− a)n

n!
+Rn(x),

where Rn is the Taylor remainder

Rn(x) =

∫ x

a

(x− t)n

n!
f (n+1)(t) dt. (19.7)

By the assumption on f , we see that Rn(x) ≥ 0. Changing variables to t = a+ y(x− a), the
limits for y change to 0, 1, and we have

Rn(x) =
(x− a)n+1

n!

∫ 1

0
(1− y)nf (n+1)(a+ y(x− a)) dy.

Since f (n+2) ≥ 0 on [a, b), if a ≤ x ≤ c for some c < b, then uniformly in [a, c] we have

0 ≤ f (n+1)(a+ y(x− a)) ≤ f (n+1)(a+ y(c− a)). Therefore, using Taylor’s remainder formula
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once again, we obtain

0 ≤ Rn(x) ≤
(x− a)n+1

n!

∫ 1

0
(1− y)nf (n+1)(a+ y(c− a)) dy

= Rn(c)
(x− a)n+1

(c− a)n+1

=
(x− a)n+1

(c− a)n+1

(
f(c)−

n∑
k=0

f (k)(a+)
(c− a)k

k!

)

≤ f(c)
(x− a)n+1

(c− a)n+1
.

From this it follows that limn→∞Rn(x) = 0 for all x ∈ [a, c). Since this holds for all
c ∈ (a, b), the Taylor series of f converges to f on [a, b). In other words,

f(x) =

∞∑
k=0

f (k)(a+)

k!
(x− a)k, x ∈ [a, b).

Now if z ∈ D(a, b−a), then clearly a+|z−a| < a+(b−a) = b. Choosing any c ∈ (a+|z−a|, b),
we check that the Taylor series converges (absolutely) at z:∣∣∣∣∣

∞∑
k=0

f (k)(a+)

k!
(z − a)k

∣∣∣∣∣ ≤
∞∑
k=0

f (k)(a+)

k!
|z − a|k

≤
∞∑
k=0

f (k)(a+)

k!
|c− a|k

= f(c) <∞.
This completes the proof of Bernstein’s theorem – and with it, the stronger form of Vasudeva’s
theorem. □

Remark 19.8. We mention for completeness that Bernstein’s theorem admits an extension,
which was already shown by Bernstein in 1926 [43], and which says that even if f (k) ≥ 0 in
(a, b) only for k ≥ 0 even, then f is necessarily analytic in (a, b). (In fact, Bernstein worked
only with divided differences – see Theorem 39.10.) This was further extended by Boas in
Duke Math. J., as follows:

Theorem 19.9 (Boas, 1941, [54]). Let {np : p ≥ 1} be an increasing sequence of positive
integers, such that np+1/np is uniformly bounded. Let (a, b) ⊂ R and f : (a, b)→ R be smooth.

If for each p ≥ 1, the derivative f (np) does not change sign in (a, b), then f is analytic in
(a, b).

19.2. The stronger version of Schoenberg’s theorem. We now come to the main result
of this part of the text: the promised strengthening of Schoenberg’s theorem.

Theorem 19.10 (Schoenberg’s theorem, stronger version). Given f : R→ R, the following
are equivalent:

(1) The entrywise map f [−] preserves positivity on Pn(R) for all n ≥ 1.
(2) The entrywise map f [−] preserves positivity on the Hankel matrices in Pn(R) of rank

at most 3 for all n ≥ 1.
(3) The function f equals a convergent power series

∑∞
k=0 ckx

k for all x ∈ R, with the
Maclaurin coefficients ck ≥ 0 for all k ≥ 0.
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See also Theorem 19.15 for two a priori weaker, yet equivalent, assertions.

Remark 19.11. Recall the two definitions of positive definite functions, from Definition 16.15
and the discussion preceding Lemma 16.16. The metric-space version for Euclidean and
Hilbert spheres was connected by Schoenberg to functions of the form f ◦ cos, by requiring
that (f(⟨xj , xk⟩))j,k≥0 be positive semidefinite for all choices of vectors xj ∈ Sr−1 (for 2 ≤
r ≤ ∞). A third notion of positive definite kernels on Hilbert spaces H arises from here,
and is important in machine learning among other areas: (see, e.g., [281, 345, 352]): one
says f : R → R is positive definite on H if, for any choice of finitely many points xj , j ≥ 0,
the matrix (f(⟨xj , xk⟩))j,k≥0 is positive semidefinite. Since Gram matrix ranks are bounded
above by dimH, this shows that Rudin’s 1959 theorem 16.3 classifies the positive definite
kernels/functions on H for any real Hilbert space of dimension ≥ 3. The stronger Schoenberg
theorem 19.10 provides a second proof.

Returning to the stronger Schoenberg theorem 19.10, clearly (1) =⇒ (2), and (3) =⇒ (1)
by the Pólya–Szegő observation 16.1. Thus, the goal over the next few sections is to prove
(2) =⇒ (3). The proof is simplified when some of the arguments below are formulated
in the language of moment sequences and their preservers. We begin by defining these
and explaining the dictionary between moment sequences and positive-semidefinite Hankel
matrices, due to Hamburger (among others).

Definition 19.12. Recall that given an integer k ≥ 0 and a real measure µ supported on a
subset of R, µ has kth moment equal to the following (if it converges):

sk(µ) :=

∫
R
xk dµ.

Henceforth, we only work with admissible measures, i.e., such that µ is non-negative on R
and sk(µ) converges for all k ≥ 0. The moment sequence of such a measure µ is the sequence

s(µ) := (s0(µ), s1(µ), . . . ).

We next define transforms of moment sequences: a function f : R → R acts entrywise, to
take moment sequences to real sequences:

f [s(µ)] := (f(sk(µ)))k≥0. (19.13)

We are interested in examining when the transformed sequence (19.13) is also the moment
sequence of an admissible measure supported on R. This connects to the question of positivity
preservers via the following classical result.

Theorem 19.14 (Hamburger, [162]). A real sequence (sk)k≥0 is the moment sequence of an
admissible measure, if and only if the semi-infinite Hankel matrix H := (sj+k)j,k≥0 is positive
semidefinite.

Recall that the easy half of this result was proved early on, in Lemma 2.22.
Thus, entrywise functions preserving positivity on Hankel matrices are intimately related

to moment sequence preservers. Also note that if a measure µ has finite support in the
real line, then by examining for example (2.21), the Hankel moment matrix Hµ (i.e., every
submatrix) has rank at most the size of the support set. From this and Hamburger’s theorem,
we deduce all but the last sentence of the following result:

Theorem 19.15. Theorem 19.10(2) implies the following a priori weaker statement:
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(4) For each measure

µ = aδ1 + bδu0 + cδ−1, with u0 ∈ (0, 1), a, b, c ≥ 0, (19.16)

there exists an admissible (non-negative) measure σ = σµ on R, such that f(sk(µ)) =
sk(σ) ∀k ≥ 0.

In turn, this implies the still-weaker statement:

(5) For each measure µ as in (19.16), with semi-infinite Hankel moment matrix Hµ, the
matrix f [Hµ] is positive semidefinite.

In fact, these statements are equivalent to the assertions in Theorem 19.10.

Remark 19.17. In this text, we do not prove Hamburger’s theorem; but we have used it
to state Theorem 19.15(4) – i.e., in working with the admissible measure σ = σµ. A closer
look reveals that the use of Hamburger’s theorem and moment sequences is not required to
prove Schoenberg’s theorem, or even its stronger form in Theorem 19.15, which is explained
in (proving) Theorem 19.15(5). Our workaround is explained in the next section (Section 20),
via a “positivity-certificate trick” involving limiting sum-of-squares representations of poly-
nomials. That said, moment sequences help simplify the presentation of the proof, and hence
we will continue to use them in the proof, in later sections (Sections 21 and 22).

The next three sections are devoted to proving (5) =⇒ (3) (in Theorems 19.10 and 19.15).
Here is an outline of the steps in the proof:

(1) All matrices A =

(
a b
b c

)
∈ P2((0,∞)) with a ≥ c occur as leading principal subma-

trices of the Hankel moment matrices Hµ, where µ is as in (19.16).
(2) Apply the stronger Horn–Loewner theorem 17.1 and Bernstein’s theorem to deduce

that f |(0,∞) =
∑∞

k=0 ckx
k for some ck ≥ 0.

(3) If f satisfies assertion (5) in Theorem 19.15, then f is continuous on R.
(4) If, moreover, f is smooth and satisfies assertion (5) in Theorem 19.15, then f is real

analytic.
(5) Real analytic functions satisfy the desired implication above: (5) =⇒ (3).
(6) Using mollifiers and complex analysis, one can go from smooth functions to continuous

functions.

Notice that Steps 3, 4–5, and 6 resemble the three steps in the proof of the stronger Horn–
Loewner theorem 17.1.

In this section, we complete the first two steps in the proof.

Step 1: For the first step, suppose A =

(
a b
b c

)
∈ P2((0,∞)) with a ≥ c. There are three

cases. First, if b =
√
ac then use µ = aδb/a, since 0 < b/a ≤ 1.

Henceforth, assume 0 < b <
√
ac ≤ a. (In particular, 2b < 2

√
ac ≤ a + c.) The second

case is if b > c; we then find t > 0, such that A− t12×2 is singular. This condition amounts
to a linear equation in t, with solution (to be verified by the reader)

t =
ac− b2

a+ c− 2b
> 0.

Then c− t = (b− c)2

a+ c− 2b
> 0, so a− t, b− t > 0 and A =

(
s0(µ) s1(µ)
s1(µ) s2(µ)

)
, where

µ =
ac− b2

a+ c− 2b
δ1 +

(a− b)2

a+ c− 2b
δ b−c

a−b
, with

b− c
a− b

∈ (0, 1).
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sequence transforms.
The third case is when 0 < b ≤ c ≤

√
ac ≤ a, with b <

√
ac. Now find t > 0, such that

the matrix

(
a− t b+ t
b+ t c− t

)
∈ P2((0,∞)) and is singular. To do so requires solving a linear

equation, which yields:

t =
ac− b2

a+ c+ 2b
, c− t = (b+ c)2

a+ c+ 2b
, a− t = (a+ b)2

a+ c+ 2b
, b+ t =

(a+ b)(b+ c)

a+ c+ 2b
,

and all of these are strictly positive. So a, b, c > 0 are the first three moments of

µ =
ac− b2

a+ c+ 2b
δ−1 +

(a+ b)2

a+ c+ 2b
δ b+c

a+b
, with

b+ c

a+ b
∈ (0, 1].

Step 2: Observe that the hypotheses of the stronger Horn–Loewner theorem 17.1 (for all
n) can be rephrased as saying that f [−] sends the rank-1 matrices in P2(I) and the Toeplitz
matrices in P2(I) to P2(R), and that assertion (4) in Theorem 19.15 holds for all measures
aδ1 + bδu0 , where u0 ∈ (0, 1) is fixed and a, b > 0. By Step 1 and the hypotheses, we can
apply the stronger Horn–Loewner theorem in our setting for each n ≥ 3, hence f |(0,∞) is
smooth and absolutely monotonic. As in the proof of the stronger Vasudeva theorem 19.1,

extend f continuously to the origin, say to a function f̃ , and apply Bernstein’s theorem 19.3.

It follows that f̃ |[0,∞) is a power series with non-negative Maclaurin coefficients, and Step 2

follows by restricting to f̃ |(0,∞) = f |(0,∞). □

Remark 19.18. From Step 2, it follows that assertions (1) and (2) in the stronger Vasudeva
theorem 19.1 can be further weakened, to deal only with the rank-1 matrices in P2(I), the
Toeplitz matrices in P2(I), and with the (Hankel TN moment matrices of) measures aδ1+bδu0 ,
for a single fixed u0 ∈ (0, 1) and all a, b ≥ 0 with a+ b > 0.
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20. Proof of stronger Schoenberg Theorem: I. Continuity. The
positivity-certificate trick.

We continue with the proof of the stronger Schoenberg theorem 19.10. Previously, we have
shown the first two of the six steps in the proof (these are listed following Theorem 19.15).

Step 3: The next step is to show that if assertion (4) (or (5)) in Theorem 19.15 holds, then
f is continuous on R. Notice from Steps 1 and 2 of the proof that f is absolutely monotonic,
hence continuous, on (0,∞).

20.1. Integration trick and proof of continuity. At this stage, we transition to moment
sequence preservers, via Hamburger’s theorem 19.14. The following “integration trick” will
be used repeatedly in what follows: Suppose p(t) is a real polynomial that takes non-negative
values for t ∈ [−1, 1]. Write p(t) =

∑∞
k=0 akt

k (with only finitely many ak non-zero, but not
necessarily all positive, note). If µ ≥ 0 is an admissible measure – in particular, non-negative
by Definition 19.12 – then by assumption and Hamburger’s theorem we have f(sk(µ)) =
sk(σµ) ∀k ≥ 0, for some admissible measure σµ ≥ 0 on R, where f : R → R satisfies
Theorem 19.15(4) or (5). Now assuming σµ is supported on [−1, 1] (which is not a priori
clear from the hypotheses), we have

0 ≤
∫ 1

−1
p(t) dσµ =

∞∑
k=0

∫ 1

−1
akt

k dσµ =
∞∑
k=0

aksk(σµ) =
∞∑
k=0

akf(sk(µ)). (20.1)

Example 20.2. Suppose p(t) = 1 − td on [−1, 1], for some integer d ≥ 1. Then f(s0(µ)) −
f(sd(µ)) ≥ 0. As a further special case, if µ = aδ1 + bδu0 + cδ−1 as in Theorem 19.15(4), if
σµ is supported on [−1, 1] then this would imply

f(a+ b+ c) ≥ f(a+ bud0 + c(−1)d), ∀u0 ∈ (0, 1), a, b, c ≥ 0.

It is not immediately clear how the preceding inequalities can be obtained by considering
only the preservation of matrix positivity by f [−] (or more involved such assertions). As we
will explain shortly (see Section 20.2), this has connections to real algebraic geometry; in
particular, to a well-known program of Hilbert.

Returning to the proof of continuity in Schoenberg’s theorem, we suppose without fur-
ther mention that f satisfies only Theorem 19.15(5) – and hence, is absolutely monotonic
on (0,∞). We begin by showing two preliminary lemmas, which are used in the proof of
continuity.

Lemma 20.3. f is bounded on compact subsets of R.

Proof. If K ⊂ R is compact, say K ⊂ [−M,M ] for some M > 0, then note that f |(0,∞)

is non-decreasing, hence 0 ≤ |f(x)| ≤ f(M), ∀x ∈ (0,M ]. Now apply f [−] to the matrix

B :=

(
x −x
−x x

)
, arising from µ = xδ−1, with x > 0. The positivity of f [B] implies

|f(−x)| ≤ f(x) ≤ f(M). Similarly considering µ = M
2 δ1 + M

2 δ−1 shows that |f(0)| ≤
f(M). □

Now say µ = aδ1 + bδu0 + cδ−1 as above, or more generally, µ is any non-negative measure
supported in [−1, 1]. It is easily seen that its moments sk(µ), k ≥ 0 are all uniformly bounded
in absolute value – in fact, by the mass s0(µ). Our next lemma shows that the converse is
also true.

Lemma 20.4. Given an admissible measure σ on R, the following are equivalent:
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(1) The moments of σ are all uniformly bounded in absolute value.
(2) The measure σ is supported on [−1, 1].

Proof. As discussed above, (2) =⇒ (1). To show the converse, suppose (1) holds but (2)
fails. Then σ has positive mass in (1,∞) ⊔ (−∞,−1). We obtain a contradiction in the first
case; the proof is similar in the other case. Thus, suppose σ has positive mass on

(1,∞) = [1 + 1
1 , 1 +

1
0) ⊔ [1 + 1

2 , 1 +
1
1) ⊔ · · · ⊔ [1 + 1

n+1 , 1 +
1
n) ⊔ · · · ,

where 1/0 :=∞. Then σ(In) > 0 for some n ≥ 0, where we denote In := [1 + 1
n+1 , 1 +

1
n) for

convenience. But now we obtain the desired contradiction:

s2k(σ) =

∫
R
x2k dσ ≥

∫ 1+ 1
n

1+ 1
n+1

x2k dσ ≥
∫ 1+ 1

n

1+ 1
n+1

(1 + 1
n+1)

k dσ ≥ σ(In)(1 + 1
n+1)

k,

and this is not uniformly bounded over all k ≥ 0. □

With these basic lemmas in hand, we have:

Proof of Step 3 for the stronger Schoenberg theorem: continuity. Suppose f : R → R satis-
fies Theorem 19.15(4). (We explain in Section 20.3, how to weaken the hypotheses to The-
orem 19.15(5).) Given a measure µ = aδ1 + bδu0 + cδ−1 for u0 > 0 and a, b, c ≥ 0, note
that |sk(µ)| ≤ s0(µ) = a+ b+ c. Hence, by Lemma 20.3, the moments sk(σµ) are uniformly
bounded over all k. By Lemma 20.4, it follows that σµ must be supported in [−1, 1]. In
particular, we can apply the integration trick (20.1) above.

We use this trick to prove continuity at −β for β ≥ 0. (By Step 2, this proves the continuity
of f on R.) Thus, fix β ≥ 0, u0 ∈ (0, 1), and b > 0, and define

µ := (β + bu0)δ−1 + bδu0 .

Let p±,1(t) := (1 ± t)(1 − t2); note that these polynomials are non-negative on [−1, 1]. By
the integration trick (20.1),∫ 1

−1
p±,1(t) dσµ(t) ≥ 0

=⇒ s0(σµ)− s2(σµ) ≥ ±(s1(σµ)− s3(σµ))
=⇒ f(s0(µ))− f(s2(µ)) ≥ |f(s1(µ))− f(s3(µ))|
=⇒ f(β + b(1 + u0))− f(β + b(u0 + u20)) ≥ |f(−β)− f(−β − bu0(1− u20))|.

Now let b→ 0+. Then the left-hand side goes to zero by Step 2 (in the previous section),
hence so does the right-hand side. This implies f is left continuous at −β for all β ≥ 0. To
show f is right continuous at −β, use µ′ := (β + bu30)δ−1 + bδu0 instead of µ. □

Remark 20.5. Akin to its use in proving the continuity of f , the integration trick (20.1)
can also be used to prove the boundedness of f on compact sets [−M,M ], as in Lemma 20.3.
To do so, work with the polynomials p±,0(t) := 1± t, which are also non-negative on [−1, 1].
Given 0 ≤ x < M , applying (20.1) to µ =Mδx/M and µ′ = xδ−1 shows Lemma 20.3.

20.2. The integration trick explained: semi-algebraic geometry. In Section 20.1, we
used the following integration trick: if σ ≥ 0 is a real measure supported in [−1, 1] with all
moments finite, i.e., the Hankel moment matrix Hσ := (sj+k(σ))

∞
j,k=0 is positive semidefinite;
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and if a polynomial p(t) =

∑
k≥0 akt

k is non-negative on [−1, 1], then

0 ≤
∫ 1

−1
p(t) dσ =

∞∑
k=0

∫ 1

−1
akt

k dσ =
∞∑
k=0

aksk(σ).

This integration trick is at the heart of the link between moment problems and (Hankel)
matrix positivity. This trick is now explained; namely, how this integral inequality can be
understood purely in terms of the positive semidefiniteness of Hσ. This also has connections
to real algebraic geometry and Hilbert’s seventeenth problem.

The basic point is as follows: if a d-variate polynomial (in one or several variables) is
a sum of squares of real polynomials – also called a sum-of-squares polynomial – then it
is automatically non-negative on Rd. However, Hilbert showed in his 1888 paper [173] in
Math. Ann. – following the doctoral dissertation of Hermann Minkowski – that for d ≥ 2,
there exist polynomials that are not sums of squares, yet are non-negative on Rd. The first
such example was constructed in 1967, and is the well-known Motzkin polynomial M(x, y) =
x4y2 + x2y4 − 3x2y2 + 1 [267].2,3,4 Such phenomena are also studied on polytopes (results of
Farkas, Pólya, and Handelman), and on more general “semi-algebraic sets” including compact
ones (results of Stengle, Schmüdgen, Putinar, and Vasilescu, among others).

Now given, say, a one-variable polynomial that is non-negative on a semi-algebraic set such
as [−1, 1], one would like a positivity certificate for it, meaning a sum-of-squares representation
mentioned above, or more generally, a limiting sum-of-squares representation. To make this
precise, define the L1-norm, or the Wiener norm, of a polynomial p(t) =

∑
k≥0 akt

k as:

∥p(t)∥1,+ :=
∑
k≥0

|ak|. (20.6)

One would thus like to find a sequence pn of sum-of-squares polynomials, such that ∥pn(t)−
p(t)∥1,+ → 0 as n→∞. Two simple cases are if there exist polynomials qn(t), such that (1)
pn(t) = qn(t)

2 ∀n or (2) pn(t) =
∑n

k=1 qk(t)
2 ∀n.

2Indeed, as explained, e.g., in [309], by the AM–GM inequality we have M(x, y) ≥ 2t3 − 3t2 + 1 =
(2t2 − t − 1)(t − 1), where t = |xy|. Now either t ∈ [0, 1], so both factors on the right are non-positive;
or t > 1, so both factors are positive. Next, suppose M(x, y) =

∑
j fj(x, y)2 is a sum of squares; since

M(x, 0) = M(0, y) = 1, it follows that fj(x, 0), fj(0, y) are constants, and hence the fj are of the form
fj(x, y) = aj + bjxy + cjx

2y + djxy
2. Now equating the coefficient of x2y2 in M =

∑
j f

2
j gives: −3 =

∑
j b

2
j ,

a contradiction.
3Hilbert then showed in [174] that every non-negative polynomial on R2 is a sum of four squares of rational

functions; e.g., the Motzkin polynomial equals x2y2(x2+y2−2)2(x2+y2+1)+(x2−y2)2

(x2+y2)2
. For more on this problem,

see, e.g., [309].
4The reader may recall the name of Motzkin from Theorem 3.22, in an entirely different context. As

a historical digression, we mention several relatively “disconnected” areas of mathematics, in all of which,
remarkably, Motzkin made fundamental contributions. His thesis [263] was a landmark work in the area of
linear inequalities/linear programming, introducing in particular the Motzkin transposition theorem and the
Fourier–Motzkin Elimination (FME) algorithm. Additionally, he proved in the same thesis the fundamental
fact in geometric combinatorics that, a convex polyhedral set is the Minkowski sum of a compact (convex)
polytope and a convex polyhedral cone. Third, in his thesis Motzkin also characterized the matrices that
satisfy the variation diminishing property; see Theorem 3.22.

Then in [264], Motzkin studied what is now called the Motzkin number in combinatorics: this is the number
of different ways to draw non-intersecting chords between n marked points on a circle. In [265], he provided
the first example of a principal ideal domain that is not a Euclidean domain: Z[(1 +

√
−19)/2]. In [266],

he provided an ideal-free short proof of Hilbert’s Nullstellensatz, together with degree bounds. Motzkin also
provided in [267] the aforementioned polynomial M(x, y) in connection to Hilbert’s seventeenth problem.
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How does this connect to matrix positivity? It turns out that in our given situation, what

is required is precisely a positivity certificate. For example, say p(t) = (3−t)2 = 9−6t+t2 ≥ 0
on R. Then∫ 1

−1
p dσ = 9s0(σ)− 6s1(σ) + s2(σ) = (3,−1)

(
s0(σ) s1(σ)
s1(σ) s2(σ)

)
(3,−1)T

= (3e0 − e1)THσ(3e0 − e1),
(20.7)

where e0 = (1, 0, 0, . . . )T , e1 = (0, 1, 0, 0, . . . )T , . . . comprise the standard basis for RN⊔{0},
and Hσ is the semi-infinite, positive semidefinite Hankel moment matrix for σ. From this

calculation, it follows that
∫ 1
−1 p dσ is non-negative – and this holds more generally, whenever

there exists a (limiting) sum-of-squares representation for p.
We now prove the existence of such a limiting sum-of-squares representation in two different

ways for general polynomials p(t) that are non-negative on [−1, 1], and in a constructive third
way for the special family of polynomials

p±,n(t) := (1± t)(1− t2)n, n ≥ 0.

(Note, we used p±,0 and p±,1 to prove the local boundedness and continuity of f on R,
respectively; and the next section uses p±,n to prove that smoothness implies real analyticity.)

Proof 1: We claim more generally that for any dimension d ≥ 1, every polynomial that is
non-negative on [−1, 1]d has a limiting sum-of-squares representation. This is proved at the
end of the 1976 paper [39] of Berg, Christensen, and Ressel in Math. Ann.

Proof 2: Here is a constructive proof of a positivity certificate for the polynomials p±,n(t) =
(1± t)(1− t2)n, n ≥ 0. (It turns out, we only need to work with these in order to show the
stronger Schoenberg theorem.) First, notice that

p+,0(t) = (1 + t), p−,0(t) = (1− t),
p+,1(t) = (1− t)(1 + t)2, p−,1(t) = (1 + t)(1− t)2, (20.8)

p+,2(t) = (1 + t)(1− t2)2, p−,2(t) = (1− t)(1− t2)2,

and so on. Thus, if we show that p±,0(t) = 1 ± t are limits of sum-of-squares polynomials,
then so are p±,n(t) for all n ≥ 0 (where limits are taken in the Wiener norm). But we have

1

2
(1± t)2 = 1

2
± t+ t2

2
,

1

4
(1− t2)2 = 1

4
− t2

2
+
t4

4
, (20.9)

1

8
(1− t4)2 = 1

8
− t4

4
+
t8

8
,

and so on. Adding the first k of these equations shows that the partial sum

p±k (t) := (1− 1

2k
)± t+ t2

k

2k
= (1± t) + t2

k − 1

2k

is a sum-of-squares polynomial, for every k ≥ 1. This provides a positivity certificate for
1± t, as desired. It also implies the sought-for interpretation of the integration trick in Step
3 above:∣∣∣∣∫ 1

−1
[p±k (t)− (1± t)] dσ

∣∣∣∣ ≤ ∫ 1

−1
|p±k (t)− (1± t)| dσ ≤

∫ 1

−1

1

2k
dσ +

∫ 1

−1

t2
k

2k
dσ ≤ 1

2k
· 2s0(σ),
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which goes to 0 as k →∞. Hence, using the notation following (20.7),∫ 1

−1
(1±t) dσ = lim

k→∞

∫ 1

−1
p±k (t) dσ =

1

2
(e0±e1)THσ(e0±e1)+

∞∑
j=2

1

2j
(e0−e2j−1)THσ(e0−e2j−1),

and this is non-negative because Hσ is positive semidefinite.

Proof 3: If we only want to interpret the integration trick (20.1) in terms of the positivity
of the Hankel moment matrix Hσ, then the restriction of using the Wiener norm ∥ · ∥1,+ can
be relaxed, and one can work instead with the weaker notion of the uniform norm. With
this metric, we claim more generally that every continuous function f(t1, . . . , td) that is non-
negative on a compact subset K ⊂ Rd has a limiting sum-of-squares representation on K.
(Specialized to d = 1 and K = [−1, 1], this proves the integration trick.)

To see the claim, observe that
√
f(t1, . . . , td) : K → [0,∞) is continuous, so by the Stone–

Weierstrass theorem, there exists a polynomial sequence qn converging uniformly to
√
f in

L∞(K). Thus, q2n → f in L∞(K), as desired. Explicitly, if d = 1 and qn(t) =
∑∞

k=0 cn,kt
k,

then define the semi-infinite vectors

un := (cn,0, cn,1, . . . )
T , n ≥ 1.

Now compute for any admissible measure σ supported in K:∫
K
f dσ = lim

n→∞

∫
K
q2n(t) dσ = lim

n→∞
uT
nHσun ≥ 0, (20.10)

which is a positivity certificate for all continuous, non-negative functions on compact K ⊂ R.
This reasoning extends to all dimensions d ≥ 1 and compact K ⊂ Rd, by Lemma 2.24.

20.3. From the integration trick to the positivity-certificate trick. Proof 2 in Sec-
tion 20.2 is the key to understanding why Hamburger’s theorem is not required to prove the
stronger Schoenberg theorem 19.15 (namely, (5) =⇒ (3)). Specifically, we only need to use
the following fact:

For each fixed n ≥ 0, if
∑

k akt
k is the expansion of p±,n(t) = (1 ± t)(1 − t2)n ≥ 0 on

[−1, 1], then
∑

k akf(sk(µ)) ≥ 0.

This was derived above using the integration trick (20.1) via the auxiliary admissible
measure σµ, which exists by Theorem 19.15(4). We now explain a workaround via a related
“positivity-certificate trick” that requires using only that f [Hµ] is positive semidefinite, hence
allowing us to work with the weaker hypothesis, Theorem 19.15(5) instead. In particular,
one can avoid using Hamburger’s theorem and requiring the existence of σµ.

The positivity-certificate trick is as follows:

Theorem 20.11. Fix a semi-infinite real Hankel matrix H = (fj+k)j,k≥0 that is positive
semidefinite (i.e., its principal minors are positive semidefinite), with all entries fj uniformly
bounded. If a polynomial p(t) =

∑
j≥0 ajt

j has a positivity certificate – i.e., a Wiener-limiting

sum-of-squares representation – then
∑

j≥0 ajfj ≥ 0.

According to Proof 2 in Section 20.2 (see the discussion around (20.9)), Theorem 20.11
applies to p = p±,n for all n ≥ 0 and H = f [Hµ], where f, µ are as in Theorem 19.15(5).
This implies the continuity of the entrywise positivity preserver f in the above discussion,
and also suffices to complete the proof in the next two sections, of the stronger Schoenberg
theorem (Theorem 19.10).
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Proof of Theorem 20.11. As an illustrative special case, if p(t) is the square of a polynomial
q(t) =

∑
j≥0 cjt

j , then as in (20.7),∑
j≥0

ajfj =
∑
j,k≥0

cjckfj+k = uTHu ≥ 0, where u = (c0, c1, . . . )
T .

By additivity, the result therefore also holds for a sum of squares of polynomials. The subtlety
in working with a limiting sum-of-squares representation is that the degrees of each sum-of-
squares polynomial in the limiting sequence need not be uniformly bounded. Nevertheless,
suppose in the Wiener norm (20.6) that

p(t) = lim
n→∞

qn(t), where qn(t) =

Kn∑
k=0

qn,k(t)
2

is a sum of squares of polynomials for each n.
Define the linear functional ΨH (given the Hankel matrix H) that sends a polynomial

p(t) =
∑

j≥0 ajt
j to the scalar ΨH(p) :=

∑
j≥0 ajfj . Now define the vectors un,k via

qn,k(t) =
∑
j≥0

q
[j]
n,kt

j ∈ R[t], un,k := (q
[0]
n,k, q

[1]
n,k, . . . )

T .

Similarly, define qn(t) =
∑

j≥0 q
[j]
n tj . Then for all n ≥ 1,∑

j≥0

q[j]n fj = ΨH(qn) =

Kn∑
k=0

ΨH(q2n,k) =

Kn∑
k=0

uT
n,kHun,k ≥ 0.

Finally, taking the limit as n→∞, and writing p(t) =
∑

j≥0 ajt
j , we claim that∑

j≥0

ajfj = lim
n→∞

∑
j≥0

q[j]n fj ≥ 0.

Indeed, the (first) equality holds because if M ≥ supj |fj | is a uniform (and finite) upper
bound, then ∣∣∣∣∣∣

∑
j≥0

q[j]n fj −
∑
j≥0

ajfj

∣∣∣∣∣∣ ≤
∑
j≥0

|q[j]n − aj | |fj | ≤M∥qn − p∥1,+,

and this goes to zero as n→∞. □
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21. Proof of stronger Schoenberg Theorem: II. Smoothness implies real
analyticity.

Having explained the positivity-certificate trick, we return to the proof of the stronger
Schoenberg theorem. The present goal is to prove that if a smooth function f : R → R
satisfies assertion (5) in Theorem 19.15, then f is real analytic and hence satisfies assertion (3)
in Theorem 19.10. (See Steps (4) and (5) in the list following Remark 19.17.) To show these
results, we first discuss the basic properties of real analytic functions that are required in the
proofs.

21.1. Preliminaries on real analytic functions.

Definition 21.1. Suppose I ⊂ R is an open interval, and f : I → R is smooth, denoted
f ∈ C∞(I). Recall that the Taylor series of f at a point x ∈ I is

(Tf)x(y) :=

∞∑
j=0

f (j)(x)

j!
(y − x)j , y ∈ I,

if this sum converges at y. Notice that this sum is not equal to f(y) in general.
Next, we say that f is real analytic on I, denoted f ∈ Cω(I), if f ∈ C∞(I) and for all x ∈ I

there exists δx > 0, such that the Taylor series of f at x converges to f on (x− δx, x+ δx).

Clearly, real analytic functions on I form a real vector space. Less obvious is the following
useful property, which is stated without proof:

Proposition 21.2. Real analytic functions are closed under composition. More precisely, if

I
f−→ J

g−→ R, and f, g are real analytic on their domains, then so is g ◦ f on I.

We also develop a few preliminary results on real analytic functions, which are needed to
prove the stronger Schoenberg theorem. We begin with an example of real analytic functions,
which depicts what happens in our setting.

Lemma 21.3. Suppose I = (0, R) for 0 < R ≤ ∞, and f(x) =
∑∞

k=0 ckx
k on I, where

ck ≥ 0 ∀k. Then f ∈ Cω(I), and (Tf)a(x) converges whenever a, x ∈ I are such that
|x− a| < R− a.

In particular, if R =∞ and a > 0, then (Tf)a(x)→ f(x) on the domain of f .

Proof. Note that
∑∞

k=0 ckx
k converges on (−R,R). Thus, we denote this extension to (−R,R)

also by f , and show more generally that (Tf)a(x) converges to f(x) for |x − a| < R − a,
a ∈ [0, R) (whenever f is defined at x). Indeed,

f(x) =
∞∑
k=0

ck((x− a) + a)k =
∞∑
k=0

k∑
j=0

(
k

j

)
ck(x− a)jak−j .

Notice that this double sum is absolutely convergent, since

∞∑
k=0

k∑
j=0

(
k

j

)
ck|x− a|jak−j = f(a+ |x− a|) <∞.

Hence, we can rearrange the double sum (e.g., by Fubini’s theorem), to obtain

f(x) =

∞∑
j=0

( ∞∑
m=0

(
m+ j

j

)
cm+ja

m

)
(x− a)j =

∞∑
j=0

f (j)(a)

j!
(x− a)j = (Tf)a(x)
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using standard properties of power series. In particular, f is real analytic on I. □

We also require the following well-known result on zeros of real analytic functions:

Theorem 21.4 (Identity theorem). Suppose I ⊂ R is an open interval and f, g : I → R are
real analytic. If the subset of I where f = g has an accumulation point in I, then f ≡ g on
I.

In other words, the zeros of a non-zero (real) analytic function form a discrete set.

Proof. Without loss of generality, we may suppose g ≡ 0. Suppose c ∈ I is an accumulation
point of the zero set of f . Expand f locally at c into its Taylor series, and claim that
f (k)(c) = 0 for all k ≥ 0. Indeed, suppose for contradiction that

f (0)(c) = · · · = f (k−1)(c) = 0 ̸= f (k)(c)

for some k ≥ 0. Then,

f(x)

(x− c)k
=
f (k)(c)

k!
+ o(x− c),

so f is non-zero close to c, and this contradicts the hypotheses. Thus, f (k)(c) = 0 ∀k ≥ 0,
which in turn implies that f ≡ 0 on an open interval around c.

Now consider the set I0 := {x ∈ I : f (k)(x) = 0 ∀k ≥ 0}. Clearly I0 is a closed subset of I.
Moreover, if c0 ∈ I0 then f ≡ (Tf)c0 ≡ 0 near c0, hence the same happens at any point near
c0 as well. Thus, I0 is also an open subset of I. Since I is connected, I0 = I, and f ≡ 0. □

21.2. Proof of the stronger Schoenberg theorem for smooth functions. We con-
tinue with the proof of the stronger Schoenberg theorem ((5) =⇒ (2) in Theorems 19.10
and 19.15).

Akin to the proof of the stronger Horn–Loewner theorem 17.1, we have shown that any
function satisfying the hypotheses in Theorem 19.15(5) must be continuous. Hence, by the
first two steps in the proof – listed after Remark 19.17 – we have that f(x) =

∑∞
k=0 ckx

k on
[0,∞), with all ck ≥ 0.

Again, similar to the proof of the stronger Horn–Loewner theorem 17.1, we next prove the
stronger Schoenberg theorem for smooth functions. The key step here is:

Theorem 21.5. Let f ∈ C∞(R) be as in the preceding discussion, and define the family of
smooth functions

Ha(x) := f(a+ ex), a, x ∈ R.
Then Ha is real analytic on R, for all a ∈ R.

For ease of exposition, we break the proof into several steps.

Lemma 21.6. For all n ≥ 1, we have

H(n)
a (x) = an,1f

′(a+ ex)ex + an,2f
′′(a+ ex)e2x + · · ·+ an,nf

(n)(a+ ex)enx,

where an,j is a positive integer for all 1 ≤ j ≤ n.

Proof and remarks. One shows by induction on n ≥ 1 (with the base case of n = 1 immediate)
that the array an,j forms a weighted variant of Pascal’s triangle, in that

an,j =

{
1, if j = 1, n,

an−1,j−1 + jan−1,j , otherwise.
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This concludes the proof. Notice that some of the entries of the array an,j are easy to compute
inductively:

an,1 = 1, an,2 = 2n−1 − 1, an,n−1 =

(
n

2

)
, an,n = 1.

An interesting combinatorial exercise may be to seek a closed-form expression and a combi-
natorial interpretation for the other entries. □

Lemma 21.7. We have the following bound:

|H(n)
a (x)| ≤ H(n)

|a| (x), ∀a, x ∈ R, n ∈ Z≥0. (21.8)

Proof. By Lemma 21.6 we have that H
(n)
|a| (x) ≥ 0 for all a, x, n as in (21.8), so it remains to

show the inequality. For this, we assume a < 0, and use the positivity-certificate trick from
the previous section – i.e., Theorem 20.11, applied to the polynomials

p±,n(t) := (1± t)(1− t2)n, n ≥ 0

and the admissible measure

µ := |a|δ−1 + exδe−h , a, h > 0, x ∈ R.
Notice that p±,n ≥ 0 on [−1, 1]. Hence, by Theorem 20.11 – and akin to the calculation in
the previous section to prove continuity – we get

n∑
k=0

(
n

k

)
(−1)n−kf(|a|+ ex−2kh) ≥

∣∣∣∣∣
n∑

k=0

(
n

k

)
(−1)n−kf(a+ ex−(2k+1)h)

∣∣∣∣∣ .
Dividing both sides by (2h)n and sending h→ 0+, we obtain

H
(n)
|a| (x) ≥ |H

(n)
a (x)|. □

Remark 21.9. In this computation, we do not need to use the measures µ = |a|δ−1+ e
xδe−h

for all h > 0. It suffices to fix a single u0 ∈ (0, 1) and consider the sequence hn := − log(u0)/n,

so we work with µ = |a|δ−1 + exδ
u
1/n
0

(supported at 1, u
1/n
0 ) for a > 0, x ∈ R, n ≥ 1.

Lemma 21.10. For all integers n ≥ 0, the assignment (a, x) 7→ H
(n)
a (x) is non-decreasing

in both a ≥ 0 and x ∈ R. In particular if a ≥ 0, then Ha is absolutely monotonic on R, and
its Taylor series at b ∈ R converges absolutely at all x ∈ R.
Proof. The monotonicity in a ≥ 0 follows from the absolute monotonicity of f |[0,∞) men-
tioned at the start of Section 21.2. The monotonicity in x for a fixed a ≥ 0 follows because

H
(n+1)
a (x) ≥ 0 by Lemma 21.6.
To prove the (absolute) convergence of (THa)b at x ∈ R, notice that

|(THa)b(x)| =

∣∣∣∣∣
∞∑
n=0

H(n)
a (b)

(x− b)n

n!

∣∣∣∣∣ ≤
∞∑
n=0

H(n)
a (b)

|x− b|n

n!
= (THa)b(b+ |x− b|).

We claim that this final (Taylor) series is bounded above by Ha(b + |x − b|), which would
complete the proof. Indeed, by Taylor’s theorem, the nth Taylor remainder term for Ha(b+
|x− b|) can be written as (see, e.g., (19.7))∫ b+|x−b|

b

(b+ |x− b| − t)n

n!
H(n+1)

a (t) dt,

which is non-negative, see above. Taking n→∞ shows the claim and completes the proof. □
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Now we can prove the real analyticity of Ha:

Proof of Theorem 21.5. Fix scalars a, δ > 0. We show that for all b ∈ [−a, a] and x ∈ R,
the nth remainder term for the Taylor series THb around the point x converges to zero as
n→∞, uniformly near x. More precisely, define

Ψn(x) := sup
y∈[x−δ,x+δ]

|Rn((THb)x)(y)|.

We then claim Ψn(x) → 0 as n → ∞ for all x. This will imply that at all x ∈ R, (THb)x
converges to Hb on a neighborhood of radius δ. Moreover, this holds for all δ > 0 and at all
b ∈ [−a, a] for all a > 0.

Thus, it remains to prove for each x ∈ R that Ψn(x)→ 0 as n→∞. By the above results,
we have:

|H(n)
b (y)| ≤ H(n)

|b| (y) ≤ H
(n)
a (y) ≤ H(n)

a (x+ δ), ∀b ∈ [−a, a], y ∈ [x− δ, x+ δ], n ∈ Z≥0.

Using a standard estimate for the Taylor remainder, for all b, y, n as above, it follows that

|Rn((THb)x)(y)| ≤ H(n+1)
a (x+ δ)

|y − x|n+1

(n+ 1)!
≤ H(n+1)

a (x+ δ)
δn+1

(n+ 1)!
.

But the right-hand term goes to zero by the calculation in Lemma 21.10, since

0 ≤
∞∑

n=−1

H(n+1)
a (x+ δ)

δn+1

(n+ 1)!
≤ Ha(x+ δ + δ) = f(a+ ex+2δ) <∞.

Hence, we obtain

lim
n→∞

sup
y∈[x−δ,x+δ]

|Rn((THb)x)(y)| → 0, ∀x ∈ R, δ > 0, b ∈ [−a, a], a > 0.

From above, this shows that the Taylor series of Hb converges locally to Hb at all x ∈ R, for
all b as desired. (In fact, the “local” neighborhood of convergence around x is all of R.) □

With the above analysis in hand, we can prove Steps 4 and 5 of the proof of the stronger
Schoenberg theorem (see the list after Remark 19.17):

Suppose f : R→ R satisfies assertion (5) of Theorem 19.15.

(4) If f is smooth on R, then f is real analytic on R.
(5) If f is real analytic on R, then f(x) =

∑∞
k=0 ckx

k on R, with ck ≥ 0 ∀k.

Proof of Step 4 for the stronger Schoenberg theorem. Given x ∈ R, we want to show that the
Taylor series (Tf)x converges to f locally around x. Choose a > |x| and define

La(y) := log(a+ y) = log(a) + log(1 + y/a), y ∈ (−a, a).
This is real analytic on (−a, a) (e.g., akin to Lemma 21.3). Hence, by Proposition 21.2 and
Theorem 21.5, the composite

y
La−→ log(a+ y)

H−a−→ H−a(La(y)) = f(−a+ exp(log(a+ y))) = f(y)

is also real analytic on (−a, a), so around x ∈ R. □

Proof of Step 5 for the stronger Schoenberg theorem. By Step 4, f is real analytic on R; and,
by Steps 1 and 2 f(x) =

∑∞
k=0 ckx

k on (0,∞), with ck ≥ 0 ∀k. Let g(x) :=
∑∞

k=0 ckx
k ∈

Cω(R). Since f ≡ g on (0,∞), it follows by the Identity Theorem 21.4 that f ≡ g on R. □
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22. Proof of stronger Schoenberg Theorem: III. Complex analysis. Further
remarks.

We can now complete the proof of the final Step 6 (listed after Remark 19.17) of the
stronger Schoenberg theorem. Namely, suppose f : R→ R is such that for each measure

µ = aδ1 + bδu0 + cδ−1, with u0 ∈ (0, 1), a, b, c ≥ 0,

with semi-infinite Hankel moment matrix Hµ, the matrix f [Hµ] is positive semidefinite.
Under these assumptions, we have previously shown (in Steps 1, 2; 3; 4, 5 respectively):

• There exist real scalars c0, c1, · · · ≥ 0 such that f(x) =
∑∞

k=0 ckx
k for all x ∈ (0,∞).

• f is continuous on R.
• If f is smooth, then f(x) =

∑∞
k=0 ckx

k on R.
We now complete the proof by showing that one can pass from smooth functions to con-

tinuous functions. The tools we will use are the “three Ms”: Montel, Morera, and Mollifiers.
We first discuss some basic results in complex analysis that are required.

22.1. Tools from complex analysis.

Definition 22.1. Suppose D ⊂ C is open and f : D → C is a continuous function.

(1) (Holomorphic.) A function f is holomorphic at a point z ∈ D if the limit limy→z
f(y)−f(z)

y−z

exists. A function f is holomorphic on D if it is holomorphic at every point of D.
(2) (Complex analytic.) f is said to be complex analytic around c ∈ D if f can be

expressed as a power series locally around c, which converges to f(z) for every z
sufficiently close to c. Similarly, f is analytic on D if it is so at every point of D.

(3) (Normal.) Let F be a family of holomorphic functions : D → C. Then F is normal
if given any compact K ⊂ D and a sequence {fn : n ≥ 1} ⊂ F , there exists a
subsequence fnk

and a function f : K → C, such that fnk
→ f uniformly on K.

Remark 22.2. Note that it is not specified that the limit function f be holomorphic. How-
ever, this will turn out to be the case, as we shall see presently.

We use without proof the following results (and Cauchy’s theorem, which we do not state):

Theorem 22.3. Let D ⊂ C be an open subset.

(1) A function f : D → C is holomorphic if and only if f is complex analytic.
(2) (Montel.) Let F be a family of holomorphic functions on D. If F is uniformly

bounded on D, then F is normal on D.
(3) (Morera.) Suppose that for every closed oriented piecewise C1 curve γ in D, we have∮

γ f dz = 0. Then f is holomorphic on D.

22.2. Proof of the stronger Schoenberg theorem: conclusion. Let f : R → R be as
described above; in particular, f is continuous on R and absolutely monotonic on (0,∞).
As discussed in the proof of the stronger Horn–Loewner theorem 17.1, we mollify f with
the family ϕδ(u) = ϕ(u/δ) for δ > 0 as in Proposition 18.5. As shown in (18.8), fδ satisfies
assertion (5) in Theorem 19.15, so (e.g., by the last bulleted point above, and Steps 4 and 5)

fδ(x) =
∞∑
k=0

ck,δx
k ∀x ∈ R, with ck,δ ≥ 0 ∀k ≥ 0, δ > 0.

Since fδ is a power series with infinite radius of convergence, it extends analytically to an
entire function on C (see, e.g., Lemma 21.3). Let us call this fδ as well; now define

F := {f1/n : n ≥ 1}.
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We claim that for any 0 < r <∞, the family F is uniformly bounded on the complex disk
D(0, r). Indeed, since fδ → f uniformly on [0, r] by Proposition 18.5, we have that |f1/n− f |
is uniformly bounded over all n and on [0, r], say by Mr > 0. Now if z ∈ D(0, r), then

|f1/n(z)| ≤
∞∑
k=0

ck,1/n|z|k = f1/n(|z|) ≤Mr + f(|z|) ≤Mr + f(r) <∞,

and this bound (uniform over z ∈ D(0, r)) does not depend on n.
By Montel’s theorem, the previous claim implies that F is a normal family on D(0, r) for

each r > 0. Hence, on the closed disk D(0, r), there is a subsequence f1/nl
with nl increasing,

which converges uniformly to some (continuous) g = gr. Since f1/nl
is holomorphic for all

l ≥ 1, by Cauchy’s theorem we obtain for every closed oriented piecewise C1 curve γ ⊂ D(0, r)∮
γ
gr dz =

∮
γ
lim
l→∞

f1/nl
dz = lim

l→∞

∮
γ
f1/nl

dz = 0.

It follows by Morera’s theorem that gr is holomorphic, hence analytic, on D(0, r). Moreover,
gr ≡ f on (−r, r) by the properties of mollifiers; thus, f is real analytic on (−r, r) for every
r > 0. Now apply the Identity Theorem 21.4 and use the power series for f on (0,∞). □

22.3. Concluding remarks and variations. We conclude with several generalizations of
the above results. First, the results by Horn–Loewner, Vasudeva, and Schoenberg (more
precisely, their stronger versions) that were shown in this part of the text, together with
the proofs given above, can be refined to versions with bounded domains (0, ρ) or (−ρ, ρ) for
0 < ρ <∞. The small change is to use admissible measures with bounded mass

µ = aδ1 + bδu0 + cδ−1, where u0 ∈ (0, 1), a, b, c ≥ 0

as above, but moreover, one now imposes the condition that s0(µ) = a+ b+ c < ρ.
Second, all of these results, including for bounded domains (i.e., masses of the underlying

measures), can be extended to studying functions of several variables. In this case, given a
domain I ⊂ R and integers m,n ≥ 1, a function f : Im → R acts entrywise on an m-tuple of

n× n matrices A1 = (a
(1)
jk ), . . . , Am = (a

(m)
jk ) in Im×m, via

f [A1, . . . , Am] := (f(a
(1)
jk , . . . , a

(m)
jk ))nj,k=1. (22.4)

One can now ask the multivariable version of the same question as above:

“Which functions applied entrywise to m-tuples of positive matrices preserve positivity?”

Observe that the coordinate functions f(x1, . . . , xm) := xl work for all 1 ≤ l ≤ m. Hence,
by the Schur product theorem and the Pólya–Szegő observation (Lemma 16.1, since Pn is a
closed convex cone for all n ≥ 1), every convergent multi-power series of the form

f(x) :=
∑
n≥0

cnx
n, with cn ≥ 0 ∀n ≥ 0 (22.5)

preserves positivity in all dimensions (where xn := xn1
1 · · ·xnm

m , etc.). Akin to the Schoenberg–
Rudin theorem in the one-variable case, it was shown by FitzGerald, Micchelli, and Pinkus
in Linear Algebra Appl. (1995) that the functions (22.5) are the only such preservers.

One can ask if the same result holds when one restricts the test set to m-tuples of Hankel
matrices of rank at most 3, as in the treatment above. While this does turn out to yield the
same classification, the proofs get more involved and now require multivariable machinery.
For these stronger multivariate results, we refer the reader to the paper “Moment-sequence
transforms” by Belton, Guillot, Khare, and Putinar in J. Eur. Math. Soc.



23. Appendix A: The Boas–Widder theorem on functions with positive differences. 139

23. Appendix A: The Boas–Widder theorem on functions with positive
differences.

In this Appendix, we reproduce the complete proof of the theorem by Boas and Widder
on functions with non-negative forward differences (Duke Math. J., 1940). This result was
stated as Theorem 18.10(2), and we again write its statement here for convenience. In it
and throughout this Appendix, recall from just before Theorem 18.10 that given an interval
I ⊂ R and a function f : I → R, the kth order forward differences of f with step size h > 0
are defined as follows:

(∆0
hf)(x) := f(x), (∆k

hf)(x) := (∆k−1
h f)(x+h)−(∆k−1

h f)(x) =
k∑

j=0

(
k

j

)
(−1)k−jf(x+jh),

whenever k > 0 and x, x+ kh ∈ I. It is easily seen that these difference operators commute:

∆m
δ (∆n

ϵ f(x)) = ∆n
ϵ (∆

m
δ f(x)), whenever x, x+mδ + nϵ ∈ I,

and so, we will omit parentheses and possibly permute these operators below, without further
reference. Now we (re)state the theorem of interest:

Theorem 23.1 (Boas and Widder). Suppose k ≥ 2 is an integer, I ⊂ R is an open interval,
bounded or not, and f : I → R is a function that satisfies the following condition:

(∆k
hf)(x) ≥ 0 whenever h > 0 and x, x+ kh ∈ I, and f is continuous on I. (Hk)

(In other words, f is continuous and has all forward differences of order k non-negative on I.)

Then on all of I, the function f (k−2) exists, is continuous and convex, and has non-decreasing
left- and right-hand derivatives.

This is a “finite-order” result; for completeness, an order-free result can be found in Bern-
stein’s theorem 39.10 below.

23.1. Further remarks and results. Before writing down Boas and Widder’s proof of
Theorem 23.1, we make several additional observations beyond the result and its proof. The
first observation (which was previously mentioned following Theorem 18.10(2)) is that while

f
(k−1)
± is non-decreasing by the above theorem, it is not always true that any other lower-

order derivatives f, . . . , f (k−2) are non-decreasing on I. For example, let 0 ≤ l ≤ k − 2 and
consider f(x) := −xl+1 on I ⊂ R; then f (l) is strictly decreasing on I.

Second, it is natural to seek examples of non-smooth functions satisfying the differentia-
bility conditions of Theorem 23.1, but no more – in other words, to explore if Theorem 23.1
is indeed “sharp.” This is now verified to be true:

Example 23.2. Let I = (a, b) ⊂ R be an open interval, where −∞ ≤ a < b ≤ ∞. Consider
any function g : I → R that is non-decreasing, hence Lebesgue integrable. For any interior
point c ∈ I, the function f2(x) :=

∫ x
c g(t) dt satisfies (H2):

∆2
hf2(x) =

∫ x

c
g(t) dt− 2

∫ x+h

c
g(t) dt+

∫ x+2h

c
g(t) dt

=

∫ x+2h

x+h
g(t) dt−

∫ x+h

x
g(t) dt

=

∫ x+h

x
(∆hg)(t) dt ≥ 0.
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However, not every monotone g gives rise to an antiderivative that is differentiable on all
of I.

Finally, to see that the condition (Hk) is sharp for all k > 2 as well, define f to be the
(k − 1)-fold indefinite integral of g. We claim that f satisfies (Hk). Continuity is obvious;
and to study the kth order divided differences of f , first note by the fundamental theorem
of calculus that f is (k − 2)-times differentiable, with f (k−2)(x) ≡ f2(x) =

∫ x
c g(t) dt. In

particular, ∆2
hf ∈ Ck−2(a, b− kh) whenever a < x < x+ kh < b as in (Hk).

Now given such x, h, we compute using the Cauchy mean value theorem 18.10(1) for divided
differences (and its notation)

∆k
hf(x) = ∆k−2

h (∆2
hf)(x) = hk−2Dk−2

h (∆2
hf)(x) =

hk−2

(k − 2)!
(∆2

hf)
(k−2)(y),

for some y ∈ (a, b− 2h). But this is easily seen to equal

=
hk−2

(k − 2)!
(∆2

hf
(k−2))(y) =

hk−2

(k − 2)!
∆2

hf2(y),

and we just showed that this is non-negative. □

The final observation in this subsection is that there are natural analogues for k = 0, 1
of the Boas–Widder theorem (which is stated for k ≥ 2). For this, we make the natural

definition: for k < 0, f (k) will denote the |k|-fold antiderivative of f . Since f is assumed to
be continuous, this is just the iterated indefinite Riemann integral starting at an(y) interior
point of I. With this notation at hand:

Proposition 23.3. The Boas–Widder theorem 23.1 also holds for k = 0, 1.

Proof. In both cases, the continuity of f (k−2) is immediate by the fundamental theorem of
calculus. Next, suppose k = 1 and choose c ∈ I. Now claim that if f is continuous and non-
decreasing (i.e., (H1)), then f

(−1)(x) :=
∫ x
c f(t) dt is convex on I. Indeed, given x0 < x1 ∈ I,

define xλ := (1− λ)x0 + λx1 for λ ∈ [0, 1], and compute

(1− λ)f (−1)(x0) + λf (−1)(x1)− f (−1)(xλ)

= (1− λ)
∫ x1

c
1(t ≤ x0)f(t) dt+ λ

∫ x1

c
1(t ≤ x1)f(t) dt−

∫ x1

c
1(t ≤ xλ)f(t) dt

= − (1− λ)
∫ xλ

x0

f(t) dt+ λ

∫ x1

xλ

f(t) dt.

But since f is non-decreasing, each integral – together with the accompanying sign – is
bounded below by the corresponding expression where f(t) is replaced by f(xλ). An easy
computation now yields

(1− λ)f (−1)(x0) + λf (−1)(x1)− f (−1)(xλ) ≥ f(xλ) (λ(x1 − xλ)− (1− λ)(xλ − x0)) = 0;

therefore, f (−1) is convex, as desired.
This shows the result for k = 1. Next, if k = 0 then f is continuous and non-negative on I,

hence f (−1) is non-decreasing on I. Now the above computation shows that f (−2) is convex;
the remaining assertions are obvious. □
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23.2. Proof of the main result. In this subsection, we reproduce Boas and Widder’s proof
of Theorem 23.1. We first make a few clarifying remarks about this proof.

(1) As Boas and Widder mention, Theorem 23.1 was shown earlier by T. Popoviciu
(Mathematica, 1934) via an alternate argument using divided differences involving
unequally spaced points. Here we will only explain Boas and Widder’s proof.

(2) There is a minor error in the arguments of Boas and Widder, which is resolved by
adding one word. See Remark 23.11 and the proof of Lemma 23.13 for more details.
(There are a few other minor typos in the writing of Lemmas 23.6 and 23.10 and in
some of the proofs; these are corrected without elaboration in the exposition in this
Appendix.)

(3) Boas and Widder do not explicitly write out a proof of the convexity of f (in the
case k = 2). This is addressed below as well – see the paragraph following Proposi-
tion 23.12.

Notice that Theorem 23.1 follows for the case of unbounded domain I from that for bounded
domains, so we assume henceforth that

I = (a, b), with −∞ < a < b <∞.

We now reproduce a sequence of 14 lemmas shown by Boas and Widder, which culminate in
the above theorem. These lemmas are numbered “Lemma 23.1”, . . . , “Lemma 23.14” and
will be referred to only in this Appendix. The rest of the results, equations, and remarks
– starting from Theorem 23.1 and ending with Proposition 23.12 – are numbered using the
default counter in this text. None of the results in this Appendix are cited elsewhere in the
text.

The first of the 14 lemmas by Boas and Widder says that if the kth order “equispaced”
forward differences are non-negative, then so are the kth order “possibly non equispaced”
differences (the converse is immediate):

Lemma 23.1. If f(x) satisfies (Hk) in (a, b) for some k ≥ 2, then for any k positive numbers
δ1, . . . , δk > 0,

∆δ1∆δ2 · · ·∆δkf(x) ≥ 0, whenever a < x < x+ δ1 + δ2 + · · ·+ δk < b.

Proof. The key step is to prove using (Hk) that

∆k−1
h ∆δ1f(x) ≥ 0, whenever a < x < x+ (k − 1)h+ δ1 < b. (23.4)

After this, the lemma is proved using induction on k ≥ 2. Indeed, (23.4) is precisely the
assertion in the base case k = 2; and using (23.4) we can show the induction step as follows:
for a fixed δ1 ∈ (0, b − a), it follows that ∆δ1f satisfies (Hk−1) in the interval (a, b − δ1).
Therefore,

∆δ2 · · ·∆δk(∆δ1f(x)) ≥ 0, whenever a < x < x+ δ1 + · · ·+ δk < b.

Since the ∆δj commute, and since δ1 was arbitrary, the induction step follows.
Thus, it remains to show (23.4). Let h > 0 and n ∈ N be such that a < x < x + h/n +

(k − 1)h < b. One can check using an easy telescoping computation that

∆hf(x) =
n−1∑
i=0

∆h/nf(x+ ih/n);
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and iterating this procedure, we obtain

∆k−1
h f(x) =

n−1∑
i1=0

· · ·
n−1∑

ik−1=0

∆k−1
h/n f(x+ [i1 + · · ·+ ik−1]h/n). (23.5)

(This works by induction on k ≥ 2: the previous telescoping identity is the base case for
k = 2, and for the induction step we evaluate the innermost sum using the base case.)

From the above computations, it further follows that

∆h/n∆
k−1
h f(x) =

n−1∑
i1=0

· · ·
n−1∑

ik−1=0

∆k
h/nf(x+ [i1 + · · ·+ ik−1]h/n) ≥ 0,

where the final inequality uses the assumption (Hk). From this it follows that ∆k−1
h f(x) ≤

∆k−1
h f(x+ h/n).
Now suppose x is such that a < x < x +mh/n + (k − 1)h < b. Applying the preceding

inequality to x, x+ h/n, . . . , x+ (m− 1)h/n, we obtain

∆k−1
h f(x) ≤ ∆k−1

h f(x+ h/n) ≤ · · · ≤ ∆k−1
h f(x+mh/n). (23.6)

We can now prove (23.4). As in it, choose δ1 > 0, such that a < x < x+ δ1+(k− 1)h < b;
and choose sequences mj , nj of positive integers, such that mj/nj → δ1/h and x+mjh/nj +
(k − 1)h < b for all j ≥ 1.

Since f(x) is continuous, f(x+mjh/nj) converges to f(x+ δ1), and ∆k−1
h f(x+mjh/nj)

to ∆k−1
h f(x + δ1), as j → ∞. Hence, using (23.6) with mj , nj in place of m,n respectively,

we obtain by taking limits
∆k−1

h f(x) ≤ ∆k−1
h f(x+ δ1).

But this is equivalent to (23.4), as desired. □

Lemma 23.2. If f(x) satisfies (Hk) in (a, b) for some k ≥ 2, then ∆k−1
ϵ f(x) and ∆k−1

ϵ f(x−ϵ)
are non-decreasing functions of x in (a, b− (k − 1)ϵ) and (a+ ϵ, b− (k − 2)ϵ), respectively.

Proof. For the first part, suppose y < z are points in (a, b− (k − 1)ϵ), and set

δ1 := z − y, δ2 = · · · = δk := ϵ.

Then by Lemma 23.1 – or simply (23.4) – it follows that

∆k−1
ϵ f(z)−∆k−1

ϵ f(y) = ∆δ1∆
k−1
ϵ f(y) ≥ 0,

which is what was asserted.
Similarly, for the second part we suppose y < z are points in (a + ϵ, b − (k − 2)ϵ). Then

y − ϵ < z − ϵ are points in (a, b− (k − 1)ϵ), so we are done by the first part. (Remark: Boas
and Widder repeat the computations of the first part in this second part; but this is not
required.) □

We assume for the next four lemmas that f satisfies (H2) in the interval x ∈ (a, b).

Lemma 23.3. Suppose f satisfies (H2) in (a, b) and x ∈ (a, b). Then h−1∆hf(x) is a
non-decreasing function of h in (a− x, b− x).
Remark 23.7. Notice that h = 0 lies in (a − x, b − x), and at this point the expression
h−1∆hf(x) is not defined. Hence, the statement of Lemma 23.3 actually says that h 7→
h−1∆hf(x) is non-decreasing for h in (0, b− x) and separately for h in (a− x, 0). The latter
can be reformulated as follows: since ∆−hf(x) = −∆hf(x− h), Lemma 23.3 asserts that the
map h 7→ h−1∆hf(x− h) is a non-increasing function of h in (0, x− a).
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Proof of Lemma 23.3. We first prove the result for h ∈ (0, b−x). Thus, suppose 0 < ϵ < δ <
b− x. By condition (H2), for all integers n ≥ 2 we have

∆2
δ/nf(x) ≥ 0, ∆2

δ/nf(x+ δ/n) ≥ 0, . . . , ∆2
δ/nf(x+ (n− 2)δ/n) ≥ 0

=⇒ ∆δ/nf(x) ≤ ∆δ/nf(x+ δ/n) ≤ · · · ≤ ∆δ/nf(x+ (n− 1)δ/n).

If 0 < m < n, then the average of the first m terms here cannot exceed the average of all n
terms. Therefore,

f(x+mδ/n)− f(x)
mδ/n

≤ f(x+ δ)− f(x)
δ

.

Now since ϵ ∈ (0, δ), choose integer sequences 0 < mj < nj , such that mj/nj → ϵ/δ as
j → ∞. Applying the preceding inequality (with m,n replaced respectively by mj , nj) and
taking limits, it follows that ϵ−1∆ϵf(x) ≤ δ−1∆δf(x), since f is continuous. This proves the
first part of the lemma, for positive h.

The proof for negative h ∈ (a − x, 0) is similar, and is shown using the reformulation of
the assertion in Remark 23.7. Given 0 < ϵ < δ < x − a, by condition (H2) it follows for all
integers 0 < m < n that

∆δ/nf(x− δ) ≤ ∆δ/nf(x− (n− 1)δ/n) ≤ · · · ≤ ∆δ/nf(x− δ/n)

=⇒ f(x)− f(x− δ)
δ

≤ f(x)− f(x−mδ/n)
mδ/n

,

this time using the last m terms instead of the first. Now work as above: using integer
sequences 0 < mj < nj , such that mj/nj → ϵ/δ, it follows from the continuity of f that
δ−1∆δf(x− δ) ≤ ϵ−1∆ϵf(x− ϵ), as desired. □

We next define the one-sided derivatives of functions.

Definition 23.8. Let f be a real-valued function on (a, b). Define

f ′+(x) := lim
δ→0+

∆δf(x)

δ
, f ′−(x) := lim

δ→0−

∆δf(x)

δ
= lim

δ→0+

∆δf(x− δ)
δ

.

Lemma 23.4. Suppose f satisfies (H2) in (a, b). Then f ′+, f
′
− exist and are finite and non-

decreasing on all of (a, b).

Proof. That f ′± exist on (a, b) follows from Lemma 23.3, though the limits may possibly be
infinite. Now fix scalars δ, ϵ, x, y, z satisfying

0 < δ < ϵ and a < z − ϵ < x− ϵ < x < x+ ϵ < y + ϵ < b,

which implies that a < z < x < y < b. Then we have

∆ϵf(z − ϵ)
ϵ

≤ ∆ϵf(x− ϵ)
ϵ

≤ ∆δf(x− δ)
δ

≤ ∆δf(x)

δ
≤ ∆ϵf(x)

ϵ
≤ ∆ϵf(y)

ϵ
,

where the five inequalities follow respectively using Lemma 23.2, Remark 23.7, Lemma 23.2,
Lemma 23.3, and Lemma 23.2.

Now let δ → 0+ keeping ϵ, x, y, z fixed; this yields

∆ϵf(z − ϵ)
ϵ

≤ f ′−(x) ≤ f ′+(x) ≤
∆ϵf(y)

ϵ
,

which implies that f ′±(x) are finite on (a, b). In turn, letting ϵ→ 0+ yields:

f ′−(z) ≤ f ′−(x) ≤ f ′+(x) ≤ f ′+(y),
which shows that f ′± are non-decreasing on (a, b). □
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Lemma 23.5. If f satisfies (H2) in (a, b) then f approaches a limit in (−∞,+∞] as x goes
to a+ and x goes to b−.

Proof. Note by Lemma 23.2 that ∆δf(x) is non-decreasing in x ∈ (a, b−δ). Hence, limx→a+ ∆δf(x)
exists and is finite, or equals −∞. (The key point is that it is not +∞.) Therefore, since f
is continuous,

+∞ > lim
x→a+

∆δf(x) = lim
x→a+

(f(x+ δ)− f(x)) = f(a+ δ)− f(a+).

It follows that f(a+) exists and cannot equal −∞.
By the same reasoning, the limit limx→(b−δ)− ∆δf(x) exists and is finite, or equals +∞, in

which case

−∞ < lim
x→(b−δ)−

∆δf(x) = f(b−)− f(b− δ).

It follows that f(b−) exists and cannot equal −∞. □

Lemma 23.6. Suppose f(x) satisfies (H2) in (a, b).

(1) If f(a+) < +∞, define f(a) := f(a+). Then f ′+(a) exists and is finite or −∞.
(2) If f(b−) < +∞, define f(b) := f(b−). Then f ′−(b) exists and is finite or +∞.

Proof. First, if f(a+) or f(b−) are not +∞ then they are finite by Lemma 23.5. To show (1),
by Lemma 23.3, for h ∈ (0, b − a) the map h 7→ h−1∆hf(x) is non-decreasing. Therefore,
h 7→ h−1∆hf(a) is the limit of a set of non-decreasing functions in h, so it too is non-decreasing
in h. This proves (1).

The second part is proved similarly, using that h 7→ h−1∆hf(b − h) is a non-increasing
function in h. □

Common hypothesis for Lemmas 7–14: f satisfies (Hk) in (a, b), for some k ≥ 3.
(We use this hypothesis below without mention.)

Lemma 23.7. For any a < x < b, the map h 7→ h−k+1∆k−1
h f(x) is a non-decreasing function

of h in (0, (b− x)/(k − 1)).

Proof. First, note that the given map is indeed well-defined. Now we prove the result by
induction on k ≥ 2; the following argument is similar in spirit to (for instance) computing by
induction the derivative of xk−1.

For k = 2 the result follows from Lemma 23.3. To show the induction step, given fixed
0 < h < (b− a)/(k − 2) and δ ∈ (0, b− a), it is clear by Lemma 23.1 that if f satisfies (Hk)
in (a, b), then we have, respectively:

∆k−2
h f satisfies (H2) in (a, b− (k − 2)h),

∆δf satisfies (Hk−1) in (a, b− δ).
(23.9)

In particular, if 0 < δ < ϵ < (b− x)/(k − 1), then we have

∆ϵ∆
k−2
ϵ f(x)

ϵk−2 ϵ
≥ ∆δ∆

k−2
ϵ f(x)

ϵk−2 δ
=

∆k−2
ϵ ∆δf(x)

ϵk−2 δ
≥

∆k−2
δ ∆δf(x)

δk−2 δ
.

Indeed, the first inequality is by the assertion for k = 2, which follows via Lemma 23.3 from
the first condition in (23.9); and the second inequality is by the induction hypothesis (i.e.,
the assertion for k − 1) applied using the second condition in (23.9).

We saw in the preceding calculation that ϵ−k+1∆k−1
ϵ f(x) ≥ δ−k+1∆k−1

δ f(x). But this is
precisely the induction step. □
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Lemma 23.8. There is a point c ∈ [a, b], such that f(x) satisfies (Hk−1) in (c, b) and −f(x)
satisfies (Hk−1) in (a, c).

Proof. Define subsets A,B ⊂ (a, b) via

A := {x ∈ (a, b) : ∆k−1
δ f(x) ≥ 0 for all δ ∈ (0, (b− x)/(k − 1))},

B := (a, b) \A.
If both A,B are non-empty, and z ∈ A, y ∈ B, then we claim that y < z. Indeed, since y ̸∈ A,
there exists 0 < ϵ < (b− y)/(k − 1), such that ∆k−1

ϵ f(y) < 0. By Lemma 23.2, if z′ ∈ (a, y],
then ∆k−1

ϵ f(z′) < 0, and hence z′ ̸∈ A. Now conclude that z > y.
The above analysis implies the existence of c ∈ [a, b], such that (a, c) ⊂ B ⊂ (a, c] and

(c, b) ⊂ A ⊂ [c, b). It is also clear that f satisfies (Hk−1) in (c, b).
It remains to show that if a < c, then −f satisfies (Hk−1) in (a, c). Begin by defining a

map ε : (a, c) → (0,∞) as follows: for x ∈ (a, c), there exists ϵ ∈ (0, (c − x)/(k − 1)), such
that ∆k−1

ϵ f(x) < 0. By Lemmas 23.2 and 23.7, this implies that

∆k−1
δ f(y) < 0, ∀a < y ≤ x, 0 < δ ≤ ϵ.

Now define ε : (a, c)→ (0,∞) by setting

ε(x) := sup{ϵ ∈ (0, c−x
k−1) : ∆

k−1
ϵ f(x) < 0}.

By the reasoning just described, ε is a non-increasing function on (a, c).
With the function ε in hand, we now complete the proof by showing that −f(x) satisfies

(Hk−1) in (a, c). Let x ∈ (a, c) and let h > 0 be such that x + (k − 1)h < c. Choose any

y ∈ (x+ (k − 1)h, c) as well as an integer n > h/ε(y). It follows that ∆k−1
h/n f(y) < 0.

Now recall from Equation (23.5) that

∆k−1
h f(x) =

n−1∑
i1=0

· · ·
n−1∑

ik−1=0

∆k−1
h/n f(x+ [i1 + · · ·+ ik−1]h/n).

But in each summand, the argument x+[i1+ · · ·+ik−1]h/n < y, so by Lemmas 23.2 and 23.7,

the previous paragraph implies that each summand is negative. It follows that ∆k−1
h f(x) < 0.

This shows that −f(x) satisfies (Hk−1) in (a, c), as desired, and concludes the proof. □

Lemma 23.9. There are points

a = x0 < x1 < · · · < xp = b, with 1 ≤ p ≤ 2k−1,

such that in each interval xj < x < xj+1, either f(x) or −f(x) satisfies (H2).

This follows immediately from Lemma 23.8 by induction on k ≥ 2.

Lemma 23.10. The derivatives f ′± both exist and are finite on all of (a, b).

We remark here that f ′± are both needed in what follows, yet Boas and Widder completely
avoid discussing f ′− in this lemma or its proof (or in the sequel). For completeness, the proof
for f ′− is also now described.

Proof. By Lemmas 23.9, 23.4, and 23.6, the functions f ′± exist on all of (a, b), and are finite,
possibly except at the points x1, . . . , xp−1 in Lemma 23.9. We now show that f ′± are finite
at each of these points xj .

First, suppose f ′+(xj) or f
′
−(xj) equals +∞. Choose δ > 0 small enough, such that

xj−1 < xj − (k − 2)δ < xj < xj + δ < xj+1.
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Now if f ′+(xj) = +∞, then

∆k−1
δ f ′+(xj − (k − 2)δ) = −∞

=⇒ lim
h→0+

1

h
∆k−1

δ ∆hf(xj − (k − 2)δ) = −∞

=⇒ ∆k−1
δ ∆hf(xj − (k − 2)δ) < 0 for all small positive h.

But this contradicts Lemma 23.1. Similarly, if f ′−(xj) = +∞, then

∆k−1
δ f ′−(xj − (k − 2)δ) = −∞

=⇒ lim
h→0+

1

h
∆k−1

δ ∆hf(xj − (k − 2)δ − h) = −∞

=⇒ ∆k−1
δ ∆hf(xj − (k − 2)δ − h) < 0 for all small positive h,

which again contradicts Lemma 23.1.
The other case is if f ′+(xj) or f

′
−(xj) equals −∞. The first of these subcases is now treated;

the subcase f ′−(xj) = −∞ is similar. Begin as above by choosing δ > 0, such that

xj−1 < xj − (k − 1)δ < xj < xj+1.

Now if f ′+(xj) = +∞, then a similar computation to above yields

∆k−1
δ f ′+(xj − (k − 1)δ) = −∞

=⇒ lim
h→0+

1

h
∆k−1

δ ∆hf(xj − (k − 1)δ) = −∞

=⇒ ∆k−1
δ ∆hf(xj − (k − 1)δ) < 0 for all small positive h,

which contradicts Lemma 23.1. □

The above trick of studying ∆n
δ g(y− pδ) where p = k− 1 or k− 2 (and n = k− 1, g = f ′±

so that we deal with the kth order divided differences/derivatives of f) is a powerful one.
Boas and Widder now use the same trick to further study the derivative of f , and show its
existence, finiteness, and continuity in Lemmas 23.11 and 23.13.

Lemma 23.11. f ′ exists and is finite on (a, b).

Proof. We fix x ∈ (a, b), and work with δ > 0 small, such that a < a+ kδ < x < b− 2δ < b.
Let p ∈ {0, 1, . . . , k}; then

0 ≤ 1

δ
∆k

δf(x− pδ) =
1

δ

k∑
i=0

(
k

i

)
(−1)k−if(x+ (i− p)δ).

Subtract from this the identity 0 = δ−1f(x)(1− 1)k = δ−1f(x)
∑k

i=0

(
k
i

)
(−1)k−i, so that the

i = p term cancels, and multiply and divide the remaining terms by (i− p) to obtain

0 ≤ 1

δ
∆k

δf(x− pδ) =
i=k∑
i=0,
i ̸=p

(
k

i

)
(−1)k−i f(x+ (i− p)δ)− f(x)

(i− p)δ
(i− p).
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Letting δ → 0+, it follows that

Apf
′
−(x) +Bpf

′
+(x) ≥ 0, where Ap :=

p−1∑
i=0

(
k

i

)
(−1)k−i(i− p),

Bp :=

k∑
i=p+1

(
k

i

)
(−1)k−i(i− p);

(23.10)

note here that

Ap +Bp =
k∑

i=0

(
k

i

)
(−1)k−i(i− p) = k

k−1∑
i=1

(
k − 1

i− 1

)
(−1)k−i − p

k∑
i=0

(
k

i

)
(−1)k−i = 0.

Now specialize p to be k − 1 and k − 2. In the former case Bp = 1, so Ap = −1, and
by (23.10) we obtain f ′+(x) ≥ f ′−(x). In the latter case p = k − 2 (with k ≥ 3), we have
Bp = 2− k < 0. Thus, Ap = k − 2 > 0, and by (23.10) we obtain f ′−(x) ≥ f ′+(x). Therefore,
f ′(x) exists and by Lemma 23.10 it is finite. □

Lemma 23.12. If a < x < x+ (k − 1)h < b, then ∆k−1
h f ′(x) ≥ 0.

Proof. ∆k−1
h f ′(x) = lim

δ→0+

∆δ∆
k−1
h f(x)

δ
, and this is non-negative by Lemma 23.1. □

Lemma 23.13. f ′ is continuous on (a, b).

Remark 23.11. We record here a minor typo in the Boas–Widder paper [55]. Namely, the
authors begin the proof of Lemma 23.13 by claiming that f ′ is monotonic. However, this is
not true as stated: for any k ≥ 3, the function f(x) = x3 satisfies (Hk) on I = (−1, 1) but f ′
is not monotone on I. The first paragraph of the following proof addresses this issue, using
that f ′ is piecewise monotone on (a, b).

Proof of Lemma 23.13. By Lemmas 23.9 and 23.4, there are finitely many points xj , 0 ≤ j ≤
p ≤ 2k−1, such that on each (xj , xj+1), f

′
± = f ′ is monotone (where this last equality follows

from Lemma 23.11). Thus, f ′ is piecewise monotone on (a, b).
Now define the limits

f ′(x±) := lim
h→0+

f ′(x± h), x ∈ (a, b).

It is clear that f ′(x±) exists on (a, b), including at each xj ̸= a, b. Note that f ′(x±j ) ∈
[−∞,+∞], while f ′(x±) ∈ R for all other points x ̸= xj . First, claim that f ′(x+) = f ′(x−) –
where this common limit is possibly infinite – and then that f ′(x+) = f ′(x), which will rule
out the infinitude using Lemma 23.11, and complete the proof.

For each of the two steps, we proceed as in the proof of Lemma 23.11. Begin by fixing
x ∈ (a, b), and let δ > 0 be such that a < x − kδ < x < x + 2δ < b. Let p ∈ {0, 1, . . . , k};
then by Lemma 23.12,

0 ≤ ∆k−1
δ f ′(x− (p− 1

2)δ) =

k−1∑
i=0

(
k − 1

i

)
(−1)k−1−if ′(x+ (i− p+ 1

2)δ).

Let δ → 0+; then,

Apf
′(x−)−Apf

′(x+) ≥ 0, where Ap :=

p−1∑
i=0

(
k − 1

i

)
(−1)k−1−i = −

k−1∑
i=p

(
k − 1

i

)
(−1)k−1−i.
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Now specialize p to be k−1 and k−2. In the former case Ap = −1, hence f ′(x−) ≤ f ′(x+);
whereas if p = k − 2, then Ap = k − 2 > 0, hence f ′(x−) ≥ f ′(x+). These inequalities and
the trichotomy of the extended real line [−∞,+∞] imply that f ′(x−) = f ′(x+).

Using the same δ ∈ ((x− a)/k, (b− x)/2) and p ∈ {0, 1, . . . , k}, Lemma 23.12 also implies

0 ≤ ∆k−1
δ f ′(x− pδ).

Taking δ → 0+ and using that f ′(x−) = f ′(x+) yields

Bpf
′(x)−Bpf

′(x+) ≥ 0, where Bp :=

(
k − 1

p

)
(−1)k−1−p = −

k−1∑
i=0,
i ̸=p

(
k − 1

i

)
(−1)k−1−i.

Now specialize p to be k − 1 and k − 2. In the former case Bp = 1, hence f ′(x) ≥ f ′(x+);
whereas if p = k − 2, then Bp = 1 − k < 0, hence f ′(x) ≤ f ′(x+). These inequalities imply
that f ′(x+) = f ′(x−) equals f(x), and in particular is finite, for all x ∈ (a, b). □

The final lemma simply combines the preceding two:

Lemma 23.14. f ′ satisfies the condition (Hk−1) in (a, b).

Proof. This follows immediately from Lemmas 23.12 and 23.13. □

Having shown the 14 lemmas above, we conclude with:

Proof of the Boas–Widder Theorem 23.1. The proof is by induction on k ≥ 2. The induction
step is clear: use Lemma 23.14. We now show the base case of k = 2. By Lemma 23.4, the
functions f ′± exist and are non-decreasing on (a, b). Moreover, f is continuous by assumption.
To prove its convexity, we make use of the following basic result from one-variable calculus:

Proposition 23.12. Let f : [p, q]→ R be a continuous function whose right-hand derivative
f ′+ exists on [p, q) and is Lebesgue integrable. Then,

f(y) = f(p) +

∫ y

p
f ′+(t) dt, ∀y ∈ [p, q].

Proposition 23.12 applies to our function f satisfying (H2), since f ′+ is non-decreasing
by Lemma 23.4, and hence Lebesgue integrable. Therefore, f(y) − f(x) =

∫ y
x f

′
+(t) dt for

a < x < y < b. Now repeat the proof of Proposition 23.3 to show that f is convex on (a, b).
This completes the base case of k = 2 and concludes the proof. □
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In this section, we explore a variant of the question of classifying the dimension-free pre-
servers. Recall that Schoenberg’s original motivation in proving his result was to classify
the entrywise positivity preservers f [−] on correlation/Gram matrices – with or without
rank constraints – since these are the matrices that arise as distance matrices on Euclidean
spheres (after applying cos(·) entrywise). In a sense, this is equivalent to applying f/f(1) to
the off-diagonal entries of correlation matrices and preserving positivity.

In a similar vein, and motivated by modern applications via high-dimensional covariance
estimation, Guillot and Rajaratnam in Trans. Amer. Math. Soc. (2015) classified entrywise
maps that operate only on off-diagonal entries, and preserve positivity in all dimensions.

Theorem 24.1 (Guillot–Rajaratnam). Let 0 < ρ ≤ ∞ and f : (−ρ, ρ)→ R. Given a square
matrix A ∈ Pn((−ρ, ρ)), define f∗[A] ∈ Rn×n to be the matrix with (j, k)-entry f(ajk) if
j ̸= k, and ajj otherwise. Then the following are equivalent:

(1) f∗[−] preserves positivity on Pn((−ρ, ρ)) for all n ≥ 1.
(2) There exist scalars ck ≥ 0, such that f(x) =

∑
k≥0 ckx

k and |f(x)| ≤ |x| on all of

(−ρ, ρ). (Thus, if ρ =∞, then f(x) ≡ cx on R, for some c ∈ [0, 1].)

Once again, the robust characterization of absolute monotonicity emerges out of this vari-
ant of entrywise operations.

The main result of this section provides – in a closely related setting – an example of a
dimension-free preserver that is not absolutely monotonic. To elaborate: Theorem 24.1 was
recently strengthened by Vishwakarma in Trans. Amer. Math. Soc., where he introduced the
more general model in which a different function g(x) acts on the diagonal entries. Even more
generally, Vishwakarma allowed g[−] to act on prescribed principal submatrices/diagonal
blocks and f [−] to act on the remaining entries. To explain his results, we adopt the following
notation throughout this section:

Definition 24.2. Fix 0 < ρ ≤ ∞, I = (−ρ, ρ), and f, g : I → R. Also fix families of

subsets Tn ⊂ (2[n],⊂) for each n ≥ 1, such that all elements in a fixed family Tn are pairwise
incomparable. Now given n ≥ 1 and a matrix A ∈ In×n, define (g, f)Tn [A] ∈ Rn×n to be the
matrix with (j, k)-entry g(ajk) if there is some E ∈ Tn containing j, k (here, j may equal k),
and f(ajk) otherwise.

Adopting this notation, Vishwakarma classifies the pairs (g, f) which preserve positivity
according to a given sequence {Tn : n ≥ 1}. Notice that if Tn = {[n]} for n > n0 and
Tn is empty for n ≤ n0, this implies from Section 16.1 that g(x) is absolutely monotonic
as in Schoenberg–Rudin’s results; and that f [−] preserves positivity on Pn0((−ρ, ρ)). Such
functions f do not admit a known characterization for n0 ≥ 3; and the following result will
also not consider them. Thus, below we require Tn ̸= {[n]} for infinitely many n ≥ 1.

Theorem 24.3 (Vishwakarma). Notation as in Definition 24.2. Suppose {Tn} is such that
Tn ̸= {[n]} for infinitely many n ≥ 1. Then (g, f)Tn [−] preserves positivity on Pn(I) for all
n ≥ 1, if and only if exactly one of the following occurs:

(1) If Tn is the empty collection, i.e., (g, f)Tn [−] = f [−] for all n ≥ 1, then f(x) =∑
k≥0 ckx

k on I, where ck ≥ 0 for all k ≥ 0.

(2) If some Tn contains two non-disjoint subsets of [n], then g(x) = f(x), and f(x) is a
power series as in the preceding subcase.
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(3) If Tn ⊂ {{1}, . . . , {n}} for all n ≥ 2, and some Tn is non-empty, then f is as in (1),

and 0 ≤ f ≤ g on [0, ρ).
(4) If T2 = {{1, 2}} and Tn ⊂ {{1}, . . . , {n}} for all n ≥ 3, then f is as in (1), g(x) is

non-negative, non-decreasing, and multiplicatively mid-convex on [0, ρ), and |g(x)| ≤
g(|x|) for all x. If, moreover, some Tn is non-empty for n ≥ 3, then 0 ≤ f ≤ g on
[0, ρ).

(5) Otherwise Tn ⊈ {{1}, . . . , {n}} for some n ≥ 3; and Tn is a partition of some subset

of [n] for each n ≥ 1. In this case, with the additional assumption that g(x) = αxk

for some α ≥ 0 and k ∈ Z≥0:
(a) If for all n ≥ 3 we have Tn = {[n]} or {{1}, . . . , {n}}, then f is as in (1) and

0 ≤ f ≤ g on [0, ρ).
(b) If Tn is not a partition of [n] for some n ≥ 3, then f(x) = cg(x) for some

c ∈ [0, 1].
(c) If neither (a) nor (b) holds, then f(x) = cg(x) for some c ∈ [−1/(K − 1), 1],

where

K := max
n≥1
|Tn| ∈ [2,+∞].

In fact, the assertions in the above cases are equivalent to the weaker assertion (than above)
that (g, f)Tn [−] preserves positivity on the rank ≤ 3 matrices in

⋃
n≥1 Pn(I).

We refer the reader to Vishwakarma’s work for similar results with the domain I replaced
by (0, ρ), [0, ρ), or even the complex disk D(0, ρ). As mentioned above, one interesting feature
here is that in the final assertion (5)(c), we find the first example of a function that is not
absolutely monotonic, yet is a dimension-free preserver, in this setting.

To prove Theorem 24.3, we require two well-known preliminaries, and a couple of additional
results, shown below:

Proposition 24.4. Given a Hermitian matrix An×n, denote its largest and smallest eigen-
values by λmax(A) and λmin(A), respectively.

(1) (Rayleigh–Ritz theorem.) If A ∈ Cn×n is Hermitian, then the ratio v∗Av/v∗v, as v
runs over Cn \ {0}, attains its maximum and minimum values, which equal λmax(A)
and λmin(A), respectively.

(2) (Weyl’s inequality, special case.) If A,B ∈ Cn×n are Hermitian, then

λmin(A) + λmin(B) ≤ λmin(A+B) ≤ λmin(A) + λmax(B). (24.5)

The second assertion holds more generally; we do not state/prove/require it below.

Proof. For the first part, it suffices to show the minimum bound, since λmax(A) = −λmin(−A).
(That the bound is attained follows from the compactness of the unit complex sphere.)
The matrix A− λmin(A) Idn×n is Hermitian with smallest eigenvalue zero, hence, is positive
semidefinite. Thus, we compute for non-zero v ∈ Cn:

0 ≤ v∗(A− λmin(A) Idn×n)v

v∗v
=
v∗Av

v∗v
− λmin(A).

This shows the first assertion. For the second, let v ∈ ker(A − λmin(A) Idn×n) be non-zero.
Applying the previous part twice,

λmin(A+B) ≤ v∗(A+B)v

v∗v
=
v∗Av

v∗v
+
v∗Bv

v∗v
≤ λmin(A) + λmax(B).
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Similarly, if v is a non-zero eigenvector for A+B with eigenvalue λmin(A+B), then by the
previous part applied twice,

λmin(A+B) =
v∗(A+B)v

v∗v
=
v∗Av

v∗v
+
v∗Bv

v∗v
≥ λmin(A) + λmin(B). □

We also require the following special case of the main result:

Lemma 24.6. Let 0 < ρ ≤ ∞, I = (−ρ, ρ), and f : I → R. Let g(x) = αxk for α ≥ 0 and
k ∈ Z≥0. Finally, let T3 = {{1, 2}} and c0 = 0. The following are equivalent:

(1) (g, f)T3 [A] ∈ P3 for all matrices A ∈ P3(I).
(2) (g, f)T3 [A] ∈ P3 for all rank-1 matrices A ∈ P3(I).
(3) f(x) ≡ cg(x) on I for some c ∈ [c0, 1].

The same equivalence holds if T3 = {{1, 2}, {3}} and c0 = −1.

Proof. First suppose T3 = {{1, 2}} and c0 = 0. Clearly (1) =⇒ (2). Now suppose (2) holds.
If f ≡ 0 or g ≡ 0, then the result is immediate, so suppose f, g ̸≡ 0 (hence, α > 0). Now
given z, w ∈ (−ρ, ρ) such that

0 ≤ |z| ≤ w, 0 < w < ρ,

define

A(w, z) :=

z2/w z z
z w w
z w w

 =
1

w
uuT , where u = (z, w,w)T . (24.7)

By choice of w, z, we have A(w, z) ∈ P3(I), so det(g, f)T3 [A(w, z)] ≥ 0.
There are now two cases. First, if k = 0, then g(x) ≡ α > 0. Let w > 0 and expand the

above determinant along the third row to compute

0 ≤ det(g, f)T3 [A(w, z)] = −α(f(z)− f(w))2.

Using an increasing sequence 0 < wn → ρ−, this shows that f is constant on I, and by
considering (g, f)T3 [03×3], we have f(x) ≡ cα for some c ∈ [0, 1].

The other case is if k > 0, so that g(0) = 0. Now f(0) = 0 by considering (g, f)T3 [03×3].
Again expand the above determinant along the third row, to obtain

0 ≤ det(g, f)T3 [A(w, z)] = −
α

wk

(
wkf(z)− zkf(w)

)2
. (24.8)

Thus, we have f(z)/zk = f(w)/wk whenever 0 < |z| ≤ w < ρ. By using an increasing
sequence 0 < wn ↑ ρ−, this shows f(z)/zk is constant on I \ {0}, say c ∈ R. By considering
A(w,w) = w13×3 for w > 0, it is not hard to see that c ∈ [0, 1], which proves (3).

Finally, if (3) holds, then (g, f)T3 [A] is the sum of cg[A] and (1− c)g[B] (padded by a zero
row and column at the end), where B is the leading principal 2 × 2 submatrix of A. This
shows (1) by the Schur product theorem.

The proof is similar if T3 = {{1, 2}, {3}} and c0 = −1. Clearly, (1) =⇒ (2); similarly,
the proof of (2) =⇒ (3) is unchanged (including the computation (24.8)) until the very last
steps for both k = 0 and k > 0, at which points we can only conclude c ∈ [−1, 1]. Finally, we
assume (3) holds and show (1). The point is that for any scalar c ∈ [−1, 1] and any matrix
A ∈ P3(I), the principal minors of (g, cg)T3 [A] equal those of (g, |c|g)T3 [A], so that we may
work with |c| ∈ [0, 1] instead of c ∈ [−1, 1]. Now one shows (1) similarly as the previous
case. □
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A final preliminary result – the second part easily follows from the first, and in turn

strengthens Lemma 24.6.

Proposition 24.9. Suppose for an integer n ≥ 3 that Tn ⊂ 2[n] is a partition of [n] into
k ≥ 2 non-empty subsets.

(1) Let g(0) = 1 and f(0) = c. Then (g, f)Tn [0n×n] is positive semidefinite if and only if
c ∈ [−1/(k − 1), 1].

(2) Suppose 0 < ρ ≤ ∞, I = (−ρ, ρ), and f : I → R. Also suppose g : I → R is
multiplicative and preserves positivity on Pn(I). If Tn ̸= {{1}, . . . , {n}}, then the
following are equivalent:
(a) (g, f)Tn [−] preserves positivity on Pn(I).
(b) (g, f)Tn [−] preserves positivity on the rank-1 matrices in Pn(I).
(c) f(x) ≡ cg(x) on I, for some c ∈ [−1/(k − 1), 1].

The non-zero functions in part (2) include the powers xk, k ∈ Z≥0 by the Schur product
theorem; but also – as studied by Hiai in Linear Algebra Appl. (2009) – the “powers”

ϕα(x) := |x|α, ψα(x) := sgn(x)|x|α, α ≥ n− 2.

Proof. Let Tn = {J1, . . . , Jk} with ⊔jJj = [n].

(1) Choose elements j1, . . . , jk with ji ∈ Ji. By possibly relabeling the rows and columns,
we may assume without loss of generality that 1 ≤ j1 < · · · < jk ≤ n. Now if
(g, f)Tn [0n×n] ∈ Pn, then by considering the principal k× k submatrix corresponding
to the indices {j1, . . . , jk}, we obtain

C := c1k×k + (1− c) Idk×k ∈ Pk. (24.10)

Since this matrix has eigenvalues (1− c) and 1 + (k− 1)c, we get c ∈ [−1/(k− 1), 1],
as desired.

For the converse, define the “decompression” of C, given by

C̃ := c1n×n + (1− c)
k∑

j=1

1Jj×Jj = (g, f)Tn [0n×n] ∈ Cn×n. (24.11)

We now show that if c ∈ [−1/(k− 1), 1], then C̃ ∈ Pn. Indeed, given a vector u ∈ Cn,
define uTn ∈ Ck to have jth coordinate

∑
i∈Jj ui. Then,

u∗C̃u = u∗Tn
CuTn ≥ 0, ∀u ∈ Cn,

because the matrix C as in (24.10) is positive semidefinite as above.
(2) If g ≡ 0, then the result is easy to prove, so we suppose henceforth that g ̸≡ 0. Clearly,

(a) implies (b). Next if (b) holds, then one can restrict to a suitable 3× 3 submatrix
– without loss of generality indexed by 1, 2, 3, such that Tn ∩ {1, 2, 3} = {{1, 2}, {3}}
by a slight abuse of notation. Hence, f(x) ≡ cg(x) on I for some c ∈ [−1, 1], by
Lemma 24.6. Now if g(x0) ̸= 0, then (g, f)Tn [x01n×n] has as a principal submatrix,
g(x0)C, where C is as in (24.10). Hence, c ∈ [−1/(k − 1), 1] by the previous part,
proving (c). Finally, given any matrix A ∈ Pn(I), we have

(g, cg)Tn [A] = g[A] ◦ C̃,

where C̃ is as in (24.11). Now if (c) holds, then C̃ ∈ Pn by the previous part, and
this shows (a) by the assumptions on g, f as well as the Schur product theorem. □

With these results in hand, we are ready to proceed.
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Proof of Theorem 24.3. Clearly if (g, f)Tn [−] preserves positivity on Pn(I), then it does so
on the rank ≤ 3 matrices in Pn(I). Thus, we will prove that this latter assertion implies
the conclusions on (g, f) in the various cases; and that these conclusions imply in turn that
(g, f)Tn [−] preserves positivity on Pn(I). This is done in each of the subcases (which place
constraints on the family Tn). First if (1) all Tn are empty sets, then the result follows
from the stronger Schoenberg–Rudin Theorem 16.3 (which holds over (−ρ, ρ) instead of R,
as remarked in Section 22.3).

Next, suppose from (2) some Tn contains subsets I1, I2 ⊂ [n] that are not disjoint. Clearly,
if g = f and f is as in (1), then (g, f)Tn [−] = f [−] preserves positivity by the Schur prod-
uct theorem. Conversely, if (g, f)Tn [−] preserves positivity even on the rank-1 matrices in
Pn((−ρ, ρ)) for all n ≥ 3, then there exist integers n ≥ 3 and a, b, c ∈ [n], such that

a, b ∈ I1, c ̸∈ I1, b, c ∈ I2, a ̸∈ I2.

By relabeling indices if needed, we will assume without loss of generality that a = 1, b = 2,

and c = 3. Now let x ∈ (−ρ, ρ) and define A :=

|x| x x
x |x| |x|
x |x| |x|

 ⊕ 0(n−3)×(n−3) ∈ Pn(I). If

B denotes the leading principal 3× 3 submatrix of (g, f)Tn [A], then

0 ≤ detB = det

g(|x|) g(x) f(x)
g(x) g(|x|) g(|x|)
f(x) g(|x|) g(|x|)

 = −g(|x|)(f(x)− g(x))2.

If g(|x|) = 0, then by considering the 2× 2 submatrices of B, we see that f(x) = g(x) = 0. If
g(|x|) ̸= 0, then it is positive, so we obtain f(x) = g(x). This implies f ≡ g on (−ρ, ρ). Hence,
(g, f)Tn [−] = f [−], and we reduced to case (1). This proves the equivalence for case (2).

Next suppose (3) holds. First assume f is as in (1) and 0 ≤ f ≤ g on [0, ρ). If
A ∈ Pn((−ρ, ρ)), then (g, f)Tn [A] is the sum of f [A] and a diagonal matrix with non-negative
entries. Hence, (g, f)Tn [A] is positive semidefinite by the Schur product theorem. The con-
verse has two subcases. Let sn := # ∪E∈Tn E, so 0 ≤ sn ≤ n, and hence, either n − sn or
sn is an unbounded sequence. If the former, then by restricting to the corresponding princi-
pal submatrices (padded by zeros), we are done by case (1) – considering the 2 × 2 matrix(
g(x) f(x)
f(x) g(x)

)
or

(
g(x) f(x)
f(x) f(x)

)
for x ∈ [0, ρ), we obtain f(x) ≤ g(x), as desired.

Thus, we henceforth assume the latter holds, i.e., sn is unbounded; restricting to these
principal submatrices, we may assume without loss of generality that Tn = {{1}, . . . , {n}}
for all n ≥ 1. We claim that f [−] preserves positivity on rank ≤ 3 matrices in Pn(I) for all
n. This would finish the proof in case (3), since now f is as in (1), and as above, this implies
0 ≤ f(x) ≤ g(x) for x ∈ [0, ρ).

To prove the claim, let A ∈ Pn((−ρ, ρ)), and let DA be the diagonal matrix with (j, j)-entry

g(ajj)−f(ajj). If 1m×m denotes the all-onesm×m matrix, then 1m×m⊗A =

A · · · A
...

. . .
...

A · · · A

,

a matrix in Pmn(I). Also note that if A has rank ≤ 3, then by (3.13), so does 1m×m ⊗ A.
Now applying (g, f)Tmn [−] yields

(g, f)Tmn [1m×m ⊗A] = 1m×m ⊗ f [A] + Idm×m⊗DA ≥ 0.
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Hence, by (24.5),

0 ≤ λmin((g, f)Tmn [1m×m ⊗A]) ≤ λmin(1m×m ⊗ f [A]) + λmax(Idm×m⊗DA)

= mλmin(f [A]) + max
1≤j≤n

{g(ajj)− f(ajj)},

where the equality holds because of (3.13) and since the eigenvalues of 1m×m are 0,m. From
this it follows that λmin(f [A]) ≥ −maxj(g(ajj) − f(ajj))/m for all m ≥ 1. This shows f [A]
is positive semidefinite, and concludes the proof in case (3).

If (4) holds, the proof in case (3) shows f is as in (1); and using (g, f)T2 [−] = g[−] via
an argument similar to Theorem 12.7 shows the desired constraints on g. (This is left to the
reader to work out.) The converse is shown using (variations of) the same proofs.

It remains to prove the equivalence in case (5); here we are also given that g(x) = αxk

for α, k ≥ 0 (and k an integer). If α = 0, then the result is easy, so we suppose henceforth
without loss of generality that α = 1. In subcase (a), since Tn = {{1}, . . . , {n}} for infinitely
many n by assumption, we can repeat the proof for case (3) to show that any preserver-pair
(g, f) must satisfy 0 ≤ f ≤ g on [0, ρ) and f is as in (1). Conversely, given such (g, f), if
Tn = {[n]}, then (g, f)Tn [−] = g[−], which preserves positivity by the Schur product theorem.
Otherwise, for A ∈ Pn(I), we compute

(g, f)Tn [A] = f [A] + diag(g(ajj)− f(ajj))nj=1,

and both matrices are positive, hence so is (g, f)Tn [A], as desired.
Next for (b), we fix n1 ≥ 3 such that Tn1 ⊈ {{1}, . . . , {n1}}; also fix n0 ≥ 3 such that Tn0

is not a partition of [n0]. If f(x) = cg(x) for c ∈ [0, 1], then (g, f)Tn0
[A] is the sum of cA◦k

and matrices of the form (1 − c)B◦k, where B is a principal submatrix of A ∈ Pn0 , hence
positive semidefinite. It follows by the Schur product theorem that (g, f)Tn0

[−] preserves
positivity. Conversely, suppose (g, f)Tn [−] preserves positivity for all n ≥ 1, on rank ≤ 3
matrices in Pn(I). At n = n1, we can find three indices – labeled 1, 2, and 3 without loss of
generality – such that for all A ∈ Pn1(I), the leading 3 × 3 submatrix of (g, f)Tn1

[A] equals

(g, f){{1,2}}[A[3]×[3]] or (g, f){{1,2},{3}}[A[3]×[3]]. Now using rank-1 matrices via Lemma 24.6
shows f(x) = cg(x) for c ∈ [−1, 1]. Finally, considering matrices in Pn0(I) yields c ≥ 0, as
desired.

The remaining subcase is (5)(c), in which case every Tn is a partition of [n]. Also note
by the hypotheses that K > 1; and there exists n1 ≥ 3 and three indices – labeled 1, 2, and
3 without loss of generality – such that for all A ∈ Pn1(I), the leading 3 × 3 submatrix of
(g, f)Tn1

[A] equals (g, f){{1,2},{3}}[A[3]×[3]]. Now using rank-1 matrices via Lemma 24.6 or

Proposition 24.9 implies f ≡ cg, with c ∈ [−1/(K − 1), 1]. Conversely, if f and g are as
specified and Tn = {[n]} then (g, f)Tn [−] = g[−], which preserves positivity by the Schur
product theorem. Else we are done by Proposition 24.9, since k = |Tn| ≤ K. □
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25. Appendix C. Preservers of positivity on kernels.

We now present two Appendices on the transforms that preserve positive (semi)definiteness,
and Loewner monotonicity and convexity, on kernels on infinite domains. We begin with pre-
servers of positive semidefinite and positive definite kernels.

Definition 25.1. Let X,Y be non-empty sets, and K : X × Y → R a kernel.

(1) Given x ∈ Xm and y ∈ Y n for integers m,n ≥ 1, define K[x;y] to be the m× n real
matrix, with (j, k) entry K(xj , yk).

(2) Given an integer n ≥ 1, define Xn,̸= to be the set of all n-tuples in X with pairwise
distinct coordinates.

(3) A kernel K : X × X → R is said to be positive semidefinite (respectively, positive
definite) if K is symmetric – i.e., K(x, y) = K(y, x) ∀x, y ∈ X – and for all n ≥ 1 and
tuples x ∈ Xn, ̸=, the matrix K[x;x] is positive semidefinite (respectively, positive
definite).

(4) Given an integer n ≥ 1, and a totally ordered set X, define Xn,↑ to be the set of all
n-tuples x = (x1, . . . , xn) ∈ X with strictly increasing coordinates: x1 < · · · < xn.
(Karlin calls this the open simplex ∆n(X) in his book [200].)

By “padding principal submatrices by the identity kernel,” it is easily seen that given
subsets X ⊂ Y and a positive (semi)definite kernel K on X × X, we can embed K into

a kernel K̃ : Y × Y → R that is also positive (semi)definite: define K̃(x, y) to be 1x=y if
(x, y) ̸∈ X ×X, and K(x, y) otherwise.

Now given a set X and a domain I ⊂ R, we will study the inner transforms

F psd
X (I) := {F : I → R | if K : X ×X → I is positive semidefinite, so is F ◦K},

F pd
X (I) := {F : I → R | if K : X ×X → I is positive definite, so is F ◦K}.

(see the beginning of this text). Here, F ◦K sends X ×X to R.
Notice that if X is finite then F psd

X (I) is precisely the set of entrywise maps preserving
positivity on P|X|(I); as mentioned in Section 16.8, this question remains open for all |X| ≥ 3.
If instead X is infinite, then the answer follows from Schoenberg and Rudin’s results:

Theorem 25.2. Fix 0 < ρ ≤ ∞, and suppose I is any of (0, ρ), [0, ρ), or (−ρ, ρ). If

X is an infinite set, then F psd
X (I) consists of all power series with non-negative Maclaurin

coefficients, which are convergent on I.

This observation is useful in the study of positive definite kernels in computer science.

Proof. For I = (0, ρ) or (−ρ, ρ) with ρ = ∞, the result follows by embedding every positive
semidefinite matrix into a kernel onX×X, and applying Theorems 16.4 and 16.3, respectively.
If I = [0, ρ), then from above we have the desired power series expansion on (0,∞), and it
remains to show that any preserver F is right continuous at 0. To see why, first note that
F (0) ≥ 0, and F is non-decreasing and non-negative on (0,∞), so F (0+) := limx→0+ F (x)
exists. Now consider a three-point subset {x1, x2, x3} of X, with complement X ′, and define

K0(x, y) :=


3, if x = y,

1, if (x, y) = (x1, x2), (x2, x3), (x3, x2), (x2, x1),

0, otherwise.

(25.3)
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Thus, K0 is the padding by the identity of a positive definite 3 × 3 matrix. It follows that

F ◦ (cK0) is positive semidefinite for c > 0, so its principal submatrix

(
F (3c) F (0)
F (0) F (3c)

)
∈ P2.

It follows by taking determinants and then c→ 0+ that F (0+) ≥ F (0) ≥ 0. Finally,

0 ≤ lim
c→0+

detF [cK0[x;x]] = −F (0+)(F (0+)− F (0))2, x := (x1, x2, x3).

Thus, either F (0+) > 0 and so F (0+) = F (0); or else F (0+) = 0, hence F (0) = 0 = F (0+)
as well. This ends the proof for ρ =∞; for ρ <∞, use the remarks in Section 22.3. □

We next classify the preservers of positive definite kernels. As above, if X is finite, then
the fixed-dimension case remains open; but for infinite X we have:

Theorem 25.4. Fix 0 < ρ ≤ ∞, and suppose I is any of (0, ρ), [0, ρ), or (−ρ, ρ). If X

is an infinite set, then F pd
X (I) consists of all non-constant power series with non-negative

Maclaurin coefficients, which are convergent on I.

Proof. By the Schur product theorem, every monomial xk for k ≥ 1 preserves positive def-

initeness. This observation shows one implication. Conversely, first say F ∈ F pd
X (I) is

continuous. Now every positive semidefinite kernel K : X × X → R is the pointwise limit
as ϵ → 0+ of the family Kϵ : X ×X → R, given by Kϵ(x, y) := K(x, y) + ϵ1x=y. It follows
that F preserves positive semidefinite kernels, reducing the problem to the preceding result.
Moreover, F is not constant, e.g., by considering its action on the identity kernel.

The rest of the proof is devoted to showing that F is continuous on I. First suppose
I = (0, ρ) and A ∈ P2(I) is positive definite. Then there exists ϵ ∈ (0, ρ/2) such that
A′ := A− ϵ Id2×2 is still positive definite. Choose x1, x2 ∈ X and define the kernel

K : X ×X → R, (x, y) 7→


ajk, if x = xj , y = xk, 1 ≤ j, k ≤ 2;

ρ/2, if x = y ̸∈ {x1, x2};
ϵ, otherwise.

Clearly,
K = ϵ1X×X + (A′ ⊕ (ρ/2− ϵ) IdX\{x1,x2}),

and so K is positive definite on X with all values in I = (0, ρ). Hence, F ◦K is also positive
definite. It follows that the entrywise map F [−] preserves positive definiteness on 2 × 2
matrices. Now invoke Lemma 12.14 to conclude that F is continuous on (0, ρ).

This concludes the proof for I = (0, ρ). Next, suppose I = [0, ρ); by the preceding case,
F is given by a non-constant power series as asserted, and we just need to show F is right
continuous at 0. Since F is increasing on (0, ρ), the limit F (0+) := limx→0+ F (x) exists and
F (0+) ≥ F (0) ≥ 0. Now use the kernel K0 from (25.3) and repeat the subsequent arguments.

The final case is if I = (−ρ, ρ). In this case we fix u0 ∈ (0, 1) and a countable subset
Y := {x0, x1, . . . } ⊂ X. Denote Y c := X \ Y . Given a, b > 0 such that a+ b < ρ, let

µ = µa,b := aδ−1 + bδu0 .

The corresponding Hankel moment matrix is Hµ, with (j, k) entry a(−1)j+k + buj+k
0 , and

this is positive semidefinite of rank 2. Now for each ϵ > 0, define Kϵ : X ×X → R, via

Kϵ(x, y) :=


Hµ(j, j) + ϵ, if x = y = xj , j ≥ 0;

Hµ(j, k), if (x, y) = (xj , xk), j ̸= k;

ϵ, if x = y ∈ Y c;

0, otherwise.
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Clearly, Kϵ is positive definite, with entries in I = (−ρ, ρ) for sufficiently small ϵ > 0. It
follows that F ◦Kϵ is positive definite. Since F is continuous on [0, ρ) by the previous cases,
limϵ→0+ F ◦Kϵ = F [Hµ⊕0Y c×Y c ] is positive semidefinite, and so F [−] preserves positivity on
the Hankel moment matrices Hµ for all µ = µa,b as above. It follows by the proof of Step 3 for
the stronger Schoenberg theorem above (see the computations following Lemma 20.4) that
F is continuous on (−ρ, ρ), as desired. This concludes the proof in all cases. □
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26. Appendix D. Preservers of Loewner monotonicity and convexity on
kernels.

Thus far, we have studied the preservers of (total) positivity and related variants, with
a brief look in Section 15 at entrywise powers preserving other Loewner properties. In this
Appendix, we return to these properties. Specifically, we classify all composition operators
preserving Loewner monotonicity and convexity, on kernels on infinite domains. (The case
of finite domains remains open, as for positivity preservers.)

The results for infinite domains will crucially use the finite versions; thus, we begin by
reminding the reader of the definitions. Roughly speaking, a function is Loewner monotone
(see Definition 14.7) if f [A] ≥ f [B] whenever A ≥ B ≥ 0n×n. Similarly, a function is Loewner
convex (see Definition 15.7) if f [λA+ (1− λ)B] ≤ λf [A] + (1− λ)f [B] whenever A ≥ B ≥ 0
and λ ∈ [0, 1].

As explained in Remark 14.8, for n = 1 the usual notion of a monotonically non-decreasing
function coincides with Loewner monotonicity. The same holds for convex functions vis-à-vis
Loewner convex functions, for n = 1. Now for n = 1, a differentiable function f : (0,∞)→ R
is monotone (respectively, convex) if and only if f ′ is non-negative, i.e., has image in [0,∞)
(respectively, monotone). The following result by Hiai in Linear Algebra Appl. (2009) extends
this to the corresponding Loewner properties, in every dimension:

Theorem 26.1 (Hiai, fixed dimension). Suppose 0 < ρ ≤ ∞, I = (−ρ, ρ), and f : I → R.
(1) Given n ≥ 2, the function f is Loewner convex on Pn(I) if and only if f is differen-

tiable on I and f ′ is Loewner monotone on Pn(I). This result also holds if we restrict
both test sets to rank ≤ k matrices in Pn(I) for every 2 ≤ k ≤ n.

(2) Given n ≥ 3, the function f is Loewner monotone on Pn(I) if and only if f is
differentiable on I and f ′ is Loewner positive on Pn(I).

Recall the related but somewhat weaker variant in Proposition 15.9.
Here we show the first part and a weaker version of the second part of Theorem 26.1 – see

Hiai’s 2009 paper for the complete proof. (Note: Hiai showed the first part only for k = n;
also, we do not use the second part in the present text.) First, as a consequence of the first
part and the previous results, we obtain the following Schoenberg-type classification of the
corresponding “dimension-free” entrywise preservers:

Theorem 26.2 (Dimension-free preservers of monotonicity and convexity). Suppose 0 < ρ ≤
∞, I = (−ρ, ρ), and f : I → R. The following are equivalent:

(1) f is Loewner monotone on Pn(I) for all n.
(2) f is Loewner monotone on the rank ≤ 3 Hankel matrices in Pn(I) for all n.
(3) f(x) =

∑∞
k=0 ckx

k on I, with c1, c2, · · · ≥ 0.

Similarly, the following are equivalent conditions characterizing Loewner convexity:

(1) f is Loewner convex on Pn(I) for all n.
(2) f is Loewner convex on the rank ≤ 3 matrices in Pn(I) for all n.
(3) f(x) =

∑∞
k=0 ckx

k on I, with c2, c3, · · · ≥ 0.

Proof. We begin with the dimension-free Loewner monotone maps. Clearly, (1) =⇒ (2).
To show (3) =⇒ (1), note that f(x) − c0 is also Loewner monotone for any c0 ∈ R if f(x)
is, so it suffices to consider f(x) = xk for k ≥ 1. But such a function is clearly monotone, by
the Schur product theorem. This is an easy exercise, or see e.g., the proof of Theorem 14.9.
Finally, note from the definition of Loewner monotonicity that f − f(0) entrywise preserves
positivity if f is Loewner monotone – on Pn(I) or on subsets of these that contain the zero
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matrix. In particular, if (2) holds then f−f(0) is a dimension-free positivity preserver, hence
of the form

∑
k≥0 ckx

k with all ck ≥ 0 by Theorem 19.10 – or more precisely, its variant for

restricted domains (−ρ, ρ) as in Section 22.3. Since f − f(0) also vanishes at the origin, we
have c0 = 0, proving (3).

We next come to convexity preservers. Clearly, (1) =⇒ (2). To show (3) =⇒ (1), note
that f(x) − c0 − c1x is also Loewner convex for any c0, c1 ∈ R if f(x) is, so it again suffices
to consider f(x) = xk for integers k ≥ 2. In fact, we claim by induction that xk is Loewner
convex for all k ≥ 0. The convexity of 1, x is immediate, and for the induction step, if xk is
convex, then for any integer n ≥ 1, scalar λ ∈ [0, 1], and matrices A ≥ B ≥ 0n×n,

(λA+ (1− λ)B)◦(k+1) ≤ (λA+ (1− λ)B) ◦ (λA◦k + (1− λ)B◦k)

= λA◦(k+1) + (1− λ)B◦(k+1) − λ(1− λ)(A−B) ◦ (A◦k −B◦k)

≤ λA◦(k+1) + (1− λ)B◦(k+1),

where the final inequality follows from the Loewner monotonicity of xk and the Schur product
theorem. Finally, if (2) holds, then by Theorem 26.1(1) for k = 3, f ′ exists and is Loewner
monotone on rank ≤ 3 matrices in Pn(I) for all n, hence a power series as in the preceding
set of equivalent statements. This immediately implies (3). □

The remainder of this section is devoted to proving Theorem 26.1(1), beginning with some
elementary properties of convex functions:

Lemma 26.3 (Convex functions). Suppose I ⊂ R is an interval and f : I → R is convex.

(1) The function (s, t) 7→ f(t)− f(s)
t− s

, where t > s, is non-decreasing in both t, s ∈ I.
(2) If I is open, then f ′± exist on I. In particular, f is continuous on I.
(3) If I is open and z1 < x < z2 in I, then f ′+(z1) ≤ f ′−(x) ≤ f ′+(x) ≤ f ′−(z2). In

particular, f ′± are non-decreasing in I, hence each continuous except at countably
many points of jump discontinuity.

(4) If I is open, then for all x ∈ I,

f ′+(x) = lim
z→x+

f ′±(z), f ′−(x) = lim
z→x−

f ′±(z).

(5) If I is open, there exists a co-countable (therefore dense) subset D ⊂ I on which f ′

exists. Moreover, f ′ is continuous and non-decreasing on D.

Note that the assertions involving open intervals I may be carried over to the interiors of
arbitrary intervals I on which f is convex.

Proof.

(1) Suppose s < t < u lie in I. One needs to show

f(t)− f(s)
t− s

≤ f(u)− f(s)
u− s

≤ f(u)− f(t)
u− t

.

But both inequalities can be reformulated to say

f(t) ≤ u− t
u− s

f(s) +
t− s
u− s

f(u),

which holds as f is convex.
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(2) Given t ∈ I, choose s < t < u in I, and note by the previous part that the ratio

f(x)− f(t)
x− t

, x ∈ (t, u)

is non-increasing in x as x → t+ and bounded below by
f(t)− f(s)

t− s
. Thus, f ′+(t)

exists; a similar argument works to show f ′−(t) exists. In particular, the two limits
limx→t± f(x)− f(t) are both zero, proving f is continuous at t ∈ I.

(3) The second sentence follows from the first, which in turn follows from the first part
by taking limits and is left to the reader.

(4) The preceding part implies f ′±(z) are non-decreasing as z → x− and non-increasing
as z → x+, and shows “half” of the desired inequalities. We now show f ′+(x) ≥
limz→x+ f ′+(z); the remaining similar inequalities are shown similarly, and again left
to the reader. Let y ∈ I, y > x; then the first part implies

f(y)− f(z)
y − z

≥ f(y′)− f(z)
y′ − z

, ∀x < z < y′ < y.

Taking y′ → z+, we have f ′+(z) ≤
f(y)−f(z)

y−z . From above, f is continuous on I, so

f(y)− f(x)
y − x

= lim
z→x+

f(y)− f(z)
y − z

≥ lim
z→x+

f ′+(z).

Finally, taking y → x+ concludes the proof.
(5) Let D ⊂ I be the subset where f ′ exists, which is if and only if f ′+ is continuous

(by the preceding part). In particular, D is co-countable from a previous part, and
f ′ = f ′+ is continuous and non-decreasing on D by the same part. □

The next preliminary result shows the continuity (respectively, differentiability) of mono-
tone (respectively, convex) functions on 2× 2 matrices:

Proposition 26.4. Suppose 0 < ρ ≤ ∞, I = (−ρ, ρ), and g : I → R.
(1) If g[−] is monotone on P2(I), then g is continuous on I.
(2) If g[−] is convex on P2(I), then g is differentiable on I.

Proof. We begin with the first assertion. It is easily verified that if g is monotone on P2(I),
then g− g(0), when applied entrywise to P2(I), preserves positivity. Hence, by (the bounded
domain-variant of) Theorem 12.7, g is continuous on (0, ρ). Moreover, we may assume without
loss of generality that g(0) = 0.

Now let 0 < a < ρ and 0 < ϵ < ρ− a; then the monotonicity of g implies(
a+ ϵ a
a a

)
≥
(
ϵ 0
0 0

)
≥ 02×2 =⇒

(
g(a+ ϵ)− g(ϵ) g(a)

g(a) g(a)

)
≥ 02×2.

Pre- and post-multiplying this last matrix by (1,−1) and (1,−1)T respectively, we have
g(a+ ϵ)− g(a) ≥ g(ϵ), and by the monotonicity of g (applied to ϵ12×2 ≥ ϵ′12×2 for 0 ≤ ϵ′ <
ϵ < ρ), it follows that g is non-decreasing on [0, ρ). Now taking the limit as ϵ→ 0+, we have

0 = g(a+)− g(a) ≥ g(0+) ≥ 0,

where the first equality follows from the continuity of g. Hence, g is right continuous at 0.
Next, for the continuity of g on (−ρ, 0), let

a ∈ (0, ρ), 0 < ϵ < min(a, ρ− a), A =

(
1 −1
−1 1

)
,
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and deduce from the monotonicity of g:

(a+ ϵ)A ≥ aA ≥ (a− ϵ)A ≥ 0 =⇒ g[(a+ ϵ)A] ≥ g[aA] ≥ g[(a− ϵ)A].
The positivity of the difference matrices implies, upon taking determinants:

|g(a± ϵ)− g(a)| ≥ |g(−a∓ ϵ)− g(−a)|.
Let ϵ→ 0+; then the continuity of g at a implies that at −a, as desired. A similar (one-sided)
argument shows the left continuity of g at 0, via the step g(ϵ)− g(0) ≥ |g(−ϵ)− g(0)|.

Next, we come to the second assertion. If g is convex on P2(I), then restricting to the
matrices a12×2 for a ∈ [0, ρ), it follows that g is convex on [0, ρ). Hence, g′+ exists on (0, ρ)
by Lemma 26.3. Now suppose 0 < s < t < ρ and 0 < ϵ < ρ− t. Then by the convexity of g,(

t+ ϵ t
t t

)
≥
(
s+ ϵ s
s s

)
≥ 02×2 =⇒

(
g(λ(t+ ϵ) + (1− λ)(s+ ϵ)) g(λt+ (1− λ)s)

g(λt+ (1− λ)s) g(λt+ (1− λ)s)

)
≤ λ

(
g(t+ ϵ) g(t)
g(t) g(t)

)
+ (1− λ)

(
g(s+ ϵ) g(s)
g(s) g(s)

)
,

for all λ ∈ [0, 1]. Write this inequality in the following form:

(
α β
β β

)
≥ 02×2. As above, pre-

and post-multiplying this last matrix by (1,−1) and (1,−1)T respectively yields

g(λt+ (1− λ)s+ ϵ)− g(λt+ (1− λ)s) ≤ λ(g(t+ ϵ)− g(t)) + (1− λ)(g(s+ ϵ)− g(s)).
Divide by ϵ and let ϵ → 0+; this shows g′+ is convex, hence continuous by Lemma 26.3, on
(0, ρ).

Next, denote by g0, g1 the even and odd parts of g, respectively:

g0(t) :=
1

2
(g(t) + g(−t)), g1(t) :=

1

2
(g(t)− g(−t)).

We claim that g0, g1 are convex on [0, ρ). Indeed, by the convexity of g we deduce for
0 ≤ s ≤ t < ρ and λ ∈ [0, 1]:(

t −t
−t t

)
≥
(
s −s
−s s

)
≥ 0

=⇒
(
g(cλ) g(−cλ)
g(−cλ) g(cλ)

)
≤ λ

(
g(t) g(−t)
g(−t) g(t)

)
+ (1− λ)

(
g(s) g(−s)
g(−s) g(s)

)
,

where cλ = λt + (1 − λ)s. Pre- and post-multiplying this last inequality by (1,±1) and
(1,±1)T respectively, yields

g(λt+ (1− λ)s)± g(−(λt+ (1− λ)s)) ≤ λ(g(t)± g(−t)) + (1− λ)(g(s)± g(−s)).
This yields: g0, g1 are convex on [0, ρ). Next, note that if 0 ≤ s < t < ρ, and 0 < ϵ ≤
min(t− s, ρ− t), then

g(s+ ϵ)− g(s)
ϵ

≤ g(t)− g(t− ϵ)
ϵ

,

by Lemma 26.3(1). Taking ϵ→ 0+ shows that g′+(s) ≤ g′−(t) if 0 ≤ s < t < ρ and g is convex.
Similarly, g′−(t) ≤ g′+(t); therefore,

g′+(s) ≤ g′−(t) = (g0)
′
−(t) + (g1)

′
−(t) ≤ (g0)

′
+(t) + (g1)

′
+(t) = g′+(t).

Since g′+ is continuous, letting s → t− shows (gj)
′
−(t) = (gj)

′
+(t) for j = 0, 1. Thus, gj is

differentiable on (0, ρ). Since g0 is even and g1 is odd, they are also differentiable on (−ρ, 0).
Hence, g0, g1, g are differentiable on I \ {0}. Finally, let I ′ := (−2ρ/3, 2ρ/3) and define
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h(x) := g(x + ρ/3). It is easy to check that h is convex on P2(I
′), so it is differentiable at

−ρ/3 by the above analysis, and hence g is differentiable at 0, as desired. □

With these preliminary results in hand, we now complete the remaining proof:

Proof of Theorem 26.1. We begin by showing the first assertion. First, suppose f is differen-
tiable on I and f ′ is monotone on the rank ≤ k matrices in Pn(I). Also assume A ≥ B ≥ 0n×n

are matrices of rank ≤ k. Now follow the proof of Proposition 15.9(3) to show that f [−] is
Loewner convex on rank ≤ k matrices in Pn(I). Here we use the fact that since A ≥ B ≥ 0,
we have the chain of Loewner inequalities

A ≥ λA+ (1− λ)B ≥ λA+B

2
+ (1− λ)B ≥ B, (26.5)

and hence the ranks of all matrices here are at most rk(A) ≤ k.
The converse is shown in two steps; in fact, we will also prove that f is continuously

differentiable on I. The first step is to show the result for n = k = 2. Note by Proposition 26.4
that f is differentiable on I. Now say A ≥ B ≥ 02×2 with A ̸= B in P2(I). Writing A =(
a1 a
a a2

)
and B =

(
b1 b
b b2

)
, we have aj ≥ bj ≥ 0 for j = 1, 2 and (a−b)2 ≤ (a1−b1)(a2−b2).

Define δ ∈ [0, a1 − b1] and the matrix C2×2 via

(a− b)2 = (a1 − b1 − δ)(a2 − b2), C :=

(
b1 + δ b
b b2

)
∈ P2(I).

Clearly, A ≥ C ≥ B, all matrices are in P2(I), and A − C,C − B have rank at most 1.
Thus, we may assume without loss of generality that A − B has rank 1; write A − B =(

a
√
ab√

ab b

)
∈ P2. First, if ab = 0, then f ′[A] − f ′[B] is essentially a scalar on the main

diagonal. Now since f is convex on [0, ρ) by considering a12×2 for a ∈ [0, ρ), we have f ′ is
non-decreasing on (0, ρ), and hence f ′[A] ≥ f ′[B].

The other case is a, b > 0. In this case A ≥ B ≥ 0 and A − B is rank-1 with no zero
entries. Now follow the proof of Proposition 15.9(3) to infer f ′[A] ≥ f ′[B]. Together, both
cases show that f ′ is monotone on P2(I), so f

′ is continuous on I by Proposition 26.4(1).
This shows the result for n = k = 2. Now suppose n > 2. First, f is convex on P2(I), so

f ′ is monotone on P2(I) and hence continuous on I by the previous case. Second, to show
that f ′ is monotone as asserted, suppose A ≥ B ≥ 0n×n are matrices in Pn(I) of rank ≤ k.
Now claim that there is a chain of Loewner matrix inequalities

A = An ≥ An−1 ≥ · · · ≥ A0 = B,

satisfying: (1) Aj ∈ Pn(I) for all 0 ≤ j ≤ n, and (2) Aj − Aj−1 has rank at most 1 for each
1 ≤ j ≤ n. Note that such a chain of inequalities would already imply the reverse inclusions
for the corresponding null spaces, so each Aj has rank at most k.

To show the claim, spectrally decompose A − B = UDUT , where U is orthogonal and
D = diag(λ1, . . . , λn) with λj ≥ 0, and write

Aj := B + U diag(λ1, . . . , λj , 0, . . . , 0)U
T , 0 ≤ j ≤ n.

Note that Aj ≤ A, so the same applies to each of their corresponding (non-negative) diagonal
entries. Thus, 0 ≤ (Aj)ll ≤ all for 1 ≤ l ≤ n. Thus, the diagonal entries of each Aj lie in
I = (−ρ, ρ), hence so do the off-diagonal entries. This shows the claim.

Thus, to show f ′[A] = f ′[An] ≥ f ′[A0] = f ′[B], it suffices to assume, as in the previous case
of n = k = 2, that A−B has rank 1. First, if A−B has no zero entries, then f ′[A] ≥ f ′[B] by
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Proposition 15.9(3). Otherwise, suppose A−B = uuT , with u ∈ Rn a non-zero vector having

zero entries. Without loss of generality, write u =

(
v
0

)
, with v ∈ Rl having no zero entries

for some 1 ≤ l ≤ n− 1. Accordingly, write A =

(
A11 A12

A21 A22

)
, and similarly for B; it follows

that Aij = Bij for all (i, j) ̸= (1, 1), and A11 = B11+ vv
T . Now since f is Loewner convex on

[B,A], it is so on [B11, A11], where all matrices are positive semidefinite and also have rank
≤ k. Moreover, f ′ exists and is continuous on I from above. Again, by Proposition 15.9(3),
it follows that f ′ is Loewner monotone on [B11, A11] (if k = 1 then this assertion is true by
one-variable calculus). But then,

f ′[A]− f ′[B] =

(
f ′[A11]− f ′[B11] 0

0 0

)
≥ 0.

This proves the first assertion; we turn to the second. First, suppose A ≥ B ≥ 0n×n,
and f ′ is Loewner positive on Pn(I). Then follow the proof of Proposition 15.9(2) to infer
f [A] ≥ f [B]. Conversely, we prove the result under a stronger hypothesis: namely, f is
differentiable. Now the proof of Proposition 15.9(2) again applies: given A ∈ Pn(I), we have
A+ ϵ1n×n ∈ Pn(I) for small ϵ > 0. By monotonicity, it follows that

1
ϵ (f [A+ ϵ1n×n]− f [A]) ∈ Pn.

Taking ϵ→ 0+ proves f ′[A] ∈ Pn, as desired. □

We now move to kernels.

Definition 26.6. Suppose X is a non-empty set, I ⊂ R a domain, and V is a set of (real
symmetric) positive semidefinite kernels on X ×X, with values in I.

(1) The Loewner order on kernels on X × X is: K ⪰ L for K,L kernels on X × X, if
K − L is a positive semidefinite kernel. (Note, if X is finite, this specializes to the
usual Loewner ordering on real |X| × |X| matrices.)

(2) A function F : I → R is Loewner monotone on V if F ◦K ⪰ F ◦L wheneverK ⪰ L ⪰ 0
are kernels in V.

(3) A function F : I → R is Loewner convex on V (here I is assumed to be convex) if
whenever K ⪰ L ⪰ 0 are kernels in V, we have

λF ◦K + (1− λ)F ◦ L ⪰ F ◦ (λK + (1− λ)L), ∀λ ∈ [0, 1].

The above results for matrices immediately yield the results for kernels:

Theorem 26.7. Suppose 0 < ρ ≤ ∞, I = (−ρ, ρ), and F : I → R, and X is an infinite set.
The composition map F ◦ − is Loewner monotone (respectively, Loewner convex) on positive
kernels on X ×X, if and only if F satisfies the respective equivalent conditions on matrices
of all sizes, in Theorem 26.2.

Proof. First, if F is Loewner monotone or convex on kernels on X ×X, then by restricting
the defining inequalities to kernels on Y × Y (padded by zeros) for finite sets Y ⊂ X, it
follows that F is, respectively, Loewner monotone or convex on Pn(I) for all n ≥ 1.

To show the converse, suppose first that F (y) =
∑∞

k=0 cky
k on I, with c1, c2, · · · ≥ 0. To

show that F ◦ − is Loewner monotone on kernels on X × X, it suffices to do so on every
“principal submatrix” of such kernels – i.e., for every finite indexing subset of X. But this is
indeed true for F , by Theorem 26.2. A similar proof holds for Loewner convex maps. □
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27. Appendix E. Menger’s results and Euclidean distance geometry.

We conclude this part of the text with a brief detour into the same area where we started
this part of the text: metric geometry, specifically, that of Euclidean spaces Rn – and of their
closure, Hilbert space ℓ2. This is a beautiful area of mathematical discovery, which has fea-
tured work by several prominent mathematicians, including Birkhoff, Cauchy, Cayley, Gödel,
Menger, Schoenberg, and von Neumann, among others. See [237] for a modern exposition of
some of the gems of distance geometry (which begins, interestingly, with Heron’s formula for
the area of a triangle, from two millennia ago).

The main result of this section is a 1928 theorem of Menger:

Theorem 27.1 (Menger, [258]; see also [315]). A metric space (X, d) can be isometrically
embedded in Hilbert space ℓ2 if and only if X is separable and every subset of X of size n+1
can be isometrically embedded in Rn (equivalently, in ℓ2) for n ≥ 2.

This result, together with Schoenberg’s theorems 16.10 and 16.17 on Hilbert space embed-
dings of finite metric spaces X, immediately yields those theorems for all separable X:

Theorem 27.2 (Schoenberg). Suppose (X, d) is a separable metric space.

(1) X embeds isometrically into Hilbert space ℓ2 if and only if for every integer n ≥ 2 and
(n+1)-tuple of points Y := (x0, . . . , xn) in X, the “alternate Cayley–Menger matrix”
CM ′(Y ) := (d(x0, xj)

2 + d(x0, xk)
2 − d(xj , xk)2)nj,k=1 is positive semidefinite.

(2) X embeds isometrically into Hilbert space ℓ2 if and only if the Gaussian kernel
exp(−σ(·)2) is a positive definite function on X for all σ > 0 (equivalently, for some
sequence σm of positive numbers decreasing to 0+).

Here, we explore some simple, yet beautiful observations in Euclidean distance geometry,
which help prove Theorem 27.1, and also provide connections to Cayley–Menger matrices [78,
259] and to n-point homogeneous spaces (see Remark 16.22). We begin with the latter.

27.1. n-point homogeneity of Euclidean and Hilbert spaces. As early as 1944, in his
influential work [50] Birkhoff defines a metric space (X, d) to be n-point homogeneous if given
two equinumerous subsets of X of size at most n, an isometry between them extends to a
self-isometry of X. The heart of the present proof of Theorem 27.1 is to show that Euclidean
space Rk is n-point homogeneous for all k, n ≥ 1:

Theorem 27.3. Fix an integer k ≥ 1.

(1) The Euclidean space Rk with the Euclidean metric is n-point homogeneous for all n.
More strongly: any isometry between two subsets M,N ⊂ Rk is, up to a translation,
the restriction of an orthogonal linear transformation of Rk.

(2) Hilbert space ℓ2 is n-point homogeneous for all n.

The first step in proving Theorem 27.3 is the following observation about Gram matrices:

Lemma 27.4. Given vectors y0, . . . , yn ∈ ℓ2 for some n ≥ 0, the Gram matrix (⟨yj , yk⟩)nj,k=0

is invertible if and only if the yj are linearly independent.

Proof. We prove the contrapositive. If
∑n

k=0 ckyk = 0 is a nontrivial linear combination, then
applying ⟨yj ,−⟩ for all j yields Gram((yk)k)c = 0, where c = (c0, . . . , cn)

T ̸= 0. Conversely,
if Gram((yk)k)c = 0 and c ̸= 0, then

0 = cT Gram((yk)k)c =

∥∥∥∥∥
n∑

k=0

ckyk

∥∥∥∥∥
2

,
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so that some nontrivial linear combination of the yk vanishes, as desired. □

This simple lemma leads to striking consequences. We will presently mention two, the first
of which involves a classical concept (which already featured in Theorem 16.10):

Definition 27.5. Given a metric space X = ({x0, x1, . . . , xn}, d), write djk := d(xj , xk) for
0 ≤ j, k ≤ n. The associated Cayley–Menger matrix is

CM(X)(n+2)×(n+2) :=



0 d201 d202 · · · d20n 1
d210 0 d212 · · · d21n 1
d220 d221 0 · · · d22n 1
...

...
...

. . .
...

...
d2n0 d2n1 d2n2 · · · 0 1
1 1 1 · · · 1 0


, (27.6)

Similarly, the “alternate form” of the Cayley–Menger matrix here is

CM ′(X)n×n :=


2d201 d201 + d202 − d212 · · · d201 + d20n − d21n

d201 + d202 − d212 2d202 · · · d201 + d20n − d21n
...

...
. . .

...
d201 + d20n − d21n d202 + d20n − d22n · · · 2d20n

 (27.7)

Recall that the positive semidefiniteness of the second matrix features in Schoenberg’s
recasting of Menger and Fréchet’s results on Hilbert space embeddings of finite metric spaces.
We now write down a preliminary observation that relates the two determinants above:

Lemma 27.8. For all finite metric spaces X with at least two points,

detCM(X) = (−1)|X| detCM ′(X). (27.9)

Proof. Starting with the matrix CM(X), perform elementary row and column operations,
leaving the determinant unchanged. First, subtract the first row from all non-extremal rows.
Then subtract the first column and d20j times the last column each from the non-extremal
columns. This yields  0 0Tn 1

(d2i0)i −CM ′(X) 0n
1 0Tn 0

 ,

a bordered matrix with determinant (−1)n+1 detCM ′(X), as desired. □

We can now state and prove the two consequences of Lemma 27.4 promised above. The
first of these is a well-known result, proved in 1841 by Cayley during his undergraduate days
[78]. The second is the underlying principle behind the Global Positioning System, or GPS –
trilateration (also referred to more colloquially as “triangulation”): every point in the plane
(or on the surface of a sphere “like” the Earth) is uniquely determined by intersecting three
circles that denote distances from three non-collinear points (or four spheres centered at four
non-coplanar points).

Proposition 27.10.

(1) (Cayley, [78]). Suppose an isometry Ψ sends a finite metric space (X = {x0, . . . , xn}, d)
into Hilbert space ℓ2. Then the vectors Ψ(x0), . . . ,Ψ(xn) are affine linearly dependent
(i.e., lie on an (n− 1)-dimensional subspace) in ℓ2, if and only if the Cayley–Menger
determinant of X vanishes.

(2) Fix vectors y0 = 0, y1, . . . , yn ∈ ℓ2. Given any y ∈ ℓ2, the following are equivalent:
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(a) y is (uniquely) determined by the tuple of Euclidean distances (∥y∥, ∥y−y1∥, . . . , ∥y−
yn∥) ∈ Rn+1.

(b) y is in the span of y1, . . . , yn.

Proof.

(1) Denote yj := Ψ(xj) for 0 ≤ j ≤ n. Now compute, as in Equation (16.12) in the proof
of Theorem 16.10:

d(y0, yj)
2 + d(y0, yk)

2 − d(yj , yk)2 = ⟨y0 − yj , y0 − yk⟩,

so that CM ′(X) = Gram((y0 − yj)nj=1). Now CM(X) is singular if and only if so is

CM ′(X). From above and by Lemma 27.4, this happens if and only if the vectors
y0 − yj , 1 ≤ j ≤ n are linearly dependent. This completes the proof.

(2) For this part, let V ⊂ ℓ2 denote the span of the yj . First, suppose y ̸∈ V . Write
y = yV ⊕ yV ⊥ as the orthogonal decomposition of y. One verifies that for any unit
vector v ∈ V ⊥ (for instance, v = ±yV ⊥/∥yV ⊥∥), both y as well as the vector

yV ⊕ ∥yV ⊥∥v

have the same distances from every vector in V – in particular, from each of 0, y1, . . . , yn.
This shows (the contrapositive of) one implication.

Conversely, suppose y ∈ V . We show that y is uniquely determined by the distances
to the yj and to 0 – in fact, it suffices to consider the distances to a basis of V .
Thus, suppose without loss of generality that the yj are linearly independent. Let
y :=

∑n
j=1 cjyj , and let d0 := ∥y∥, dj := ∥y − yj∥. We show that the dj uniquely

determine the cj , and hence y. Indeed, a straightforward computation yields

d20 − d2j =

∥∥∥∥∥
n∑

k=1

ckyk

∥∥∥∥∥
2

−

∥∥∥∥∥
n∑

k=1

ckyk − yj

∥∥∥∥∥
2

= −∥yj∥2 + 2
n∑

k=1

ck⟨yj , yk⟩, 1 ≤ j ≤ n.

Rewriting this system of linear equations (in c = (c1, . . . , cn)) yields

Gram((yj)j)c =
1

2
(∥y∥2 + ∥yj∥2 − ∥y − yj∥2)nj=1. (27.11)

Hence, c is unique, by Lemma 27.4. □

Equipped with these preliminaries, we are now ready to proceed toward proving Menger’s
result. We first show:

Proof of Theorem 27.3.

(1) First suppose that both M,N contain the origin, and Ψ : M → N sends 0 to itself.
This is not really a constraint: if here we can show that Ψ = T |M for some orthogonal
matrix T ∈ Ok(R), then for a general isometry Ψ and an arbitrary (base)point m◦ ∈
M , the isometry

Φ :M −m◦ → Ψ(M)−Ψ(m◦), v 7→ Ψ(m◦ + v)−Ψ(m◦)

sends 0 to 0, hence equals the restriction to M of some T ∈ Ok(R). Thus,

Ψ(m) = T (m) + (Ψ(m◦)− T (m◦)), ∀m ∈M.

Therefore, we may assume without loss of generality that m◦ := 0 ∈ M ∩ N and
Ψ(0) = 0. In this case, we need to show that Ψ is the restriction toM of an orthogonal
matrix.
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Begin by isolating a basis m1, . . . ,mr ∈ M of the R-span of M . We assume
r > 0, else M is a singleton, hence so is N , and then the result is immediate. Let
yj := Ψ(mj); then

2⟨yj , yk⟩ = ∥Ψ(mj)−Ψ(0)∥2 + ∥Ψ(mk)−Ψ(0)∥2 − ∥Ψ(mj)−Ψ(mk)∥2

= ∥mj∥2 + ∥mk∥2 − ∥mj −mk∥2 = 2⟨mj ,mk⟩, ∀1 ≤ j, k ≤ r.
(27.12)

Hence, by Lemma 27.4, the yj are also linearly independent. By the same reasoning,
for any m ∈ M \ {m1, . . . ,mr} we have that the Gram matrix of m1, . . . ,mr,m is
singular, hence so is the Gram matrix of y1, . . . , yr,Ψ(m). Again, using Lemma 27.4,
the image Ψ(M) = N is contained in the R-span of {yj = Ψ(mj) : 1 ≤ j ≤ r}.

At this point, we define the linear map

T : spanR(M)→ spanR(N), mj 7→ yj ∀1 ≤ j ≤ r.

The next claim is that T ≡ Ψ on M . Indeed, given m ∈M , write

m =

r∑
j=1

cj(m)mj , Ψ(m) =

r∑
j=1

c′j(m)yj .

We now apply Proposition 27.10 to both m and Ψ(m). Since Gram((mj)j) =
Gram((yj)j) by (27.12), the computation in Equation (27.11) for both yj and mj

reveals that cj(m) = c′j(m) for all m ∈M, 1 ≤ j ≤ r. In particular,

T (m) =

r∑
j=1

cj(m)T (mj) =

r∑
j=1

c′j(m)yj = Ψ(m), ∀m ∈M

which proves the claim. Finally, we assert that T preserves lengths on spanR(M).
But this is clear by (27.12): if v :=

∑
j cjmj with all cj ∈ R, then

⟨Tv, Tv⟩ =
r∑

j,k=1

cjck⟨yj , yk⟩ =
r∑

j,k=1

cjck⟨mjmk⟩ = ⟨v, v⟩.

To conclude the proof of this part, choose orthonormal bases of the ortho-complements
in Rk of spanR(M) and spanR(N), and map one basis to another to extend T to an
orthogonal linear map on all of Rk.

(2) This is clear by the previous part: given xj , yj ∈ ℓ2 with 1 ≤ j ≤ n, such that

∥xj − xk∥ = ∥yj − yk∥, ∀1 ≤ j, k ≤ n,

choose a finite-dimensional subspace of ℓ2 which contains all xj , yj . Apply the previous
part to this subspace; modulo the translation, one has an orthogonal transformation
of this subspace, which we augment by the identity map on its ortho-complement. □

Remark 27.13. The proof of Theorem 27.3 is reminiscent of the well-known “lurking isom-
etry” method – so named by J. Ball – in bounded analytic interpolation. This involves using
Hilbert space realizations, and has numerous applications, including to the problems of Pick–
Nevanlinna and Carathéodory–Fejer, among others (see, e.g., [2, 3]), and also indirectly in
H∞ methods in control theory (see [16] and the references therein).

Finally, we use Theorem 27.3 to prove Menger’s result:
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Proof of Theorem 27.1. The “only if” part is immediate, modulo a translation in order to
map one of the points to the origin. Conversely, if X is finite, then the result is again easy.
Thus, we now assume that X is both infinite and separable. Let D := {xn : n ≥ 0} denote
a countably infinite dense subset of X and define Dn := {x0, . . . , xn} for n ≥ 0. We are
given isometric embeddings Ψn : Dn ↪→ ℓ2 for each n ≥ 2, where we assume without loss of
generality that Ψn(x0) = 0 ∀n ≥ 0. We now construct an isometric embedding : D ↪→ ℓ2,
once again sending x0 to 0.

To do so, fix and start at any integer n0 ≥ 2, say. Given n ≥ n0, we have Ψn : Dn ↪→ ℓ2

(sending x0 to 0). Now

Ψn ◦Ψ−1
n+1 : Ψn+1(Dn)→ Ψn(Dn)

is an isometry of an (n+1)-point set in ℓ2, sending 0 to 0. Extend this to an orthogonal linear
transformation on ℓ2 by (the proof of) Theorem 27.3, say Tn+1. Thus, we have “increased”
Ψn(Dn) to an isometric image of Dn+1, namely Tn+1(Ψn+1(Dn+1)), while not changing the
images of x0, x1, . . . , xn.

We now repeatedly compose the Tn, to obtain the increasing family of sets

Sn := (Tn0+1 ◦ · · · ◦ Tn−1 ◦ Tn)(Ψn(Dn)), n ≥ n0

which satisfy

0 ∈ Sn0 = Ψn0(Dn0) ⊂ Sn0+1 ⊂ Sn0+2 ⊂ · · · .

Moreover, each Sn = {y0 = 0, y1, . . . , yn} for n ≥ n0, together with an isometry : Dn → Sn,
sending xj 7→ yj for 0 ≤ j ≤ n. The union of these sets provides the desired isometric
embedding Φ : D ↪→

⋃
n Sn = limn→∞ Sn.

The final step is to apply the following standard fact from analysis, with Y = ℓ2:
Suppose (X, d), (Y, d′) are metric spaces, with Y complete. If D ⊂ X is dense, any isomet-

ric embedding Φ : D → Y extends uniquely to an isometric embedding Φ̃ : X → Y . □

27.2. Cayley–Menger determinants, simplex volumes, and Heron’s formula. It is
impossible to discuss Cayley–Menger matrices CM(X) without explaining their true content:
their connection to the squared volume of the simplex with vertices the elements of X.

Theorem 27.14. Suppose n ≥ 1 and X = {x0, . . . , xn} ⊂ Rn. Then the volume Vn(X) of
the (n+ 1)-simplex with vertices xj satisfies

Vn(X)2 =
(−1)n+1 detCM(X)

2n(n!)2
=

detCM ′(X)

2n(n!)2
.

As a special case, if the points xj are affine linearly dependent, then the volume of the
corresponding simplex is zero, as is the determinant by Cayley’s proposition 27.10.

Corollary 27.15. For all finite subsets X of Euclidean (or Hilbert) space, detCM ′(X) ≥ 0.

Remarkably, Theorem 27.14 can be proved using only determinants (and a bit of visual
geometry). Variants of the following proof can be found in several sources, including online.

Proof of Theorem 27.14. This proof is split into two parts. In the first part, we show the
“usual/Cartesian” description of the volume of the simplex via determinants. Recall that the
n-volume of a simplex in Rn having n+1 vertices is obtained inductively, by integrating the
area of cross section as one goes from the base (which is a simplex in Rn−1 with n vertices) to
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the apex/remaining vertex along an “altitude” of height hn. An easy undergraduate calculus
exercise reveals that if the base has (n− 1)-volume Vn−1, then

Vn =
hnVn−1

n
.

One can now proceed inductively. Thus, let h1 denote the length ∥x0 − x1∥, let h2 denote
the “height” of x2 “above” the segment joining x0, x1 (so it can be written as the norm of a
suitable orthogonal complement), and so on. Then,

Vn(X) =
1

n!
hnhn−1 · · ·h1.

We now show that this product expression equals (up to sign) a determinant. Write

xj := (x
(1)
j , . . . , x

(n)
j )T ∈ Rn, 0 ≤ j ≤ n

and claim that up to a sign,

1

n!
hnhn−1 · · ·h1 = ±

1

n!
det(A), where A := (x

(k)
j − x

(k)
0 )nj,k=1. (27.16)

To show the claim, note that working with A essentially amounts to assuming x0 = 0. Choos-
ing a suitable orthonormal basis (i.e., by applying a suitable orthogonal transformation), we
may further assume that x1, . . . , xn−1 ∈ Rn−1 – i.e., the final column of A has all entries zero
except at most the (n, n) entry. Now the final row of A, which denotes the vector xn − x0,
may be replaced by its orthogonal complement to the span of {xj − x0 : j < n} without
changing the determinant, and so we obtain (up to a sign) the height hn – and in the nth
coordinate since xj − x0 ∈ Rn−1 for j < n. This scalar can be taken out of the determinant
and we are now left with the determinant of an (n− 1)× (n− 1) matrix.

Applying the same arguments for xj − x0 with j ≤ n− 2 now, we obtain hn−1, and so on.
Proceeding by downward induction (and taking the absolute value), we obtain (27.16).

The second step is now easy: square the identity in the first step, to get:

Vn(X)2 =
1

(n!)2
(detA)(detAT ) =

detAAT

(n!)2
.

But AAT is precisely the Gram matrix of the vectors {xj − x0 : 1 ≤ j ≤ n} – which has
(j, k)-entry

⟨xj − x0, xk − x0⟩ =
1

2
(d2j0 + d2k0 − d2jk)

as in Equation (16.12). Hence AAT = 2−1CM ′(X), so that

Vn(x)
2 =

detCM ′(X)

2n(n!)2
.

The proof is complete by Equation (27.9). □

As a special case, this result leads to a well-known formula from two thousand years ago:

Corollary 27.17 (Heron’s formula). A (Euclidean) triangle with edge lengths a, b, c and

semi-perimeter s = 1
2(a+ b+ c) has area

√
s(s− a)(s− b)(s− c).
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Proof. Explicitly expand the determinant in Theorem 27.14 for n = 2, to obtain:

V 2
2 =

−1
16

det


0 a2 b2 1
a2 0 c2 1
b2 c2 0 1
1 1 1 0

 =
−1
16

(−(a+ b+ c)(a+ b− c)(b+ c− a)(c+ a− b)) ,

and this is precisely s(s− a)(s− b)(s− c). □

27.3. Complements: completely monotone functions and distance transforms. In
parallel to the use of absolutely monotone functions earlier in this text – to characterize
positivity preservers of kernels on infinite domains (or all finite domains) – we present here
a related result by Ressel that features completely monotone functions. We then provide a
sampling of early results in metric geometry, again by Schoenberg, that feature such functions.

Definition 27.18. A function f : (0,∞) → R is completely monotone if f is smooth and

(−1)kf (k) is non-negative on (0,∞) for all k ≥ 0. A continuous function f : [0,∞) → R is
completely monotone if the restriction of f to (0,∞) is completely monotone.

For instance, x−α for α ≤ 0 is completely monotone on (0,∞).
We start with two results which are easily reformulated in the language of kernels:

(1) In his 1974 paper [297], Ressel characterized the functions that are positive definite in
a different sense: given an abelian semigroup (S,+), a function f : S → R is said to be
positive semidefinite if f is bounded and for any finite set of elements s1, . . . , sn ∈ S,
the matrix (f(sj + sk))

n
j,k=1 is positive semidefinite. Ressel then showed for all p ≥ 1

that the continuous and positive semidefinite functions on the semigroup [0,∞)p are
precisely Laplace transforms of finite non-negative Borel measures on [0,∞)p. In
particular, for p = 1, this is further equivalent – by a result attributed to Bernstein,
Hausdorff, and Widder – to f being completely monotone on [0,∞).

(2) A related result to this was shown by Schoenberg [316] in Ann. of Math. (1938). It
says that a continuous function f : [0,∞) → R satisfies the property that for all
integers m,n ≥ 1 and vectors x1, . . . , xm ∈ Rn, the matrix (f(∥xj − xk∥2))mj,k=1 is
positive semidefinite, if and only if f is completely monotone – i.e., as mentioned in
the previous part, there exists a finite non-negative measure µ on [0,∞), such that

f(x) =

∫ ∞

0
exp(−xt) dµ(t), ∀x ≥ 0.

Completely monotone functions also feature in the study of metric “endomorphisms” of
Euclidean spaces. For instance, Schoenberg proved (in the aforementioned 1938 paper):

Theorem 27.19. Given a continuous map f : [0,∞)→ [0,∞), the following are equivalent:

(1) For all integers m,n ≥ 1 and vectors x1, . . . , xm ∈ Rn, the matrix (f(∥xj −xk∥))mj,k=1

is Euclidean – i.e., {xj} with the metric f ◦ ∥ · ∥ isometrically embeds into ℓ2.

(2) We have f(0) = 0 and the function d
dx(f(

√
x)2) is completely monotone on (0,∞).

This result and paper are part of Schoenberg’s program [313, 316, 317, 318, 355] to under-
stand the transforms taking distance matrices from Euclidean space En of one dimension n,
isometrically to those from another, say Em. Schoenberg denoted this problem by {En;Em},
with 1 ≤ m,n ≤ ∞, where E∞ ∼= ℓ2 is Hilbert space. Schoenberg showed:



172 27. Appendix E. Menger’s results and Euclidean distance geometry.

(1) If n > m, then {En;Em} is given by only the trivial function f(t) ≡ 0. Indeed, first
observe by induction on n that the only Euclidean configuration of n+ 1 points that
are equidistant from one another is an “equilateral” (n+1)-simplex ∆ in Rn (or En),
hence in any higher-dimensional Euclidean space – and this cannot exist in Rn−1,
hence not in Rm for m < n. If now f(x0) ̸= 0 for some x0 > 0, then applying f to the
distance matrix between vertices of the rescaled simplex x0∆ ⊂ Rn, produces n + 1
equidistant points in Rm, which is not possible if 1 ≤ m < n.

(2) If 2 ≤ n ≤ m < ∞, then {En;Em} consists only of the homotheties f(x) = cx for
some c ≥ 0. (With von Neumann in 1941 [355], Schoenberg then extended this to
answer the question for n = 1 ≤ m ≤ ∞.) Schoenberg also provided answers for
{E2;E∞}.

(3) The solution to the problem {E∞;E∞} is precisely the content of Theorem 27.19.

As a special case of Theorem 27.19, all powers δ ∈ (0, 1) of the Euclidean metric embed into
Euclidean space. We provide an alternate proof using the above results on metric geometry.

Corollary 27.20 (Schoenberg, [315, 316]). Hilbert space ℓ2, with the metric ∥x−y∥δ, embeds
isometrically in “usual” ℓ2 for any δ ∈ (0, 1).

This was shown in 1936 by Blumenthal in Duke Math. J. [52] for four-point subsets of ℓ2

and δ ∈ (0, 1/2). Schoenberg extended this to all finite sets.

Proof. As observed by Schoenberg in [315], it suffices to show the result for (n+ 1)-element
subsets {x0, . . . , xn} ⊂ ℓ2, by Menger’s theorem 27.1. Now note that for c > 0, the function
g(u) := (1−e−cu)/u is bounded and continuous on (0, 1], hence admits a continuous extension
to [0, 1]. Since u−δ is integrable in (0, 1], so is the product

φ : (0, 1]→ R, u 7→ u−1−δ(1− e−cu).

Clearly, φ : [1,∞)→ R is also integrable, being continuous, non-negative, and bounded above
by u−1−δ. By changing variables, we obtain a normalization constant cδ > 0, such that

t2δ = cδ

∫ ∞

0
(1− e−λ2t2)λ−1−2δ dλ, ∀t > 0.

Set t := ∥xj − xk∥, and let u = (u0, . . . , un)
T ∈ Rn+1 with

∑
j uj = 0. Then,

n∑
j,k=0

ujuk∥xj − xk∥2δ = cδ

∫ ∞

0

 n∑
j,k=0

ujuk(1− e−λ2∥xj−xk∥2)

λ−1−2δ dλ.

But the double-sum inside the integrand equals −
∑

j,k ujuke
−λ2∥xj−xk∥2 , and this is non-

positive by Theorem 16.17. It follows that the matrix (−(∥xj − xk∥δ)2)nj,k=0 is conditionally
positive semidefinite, and so we are done by Theorem 16.10 and Lemma 16.13. □
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Bibliographic notes and references

Lemma 16.1 is taken from the well-known monograph [289] by Pólya and Szegő. Theo-
rems 16.2, 16.3, 16.4, 16.5, 16.6, and 16.7, classifying the dimension-free entrywise positivity
preservers on various domains, are due to Schoenberg [318], Rudin [306], Vasudeva [353],
Herz [170], and Christensen and Ressel [82, 83], respectively. The theorems of Schoenberg
and Rudin and Vasudeva were recently shown by Belton–Guillot–Khare–Putinar in [30] using
significantly smaller test sets than all positive semidefinite matrices of all sizes; proving these
results is the main focus of this part. These results turn out to be further useful in Part 4,
in fully classifying the total positivity preservers on bi-infinite domains.

Loewner’s theorem 16.8 on operator/matrix monotone functions is from [240]; see also
Donoghue’s book [103], as well as the recent monograph by Simon [338] that contains a
dozen different proofs.

The results in distance geometry are but a sampling from the numerous works of Schoen-
berg. Theorem 16.10, relating Euclidean embedding of a metric and the conditional neg-
ativity of the corresponding squared-distance matrix, is from [313], following then-recent
works by Menger [258, 259, 260] and Fréchet [131]. Schoenberg’s theorem 16.17 (respectively,
Proposition 16.19), characterizing Hilbert space (respectively, the Hilbert sphere) in terms of
positive definiteness of the Gaussian family (respectively, the cosine), is from [317] (respec-
tively, from [313]). We point out that Schoenberg proved these results more generally for
separable (not just finite) metric spaces, as discussed in Section 27. See also Schoenberg’s
paper [316] and another with von Neumann [355] (and its related work [223] by Kolmogorov).
For the works of Bochner in this context, we restrict ourselves to mentioning [56, 57]. Theo-
rems 16.20 and 16.24 by Schoenberg on positive definite functions on spheres are from [318].
Also, see the survey [346] of positive definite functions by James Drewry Stewart (who is
perhaps somewhat better known for his series of calculus textbooks).

While Schoenberg’s motivations in arriving at his theorem lay in metric geometry, as
described above, Rudin’s motivations were from Fourier analysis. More precisely, Rudin was
studying functions operating on spaces of Fourier transforms of L1 functions on groups G,
or of measures on G. Here, G is a locally compact abelian group equipped with its Haar
measure; Rudin worked with the torus G = T, while Kahane and Katznelson worked with
its dual group Z. These authors together with Helson proved [164] a remarkable result in
a converse direction to Wiener–Levy theory, in Acta Math. 1959. That same year, Rudin
showed Schoenberg’s theorem without the continuity hypothesis, i.e., Theorem 16.3. For
more details on this part, on the metric geometric motivations of Schoenberg, and other
topics, the reader is referred to the detailed recent twin surveys of Belton–Guillot–Khare–
Putinar [27, 28].

The Horn–Loewner Theorem 17.1 (in a special case) originally appeared in Horn’s pa-
per [182], where he attributes it to Loewner. The theorem has since been extended by the
author (jointly) in various ways; see, e.g., [30, 155]; a common, overarching generalization of
these and other variants has been achieved in [214]. Horn–Loewner’s determinant calculation
in Proposition 17.5 was also extended to Proposition 17.8 by Khare [214]. The second, direct
proof of Theorem 17.1 is essentially due to Vasudeva [353].

Mollifiers were introduced by Friedrichs [132], following the famous paper of Sobolev [343],
and their basic properties can be found in standard textbooks in analysis, as can Cauchy’s
mean value theorem for divided differences. The remainder of the proof of the stronger
Horn–Loewner theorem is from [182], and the Boas–Widder theorem 18.10(2) is from [55].
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Bernstein’s theorem 19.3 is from his well-known memoir on absolutely monotone func-
tions [44]; see also Widder’s textbook [370]. Boas’ theorem 19.9 on the analyticity of smooth
functions with SSR (strictly sign regular) derivatives is from [54]. Hamburger’s theorem 19.14
is a folklore result, found in standard reference books – see, e.g., [8, 310, 335]. The remainder
of Section 19 is from Belton–Guillot–Khare–Putinar [30]. Section 20 is taken from the same
paper, with the exception of Theorem 20.11 which is new, as are “Proofs 1 and 2” of the
existence of a positivity certificate/limiting sum-of-squares representation for (1± t)(1− t2)n.
The former proof cites a result by Berg–Christensen–Ressel [39], and the latter, direct proof,
is new.

Sections 21 and 22 are again from [30], save for the standard Identity Theorem 21.4, and
Proposition 21.2 on the closure of real analytic functions under composition; these can be
found in, e.g., [227]. The complex analysis basics, including Montel and Morera’s theorems,
can be found in standard textbooks; we cite [88]. The multivariate Schoenberg–Rudin the-
orem was proved by FitzGerald, Micchelli, and Pinkus in [124], and subsequently, under
significantly weaker hypotheses in [30].

Appendix A on the Boas–Widder theorem is from [55] except for the initial observations.
Boas and Widder mention Popoviciu [290] had proved the same result previously, using un-
equally spaced difference operators. The very last “calculus” Proposition 23.12 can be found
in standard textbooks. Appendix B, classifying the dimension-free preservers of positivity
when not acting on diagonal blocks, is from the recent work of Vishwakarma [354], with the
exception of the textbook Proposition 24.4, and Theorem 24.1 by Guillot–Rajaratnam [157].

Theorems 26.1 and 26.2 in Appendix D, understanding and relating the Loewner positive,
monotone, and convex maps, were originally proved without rank constraints on the test sets,
by Hiai in [171]. Lemma 26.3 is partly taken from [171] and partly from Rockafellar’s book
– see [302, Theorems 24.1 and 25.3]. The remainder of Section 26 (i.e., Appendix D), as well
as Section 25 (i.e., Appendix C), are taken from Belton–Guillot–Khare–Putinar [32].

Theorem 27.1 is due to Menger [258]. Theorem 27.2 comes from various works of Schoen-
berg on metric geometry (cited on the preceding page). Theorem 27.3 was already known
to experts at the time; we cite here Birkhoff’s famous paper [50]. The first part of Proposi-
tion 27.10 was shown by Cayley [78], and features Cayley–Menger determinants. The proof
of Theorem 27.14 can be found in numerous sources, including online. The results in Sec-
tion 27.3 are taken from the sources mentioned in it (e.g., the proof of Corollary 27.20).
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28. Totally non-negative functions of finite order.

In this part and the next, we approach the preserver problem in the above settings through
a more classical viewpoint: that of spaces of kernels and their endomorphisms. The material
in this part of the text is drawn primarily from the work of Schoenberg and his coauthors
(as well as its account in Karlin’s monograph), and a few recent preprints, all from 2020.

We begin by describing this part of the text and the next. We are interested in character-
izing the preservers of totally non-negative or totally positive kernels, on X ×Y for arbitrary
totally ordered sets X,Y . The case of X,Y finite was studied in Part 2, and if |X|, |Y | ≥ 2,
the only such functions – up to rescaling – are powers. Next, if exactly one of X,Y is finite, a
workaround can be achieved by using a generalization of Whitney’s density theorem 6.7; we
show this in Section 40. The difficulty lies in the remaining case: classifying the total posi-
tivity preservers for kernels on X × Y when both X,Y are infinite. In this case, the families
of kernels we have encountered so far, do not suffice to yield a complete classification.

Thus, we begin by relaxing our goal, to classifying such preservers for structured kernels, on
specific domains. Our first goal is to study the inner transforms of TN/TP Toeplitz kernels
on R × R. This is not an arbitrary choice: indeed, such kernels have long been studied in
the analysis literature, under the name of Pólya frequency functions, and so it is natural to
study this test set – as well as the related Pólya frequency sequences – and to understand the
endomorphisms of these classes. This understanding is achieved in the next part of the text.

The class of Pólya frequency functions is fundamental to time-frequency analysis and to
interpolation theory, the latter via splines (a subject which begins with many papers by
Schoenberg and his coauthors). Pólya frequency functions possess beautiful properties that
were established by Schoenberg and others in the twentieth century, and that allow us to
exploit tools from harmonic analysis to try and classify their preservers. Looking ahead (and
using these tools), we will find that Toeplitz TN kernels turn out to be quite rigid, and
the results in the next few sections will help resolve – again in the next part – the original
problem, of classifying the TN/TP kernel preservers on arbitrary domains. (See Section 40.)

Thus, a roadmap of this part and the next: We begin by discussing some preliminaries on
Pólya frequency (PF) functions and sequences, including the variation diminishing property
and its history. This is followed by a selection of results from the landmark paper of Schoen-
berg in J. d’Analyse Math. (1951), which establishes a host of properties of PF functions
and surveys the development of the subject until that point. (Following Schoenberg’s papers,
Karlin’s book also develops the theory comprehensively.) We also discuss several examples
of PF functions and sequences. We next discuss several classical results on root-location, the
Laguerre–Pólya class of entire functions, and its connection to both Pólya frequency func-
tions as well as the Pólya–Schur theory of multiplier sequences (and some well-known modern
achievements). Finally, we discuss very recent results (2020) on TNp functions. This part
can be read from scratch, requiring only Sections 6 and 12.1 and Lemma 26.3 when invoked.

In the next part: in Section 36 we will see results of Schoenberg and Karlin (and a con-
verse to the latter) which reveal a ‘critical exponent’ phenomenon in total positivity, akin to
Section 9. In Sections 37 and 38, we prove a host of classification results on preservers: of
Pólya frequency functions and sequences, one-sided variants, and other structured Toeplitz
kernels on various sub-domains of R. In Section 39, we classify the preservers of TN and TP
Hankel kernels. Finally, these results all come together in Section 40, along with discretiza-
tion techniques and set-theoretic embedding arguments, to solve the overarching problem of
classifying the preservers of totally positive kernels on all totally ordered domains.
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28.1. TN2 functions – basic properties. We begin with notation.

Definition 28.1. Given an integer p ≥ 1, we term a function f : R→ R totally non-negative
of order p, or TNp, if f is Lebesgue measurable and the associated Toeplitz kernel

Tf : R× R→ R, (x, y) 7→ f(x− y) (28.2)

is TNp (see Definition 5.10). We will say f is totally non-negative, or TN , if f is Lebesgue
measurable and Tf is TN . This definition extends to Tf : X × Y → R (where X,Y ⊂ R) if
f is only defined on the Minkowski difference X − Y ⊂ R.

We discuss examples in the next section; first, we explore basic properties of these functions.

Lemma 28.3. Suppose p ≥ 1 is an integer, and f : R → R is a TNp function. Then
cf(ax+ b) and ceaxf(x) are also TNp functions, for any a, b ∈ R and c ≥ 0.

Proof. The first part is left as an exercise to the reader, noting if a < 0 that (the sign of) a
determinant remains unchanged upon reversing all rows as well as columns. For the second
part, if x,y ∈ Rr,↑ for 1 ≤ r ≤ p (see Definition 25.1), and g(x) := ceaxf(x), then

Tg[x;y] = diag(ceaxj )rj=1Tf [x;y] diag(e
−ayk)rk=1,

and hence detTg[x;y] ≥ 0 by the hypotheses. □

The following result reveals the nature of TN2 functions over symmetric intervals:

Theorem 28.4. Suppose an interval J ⊂ R contains the origin and has positive length, and
f : J − J → R is Lebesgue measurable. The following are equivalent:

(1) There exists an interval I ⊂ J − J such that f is positive on I and vanishes outside
I, and log(f) is concave on I.

(2) f is TN2, i.e., given a < b and c < d in J , the matrix

(
f(a− c) f(a− d)
f(b− c) f(b− d)

)
is TN .

If so, f is continuous in the interior of I, so discontinuous in J − J at most at two points.

The proof uses a preliminary fact on concave functions:

Lemma 28.5. Suppose p < q are real numbers and g : [p, q]→ R is concave. If p ≤ r ≤ s ≤ q
and r + s = p+ q, then g(r) + g(s) ≥ g(p) + g(q).

Proof. Suppose for some λ ∈ [0, 1] that r = λp + (1 − λ)q; then s = (1 − λ)p + λq. Now
concavity implies:

g(r) ≥ λg(p) + (1− λ)g(q), g(s) ≥ (1− λ)g(p) + λg(q).

Adding these inequalities, we are done. □

Proof of Theorem 28.4. First if f is non-zero at most at one point then the result is clear, so
assume throughout this proof that f is non-zero at least at two points. Suppose (1) holds,
and a < b and c < d index the rows and columns of a ‘2×2 submatrix’ drawn from the kernel

Tf on J × J . By the hypotheses, all entries of the matrix M :=

(
f(a− c) f(a− d)
f(b− c) f(b− d)

)
are

non-negative. Also,
a− c, b− d ∈ (a− d, b− c).

Now there are several cases. If either a− c or b− d lie outside I, then M has a zero row or
zero column, whence it is TN2. Otherwise a− c, b− d ∈ I. If now a− d or b− c lie outside I
thenM is a triangular matrix, hence TN2. Else we may suppose all entries ofM are positive.
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Now the above ordering and the concavity of log(f) easily imply via Lemma 28.5 (applied to
g = log(f), p = a− d, q = b− c) that det(M) ≥ 0. This proves (1) =⇒ (2).

Conversely, suppose (2) holds, so that f ≥ 0 on J − J , and suppose f(x0) > 0. First fix
δ > 0 such that either [0, δ) or (−δ, 0] is contained in J . We now claim that if f vanishes at
x1 > x0 (respectively, x2 < x0), then it vanishes on the intersection of J − J with [x1,∞)
(respectively, with (−∞, x2]). We only show this for x1 > x0; note moreover that it suffices
to show this for y ∈ (x1, x1 + δ) ∩ (J − J). If (−δ, 0] ⊂ J , consider the TN2 submatrix

Tf [(x0, x1); (x1 − y, 0)] =
(
f(x0 − x1 + y) f(x0)

f(y) f(x1)

)
,

where we note that x0 − x1 + y ∈ (x0, y) ⊂ J − J . If instead [0, δ) ⊂ J , then

Tf [(x0 − x1 + y, y); (0, y − x1)] =
(
f(x0 − x1 + y) f(x0)

f(y) f(x1)

)
yields the same TN2 submatrix. In both cases, taking determinants gives: −f(x0)f(y) ≥ 0,
and since f(x0) > 0, the claim follows. This shows the existence of an interval I ⊂ J − J of
positive measure, such that f > 0 on I and f ≡ 0 outside I.

We next claim that − log(f) is mid-convex on I. Indeed, given y − ϵ < y < y + ϵ in I, it

suffices to show f(y) ≥
√
f(y + ϵ)f(y − ϵ). The following argument owes its intuition to the

theory of discrete-time Markov chains on a finite state space, but can also be made direct.
Begin by defining n0 := 2⌈ϵ/δ⌉; thus ϵ/n0 ∈ (0, δ). Set zk := f(y + kϵ/n0) for −n0 ≤ k ≤ n0;
since all arguments lie in I, zk > 0 ∀k. There are now two cases: if (−δ, 0] ⊂ J , then

0 ≤ detTf [(y − (k + 1)ϵ/n0, y − kϵ/n0); (−ϵ/n0, 0)] = z2k − zk−1zk+1, ∀ − n0 < k < n0.

If instead [0, δ) ⊂ J , use 0 ≤ detTf [(y−kϵ/n0, y− (k− 1)ϵ/n0); (0, ϵ/n0)] for the same values
of k. Thus, it follows that zk ≥

√
zk−1zk+1 for −n0 < k < n0. Now one shows inductively:

z0 ≥ (z1z−1)
1/2 ≥ (z2z

2
0z−2)

1/4 ≥ · · · ≥
n0∏
j=0

z
(n0

j )/2
n0

2j−n0
≥ · · ·

Note at each step that the powers of z±n0 are not touched, while all remaining terms zγk are

lower-bounded by
√
zk−1zk+1

γ/2. Now think of each step as a (positive) integer time t > 0,
and consider the exponents at each step. These give a probability distribution πt on the set
S := {−n0, . . . , 0, 1, . . . , n0}. This is a well-studied model in probability theory: the simple
random walk with absorbing barriers ±n0, on the state space S. In particular, this is the
Markov chain called the symmetric gambler’s ruin. Specifically, the transition probabilities
are ±1/2 to go from a non-absorbing state −n0 < k < n0 are ±1/2 to k± 1. Denoting by πt
the probability distribution on S at each time point t ∈ Z≥0, we thus obtain:

z0 ≥
n0∏

j=−n0

z
πt(j)
j , t = 0, 1, 2, . . . .

Moreover, each πt has equal mass at ±n0, so the same holds as t → ∞. Now by Markov
chain theory, the limiting probability distribution as t→∞ exists and has mass only at the
absorbing states ±n0. As these masses must be equal, we obtain by translating back:

f(y) = z0 ≥
√
z−n0zn0 =

√
f(y − ϵ)f(y + ϵ).

In this special case, the argument can be made direct as well; here is a sketch. Let
ct :=

∑n0−1
j=−(n0−1) πt(j) for t = 1, 2, . . . . If −n0 < j < n0, then after 2n0 − 1 steps, the power
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z
πt(j)
j will ‘contribute’ at least z

πt(j)/2n0+j

−n0
or z

πt(j)/2n0−j

n0 . From this it follows that

ct+2n0−1 ≤ ct(1− 21−n0), ∀t ∈ Z≥0

via the AM–GM inequality. Choosing t = m(2n0 − 1) for m = 0, 1, . . . , and recalling that
πt(−n0) = πt(n0) for all t, we have the desired conclusion as m→∞.

Thus − log(f) is mid-convex on I. Moreover, − log(f) is Lebesgue measurable on I by
assumption, so Theorem 12.4 implies − log(f), hence f , is continuous on the interior of I.
(This shows the final assertion.) In particular, a continuous mid-convex function is convex,
so that − log(f) is convex in the interior of I. To show it is convex on I, it remains to show:

log f(λa+ (1− λ)b) ≥ λ log f(a) + (1− λ) log f(b), ∀λ ∈ (0, 1), a, b ∈ I. (28.6)

To show this, approximate λ by a sequence of dyadic rationals λn ∈ (0, 1), and note by
mid-concavity/mid-convexity that

log f(λna+ (1− λn)b) ≥ λn log f(a) + (1− λn) log f(b), ∀n ≥ 1.

Since λn, λ ∈ (0, 1), the arguments on the left are always in the interior of I, where f is
positive and continuous. Thus, the preceding inequality shows (28.6) as n→∞. □

An immediate consequence of Theorem 28.4 is:

Corollary 28.7. If 0 ∈ J ⊂ R is as in Theorem 28.4, and functions f, g : J − J → R are
TN2, then so are f · g and fα for α ≥ 0.

This follows from the fact that log(f) + log(g), α log(f) are concave if log(f), log(g) are.
We now revert to the ‘classical’ setting of TN2 functions, i.e., f : R→ R. These functions

decay exponentially at infinity, except for the exponentials themselves:

Proposition 28.8. Suppose f : R → R is TN2 (whence measurable), and has unbounded
support. Then either f(x) = eax+b for suitable scalars a, b ∈ R, or there exists γ ∈ R such that
the TN2 function e−γxf(x) tends to zero exponentially fast as |x| → ∞, whence is integrable.

Proof. Via Theorem 28.4, let I denote the largest interval on which f is positive, and set
g(x) := log f(x). We show the result for I = R; the proof is similar (but easier) for other I.
First note that −g(x) is convex on I. Now recall Lemma 26.3: g′ exists on a co-countable,
dense subset of I, and g′± exist and are non-increasing on the interior of I (whence have only
jump discontinuities).

Suppose g(x) is not linear (i.e., f(x) is not of the form eax+b). Then g′+ is not constant
on I, so there exist points x1 < x2 in I such that g′(x1) > g′(x2). It follows that there exist
constants c1, c2 ∈ R satisfying:

log f(x) ≤ g′(xj)x+ cj , j = 1, 2.

Choose γ ∈ (g′(x2), g
′(x1)). Then,

log f(x)− γx ≤

{
(g′(x1)− γ)x+ c1, x ∈ I ∩ (−∞, 0),
(g′(x2)− γ)x+ c2, x ∈ I ∩ (0,∞).

Now exponentiating both sides gives the result. □
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28.2. Classification of TNp functions for higher p. The preceding subsection saw a char-
acterization of TN2 functions, by Schoenberg (1951). It has taken longer to obtain a char-
acterization for TNp functions for p ≥ 3. (A 1983 result in Appl. Anal. of Weinberger [365]
toward characterizing TN3 functions has a small gap; see Section 35.) We conclude this
section by showing such a characterization: to check if a non-negative function is TNp (with
some decay properties), it suffices to check the signs of all p× p minors, but no smaller ones.
Remarkably, such a result was discovered only in 2020, leading to a characterization (by this
author) in a subsequent preprint. We begin with the earlier result, for integrable functions:

Lemma 28.9 (Förster–Kieburg–Kösters, [128]). Suppose f : R → [0,∞) is integrable and
every p × p matrix (f(xj − yk))pj,k=1 has non-negative determinant, for x,y ∈ Rp,↑. Then f
is TNp.

Notice that not every TNp (or even TN) function is integrable – for instance, eax+b, which
is a TN function by Lemma 28.3 since f(x) ≡ 1 is TN . Thus, Lemma 28.9 cannot characterize
the TNp functions. However, we shall presently see a characterization result along these lines,
among other variants of Lemma 28.9. As a first variant, the result can be extended to hold
for more general domains X,Y ⊂ R, and for functions that merely decay, and at one of ±∞:

Proposition 28.10. Fix scalars t∗, ρ ∈ R and a subset Y ⊂ R unbounded above. Suppose
X ⊂ R contains t∗ + y for all ρ < y ∈ Y . Let f : X − Y → [0,∞) be such that f(t∗) > 0 and

lim
y∈Y, ρ<y→∞

f(x0 − y)f(t∗ + y − y0) = 0, ∀x0 ∈ X, y0 ∈ Y.

If detTf [x;y] ≥ 0 ∀x ∈ Xp,↑,y ∈ Y p,↑, then the Toeplitz kernel Tf is TNp on X × Y .

Lemma 28.9 is the special case X = Y = R, where ρ ∈ R is arbitrary and t∗ ∈ R any value
at which f : R → R is non-zero. (If no such t∗ exists, i.e., f ≡ 0, the result is immediate.)
Thus it applies to detect “Pólya frequency functions of order p” (i.e., integrable TNp functions
on R). Proposition 28.10 is more general in two ways: first, it also specializes to other domains
– for instance, X = Y = Z, i.e., to detect “Pólya frequency sequences of order p” that vanish
at ±∞ (with t∗ an integer). More generally, one can specialize to X = Y = G, for any
additive subgroup G ⊂ (R,+). Second, Proposition 28.10 can accommodate non-integrable

functions such as ex−|x| (which is seen to be TN in (32.14) below).

Proof. It suffices to show that if detTf [x;y] ≥ 0 for all x ∈ Xp,↑ and y ∈ Y p,↑, then the same

condition holds for all x′ ∈ Xp−1,↑ and y′ ∈ Y p−1,↑. Thus, fix such x′,y′. We are to show

ψ(xp, yp) := detTf [(x
′, xp); (y

′, yp)] ≥ 0 ∀xp > xp−1, yp > yp−1 =⇒ detTf [x
′;y′] ≥ 0.

To see why, first define the (p − 1) × (p − 1) matrix A := Tf [x
′;y′] and A(j,k) to be the

submatrix of A with the jth row and kth column removed. Note that the following maximum
does not depend on xp, yp:

L := max
1≤j,k≤p−1

|detA(j,k)| ≥ 0.

Next, given m ≥ 1, define tm ∈ Y such that tm > t0 := max{xp−1 − t∗, yp−1, ρ} and
f(xj − tm)f(t∗ + tm − yk) < 1/m, ∀0 < j, k < p.

We now turn to the proof. Expand the determinant ψ(xp, yp) along the last column, and
apart from the cofactor for (p, p), expand every other cofactor along the last row. This yields:

ψ(xp, yp) = f(xp − yp) det(A) +
p−1∑
j,k=1

(−1)j+k−1f(xj − yp)f(xp − yk) detA(j,k).
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Given t∗ as above, and m ≥ 1, let

y(m)
p := tm ∈ Y, x(m)

p := t∗ + tm ∈ X.

Then x
(m)
p > xp−1 and y

(m)
p > yp−1, and ψ(x

(m)
p , y

(m)
p ) ≥ 0 by the hypotheses, so from above,

f(t∗) det(A) ≥ ψ(x(m)
p , y(m)

p )− L
p−1∑
j,k=1

f(xj − y(m)
p )f(x(m)

p − yk) ≥ −L
(p− 1)2

m
.

As this holds for all m ≥ 1, we have det(A) = detTf [x
′;y′] ≥ 0, as desired. □

This result specializes to provide a characterization of TNp kernels for arbitrary p ≥ 2:

Corollary 28.11. Given f : R→ [0,∞) and an integer p ≥ 2, the following are equivalent:

(1) Either f(x) = eax+b for a, b ∈ R, or: (a) f is Lebesgue measurable; (b) for all
x0, y0 ∈ R, f(x0 − y)f(y − y0)→ 0 as y →∞; and (c) detTf [x;y] ≥ 0 ∀x,y ∈ Rp,↑.

(2) The function f : R→ R is TNp.

This result improves on Lemma 28.9 in that not every TNp function is integrable or an

exponential eax+b. For example, we will see in (32.14) below such a function, when αβ < 0.

Proof. The result is obvious for f ≡ 0 on R, so we assume henceforth that this is not the
case. That (1)(a)–(c) =⇒ (2) is now immediate from Proposition 28.10, specialized to
X = Y = R and arbitrary ρ ∈ R. If instead f(x) = eax+b, then by Lemma 28.3 it is TN
because the constant function f ≡ 1 is obviously TN .

Conversely, suppose (2) holds and f(x) is not of the form eax+b. Now (1)(a) and (1)(c)
are immediate; if the support of f is bounded, then (1)(b) is also immediate. Otherwise f is
TN2 with support R, whence by the proof of Proposition 28.8, there exist β, γ ∈ R and δ > 0
such that e−γxf(x) < eβ−δ|x|. Now a straightforward computation shows (1)(b). □

We conclude this section with another variant for arbitrary positive-valued kernels on
X × Y , for arbitrary X,Y ⊂ R:

Proposition 28.12. Fix nonempty subsets X,Y ⊂ R, and suppose a kernel K : X × Y →
(0,∞) satisfies one of the following four decay conditions:

supY ̸∈ Y, lim
y∈Y, y→(supY )−

K(x0, y) = 0, ∀x0 ∈ X,

inf Y ̸∈ Y, lim
y∈Y, y→(inf Y )+

K(x0, y) = 0, ∀x0 ∈ X,

supX ̸∈ X, lim
x∈X, x→(supX)−

K(x, y0) = 0, ∀y0 ∈ Y,

infX ̸∈ X, lim
x∈X, x→(inf X)+

K(x, y0) = 0, ∀y0 ∈ Y.

Then the following are equivalent for an integer p ≥ 2:

(1) Every p× p minor of K is non-negative.
(2) K is TNp on X × Y .

Proof. Clearly (2) =⇒ (1); conversely, it suffices to show by induction that detK[x′;y′] ≥ 0
for x′ ∈ Xp−1,↑ and y′ ∈ Y p−1,↑. We show this under the last of the four assumptions; the
other cases are similar to the following proof and to the proof of Proposition 28.10. Thus, let

x′ = (x2, . . . , xp), y′ = (y2, . . . , yp)
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and y1 < y2, y1 ∈ Y be fixed. Let A := K[x′;y′]; thus the maximum

L := max
1≤j,k≤p−1

|detA(j,k)| ≥ 0.

Next, construct a sequence x
(m)
1 ∈ X, m ≥ 1 such that x

(m)
1 < x2 and

K(x
(m)
1 , yk) < 1/m, ∀k = 2, . . . , p.

Now compute as in the proof of Proposition 28.10:

K(x
(m)
1 , y1) det(A) ≥ detK[(x

(m)
1 ,x′); (y1,y

′)]− L
p∑

j,k=2

K(xj , y1)K(x
(m)
1 , yk)

≥ detK[(x
(m)
1 ,x′); (y1,y

′)]− L(p− 1)

m

p∑
j=2

K(xj , y1),

where we expand the determinant along the first row and column. Since the first term on the
right is non-negative, and K > 0 on X×Y , taking m→∞ shows det(A) ≥ 0, as desired. □
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29. Pólya frequency functions. The variation diminishing and sign
non-reversal properties. Single-vector characterizations of TP and TN

matrices.

In this section, we introduce and study the distinguished class of Pólya frequency functions,
as well as their variation diminishing property (including a look at its early history, from
Descartes to Motzkin). Both of these studies were carried out by Schoenberg in his landmark
1951 paper [324]. The latter property will require first studying the variation diminishing
property of TN matrices – carried out even earlier, by Schoenberg in 1930 in Math. Z.

We begin by introducing the titular class of functions in this part of the text.

Definition 29.1. A function Λ : R → R is said to be a Pólya frequency (PF) function if Λ
is an integrable TN function that does not vanish at least at two points.

Some historical remarks on terminology follow. The term frequency function tradition-
ally meant being integrable, or (up to normalization) a density function. Pólya frequency
functions were introduced by Schoenberg in his landmark 1951 paper in J. d’Analyse Math.
His definition means that the class of ‘Dirac’ TN functions Λ(x) = 1x=c (see Example 29.6
below) are not Pólya frequency functions. In fact, Schoenberg also studied a wider class of
TN functions in loc. cit., again excluding the Dirac functions. Specifically, he worked with
(what he called) totally positive functions – which are (measurable) TN functions that do
not vanish at least at two points.

Remark 29.2. We also refrain here from discussing either Schoenberg’s motivations or the
prior results by Laguerre, Pólya, Schur, and Hamburger that led Schoenberg to developing
the theory of PF functions. This discussion will take place in Sections 33 and 34.

We begin by specializing the results in Section 28 to Pólya frequency (PF) functions:

Proposition 29.3.

(1) The results in Section 28.1 hold for all PF functions.
(2) The class of PF functions is closed under the change of variables x 7→ ax + b for

a ̸= 0, and under convolution.
(3) If f is a TN function that is non-vanishing at least at two points, and f is not of the

form eax+b for a, b ∈ R, then there exists γ ∈ R such that e−γxf(x) is a PF function.
In other words, there is a strict trichotomy for (measurable) TN functions f : R→ R:
(a) f(x) is monotone, or equivalently, an exponential eax+b for some a, b ∈ R.
(b) f is supported (and positive) at a single point in the line.
(c) Up to an exponential factor eγx with γ ∈ R, the function f is integrable, whence

a Pólya frequency function – in fact, this latter decays exponentially as |x| → ∞.

The final trichotomy holds more generally for all TN2 functions, by Proposition 28.8. (The
final part of the second assertion is not involved, and follows from Corollary 32.9 below, using
basic properties of convolution.)

We next provide examples. The results in the preceding section studied TNp functions for
p ≥ 2. We now discuss several important examples of all of these: in fact, of Pólya frequency
functions (so, TNp for all p ≥ 1). The first is the Gaussian family.

Example 29.4. For all σ > 0, the Gaussian function Gσ(x) := e−σx2
is a PF function, as

shown in Lemma 6.8. For future use, we record its Laplace transform (discussed later):

B(Gσ)(s) = es
2/4σ

√
π/σ, s ∈ C.



186
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Example 29.5. The kernel f(x) = e−ex is totally non-negative. Indeed, the ‘submatrix’

Tf [x;y] = (exp(αjβk))
n
j,k=1, n ≥ 1, x,y ∈ Rn,↑

is a generalized Vandermonde matrix, where both αj = exj , βk = −e−yk form increasing
sequences. While e−ex ̸→ 0 as x → −∞, by Lemma 28.3 ex−ex is integrable, so a PF
function.

The next example is an integrable TN function that is pathological in nature, so not a PF
function:

Example 29.6. The Dirac function f(x) = 1x=c can be easily verified to be TN , for c ∈ R.

29.1. Variation diminishing property for TP and TN matrices. A widely-used prop-
erty exhibited by TP and TN matrices is the variation diminishing property (this phrase –
or ‘variationsvermindernd’ in German – was coined by Pólya; see Section 29.3 for more on
its history). We now prove this property; it will be useful in Section 30 in explaining the
real-rootedness of generating functions of finite Pólya frequency sequences. To proceed, we
require some notation.

Definition 29.7. Given a vector x ∈ Rm, let S−(x) denote the number of changes in sign,
after removing all zero entries in x. Next, assign to each zero coordinate of x a value of ±1,
and let S+(x) denote the largest possible number of sign changes in the resulting sequence
(running over all assignments of ±1). We also set S−(0) := 0 and S+(0) := m, for 0 ∈ Rm.

For instance, S−(1, 0, 0,−1) = 1 and S+(1, 0, 0,−1) = 3. In general, it is easy to see that
S+(x), S−(x) are the largest and smallest number of sign changes possible, when one keeps
the non-zero coordinates of x unchanged and modifies the zero coordinates.

We begin by characterizing TP matrices in terms of the variation diminishing property
and an additional property.

Theorem 29.8. Suppose m,n ≥ 1 are integers, and A ∈ Rn×m. The following are equivalent:

(1) A is totally positive.
(2) For all x ∈ Rm \ {0}, S+(Ax) ≤ S−(x). Moreover, if equality holds and Ax ̸= 0,

then the first (last) component of Ax has the same sign as the first (last) non-zero
component of x. (If either component in Ax is zero, we replace it by the sign of the
changed component in computing S+.)

This result can be found in Pinkus’s book, and follows prior work by Gantmacher–Krein
and also the 1981 paper in [J. Amer. Statist. Assoc.] by Brown–Johnstone–MacGibbon. Very
recently, Choudhury has refined this result to require only a finite set of test vectors – exactly
one vector xB for every contiguous square submatrix B of A. Moreover, xB = adj(B)vB (with
adj(B) the adjugate matrix of B), where vB can be chosen to be any non-zero vector with
alternating signs, belonging to a closed orthant:

Theorem 29.9 (Choudhury, [80]). The assertions in Theorem 29.8 are equivalent to:

(3) For all integers 1 ≤ r ≤ min(m,n) and contiguous r × r submatrices B of A, and
given any fixed vector 0 ̸= vB := (α1,−α2, . . . , (−1)r−1αr)

T with all αj ≥ 0, we have
S+(BxB) ≤ S−(xB), where xB := adj(B)vB. If equality occurs here, then the first
(last) component of BxB has the same sign as the first (last) non-zero component of
xB. (If either component in BxB is zero, we replace it by the sign of the changed
component in computing S+.)
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Proof. For this proof, define dp := (1,−1, . . . , (−1)p−1)T ∈ Rp, for any integer p ≥ 1.

We begin by showing (1) =⇒ (2). We first take a TP matrix A and draw some conclusions.

Let 0 ̸= x ∈ Rm with S−(x) = p ≤ m− 1. Thus there exists s ∈ [m]p,↑ such that

(x1, . . . , xs1), (xs1+1, . . . , xs2), . . . , (xsp+1, . . . , xm) (29.10)

are components of xT , with all non-zero coordinates in the tth component having the same
sign, which we choose up to ‘orientation’ to be (−1)t−1. Here we also have that not all
coordinates in each sub-tuple (xst−1+1, . . . , xst) are zero. Moreover, we set s0 := 0 and
sp+1 = m for convenience.

Denote the columns of A by c1, . . . , cm ∈ Rn, let

yt :=

st∑
i=st−1+1

|xi|ci ∈ Rn, t = 1, . . . , p+ 1,

and let Yn×(p+1) := [y1| · · · |yp+1].

The first claim is that Y is TP . Indeed, given 1 ≤ r ≤ min(n, p+1) and subsets J ∈ [n]r,↑,

I ∈ [p+ 1]r,↑, standard properties of determinants imply

detYJ×I =

si1∑
k1=si1−1+1

· · ·
sir∑

kr=sir−1+1

|xk1 | · · · |xkr | detAJ×K ,

where K = {k1, . . . , kr} and we have detAJ×K > 0 for all J,K. Since there exist suitable
indices kt ∈ [sit−1 + 1, sit ] such that

∏r
t=1 |xkt | > 0, it follows that detYJ×I > 0 for all I, J

as desired. Hence Y is TP .
With this analysis in hand, we now show (1) =⇒ (2). The first claim is that S+(Ax) ≤

S−(x); we consider two cases:

• Suppose n ≤ p+1. If Ax ̸= 0, then S+(Ax) ≤ n−1 ≤ p = S−(x). Otherwise Ax = 0.
If n = p+ 1 then Y would be non-singular. But since 0 = Ax = Y dp+1, where dp+1

was defined at the start of this proof, this would imply dp+1 = 0, a contradiction.
Hence if Ax = 0 then n ≤ p, whence S+(Ax) = n ≤ p = S−(x).
• Otherwise, n > p + 1. Define w := Ax = Y dp+1, and assume for contradiction that
S+(Ax) ≥ p+ 1 > p = S−(x). Thus there exist indices 1 ≤ j1 < · · · < jp+2 ≤ n and
a sign ε = ±1 such that εwjt(−1)t−1 ≥ 0 for t ∈ [1, p+ 2]. Moreover, not all wjt are
zero, given the rank of Y . Now consider the matrix

M(p+2)×(p+2) = [wJ |YJ×[p+1]], where J = {j1, . . . , jp+2}.
This is singular because the first column is an alternating sum of the rest. Expanding
along the first column,

0 = detM =

p+2∑
t=1

(−1)t−1wjt detY(J\{jt})×[p+1].

But all determinants in this sum are positive, all terms (−1)t−1wjt have the same
sign ε, and not all wjt are zero. This produces the desired contradiction.

Thus if A is TP , then S+(Ax) ≤ S−(x), and it remains to show the remainder of the
assertion (2). Using the notation in the preceding analysis, it remains to show that if
S+(Ax) = S−(x) = p with Ax ̸= 0, and if moreover εwjt(−1)t−1 ≥ 0 for t ∈ [1, p + 1] –
as opposed to [1, p + 2] in the second subcase above – then ε = 1 (given our original choice
of ‘orientation’ above).



188
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To show this, we use that Y is totally positive, so the submatrix YJ×[p+1] is non-singular,

where J = {j1, . . . , jp+1}. In particular, YJ×[p+1]dp+1 = wJ . Using Cramer’s rule to solve
this system for the first coordinate of dp+1,

1 = d1 =
det[wJ |YJ×([p+1]\{1})]

detYJ×[p+1]
.

Multiplying both sides by εdetYJ×[p+1], we have

εdetYJ×[p+1] =

p+1∑
t=1

ε(−1)t−1wjt detY(J\{jt})×([p+1]\{1}).

Since each summand on the right is non-negative, and Y is TP , it follows that ε = 1.

We next show (2) =⇒ (3), where B is not necessarily required to be a contiguous
submatrix of A, and xB ̸= 0 can be arbitrary. Suppose B = AJ×K with J ⊂ [n],K ⊂ [m]
both of size 1 ≤ r ≤ min(m,n). Let K = (k1 < · · · < kr) ⊂ [m], and define x̃ ∈ Rm to have
coordinates xBl at position kl (for l ∈ [r]) and 0 elsewhere. By (2), we have

S−(xB) = S−(x̃) ≥ S+(Ax̃),

and this last quantity is at least S+(BxB) because BxB is a ‘sub-string’ of the vector Ax̃.
Next, if S−(xB) = S+(BxB) then we draw the following conclusions:

(1) S+(BxB) ≤ r − 1, whence BxB ̸= 0, so xB ̸= 0.
(2) x̃ ̸= 0, and Ax̃ is non-zero as it contains BxB as a sub-string.
(3) Let ε ∈ {±1} be the sign of the first (respectively last) component, in any ‘filling’

of Ax̃ that attains S+(Ax̃)-many sign changes. Also suppose the first (respectively
last) non-zero component in its sub-string BxB occurs in position l ∈ [1, r]. Then
since S+(Ax̃) = S+(BxB), the coordinates of an ‘S+-completion/filling’ of Ax̃ in
positions 1, . . . , j1 (respectively jr, . . . , n) are all non-zero with the same sign (−1)l−1ε
(respectively (−1)r−lε).

From this it follows that the first/last coordinates in any S+-completion/filling of
Ax̃ and of BxB have the same sign. Clearly, so do the first/last non-zero coordinates
of x̃ and xB.

(4) Finally, we also have S−(x̃) = S+(Ax̃) by the above calculation. Hence by the
hypotheses in assertion (2) and the preceding paragraph, we deduce assertion (3).

Finally, we show that the (restricted) assertion (3) implies that A is totally positive. By
the Fekete–Schoenberg lemma 4.9, it suffices to show for all contiguous submatrices Br×r of
A that detB > 0. This is shown by induction on r ≥ 1. If r = 1, then adj(B) = (1)1×1, and
so 0 = S−(xB) ≥ S+(BxB), whence S+(BxB) < 1. It follows that BxB ̸= 0, and hence that
all entries of A are positive.

For the induction step, we suppose all contiguous minors of A of size at most r − 1 are
positive, whence given a contiguous submatrix Br×r, it is TPr−1 by the Fekete–Schoenberg
lemma 4.9. In particular, its adjugate matrix adj(B) has a checkerboard sign pattern: the
(j, k) entry has sign (−1)j+k. Now it is not hard to verify that xB has all entries non-zero,
with alternating sign pattern (+,−,+, . . . )T . In particular, S−(xB) = r − 1.

The first claim is that B is invertible. If not, then BxB = (detB)vB = 0, whence r =
S+(BxB) > S−(xB). But this is false from above, hence shows the claim. Now we show that
detB > 0. Indeed, the same computation as just above gives:

r − 1 = S−(xB) ≥ S+(BxB) = S+((detB)vB).
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Now note that regardless of the zero entries in vB, the conditions on the αj imply that vB can
be ‘S+-completed’ to a vector with all non-zero entries and alternating signs. In particular,
S+((detB)vB) = r − 1, so the hypotheses in (3) now imply that detB > 0. This completes
the induction step, and hence the proof. □

A similar characterization via variation diminution holds for totally non-negative matrices.

Theorem 29.11. Suppose m,n ≥ 1 are integers, and A ∈ Rn×m. The following are equiva-
lent:

(1) A is TN .
(2) For all x ∈ Rm \ {0}, S−(Ax) ≤ S−(x). Moreover, if equality holds and Ax ̸= 0,

then the first (last) non-zero component of Ax has the same sign as the first (last)
non-zero component of x.

This result is again taken from Pinkus’s book; and as above, Choudhury recently provided
a single-vector strengthening:

Theorem 29.12 (Choudhury, [80]). The assertions in Theorem 29.11 are equivalent to:

(3) For all integers 1 ≤ r ≤ min(m,n) and r × r submatrices B of A, and given any
fixed vector vB := (α1,−α2, . . . , (−1)r−1αr)

T with all αj > 0, we have S−(BxB) ≤
S−(xB), where xB := adj(B)vB. If equality occurs here and BxB ̸= 0, then the
first (last) non-zero component of BxB has the same sign as the first (last) non-zero
component of xB.

The proofs require a preliminary lemma on sign changes of limits of vectors:

Lemma 29.13. Given x = (x1, . . . , xm) ∈ Rm, define x̃ := (x1,−x2, x3, . . . , (−1)m−1xm).
Then

S+(x) + S−(x̃) = m− 1.

Also, if xk → x ̸= 0 in Rm, then

lim inf
k→∞

S−(xk) ≥ S−(x), lim sup
k→∞

S+(xk) ≤ S+(x).

Proof. We begin with the first identity. Note that both S± are (a) invariant under the
automorphism y 7→ −y of Rm, and (b) additive over substrings intersecting at one non-zero
number (where this common ‘endpoint’ is considered in both strings). Thus it suffices to
prove the result for vectors x ∈ Rm \ {0} with m ≥ 2 and x2 = · · · = xm−1 = 0. This is a
straightforward verification.

For the second part, by considering k large enough, we may assume that if the jth coor-
dinate of x is non-zero, then it has the same sign as the jth coordinate of every xk – in fact,
we may take these coordinates to all have the same value, since this does not affect S±(xk).
Now by the observation in the paragraph following Definition 29.7,

S−(x) ≤ S−(xk) ≤ S+(xk) ≤ S+(x),

and the result follows. □

We can now prove the above characterizations of TN matrices.

Proof of Theorems 29.11 and 29.12. The proof of (1) =⇒ (2) uses the two preceding results
and Whitney’s density Theorem 6.7. Since A is TN , there exists a sequence Ak of TP
matrices converging entrywise to A. Now use Theorem 29.8 and Lemma 29.13 to compute:

S−(Ax) ≤ lim inf
k→∞

S−(Akx) ≤ lim inf
k→∞

S+(Akx) ≤ lim inf
k→∞

S−(x) = S−(x).
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29. Pólya frequency functions. The variation diminishing and sign non-reversal

properties. Single-vector characterizations of TP and TN matrices.
Next, if equality holds and Ax ̸= 0, then for all k large enough, we have

p := S−(Ax) ≤ S−(Akx) ≤ S+(Akx) ≤ S−(x) = p,

by Theorem 29.8 and Lemma 29.13. In particular, these are all equalities, whence S−(Akx) =
S+(Akx) for k ≫ 0. This implies (for large k) that the sign changes/patterns in Akx have
no dependence on zero entries. At the same time, both vectors x and Akx admit ‘partitions’
of the form (29.10) with alternating signs, with precisely p sign changes. Now Theorem 29.8
implies that these signs are in perfect agreement, for all large k. Hence the same holds for
the sign patterns of x and Ax.

We next show that (2) =⇒ (3), again for arbitrary vectors 0 ̸= xB ∈ Rr, where 1 ≤ r ≤
min(m,n); this is similar to the proof of Theorems 29.8 and 29.9. Say B = AJ×K for some
J ⊂ [n],K ⊂ [m] of equal size r. Embed x into a vector x̃ ∈ Rm at positions K, with zero
entries in the other positions. Then BxB is a sub-string of Ax̃, so by (2),

S−(BxB) ≤ S−(Ax̃) ≤ S−(x̃) = S−(x).

Moreover, if S−(BxB) = S−(x) and BxB ̸= 0, then:

• All four S−-terms here are equal.
• BxB is non-zero, whence so are xB, so x̃, and hence Ax̃.

Now suppose the first (last) non-zero entry of BxB ∈ Rr occurs in position l ∈ [1, r], and
J = (j1 < · · · < jr) ⊂ [n]. Since S−(BxB) = S−(Ax̃), all entries of Ax̃ before (after) position
jl must have the same sign. This shows (2) =⇒ (3) for any 0 ̸= xB.

Finally, we show that (3) =⇒ (1), with the vectors vB, xB as specified. The claim that
all r × r minors of A are non-negative, is shown by induction on r ≥ 1. For the base case, if
B = (ajk)1×1 = 0 then there is nothing to prove; otherwise adj(B) = (1), so xB = vB = (α1),

where α1 > 0. Hence S−(BxB) = 1 = S−(xB), and so ajk and 1 have the same sign.
For the induction step, suppose Br×r is a submatrix of A, which we may assume is TNr−1.

If detB = 0 then there is nothing to prove, so suppose B is non-singular. Then every row
/ column of adj(B) is non-zero (otherwise one can expand B along a suitable column / row
and get detB = 0). Moreover, adj(B) has entries in a checkerboard pattern:

sgn(adj(B)jk) = (−1)j+k, ∀1 ≤ j, k ≤ r.
Since all coordinates of vB are non-zero, it follows that xB = (β1,−β2, . . . , (−1)r−1βr)

T with
all βj > 0. Hence,

S−(xB) = r − 1 = S−(vB), S−(BxB) = S−((detB)vB) = r − 1.

Hence by (3), the first non-zero coordinates of xB, (detB)vB have the same signs, which
implies detB > 0. This completes the induction step, and with it the proof. □

29.2. Variation diminishing property for Pólya frequency functions. The above
characterizations of TN and TP matrices have many applications in mathematics and other
sciences; we do not expound on these, referring the reader to Karlin’s treatise [200] and nu-
merous follow-up papers in the literature. Here we present continuous analogues of the above
results on the variation diminishing property, albeit only in one direction. These are again
found in Schoenberg’s 1951 paper in J. d’Analyse Math. We begin with the definition of the
‘variation’ that will diminish under the action of a TN kernel.

Definition 29.14. Suppose I ⊂ R is an interval with positive measure, and a function
f : I → R. The number S−

I (f) of variations of sign of f(x) on I is defined as follows:

S−
I (f) := sup{S−((f(x1), . . . , f(xp))) : p ≥ 1,x ∈ Ip,↑}.
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With this notion at hand, one can show the variation diminishing property for Pólya
frequency functions.

Proposition 29.15 (Schoenberg, [324]). Suppose Λ : R → [0,∞) is a Pólya frequency
function. Suppose f : R → R is integrable on all finite intervals in R, and such that the
integral

g(x) :=

∫
R
Λ(x− t)f(t) dt

converges at all x ∈ R. Then S−
R (g) ≤ S

−
R (f).

Proof. We will write S−(·) for S−
R (·) in what follows. We may assume in the sequel that

S−(g) > 0 and S−(f) < ∞. Now if x ∈ Rm+1,↑ satisfies: g(x1), g(x2), . . . , g(xm+1) are all
non-zero and alternate in sign, then it suffices to show that S−(f) ≥ m, for one can now take
the supremum over all such tuples x to deduce S−(g) ≤ S−(f). Note that

g(x) = lim
a→−∞, b→∞

∫ b

a
Λ(x− t)f(t) dt,

and this convergence is uniform when considered simultaneously at the m+ 1 coordinates of
x. Thus, select −∞ < a < b <∞ such that the function

g1(x) :=

∫ b

a
Λ(x− t)f(t) dt

also alternates in sign at x1, . . . , xm+1. Approximating this function by Riemann sums over
n > 0 sub-intervals of [a, b] of equal length, simultaneously at x1, . . . , xm+1, it is possible to
choose n≫ 0 (large enough) such that the sequence of Riemann sums

z
(n)
j :=

b− a
n

n∑
k=1

Λ
(
xj − kb+(n−k)a

n

)
f
(
kb+(n−k)a

n

)
, j = 1, . . . ,m+ 1 (29.16)

also alternates in sign. In other words, S−(z(n)) = m, ∀n≫ 0.
We now invoke the total non-negativity of the kernel TΛ, applied to x ∈ Rm+1,↑ as above,

and y ∈ Rn,↑ given by yk = (kb+ (n− k)a)/n for k = 1, . . . , n. Thus the matrix

A(m+1)×n := TΛ[x;y] =
(
Λ
(
xj − kb+(n−k)a

n

))
j∈[m+1], k∈[n]

is totally non-negative. Now (29.16) and Theorem 29.11 imply that

m = S−(z(n)) = S−(Av) ≤ S−(v), where v = (f(yk))
n
k=1.

But then m ≤ S−(f), as desired. □

Schoenberg goes on to prove an analogue of this variation diminishing property, when f
and hence g (in the preceding result) are polynomials. The diminution is now in the number
of real roots.

Proposition 29.17. Suppose Λ is a Pólya frequency function, and f ∈ R[x] is a polynomial of
degree n. Then g(x) :=

∫
R Λ(x− t)f(t) dt is also a polynomial of degree n, with Z(g) ≤ Z(f).

Here Z(f) denotes the number of real roots of f , counted with multiplicity.

Proof. By Proposition 29.3(3)(c), Λ has finite moments

µj :=

∫
R
Λ(t)tj dt <∞, j = 0, 1, . . . . (29.18)
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29. Pólya frequency functions. The variation diminishing and sign non-reversal

properties. Single-vector characterizations of TP and TN matrices.
This implies in particular that g is well-defined everywhere, since

g(x) =

∫
R
Λ(t)f(x− t) dt =

∫
R
Λ(t)

n∑
j=0

f (j)(x)
(−t)j

j!
dt =

n∑
j=0

(−1)jf (j)(x)µj
j!

. (29.19)

Since µ0 > 0 by assumption on Λ, it follows that g(x) is a polynomial of degree n. Now
change the ‘monomial’ basis diagonally, and write the coefficients of f, g as follows:

f(x) = a0x
n +

(
n

1

)
a1x

n−1 + · · ·+ an,

g(x) = b0x
n +

(
n

1

)
b1x

n−1 + · · ·+ bn,

where a0 ̸= 0. This yields a triangular, invertible change of basis from (ak)k to (bk)k:

bk =
k∑

j=0

(
k

j

)
(−1)jµjak−j . (29.20)

We now turn to the real roots. If g has a real root c, say a factor of (x− c)n, then replace
this by (x− c)(x− c− ϵ) · · · (x− c− (n−1)ϵ) for sufficiently small ϵ > 0. Carrying this out for

every real root yields a perturbed polynomial, which we call g(ϵ)(x). Inverting the triangular

transformation (29.20) yields a perturbed polynomial f (ϵ), with g(ϵ)(x) =
∫
R Λ(x−t)f (ϵ)(t) dt

for all ϵ > 0. Note moreover that f (ϵ), g(ϵ) still have degree n for all ϵ > 0, and converge
coefficientwise to f, g respectively, as ϵ → 0+. Hence for ϵ > 0 small enough, the continuity
of roots implies Z(f (ϵ)) ≤ Z(f).

The key observation now is that if if p(x) is a real polynomial, then S−
R (p) ≤ Z(p), with

equality if and only if all real roots of p are simple. Applying this to the above analysis, we
conclude for small ϵ > 0:

Z(g) = Z(g(ϵ)) = S−
R (g

(ϵ)) ≤ S−
R (f

(ϵ)) ≤ Z(f (ϵ)) ≤ Z(f),

where the first inequality follows by Proposition 29.15. □

We conclude with analogues of the above results for one-sided Pólya frequency (PF) func-
tions – also proved by Schoenberg in [324]. A distinguished class of PF functions consists of
those vanishing on a semi-axis, and we will see examples of such functions later in this part
of the text. By a linear change of variables, we may assume such a function Λ vanishes on
(−∞, 0). In this case the above transformation becomes

g(x) =

∫ x

−∞
Λ(x− t)f(t) dt.

If we now consider f : (−∞, 0] → R, then the upper limit in the preceding integral may be
changed to 0, to yield another function g defined on (−∞, 0]. In this case, Schoenberg proved
in [324] similar results to above, and we now state these without proof.

Proposition 29.21. Suppose Λ is a Pólya frequency function which vanishes on (−∞, 0).
(1) Let f : (−∞, 0] → R be integrable on every finite interval, and such that g(x) :=∫ 0

−∞ Λ(x− t)f(t) dt converges for all x ≤ 0. Then S−
(−∞,0](g) ≤ S

−
(−∞,0](f).

(2) Suppose f is a real polynomial of degree n, and let g(x) :=
∫∞
0 Λ(t)f(x− t) dt. Then

g is also a real polynomial of degree n, and Z−(g) ≤ Z−(f), where Z−(f) denotes the
number of non-positive real roots of f , counted with multiplicity.
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29.3. Early results on total non-negativity and variation diminution. We next dis-
cuss some of the origins of the variation diminishing property, and its connection to total
non-negativity. First observe by Theorem 4.1 and Remark 4.4 for Hankel moment matrices,
that total non-negativity is implicit in the solution of the Stieltjes moment problem – as also
in the Routh–Hurwitz criterion for stability; see Theorem 31.3 – both from the 1800s.

Coming to the variation diminishing property: it shows up in the correspondence [118]
between Fekete and Pólya (published in 1912) that has been mentioned above in the context
of proving the ‘contiguous minor’ test for total positivity of a matrix. (As a bit of trivia:
Fekete, Pólya, and Szász were three of the earliest students of L. Fejér; his last student was
Vera Sós; and other students include Erdős, von Neumann, Turán, Aczel, Egerváry, Tóth,
and Marcel Riesz, among others.)5

We now discuss a result of Fekete from his correspondence with Pólya, which not only
dealt with variation diminution but also gave rise to the notion of Pólya frequency sequences
– discussed in the next section.

A common, historical theme underlying this section and the next, as well as Section 33
below (on the Laguerre–Pólya–Schur program), involves understanding real polynomials and
their roots. In fact this theme dates back to Descartes, who in his 1637 work [100] proposed
his ‘Rule of Signs’ – see e.g. Lemma 5.2. The question of understanding the roots remained
popular (and does so to this day; see Section 33). As a notable example, we recall Laguerre’s
1883 paper [229], which deals with this theme, and opens by recalling Descartes’ rule of signs
and proving it using Rolle’s theorem (the ‘standard’ proof these days). In [229], Laguerre used
the word ‘variations’ to denote the sign changes in the Maclaurin coefficients of a polynomial
or power series. Among the many results found in his memoir, we list two:

Theorem 29.22 (Laguerre, 1883, [229]).

(1) Given an interval [a, b] ⊂ R and an integrable function Φ : [a, b]→ R, the number of

zeros of the Fourier–Laplace transform
∫ b
a e

−sxΦ(x) dx is at most the number of zeros

of the antiderivative
∫ t
a Φ(x) dx for t ∈ [a, b].

(2) Suppose f(x) is a polynomial. Then the number of variations (sign changes in the
Maclaurin coefficients) of the power series esxf(x) is a non-increasing function of
s ∈ [0,∞), and is uniformly bounded below by the number of positive roots of f .

In particular, in part (2), the variation for any s > 0 is ‘diminishing’, and always finite, since
it is bounded above by the variation at s = 0. See Section 30.4 for the proof of part (2).

Especially this latter result was pursued by Fekete, who wrote to Pólya to the effect that
“Laguerre did not fully justify” Theorem 29.22(2) in his work [229]. To address this, Fekete
considered a formal power series with real coefficients c0 + c1t+ · · · , acting by multiplication
on the space of such power series. With respect to the standard basis of monomials, this

5As another bit of trivia, the descendants of K.T.W. Weierstrass and E.E. Kummer feature prominently
in the study of (total) positivity. Their joint students include:

(1) F.G. Frobenius and L.I. Fuchs, who in turn mentored I. Schur, who was the advisor of I.J. Schoenberg;
(2) L. Königsberger, who mentored G. Pick, who advised C. Loewner; and
(3) L. Fejér, who mentored G. Pólya and M. Fekete.
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transformation is given by the triangular matrix

Tc :=


c0 0 0 · · ·
c1 c0 0 · · ·
c2 c1 c0 · · ·
...

...
...

. . .


Fekete then stated the following result on variation diminution (a term coined by Pólya)

– further asserting that it could be used to prove Theorem 29.22(2):

Proposition 29.23 (Fekete, 1912, [118]). Suppose for an integer p ≥ 2 that the matrix
Tc (supported on Z≥0 × Z≥0) is TNp – i.e., every finite submatrix is TNp. Given a vector
x = (x0, x1, . . . , xp−1, 0, 0, . . . )

T (the coefficients of a polynomial), we have S−(Tcx) ≤ S−(x).

Note here that Tcx represents the coefficients of a formal power series, and hence can form
a sequence with infinitely many non-zero terms. Nevertheless, every such sequence has fewer
sign changes than the finite sequence x. (To deduce Laguerre’s result, Fekete showed that
for s ≥ 0, Proposition 29.23 applies to the special case ck = sk/k!.)

Thus, we have journeyed from Descartes (1637), to Laguerre (1883), to Fekete (1912), to
Schoenberg (1930) and Motzkin (1936) – see Theorem 3.22 from Motzkin’s thesis and the
preceding paragraph – to Schoenberg (1951), in studying the origins of variation diminution
and subsequent developments. (This omits, with due apologies, the substantial contributions
of Gantmacher, Krein, and others; the connections to the work of Sturm and to Sturm–
Liouville eigenvalue problems; as well as the 1915 paper [285] of Pólya, which proved a
different variation-diminishing property of PF functions on polynomials, led Schoenberg to
coin the phrase ‘Pólya frequency functions’, and is briefly discussed in Section 34.) Certainly
Fekete’s result and the aforementioned developments led Schoenberg and Gantmacher–Krein
to develop the theories of total positivity, Pólya frequency functions, and variation diminution.

We conclude this historical section with yet another connection between total non-negativity
and Descartes’ rule of signs. In his 1934 paper [312] in Math. Z., Schoenberg proved the fol-
lowing result. In it, we use the notation that a finite sequence f0, f1, . . . , fn of functions obeys
Descartes’ rule of signs in an open sub-interval (a, b) ⊂ R if the number of zeros in (a, b) of
the nontrivial real linear combination

c0f0(x) + · · ·+ cnfn(x), cj ∈ R,
n∑

j=0

c2j > 0

is no more than the number of sign changes in the sequence (c0, . . . , cn).

Theorem 29.24 (Schoenberg, [312]). Fix a sequence of real polynomials pj(x) := aj0+aj1x+
· · ·+ ajjx

j for 0 ≤ j ≤ n, with all ajj > 0. The following are equivalent:

(1) The sequence (p0, . . . , pn) obeys Descartes’ rule of signs in (0,∞).

(2) The upper triangular matrix


a00 a10 · · · an0

a11 · · · an1
. . .

...
ann

 is totally non-negative.

(E.g., for the ‘usual’ Descartes’ rule of signs, this matrix is precisely the identity matrix.)
Schoenberg also extended Descartes and Laguerre’s results to more general domains in C; see
his 1936 paper [314] in Duke Math. J.
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29.4. The sign non-reversal property. We now discuss another fundamental – and very
recent – characterization of total positivity. To motivate this result, begin with Schoenberg’s
1930 result asserting that every TN matrix has the variation diminishing property. From
here, it is natural to proceed in two directions:

(1) Characterize all matrices with the variation diminishing property. This was carried
out by Motzkin in his 1936 thesis; see Theorem 3.22.

(2) Find additional conditions that, together with the variation diminishing property,
characterize TN and TP matrices. This was carried out in Theorems 29.8 and 29.11,
and involves a ‘sign non-reversal’ phenomenon.

Our goal here is to show that in fact, it is the variation diminishing property that is not
necessary in Theorems 29.8 and 29.11. To proceed, we isolate the key notion into the following
definition.

Definition 29.25. Fix integers n ≥ 1.

(1) A square real matrix An×n has the sign non-reversal property on a set of vectors
S ⊂ Rn, if for all non-zero vectors x ∈ S there exists a coordinate j ∈ [n] such that
xj(Ax)j > 0. If the set S is not specified, it is taken to be Rn.

(2) We also require the non-strict sign non-reversal property for a matrix A ∈ Rn×n, on
a set of vectors S ⊂ Rn. This says that for all 0 ̸= x ∈ S there exists a coordinate
j ∈ [n] such that xj ̸= 0 and xj(Ax)j ≥ 0.

(3) Define Rn
alt to be the open bi-orthant consisting of the vectors in Rn whose coordinates

are all non-zero and have alternating signs.
(4) Finally, define dr := (1,−1, . . . , (−1)n−1)T ∈ Rn

alt.

With these notions defined, in their recent work in Bull. London Math. Soc., Choudhury,
Kannan, and Khare have characterized TP/TN matrices purely in terms of their sign non-
reversal property. More strongly:

Theorem 29.26 ([81]). Fix integers m,n ≥ p ≥ 1 and a real matrix A ∈ Rm×n. The
following are equivalent:

(1) The matrix A is TPp.
(2) Every square submatrix B of A of size r ∈ [1, p] has the sign non-reversal property.
(3) Every contiguous square submatrix B of A of size r ∈ [1, p] has the sign non-reversal

property on Rr
alt ⊂ Rr.

A part of this theorem was previously shown in 1966 by Ky Fan [114]. Also note that
(2) =⇒ (3), so we will show (1) =⇒ (2) and (3) =⇒ (1). The latter implication can
be weakened even further, to require the sign non-reversal property for a single alternating
vector (chosen from an orthant) – the same orthant as in Theorem 29.9. This was shown
very recently:

Theorem 29.27 (Choudhury, [80]). The three conditions above are further equivalent to:

(4) For each contiguous square submatrix B of A of size r ∈ [1, p], and any choice of vector
0 ̸= vB := (α1,−α2, . . . , (−1)r−1αr)

T with all αj ≥ 0, B has the sign non-reversal
property for zB := adj(B)vB, where adj(B) is the adjugate matrix of B.

(As the proof will reveal, one can also work with −vB instead of vB.) Following the proof
of these results, we will show that Am×n is TNp if and only if every square submatrix of size
≤ p satisfies a condition similar to this one. See Theorem 29.28 and the subsequent result.
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Proof. We first show that (1) implies the sign non-reversal property on vectors with non-
negative coordinates – under the weaker assumption of working only with the positivity of the
principal minors of B, of size≤ r. (Such matrices are called P -matrices; see e.g. [105, 121, 134]
for this argument.) The result is by induction on r ≥ 1, with the r = 1 case obvious. Suppose
the result holds for all (r − 1) × (r − 1) real matrices with positive principal minors. Now
let Br×r have the same property, with x,−Bx ∈ Rr having all non-negative coordinates. We
need to prove x = 0.

By choice (and Cramer’s rule), B−1 has positive diagonal entries. Let b denote the first
column of B−1, and define

θ := min
j∈[r]:bj>0

xj
bj
,

noting that the minimum is taken over a non-empty set. Hence it is attained: 0 ≤ θ = xj0/bj0
at some j0 ∈ [r]. Then y := x− θb has non-negative coordinates, by choice of θ, and it has
j0th coordinate zero. But we also have

−By = −Bx+ θBb = −Bx+ θe1,

and this has non-negative coordinates again.
We now claim y = 0. Indeed, if we obtain y′ by deleting the j0th coordinate, and B′ by

deleting the j0th row and column, then an easy verification yields that −B′y′,y′ have non-
negative coordinates. By the induction hypothesis, y′ = 0, whence y = 0. But then Bx = θe1
has non-negative coordinates. Since so does −Bx, we have Bx = 0. Since det(B) > 0, we
obtain x = 0. This completes the proof of (1) =⇒ (2) by induction – for x with non-negative
coordinates.

Now suppose x ∈ Rr and xj(Bx)j ≤ 0 for all j. Let J ⊂ [r] index the negative coordinates

of x, and define the diagonal matrixDJ with (k, k) entry (−1)1(k∈J). If now xj and (Bx)j have
opposite signs for all j (meaning their product is non-positive), then so do (eTj D)x = eTj (Dx)

and (eTj D)(Bx) = eTj (DBD)(Dx). Thus Dx, (DBD)(Dx) have corresponding coordinates
of opposite signs. As DBD also has all principal minors positive, the above analysis implies
Dx = 0, and so x = 0. Hence (1) =⇒ (2) for all vectors x ∈ Rr.

(Though we do not require it, we also mention quickly why (2) =⇒ (1). Let B be any
square submatrix of A; as the set of non-real eigenvalues is closed under conjugation, their
product is strictly positive. It thus suffices to show that every real eigenvalue is positive.
By the sign non-reversal property, if Bx = λx with λ ∈ R and x ∈ Rr, and if xj ̸= 0, then
xj(Bx)j = λx2j > 0, whence λ > 0.)

Next, that (2) =⇒ (3) =⇒ (4) is immediate. Finally, suppose (4) holds. By the Fekete–
Schoenberg lemma 4.9, it suffices to show that all contiguous r × r minors are positive, for
1 ≤ r ≤ p. The proof is by induction on r ≤ p; the r = 1 case directly follows from (4) using
r = 1 and B1×1 = (ajk), using that adj(B) = (1).

For the induction step, suppose Br×r is a contiguous square submatrix of A, with r ≤ p,
and all contiguous minors of B of size ≤ r − 1 are positive. Then the same holds for all
proper minors of B by Lemma 4.9, and so adj(B) is a matrix with a ‘checkerboard’ pattern
of signs: sgn(adj(B)jk) = (−1)j+k for 1 ≤ j, k ≤ r. It follows for any vB ̸= 0 as specified that

zB = adj(B)vB ∈ Rr
alt. Now compute for j0 ∈ [1, r]:

0 < (zB)j0 · (BzB)j0 = (−1)j0−1|(zB)j0 | · (detB)(vB)j0 = det(B)|(zB)j0 |αj0 .

It follows that all three factors are non-zero, and detB > 0, which completes the proof. □
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The final results here, again by Choudhury–Kannan–Khare and Choudhury (2021), char-
acterize TNp matrices through their sign non-reversal:

Theorem 29.28 ([81]). Fix integers m,n ≥ p ≥ 1 and a real matrix A ∈ Rm×n. The
following are equivalent:

(1) The matrix A is TNp.
(2) Every square submatrix B of A of size r ∈ [1, p] has the non-strict sign non-reversal

property on Rr.
(3) Every square submatrix B of A of size r ∈ [1, p] has the non-strict sign non-reversal

property on Rr
alt.

As in Theorem 29.27(4) above, this can be further weakened:

Theorem 29.29 (Choudhury, [80]). The preceding three conditions are further equivalent to:

(4) Every square submatrix B of A of size r ∈ [1, p], has the non-strict sign non-reversal
property for the single vector zB := adj(B)vB, where vB ∈ Rr

alt is arbitrarily chosen.

Proof. First suppose (1) holds. By Whitney’s density theorem 6.7 there is a sequence A(l)

of TPp matrices converging entrywise to A. Now given B, let B
(l)
r×r be the submatrix of A(l)

indexed by the same rows and columns as B. Now fix a vector 0 ̸= x ∈ Rr, and index by
J ⊂ [r] the non-zero entries in x. Since B(l) is TP , by Theorem 29.26 there exists jl ∈ [r]

such that xjl(B
(l)x)jl > 0; moreover, jl ∈ J ∀l. As J is finite, there exists j0 ∈ [r] and an

increasing subsequence of positive integers lq such that jlq = j0 for all q ≥ 1. Now (2) follows:

xj0(Bx)j0 = lim
q→∞

xjlq (B
(lq)x)jlq ≥ 0, xj0 ̸= 0.

(The proof of (2) =⇒ (1) is essentially the same as in the preceding proof, with λx2j ≥ 0

now; once again, we do not require it.) That (2) =⇒ (3) =⇒ (4) is immediate. Finally,
assume (4) and claim by induction on r ≤ p, that every r × r minor of A is non-negative.
The base case is immediate; for the induction step, let Br×r be a submatrix of A, and assume
that all (r − 1) × (r − 1) minors of B are non-negative. If detB = 0 then we are done; else
assume B is invertible. Now no row or column of adj(B) is zero, and adj(B)jk is either zero

or has sign (−1)j+k for all j, k. Thus, adj(B)vB ∈ Rr
alt. Now a similar computation as in the

preceding proof shows that for some j0 ∈ [1, r], we have by (4):

0 ≤ (B adj(B)vB)j0(adj(B)vB)j0 = (detB)vBj0z
B
j0 .

Since all factors here are non-zero and vBj0 , z
B
j0

have the same sign, it follows that detB > 0,
and so we are done by induction. □

Remark 29.30. In this section, we have seen classical results which help characterize totally
positive/non-negative matrices A using the variation diminishing property and the sign non-
reversal property – both of which involve certain conditions holding for all vectors in Rn. We
also explained recent results of Choudhury [80, 81] that provided single test vectors, one for
every (contiguous) submatrix of A. In [80], Choudhury also provides a third characterization
of total positivity – via the Linear Complementarity Problem, which has applications in
bimatrix games, linear programming, and other areas. Once again, he is able to improve this
characterization to use a single test vector. See [80] for details.
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30. Pólya frequency sequences and their generating functions.

In this section, we introduce and study Pólya frequency sequences, and take a look at root-
location phenomena for their generating functions. Recall Fekete’s proposition 29.23 (1912)
from the preceding section, on the variation diminishing property of TNp triangular Toeplitz
matrices that are supported on Z× Z. Such matrices are now known as PF sequences:

Definition 30.1.

(1) A real sequence a = (an)n∈Z is a Pólya frequency (PF) sequence if the associated
Toeplitz kernel Ta : Z× Z→ R, sending (x, y) 7→ ax−y, is TN .

(2) The PF sequence a is said to be one-sided if there exist n± ∈ Z such that an = 0
either for all n < n− or for all n > n+ (or both).

(3) More general is the notion of a p times (i.e., multiply) positive sequence, or a TNp

sequence a, which corresponds to the matrix Ta : Z × Z → R being TNp. (This too
has a one-sided version, as above.)

For instance, one can specialize the results of Section 28.2 to X = Y = Z, to obtain
characterizations of TNp sequences or PF sequences.

30.1. Examples. We begin by studying examples of PF sequences, and of the subclass of
one-sided PF sequences (TN or TNp). Clearly, every constant (non-negative) sequence an ≡ c
for c ≥ 0 is a PF sequence. Our first source of non-constant PF sequences comes from Pólya
frequency functions:

Lemma 30.2. If Λ : R→ R is a PF function, or even a TN function, then (Λ(an+ b))n∈Z
is a PF sequence for a, b ∈ R. If a ̸= 0 and Λ is TP , then so is (Λ(an+ b))n∈Z.

Proof. If a = 0 then the result is immediate. Now suppose a ̸= 0, and x,y ∈ Zp,↑ for some
p ≥ 1. Then the p× p matrix

(Λ(a(xj − yk) + b))pj,k=1 =

{
TΛ[ax+ b1; ay], if a > 0,

TΛ[|a|y + b1; |a|x]T , if a < 0,

and both choices have non-negative determinant. The final assertion is showed similarly. □

Another elementary result is the closure of the set of TNp sequences. The proof is easy.

Lemma 30.3. Suppose p ≥ 1 and a(k) = (a
(k)
n )n∈Z is a TNp sequence for all k ≥ 1. If

a(k) → a pointwise as k →∞, then a is also TNp.

The above lemmas allow one to ‘draw’ PF sequences from PF functions, along any infinite
arithmetic progression. Here are two examples:

Example 30.4. For a real number q > 0, the sequences (qn)n∈Z and (qn1n≥0)n∈Z are both
PF sequences. The former is because (qxj−yk)nj,k=1 is a rank-1 matrix with positive entries

for any choice of integers xj , yk, so TN . If q ∈ (0, 1), then the latter kernel is drawn from
λ1(x) = e−x1x≥0 (which is shown in Example 32.11 below to be a PF function), at the
arguments x = −n log(q). If q > 1 then it is drawn from fc(x) = ecxλ1(x) at the arguments
n log(q) and with c = 2. (By Lemma 28.3, fc is now a TN function as well.) Finally, if q = 1
then it is drawn from the Heaviside kernel

H1(x) = 1x≥0 = lim
c→1

fc(x)

at any infinite arithmetic progression. (Alternately, for all q one can use the analysis
above (30.11), later in this section.)
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Example 30.5. For a real number q ∈ (0, 1), the sequence (qn
2
)n∈Z is a TP PF sequence.

Indeed, this sequence is drawn from the Gaussian PF function Gσ for σ = − log(q) > 0 (see
Example 29.4).

30.2. Generating functions and representation theorem for one-sided PF sequences.
Given a real sequence a = (an)n≥0 of finite or infinite length, it is natural to encode it by the
corresponding generating function

Ψa(x) =
∑
n≥0

anx
n.

When the sequence (. . . , 0, 0, a0, a1, a2, . . . ) is a TNp sequence, and only finitely many terms
an are non-zero, one can deduce results about the locations of the roots of the corresponding
generating polynomial Ψa(x) – and in turn, use this information to classify all finite TN
sequences. We carry out this analysis in the present subsection and the next; it will be useful
in the next part of this text, in classifying the preservers of total positivity for PF sequences.
The present subsection ends by revealing the most general form of the generating function of
one-sided PF sequences.

Proposition 30.6. Suppose (an)n∈Z is TN2, shifted and normalized such that a0 = 1.

(1) If ak = 0 for some k > 0 (respectively k < 0), then al = 0 for all l > k (respectively
l < k).

(2) If an = 0 for all n < 0, and the sequence a is TNp for some p ≥ 2, then its generating
function Ψa has a non-zero radius of convergence.

(3) If an = bn = 0 for all n < 0, and a,b are TNp sequences, then so is the sequence of
Maclaurin coefficients of Ψa(x)Ψb(x).

(4) If an = 0 for all n < 0, and a is TN , then so is the sequence of Maclaurin coefficients
of 1/Ψa(−x).

Note that the final assertion here does not go through if we assume a to be merely TNp

and not TN ; see e.g. [294]. Also note the similarity of the first assertion to Theorem 28.4.

Proof. The first part is easy to check: given integers k,m with ak = 0, note that

detTa[(k, k +m); (0, k)] = det

(
ak a0
ak+m am

)
= −ak+m.

Now if 0 < k,m then work with this matrix; if 0 > k,m then reverse its rows and columns.
Either way, the non-negativity of the determinant implies ak+m = 0 for all m > 0 (or all
m < 0), as desired.

For the second part, if only finitely many terms are non-zero then the result is obvious;
otherwise by the first part, an > 0 for all n ≥ 0. Now given n ≥ 1, we have

0 ≤ detTa[(n, n+ 1); (0, 1)] = det

(
an an−1

an+1 an

)
= a2n − an+1an−1.

From this it follows that an+1/an > 0 is non-increasing in n. Let β1 ≥ 0 be the infimum/limit
of this sequence of ratios; then the power series Ψa(x) =

∑
n≥0 anx

n has radius of convergence

1/β1, by basic calculus.
To show the third part, first observe that the Z×Z Toeplitz matrices Ta, Tb are both TNp

by definition. Moreover, their product is a well-defined, lower-triangular Toeplitz matrix by
inspection, and corresponds precisely to ‘convolving’ the two sequences. But this ‘convolution’
also corresponds to multiplying the two generating functions. Thus, it suffices to show that
TaTb is TNp. This follows by the Cauchy–Binet formula (see Theorem 5.5).
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Finally, for the fourth part, the reciprocal of Ψa(x) has a positive radius of convergence
around 0, by basic calculus. Develop the reciprocal around 0, on the interval of convergence:

1

Ψa(x)
=
∑
n≥0

bnx
n.

Denote the tuple of coefficients by b. By the arguments used to prove the previous part, this
yields the lower triangular Toeplitz matrix Tb (indexed by Z× Z) such that TaTb = TbTa =
IdZ×Z. Since Ta is TN , we claim that so is the matrix with (j, k) entry (−1)j+kbj−k =

(−1)j−kbj−k – which is precisely Tc for cn = (−1)nbn. But this would correspond to the
desired generating function: ∑

n≥0

(−1)nbnxn =
1

Ψa(−x)
.

It thus remains to prove the above claim. This requires the well-known Jacobi complemen-
tary minor formula [190]: given integers 0 < p < n, an invertible n × n matrix A (over a

commutative ring), and equi-sized subsets J,K ∈ [n]p,↑,

detA · det(A−1)Kc×Jc = (−1)j1+k1+···+jp+kp detAJ×K , (30.7)

where Jc := [n] \ J , and similarly for Kc.
We first quickly sketch the proof of this result (via an argument found on the internet); by

pre- and post- multiplying A by suitable permutation matrices, one can reduce to the case of
J = K = [p] – in which case the sign on the right is +1. Now let Aj denote the jth column

of A, and A−1
j of A−1 respectively. Writing ej for the standard basis of Rn, we have:

A
[
e1| · · · |ep|A−1

p+1| · · · |A
−1
n

]
= [A1| · · · |Ap|ep+1| · · · |en] .

This can be rewritten as:(
AJ×K AJ×Kc

AJc×K AJc×Kc

)(
Idp×p A−1

K×Jc

0 A−1
Kc×Jc

)
=

(
AJ×K 0
AJc×K Id(n−p)×(n−p)

)
.

Taking the determinant of both sides proves Jacobi’s result for J = K = [p].
To conclude the proof of the fourth part, we now use Jacobi’s identity to prove the afore-

mentioned claim (in bold). Let M be a square submatrix of Tc, with cn = (−1)nbn as above.
There exists a suitably large principal submatrix B′ of Tc, indexed by contiguous rows and
columns, of whichM is a p×p submatrix for some p. Let A be the corresponding ‘contiguous’
principal submatrix of Ta. Multiplying every row and column of B′ indexed by even numbers
by −1, we obtain a matrix B such that AB = Id. Finally, let N be the ‘complementary’
submatrix of A, indexed by the rows and columns not indexing M in B (or in B′). Applying
Jacobi’s identity and carefully keeping track of signs shows that det(M) ≥ 0, as desired. □

We now proceed toward the form of the generating series Ψa for an arbitrary one-sided
Pólya frequency sequence. First consider the case when a contains only finitely many non-zero
terms, which by Proposition 30.6 must be ‘consecutive’. In other words,

a = (. . . , 0, 0, a0, . . . , am, 0, 0, . . . ), m ≥ 0, a0, . . . , am > 0.

Lemma 30.8. With a as above, if m = 0 or m = 1 (with a0, am arbitrary positive scalars),
then a is a PF sequence. In particular, if Ψa(x) is a polynomial with all roots in (−∞, 0),
then a is a PF sequence.

https://mathoverflow.net/questions/87877/jacobis-equality-between-complementary-minors-of-inverse-matrices
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Proof. We first make the useful observation that a block diagonal (but not necessarily square)

matrix

(
A11 A12 = 0

A21 = 0 A22

)
is TN if and only if A11, A22 are so. Indeed, the forward im-

plication is obvious, and for the reverse one, consider any square submatrix B indexed by
rows I1 ⊔ I2 and columns J1 ⊔ J2 (with Aij indexed by rows Ii and columns Jj respectively,
for 1 ≤ i, j ≤ 2). Suppose |I1| > |J1|; then the first |I1| rows of B essentially lie in RJ1 ,
and hence are linearly dependent. Thus detB = 0. Similarly, detB = 0 if |I1| < |J1|. Thus

|I1| = |J1|, whence |I2| = |J2|, and hence B =

(
B11 0
0 B22

)
is block diagonal with each Bii a

square submatrix of Aii for i = 1, 2. As Aii is TN , det(B) ≥ 0. Thus, A is TN .
With this observation at hand, we proceed to the proof. First note that the bi-infinite

Toeplitz matrix Ta is TN if and only if the semi-infinite matrix (Ta)i,j≥0 is TN , if and only
each leading principal submatrix (Ta)0≤i,j≤n is TN (since every square, finite submatrix of
Ta embeds inside one of the latter).

Now let m = 0. Then each (Ta)0≤i,j≤n is a diagonal matrix with each diagonal entry/block
a > 0. By the preceding observation, Ta is TN for m = 0.

For m = 1, at first glance it may seem as if there are only two alternatives: either a square
submatrix M of Ta has a zero row or zero column; or all entries along the main diagonal of
M are a0 (whence the sub-diagonal has all entries a1, and all other entries in M are zero),
or they are all a1 (whence the super-diagonal has all entries a0, and all other entries in M

are zero). Both cases yield detM > 0. However, there is at least one more choice:

(
a0 0
0 a1

)
(whose determinant is indeed positive).

Thus, here is a cleaner argument for m = 1. Notice that since the product of elementary
matrices Er,r−1Er+a,r+a−1 = 0 for all r, a ≥ 1, one can show by induction on n ≥ 1 that

(Ta)0≤i,j≤n = a0

(
Idn+

a1
a0
E21 + · · ·+

a1
a0
En,n−1

)
(30.9)

= a0

(
Idn+

a1
a0
E21

)(
Idn+

a1
a0
E32

)
· · ·
(
Idn+

a1
a0
En,n−1

)
.

As each factor is a block diagonal matrix with 1 × 1 blocks (1) and a unique 2 × 2 block(
1 0

a1/a0 1

)
, each factor is TN by the above observation. Hence so is (Ta)0≤i,j≤n by (30.9)

and Proposition 5.4, and hence Ta is TN as asserted.
Finally, suppose Ψa(x) is a polynomial with all roots in (−∞, 0). Writing this as am(x+

β1)(x+β2) · · · (x+βm) (with −βj the roots of Ψa), we note by the preceding paragraph that
x+βj = Ψ(...,0,βj ,1,0,... ) is the generating polynomial of a PF sequence, as is am = Ψ(...,0,am,0,... ).

Therefore, so is their product = Ψa(x), by Proposition 30.6(3). □

Example 30.10. Let δ ≥ 0. Lemma 30.8 and Proposition 30.6(3) show that the finite
sequence am with Ψam(x) = (1 + δx/m)m is a PF sequence. Taking limits via Lemma 30.3,
the sequence an = 1n≥0δ

n/n! now forms a PF sequence, since its generating power series is
Ψa(x) = eδx = limm→∞(1 + δx/m)m.

We now make some deductions from the above results in this section. Choose scalars δ ≥ 0,
as well as αj , βj ≥ 0 for integers j ≥ 1 such that

∑
j(αj + βj) < ∞. Then

∏n
j=1(1 + αjx)

generates a PF sequence for all n ≥ 1, by Lemma 30.8 and Proposition 30.6. Take the limit
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as n→∞; since |1 + αjx| < eαj |x| and
∑

j αj <∞, the limit, given by

∞∏
j=1

(1 + αjx)

is an entire function, which generates a PF sequence by Lemma 30.3. Similarly, 1/(1− βjx)
generates an infinite one-sided PF sequence for each j ≥ 1, by Lemma 30.8 and Proposi-
tion 30.6(4). (For a far easier proof for (1 − βjx)

−1, one can instead use Example 32.10
below to show this assertion for βj = 1, then deduce the case of general βj by pre- and post-
multiplying a given submatrix by diagonal matrices having suitable powers of βj .) It follows
as above that 1/

∏∞
j=1(1− βjx) also generates a PF sequence. Applying Proposition 30.6(3),

eδx
∞∏
j=1

1 + αjx

1− βjx
, where αj , βj , δ ≥ 0,

∞∑
j=1

(αj + βj) <∞ (30.11)

is the generating function of a one-sided Pólya frequency sequence a, with a0 = 1.
Remarkably, this form turns out to encompass all one-sided Pólya frequency sequences.

This is a deep result, shown in a series of papers [4, 5, 106, 107] by Aissen–Schoenberg–
Whitney and Edrei – separately and together – and is stated here without proof.

Theorem 30.12 (Aissen–Edrei–Schoenberg–Whitney, 1951–52). A function
∑∞

n=0 anx
n with

a0 = 1, is the generating function Ψa(x) for a one-sided Pólya frequency sequence a =
(a0, a1, . . . ) if and only if Ψa is of the form (30.11).

(As a historical remark: Whitney was Schoenberg’s student, while Aissen and Edrei were
students of Pólya.) For proofs, the reader can either look into the aforementioned papers, or
follow the treatment in Karlin [200, Chapter 8]; one also finds there a representation theorem
for the generating function of a two-sided PF sequence. The proof involves using ideas of
Hadamard from his 1892 dissertation [158], as well as Nevanlinna’s refinement of Picard’s
theorem [270].

Remark 30.13. For completeness, we refer the reader to the recent paper [104], in which Dy-
achenko proves similar representation results involving the total non-negativity of generalized
Hurwitz-type matrices.

Remark 30.14. Also for completeness, we mention the analogous, ‘two-sided’ result:
An arbitrary real sequence (an)n∈Z is a Pólya frequency sequence if and only if it is either

of the form (aρn)n∈Z with a, ρ > 0; or else its generating Laurent series converges in some
annulus r1 < |z| < r2 with 0 ≤ r1 < r2, and has the factorization∑

n∈Z
anz

n = Ceaz+a′z−1
zm

∞∏
j=1

(1 + αjz)(1 + α′
jz

−1)

(1− βjz)(1− β′jz−1)
,

where C ≥ 0, m ∈ Z, a, a′, αj , βj , α
′
j , β

′
j ≥ 0 and

∑
j(αj + βj + α′

j + β′j) <∞.

The ‘if’ part was proved by Schoenberg [322], and the harder, ‘only if’ part was shown by
Edrei [108].

This part concludes by specializing to the case where Ψa has integer coefficients. Here we
refer to papers by Davydov [99] and Hô Hai [177], in which they show that the Hilbert series
of a quadratic R-matrix algebra (over a field of characteristic zero) generates a PF sequence.
The result relevant to this text is:
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Theorem 30.15 (Davydov). A power series Ψa(x) ∈ 1 + xZ[[x]] generates a PF sequence a
if and only if Ψa has the form (30.11), with δ = 0 and all but finitely many αj , βj also zero.

30.3. Application 1: (Dual) Jacobi–Trudi identities. We now provide some applica-
tions of the above results. The first is to algebra and symmetric function theory. As mentioned
above, Theorem 30.15 was applied to the theory of quadratic R-matrix algebras over a field of
characteristic zero. We briefly touch upon this area, starting with two examples of this phe-
nomenon, which are Hilbert series of two well-known quadratic (and Koszul dual) algebras.
Recall that for a Z≥0-graded algebra A := ⊕n≥0An with finite-dimensional graded pieces, its
Hilbert series is H(A, x) :=

∑
n≥0 x

n dimAn. Now suppose V is a finite dimensional vector
space, say of dimension m. The Hilbert series of its exterior algebra ∧•V is

H(∧•V, x) = (1 + x)m,

and this is the generating function of a (finite, binomial) PF sequence by the above results.
These results also imply the same conclusion for the Hilbert series of the symmetric algebra:

H(S•V, x) =
1

(1− x)m
.

More generally, one fixes an operator, or R-matrix R : V ⊗ V → V ⊗ V , which satisfies
two conditions:

• The Yang–Baxter equation R12R23R12 = R23R12R23, i.e.,

(R⊗ Id)(Id⊗R)(R⊗ Id) = (Id⊗R)(R⊗ Id)(Id⊗R) on V ⊗ V ⊗ V.
• The Hecke equation (R + Id)(R − q Id) = 0, where q is a non-zero element in the
underlying ground field.

Associated to this R-matrix, define two Z≥0-graded algebras, by quotienting the tensor
algebra by two-sided ‘quadratic’ ideals:

(1) The R-exterior algebra is ∧•R(V ) := T •(V )/(im(R+ Id)).
(2) The R-symmetric algebra is S•q,R(V ) := T •(V )/(im(R− q Id)).

(For example, if R is the flip operator v1 ⊗ v2 7→ v2 ⊗ v1 and q = 1, then we obtain the usual
exterior and symmetric algebras above.) It is well-known that the Hilbert series H(∧•R(V ), x)
and H(S•q,R(V ),−x) are reciprocals of one another. In this general setting, Davydov [99] and

Hô Hai [177] showed:

Proposition 30.16. Let V be finite-dimensional over a field of characteristic zero, q a scalar
either equal to 1 or not a root of unity, and R : V ⊗V → V ⊗V an R-matrix as above. Then
the Hilbert series H(∧•R(V ), x), whence H(S•q,R(V ), x) (by Proposition 30.6(4)), generates a
PF sequence.

These results by Davydov and Hô Hai hold in the case when the underlying ‘Iwahori–
Hecke algebra’ (which operates on tensor powers V ⊗n via the R-matrix) is semisimple, which
happens when 1 + q + · · ·+ qn−1 ̸= 0 for all n > 0. We add for completeness that when q is
a root of unity instead, such a result was proved very recently by Skyrabin [340] under an
additional hypothesis: the “1-dimensional source condition”.

We now move from algebra to algebraic combinatorics. Restrict to the special case of R
being the flip operator and q = 1; but now allow for V to have a ‘multigraded’ basis vj
with degree αjx, where αj > 0 for j ≥ 1. This leads to distinguished objects in algebraic
combinatorics. Indeed, the Hilbert series is now the polynomial Ψa(x) = (1 + α1x) · · · (1 +
αmx), with α1, . . . , αm > 0 (so a0 = 1) – so a0, a1, . . . , am are precisely the elementary
symmetric polynomials aj = ej(α1, . . . , αm) in the roots αk.



30. Pólya frequency sequences and their generating functions. 205

Taking limits as in the above analysis in this section, if αj ≥ 0 and
∑∞

j=1 αj < ∞,

then aj = ej(α1, α2, . . . ) for all j ≥ 0. Here, the mth elementary symmetric polynomial in
(in)finitely many variables u1, u2, . . . is defined to be

ej(u) :=
∑

1≤k1<k2<···<kj

uk1 · · ·ukj ,

with e0(u) := 1 and ej(u) := 0 if u has fewer than j entries.
In fact a stronger phenomenon occurs: if we replace the αj by variables u = (u1, u2, . . . ),

then every minor of the infinite triangular Toeplitz matrix
1 0 0 0 · · ·

e1(u) 1 0 0 · · ·
e2(u) e1(u) 1 0 · · ·
e3(u) e2(u) e1(u) 1 · · ·

...
...

...
...

. . .

 (30.17)

is monomial positive, meaning that any minor drawn from it is a non-negative sum of mono-
mials in the uj . In fact an even stronger result is true: the above matrix is a (skew) Schur
polynomial in the uj . In particular, it is (skew) Schur positive (i.e., a non-negative sum of
Schur polynomials). This phenomenon is known as the dual Jacobi–Trudi identity, and is in
a sense, the ‘original’ case of numerical positivity being monomial positivity – in fact, being
Schur positivity. See Appendix F for more on this. (We will see another, more recent such
instance in Theorem 44.6, which follows from a more general Schur positivity phenomenon
shown by Lam–Postnikov–Pylyavskyy [231].)

An analogous phenomenon holds for the ‘usual’ Jacobi–Trudi identity. Namely, suppose
Ψa(x) = ((1− α1x) · · · (1− αmx))

−1 for scalars αk > 0 (so once again, a0 = 1). Then
a0, a1, . . . are precisely the complete homogeneous symmetric polynomials

aj = hj(α1, . . . , αm) :=
∑

1≤k1≤k2≤···≤kj

αk1 · · ·αkj , j ≥ 1

and h0(α1, . . . , αm) := 1. Now take limits as above, with αj ≥ 0 and
∑∞

j=1 αj <∞ to obtain

aj = hj(α1, α2, . . . ) for j ≥ 0.
Once again, a stronger phenomenon than ‘numerical total non-negativity’ holds: if one

replaces the αj by variables u = (u1, u2, . . . ) as above, then every minor of the infinite
Toeplitz matrix 

1 0 0 0 · · ·
h1(u) 1 0 0 · · ·
h2(u) h1(u) 1 0 · · ·
h3(u) h2(u) h1(u) 1 · · ·

...
...

...
...

. . .

 (30.18)

is monomial positive, – and more strongly, (skew) Schur positive. Thus, total positivity
connects to the Jacobi–Trudi identity.

30.4. Application 2: Results of Fekete and Laguerre. We now complete the proof of
a result by Laguerre in the preceding section, as promised there. The first step is to prove a
strengthening of a weaker version of Fekete’s Proposition 29.23:

Proposition 30.19. Suppose T : Z≥0 × Z≥0 → R is TNp, for some integer p ≥ 2. Given a
real vector x = (x0, . . . , xp−1, 0, 0, . . . )

T , we have S−(Tx) ≤ S−(x).
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Proof. Suppose S−(Tx) > S−(x) for some finite vector x = (x0, x1, . . . )
T with xp = xp+1 =

· · · = 0. Then there exists an initial segment y of Tx of length m + 1 such that S−(y) >
S−(x). Let x′ := (x0, . . . , xp−1)

T , and let the submatrix T ′ := (tjk)j≤m, k<p. Then T
′ is TN

by assumption, and y = T ′x′, so by the variation diminishing property (Theorem 29.11),
S−(y) = S−(T ′x′) ≤ S−(x′) = S−(x), a contradiction. □

Using this result, we now prove Laguerre’s result as mentioned by Fekete in [118] – but
using finite matrices instead of power series:

Proof of Theorem 29.22(2). For s > 0, let Ts denote the infinite Toeplitz matrix with (j, k)
entry sj−k/(j−k)! if j ≥ k, and 0 otherwise. This corresponds to the sequence with generating
function esx, so by Example 30.10 the matrix Ts is TN ; moreover, the map esx 7→ Ts, s ≥ 0
is a homomorphism of monoids under multiplication.

We now turn to the proof. Applying Proposition 30.19, S−(Tsx) ≤ S−(x) for any finite
vector x (padded by infinitely many zeros). In particular, the integers {S−(Tsx) : s > 0} are
uniformly bounded above by S−(x) < ∞. Moreover, S−(Tsx) and S−(x) are precisely the
number of variations in the functions esxΨx(x) and Ψx(x), respectively.

We first show that S−(Ts+tx) ≤ S−(Tsx) if s, t > 0. Given m ≥ 0 and s > 0, let T
(m)
s

represent the leading principal (m+1)×(m+1) submatrix of Ts; and let x(m) = (x0, . . . , xm)T

as above. Since S−(Tsx) <∞ for all s > 0, there exists m such that

S−(Ts+tx) = S−(T
(m)
s+t x

(m)), S−(Tsx) = S−(T (m)
s x(m)).

Now compute, using for T
(m)
t the variation diminishing property in Theorem 29.11:

S−(T
(m)
s+t x

(m)) = S−(T
(m)
t T (m)

s x(m)) ≤ S−(T (m)
s x(m)) = S−(Tsx).

Finally, we claim that S−(Tsx) < ∞ is at least the (finite) number of positive zeros of
esxΨx(x), which clearly equals the number of zeros of Ψx(x) and hence would show the result.
This follows from a variant of the (stronger) Descartes’ Rule of Signs – see Theorem 10.7. □

30.5. Location of the roots, for generating functions of finite TNp sequences. Recall
by Lemma 30.8 that if a polynomial f has only negative (real) roots, then it generates a PF
sequence. In the rest of this section, we prove the converse result: namely, if a real sequence
a has only finitely many non-zero entries, then it is a PF sequence only if the polynomial
Ψa(x) has all negative zeros.

To do so, we will deduce necessary (and sufficient) conditions for a finite sequence to be
TNp. The aforementioned conclusion will then follow by considering all p ≥ 1. We begin with
a result by Schoenberg [325] in Ann. of Math. 1955, which says: in order to check whether or
not (. . . , 0, a0, a1, . . . , am, 0, . . . ) is a TNp sequence, we do not need to check infinitely many
minors of unbounded size.

Theorem 30.20. Suppose (. . . , 0, a0, a1, . . . , am, 0, . . . ) is a real sequence with a0, a1, . . . , am >
0 for some m ≥ 0. This sequence is TNp (for some integer p ≥ 1) if and only if the matrix

Ap :=


a0 a1 · · · · · · am 0 0 · · · 0
0 a0 · · · · · · am−1 am 0 · · · 0
...

...
...

...
...

...
0 0 · · · a0 · · · am−p+1 am−p+2 am−p+3 · · · am


p×(m+p)

is TN . Moreover, in this case the generating polynomial Ψa(z) = a0 + · · · + amz
m has no

zeros in the sector | arg z| < pπ/(m+ p− 1).
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To show this result, Schoenberg first proved a couple of preliminary lemmas.

Lemma 30.21. Suppose (an)n∈Z is a summable sequence of non-negative numbers, such that
the p× Z ‘matrix’

A′
p := (ak−j)0≤j<p;k∈Z

has rank p, i.e., an invertible p× p submatrix. Then (an)n is TNp if and only if the matrix
A′

p is TN .

Proof. One implication is immediate. Conversely, suppose A′
p is TN , and for every σ > 0,

draw a Z × Z matrix from a Gaussian kernel, say Mσ := (e−σ(j−k)2)j,k∈Z. By Lemma 6.8,
this matrix is symmetric and totally positive, and goes entrywise to IdZ×Z as σ → ∞. Now
since

∑
n∈Z an is finite, one can form the matrix

Bσ := TaMσ, (Bσ)j,k =
∑
n∈Z

aj−ne
−σ(n−k)2 , j, k ∈ Z.

We claim that Bσ is TPp. To see why, it suffices to check that any contiguous submatrix
of Bσ is TPp; in turn, for this it suffices to check for all 1 ≤ r ≤ p that all contiguous r × r
minors of Bσ are positive, by the Fekete–Schoenberg Lemma 4.9. But each such minor is the
determinant of the product of a contiguous r×Z submatrix A∗ of Ta and a contiguous Z× r
submatrixM∗

Z×r of the totally positive matrixMσ. By the generalized Cauchy–Binet formula,
given contiguous r-sized index-sets J ⊂ [p] and K ⊂ Z, first note that the submatrix A∗

J×Z
can be moved up and to the left, to assume that J = [r] and K ⇝ K ′ := K + 1−minj∈J j.
Now,

det(Bσ)J×K = det(Bσ)[r]×K′ =
∑
J∈(Zr)

det(A′
p)[r]×J det(Mσ)J×K′ .

The second factor in the summand is always positive since Mσ is TP , and the first factor is
always non-negative, so it remains to find some J such that (A′

p)[r]×J is invertible. But A′
p has

rank p, so there exist p linearly independent columns indexed by J ′ := {j1 < · · · < jp}, say.
Hence the matrix (A′

p)[r]×J ′ has full row rank, hence it contains r-many linearly independent
columns. Index them by J , and we are done.

Thus the matrix Bσ is TP for all σ > 0. It is not hard to see that these matrices converge
to A′

p as σ →∞, and the proof is complete. □

The next lemma is interesting in its own right, hence isolated into a standalone result.

Lemma 30.22. Given matrices A,B, define their ‘concatenation’ A ⊞ B to be the ‘block

diagonal’ matrix

(
A 0
0 B

)
, but with a horizontal shift such that the final column of A is

directly above the initial column of B. Now A⊞B is TN if and only if A,B are TN .

This will use the following observation: If a square block diagonal matrix M = M1 ⊕M2

is invertible, then M1,M2 are square. (This is because if M1 and hence M2 are not square,
their row (or column) ranks do not add up to the size of M , and so det(M) = 0.)

Proof. One implication is immediate. Conversely, suppose A,B are TN , and the column
common to them is numbered n in A ⊞ B. Choose a square submatrix M of A ⊞ B. If M
does not have a column of A ⊞ B from before the nth column and one from after the nth,
then either M has a zero row or M is a submatrix of A or of B, whence det(M) ≥ 0.

Otherwise M has two columns indexed in A ⊞ B by n1, n2 with n1 < n < n2. There are
now two cases:
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(1) Suppose M does not include the nth column. Then M is a submatrix of A⊞B with
the nth column removed, which is a block diagonal matrix. Now the diagonal blocks
are both square, in which case det(M) ≥ 0 by the hypotheses; or neither diagonal
block is square, in which case the above observation (following the statement of the
lemma) yields det(M) = 0.

(2) Otherwise M also includes the nth column of A⊞B. Now M is of the form

M =

(
A′ vA 0
0 vB B′

)
.

If B′ is square, then expanding det(M) along the ‘common’ column, we claim that

det(M) = det(B′) det[A′|vA],
since the cofactors in M corresponding to the coordinates of vB are of the form

det

(
A′′ 0
0 B′′

)
, where B′′ is obtained by removing a row from B′ and so is not square.

Hence each such cofactor vanishes, by the above observation; and we are left with
det(B′) det[A′|vA]. As both determinants are non-negative by assumption, det(M) ≥
0 as desired.

The proof is similar if A′ is square. Finally, if neither A′ nor B′ is square then the co-

factor against each coordinate of the ‘common’ column is of the form det

(
A′′ 0
0 B′′

)
,

with at least one of A′′, B′′ not square. By the above observation (preceding this
proof), all such cofactors vanish, so det(M) = 0. □

With these preliminaries at hand, we can proceed.

Proof of Theorem 30.20. The first part follows from Lemma 30.21, since now most of the
columns of the matrix A′

p defined in that lemma are zero. Here we use not Ap, but the
matrix obtained by reversing the rows and columns of Ap, which is TN if and only if Ap is.

Now suppose Ap is TN . If m = 0 then the result is obvious, so we assume m > 0
henceforth. By Lemma 30.22, so is the np× (nm+ np− n+ 1) matrix

Mn = A⊞np := Ap ⊞ · · ·⊞Ap, n ≥ 1,

where the ‘sum’ is n times, and we use that ⊞ is associative.
The first observation is that Mn = A⊞np has full rank np. Indeed, we may consider from

each component Ap the initial p columns, which yields an upper triangular np×np submatrix
with all diagonal entries a0 > 0. For future use, denote the set of these np columns by J .

Let α = ρeiθ be a root of Ψa(z). If θ = π then we are done, and if θ = 0 then Ψa(z) > 0.
Since α is also a root, we may therefore assume that θ ∈ (0, π). Define xj := ℑ(αj) =
ρj sin(jθ) for 0 ≤ j ≤ n(m+p−1). We now count the number of sign changes S−((x0, . . . , xt))
for t ≥ 0: this equals the number of times αj crosses the X-axis in C, so

S−((x0, . . . , xt)) = ⌊tθ/π⌋+ ε, where ε ∈ {0,−1}. (30.23)

At the same time,
∑m

j=0 ajα
ν+j = ανΨa(α) = 0, so taking the imaginary parts yields:

m∑
j=0

ajα
ν+j sin((ν + j)θ)) = 0, ∀ν ∈ Z≥0.

In other words, Mnx = 0, where x := (x0, . . . , xn(m+p−1))
T . Also note that if some xj = 0

for 0 < j < n(m + p − 1), then xj−1xj+1 < 0, since θ ∈ (0, π) by assumption. Hence small
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enough perturbations to x will not change the number of sign-changes except at most at the
extremal coordinates.

Now let y := (−1, 1, . . . , (−1)np)T and let x0 := (Mn)
−1
[np]×Jy, with J ⊂ [nm+ np− n+ 1]

the set of columns chosen above, containing a0. Let x̃0 ∈ Rnm+np−n+1 \{0} denote the vector
with the coordinates of x0 in the positions indexed by J , and padded by zeros otherwise.
Then Mnx̃0 = y. Now by the end of the preceding paragraph, choose ϵ > 0 small enough
such that S−(x+ ϵx̃0) ≤ S−(x) + 2. Recalling that Mnx = 0, we have:

np− 1 = S−(ϵy) = S−(Mn(x+ ϵx̃0)) ≤ S−(x+ ϵx̃0) ≤ S−(x) + 2,

where the first inequality is by the variation diminishing property of the TN matrix Mn =
A⊞np (see Theorem 29.11). Hence by (30.23) with t = n(m+ p− 1),

np− 1 ≤ ⌊n(m+ p− 1)θ/π⌋+ 2 ≤ n(m+ p− 1)θ

π
+ 2.

Since n was arbitrary, letting n→∞ finishes the proof. □

We can now deduce the desired corollary about finite Pólya frequency sequences.

Corollary 30.24. Suppose a = (. . . , 0, a0, . . . , am, 0, . . . ) is a real sequence, with a0, . . . , am >
0. The following are equivalent:

(1) a is a Pólya frequency sequence.
(2) Ψa(x) =

∑m
j=0 ajx

j has m negative real roots, counted with multiplicity.

(3) Ψa(x) =
∑m

j=0 ajx
j has m real roots, counted with multiplicity.

Proof. That (1) =⇒ (2) follows from the final assertion of Theorem 30.20, letting p → ∞.
That (2) =⇒ (1) follows from Lemma 30.8. Clearly (2) =⇒ (3), and the converse holds
since Ψa does not vanish at 0, and does not have positive roots by Descartes’ Rule of Signs
– see e.g. Theorem 10.7 with I = (0,∞). □

30.6. Jacobi TNp matrices and a sufficient condition for TNp sequences. We conclude
this section with a result by Schoenberg that is ‘opposite’ to his Theorem 30.20. Namely, if
the generating polynomial above has all roots in the sector | arg(z) − π| ≤ π/(p + 1), then
the finite sequence (. . . , 0, a0, . . . , am, 0, . . . ) is TNp. To do so, we first study when ‘infinite
Toeplitz tri-diagonal (Jacobi) matrices’ are TNp. This was carried out by Karlin in Trans.
Amer. Math. Soc. (1964), and he showed the following lemma.

Lemma 30.25 (Karlin, [199]). Given a, b, c ∈ (0,∞), define the corresponding Jacobi matrix
J(a, b, c)Z×Z via J(a, b, c)j,k equals a, b, c if k = j − 1, j, j + 1 respectively, and 0 otherwise.

Then J(a, b, c) is TNp for an integer p ≥ 1, if and only if b
2
√
ac
≥ cos(π/(p+ 1)).

Proof. When considering submatrices of K := J(a, b, c) of the form K[x;y] for x,y ∈ Zr,↑, it
is not hard to verify that if xt ̸= yt for some 1 ≤ t ≤ r, then (a) the matrixK[x;y] has a row or
a column with at most one non-zero entry; (b) expanding along this row or column breaks up
the matrix into the single non-zero entry (if it exists) and a product of two smaller minors of
K = J(a, b, c). From this it follows that every minor of K is a product of principal minors and
elements of K. Thus, to check if J(a, b, c) is TNp, we need to examine the principal minors
of size at most p. If such a submatrix is not contiguous, then it automatically becomes a
block diagonal matrix, and so we only need to consider the contiguous (equivalently, leading)
principal minors of J(a, b, c) of size ≤ p.
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For the ensuing discussion, fix a, c > 0. Given λ ∈ C, b ∈ (0,∞), and an integer r ≥ 1,
define Jr,b(λ) to be the r × r leading principal submatrix of J(a, b, c)− λ IdZ×Z. Expanding
along an initial/terminal row/column, it is easy to observe that the determinants

dr,b(λ) := detJr,b(λ), r = 1, 2, . . .

are polynomials in λ, which satisfy the recurrence:

dr+1,b(x) = (b− x)dr,b(x)− acdr−1,b(x), r ≥ 0

with the initial conditions d0,b(x) = 1, d−1,b(x) = 0. Reformulate this in terms of the ‘shifted’
polynomials

er,b(x) =
√
ac

−r
dr,b(b− 2

√
acx), r ≥ 1,

to obtain the recurrence:

xer,b(x) =
er−1,b(x) + er+1,b(x)

2
, r ≥ 1; e0,b(x) = 1, e−1,b(x) = 0.

Restricting to x = λ ∈ (−1, 1), so that x = cos(θ) for some θ ∈ (0, π), one can show by
induction that er(x) = sin((r+1)θ)/ sin(θ) satisfies the initial conditions and the recurrence.
In fact, this corresponds to the Chebyshev polynomials of the second kind, given by

er(cos θ) =
sin(r + 1)θ

sin θ
, θ ∈ (0, π), r ≥ −1.

Continuing with the fixed scalars a, c > 0, we show that J(a, b, c) is TNp for b > 0 if and
only if b ≥ 2

√
ac cos(π/(p + 1)). There are two cases. First if b ∈ (0, 2

√
ac), then write

b
2
√
ac

= cos(θ) ∈ (0, 1), where θ ∈ (0, π/2). Our desired value of interest is the determinant

dr(0) =
√
ac

r
er,b(b/2

√
ac) =

√
ac

r
er,b(cos θ) =

√
ac

r sin((r + 1)θ)

sin θ
.

This is non-negative if and only if (r+1)θ ≤ π, if and only if 1 > b
2
√
ac
≥ cos(π/(r+1)). This

completes the classification if 0 < b < 2
√
ac, since the sequence cos(π/(r + 1)) is increasing

in 1 ≤ r ≤ p.
The second case is if b ≥ 2

√
ac ≥ 2

√
ac cos(π/(p + 1)). We need to show that J(a, b, c)

is TNp, for which (from above) it suffices to show that detJr,b(0) ≥ 0 for 1 ≤ r ≤ p. To
show this, we use a well-known identity: by the multilinearity of the determinant in the
rows/columns, it follows for any square r × r matrix B over a unital commutative ring that

det(B + ν Id) = νr +
∑

∅≠I⊂[r]

νr−|I| detBI×I . (30.26)

We now apply this identity to the matrices Jr,b(0), if b ≥ 2
√
ac. Set

br := 2
√
ac cos(π/(r + 1)) ∈ [0, b], B := Jr,br(0), ν := b− br ≥ 0.

By the analysis above in this proof, detBI×I ≥ 0 for all I. It follows from (30.26) that
det Jr,b(0) ≥ 0. Since this holds for all 1 ≤ r ≤ p, the proof is complete. □

With Lemma 30.25 at hand, we present the final proof in this section: that of a sufficient
condition for a polynomial to generate a finite Pólya frequency sequence.

Theorem 30.27 (Schoenberg, [326]). Fix an integer p ≥ 1, and suppose a polynomial f(z) =
a0 + a1z + · · ·+ amz

m with positive coefficients, such that all zeros of f lie in the sector

| arg(z)− π| ≤ π

p+ 1
.
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Then the sequence a = (. . . , 0, a0, . . . , am, 0, . . . ) is TNp.

Proof. If p = 1 then the result is clear, so we suppose below that p ≥ 2. Decompose f into
linear and complex-conjugate factors:

f(z) = am
∏
j

(z − αj)
∏
k

(z − ρke−iθk)(z + ρke
iθk),

with all ρk > 0. The hypotheses imply that αj < 0 and |θk − π| ≤ π/(p + 1). Now z − αj

generates a PF sequence by Lemma 30.8, and each irreducible quadratic

(z − ρke−iθk)(z + ρke
iθk) = z2 − 2zρk cos(θk) + ρ2k

does the same by Lemma 30.25, since the condition − cos θk ≥ cosπ/(p+ 1) is equivalent to
|θk − π| ≤ π/(p + 1) (with p ≥ 2). Hence their product f(z) also generates a PF sequence,
by Proposition 30.6(3). □

Finally, we present a (standalone) sufficient condition for a square matrix to be TP :

Theorem 30.28. Let A = (ajk)j,k≥1 with all ajk ∈ (0,∞). If

ajkaj+1,k+1 > aj,k+1ak+1,j · 4 cos2(π/(n+ 1)), ∀j, k ≥ 1,

then A is TPn; moreover, the constant 4 cos2(π/(n+ 1)) cannot be reduced.

This result only uses the positivity of the entries and a growth condition on the 2 × 2
minors. It was conjectured by Dimitrov–Peña in 2005 [101], and proved (independently)
by Katkova–Vishnyakova in 2006 [209]. (Also worth mentioning is their 2008 follow-up pa-
per [210] on (Hurwitz) stability of polynomials.) That the constant is best possible is revealed

via Lemma 30.25, as follows: given 0 ≤ c < 4 cos2(π/(n + 1)), choose θ ∈
(

π
n+1 ,

2π
n+1

)
such

that c < 4 cos2 θ. Now consider the Jacobi matrix J(1, 2 cos θ, 1)n×n.
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31. Complement: Root-location results and TN Hurwitz matrices

We take a short detour to discuss some well-known matrices associated to finite Pólya
frequency sequences and their generating polynomials. First, Corollary 30.24 has received
recent attention: instead of working with the matrix Ap as in Theorem 30.20, one can study
other variants. This section opens with a few results along these lines, presented without
proof.

Definition 31.1. Given a polynomial with real coefficients

f(z) = a0z
n + a1z

n−1 + · · ·+ an, n, a0, . . . , an > 0,

and an integer 1 ≤ M ≤ n, define aj := 0 for j < 0 or j > n, and the M th generalized
Hurwitz matrix to be the Z× Z matrix HM (f), given by

HM (f)j,k := aMk−j , j, k ∈ Z. (31.2)

We now present five results (without proof, and perhaps not all of them ‘best possible’)
in the literature, which are similar to each other, and one of which is the Aissen–Edrei–
Schoenberg–Whitney corollary 30.24:

Theorem 31.3. Let n, a0, . . . , an > 0 and define f(z) = a0z
n + a1z

n−1 + · · · + an. Also fix
an integer 1 ≤M ≤ n.

(1) (M = 2, Routh–Hurwitz, see e.g. [188, 305].) The polynomial f is ‘stable’, i.e., has no
zeros z with | arg z| ≤ π/2, if and only if all leading principal minors of the Hurwitz
matrix H2(f), of order ≤ n, are positive.

(2) (M = 2, Asner [14], Kemperman [212], Holtz–Tyaglov [181].) The polynomial f has
no zeros z with | arg z| < π/2 if and only if the Hurwitz matrix H2(f) is TN .

(3) (M = 1, Aissen–Edrei–Schoenberg–Whitney.) The polynomial f has no zeros z with
| arg z| < π if and only if the Toeplitz matrix H1(f) is TN .

(4) (M = n, Cowling–Thron [89].) The polynomial f has no zeros z with | arg z| ≤ π/n.
(5) (M ∈ [1, n], Holtz–Khrushchev–Kushel [180].) The polynomial f has no roots z with
| arg z| < π/M if the generalized Hurwitz matrix HM (f) is TN .

We now come to further results on root-location (of real polynomials), in the spirit of
Theorems 30.20, 30.27, and 31.3. These three results revealed a connection between Pólya
frequency sequences, totally non-negative matrices, and root-location.

As a ‘warmup’, we show the Gauss–Lucas theorem, found in Lucas’s 1874 work [244].

Theorem 31.4 (Gauss–Lucas). If p(z) is a non-constant polynomial, then the roots of p′(z)
in C are contained in the convex hull of the set of roots of p(z).

Proof. Let p(z) = pn
∏n

j=1(z−ξj). If ξj is a root of p′ as well as p, then ξj = 1·ξj+
∑

k ̸=j 0·ξk.
If ξ is a root of p′ but not of p, then we compute:

p′(z)

p(z)
=

n∑
j=1

1

z − ξj
=⇒ 0 =

p′(ξ)

p(ξ)
=

n∑
j=1

ξ − ξj
|ξ − ξj |2

.

Setting A :=
∑n

j=1 |ξ − ξj |−2 > 0, we obtain via simplifying and conjugating:

Aξ =
n∑

j=1

|ξ − ξj |−2ξj =⇒ ξ =
n∑

j=1

|ξ − ξj |−2

A
ξj ,

and so ξ is in the convex hull of the ξj . □



214 31. Complement: Root-location results and TN Hurwitz matrices.

The next theorem is a ‘real’ variant of the Hermite–Biehler theorem – the classical version is
due to Hermite [165] and Biehler [49] in J. reine angew. Math., in 1856 and 1879 respectively.6

The real variant presented here requires the following preliminary result.

Lemma 31.5. Suppose p, q are differentiable functions on a closed interval [a, b], with p(a) =
p(b) = 0, p > 0 on (a, b) and q < 0 on [a, b]. Then there exist λ, µ > 0 such that λp+ µq has
a repeated root in (a, b).

Proof. Since q is continuous and negative on [a, b], define

h(x) :=
p(x)

q(x)
, x ∈ [a, b].

Clearly h is differentiable on [a, b], negative on (a, b), and vanishes at the endpoints. Hence
it has a global minimum, say at x0 ∈ (a, b) – whence the function

h(x)− h(x0) : [a, b]→ R

has a repeated root at x0. Returning to p, q, let λ = 1 and µ = −h(x0) > 0; then the function

λp(x) + µq(x) = q(x) (h(x)− h(x0))

can be easily verified to have a repeated root at x0 ∈ (a, b). □

We also require the notion of interlacing.

Definition 31.6. Let f, g ∈ R[x] be two real-rooted polynomials, with deg(f)−1 ≤ deg(g) ≤
deg(f). We say g interlaces f if between any two consecutive roots of f (possibly equal),
there exists a root of g. We say f, g are interlacing, or interlace (one another) if either of f, g
interlaces the other.

For the next few results, and related variants, and an in-depth treatment, the reader is
referred to the monograph [295] of Rahman and Schmeisser. The treatment here is from [179].

Theorem 31.7 (Hermite–Biehler, ‘real’ version). Fix polynomials p, q ∈ R[x] and set f(x) :=
p(x2) + xq(x2). The following are equivalent:

(1) The polynomial f(x) has no roots z with ℜ(z) ≥ 0.
(2) The polynomials p(−x2), xq(−x2) have real, simple roots, which are interlacing. More-

over, there exists z0 ∈ C, ℜ(z0) > 0 such that ℜ
(

p(z20)

z0q(z20)

)
> 0.

Proof. We begin by assuming (2). Notice that all roots of p, q lie in (−∞, 0]. Thus the ratio

ℜ
(

p(z2)
zq(z2)

)
is non-vanishing, whence always positive by (2), on the half-plane ℜ(z) > 0 (which

is an open ‘sector’ with aperture π; this is defined and used in a later section). It follows
that the equation

0 = f(z) = zq(z2)

(
p(z2)

zq(z2)
+ 1

)
has no solution with ℜ(z) > 0. Moreover, at a point ix on the imaginary line, we have

f(ix) = p(−x2) + ixq(−x2),

which cannot vanish by (2). This shows that all zeros z of f satisfy: ℜ(z) < 0.

6Two historical asides: Biehler’s thesis in the same year 1879 is dedicated to his “master M. Charles
Hermite”; and Pierre Fatou was a student of Biehler in the Collége Stanislas.
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Conversely, suppose (1) holds. Write f(z) = a
∏m

j=1(z − αj), with a ̸= 0 and ℜ(αj) < 0.

Verify that if ℑ(z) > 0, then |iz + αj | > |iz − αj | for all j, so that

|f(iz)| = |a|
m∏
j=1

| − iz + αj | = |a|
m∏
j=1

|iz + αj | > |a|
m∏
j=1

|iz − αj | = |f(iz)|.

Square both sides and expand, to deduce using that p(x), q(x) ∈ R[x]:

0 >
1

4
(|f(iz)|2 − |f(iz)|2) = ℜ(ip(−z2)zq(−z2)) =⇒ ℑ(p(−z2)zq(−z2)) < 0.

This holds if ℑ(z) > 0; taking conjugates, if ℑ(z) < 0 then ℑ(p(−z2)zq(−z2)) > 0. That is:

z ̸∈ R =⇒ ℑ(z)ℑ
(
p(−z2)
zq(−z2)

)
< 0. (31.8)

In other words, the functions

z 7→ p(−z2)
zq(−z2)

, z 7→ zq(−z2)
p(−z2)

do not take real values for z ∈ C\R. Thus, if the first (or second) function here equals −µ/λ
(or −λ/µ) for λ, µ ∈ R, then z must be real – that is, the following functions are real-rooted:

λp(−z2) + µzq(−z2), λ, µ ∈ R, λ2 + µ2 ̸= 0 (31.9)

We next claim that the polynomials p(−x2), xq(−x2) – which are now real-rooted – are
moreover coprime. Suppose not, for contradiction. If p(c) = q(c) = 0 for c ∈ (−∞, 0) then

f(±i
√
|c|) = 0, which violates (1). If p(0) = 0 then f(0) = 0, again violating (1). Otherwise

p(−x2), xq(−x2) must have a pair of common, non-real conjugate roots, say z± = a± ib with
b > 0. Now

f(ia∓ b) = f(iz±) = p(−z2±) + iz±q(−z2±) = 0,

which violates (1) yet again. This contradiction shows that p(−x2), xq(−x2) are coprime.
We now explain why no function (31.9) can have a multiple root. (Recall that these

functions are all real-rooted.) Indeed, if there existed such a multiple root, then one of the

ratio-functions p(−z2)
zq(−z2)

, zq(−z2)
p(−z2)

– call it g(x) – would equal a real number, say r ∈ R, with
‘multiplicity’. More precisely, there exists x0 ∈ R such that (x − x0)

2 divides λp(−x2) +
µxq(−x2) with (λ, µ) ̸= (0, 0). Notice by the coprimality above that p(−x2), xq(−x2) do not
vanish at x0. Let k ≥ 2 denote the order of the multiple root x0. Thus,

g(x)− r = (x− x0)kh(x),

where we expand near x0 and so all functions involved are analytic; moreover, h(x0) ̸= 0.
But then for small ε > 0, the equation g(x) = r − εk has solutions

x = x0 + eiπ(1+2j)/kh(x0)
−1/kε+ o(ε), j = 1, 2, . . . , k.

This implies that the ratio-function g(x) takes real values outside the real axis, which con-
tradicts a conclusion above.

We have thus shown that p(−x2), xq(−x2), and indeed, all nontrivial real-linear combina-
tions of them, are real-rooted with simple roots. By (the contrapositive of) Lemma 31.5, it
follows that the roots of p(−x2), xq(−x2) interlace. Finally, return to (31.8) and let z := iz0

for arbitrary z0 ∈ (0,∞). Then 0 > ℑ
(

p(z20)
iz0q(z0)2

)
=

−p(z20)
z0q(z0)2

∈ R. □
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Remark 31.10. Theorem 31.7(2) is equivalent to the polynomials p, q having simple, nega-
tive roots, which interlace with the rightmost zero being that of p, and p(0)q(0) > 0.

As an application, we show the heart of the Routh–Hurwitz scheme [188, 305]. This will
presently lead us back to TN matrices.

Theorem 31.11 (Routh–Hurwitz). Fix polynomials p, q ∈ R[x] and set f(x) := p(x2) +
xq(x2). The following are equivalent:

(1) The polynomial f(x) has no roots z with ℜ(z) ≥ 0.
(2) The scalar c := p(0)/q(0) is positive and the polynomial f1(x) := p1(x

2)+xq1(x
2) has

no roots z with ℜ(z) ≥ 0 – where p1(x) := q(x) and q1(x) :=
1
x(p(x)− cq(x)).

For completeness, we highlight the applicability of the above approach, by deducing another
well-known result on interlacing. This is attributed to several authors: Hermite [165] in 1856;
Kakeya, whose proof was presented by Fujiwara [133] in 1916; and Obrechkoff [273] in 1963.

Theorem 31.12 (Hermite, Kakeya, Obrechkoff). Suppose f, g are real polynomials with no
common root. The following are equivalent:

(1) The roots of f, g are real and simple, and f, g interlace (so |deg(f)− deg(g)| ≤ 1).
(2) For all λ, µ ∈ R with λ2+µ2 > 0, the polynomial λf(x)+µg(x) has real, simple roots.

Proof. In both assertions, note that the deg(f) + deg(g) roots of f, g are pairwise distinct
and all real, so say f (respectively, g) has roots α1 < · · · < αm (respectively, β1 < · · · < βn).
These divide the real line into m+ n+ 1 open intervals, on each of which f, g do not change
sign. Enumerate these intervals from right to left, so that I1 = (max{αm, βn},∞). Moreover,
on any two adjacent intervals, one of f, g does not change sign, while the other does.

We now turn to the proof. First given (2), we need to show that the polynomials f, g
interlace. (Note that both have real, simple roots.) This follows from the claim that no
bounded interval Ik has both endpoints as roots of either f or of g. In turn, the claim is a
consequence of Lemma 31.5.

Conversely, we assume (1) and show (2). We can assume both λ, µ ̸= 0, so suppose without
loss of generality that (a) λ = 1, (b) f, g are monic, and (c) deg(f) = m ≥ n = deg(g), with
n ∈ {m− 1,m}. There are now several cases:

(1) µ > 0. In this case, the function λf + µg is positive on I1, negative on I3, positive
on I5, and so on, until it has sign (−1)m−1 on I2m−1, and (−1)m as x→ −∞. From
this, it follows that λf + µg has at least m sign changes on R, and degree m, whence
precisely m simple roots.

(2) µ < 0 and m = n + 1. In this case, λf + µg is positive as x → +∞, negative on I2,
positive on I4, and so on, until it has sign (−1)m on I2m. Now the final sentence of
the previous case again applies.

(3) −1 < µ < 0 and m = n. Now there are two subcases, corresponding to if αm > βn or
αm < βn. In the former case, λf +µg is positive as x→ +∞, negative on I2, positive
on I4, and so on, until it has sign (−1)m (as in the preceding case). Hence the final
sentence of the first case again applies.

Otherwise we have αm < βn, whence λf +µg is positive on I2, negative on I4, and
so on, until it has sign (−1)m−1 on I2m, and sign (−1)m as x→ −∞. Hence the final
sentence of the first case applies.

(4) If µ < −1 and m = n, this reduces to the preceding case, by replacing f ←→ g and
(λ = 1, µ ∈ (−∞,−1))←→ (µ−1 ∈ (−1, 0), 1).
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(5) This leaves the final subcase, in which µ = −1 and m = n (and recall that λ = 1
and f, g are monic). Given the interlacing of the roots of f, g, it is not hard to see
that deg(λf + µg) = m − 1. Notice that shifting the origin simultaneously for both
polynomials does not affect either assertion in the theorem, nor does interchanging
λ = 1 with µ = −1. Thus, we assume henceforth that both f and g have negative,
simple roots αj and βj respectively, and that without loss of generality,

0 > αm > βm > αm−1 > · · · > α1 > β1.

We now ‘invert the coefficients’ of both polynomials: let finv(x) := xmf(1/x) and
ginv(x) := xmg(1/x). These have roots α−1

j and β−1
j respectively, so these roots

are once again negative and interlacing (now β−1
1 is the closest root to the origin).

Moreover, finv(0) = ginv(0) = 1. Applying Remark 31.10 (and Theorem 31.7), the
polynomial

F (x) := ginv(x
2) + xfinv(x

2)

has no roots z with ℜ(z) ≥ 0. Hence by Theorem 31.11 with c = 1, the polynomial
F1(x) := g1(x

2) + xf1(x
2) has no roots z with ℜ(z) ≥ 0, where

g1(x) = finv(x), f1(x) =
1

x
(ginv(x)− finv(x)).

Now apply Theorem 31.7 for F1, and Remark 31.10 for g1, f1, to deduce that
the roots of g1, f1 are simple, negative, and interlace. In particular, the roots of
1
x(ginv(x)− finv(x)) = (g − f)inv(x) (by abuse of notation) are simple and negative.

Inverting back the coefficients (via p(x) 7→ xdeg(p)p(1/x)), so are the roots of g(x) −
f(x), whence of λf + µg, as desired. □
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32. Examples of Pólya frequency functions: Laplace transform,
convolution.

In Section 28, we saw some characterizations of TNp functions, and also studied the expo-
nential decay of TN2 (whence all TNp) functions. We also saw several examples of TN (in
fact, Pólya frequency) functions in Section 29. We now return to Pólya frequency functions,
and discuss additional examples as well as a recipe to generate new examples of TNp or PF
functions from old ones.

32.1. The bilateral Laplace transform of a totally non-negative function. We begin
by defining and studying the Laplace transform more generally – for TN2 functions.

Definition 32.1. The bilateral Laplace transform of a (measurable) function f : R → R is
denoted by B(f), and defined at a complex argument s ∈ C to be

B(f)(s) :=
∫
R
e−sxf(x) dx.

This expression is defined if the following integrals both converge as R→∞:∫ R

0
e−sxf(x) dx,

∫ 0

−R
e−sxf(x) dx,

in which case the sum of their limits is taken to be B(f)(s).

The following result uses the characterization of TN2 functions in Theorem 28.4 above, to
show the existence of the Laplace transform:

Lemma 32.2. Suppose f : R → R is TN2 and not an exponential. Then B(f) exists in the
open vertical strip in C, given by

−∞ ≤ α := inf
x∈I

(log f)′(x) < β := sup
x∈I

(log f)′(x) ≤ ∞,

where f ′ exists on a co-countable set, and we set α := −∞ (respectively, β :=∞) if f(x) ≡ 0
for sufficiently large x > 0 (respectively, sufficiently small x < 0). If f is integrable then this
strip contains the imaginary axis.

Proof. Let I denote the interval of support of f , as in Theorem 28.4. There are three
possibilities: (a) I is bounded, in which case the result is easy; (b) I is unbounded only on
one side (in which case f can be an exponential function on I); or (c) I = R, in which case
f(x) is not an exponential.

We will work in the third case, as the cases for I ⊊ R are simpler. It suffices to show that
the integral in B(f) is absolutely convergent on a vertical strip. We now appeal to Propo-
sition 28.8 and its proof, used henceforth without further reference. First by Lemma 26.3,
(log f)′ is defined on a co-countable subset of I and is non-increasing there. Thus the following
limits make sense, and equal the asserted formulae:

α := lim
x→∞

f ′(x)

f(x)
, β := lim

x→−∞

f ′(x)

f(x)
; (32.3)

moreover, −∞ ≤ α < β ≤ ∞, since f is not an exponential on I = R.
We claim that the integral in B(f)(s) is absolutely convergent for ℜ(s) ∈ (α, β), whence

convergent as desired. Indeed:

|B(f)(s)| ≤
∫
R
|e−sx|f(x) dx =

∫ ∞

0
e−xℜ(s)f(x) dx+

∫ 0

−∞
e−xℜ(s)f(x) dx.
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Since α < ℜ(s) < β, choose points x1 < x2 in I such that α < g′(x2) < ℜ(s) < g′(x1) < β.
Then convergence follows because f shrinks to zero faster than the exponential bounds in
the proof of Proposition 28.8.

Finally, suppose f is integrable on I, where we once again assume I = R. Then f(x)→ 0
as |x| → ∞, whence log f(x)→ −∞ as |x| → ∞. It follows that α < 0 < β. □

We next bring the limits of the vertical strip α, β into the form found in the literature:

Proposition 32.4. The limits in Lemma 32.2 can also be written as

α := lim
x→∞

log f(x)

x
, β := lim

x→−∞

log f(x)

x
,

where once again, we set α := −∞ (respectively, β := ∞) if f(x) ≡ 0 for sufficiently large
x > 0 (respectively, sufficiently small x < 0).

Proof. The result is nontrivial only for I unbounded on one or both sides of the origin; we
show it here only for the case I = R. Since − log f is convex, the result follows from a more
general fact about arbitrary convex functions:

Suppose g : R→ R is convex, so that g′ is defined on a co-countable set. Then,

sup
x∈R

g′(x) = lim
x→∞

g′(x) = lim
x→∞

g(x)

x
,

inf
x∈R

g′(x) = lim
x→−∞

g′(x) = lim
x→−∞

g(x)

x
.

We only show the first part; the second is similar. By Lemma 26.3(1), the divided difference

h(x, y) :=
g(y)− g(x)
y − x

, x ̸= y

is coordinatewise non-decreasing. Choose any x0 at which g is differentiable. Then for y > x0,

h(x0, y) ≥ lim
y→x+

0

h(x0, y) = g′(x0);

but now taking y →∞,

g′(x0) ≤ lim
y→∞

g(y)− g(x0)
y − x0

= lim
y→∞

g(y)

y
.

Taking the supremum over x0 ∈ R (or the limit as x0 → ∞) yields one inequality. For the
other, let g be differentiable at x0 and let y < x0. Then

h(y, x0) ≤ lim
y→x−

0

h(y, x0) = g′(x0) ≤ sup
x∈R

g′(x).

Since this holds for all x0 > y, now taking x0 →∞ yields the desired result:

sup
x∈R

g′(x) ≥ lim
x0→∞

g(x0)− g(y)
x0 − y

= lim
x0→∞

g(x0)

x0
. □

32.2. Examples of Pólya frequency functions; convolution. Having discussed the
Laplace transform, we next discuss a recipe to generate new examples of TNp functions
(or Pólya frequency functions) from old ones, for all p ≥ 1.

Definition 32.5. Given Lebesgue measurable functions f, g : R → R, define their convolu-
tion, denoted by f ∗ g, to be the function given by the following integral, wherever defined:

(f ∗ g)(x) :=
∫
R
f(y)g(x− y) dy.
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The recipe can now be stated: if f, g are integrable TNp functions for any 1 ≤ p ≤ ∞,
then so is f ∗ g. To show this, we require some basic properties of convolutions, which are
now collected together for ease of future reference.

Lemma 32.6 (Convolution properties). Suppose f, g : R→ R are both in L1(R).
(1) For almost all x ∈ R, the function y 7→ f(y)g(x − y) is Lebesgue measurable and

integrable, so that f ∗ g is defined for almost every x ∈ R.
(2) f ∗ g = g ∗ f ∈ L1(R), and ∥f ∗ g∥1 ≤ ∥f∥1∥g∥1.
(3) If g is also in L∞(R), then f ∗ g is continuous on R.
(4) If f, g ≥ 0 on R, then so is f ∗ g.
(5) The Laplace transform is an ‘algebra homomorphism’ for addition and convolution:

B(f ∗ g)(s) = B(f)(s)B(g)(s),
whenever the two terms on the right converge absolutely at a common point s ∈ R.

Regarding the last part, we leave to the reader the verification that L1(R) under addition
and convolution forms a commutative R-algebra.

Proof.

(1) First note that A(x, y) := f(x)g(y) is Lebesgue measurable, since f, g are. Moreover,
L(x, y) := (y, x− y) is an invertible linear transformation of R2, whence measurable.
Thus (A ◦ L)(x, y) := f(y)g(x− y) is measurable. But now A ◦ L is also integrable:∫∫

R2

|(A ◦ L)(x, y)| dx dy =

∫
R

(∫
R
|g(x− y)| dx

)
|f(y)| dy = ∥g∥1∥f∥1 <∞.

Hence the assertion follows by Fubini’s theorem.
(2) This is now straightforward:

∥f ∗ g∥1 =
∫
R
|(f ∗ g)(x)| dx ≤

∫∫
R2

|g(x− y)f(y)| dx dy,

and as in the preceding part, the right-hand side equals ∥g∥1∥f∥1. That (f ∗ g)(x) =
(g ∗ f)(x) follows by substituting y 7→ x − y in the (improper) integral defining the
convolution.

(3) Suppose xn → x in R as n→∞. Then

|(f ∗ g)(xn)− (f ∗ g)(x)| ≤
∫
R
|f(xn − y)− f(x− y)||g(y)| dy ≤ ∥τhnf − f∥1∥g∥∞, (32.7)

where hn is a real sequence going to 0, and (τhf)(y) := f(y+h) for y, h ∈ R is the shift
operator. Now recall via Urysohn’s lemma and properties of the Lebesgue measure
that the space of compactly supported functions Cc(R) is dense in (L1(R), ∥ · ∥1).
Thus, let fk ∈ Cc(R) converge to f as k →∞; then by the triangle inequality,

∥τhnf − f∥1 ≤ ∥τhnf − τhnfk∥1 + ∥τhnfk − fk∥1 + ∥fk − f∥1. (32.8)

The first and third terms on the right agree, since the Lebesgue measure is translation-
invariant. Thus, to show the left side of (32.7) goes to zero as n → ∞, it suffices to
show that the right side of (32.8) goes to zero. For this, fix ϵ > 0, then fix k ≫ 0 such
that ∥fk − f∥1 < ϵ/3. Suppose fk is supported on [−ρ, ρ] for 0 < ρ < ∞. Choose
n0 ≫ 0 such that |hn| < ρ for n ≥ n0; then τhnfk − fk is continuous and supported
on J := [−2ρ, 2ρ]. Since fk is uniformly continuous on J , there exists δ > 0 such that

x, y ∈ J, |x− y| < δ =⇒ |fk(x)− fk(y)| <
ϵ

9ρ
.
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Now choose n1 > n0 such that |hn| < min(ρ, δ) for n ≥ n1. Then τhnfk and fk
disagree at most on the interval [−2ρ, ρ] if hn ≥ 0, and on [−ρ, 2ρ] if hn ≤ 0. Hence

∥τhnfk − fk∥1 =
∫
R
|fk(y + hn)− fk(y)| dy ≤ 3ρ · ϵ

9ρ
=
ϵ

3

for all n ≥ n1. Using (32.8), it thus follows for each ϵ > 0 that ∥τhnf − f∥1 < ϵ for
all sufficiently large n. This shows continuity on R, by (32.7).

(4) This is immediate from the definition of f ∗ g.
(5) We compute:

B(f)(s)B(g)(s) =
∫
R
f(y) dy

∫
R
e−s(y+u)g(u) du =

∫
R
f(y) dy

∫
R
e−sxg(x− y) dx

=

∫
R
e−sx

(∫
R
f(y)g(x− y) dy

)
dx =

∫
R
e−sx(f ∗ g)(x) dx = B(f ∗ g)(s),

where f ∗ g is defined almost everywhere from above. The interchange of integrals in
the first equality on the second line is justified by Fubini’s theorem – which applies
here because∫∫

R2

|f(y)e−sxg(x− y)| dy dx =

∫
R
e−sy|f(y)| dy ·

∫
R
e−su|g(u)| du,

and both integrals are finite by assumption. □

As an immediate consequence, the above recipe follows:

Corollary 32.9. Suppose f, g : R→ R are integrable TNp functions for some p ≥ 1 (or both
TN functions). Then so is f ∗ g.

Proof. That f ∗ g is integrable follows from Lemma 32.6. That it is TNp follows from the
Basic Composition Formula (see (5.14)) and Corollary 6.1. □

Two applications of this corollary will be provided presently.
Having studied the Laplace transform and convolution, we now come to additional exam-

ples of TN and Pólya frequency functions.

Example 32.10. The Heaviside function H1(x) := 1x≥0 is TN . This can be shown using
direct computations, see e.g. Chapters 1, 3 of Karlin’s book [200], where it is shown that the
‘transpose’ kernel K(x, y) = 1x≤y satisfies:

detK[x;y] = 1(x1 ≤ y1 < x2 ≤ y2 < · · · < xp ≤ yp),

for all integers p ≥ 1 and tuples x,y ∈ Rp,↑.

Example 32.11. We are now interested in convolving the previous example with itself several
times. However, the function H1 is not integrable. Thus, first use Lemma 28.3 to define

λ1(x) := e−xH1(x) = 1x≥0e
−x.

Note, this is an integrable TN function on R, which is discontinuous at the origin. We now

claim that the n-fold convolution fn of λ1 with itself is the function xn−1

(n−1)!λ1(x), for all n ≥ 1.

The verification is by induction on n ≥ 1, with the base case immediate. To show the
induction step, use that fn(x) := xn−1λ1(x)/(n− 1)!, and compute:

fn+1(x) =

∫
R
fn(y)f1(x− y) dy.
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By the induction hypothesis, the integrand vanishes unless y, x − y are both non-negative,
whence so is x. Thus fn+1(x) = 0 for x < 0, and for x ≥ 0, we compute:

fn+1(x) =

∫ x

0
fn(y)f1(x− y) dy =

∫ x

0

yn−1

(n− 1)!
e−y · e−(x−y) dy = e−xx

n

n!
.

In particular, xnλ1(x) is an integrable TN function, by Corollary 32.9. Similar to the Gauss-
ian, we record the Laplace transform of these functions, for future use. More generally, given
a non-negative power α ≥ 0 and a scalar β > 0, let gα,β(x) := xαλ1(βx). Then,

B(gα,β) =
∫ ∞

0
e−xsxαe−βx dx =

∫ ∞

0
e−x(s+β)xα dx =

Γ(α+ 1)

(s+ β)α+1
, s > −β. (32.12)

These examples will play a role below, in classifying the total-positivity preservers on
arbitrary domains. For now we present a final example, again obtained via convolution:

Example 32.13. Let f(x) := λ1(x) and g(x) := λ1(−x). As these are integrable TN

functions, so is their convolution, which one verifies is e−|x|/2. Hence e(α−β)|x|/2 is TN for

all α < β. Multiplying by e(α+β)x/2, it follows by Lemma 28.3 that the function

f(x) =

{
ceβ(x−x0), if x ≤ x0,
ceα(x−x0), if x > x0

(32.14)

is TN for c ≥ 0 and x0 ∈ R – and integrable when α < 0 < β, as above. Notice also that
the limiting cases of α = −∞, β = +∞ (both leading to f vanishing on a semi-axis), are
integrable TN functions; while if α = β then f is an exponential, whence also TN .

32.3. Pólya frequency functions and the Laguerre–Pólya class. It is rewarding to
place the theory of Pólya frequency functions (and more generally, TN functions) in its
historical context before proceeding further. Begin with a scalar δ ≥ 0 and a summable
positive sequence:

αj > 0, j = 1, 2, . . . ,
∑
j≥1

αj <∞,

so that the terms 1/αj are bounded below by a positive number. Then the convolution

fn(x) := (φα1 ∗ · · · ∗ φαn)(x), φa(x) :=
1

a
λ1(x/a)

is a Pólya frequency function with Laplace transform
∏n

j=1(1+αjs)
−1. Given δ ≥ 0, the PF

function Λn(x) := fn(x− δ) therefore satisfies:

B(Λn)(s) = Φ∗
n(s), ∀n ≥ 1, ℜ(s) > max

j≤n
(−1/αj), where Φ∗

n(s) :=
e−δs∏n

j=1(1 + αjs)
.

Notice for n ≥ 2 that the Φ∗
n are dominated uniformly on the imaginary axis by an integrable

function:

|Φ∗
n(ix)| ≤

1

|(1 + α1ix)(1 + α2ix)|
, ∀x ∈ R, n ≥ 2. (32.15)

Hence for n ≥ 2, the Laplace inversion formula recovers Λn from Φ∗
n via the Fourier–Mellin

integral, which converges absolutely:

Λn(x) =
1

2πi
lim
T→∞

∫ iT

−iT
esxΦ∗

n(s) ds, ∀x ∈ R.
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Now since
∑

j≥1 αj <∞, we have the convergence of the functions

Φ∗
n(s)→ Φ∗(s) :=

e−δs∏∞
j=1(1 + αjs)

,

where the infinite product in Φ∗(s) is defined in the vertical strip maxj(−1/αj) < ℜ(s) <∞,
and converges there since

∞∏
j=1

|1 + αjs| ≤
∞∏
j=1

(1 + αj |s|) ≤ exp

∞∑
j=1

(αj |s|) <∞.

Hence by Lebesgue’s dominated convergence theorem, the integrals Λn also converge to a
function:

lim
n→∞

Λn(x) = lim
n→∞

1

2πi
lim
T→∞

∫ iT

−iT
esxΦ∗

n(s) ds =
1

2πi
lim
T→∞

∫ iT

−iT
esxΦ∗(s) ds,

and this holds for all real x. Denote the function on the right by Λ(x); then one can show that
Λ is also a Pólya frequency function, which vanishes on (−∞, 0) and is such that B(Λ)(s) =
Φ∗(s) for ℜ(s) > maxj(−1/αj). Moreover, the reciprocal of this bilateral Laplace transform
is the restriction to the strip ℜ(s) > maxj(−1/αj) of an entire function with only (real)
negative zeros:

1

B(Λ)(s)
=

1

Φ∗(s)
= eδs

∞∏
j=1

(1 + αjs). (32.16)

A similar phenomenon occurs when one considers Pólya frequency functions that need
not vanish on a semi-axis. In this case one can convolve functions of the form φa(±x) for
0 ̸= a ∈ R, as well as the Gaussian kernel (and shifted variants of these). Further taking
limits produces Pólya frequency functions whose Laplace transforms are of the form

Φ∗(s) =
eγs

2−δs∏∞
j=1(1 + αjs)e−αjs

, (32.17)

where

γ ∈ [0,∞), αj , δ ∈ R, 0 < γ +
∑
j

α2
j <∞, max

αj>0
(−1/αj) < ℜ(s) < min

αj<0
(−1/αj).

Schoenberg showed in J. d’Analyse Math. (1951) the following remarkable result: the above
toy examples (32.16) and (32.17) (created by convolving variants of λ1 and the Gaussian)
are in fact representative of all Pólya frequency (PF) functions Λ satisfying

∫
R Λ(x) dx = 1 –

with the first toy example a prototype for all PF functions that vanish on (−∞, 0). E.g. the
PF functions Λ as in (32.16) are characterized by the fact that 1

B(Λ)(s) is (the restriction to

a vertical strip, of) an entire function ceδs
∏∞

j=1(1 + αjs), where c ∈ (0,∞), δ, αj ≥ 0, and∑
j αj <∞.
In fact, such entire functions were the subject of a beautiful theory built up around the

turn of the 20th century, by experts before Schoenberg – including Laguerre, Pólya, and
Schur. In the next section, we provide a brief detour into this rich area, before returning to
its connections to Pólya frequency functions and TN functions.
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entire functions. Modern results.

This section undertakes a brief historical journey through one of the most longstanding
and mathematically active areas in analysis, with a rich history as well as modern activity:
the study of the zeros of (complex) polynomials and entire functions. We already saw some
classical results in Section 31; here we see more such results, now from the viewpoint of linear
operators on polynomial spaces that preserve real-rootedness and similar properties.

The study of roots of complex polynomials has always attracted tremendous attention. To
name two dozen experts with related work before 1930: Descartes (1637); Budan, Gauss,
Fourier, Sturm, Cauchy (1800–1840); Chebyshev, Hermite, Poulain, Weierstrass, Routh,
Biehler, Lucas (1840–1880); Laguerre, Hadamard, Maló, Markov, Hurwitz, Grace, Van Vleck
(1880–1910); Fekete, Kakeya, Pólya, Jensen, Schur, Cohn, Szegő, Walsh, Obrechkoff (1910–
1930). For these and many other classical contributions, see e.g. the 1929 survey [351] by
Van Vleck in Bull. Amer. Math. Soc. In the subsequent nine decades, activity in this area
has continued, including papers, surveys, and books; in this section, we briefly allude to the
works [91, 92] by Craven–Csordas (and Smith) and the classic text of Levin [235]. (See the
monograph [295] by Rahman–Schmeisser for more on this area.) The section concludes by
alluding to a few important contributions to this area, all taken from this millennium.

We begin with notation.

Definition 33.1.

(1) Given a region S ⊂ C, let π(S) denote the class of polynomials with all zeros in S,
and coefficients in R (sometimes this is replaced by C). Given an integer n ≥ 1, let
πn(S) ⊂ π(S) denote the subset of polynomials with degree at most n.

(2) Given a complex polynomial p, let Znr(p) denote the number of non-real roots of p.

A question that has interested analysts for more than a century is to understand operations
– even linear ones – under which πn(S) is stable. This is an old question for which not
many nontrivial answers were known – especially until 2004; see the discussion preceding
Theorem 33.40 below. Certainly, some easy answers have long been known. For example, if
p(x) ∈ π(C) = R[x] is real-rooted, then so are:

(1) its product p(x)q(x) with a real-rooted polynomial q(x).
(2) the ‘shift’ ap(bx+ c) for scalars a, b, c ∈ R, a ̸= 0.
(3) the derivative p′(x) – this is Rolle’s theorem. Notice, the derivative operator com-

mutes with all additive shifts/translations.
(4) ‘multiplicative differentiation’ xp′(x), again by Rolle’s theorem. In contrast to the

preceding operation, this operator commutes with all multiplicative shifts/dilations.

(5) the ‘inversion’ xdeg(p)p(1/x), whose roots are 0 if p(0) = 0, and x0 ̸= 0 if p(1/x0) = 0.

All but the first of these operations also are answers to the more general question, of
understanding linear transformations on πn(C) that do not increase the number of non-
real roots Znr(·). In particular, they answer our first question, of understanding linear
operators preserving real-rootedness. A related, second question involves understanding
which (linear) operations T preserve real-rootedness, now only on real polynomials with all
non-positive roots (or all non-negative roots). Notice that the operations above are also
(positive) examples of such linear operations (e.g. assuming q(x) also has one-sided roots).

Often, one assumes a further restriction on the linear map T in order to have more structure
to work with. Two such conditions are that T commutes with the usual/additive derivative
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multiplier sequences and entire functions. Modern results.
∂, or with the multiplicative derivative x∂. Clearly, the latter operators are of the form

T (xk) = γkx
k, γ0, γ1, · · · ∈ R

(or γk ∈ C if one considers the analogous problem). Similarly, one can show that the former
operators each have a ‘power series expansion’

T =
∞∑
k=0

T̂ (k)∂k, T̂ (k) ∈ R.

Notice here that applying such an operator to a polynomial only requires finitely many terms,

so the sequence T̂ (k) can be arbitrary. One associates to this operator its symbol :

GT (s) :=
∞∑
k=0

T̂ (k)sk. (33.2)

In this section we present the characterizations of both classes of operators – commuting
with additive and multiplicative differentiation ∂, x∂ respectively – and they both bear the
name of Pólya (with Benz and Schur, respectively). We will mostly focus on the latter case,
in which the scalars γk are called multipliers. Thus, the Pólya–Schur theorem classifies all
multiplier sequences (which preserve real-rooted polynomials).

For now, we return to the opening discussion of preserving real-rootedness, or more gen-
erally, diminishing the number of non-real roots. Our journey begins with a classical result
due to Poulain [293] in 1867, answering a question of Hermite [166] from the previous year:

Theorem 33.3 (Hermite–Poulain). Suppose q(x) =
∑m

k=0 qkx
k is a polynomial with q0, qm ̸=

0 and all real roots.

(1) If p(x) ∈ R[x], then Znr(q(∂)p) ≤ Znr(p); here the differential operator q(∂) acts via

(q(∂)p)(x) :=
m∑
k=0

qkp
(k)(x).

(2) If q has only positive (respectively, negative) zeros, and A ∈ R, then the number of
zeros in [A,∞) (respectively, (−∞, A]) of q(∂)q exceeds that of q.

Thus, the Hermite–Poulain theorem extends Rolle’s theorem – i.e., that differentiation
diminishes the number of non-real roots of a polynomial – which is the special case q(x) = x.

Proof. To show (1), write q(x) = qm
∏

j(x − αj), where no αj is zero since q0 ̸= 0. Since

q(∂) = qm
∏

j(∂ − αj), it suffices to show that (∂ − α)p(x) has at least as many real roots as
p. We now present Poulain’s proof of this, in a sense ‘differential-equation theoretic’: since

(∂ − α)p(x) = eαx∂(e−αxp(x)),

it suffices to show p(x) has at most as many real roots as (e−αxp(x))′, where α ̸= 0. This
follows by Rolle’s theorem, since e−αxp(x) vanishes at the roots of p as well as αx → ∞.
(This is the trick that was used in proving the weak and strong versions of Descartes’ rule of
signs, in Lemma 5.2 and Theorem 10.3, respectively.)

This shows the first part, but also the second: the preceding sentence suggests how to
proceed if all roots of q are non-zero, with a common sign. Indeed, a small refinement of the
preceding proof now works on [A,∞) (respectively, (−∞, A]). □

Notice that the operator q(∂) commutes with ‘additive’ differentiation ∂, a notion discussed
above – and it preserves real-rootedness. A complete characterization of such linear preservers
was carried out by Benz, in Comment. Math. Helv. in 1934:
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Theorem 33.4 (Pólya–Benz theorem, [34]). Suppose T is a linear operator on the space
of complex polynomials, which commutes with differentiation ∂. Then T preserves real-

rootedness if and only if its symbol GT (s) :=
∑∞

k=0 T̂ (k)s
k, defined in (33.2), is an entire

function that is either zero or in the Laguerre–Pólya class LP2 (see Definition 33.20):

GT (s) = Csme−γs2+δs
∞∏
j=1

(1+αjs)e
−αjs, with C ∈ C×;m ∈ Z≥0; γ ≥ 0; δ, αj ∈ R;

∞∑
j=1

α2
j <∞.

33.1. Multiplier sequences and early results. In the remainder of this section, we focus
on the linear transformations which preserve real-rootedness, commute with ‘multiplicative
differentiation’ x∂, and turn out to be intimately linked to our main objects of focus: Pólya
frequency functions. These are the so-called ‘diagonal transforms’ of π(C) – i.e., multiplying
each monomial xk in a polynomial p(x) by a scalar γk ∈ R. They are called multipliers;
corresponding to the two related questions after Definition 33.1, they come in two varieties:

Definition 33.5 (Pólya–Schur, [288]). Given a sequence Γ = (γk)
∞
k=0 of real numbers, define

the linear map Γ[−] : R[[x]]→ R[[x]] (in particular, acting on polynomials) via

Γ

∑
k≥0

akx
k

 :=
∑
k≥0

γkakx
k.

We now say that a sequence Γ is a multiplier sequence of the first kind if Γ[p] is real-rooted
whenever the polynomial p(x) is; and of the second kind if Γ[p] is real-rooted whenever the
polynomial p(x) has all roots real, non-zero, and of the same sign.

Example 33.6 (Laguerre, 1884). Given a real number a > 0 and an integer k > 0, the
sequence

a(a+ 1) · · · (a+ k − 1), (a+ 1)(a+ 2) · · · (a+ k), . . .

is a multiplier sequence which preserves the real-rootedness/one-sidedness of roots – and more
generally, diminishes the number of non-real roots. This follows from a more general result by
Laguerre – see Theorem 33.8(2), specialized here to q(x) = (x+a)(x+a+1) · · · (x+a+k−1).

In their famous 1914 work [288] in J. reine angew. Math., Pólya and Schur provided
‘algebraic’ and ‘transcendental’ characterizations of the above two classes of multipliers; these
are explained below. That said, the study of such multipliers had begun well before. We
present here a quintet of well-known results in this direction – these are shown presently:

• by Laguerre, in 1882 in C. R. Acad. and in 1884 in Acta Math.;
• by Maló in 1895 in J. Math. Spéc. (this is briefly used in the next part of the text);
• by Jensen in 1913 in Acta Math.; and
• by Schur in 1914, in J. reine angew. Math.

To state and prove these, define the Schur composition ⊙ of two polynomials/power series:

p(x) =
∑
j≥0

pjx
j , q(x) =

∑
j≥0

qjx
j , =⇒ (p⊙ q)(x) :=

∑
j≥0

j!pjqjx
j . (33.7)

Theorem 33.8. Suppose p(x) = p0 + p1x+ · · ·+ pnx
n and q(x) = q0 + q1x+ · · ·+ qmx

m are
polynomials in R[x], with m,n ≥ 0 and q real-rooted.

(1) (Laguerre [228], 1882.) The polynomial
∑

k≥0(qk/k!)x
k is real-rooted. In other words,

1, 1, 1/2!, 1/3!, . . . is a multiplier sequence of the first kind.
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(2) (Laguerre [230], 1884.) Suppose q ̸= 0 on [0, n]. Then the polynomial

q̃(x) := q(0)p0 + q(1)p1x+ · · ·+ q(n)pnx
n

has at least as many real roots as p, that is, Znr(q̃) ≤ Znr(p).
(3) (Maló [249], 1895.) Suppose the roots of q are all non-zero and of the same sign. If

p is real-rooted, so is the Hadamard composition p0q0 + p1q1x+ · · ·+ plqlx
l (provided

it is not identically zero), where l = min{m,n}.
(4) (Jensen [194], 1913.) The following is a multiplier sequence of the first kind for n ≥ 1:

1, 1, 1− 1

n
, (1− 1

n
)(1− 2

n
), . . . ,

n−1∏
j=1

(1− j

n
), 0, 0, . . .

(5) (Schur composition theorem [330], 1914.) Suppose the roots of q are all non-zero
and of the same sign. If p is real-rooted, so is the Schur composition p ⊙ q (or else
p⊙ q ≡ 0).

Thus, parts (3) and (5) yield ‘finite’ multiplier sequences of the first kind.

To show these results, we first present a more general theorem, shown in 1949 by de Bruijn:

Theorem 33.9 (de Bruijn, [73]). For an aperture 0 ≤ α ≤ π, let Sα denote an open sector
in the complex plane, given by

Sα := {z ∈ C× : arg(z) ∈ (θα, θα + α)} (33.10)

for a fixed ‘initial angle’ θα. Similarly, let Sβ denote an open sector for β ∈ [0, π] and

fixed initial angle θβ. Now suppose p(z) =
∑n

k=0 pkz
k and q(z) =

∑m
k=0 qkz

k are complex
polynomials, with pn, qm ̸= 0. If p(z), q(z) have all roots in the sectors Sα, Sβ respectively,
then their Schur composition p⊙ q has all roots in the open sector

−SαSβ := {−z1z2 ∈ C : z1 ∈ Sα, z2 ∈ Sβ}.

Proof. First suppose (p ⊙ q)(z) = 0 for some z ̸∈ −SαSβ. For any such z, (by abuse of
notation) −zS−1

α is then disjoint from Sβ, so we can embed both of these in open half-planes
(i.e. open sectors of aperture π) −zS−1

α ⊂ S1 and Sβ ⊂ S2 such that S1∩S2 = ∅. In particular,
it suffices to show the result for α = β = π. Now for a second reduction: the polynomials

p1(z) := p(−izeiθα) =
n∑

j=0

p1,jz
j , q1(z) := q(−izeiθβ ) =

m∑
j=0

q1,jz
j ,

can be verified to have all of their roots in the left half-plane in C, i.e., in
L := {z ∈ C : ℜ(z) < 0}. (33.11)

Hence in this ‘reduction’ case, if we show the following claim – that the polynomial

(p1 ⊙ q1)(z) := (p⊙ q)(−zei(θα+θβ))

has no roots in (0,∞) – then (p⊙ q)(z) has no roots in C \ −SαSβ, as desired.
While this claim can be shown using Grace’s Apolarity Theorem (see e.g. [366]), we mention

de Bruijn’s direct argument. First claim that if λ ∈ (0,∞), η ∈ L, and P (z) is any non-zero
polynomial with degree n ≥ 0, leading coefficient Pn ̸= 0, and all roots in L, then (λ∂ − η)P
is not identically zero and its roots still lie in L. Indeed, write P (z) = Pn

∏n
j=1(z − ξj); then

(λ∂ − η)P (z) = P (z)

 n∑
j=1

λ

z − ξj
− η

 , ∀z ∈ C \ L.
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The first factor on the right is non-zero by assumption, while each summand and −η both
have positive real part, so that the second factor on the right is in −L. It follows that the
non-zero polynomial (λ∂ − η)P (z) again has all roots in L. Now start with

P (z) = p1(z) = p1,n

n∏
j=1

(z − ξj), q1(z) = q1,m

m∏
j=1

(z − ηj),

and apply the above reasoning inductively for each η = ηj , to conclude that

(q1(λ∂)p1)(z) = q1,0p1(z) + q1,1λp
′
1(z) + · · ·+ qnλ

np
(n)
1 (z)

has all its roots in L. In particular, it does not vanish at 0, so

0 ̸= q1,0p1,0 + 1!q1,1p1,1λ+ · · ·+ l!q1,lp1,lλ
l, l = min{m,n}.

This precisely says 0 ̸= (p1 ⊙ q1)(λ); as λ ∈ (0,∞) was arbitrary, the proof is complete. □

This result led de Bruijn to derive a host of corollaries, which we discuss before returning
to the proof of Theorem 33.8. The first is the ‘closed’ sector version of Theorem 33.9:

Corollary 33.12 (de Bruijn, [73]). Suppose p, q ̸= 0 are complex polynomials, whose roots
all lie in closed sectors Sα, Sβ respectively. If both α, β ∈ [0, π], then either p ⊙ q ≡ 0 or it

has all roots in the sector −Sα Sβ. (If an aperture is 0, that closed sector is a half-line.)

Proof. This is obtained from Theorem 33.9 via limiting arguments (and the continuity of
roots, e.g. by Hurwitz’s theorem), when the apertures of both sectors are positive. If either
aperture is zero, write the corresponding half-line as an intersection of a sequence of nested
closed sectors with positive apertures, and apply Corollary 33.12 for each of these. (Note that
if the apertures α, β ∈ [0, π), then one can write each closed sector as an intersection/limit
of a decreasing family of open sectors of apertures < π, and then the result follows from
Theorem 33.9 simply by taking intersectons.) □

The next corollary shows two results of Weisner, from his 1942 paper in Amer. J. Math.:

Corollary 33.13 (Weisner, [366, Theorem 1 and its Corollary]). Suppose p, q are polynomials
in R[x] with q(x) having all real roots.

(1) If the roots of p(x) lie in a closed sector Sα with aperture ≤ π, then either p⊙ q ≡ 0
or it has all roots in the ‘double sector’ ±Sα.

(2) If the roots of q are moreover negative, and a closed sector with aperture in [0, π]
contains the roots of p, it also contains the roots of p⊙ q.

Proof. For the first part: if p⊙ q ≡ 0 or Sα has aperture π then the result is immediate; now
suppose neither condition holds. Apply Corollary 33.12 twice: with Sβ the lower and upper
half-planes ±iL, where L is the left half-plane (33.11). It follows that the roots of p⊙ q lie in

(−iL · Sα) ∩ (iL · Sα) = Sα ∪ −Sα.

This shows the first part; for the second, apply Corollary 33.12 with Sβ = (−∞, 0]. □

The next corollary is a mild strengthening of another result by de Bruijn [73]; his proof
works for the following as well.
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Corollary 33.14 (de Bruijn, [73]). Fix scalars −∞ < δ < 0 ≤ ∆ ≤ +∞, and suppose the
polynomials p, q ∈ C[z]\{0} both have all roots in the strip ℑ(z) ≥ −∆. Then the polynomial

φδ(z) :=
∞∑
k=0

δk

k!
p(k)(z)q(k)(z)

has all roots also in the same strip ℑ(z) ≥ −∆.

Notice that φδ(z) has the same form as the Schur composition, but in the ‘other’ parameter.
Namely, φz(0) = (p⊙ q)(z). This is used in the proof.

Proof. Fix a non-real number w with ℑ(w) < −∆. We need to show that φδ(w) ̸= 0. To do
so, consider the polynomials

P (z) :=
∞∑
k=0

zk
p(k)(w)

k!
= p(z + w), Q(z) :=

∞∑
k=0

zk
q(k)(w)

k!
= q(z + w).

By assumption, the zeros z of P,Q lie in the upper half-plane, which is an open sector
with aperture π. Hence by Theorem 33.9, the roots z (not w) of their Schur composition
φz(w) = (P ⊙Q)(z) all lie in C \ (−∞, 0]. In particular, φδ(w) = (P ⊙Q)(δ) ̸= 0, by choice
of δ. □

Remark 33.15. If instead p, q have all roots in the strip ℑ(z) ≤ ∆, a similar argument shows
that so does φδ. Intersecting these two results yields the version in de Bruijn’s paper [73], i.e.,
for the strip |ℑ(z)| ≤ ∆. In particular, if ∆ = 0, this also shows that if p, q are real-rooted,
then so is φδ. However, the above approach has the advantage that de Bruijn’s results also
yield root-location results in asymmetric strips ℑ(Z) ∈ [−∆,∆′] for 0 ≤ ∆ ̸= ∆′.

Finally, we prove the classical results stated above.

Proof of Theorem 33.8. We show the five parts in a non-sequential fashion, beginning with
part (2) by Laguerre. It turns out this is precisely the counterpart of the Hermite–Poulain
theorem 33.3, now for the ‘multiplicative differential’ operator x∂ instead of the usual deriv-
ative ∂. Indeed, write q(x) = qm

∏m
j=1(x−αj) with αj ∈ R, and compute at each monomial:

q(x∂)(xk) = qm

m∏
j=1

(x∂ − αj)(x
k) = xk · qm

m∏
j=1

(k − αj) = q(k)xk.

Since the factors (x∂ − αj) pairwise commute, it again suffices to show (x∂ − α)p(x) has at
least as many real roots as p, if α ∈ R \ [0,deg(p)] (so we may assume deg(p) = n). We
now study the order of the root at 0, and the positive/negative roots of both polynomials p
and (x∂ − α)p. The orders of the root at zero agree. Coming to positive roots, write using
Poulain’s idea:

(x∂ − α)p(x) = xα+1∂(x−αp(x)).

Now if α < 0 then x−αp(x) has an additional zero at x = 0; while if α > n, x−αp(x) has an
additional ‘zero’ at x = +∞. In both cases, one argues as in the proof of the Hermite–Poulain
theorem 33.3 above, using Rolle’s theorem to obtain that the positive roots of (x∂ − α)p(x)
are at least as many as that of p(x) – if x > 0. A similar argument holds for x < 0.

Next, part (5), i.e., the Schur composition theorem, is a special case of Corollary 33.13(1),
in which the roles of p and q are reversed, and one takes Sα to be a closed semi-axis in R.
To now obtain the result of Laguerre (part (1)), first apply ‘inversion’ to observe that if

q(x) = q0 + q1x+ · · ·+ qmx
m
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is real-rooted, then so is its ‘inversion’ (possibly up to a power of x),

Q(x) := qm + qm−1x+ · · ·+ q0x
m.

Now let P (x) := (1 + x)m; then by part (5) the polynomial

(P ⊙Q)(x) = qm + qm−1
m!

(m− 1)!
x+ qm−2

m!

(m− 2)!
x2 + · · ·+ q0m!xm

is also real-rooted. Again invert this (and multiply by powers of x if necessary), and then
divide throughout by m! to obtain Laguerre’s result, i.e., part (1).

The proof of Jensen’s result (part (4)) is similar to that of part (1). Start with a real-rooted
polynomial p(x) and take the Schur composition with (1 + x)n. Hence the polynomial∑

k≥0

pk · n(n− 1) · · · (n− k + 1) · xk

is real-rooted. Replacing x by x/n, so is the polynomial

p0 + p1x+ (1− 1

n
)p2x

2 + · · ·

Since this holds for all polynomials, Jensen’s result follows. Finally, Maló’s result (part (3))
immediately follows by combining parts (1) and (5). □

Remark 33.16. For additional variants of Theorem 33.8(2) due to Laguerre – involving the
multiplicative differentiation operator x∂, see Pinkus’s paper [280].

Remark 33.17. By using inversion twice, and Theorem 33.8(1) in between, we obtain yet
another result of Laguerre: if q(x) = q0+ · · ·+ qmxm is real-rooted, then so is the polynomial

q0
m!

+
q1x

(m− 1)!
+ · · ·+ qmx

m

0!
.

Some concluding remarks: the study of root-location of real/complex polynomials remains
evergreen; see e.g. the very recent work [76] on “zero-sector reducing” linear operators on
R[x] (in addition to related highlights of modern mathematics, described presently). Finally,
we present without proof, a result of Schur [330] and Szegő [350] – as well as one by Pólya –
which involve a different kind of ‘composition’:

Theorem 33.18. Let n ≥ 1 be an integer, and p(z), q(z) be polynomials given by

p(z) :=

n∑
k=0

(
n

k

)
pkz

k, q(z) :=

n∑
k=0

(
n

k

)
qkz

k.

(1) (Schur–Szegő composition theorem.) If q is real-rooted with all roots in (−1, 0), and
the roots of p lie in a convex region K containing the origin, then all roots of the
following ‘composition’ of theirs lie in K:

h(x) :=

n∑
k=0

(
n

k

)
pkqkz

k.

(2) (Pólya – see [366, Theorem 3].) If q is real-rooted, and the roots of p lie in a sector
S, then the roots of h(x) lie in the double sector ±S.
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33.2. Laguerre–Pólya entire functions. We now proceed toward Pólya and Schur’s char-
acterizations of multiplier sequences. Definition 33.5 implies that the multipliers of the first
kind form a subclass of the second kind. It turns out that these characterizations are related
to the polynomials being acted upon, and we begin by understanding these polynomials.

Recall that the Hermite–Poulain theorem 33.3(1) says that if p, q are real-rooted poly-
nomials, then q(∂)p is also thus. (As a special case, Rolle’s theorem says that the class of
real-rooted polynomials is closed under differentiation.) If we now take limits of such poly-
nomials – in a suitable sense – then we may expect that such properties hold as well. This
does turn out to be true in several cases:

(1) As just mentioned, Theorem 33.3(1) says that if q is a real-rooted polynomial, then
the differential operator q(∂) preserves real-rootedness on polynomials.

(2) More generally, the same turns out to hold if one considers functions that are the
limits, uniform on every compact subset of C, of real-rooted polynomials.

(3) Notice for the exponential function eαx that q(∂)eαx = q(α)eαx. ‘Dually’, it turns out
that the differential operator eα∂ (for α ∈ R) preserves real-rootedness on polynomials.
Indeed, this clearly holds when eα∂ acts on linear polynomials, so we need to show
that the same property is preserved under products. But this is a straightforward
calculation:

eα∂(p(x)q(x)) =
∞∑
n=0

αn

n!

∞∑
k=0

(
n

k

)
p(k)(x)q(n−k)(x) =

∞∑
k=0

αk

k!
p(k)(x)

∞∑
j=0

αj

j!
q(j)(x)

= (eα∂p(x))(eα∂q(x)),

(33.19)

where all sums are finite, since p, q are polynomials. In fact, since the product rule
says that the locally nilpotent operator ∂ is a derivation of the algebra R[x] of poly-
nomials, (33.19) is simply an instance of the fact that a nilpotent derivation of an
algebra R exponentiates to an algebra automorphism of R.

In the spirit of the two questions following Definition 33.1, note that the final case (among
others) works even if α > 0 and p, q have non-positive roots, since it works for each linear
factor. Thus, we consider limits – again uniform on each compact subset of C – of polynomials
with all roots lying on a real semi-axis (i.e., in (−∞, 0] or in [0,∞)). Such limiting functions
always turn out to be entire; they were famously characterized by Laguerre [228] (1882)
and Pólya [284] (1913). These characterizations, which are now presented, preceded – and
motivated – Pólya and Schur’s work on multipliers and their classification.

Definition 33.20. An entire function Ψ(z) ̸≡ 0 is in the first Laguerre–Pólya class, denoted
Ψ ∈ LP1, if it admits a Hadamard–Weierstrass factorization

Ψ(s) = Csmeδs
∞∏
j=1

(1 + αjs), with C ∈ R×, m ∈ Z≥0, δ, αj ≥ 0,
∑
j

αj <∞. (33.21)

Similarly, Ψ ̸≡ 0 is in the second Laguerre–Pólya class, denoted Ψ ∈ LP2, if it admits a
Hadamard–Weierstrass factorization

Ψ(s) = Csme−γs2+δs
∞∏
j=1

(1 + αjs)e
−αjs, with C ∈ R×, m ∈ Z≥0, γ ≥ 0, δ, αj ∈ R,

and
∑
j

α2
j <∞. (33.22)
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A few observations are in order: the first is the inclusion between these classes: LP1 ⊂ LP2.
Second, all functions in LP2, whence in LP1, have real roots. Third, a function Ψ(s) ∈ LP1
has all non-positive roots, so Ψ(−s) is also entire, with all non-negative roots.

We now have the following relationship between the Laguerre–Pólya classes LP1,LP2, and
the discussion on uniform limits of real-rooted polynomials previous to Definition 33.20.

Theorem 33.23.

(1) (Laguerre, [228].) Suppose an entire function Ψ(s) lies in the class LP1 (respectively,
in LP2). Then there exists a sequence ψn(s) of polynomials with all roots in (−∞, 0]
(respectively, in R), that converges locally uniformly on C (i.e., on every compact
subset).

(2) (Pólya, [284].) Conversely, fix a neighborhood U ⊂ C of the origin. Suppose a se-
quence ψn(s) of polynomials, each of which has roots in (−∞, 0] (respectively, in R),
converges uniformly on U to a function not identically zero. Then the ψn converge
locally uniformly on C to an entire function Ψ in the class LP1 (respectively, LP2).

In fact, one can write down concrete sequences of polynomials converging to the Laguerre–
Pólya entire functions Ψ(x) in Definition 33.20:

ψ1,n(s) := Csm(1 +
δs

n
)n

n∏
j=1

(1 + αjs),

ψ2,n(s) := Csm(1− γs2

n
)n(1 +

δs

n
)n

n∏
j=1

(1 + αjs)(1−
αjs

n
)n.

(33.24)

At first a weaker variant of Theorem 33.23(2) was shown by Laguerre, who assumed U = C
to conclude that Ψ ∈ LP1 or LP2. The stronger version above is by Pólya in [284], and is
presently used to classify the multiplier sequences. Similarly: considering locally uniform
limits of polynomials with non-negative zeros yields functions Ψ(−s) such that Ψ(s) ∈ LP1.

Remark 33.25. Lindwart–Pólya showed [239] that in the above cases and more general ones,
the uniform convergence of polynomials ψn(s) on some disk D(0, r) ⊂ C implies uniform
convergence on any compact subset of C. (The reader may recall here the ‘convergence
extension theorems’ of Stieltjes and Vitali.) This has since been extended to smaller sets
than D(0, r), e.g. by Korevaar–Loewner, Levin, and others.

Theorem 33.23 has seen several generalizations in the literature; see the works of Korevaar
and Obrechkoff among others, e.g. [224, 225, 271, 272, 273, 274]. We present here a sample
result, taken from Levin [235], on uniform limits of polynomials with zeros in a sector in C:

Theorem 33.26. Fix a neighborhood U ⊂ C of the origin, and a closed sector Sθ with
aperture θ < π. Suppose a sequence ψn(s) of polynomials, each having roots in Sθ, converges
uniformly on U to a function Ψθ ̸≡ 0. Then the ψn converge locally uniformly on C to

Ψθ(s) = Csmeδs
∞∏
j=1

(1 + αjs),

where C ∈ C×, m ∈ Z≥0, αj , δ are either 0 or lie in −S−1
θ := {−1/s : 0 ̸= s ∈ Sθ}, and∑

j |αj | < ∞. Moreover, an entire function Ψ can be locally uniformly approximated by a

sequence ψn with the above properties (over Sθ) if and only if Ψ is of the above form Ψθ.

Note, the same polynomials as in (33.24) (with suitable parameter values) converge to Ψθ.
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33.3. From Laguerre–Pólya to Pólya–Schur. Finally, we come to Pólya and Schur’s
classification of multiplier sequences (see Definition 33.5). We begin with basic properties.

Lemma 33.27. Suppose Γ = (γ0, γ1, . . . ) is a multiplier sequence of the first kind.

(1) Then so is (γk, γk+1, . . . ) for all k > 0; this also holds if Γ is of the second kind.
(2) If γ0 ̸= 0 but γk = 0 for k > 0, then γk+n = 0 for all n ≥ 0.
(3) If γ0 ̸= 0, then all non-zero γk have either the same sign or alternating signs.

Proof.

(1) Suppose a polynomial p(x) =
∑

j≥0 pjx
j has all roots real (or real and of the same

sign, in which case p0 ̸= 0). Then so does q(x) := x−kΓ[xkp(x)] =
∑

j≥0 γk+jpjx
j ,

and note that if p0 ̸= 0 then q(0) ̸= 0.
(2) The first step is the following assertion by Schur [330]: If p(x) =

∑n
j=0 pjx

j ∈ R[x]
is real-rooted, with p0, pn ̸= 0, then (i) no two consecutive coefficients pj vanish; and
(ii) if pj = 0 for some j ∈ (0, n), then pj−1pj+1 < 0.

Indeed, since p0 ̸= 0, no root αj of p(x) is zero, whence an easy computation shows:

p21 − 2p0p2 = p20

n∑
j=1

α−2
j > 0, where p(x) := p0

n∏
j=1

(1− x/αj),

Fix the least j > 0 with pj = 0. Now p(j−1)(x) is real-rooted by Rolle’s theorem, and

p(j−1)(x) = (j − 1)!pj−1 +
j!

1!
pjx+

(j + 1)!

2!
pj+1x

2 + · · ·+ n!

(n− j + 1)!
pnx

n−j+1.

In particular, applying the preceding analysis to p(j−1)(x)/(j − 1)! yields:

0 < jp2j − (j + 1)pj−1pj+1 =⇒ pj−1pj+1 < 0.

This implies Schur’s assertion. We now prove the second part of the Lemma. Suppose
γn ̸= 0 = γk, for some n > k > 0. Then γk−1γk+1 < 0 by Schur’s assertion. On the
other hand, the following polynomial is also real-rooted, which is impossible:

Γ[xk+1 − xk−1] = xk−1(γk+1x
2 − γk−1). (33.28)

(3) Suppose γn ̸= 0 for some n > 0. By (33.28), γk−1, γk+1 have the same sign for all
0 < k < n. Now consider the signs of γ0 and γ1, and let n→∞. □

Now Pólya and Schur provide the following two characterizations of multiplier sequences.
Given Lemma 33.27, we work with non-negative sequences, else use ΨΓ(−x) in place of ΨΓ(x).

Theorem 33.29 (Pólya–Schur, [288]). Given real Γ = (γk)
∞
k=0, the following are equivalent:

(1) Γ is a multiplier sequence of the first kind.
(2) (Algebraic characterization.) For all n ≥ 0, the polynomial Γ[(1 + x)n] is real-rooted,

with all zeros of the same sign, i.e., in the Laguerre–Pólya class LP1.
(3) (Transcendental characterization.) The generating series

ΨΓ(x) :=
∞∑
k=0

γk
k!
xk = Γ[ex]

belongs to the Laguerre–Pólya class LP1, or else ΨΓ(−x) does so.

We now outline why this result holds, modulo Theorem 33.23:
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Proof-sketch of Theorem 33.29. Suppose Γ[−] is a multiplier of the first kind, and all γk ≥
0. (The case of γk alternating, via Lemma 33.27, is handled by considering ΨΓ(−x).) In
particular, defining pn(x) := (1 + x/n)n for n ≥ 1, all roots of

Γ[pn(x)] =

n∑
k=0

γk

(
n

k

)
(x/n)k =

n∑
k=0

γk
k!

k−1∏
j=1

(
1− j

n

)
xk

are real, and necessarily non-positive since all Maclaurin coefficients of Γ[pn(x)] are non-
negative. This last assertion holds by Descartes’ Rule of Signs – see e.g. Theorem 10.7 with
I = (0,∞). One then shows that this sequence Γ[pn] of polynomials forms a normal family,
hence converges locally uniformly as n→∞ to an entire function, which is clearly given by
ΨΓ(x). Moreover, ΨΓ(x) = Γ[ex] must be in LP1.

Conversely, if ΨΓ(x) ∈ LP1, then it can be approximated locally uniformly by a sequence
of polynomials ψn(x) =

∑
k≥0 ψn,kx

k, all of whose roots are in (−∞, 0]. Now suppose p(x) =∑
k≥0 pkx

k is a polynomial with all real roots. By Corollary 33.13(1), the polynomial (ψn ⊙
p)(x) is real-rooted. Taking n→∞, the same holds for Γ[p(x)], as desired. □

There is a similar characterization of multipliers of the second kind (see also Theorem 34.5):

Theorem 33.30 (Pólya–Schur, [288]). Given real Γ = (γk)
∞
k=0, the following are equivalent:

(1) Γ is a multiplier sequence of the second kind.
(2) (Algebraic characterization.) For all n ≥ 0, the polynomial Γ[(1 + x)n] is real-rooted,

i.e., in the Laguerre–Pólya class LP2.
(3) (Transcendental characterization.) The generating series ΨΓ(x) = Γ[ex] is an entire

function, and belongs to the Laguerre–Pólya class LP2.

Clearly (1) =⇒ (2). The proof of (2) =⇒ (3) =⇒ (1) resembles the corresponding
proof for multiplier sequences of the first kind.

Remark 33.31. Notice the ‘reversal’, in a rough sense: ΨΓ in LP1 acts on – and preserves
real-rootedness on – functions in LP2, and vice versa. This is because acting on larger test
sets imposes more constraints and reduces the available functions / generating series.

We close this part with a few connections to Pólya frequency sequences – specifically, to
the representations of one-sided PF sequences in Theorem 30.12, following the discussion
prior to (30.11). First, the latter theorem implies the following 1951 observation:

Theorem 33.32 (Aissen–Edrei–Schoenberg–Whitney, [4]). Suppose a = (an)n≥0 is a real
sequence, with a0 = 1, such that its generating function Ψa(s) :=

∑∞
n=0 ans

n is entire. Then
the following are equivalent:

(1) a is a Pólya frequency sequence, i.e., the bi-infinite matrix (aj−k)j,k∈Z is totally non-
negative (where we set an := 0 for n < 0).

(2) The function Ψa(s) = eδs
∏∞

j=1(1+αjs), for some δ, αj ∈ [0,∞) such that
∑

j αj <∞.

(3) The function Ψa(s) belongs to the Laguerre–Pólya class LP1.
(4) The sequence (n!an)n≥0 is a multiplier sequence of the first kind.

Proof. That (2)⇐⇒ (3) and (3)⇐⇒ (4) follow from Theorems 33.23 and 33.29, respectively.
Finally, that (1)⇐⇒ (2) follows from Theorem 30.12, since Ψa is entire. □

Remark 33.33. See also [68] for additional connections. Yet another connection is that
Aissen et al’s representation theorem 30.12 implies the Laguerre–Pólya theorem 33.23(2)
for LP1. Indeed, as the authors observe in [4], let a sequence pn(s) of polynomials satisfy:



236
33. History – The Laguerre–Pólya–Schur program:
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pn(0) = 1 and all roots negative, and suppose pn → Ψ. Then the Maclaurin coefficients of
each pn generate a ‘finite’ Pólya frequency sequence by Corollary 30.24. Hence so do the
coefficients of Ψ(s), so Ψ ∈ LP1 by Corollary 33.32.

A final result, by Katkova in 1990 [207], connects PF sequences, Laguerre’s theorem 29.22(2),
and the algebraic and transcendental characterizations of Pólya–Schur multipliers:

Theorem 33.34 (Katkova, [207]). Fix an integer p ≥ 1 and a polynomial f ∈ R[x] with
f(x) > 0 on [0,∞). There exists n0(p) > 0 such that the following sets of Maclaurin coeffi-
cients form a (one-sided) TNp sequence:

(1) The Maclaurin coefficients of (1 + x)nf(x), for all integers n ≥ n0(p).
(2) The Maclaurin coefficients of esxf(x), for all real s ≥ n0(p).

33.4. The Laguerre–Pólya class, the Riemann hypothesis, and modern applica-
tions of real-rootedness. While at first glance, the definitions do not reveal a connection
between the Laguerre–Pólya class and Pólya frequency functions, we saw at the end of the
preceding section that there is at least a ‘one-way’ connection. In fact the (remarkable)
connection goes both ways – parallel to the theory of Pólya–Schur multipliers – and will be
precisely described in the next section, via the bilateral Laplace transform.

To conclude this section, we start with this transform and conduct a very quick tour
of some of the gems of modern mathematics – starting with the (not modern) Riemann
hypothesis. In 1927 in J. reine angew. Math., Pólya initiated the study of functions Λ(t)
such that B(Λ)(s) has only pure imaginary zeros.78 Pólya’s work [286] was motivated by
the Riemann hypothesis, conjectured in 1859 by Riemann [298]. It says that the analytic
continuation of the Riemann zeta function

ζ(s) :=
∑
n≥1

n−s, ℜ(s) > 1

has (trivial zeros at s = −2,−4, . . . and) nontrivial zeros all on the critical line ℜ(s) = 1/2.
An equivalent formulation is via the Riemann xi-functions

ξ(s) =
1

2
s(s− 1)π−s/2Γ(s/2)ζ(s), Ξ(s) = ξ(1/2 + is),

where Γ is Euler’s gamma function. Note that ξ(s) = ξ(1 − s) and Ξ(s) = Ξ(−s). Now the
Riemann hypothesis is equivalent to the fact that Ξ has only real zeros. (In fact this was how
Riemann stated his conjecture.) Since the function Ξ is entire of order one, this leads to a
folklore result, which can be found in e.g. Pólya’s 1927 work [287]:

Theorem 33.35. The Riemann hypothesis is equivalent to the statement: Ξ ∈ LP2.

Thus, the Laguerre–Pólya class occupies a special place in analytic number theory.
The Riemann hypothesis is one of the most studied problems in modern mathematics.

It was originally formulated in the context of the distribution of prime numbers, and has
far-reaching consequences. Most of the work toward settling this conjecture has employed
methods from complex analysis and analytic number theory.

We now present three mutually inter-related reformulations of the Riemann hypothesis
from analysis, very recently presented by Gröchenig, and ‘orthogonal’ to the aforementioned

7Curiously, several authors cite Pólya’s paper in J. London Math. Soc. (1926), pp. 98–99 for this; but a
glance at the journal website reveals that such a paper seems not to exist!

8Pólya’s question is studied even today; see e.g. the 2019 work [102] of Dimitrov and Xu, which provides
a characterization for a class of functions that contains the Riemann xi-function Ξ (defined presently).

https://londmathsoc.onlinelibrary.wiley.com/toc/14697750/1926/s1-1/2
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methods. The main ingredients are Theorem 33.35 and Schoenberg’s theorem 34.9 below,
which asserts that a function is a Pólya frequency function if and only if its bilateral Laplace
transform is the reciprocal of a function Ψ in the Laguerre–Pólya class with Ψ(0) > 0:

Theorem 33.36 (Gröchenig, 2020, [147]). Let 1/2+ it0 be the first zero of the zeta function
on the critical line ℜ(s) = 1/2. The Riemann hypothesis holds, if and only if there exists a
Pólya frequency function Λ satisfying:

1

Ξ(s)
= B(Λ)(s), |ℜ(s)| < t0.

Taking the Fourier transform instead of the Laplace transform, this yields the Riemann hy-
pothesis if and only if the function

Λ(x) =
1

2π

∫
R

1

ξ(u+ 1/2)
e−ixu du

is a Pólya frequency function. Equivalently, write Ξ(s) = Ξ1(−s2) (since Ξ is even); thus
Ξ1 is entire of order 1/2. Now the Riemann hypothesis holds, if and only if there exists a
one-sided Pólya frequency function Λ with support in [0,∞), and a scalar α < 0, satisfying:

1

Ξ1(s)
= B(Λ)(s), ℜ(s) > α.

See also the 2007 paper of Katkova [208] for more connections between the Riemann
hypothesis and total positivity, this time through Pólya frequency sequences. We provide
here a few details. Let ξ1(s) := ξ(1/2 +

√
s); then the Riemann hypothesis is equivalent to

ξ1 ∈ LP1, or by Theorem 33.32, ξ1 = Ψa for a PF sequence a. Now Katkova shows:

Theorem 33.37 (Katkova, [208]). We have ξ1 = Ψa for a sequence a that is Pólya frequency
(or totally non-negative) of order at least 43. Moreover, the sequence a is asymptotically PF,
i.e., for all p ≥ 0 there exists Np > 0 such that the matrix (aNp+j−k)0≤j, 0≤k≤p−1 is TN .

We follow the above discussion with a disparate development, in mathematical physics:
the Lee–Yang program. In material science, it has been observed that certain magnetic
materials lose magnetism at a critical temperature. This phase transition is called the Curie
point/temperature. Such phenomena in statistical physics led to work on the Ising and other
models, by Ising, Onsager, and several others. In the 1950s, Lee and Yang related this study
to locating zeros of the ‘partition function’ associated with the model (and the underlying
Lee–Yang measure). As a result, they were able to compute the phase transition for the
Ising model. (This was part of their body of work that earned them the 1957 Nobel Prize
in Physics.) Lee–Yang showed in [233, 375] that under desirable conditions, all zeros of the
partition function are purely imaginary, or under a specialization, all on the circle:

Theorem 33.38 (Lee–Yang, 1952). Given an integer n ≥ 1, a matrix J ∈ [0,∞)n×n (the
‘ferromagnetic coupling constants’), and magnetic fields h1, . . . , hn ∈ C, define

ZJ(h) :=
∑

σ∈{−1,1}n
exp(σTJσ + σTh)

to be the corresponding ‘partition function’. (Here, the σj are the ‘spins’.) Then ZJ(h) is
non-zero if ℜ(hj) > 0 ∀j, and all zeros h ∈ C of ZJ(h, h, . . . , h) are purely imaginary.

This result leads to the so-called Lee–Yang circle theorem (see also [307] for its connections
to the original work of Lee–Yang):
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Theorem 33.39. Let A = A∗ ∈ Cn×n be Hermitian, with all ajk in the closed unit disk.
Then the multiaffine Lee–Yang polynomial

f(z1, . . . , zn) :=
∑
S⊂[n]

∏
j∈S

zj
∏
k ̸∈S

ajk

has no zeros in Dn, where D is the open unit disk. In particular, the map f(z, . . . , z) has all
zeros on the unit circle S1.

An essential part of the ensuing analysis in the program initiated by these results, involves
understanding operators preserving spaces of polynomials with roots lying in / avoiding a
prescribed domain in C. More precisely, we are back to understanding linear operators on
spaces of (multivariate) polynomials, preserving (higher dimensional) versions of stability,
real-rootedness, and hyperbolicity. This includes higher-dimensional versions of Pólya–Schur
multipliers. Such tools were developed, and a host of classification results obtained, around
the turn of the millennium by Borcea and Brändén, in a series of remarkable papers.

As late as 2004, Craven–Csordas mention in their survey [91] that a classification of linear
maps preserving πn(S) (see the paragraph following Definition 33.1) was not known even for
important classes of domains S ⊂ C, including S = R, or a half-plane, or more generally a
strip over an imaginary interval (a, b); or a (double) sector centered at 0. Answers started
to come in only a few years after that; we present one result. In their 2009 paper in Ann. of
Math., Borcea–Brändén showed:

Theorem 33.40 ([61]). Let T : πn(C) → π(C) be a linear operator on polynomials. The
following are equivalent:

(1) T preserves real-rootedness, i.e., T : πn(R)→ π(R).
(2) The linear map T has rank at most 2, and is of the form T (p) = α(p)f+β(p)g, where

α, β : R[x]→ R are linear functionals, and f, g ∈ π(R) have interlacing roots.
(3) The symbol of T (x, y), given by GT (x, y) := T ((x + y)n) =

∑n
k=0

(
n
k

)
T (xk)yn−k, is

stable. In other words, it has no root (x, y) with ℑ(x),ℑ(y) > 0.
(4) The symbol of T (x,−y), given by GT (x,−y) := T ((x− y)n), is stable.

Here Borcea–Brändén define stability in keeping with Levin’s notion of H-stability; note
that a univariate real polynomial q(x) is stable (i.e., has no roots in the upper half-plane) if
and only if it is real-rooted: Znr(q) = 0.

Returning to the historical account, in [60, 61, 62, 63, 64] Borcea–Brändén also

• characterized linear operators preserving S-stability for other prescribed subsets S ⊂
C (including – in [61] – S a line, a circle, a closed half-plane, a closed disk, and the
complement of an open disk);
• developed a multivariable Szász principle and multidimensional Jensen multipliers;
• proved three conjectures of C.R. Johnson;
• presented a framework that incorporated a vast number of (proofs of) Lee–Yang and
Heilmann–Lieb type theorems;

among other achievements. See also a detailed listing of the modern literature in the field,
in [61]. Together with Liggett in [65], they also developed the theory of negative dependence
for “strongly Rayleigh (probability) measures”, enabling them to prove various conjectures
of Liggett, Pemantle, and Wagner, and to construct counterexamples to other conjectures on
log-concave sequences. See also the survey of Wagner [358] for more details and connections.
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The above works, originating from the Laguerre–Pólya–Schur program on the location
of roots of polynomials, were taken forward very recently, by Marcus, Spielman, and Sri-
vastava. In another series of striking papers that used interlacing families of polynomials,
real stability, and hyperbolicity (among many other ingredients), the authors proved the
longstanding Kadison–Singer conjecture [198], and also showed the existence of bipartite Ra-
manujan (expander) graphs of every degree and every order (settling conjectures of Lubotzky
and Bilu–Linial). See [250, 251, 252]. These contributions are only a small part of a larger
and very active current area of research, referring to the geometry of roots of polynomials.
Stability of dynamical systems, global optimization, and in particular control theory were
and are immediate beneficiaries of the theoretical advances. Under the covers of the newly
founded SIAM Journal of Applied Algebra and Geometry many exciting discoveries touching
the subject have appeared, with key concepts such as linear matrix inequalities, hyperbolic
polynomials, spectrahedra, and semi-definite programming.
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34. Schoenberg’s results on Pólya frequency functions.

Having discussed the Laguerre–Pólya entire functions and the Pólya–Schur multiplier se-
quences, we return to our primary objects of interest: Pólya frequency functions. The goal
in this section is to discuss some of the foundational results on these functions.

We first recall the definition of these functions and two closely related classes of functions:

Definition 34.1. Suppose Λ : R→ [0,∞) is Lebesgue measurable.

(1) Λ is said to be totally non-negative (TN) if given an integer p ≥ 1 and tuples x,y ∈
Rp,↑, detTΛ[x;y] := det(Λ(xj − yk))pj,k=1 ≥ 0.

(2) We will say Λ is non-Dirac if Λ does not vanish at least at two points.
(3) Λ is a Pólya frequency (PF) function if Λ is non-monotone – equivalently, integrable

with mass a positive real number.

The equivalence in the third assertion was proved in Proposition 29.3(3).

Remark 34.2 (Non-Dirac TN functions). The functions in Definition 34.1(2) were termed
totally positive functions by Schoenberg – recall that in his papers and Karlin’s book, and
even later, TN and TP matrices/functions were termed TP and STP , i.e., (strictly) totally
positive. Finally, by Theorem 28.4, a non-Dirac TN function is strictly positive on an interval
of positive length, and continuous on its interior.

34.1. Precursors by Pólya and Hamburger. We now discuss the origins of Pólya fre-
quency functions. Recall that in his 1951 paper [324], Schoenberg proved the variation
diminishing property for Pólya frequency functions Λ, in terms of the values of functions as
well as for real zeros of polynomials. (See Propositions 29.15 and 29.17, respectively.) To
the collection of prior results proved about the variation diminishing property – including for
power series by Fekete in 1912 [118] and for matrices by Schoenberg in 1930 [311], Motzkin
in 1936 in his thesis [263], and others including prominently by Gantmacher–Krein – we now
add a result shown in 1915 by Pólya, in connection with the Laguerre–Pólya class LP2.

Specifically, Pólya studied the reciprocal of a function Ψk(s) ∈ LPk for k = 1, 2, where
Ψk(0) > 0. He expanded the meromorphic function 1/Ψk as:

1

Ψk(s)
=

∞∑
j=0

(−1)j

j!
µjs

j (34.3)

Pólya then applied the differential operator 1/Ψ2(∂) to a real polynomial p(x), via

1

Ψ2(∂)
p(x) = µ0p(x)− µ1p′(x) + µ2

p′′(x)

2!
− · · · ± µn

p(n)(x)

n!
, (34.4)

in the spirit of the preceding section, and where n = deg(p) ≥ 0. Notice that since ∂ is
locally nilpotent on C[x], every formal power series in ∂ yields a well-defined operator on
C[x], yielding an algebra homomorphism T from C[[s]] to linear operators on C[x].

With these preliminaries, as a first result Pólya showed another condition equivalent to
being in the second Laguerre–Pólya class, i.e., a multiplier sequence of the second kind:

Theorem 34.5 ([285]). Given a formal power series ψ(s) :=
∑

j≥0 µj(−s)j/j! with µ0 > 0,
the following are equivalent:

(1) Given a polynomial p ∈ R[x], ψ(∂)(p(x)) has no more real roots than p(x):

Znr(ψ(∂)p(x)) ≥ Znr(p(x)).

(2) Ψ2(s) := 1/ψ(s) is in the Laguerre–Pólya class LP2.
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Proof-sketch. First, given the algebra homomorphism T sending a power series ψ(s) to ψ(∂),
and since ψ(0) > 0, the assertion (1) can be rephrased as:

(1′) Let Ψ2(s) := 1/ψ(s). If p ∈ R[x], then Ψ2(∂)p has at least as many real roots as p.

We now show that (2) =⇒ (1′). If Ψ2 is constant then (1′) is immediate; else approximate
Ψ2(s) locally uniformly by a sequence of real-rooted polynomials ψn(s); since µ0 = Ψ2(0) > 0
and Ψ2 is non-constant, the same holds for ψn for n ≫ 0. In particular, for large n, the
Hermite–Poulain theorem yields Znr(ψn(∂)p) ≤ Znr(p); and we also have deg(ψn(∂)p) =
deg(p) = deg(Ψ2(∂)p). Hence Znr(Ψ2(∂)p) ≤ Znr(p) by the continuity of roots.

Conversely, we assume (1′) and show (2). Let g(x) := xn for some n ≥ 0. If Ψ2(s) =∑
j≥0 νjs

j/j!, then by (1′), the polynomial

Ψ2(∂)(x
n) =

n∑
j=0

(
n

j

)
νjx

n−j

has at least n roots, whence is real-rooted for n ≥ 0. Define the real sequence N :=
(ν0, ν1, . . . ); thus Ψ2(∂)(x

n) = N[(1 + x)n] is real-rooted for all n ≥ 0. It follows by the
Pólya–Schur characterizations of multiplier sequences of the second kind (see Theorem 33.30)
that ΨN(x) = N[ex] = Ψ2(x) is in the class LP2, as desired. □

Thus, Pólya showed that Ψ2(∂) weakly increases (i.e., does not decrease) the number of
real roots. We return to this result and proof presently; first we continue with the account
of Pólya’s work [285]. Another result dealt with the reciprocal functions 1/Ψk(s), k = 1, 2:

Theorem 34.6 (Pólya, [285]). Suppose Ψk(s) ∈ LPk for k ∈ {1, 2} is such that Ψk(0) > 0
and Ψk(x) ̸≡ Ceδx. Let 1/Ψk(s) =

∑
j≥0 µj(−s)j/j!, and define the Hankel matrices

Hµ,j,n :=


µj µj+1 · · · µj+n

µj+1 µj+2 · · · µj+n+1
...

...
. . .

...
µj+n µj+n+1 · · · µj+2n

 , j ≥ 0.

Then detHµ,0,n > 0 ∀n ≥ 0. If k = 1 then moreover detHµ,1,n > 0 ∀n ≥ 0.

Proof-sketch. Pólya first showed in [285, Satz II and Satz III] the following claim:
“Suppose k = 1 or 2, and a function Ψk is as in the assumptions. If a non-zero real

polynomial is non-negative on R and k = 2 (respectively, non-negative on [a,∞) and k = 1
for some a ∈ R), then the polynomial 1

Ψk((−1)k∂)
p is always positive on R (respectively, on

[a,∞)).”
Now to prove detHµ,0,n > 0, choose a non-zero vector u = (u0, . . . , un)

T ∈ Rn+1, and set
p(x) := (

∑n
j=0 ujx

j)2. By the previous paragraph and a straightforward computation,

0 <
1

Ψ2(∂)
p

∣∣∣∣
x=0

= µ0u
2
0−µ1(u0u1+u1u0)+µ2(u0u2+u21+u2u0)−· · · =

n∑
j,k=0

(−1)j+kµj+kujuk.

Since this inequality holds for all non-zero vectors u, the matrix ((−1)j+kµj+k)
n
j,k=0 has

positive determinant by Sylvester’s criterion (Theorem 2.8). But Hµ,0,n is obtained from this
matrix by pre- and post-multiplication by the matrix diag(1,−1, 1, . . . , (−1)n−1).
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This shows the result for k = 2; similarly for k = 1, choose a non-zero vector u as above,
and set p(x) := x(

∑n
j=0 ujx

j)2 ≥ 0 on [0,∞). By the opening paragraph, we compute:

0 <
1

Ψ1(−∂)
p

∣∣∣∣
x=0

=

n∑
j,k=0

µj+k+1ujuk,

similar to the k = 2 case. Since this holds for all u ̸= 0, it follows that detHµ,1,n > 0. □

These positive determinants were taken up at the turn of that decade by Hamburger, who
in 1920–21 published his solution to the Hamburger moment problem [162]. Around the same
time, he applied this solution to Pólya’s theorem 34.6, and showed that the positivity of the
Hankel determinants in it is not sufficient to recover the Laguerre–Pólya class. Hamburger
also showed, however, that the functions 1/Ψk are Laplace transforms:

Theorem 34.7 (Hamburger, 1920, [161]). Fix an entire function Ψ(s) with Ψ(0) > 0 and
1/Ψ(s) =

∑
j≥0 µj(−s)j/j!.

(1) If detHµ,0,n > 0 for all n ≥ 0, then the reciprocal 1/Ψ(s) is the bilateral Laplace trans-
form of a certain function Λ(x) ≥ 0, in the maximal strip ℜ(s) ∈ (α, β) containing
the origin where 1/Ψ(s) is regular.

(2) If detHµ,0,n,detHµ,1,n are positive for all n ≥ 0, then the reciprocal 1/Ψ(s) is the
(bilateral) Laplace transform of a certain function Λ(x) ≥ 0, with Λ ≡ 0 on (−∞, 0),
in the maximal half-plane ℜ(s) ∈ (α,∞) of regularity of 1/Ψ(s).

From these results, one sees that the µj are precisely the moments of Λ (see (29.18)), or
of the non-negative measure Λ(t)dt:

µj :=

∫
R
Λ(t)tj dt <∞, j = 0, 1, . . . .

Combined with the Hamburger and Stieltjes moment problems – see Remarks 2.23 and 4.4
respectively – and since Λ(t)dt has infinite support, this explains why the moment-matrices
Hµ,0,n, Hµ,1,n have positive determinants, i.e., are positive definite by Sylvester’s criterion.

34.2. Schoenberg’s characterizations of PF functions. Schoenberg built upon the above
results, by (a) understanding the nature of the functions Λ in Hamburger’s theorem 34.7; and
(b) characterizing the functions Λ(x) ∈ L1(R) that satisfy the variation diminishing property:

S−(gf ) ≤ S−(f) ∀f : R→ R, where gf (x) :=

∫
R
Λ(x− t)f(t) dt. (34.8)

Remarkably, the Λ in both cases are essentially one and the same, as explained below.

Theorem 34.9 (Schoenberg, [320, 324]). Suppose Λ : R→ R is Lebesgue measurable. If Λ is
a non-Dirac TN function (see Definition 34.1), not of the form eax+b for a, b ∈ R, then the
bilateral Laplace transform of Λ is 1/Ψ(s), with Ψ(0) > 0 and Ψ(s) in the Laguerre–Pólya
class LP2, i.e., of the form

Ψ(s) = Ce−γs2+δs
∞∏
j=1

(1 + αjs)e
−αjs,

where C > 0, γ ≥ 0, δ, αj ∈ R, 0 < γ +
∑

j α
2
j <∞, and the equality B(Λ)(s) = 1/Ψ(s) holds

on a maximal strip ℜ(s) ∈ (α, β). Here −∞ ≤ α < β ≤ ∞, and if α and/or β is finite then
it is a zero of Ψ(·).
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Conversely, if Ψ ∈ LP2 is as above, then 1/Ψ(s) is the (bilateral) Laplace transform of a
non-Dirac TN function Λ, not of the form eax+b for a, b ∈ R.

In particular, the condition 0 < γ +
∑

j α
2
j <∞ implies that Ψ(s) is not of the form Ceδs.

Moreover, in light of Proposition 29.3, one can translate the maximal strip by multiplying by
an exponential factor:

Corollary 34.10. Given a non-Dirac TN function Λ : R→ R, the following are equivalent:

(1) Λ is a Pólya frequency function.
(2) The maximal strip in the preceding theorem contains the imaginary axis.
(3) Λ is non-monotone.
(4) Λ is integrable.

The above results were for general Pólya frequency functions (or non-Dirac TN functions)
vis-à-vis the Laguerre–Pólya class LP2. The corresponding equivalence for one-sided TN/PF
functions was also shown by Schoenberg, in the same works [320, 324]:

Theorem 34.11. Suppose Λ : R → R is Lebesgue measurable. If Λ is a non-Dirac TN
function, vanishing on (−∞, 0), and such that B(Λ)(s) converges for ℜ(s) > 0 (in particular
not an exponential eax+b for a > 0), then the bilateral Laplace transform of Λ is 1/Ψ(s), with
Ψ(s) > 0 for s > 0 and Ψ(s) in the Laguerre–Pólya class LP1, i.e., of the form

Ψ(s) = Ceδs
∞∏
j=1

(1 + αjs),

where C > 0, δ, αj ≥ 0, 0 <
∑

j αj < ∞, and the equality B(Λ)(s) = 1/Ψ(s) holds on a

maximal strip ℜ(s) ∈ (α,∞). Here α denotes the first zero of Ψ(·).
Conversely, if Ψ ∈ LP2 is as above, then 1/Ψ(s) is the (bilateral) Laplace transform of a

non-Dirac TN function Λ with the aforementioned properties.
Moreover, such a function Λ is a Pólya frequency function if and only if Ψ(0) > 0.

Note that Ψ(0) > 0 if and only if Λ is integrable; thus it cannot be constant on (0,∞).
Schoenberg’s theorems 34.9 and 34.11 characterize non-Dirac TN functions and Pólya

frequency functions, both one- and two-sided, in terms of the Laguerre–Pólya class.

Proof-sketch of Theorem 34.9. In the concluding portion of Section 32 (see the discussion
around (32.16) and (32.17)) we saw an outline of why for k = 1, 2, the function 1/Ψk(s) for
any Ψk ∈ LPk is the Laplace transform of a Pólya frequency function (one-sided or general,
for k = 1, 2 respectively). We outline here a proof of why the reverse implication holds for
k = 2. The outline opens with Schoenberg’s words [320]:

“A proof of Theorem 34.9 is essentially based on the results and methods developed by Pólya
and Schur. The only additional element required is a set of sufficient conditions insuring that
a linear transformation be variation diminishing.”

This last sentence of Schoenberg refers to his 1930 paper, in which he showed that TN ma-
trices are variation diminishing. Using this property, he showed the same for Pólya frequency
functions, whence for polynomials (and then did the same for one-sided PF functions); see
Section 29.2. Now suppose Λ is a PF function; we proceed to outline the proof of why B(Λ),
which converges on a maximal strip ℜ(s) ∈ (α, β) with α < 0 < β, is of the form 1/Ψ2(s) for
Ψ2(s) in the Laguerre–Pólya class LP2. Following Pólya, write

B(Λ)(s) =
∞∑
j=0

(−1)j

j!
µjs

j , ℜ(s) ∈ (α, β),
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where µj =
∫
R Λ(t)tj dt are the moments, as discussed after Theorem 34.7. Also note that

B(Λ)(0) = µ0 > 0, so we write the reciprocal power series:

Ψ2(s) :=
1

B(Λ)(s)
=

∞∑
j=0

νj
j!
sj .

Now return to the integral transformation f 7→ gf as in (34.8). By Proposition 29.17,
Z(gf ) ≤ Z(f), where Z(·) denotes the number of real roots. Next, recall Schoenberg’s
computation (29.19), perhaps inspired by Pólya’s trick (34.4):

gf (x) =

∫
R
Λ(t)f(x− t) dt =

∞∑
j=0

(−1)j

j!
µj(∂

jf)(x) = (B(Λ)(∂)f)(x).

We use here that both sides are polynomials, so that only finitely many terms µj∂
j act

nontrivially. Now take the reciprocal power series, e.g. via the map T following (34.4), to
obtain: f(x) = Ψ2(∂)(gf )(x). In fact since f 7→ gf is invertible (see the proof of Proposi-
tion 29.17), the linear operator g 7→ fg := Ψ2(∂)g is also invertible, and it weakly increases
the number of real roots. Finally, use (1′) =⇒ (2) in the proof of Pólya’s theorem 34.5. □

Remark 34.12. Thus, Schoenberg showed in [321, 324] the connection between his charac-
terization of PF functions via the Laguerre–Pólya class, Pólya–Schur multipliers, and Pólya’s
theorem 34.5 proving the variation diminishing property over polynomials. This explains why
Schoenberg proposed in [321] the name Pólya frequency functions for this family of functions.

We conclude with another characterization of Pólya frequency functions, which Schoenberg
announced in [321] and showed in [323]. This occurs via the variation diminishing property:

Theorem 34.13 (Schoenberg, [321, 323]). Given Λ : R → R Lebesgue integrable, let the
kernel f 7→ gf as in (34.8), for continuous, bounded f : R→ R. The following are equivalent:

(1) Λ is variation diminishing: S−
R (gf ) ≤ S

−
R (f) for all continuous, bounded f : R→ R.

(2) One of ±Λ is a PF function, or Λ is a Dirac function C1x=a for some C, a ∈ R.
Thus, the converse to Proposition 29.15 holds as well. For yet another characterization of

Pólya frequency functions – in terms of splines – see [95, 96] by Curry and Schoenberg.

34.3. Support of PF functions; (strict) total positivity. We now discuss two conse-
quences of the above results, which were also proved by Schoenberg. The first is that a Pólya
frequency function necessarily cannot be compactly supported:

Proposition 34.14. The support of a Pólya frequency function Λ : R→ R is unbounded.

Recall by Theorem 28.4 that the support of a TN2 function is an interval, so in fact the
support of a PF function now must be of the form (a, b) where at least one of |a|, |b| is infinite.

Proof. We already know the support of a Pólya frequency function is not a singleton. Let I
be a bounded interval with endpoints −∞ < a < b <∞. The claim is that for any function
Λ : R→ R supported on I and continuous in its interior, the Laplace transform

B(Λ)(s) :=
∫ b

a
e−sxΛ(x) dx, s ∈ C

is entire, with kth derivative (−1)k
∫ b
a e

−sxxkΛ(x) dx. Indeed, one shows that the series

∞∑
n=0

(−s)n

n!

∫ b

a
xnΛ(x) dx
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is uniformly convergent for s in any bounded domain in C. Hence its sum is entire, and
equals B(Λ)(s); moreover, one can differentiate term by term to compute its kth derivative:

∞∑
n=k

sn−k

(n− k)!

∫ b

a
(−x)nΛ(x) dx =

∫ b

a
e−sx(−x)kΛ(x) dx.

Having shown the claim, we proceed to the proof. By Theorem 34.9,

B(Λ)(s) = C−1eγs
2−δs

∞∏
j=1

eαjs

1 + αjs
, (34.15)

for appropriate values of the parameters. Now if Λ has bounded support, then from above

the right-hand side is entire. It follows that αj = 0 ∀j. But then B(Λ)(s) = C−1eγs
2−δs.

Now by Laplace inversion and Example 29.4, Λ itself is a (shifted) Gaussian density, hence
has unbounded support. This provides the necessary contradiction. □

The final result here, due to Schoenberg and Whitney in Trans. Amer. Math. Soc. (1953),
provides a sufficient condition when a Pólya frequency function is (strictly) totally positive.
We mention only a part of their results, and show only the sub-part relevant for our purposes.

Theorem 34.16 (Schoenberg–Whitney).

(1) If Λ+,Λ0 : R→ R are PF functions, and Λ+ yields a TP kernel, then so does Λ+∗Λ0.
(2) Suppose Λ(x) has bilateral Laplace transform (34.15). If γ > 0, or γ = 0 and

∑
j |aj |

diverges, then the kernel TΛ is TP (of all orders).

Proof. For the first part: that Λ+ ∗Λ0 is a PF function follows from Corollary 32.9. We now
claim that given p ≥ 1 and y ∈ Rp,↑, there exists t = (t1, . . . , tp) ∈ Rp,↑ such that TΛ0 [t;y] is
non-singular. The proof is by induction on p ≥ 1; for the base case, since

∫
R Λ0(x) dx ∈ (0,∞),

it is positive on an interval, so we can choose t1 as desired.
For the induction step, let p ≥ 2 and y ∈ Rp,↑. Choose t := (t1, . . . , tp−1) ∈ Rp−1,↑ such

that the matrix (Λ0(tj − yk))p−1
j,k=1 is non-singular, whence has positive determinant since Λ0

is TN . Now expand the determinant of TΛ0 [(t; t);y] along the last row; if this vanishes for
all t ∈ R, we obtain an equation

∑p
k=1 akΛ0(t−yk) ≡ 0, where all ak ∈ R and ap > 0. Taking

the bilateral Laplace transform of both sides,

ψ(s)

p∑
k=1

ake
−syk

must vanish for s in some interval, where ψ ̸≡ 0 by the Schoenberg representation theorems.
Hence the sum vanishes identically on an interval – which is false by Descartes’ rule of signs
(Theorem 10.3). Thus, TΛ0 [(t; t);y] is non-singular for some t ∈ R. Clearly t ̸= tj ∀j, so by
suitably permuting the rows (and relabeling the t, tj if needed), the induction step is proved.

Having shown the claim, and using the continuity on an interval of both Λ+,Λ0, one checks
using the Basic Composition Formula (5.14) that Λ+ ∗ Λ0 is TPp for each p ≥ 1:

det((Λ+∗Λ0)(xi−yk))pi,k=1 =

∫
· · ·
∫

t1<t2<···<tm in R

det(Λ+(xi−tj))pi,j=1 det(Λ0(tj−yk))pj,k=1

p∏
j=1

dµ(yk).

We only (require, hence) show the second part for γ > 0. By Theorem 34.9, e−γs2/2B(Λ)(s)
is the bilateral Laplace transform of a PF function, say Λ0; and e

γs2/2 of a TP (Gaussian)
PF function Λ+, say by Example 29.4. By the preceding part, Λ = Λ+ ∗ Λ0 is TP . □
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36. Critical exponent for powers preserving TNp. The
Jain–Karlin–Schoenberg kernel.

Having classified – in a previous part of this text – the preservers of Loewner positivity,
monotonicity, and convexity on infinite domains, we now turn to preservers of total non-
negativity and total positivity. This section is concerned with preservers of TNp for p finite,
with emphasis on power functions. In particular, we will see the occurrence of a critical
exponent phenomenon in total positivity – this time for powers of one-sided TNp functions.

36.1. Connections to representation theory and probability. We end this second look
at critical exponents (the first was in Part 2 of this text) by providing connections to other
areas of mathematics – specifically, via the Wallach set (or Gindikin ensemble, or Berezin–
Wallach set). The following is a very brief account of these topics, and the references here
should provide the reader with starting points for further exploration into this rich area, at
the intersection of representation theory, complex analysis, and probability.

Suppose n ≥ 1 and D ⊂ Cn is a tube domain, i.e., of the form D = Rn + iΩ, where Ω is a
homogeneous irreducible self-dual convex cone in Rn. Denote by H1 the associated Bergman
space, consisting of holomorphic functions F on D satisfying:∫

D
|F (x+ iy)|2 dxdy <∞,

and let H2 denote the Hardy space, consisting of holomorphic functions F on D satisfying:

sup
y∈Ω

∫
Rn

|F (x+ iy)|2 dx <∞.

Let P (z − w) denote the Bergman kernel on D; thus F (w) = ⟨F, Pw⟩H1 for all F ∈ H1,
where Pw(z) := P (z − w). Then the Hardy space H2 has a reproducing kernel of the form
P p, for some power p < 1 of the Bergman kernel. In Acta Math. (1976), Rossi and Vergne
classified the powers of P which are reproducing kernels for some Hilbert space of holomorphic
functions on D. They called the set of such powers p the Wallach set, and showed in [303]
that it consists of an arithmetic progression and a half-line: {0, c/r, 2c/r, . . . , c} ⊔ (c,∞) for
some c > 0 and r ≥ 0. The exact meaning of p, c, r can be found in [303].

Rossi–Vergne named the aforementioned set after Wallach, who was studying it at the time
(note, Wallach’s papers [359] appeared in print later, in 1979 in Trans. Amer. Math. Soc.).
Wallach, following up on work of Harish-Chandra, was studying the holomorphic discrete
series of connected, simply connected Lie groups G. Specifically, he classified the set of twist-
parameters p of the center of K (a maximal compact reductive subgroup of G) for which the
corresponding K-finite highest weight module over g = Lie(G) (complexified) is irreducible
and unitarizable, or it is reducible and its radical is unitarizable. In [303], Rossi and Vergne
obtained the same (Wallach) set of parameters p, with the sufficiently large p leading to
the holomorphic discrete series of weighted Bergman spaces. See also [116], where Faraut
and Korányi worked over symmetric domains D, and studied Hilbert spaces of holomorphic
functions on D.

The Wallach set also appears in at least two other settings, both again in the 1970s:

• Berezin [38] had encountered such a set while studying Kähler potentials of Siegel
domains, in the context of quantization. (See also [269] for a recent avatar of this
set of exponents, defined in the context of positive semidefinite kernels and recalling
various results discussed above).
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• Gindikin [143] had shown that given a symmetric cone, and a Riesz distribution Rµ

associated to it, Rµ is a positive measure if and only if µ ∈ C lies in an associated
Wallach set. A simple proof of this result (and more) was given in 2011 by Sokal [344].

On a conceptual note: the work of Gindikin on the Wallach set arises through
ratios of gamma functions on symmetric cones, which are of the form G/K for a
group G and a maximal compact subgroup K. Now, the ‘usual’ gamma function can
be defined via the Laplace transform on the cone R+. In fact, this can be done over
arbitrary symmetric cones in Euclidean Jordan algebras – for instance, in the cone
Pn(R) ∼= GLn(R)/On(R), where G = GLn,K = On stand for the general linear and
orthogonal groups of n× n real matrices, respectively.

Via the Iwasawa decomposition G = K ·A ·N , carrying out the Laplace transform
on such a cone G/K is the same as doing so on A ·N . This turns out to be a solvable
group, and the associated Haar measure is closely related to Lebesgue measure. This
provides a ‘natural’ setting for Gindikin’s work and for proving his results – see the
1991 paper of Kostant–Sahi [226] in Adv. Math. for details. As the authors remark,
the main ingredient in the above working is the Laplace transform on a self-dual cone;
the origins of this can be found in the 1935 paper [336] of Siegel in Ann. of Math.
(see also the book of Hua [185]).

Gindikin’s work leads us to another recent manifestation of the critical exponent in matrix
analysis – specifically, in random matrix theory. We first mention the 1987 paper [232] of
Lassalle in Invent. Math., which approached the same problem through the formalism of
positive cones in formally real Jordan algebras. Lassalle recovered the results of Wallach and
Rossi–Vergne concerning the Wallach set.

The results of Gindikin, Berezin, Rossi–Vergne, Wallach, and Lassalle parallel a phenom-
enon for shape parameters of (non-central) Wishart distributions. We begin with the more
standard “central” Wishart distribution, defined by Wishart in 1920 [371]. One way to define
this is through the Laplace transform of its density function. More precisely, fix an integer
n ≥ 1; now given the shape parameter p ∈ [0,∞) and the scale parameter Σ, which is a
positive definite n×n real matrix, Γ(p,Σ) denotes the Wishart distribution, say with density
f , satisfying:

L{Γ(p,Σ)}(s) :=
∫
Pn(R)

e−tr(sA) f(dA) equals det(Idn×n+2sΣ)−p, s ∈ Pn(R).

It is a well-known fact (see e.g. [117]) that such a distribution exists if and only if p is in
the Wallach set {0, 1/2, . . . , (n− 2)/2} ⊔ (((n− 1)/2),∞).

We now come to recent work along these lines. The non-central Wishart distribution is
similarly defined – now also using a non-centrality parameter Ω ∈ Pn(R) – via its Laplace
transform

L{Γ(p,Σ,Ω)}(s) = det(Idn×n+2sΣ)−pe−2tr(ΩsΣ(Idn×n +2sΣ)−1), s ∈ Pn(R).

In 2018, Graczyk–Málecki–Mayerhofer [145] and Letac–Massam [234] showed (akin to
above) that such a distribution exists if and only if (a) p belongs to the same Wallach set as
above:

p ∈ {0, 1/2, . . . , (n− 2)/2} ⊔ (((n− 1)/2),∞),

and (b) if p < (n − 1)/2 then rkΩ ≤ 2p. The same result was shown by Mayerhofer
in Trans. Amer. Math. Soc. in 2019, building on ideas of Faraut [115] (1988) and Peddada–
St. Richards [277] (1991). To do so, Mayerhofer [255] extended prior analysis by the aforemen-
tioned authors, on the positivity of generalized binomial coefficients that occur in Euclidean
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Jordan algebras. See e.g. [117] for an introduction to this; also see the 2011 work [308,
Theorems 1 and 5] by Sahi, for stronger positivity results.

We end with a (superficial) relation between the Wallach set here and the set of powers
preserving positivity on Pn((0,∞)) (and total non-negativity of order n for the powers of
the kernel TΩ) studied by FitzGerald–Horn, Karlin, and Jain. These powers were studied in
Sections 9 and 15 above, as well as in the present section. It would be interesting to find a
deeper, conceptual connection between the two problems.

We begin with the positivity preservers side. Recall from the proof of Theorem 9.3 that if
α ∈ (0, n− 2) \Z, and x1, . . . , xn ∈ (0,∞) are pairwise distinct, then the Taylor expansion of
the entrywise power ((1 + xjxk)

α)nj,k=1 yields

((1 + xjxk)
α)nj,k=1 =

∑
m≥0

(
α

m

)
x◦m(x◦m)T ,

where
(
α
m

)
= α(α − 1) · · · (α −m + 1)/m! and x◦m := (xm1 , . . . , x

m
n )T . Now the key is that

for m = ⌊α⌋ + 2, the binomial coefficient is negative. Thus one can pre- and post-multiply
the above matrix by uT , u respectively, for some u ∈ Rn orthogonal to the smaller entrywise
powers of x. Using this, one can deduce that ((1 + xjxk)

α)nj,k=1 is not positive semidefinite.
The connection to the Wallach set W is via the fact that the analysis for powers that

do not lie in W (to show that a (non)central Wishart distribution does not exist) also goes
through the negativity of certain generalized binomial coefficients. As a simple example, we
look into the argument in the aforementioned work of Peddada–Richards in Ann. Probab.
1991. (A similar computation concludes the proof of [255, Theorem 4.10].) Given integers
k1 ≥ · · · ≥ kn ≥ 0, define the shifted factorial by:

(p)k :=
n∏

j=1

(p− 1
2(j − 1))kj , where (p)k := p(p+ 1) · · · (p+ k − 1)

if k > 0, and (p)0 := 1. Now it is shown in [277] – via the use of zonal polyomials – that if the
(non)central Wishart density with shape parameter p exists, then (p)k ≥ 0 for all n-tuples k
as above. But if q = 2p ∈ (0, n− 1) \ Z, then set

m := ⌊q⌋+ 2, k1 = · · · = km = 1, km+1 = · · · = kn = 0.

Then the associated generalized binomial coefficient is

q

2

q − 1

2
· · · q − ⌊q⌋ − 1

2
· (1 · 1 · · · 1),

and this is negative by choice of q.
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37.1. Preservers of TN functions.

37.2. Preservers of Pólya frequency functions.

37.3. Preservers of TP Pólya frequency functions.
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Having classified the preservers of TN functions and their subclass of (TP ) Pólya frequency
functions, we turn to such Toeplitz kernels on distinguished subsets. This section deals with
Pólya frequency sequence, i.e., Toeplitz TN kernels on Z×Z. However, several of the results
will be shown to hold over more general domains X,Y ⊂ R with arbitrarily long arithmetic
progressions. The full power of these more general domains SX, Y will be revealed in the
next section, which concludes this part of the text.

As we saw in the previous three sections, working with kernels on intervals allows one to
use powerful tools and results from analysis. These tools are also used in the present section,
where we will use PF functions (on R × R) to classify the preservers of (TP ) PF sequences
(on Z× Z).

38.1. Preservers of PF sequences.

38.2. Preservers of TP PF sequences. Discretization: if F is continuous and preserves
PF sequences, then F preserves measurable TN Toeplitz kernels.

38.3. Preservers of one-sided PF sequences.

38.4. Further questions. To conclude this section, here are a few open questions involving
Pólya frequency functions and sequences, and their preservers.

Question 38.1. In light of Schoenberg’s theorem 28.4 characterizing the TN2 functions,
classify the preservers of these functions.

For example, the aforementioned theorems imply that all powers xα preserve the TNp

functions for p = 2, 3, if α ∈ Z≥0 ∪ [p − 2,∞). We also saw in ♣ that xα1x≥0 is a TNp

function if and only if α ∈ Z≥0 ∪ [p − 2,∞). In light of this, a natural question involves
studying the powers preserving total non-negativity of each degree:

Question 38.2. Given an integer p ≥ 2, classify the powers xα which preserve the class of
TNp functions. Note by ♣ that every such power is in Z≥0 ∪ [p− 2,∞).

Coming to Pólya frequency sequences, the above classification results lead to additional,
theoretical questions about related sequences, which are mentioned for the interested reader.

Question 38.3. Classify the preservers of one-sided Pólya frequency sequences: (i) that
have finitely many diagonals, or (ii) generated by evaluating a polynomial at non-negative
integers.

Like a question above, both of these classes of functions have nontrivial power-preservers.
Indeed, xn preserves both of these classes for all integers n ≥ 1, by Maló’s theorem 33.8 and
a result of Wagner [357], respectively. Akin to the above discussion involving non-integer
‘one-sided powers’ which are TNp, a related question is:

Question 38.4. Classify the power functions x 7→ xα, such that if
∑

j ajx
j is a polynomial

with positive coefficients and real roots, then so is
∑

j a
α
j x

j . In particular, find the ‘critical
exponent’ αp for polynomials of a fixed degree p, such that every α ≥ αp satisfies this property
on polynomials of degree at most p.

Note again by Maló’s theorem 33.8 that every integer α ≥ 1 satisfies this property. Re-
cently, Wang and Zhang showed in [363] the existence of the threshold αp. Notice by ♣ that
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this question is connected to entrywise powers preserving PF sequences with up to p non-zero
diagonals, and hence refines the preceding question.

A final, Whitney-type density question is:

Question 38.5. Are the totally positive Pólya frequency sequences dense in the set of all
Pólya frequency sequences?

Such a result could help obtain the preservers of the TP PF sequences from the preservers
of all PF sequences. (Note that this goal is achieved above via alternate means.)
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39. Preservers of TP Hankel kernels.

In this section, we change gears, and work with a setting studied above for matrices: Hankel
kernels, now defined on a sub-interval of R instead of on the integers {0, 1, . . . }. As should
be clear from the previous sections, working with kernels on intervals (e.g. R×R) allows one
to use a host of powerful, classical techniques and results from analysis, which help prove
results even on discrete domains (e.g. Z× Z).

We begin with terminology. Given subsets X,Y ⊂ R, define their Minkowski sum X+Y :=
{x + y : x ∈ X, y ∈ Y }. Now a kernel K : X × Y → R is said to be Hankel if there is a
function f : X + Y → R such that K(x, y) = f(x + y) for all x ∈ X, y ∈ Y . Note that if
X = Y then any such ‘square’ kernel is symmetric.

A natural class of such kernels in analysis is when X is an interval, and in this section we
focus on this case. In keeping with the above sections, here is a typical example of a Hankel
TN kernel: given finitely many positive scalars c1, . . . , cn, u1, . . . , un, define

Kc,u : R× R→ R, Kc,u(x, y) :=
n∑

j=1

cju
x+y
j .

We show in Theorem 39.6 that this kernel is TN on R × R (whence on X × X for any
sub-interval X ⊂ R).

39.1. Preservers of Hankel TN kernels on intervals. In this section, we classify the
preservers of Hankel TN and TP kernels, on X×X for X an interval that is always assumed
to have positive measure. The first main result addresses Hankel TN kernels:

Theorem 39.1. Let X ⊂ R be an interval with positive measure, and F a function : [0,∞)→
R. The following are equivalent:

(1) The composition map F ◦ − preserves total non-negativity on the continuous Hankel
TN kernels on X ×X.

(2) The composition map F ◦ − preserves positive semidefiniteness on the continuous
Hankel TN kernels on X ×X.

(3) The function F is a power series with non-negative coefficients: F (x) =
∑∞

k=0 ckx
k

for x > 0, with all ck ≥ 0; and F (0) ≥ 0.

The proof of this result uses a discretization technique that will also be useful later:

Lemma 39.2 (Discretization of Hankel kernels). Suppose X ⊂ R is an interval with positive
measure, and K : X ×X → R. Then each of the following statements implies the next.

(1) K is TN .
(2) All principal submatrices drawn from K are TN .
(3) All principal submatrices drawn from K, with arguments lying in an arithmetic pro-

gression, are TN .
(4) All principal submatrices drawn from K, with arguments lying in an arithmetic pro-

gression, are positive semidefinite.

Conversely, (2) =⇒ (1) for all kernels, (3) =⇒ (2) for continuous kernels, and (4) =⇒ (3)
for continuous Hankel kernels.

Proof. The forward implications are immediate from the definitions. Conversely, using the
notation in Definition 25.1, if x, z ∈ Xn,↑ for some n ≥ 1, then the matrix K[x; z] is a
submatrix of K[x ∪ z;x ∪ z], where x ∪ z denotes the union of the coordinates of x and z,
together arranged in increasing order. Thus (2) =⇒ (1).
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Now suppose K is continuous and (3) holds. We will show (2): given x1 < · · · < xn in X,

let ϵ := minj(xj+1 − xj)/2, and approximate each xj by a rational sequence z
(k)
j with:

z
(k)
1 ∈ [x1, x1 + ϵ), z(k)n ∈ (xn − ϵ, xn], z

(k)
j ∈ (xj − ϵ, xj + ϵ), j ∈ (1, n).

Choose an integer Nk ≥ 1 such that z
(k)
j ∈ 1

Nk
Z for all k, and define:

z(k) := (z
(k)
1 , z

(k)
1 +

1

Nk
, z

(k)
1 +

2

Nk
, . . . , z(k)n ), z

(k)
1 := (z

(k)
1 , z

(k)
2 , . . . , z(k)n ).

By assumption, the matrix K[z(k); z(k)] is TN , whence so is the submatrix K[z
(k)
1 ; z

(k)
1 ] for all

k. Let k →∞; since K is continuous, it follows that K[x;x] is TN , where x = (x1, . . . , xn).
This shows (2).

Finally, suppose K is continuous and Hankel, and (4) holds. Given an arithmetic progres-
sion x ∈ Xn,↑, let A := K[x;x] be the corresponding positive semidefinite Hankel matrix.
Now define the progression of running averages y ∈ Xn−1,↑ by: yj := (xj + xj+1)/2 for
1 ≤ j ≤ n− 1; and let B := K[y;y]. Since B is positive semidefinite, Hankel, as well as the

truncation A(1) of A, it follows by Theorem 4.1 that A is TN , as desired. □

Now just as Corollary 4.2 shows that Hankel matrices/kernels form a closed convex cone
for X = {1, . . . , n} (for any integer n ≥ 1), the same immediately follows in the present
setting:

Corollary 39.3. Suppose X ⊂ R is an interval. The continuous Hankel TN kernels on
X × X form a closed convex cone, which is further closed under taking pointwise/Schur
products.

Proof. This follows from the condition Lemma 39.2(4) being closed under addition, dilation,
taking pointwise limits, and taking pointwise products (by the Schur product theorem). □

Remark 39.4. The last two conditions of Lemma 39.2 can be further refined to ask for the
arithmetic progressions in question to be rational (or to belong to a translate of any dense
additive subgroup of R). This does not affect either Lemma 39.2 or Corollary 39.3.

The next preliminary result identifies when a continuous Hankel TN (or TNp for any p ≥ 2)
kernel vanishes at a point. Recall for an interval X ⊂ R that ∂X denotes its boundary, i.e.,
the set of endpoints of X.

Lemma 39.5. Let X ⊂ R be an interval of positive length, and K : X ×X → R a Hankel,
TN2 kernel. If K(x, y) = 0 for some x, y ∈ X, then K vanishes outside ‘corners’, i.e., on
X ×X \ {(x0, x0) : x0 ∈ ∂X}. If moreover K is continuous, then K ≡ 0 on X ×X.

Proof. Suppose K is as given, and X has interior (a, b) for −∞ ≤ a < b ≤ ∞. Suppose some
K(x, y) = 0; then so is K(d0, d0) for d0 = (x+ y)/2, as K is Hankel. Again by this property,
it suffices to show K(d, d) = 0 ∀d ∈ X \∂X. We show this for d ∈ (a, d0); the proof is similar
for d ∈ (d0, b).

Let d ∈ (a, d0); the TN2 property of K[(d, d0); (d, d0)] gives

0 ≤ K(d, d0)
2 ≤ K(d, d)K(d0, d0) = 0.

This shows K((d + d0)/2, (d + d0)/2) = 0. Now if a = −∞ then running over all d we are
done. Else say a is finite. Then the above argument shows that

K(d, d) = 0, ∀d ∈ ((a+ d0)/2, d0).
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Now define the sequence

dn+1 := (a+ 3dn)/4 ∈ ((a+ dn)/2, dn), n ≥ 0.

Clearly dn decreases from d0 to a+. Now claim by induction that K(d, d) = 0 for all d ∈
[dn+1, dn). The base case of n = 0 was shown above, and the same computations show the
induction step as well. Finally, the last assertion is now immediate. □

With these preliminaries in hand, we can show the above classification result.

Proof of Theorem 39.1. Clearly (1) =⇒ (2); we next show (3) =⇒ (1). Suppose (3) holds
and K : X ×X → R is Hankel and TN . There are two cases. First, K vanishes at a point
and hence K ≡ 0 by Lemma 39.5, in which case F (0) ≥ 0 gives: (F ◦K)(0) = F (0)1X×X is
TN . Otherwise F > 0 on X ×X, in which case F ◦K is again continuous, Hankel, and TN
by Corollary 39.3.

It remains to show (2) =⇒ (3). First if K ≡ 0 then F (0)1X×X = (F ◦ K) is positive
semidefinite, so F (0) ≥ 0. Otherwise K > 0 by Lemma 39.5, We now appeal to Theorem 19.1
and Remark 19.18. Thus, it suffices to show that F [−] preserves positivity on the matrices

(a + buj+k
0 )nj,k=0 for all a, b ≥ 0 with a + b > 0 and all n, as well as on all rank-1 and all

Toeplitz matrices in P2((0,∞)). For this, it suffices to produce continuous Hankel TN kernels
on R× R which contain the given test set of matrices at equispaced arguments.

First, by the assumptions there exist linear maps φn : R→ R, n ≥ 1 with positive slopes
such that [0, n] ⊂ φn(X). Now consider the continuous kernel

Kn(x, y) := a+ bu
φn(x)+φn(y)
0 , x, y ∈ R.

This is a rank-2 kernel, and easily verified to be Hankel and TN on R×R, whence on X×X.
Applying F , it follows that the matrix

(F ◦Kn)[x;x] = (F (a+ buj+k
0 ))nj,k=0

is positive semidefinite as desired. Here x := (φ−1
n (0), . . . , φ−1

n (n)) ∈ Xn+1,↑ for all n ≥ 0.

Next, if A =

(
p q
q q2/p

)
has positive entries and rank one, then consider the continuous

Hankel kernel associated to the measure pδq/p, i.e., K(x, y) := p(q/p)x+y for x, y ∈ R.

Finally, consider the Toeplitz matrix

(
b a
a b

)
, with 0 < a < b. It suffices to produce a

continuous Hankel TN kernel containing this matrix. While one can use Theorem 7.4, we
provide a direct proof as well. By rescaling by b, we may assume b = 1. Now choose any
α ∈ (1− a2, 1) and consider the continuous Hankel kernel

K(x, y) := α

(
a−

√
(1− α)(1− a2)

α

)x+y

+ (1− α)

(
a+

√
α(1− a2)
1− α

)x+y

,

for x, y ∈ R. It is easy to check that K(0, 0) = K(1, 1) = 1 and K(0, 1) = a. Moreover, K is
TN because we reduce to Theorem 4.1 via Lemma 39.2(4). □

39.2. Structure of Hankel TP kernels on intervals. We next turn to Hankel TP kernels.
For this, we need to understand both Hankel TN and TP kernels in greater detail:

Theorem 39.6. Suppose X ⊂ R is an non-empty open interval.

(1) The following are equivalent for K : X ×X → R a continuous Hankel kernel:
(a) K is TN .
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(b) K is positive semidefinite.

(c) There exists a non-decreasing function σ : R→ R such that K(x, y) =
∫
R e

−(x+y)u dσ(u)
for all x, y ∈ X.

Furthermore, the kernel K is TP if and only if the non-negative measure associated
to σ has infinite support.

(2) The continuous Hankel TP kernels on X × X are dense in the continuous Hankel
TN kernels on X ×X.

(3) The space of continuous Hankel TP kernels on X × X is a convex cone, which is
further closed under taking pointwise/Schur products.

The first part is a representation theorem by Widder (1940) in Bull. Amer. Math. Soc.,
which solves a moment problem in the spirit of Hamburger, Hausdorff, Stieltjes, and others,
but now for ‘exponential moments’ of non-negative measures on the real line. These are
termed ‘exponentially convex functions’ by Bernstein. The second part reveals a Whitney-
type density result for Hankel kernels on an interval, in the spirit of Whitney’s theorem 6.7
for matrices. In the next few sections, we will see similar variants for other structured kernels.

We now turn to Widder’s proof of Theorem 39.6(1). This uses an intermediate notion of
‘kernels of positive type’, which are now introduced.

Definition 39.7. Given real numbers a ≤ b, a continuous symmetric function K : [a, b] ×
[a, b] → R is said to be a kernel of positive type on [a, b]2 if for all continuous functions
ξ : [a, b]→ R, we have ∫ b

a

∫ b

a
K(s, t)ξ(s)ξ(t) ds dt ≥ 0.

If now I ⊂ R is a sub-interval, and K : I × I → R is continuous, we say K is of positive type
if it is so on every closed sub-interval of I.

The following result relates positive semidefinite kernels with kernels of positive type.

Lemma 39.8 (Mercer, 1909). Suppose a ≤ b are real numbers and K : [a, b]× [a, b] → R is
continuous. Then K is a positive semidefinite kernel if and only if K is of positive type.

Thus, Mercer’s lemma provides an alternate equivalent condition to Theorem 39.6(1) for
X compact. It was shown by Mercer in Phil. Trans. Royal Soc. A (1909), en route to showing
the following famous result (which we do not use, nor pursue in this text):

Theorem 39.9 (Mercer, 1909). Suppose K : [a, b]2 → R is a kernel of positive type. Then
there exists an orthonormal basis {ej : j ≥ 1} of L2[a, b], such that: (a) each ej is an

eigenfunction of the integral operator TKφ(x) :=
∫ b
a K(x, s)φ(s) ds; (b) the corresponding

eigenvalue λj is non-negative; (c) if λj > 0 then ej is continuous; and (d) K has the repre-
sentation

K(s, t) =
∑
j≥1

λjej(s)ej(t).

Proof of Mercer’s lemma 39.8. If K is a positive semidefinite kernel, and ξ : [a, b] → R is
continuous, then the double integral∫ b

a

∫ b

a
K(s, t)ξ(s)ξ(t) ds dt
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can be expressed as a limit of Riemann sums:

lim
n→∞

(b− a)2

n2

n−1∑
j,k=0

K(sj , sk)ξ(sj)ξ(sk) = lim
n→∞

uTnKnun,

where

sj := a+ j(b− a)/n, Kn := (K(sj , sk))
n−1
j,k=0, un =

b− a
n

(ξ(s1), . . . , ξ(sn))
T .

But the right-hand limit is non-negative since K is positive semidefinite.
Conversely, suppose there exist scalars a ≤ s1 < · · · < sn ≤ b such that the matrix Kn :=

(K(sj , sk))
n
j,k=0 is not positive semidefinite. Since K is continuous, a perturbation argument

allows us to assume s0 > a and sn < b. Thus there exists an eigenvector un = (ξ0, . . . , ξn)
T

such that uTnKnun =: A < 0.
We now construct a ‘toothsaw’ test function, as follows: we will choose ϵ, η > 0, running

only over values satisfying:

ϵ+ η < min{s0 − a, (s2 − s1)/2, . . . , (sn − sn−1)/2, b− sn}.

Define θϵ,η(x) to be the unique piecewise linear, continuous function on (a, b) such that

θϵ,η(x) :=


ξj , if x ∈ (sj − η, sj + η),

0, if x ∈ (a, s0 − ϵ− η] ⊔ [sn + ϵ+ η, b),

0, if x ∈
⊔n

j=1[sj−1 + ϵ+ η, sj − ϵ− η],

and θϵ,η is linear on all remaining sub-intervals [sj − ϵ− η, sj − η] and [sj + η, sj + ϵ+ η].
Now define Fn : [−η, η]2 → R via

Fn(x, y) :=

n∑
j,k=0

K(sj + x, sk + y) ξjξk.

A straightforward computation yields:∫ b

a

∫ b

a
K(s, t)θϵ,η(s)θϵ,η(t) ds dt =

n∑
j,k=0

∫ xj+ϵ+η

xj−ϵ−η

∫ xk+ϵ+η

xk−ϵ−η
K(s, t)θϵ,η(s)θϵ,η(t) ds dt

=

∫ η

−η

∫ η

−η
Fn(x, y) dx dy + J1,

where

J1 =
n∑

j,k=0

∫∫
Qjk

K(s, t)θϵ,η(s)θϵ,η(t) ds dt,

with Qjk the ‘annular’ region between the squares

[xj − ϵ− η, xj + ϵ+ η]× [yk − ϵ− η, yk + ϵ+ η] and [xj − η, xj + η]× [yk − η, yk + η].

Now for (s, t) ∈ Qjk we have |θϵ,η(s)θϵ,η(t)| ≤ |ξjξk|, so by an easy computation:

|J1| ≤ 4ϵ(2η + ϵ)

 n∑
j=0

|ξj |

2

· ∥K∥∞
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where ∥K∥∞ is the supnorm of K on the compact domain [a, b]2. Note that Fn(0, 0) = A < 0
(as above), so by continuity there exists a small η > 0 such that Fn(x, y) < A/2 when
|x|, |y| < η. Fixing such an η,∫ b

a

∫ b

a
K(s, t)θϵ,η(s)θϵ,η(t) ds dt ≤ |J1|+

∫ η

−η

∫ η

−η
A/2 dx dy

< 4ϵ(2η + ϵ)

 n∑
j=0

|ξj |

2

∥K∥∞ + 2Aη2,

for ϵ sufficiently small. Choose ϵ > 0 small enough such that the right-hand side is negative
(since A < 0); this yields the desired contradiction. □

Another preliminary result required to show Theorem 39.6 is by Bernstein in his 1926
memoir. This is a ‘dimension-free’ analogue of the Boas–Widder theorem 18.10(2) – also
recall the related Theorem 19.9 by Boas. In fact, Boas and Widder write that they were
motivated to prove their Theorem 18.10(2) ‘in an effort to make more accessible’ the following
result of Bernstein, which Widder used in proving Theorem 39.6(1).

Theorem 39.10 (Bernstein, 1926). Given a sub-interval (a, b) ⊂ R and a continuous func-
tion f : (a, b)→ R, if the even-order forward differences

(∆2n
δ f)(c) :=

2n∑
j=0

(
2n

j

)
(−1)jf(c+ jδ), c ∈ (a, b), δ ∈ (0, (b− c)/2n)

are all non-negative, then f is analytic in (a, b).

The final preliminary result is by Hamburger (1920) in Math. Z.:

Proposition 39.11 (Hamburger). If f(x) is analytic in (a, b) and there exists c ∈ (a, b) such

that the semi-infinite Hankel matrix (f (j+k)(c))j,k≥0 is positive semi-definite, then

f(x) =

∫
R
e−xu dσ(u)

for some non-decreasing function σ, with the integral converging on x ∈ (a, b).

These two results are used without proofs.

Proof of Theorem 39.6.

(1) That (a) and (b) are equivalent follows by Lemma 39.2. Next assume (b) holds, let
[a, b] ⊂ X, and let the continuous function f : X +X → R be given by: f(x + y) =
K(x, y) for x, y ∈ X. Suppose a ≤ c < c+ 2nδ ≤ b for some integer n > 0 and scalar
0 < δ < b−c

2n . The Hankel matrix Kn,c,δ := (f(c+jδ+kδ))nj,k=0 is positive semidefinite
by assumption; we evaluate it against the vector

ξ = (ξ0, . . . , ξn)
T , ξj :=

n∑
l=j

(−1)j+1

(
j

l

)
ηj

for some scalars η0, . . . , ηn. In the language of forward differences, this yields:

ξTKn,c,δξ =

n∑
j,k=0

∆j+k
δ f(c)ηjηk ≥ 0.
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Now set η0 = η1 = · · · = ηn−1 = 0, ηn = 1, we have (∆2n
δ f)(c) ≥ 0. By Theorem 39.10,

since f is continuous, f is analytic in (a, b). Now replacing ηj in the preceding
computation by ηj/δ

j , we obtain as δ → 0+:

n∑
j,k=0

f (j+k)(c)ηjηk ≥ 0.

As this holds for all integers n ≥ 0 and all η0, . . . , ηn ∈ R, Proposition 39.11 implies
f is of the desired form.

Conversely, if (c) holds, then to show that a principal submatrix drawn from K at
arguments x0 < x1 < · · · < xn in X is positive semidefinite, it suffices to consider
K restricted to [a, b]2, where a = x0 and b = xn. Now by Mercer’s lemma 39.8, it
suffices to show that K|[a,b]2 is of positive type. But this is straightforward: given a
continuous function ξ : [a, b]→ R, we have∫ b/2

a/2

∫ b/2

a/2
f(s+ t)ξ(s)ξ(t) ds dt =

∫ b/2

a/2

∫ b/2

a/2
ξ(s)ξ(t)

∫
R
e−(s+t)u dσ(u) ds dt

=

∫
R

(∫ b/2

a/2
e−suξ(s) ds

)2

dσ(u) ≥ 0.

The final step involves a change of order of integration, which is justified because the
integral representation of f converges uniformly in [a, b].

This ends the proof of the equivalence. Now suppose the measure associated to σ
has infinite support. Then the kernel K(x, y) = f(x+y) is TP , by Proposition 6.2. If
needed, we can use the fact that a kernelK(x, y) onX×Y (forX,Y ⊂ R) is TN/TP if
and only if the kernel K(−x,−y) is so, because drawing square submatrices from one
or the other kernel are equivalent, modulo applying the order reversing permutation
to the rows as well as the columns.

Next, suppose the measure for σ has finite support, say with mass ck at uk ∈ R for
k = 1, . . . , r. Given two n-tuples of points x,y ∈ Xn,↑, we see that

K[x;y] =

r∑
k=1

ck(e
−(xi+yj)uk)ni,j=1 =

r∑
k=1

ckx
◦uk
0 y◦uk

0 , (39.12)

where x0 = (e−xi)ni=1,y0 = (e−yj )nj=1. Thus K[x;y] has rank ≤ r, hence is singular if
n > r. It follows that K is not TP .

(2) Given a continuous Hankel TN kernel K(x, y) = f(x+y) on X×X, with the function
f as in the previous part, K is the limit as ϵ→ 0+, of the kernels

Kϵ(x, y) := K(x, y) + ϵ

∫ 1

0
e−(x+y)u du.

Since each underlying measure in Kϵ has infinite support, Kϵ is TP by the previous
part.

(3) Note that TP kernels are closed under dilations. If now K,K ′ are TP , with under-
lying representative functions σ, σ′, then the measures corresponding to these have
infinite supports, whence the same holds for σ+σ′. Hence K+K ′ is also TP . Finally,
K ·K ′ is TN by Corollary 39.3. If it is not TP , then the representative function τ has
underlying measure of finite support, say of size r. Now choose an arithmetic pro-
gression x ∈ Xr+1,↑; then the principal submatrices K[x;x] and K ′[x;x] are Hankel
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by the choice of x and TP by assumption. Hence so is their Schur product, which is
precisely (K ·K ′)[x;x], by Theorem 4.1. In particular, this is a principal submatrix
of K ·K ′ of rank r + 1, which contradicts the choice of r, say by (39.12) for K ·K ′.

□

39.3. Preservers of Hankel TP kernels. To conclude, we classify the preservers of Hankel
TP kernels, parallel to the TN version in Theorem 39.1.

Theorem 39.13. Let X ⊊ R be an open sub-interval with positive measure, and a function
F : (0,∞)→ R. The following are equivalent:

(1) The composition map F ◦ − preserves total positivity on the continuous Hankel TP
kernels on X ×X.

(2) The composition map F ◦ − preserves positive definiteness on the continuous Hankel
TP kernels on X ×X.

(3) The function F is a power series with non-negative coefficients: F (x) =
∑∞

k=0 ckx
k

for x > 0, with all ck ≥ 0; and F is non-constant.

Proof. Clearly (1) =⇒ (2). Next, suppose (3) holds, with cn0 > 0 for some n0 > 0. Let
K : X×X → R be a continuous TP Hankel kernel, then so isKn0 by Theorem 39.6. Moreover,
Corollary 39.3 shows G ◦K is a continuous TN Hankel kernel, where G(x) := F (x)− cn0x

n0 .
Now G ◦ K and Kn0 have integral representations as above, say with corresponding non-
negative measures ν and µ respectively. Since µ has infinite support from above, so does
ν + cn0µ ≥ 0. Hence F ◦K = G ◦K + cn0K

n0 is TP .
It remains to show (2) =⇒ (3). First note by Theorem 7.4 that every 2 × 2 TP matrix

occurs as a ‘principal submatrix’ of a continuous Hankel TP kernel on R × R, drawn from
a function evaluated at equispaced arguments. Hence by Lemma 12.14, f is continuous,
positive, and strictly increasing on (0,∞). It follows that f preserves continuous Hankel TN
kernels, hence is of the desired form by Theorem 39.6(2). Clearly f is non-constant, and the
proof is complete. □
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40. Total positivity preservers: All kernels.

We now bring together many of the techniques and results discussed above – not only in
this part, but in the previous parts of this text – to solve the motivating problem in this part:
Classify the functions preserving totally non-negative/positive kernels on X ×Y , where X,Y
are (arbitrary) non-empty totally ordered sets.

Recall the characterizations in Theorems 12.11 and 12.13, which resolved this question for
X,Y finite. Similarly, Theorem 12.15 and Corollary 12.17 respectively classified the preservers
of TN and TP symmetric kernels, for X = Y finite.

40.1. Finite-continuum kernels. In this section, we answer the above question when at
least one of X,Y is infinite. The first step is to resolve this when exactly one of X,Y is finite
and the other is infinite; in this case we do not consider symmetric kernels.

The key result which is required to solve the classification question is a recent extension
of Whitney’s density theorem, which uses discretized Gaussian convolution.

Theorem 40.1. Given an integer p ≥ 2, and a bounded TNp kernel K on R×R, let C ⊂ R2

denote the points of continuity of K. Then there exists a sequence of TPp kernels (Kl)l≥1 that
converge to K locally uniformly on C. If moreover K is ‘symmetric’, i.e., K(x, y) = K(y, x)
for all x, y ∈ R, then the sequence Kl may also be taken to be symmetric for all l ≥ 1.

Theorem 40.1 is due to Belton, Guillot, Khare, and Putinar (2020), for arbitrary subsets
X,Y ⊂ R – which is not more general because one can always extend such a kernel to
one on R × R, by padding by zeros. Notice also that the assumption that X = Y = R is
itself not unnecessarily restrictive, given Lemma 7.2. (For p = 1, a TP1 kernel is merely a
positive-valued function, and so K + 1

l 1 approximates any TN1 kernel K.)
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Bibliographic notes and references

Most of the material in this part is taken from Belton–Guillot–Khare–Putinar [32], and we
discuss the remaining references.

Theorem 39.6(1) is a representation theorem for totally non-negative continuous Hankel
kernels on an open interval, shown by Widder [369]. Mercer’s lemma 39.8 and theorem 39.9
are from [261]. Bernstein’s theorem 39.10 guaranteeing analyticity from the positivity of
even-order forward differences is from [43]. Hamburger’s theorem 39.11 is from [161]. (See
also [44] and [8, Theorem 5.5.4].)
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41. Entrywise polynomial preservers. Horn–Loewner type necessary
conditions. Classification of sign patterns.

In Part 3 of this text, we classified the entrywise functions preserving positivity in all di-
mensions; these are precisely the power series with non-negative coefficients. Earlier in Part 2,
we had classified the entrywise powers preserving positivity (as well as total positivity and
total non-negativity) in fixed dimension. In this final part of the text, we study polynomials
that entrywise preserve positive semidefiniteness in fixed dimension.

Recall from the Schur product theorem 3.12 and its converse, the Schoenberg–Rudin the-
orem 16.2, that the only polynomials that entrywise preserve positivity in all dimensions are
the ones with all non-negative coefficients. Thus, if one fixes the dimension N ≥ 3 of the test
set of positive matrices, then it is reasonable to expect that there should exist more polyno-
mial preservers – in other words, polynomial preservers with negative coefficients. However,
this problem remained completely open until very recently ( ∼ 2016): not a single polynomial
preserver was known with a negative coefficient, nor was a non-existence result proved!

In this final part, we answer this existence question as well as stronger variants of it.
Namely, not only do we produce such polynomial preservers, we also fully resolve the more
challenging question: which coefficients of polynomial preservers on N ×N matrices can be
negative? Looking ahead in this part:

• We classify the sign patterns of entrywise polynomial preservers on PN for fixed N .
• We extend this to all power series; but also, countable sums of real powers, such as∑

α∈Q, α≥N−2 cαx
α. This case is more subtle than that of polynomial preservers.

• We will also completely classify the sign patterns of polynomials that entrywise pre-
serve totally non-negative (TN) Hankel matrices of a fixed dimension. Recall from
the discussions around Theorems 12.19 and 19.1 that this is expected to be very
similar to (maybe even the same as) the classification for positivity preservers.

In what follows, we work with PN ((0, ρ)) for N > 0 fixed and 0 < ρ < ∞. Since we work
with polynomials and power series, this is equivalent to working over PN ([0, ρ)) by density
and continuity. If ρ = +∞, one can prove results that are similar to the ones shown in this
part of the text; but for a first look at the proofs and techniques used, we restrict ourselves
to PN ((0, ρ)). For full details of the ρ = +∞ case, as well as for the proofs, ramifications,
and applications of the results below, we refer the reader to the paper “On the sign patterns
of entrywise positivity preservers in fixed dimension” in Amer. J. Math. by Khare and Tao.

41.1. Horn–Loewner-type necessary condition; matrices with negative entries. In
this section and beyond, we work with polynomials or power series

f(x) = cn0x
n0 + cn1x

n1 + · · · , with n0, n1, . . . pairwise distinct (41.1)

and cnj ∈ R typically non-zero. Recall the (stronger) Horn–Loewner theorem 17.1, which

shows that if f ∈ CN−1(I) for I = (0,∞), and f [−] preserves positivity on (rank-2 Hankel

TN matrices in) PN (I), then f, f ′, . . . , f (N−1) ≥ 0 on I. In the special case that f is a
polynomial or a power series, one can say more, and under weaker assumptions:

Lemma 41.2 (Horn–Loewner-type necessary condition). Fix an integer N > 0. Let ρ > 0
and f : (0, ρ)→ R be a function of the form (41.1) satisfying:

(1) f is absolutely convergent on (0, ρ), i.e.,
∑

j≥0 |cnj |xnj <∞ on (0, ρ).

(2) f [−] preserves positivity on rank-1 Hankel TN matrices in PN ((0, ρ)).
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Classification of sign patterns.
If cnj0

< 0 for some j0 ≥ 0, then cnj > 0 for at least N values of j for which nj < nj0.

Remark 41.3. In both (41.1) as well as Lemma 41.2 (and its proof), we have deliberately not
insisted on the exponents nj being non-negative integers. In fact, one can choose {nj : j ≥ 0}
to be an arbitrary sequence of pairwise distinct real numbers.

Proof of Lemma 41.2. By the properties of f , the function

g(x) :=
∑

j ̸=j0:cnj<0

|cnj |xnj

entrywise preserves positivity on rank-1 Hankel TN matrices in PN ((0, ρ)). Hence, so does

f(x) + g(x) =
∑

j:cnj>0

cnjx
nj + cnj0

xnj0 .

Now suppose the result is false. Then the preceding sum contains at most k terms nj that
lie in (0, nj0) (for some 0 ≤ k < N), and which we label by n0, . . . , nk−1. Also, set m := nj0 .

Choose any u0 ∈ (0, 1) and define u := (1, u0, . . . , u
N−1
0 )T ∈ RN . Then u◦n0 , . . . ,u◦nk−1 ;u◦m

are linearly independent, forming (some of) the columns of a generalized Vandermonde ma-
trix. Hence, there exists v ∈ RN , such that

v ⊥ u◦n0 , . . . ,u◦nk−1 and vTu◦m = 1.

For 0 < ϵ < ρ, we let Aϵ := ϵuuT , which is a rank-1 Hankel moment matrix in PN ((0, ρ))
(and hence TN). Now compute using the hypotheses:

0 ≤ vT (f + g)[Aϵ]v = vT

 ∑
j:cnj>0

cnj ϵ
nju◦nj (u◦nj )T + cmϵ

mu◦m(u◦m)T

v

= cmϵ
m(vTu◦m)2 +

∑
j:cnj>0, nj>nj0

cnj ϵ
nj (vTu◦nj )2

= cmϵ
m + o(ϵm).

Thus, 0 ≤ lim
ϵ→0+

vT (f + g)[Aϵ]v

ϵm
= cm < 0, which is a contradiction. Hence, k ≥ N , proving

the claim. □

By Lemma 41.2, every polynomial that entrywise preserves positivity on PN ((0, ρ)) must
have its N non-zero Maclaurin coefficients of “lowest degree” to be positive. The obvious
question is if any of the other terms can be negative, e.g., the immediate next coefficient.

We tackle this question in the remainder of this text, and show that, in fact, every other
coefficient can indeed be negative. For now, we point out that working with positive matrices
with other entries cannot provide such a structured answer (in the flavor of Lemma 41.2).
As a simple example, consider the family of polynomials

pk,t(x) := t(1 + x2 + · · ·+ x2k)− x2k+1, t > 0,

where k ≥ 0 is an integer. Now claim that pk,t[−] can never preserve positivity on PN ((−ρ, ρ))
for N ≥ 2. Indeed, if u := (1,−1, 0, . . . , 0)T and A := (ρ/2)uuT ∈ PN ((−ρ, ρ)), then

uT pk,t[A]u = −4(ρ/2)2k+1 < 0.
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Therefore, pk,t[A] is not positive semidefinite for any k ≥ 0. If one allows complex entries,
similar examples with higher-order roots of unity can be constructed, in which such negative
results (compared to Lemma 41.2) can be obtained.

41.2. Classification of sign patterns for polynomials. In light of the above discussion,
henceforth we restrict ourselves to working with matrices in PN ((0, ρ)) for 0 < ρ < ∞.
By Lemma 41.2, every polynomial preserver on PN ((0, ρ)) must have its N lowest-degree
Maclaurin coefficients (which are non-zero) to be positive.

We are interested in understanding if any (or every) other coefficient can be negative. If,
say, the next lowest-degree coefficient could be negative, this would achieve two goals:

• It would provide (the first example of) a polynomial preserver in fixed dimension,
which has a negative Maclaurin coefficient.
• It would provide (the first example of) a polynomial that preserves positivity on
PN ((0, ρ)), but necessarily not on PN+1((0, ρ)). In particular, this would show that
the Horn–Loewner-type necessary condition in Lemma 41.2 is “best possible”. (See
Remark 17.3 in the parallel setting of entrywise power preservers for the original Horn
condition.)

We show in this part of the text that these goals are indeed achieved:

Theorem 41.4 (Classification of sign patterns, fixed dimension). Fix integers N > 0 and
0 ≤ n0 < n1 < · · · < nN−1, as well as a sign εM ∈ {−1, 0, 1} for each integer M > nN−1.
Given reals ρ, cn0 , cn1 , . . . , cnN−1 > 0, there exists a power series

f(x) = cn0x
n0 + · · ·+ cnN−1x

nN−1 +
∑

M>nN−1

cMx
M ,

satisfying the following properties:

(1) f is convergent on (0, ρ).
(2) f [−] : PN ((0, ρ))→ PN .
(3) sgn(cM ) = εM for each M > nN−1.

This is slightly stronger than classifying the sign patterns, in that the “initial coefficients”
are also specified. In fact, this result can be strengthened in two different ways, see (1) The-
orem 41.7, in which the set of powers allowed is vastly more general; and (2) Theorem 44.14
and the discussion preceding it, in which the coefficients for M > nN−1 are also specified.

Proof. Suppose we can prove the theorem in the special case when exactly one εM is negative.
Then for each M > nN−1, there exists 0 < δM < 1

M ! , such that

fM (x) :=

N1∑
j=0

cnjx
nj + cMx

M

preserves positivity on PN ((0, ρ)) whenever |cM | ≤ δM . Set cM := εMδM for each M > nN−1

and define f(x) :=
∑

M>nN−1
2nN−1−MfM (x). If x ∈ (0, ρ), then we have

|f(x)| ≤
∑

M>nN−1

2nN−1−M |fM (x)| ≤
∑

M>nN−1

2nN−1−M

N−1∑
j=0

cnjx
nj + δMx

M


≤

N−1∑
j=0

cnjx
nj + ex <∞.
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Hence, f converges on (0, ρ). As each fM [−] preserves positivity and PN is a closed convex
cone, f [−] also preserves positivity. It therefore remains to show that the result holds when
one coefficient is negative. But this follows from Theorem 41.5. □

Thus, it remains to show the following “qualitative” result:

Theorem 41.5. Let N > 0, 0 ≤ n0 < n1 < . . . < nN−1 < M be integers, and ρ, cn0 , cn1 , . . .,

cnN−1 > 0 be real. Then the function f(x) =
∑N−1

j=0 cnjx
nj + cMx

M entrywise preserves

positivity on PN ((0, ρ)), for some cM < 0.

We will show this result in the next two sections (Sections 42 and 43).

41.3. Classification of sign patterns for sums of real powers. After proving Theo-
rem 41.5, we further strengthen it by proving a quantitative version – see Theorem 44.1 –
which gives a sharp lower bound on cM . For now, we list a special case of that result (without
proof, as we show the more general Theorem 44.1). In the following result and beyond, the
set Z≥0 ∪ [N − 2,∞) comes from Theorem 9.3.

Theorem 41.6. Theorem 41.5 holds even when the exponents n0, n1, . . . , nN−1,M are real
and lie in the set Z≥0 ∪ [N − 2,∞).

With Theorem 41.6 in hand, it is possible to classify the sign patterns of a more general
family of preservers, of the form f(x) =

∑∞
j=0 cnjx

nj , where nj ∈ Z≥0 ∪ [N − 2,∞) are an

arbitrary countable collection of pairwise distinct non-negative (real) exponents.

Theorem 41.7 (Classification of sign patterns of power series preservers, fixed dimension).
Let N ≥ 2 and let n0, n1, . . . be a sequence of pairwise distinct real numbers in Z≥0 ∪ [N −
2,∞). For each j ≥ 0, let εj ∈ {−1, 0, 1} be a sign, such that whenever εj0 = −1, one has
εj = +1 for at least N choices of j satisfying: nj < nj0. Then for every ρ > 0, there exists a
series with real exponents and real coefficients

f(x) =
∞∑
j=0

cnjx
nj

which is convergent on (0, ρ), which entrywise preserves positivity on PN ((0, ρ)), and in which
sgn(cnj ) = εj for all j ≥ 0.

That the sign patterns must satisfy the given hypotheses follows from Lemma 41.2. In par-
ticular, Theorem 41.7 shows that the Horn–Loewner-type necessary condition in Lemma 41.2
remains the best possible in this generality as well.

Remark 41.8. A key difference between the classifications in Theorems 41.4 and 41.7 is that
the latter is more flexible, since the sequence n0, n1, . . . can now contain an infinite decreasing
subsequence of exponents. This is more general than even the Hahn or Puiseux series, not
just power series. For instance, the sum may be over all rational powers in Z≥0 ∪ [N − 2,∞).

Proof of Theorem 41.7. Given any set {nj : j ⩾ 0} of (pairwise distinct) non-negative powers,∑
j⩾0

xnj

j!⌈nj⌉!
<∞, ∀x > 0. (41.9)

Indeed, if we partition Z⩾0 into the disjoint union of Jk := {j ⩾ 0 : nj ∈ (k − 1, k]}, k ⩾ 0,
then using Tonelli’s theorem, we can estimate∑

j⩾0

xnj

j!⌈nj⌉!
=
∑
k⩾0

1

k!

∑
j∈Jk

xnj

j!
⩽ e+

∑
k⩾1

1

k!

∑
j∈Jk

xk + xk−1

j!
< e+ e(ex + x−1ex) <∞.
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We now turn to the proof. Set J := {j : εj = −1} ⊂ Z≥0. By the hypotheses, for each
l ∈ J there exist j1(l), . . . , jN (l), such that εjk(l) = 1 and njk(l) < nl, for k = 1, . . . , N . Define

fl(x) :=
N∑
k=1

xnjk(l)

⌈njk(l)⌉!
− δl

xnl

⌈nl⌉!
,

where δl ∈ (0, 1) is chosen, such that fl[−] preserves positivity on PN ((0, ρ)) by Theorem 41.6.
Let J ′ ⊂ Z≥0 consist of all j ⩾ 0, such that εj = +1 but j ̸= jk(l) for any l ∈ J, k ∈ [1, N ].
Finally, define

f(x) :=
∑
l∈J

fl(x)

l!
+
∑
j∈J ′

xnj

j!⌈nj⌉!
, x > 0.

Repeating the calculation in (41.9), one can verify that f converges absolutely on (0,∞) and
hence on (0, ρ). By the above hypotheses and the Schur product theorem, it follows that
f [−] preserves positivity on PN ((0, ρ)). □
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42. Polynomial preservers for generic rank-one matrices. Schur polynomials.

The goal in this section and the next (Section 43) is to prove the “qualitative” Theorem 41.5
from the previous section (Section 41). Thus, we work with polynomials of the form

f(x) =
N−1∑
j=0

cnjx
nj + cMx

M ,

where N > 0, 0 ≤ n0 < n1 < . . . < nN−1 < M are integers, and ρ, cn0 , cn1 , . . . , cnN−1 > 0 are
real.

42.1. Basic properties of Schur polynomials. In this section, we begin by defining the
key tool required here and beyond: Schur polynomials. We then use these functions – via
the Cauchy–Binet formula – to understand when polynomials of the above form entrywise
preserve positivity on a generic rank-1 matrix in PN ((0, ρ)).

Definition 42.1. Fix integers m,N > 0, and define nmin := (0, 1, . . . , N − 1). Now suppose
0 ≤ n′0 ≤ n′1 ≤ · · · ≤ n′N−1 are also integers.

(1) A column-strict Young tableau, with shape n′ := (n′0, n
′
1, . . . , n

′
N−1) and cell entries

1, 2, . . . ,m, is a left-aligned two-dimensional rectangular array T of cells, with n′0 cells
in the bottom row, n′1 cells in the second lowest row, and so on, such that:
• Each cell in T has integer entry j with 1 ≤ j ≤ m.
• Entries weakly decrease in each row, from left to right.
• Entries strictly decrease in each column, from top to bottom.

(2) Given variables u1, u2, . . . , um and a column-strict Young tableau T as above, define
its weight to be

wt(T ) :=

m∏
j=1

u
fj
j ,

where fj equals the number of cells in T with entry j.
(3) Given an increasing sequence of integers 0 ≤ n0 < · · · < nN−1, define the tu-

ple n := (n0, n1, . . . , nN−1), and the corresponding Schur polynomial over u :=
(u1, u2, . . . , um)T to be

sn(u) :=
∑
T

wt(T ), (42.2)

where T runs over all column-strict Young tableaux of shape n′ := n − nmin with
cell entries 1, 2, . . . ,m. (We will also abuse notation slightly and write sn(u) =
sn(u1, . . . , um) on occasion.)

Example 42.3. Suppose N = m = 3 and n = (0, 2, 4). The column-strict Young tableaux
with shape n− nmin = (0, 1, 2) and cell entries (1, 2, 3) are

3 3

2

3 3

1

3 2

2

3 2

1

3 1

2

3 1

1

2 2

1

2 1

1

As a consequence,

s(0,2,4)(u1, u2, u3) = u23u2 + u23u1 + u3u
2
2 + 2u3u2u1 + u3u

2
1 + u22u1 + u2u

2
1

= (u1 + u2)(u2 + u3)(u3 + u1).
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Remark 42.4. A visible notational distinction with the literature is that column-strict Young
tableaux traditionally have entries that are increasing down columns, and weakly increasing
as one moves across rows. Since we only work with sets of tableaux through the sums of
their weights occurring in Schur polynomials, this distinction is unimportant in the text, for
the following reason: define an involutive bijection ι : j 7→ m + 1 − j, where {1, . . . ,m} is
the alphabet of possible cell entries. Then the column-strict Young tableaux in our notation
bijectively correspond under ι – applied to each cell entry – to the “usual” column-strict Young
tableaux (in the literature); and as Schur polynomials are symmetric under permuting the
variables by ι (see Proposition 42.6), the sums of weights of the two sets of tableaux coincide.

Remark 42.5. Schur polynomials are fundamental objects in type A representation theory
(of the general linear group, or the special linear Lie algebra), and are characters of irreducible
finite-dimensional polynomial representations (over fields of characteristic zero). The above
example 42.3 is a special case, corresponding to the adjoint representation for the Lie algebra
of 3× 3 traceless matrices. This interpretation will not be used in this text.

Schur polynomials are always homogeneous – and also symmetric, because they can be
written as a quotient of two generalized Vandermonde determinants. This is Cauchy’s defi-
nition; the definition (42.2) using Young tableaux is by Littlewood. One can show that these
two definitions are equivalent, among other basic properties:

Proposition 42.6. Fix integers m = N > 0 and 0 ≤ n0 < n1 < · · · < nN−1.

(1) (Cauchy’s definition.) If F is a field and u = (u1, . . . , uN )T ∈ FN , then

det(u◦n0 | u◦n1 | . . . | u◦nN−1)N×N = V (u)sn(u),

where for a (column) vector or (row) tuple u, we denote by V (u) :=
∏

1≤j<k≤N (uk −
uj) the Vandermonde determinant as in (17.4). In particular, sn(u) is symmetric

and homogeneous of degree
∑N−1

j=0 (nj − j).
(2) (Principal specialization formula.) For any q ∈ F that is not a root of unity or else

has order ≥ N , we have

sn(1, q, q
2, . . . , qN−1) =

∏
0≤j<k≤N−1

qnk − qnj

qk − qj
.

(3) (Weyl dimension formula.) Specialized to q = 1, we have

sn(1, 1, . . . , 1) =
V (n)

V (nmin)
∈ N.

In particular, there are V (n)/V (nmin) column-strict tableaux of shape n − nmin and
cell entries 1, . . . , N . Here and below, we will mildly abuse notation and write V (n)
for a tuple/row vector n to denote V (nT ).

Proof. The first part is proved in Theorem 46.1 below. Using this, we show the second part.
Set u := (1, q, q2, . . . , qN−1)T with q as given. Then it is easy to verify that

sn(u) =
det(u◦n0 | u◦n1 | . . . | u◦nN−1)

V (u)
=
V ((qn0 , . . . , qnN−1))

V ((q0, . . . , qN−1))
=

∏
0≤j<k≤N−1

qnk − qnj

qk − qj
,

as desired.
Finally, to prove the Weyl dimension formula, notice that by the first part, the Schur

polynomial has integer coefficients and hence makes sense over Z, and then specializes
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to sn(u) over any ground field. Now work over the ground field Q, and let fn(T ) :=
sn(1, T, . . . , T

N−1) ∈ Z[T ] be the corresponding “principally specialized” polynomial. Then,

V ((q0, . . . , qN−1))fn(q) = V ((qn0 , . . . , qnN−1)), ∀q ∈ Q.

In particular, for every q ̸= 1, dividing both sides by (q − 1)(
N
2 ), we obtain:∏

0≤j<k≤N−1

(qnj + qnj+1 + · · ·+ qnk−1)− fn(q)
∏

0≤j<k≤N−1

(qj + qj+1 + · · ·+ qk−1) = 0,

for all q ∈ Q \ {1}. This means that the left-hand side is (the specialization of) a polynomial
with infinitely many roots, hence the polynomial vanishes identically on Q. Specializing this
polynomial to q = 1 now yields the Weyl dimension formula

V (n)

V (nmin)
=

∏
0≤j<k≤N−1

nk − nj
k − j

= fn(1) = sn(1, . . . , 1).

The final assertion now follows from Littlewood’s definition (42.2) of sn(u). □

42.2. Polynomials preserving positivity on individual rank-one positive matrices.
We return to proving Theorem 41.5, and hence Theorem 41.4 on sign patterns. As we have
shown, it suffices to prove the theorem for one higher degree (leading) term with a negative
coefficient. Before proving the result in full, we tackle the following (simpler) versions. Thus,

we are given a real polynomial as above: f(x) =
∑N−1

j=0 cnjx
nj + cMx

M , where cnj > 0 ∀j.
(1) Does there exist cM < 0, such that f [−] : PN ((0, ρ))→ PN?

Here is a reformulation: dividing the expression for f(x) throughout by |cM | =
1/t > 0, define

pt(x) := t
N−1∑
j=0

cnjx
nj − xm, where cnj > 0 ∀j. (42.7)

Then it is enough to ask for which t > 0 (if any) does pt[−] : PN ((0, ρ))→ PN?
(2) Here are two simplifications: Can we produce such a constant t > 0 for only the

subset of rank-1 matrices in PN ((0, ρ))? How about for a single rank-1 matrix uuT ?
(3) A further special case: let u be generic, in that u ∈ (0, ρ)N has distinct coordinates,

and pt is as above. Can one now compute all t > 0, such that pt[uu
T ] ∈ PN? How

about all t > 0, such that det pt[uu
T ] ≥ 0?

We begin by answering the last of these questions – the answer crucially uses Schur poly-
nomials. The following result shows that, in fact, det pt[uu

T ] ≥ 0 implies pt[uu
T ] is positive

semidefinite!

Proposition 42.8. With N ≥ 1 and notation as in (42.7), define the vectors

n := (n0, . . . , nN−1), nj := (n0, . . . , nj−1, n̂j , nj+1, . . . , nN−1,M), 0 ≤ j < N, (42.9)

where 0 ≤ n0 < · · · < nN−1 < M . Now if the nj andM are integers, and a vector u ∈ (0,∞)N

has pairwise distinct coordinates, then the following are equivalent:

(1) pt[uu
T ] is positive semidefinite.

(2) det pt[uu
T ] ≥ 0.

(3) t ≥
N−1∑
j=0

snj (u)
2

cnjsn(u)
2
.
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In particular, at least for “most” rank-1 matrices, it is possible to find polynomial preservers
of positivity (on that one matrix), with a negative coefficient.

The proof of Proposition 42.8 uses the following even more widely applicable equivalence
between the non-negativity of the determinant and of the entire spectrum for “special” linear
pencils of matrices:

Lemma 42.10. Fix w ∈ RN and a positive definite matrix H. Define the linear pencil
Pt := tH −wwT , for t > 0. Then the following are equivalent:

(1) Pt is positive semidefinite.
(2) detPt ≥ 0.

(3) t ≥ wTH−1w = 1− det(H −wwT )

detH
.

This lemma is naturally connected to the theory of (generalized) Rayleigh quotients, al-
though we do not pursue this further.

Proof. We show a cyclic chain of implications. That (1) =⇒ (2) is immediate.

(2) =⇒ (3) : Using the identity (2.33) from Section 2.4 on Schur complements, we obtain
by taking determinants

det

(
A B
B′ D

)
= detD · det(A−BD−1B′)

whenever A,D are square matrices, with D invertible. Using this, we compute:

0 ≤ det(tH −wwT ) = det

(
tH w
wT 1

)
= det

(
1 wT

w tH

)
= det(tH) det(1−wT (tH)−1w).

Since the last quantity is a scalar, and det(tH) > 0 by assumption, it follows from (2) that

1 ≥ t−1(wTH−1w) =⇒ t ≥ wTH−1w.

Now substitute t = 1 in the above computation, to obtain

det(H −wwT ) = det(H) det(1−wTH−1w)

=⇒ det(H −wwT )

detH
= 1−wTH−1w ≥ 1− t,

which implies (3).

(3) =⇒ (1) : It suffices to show that xTPtx ≥ 0 for all non-zero vectors x ∈ RN . Using a

change of variables y =
√
Hx ̸= 0, we compute:

xTPtx = tyTy − (yT
√
H

−1
w)2

= ∥y∥2(t− ((y′)T
√
H

−1
w)2), where y′ :=

y

∥y∥

≥ ∥y∥2(t− ∥y′∥2
∥∥∥√H−1w

∥∥∥2) (using Cauchy–Schwarz)

= ∥y∥2(t−wTH−1w) ≥ 0 (by assumption). □

We can now answer the last of the above questions on positivity preservers, for generic
rank-1 matrices.
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Proof of Proposition 42.8. The result is easily shown for N = 1, so we now assume N ≥ 2.
We are interested in the following matrix and its determinant:

pt[uu
T ] = t

N−1∑
j=0

cnj (u
◦nj )(u◦nj )T − (u◦M )(u◦M )T .

We first work more generally: over any field F, and with matrices uvT , where u,v ∈ FN .
Thus, we study

pt[uv
T ] = t

N−1∑
j=0

cnju
◦nj (v◦nj )T − u◦M (v◦M )T ,

where t, cnj ∈ F, and cnj ̸= 0 ∀j. Setting D = diag(tcn0 , . . . , tcnN−1 ,−1), we have the
decomposition

pt[uv
T ] = U(u)DU(v)T , where U(u)N×(N+1) := (u◦n0 | . . . | u◦nN−1 | u◦M ).

Applying the Cauchy–Binet formula to A = U(u), B = DU(v)T , as well as Cauchy’s defini-
tion in Proposition 42.6(1), we obtain the following general determinantal identity, valid over
any field:

det pt[uv
T ] = V (u)V (v)tN−1

N−1∏
j=0

cnj ·

sn(u)sn(v)t− N−1∑
j=0

snj (u)snj (v)

cnj

 . (42.11)

Now specialize this identity to F = R, with t, cnj > 0 and u = v ∈ (0,∞)N having distinct
coordinates. From this we deduce the following consequences. First, set

H :=
N−1∑
j=0

cnj (uu
T )◦nj = U ′(u)D′U ′(u)T , w := u◦M ,

whereD′ := diag(cn0 , . . . , cnN−1) is a positive definite matrix and U ′(u) := (u◦n0 | . . . | u◦nN−1)
is a generalized Vandermonde matrix which has determinant V (u)sn(u) ̸= 0. From this it
follows that H is positive definite, so Lemma 42.10 applies. Moreover, H −wwT = p1[uu

T ],
so using the above calculation (42.11) and the Cauchy–Binet formula respectively, we have

det(H −wwT ) = V (u)2
N−1∏
j=0

cnj · sn(u)2
1−

N−1∑
j=0

snj (u)
2

cnjsn(u)
2

 ,

detH = V (u)2
N−1∏
j=0

cnj · sn(u)2.

In particular, from Lemma 42.10(3) we obtain

wTH−1w =
N−1∑
j=0

snj (u)
2

cnjsn(u)
2
.

Now the proposition follows directly from Lemma 42.10, since Pt = pt[uu
T ] for all t > 0. □





43. First-order approximation / leading term of Schur polynomials.
From rank-one matrices to all matrices. 285
43. First-order approximation / leading term of Schur polynomials. From

rank-one matrices to all matrices.

In the previous section, we computed the exact threshold for the leading term of a poly-
nomial

pt(x) := t
N−1∑
j=0

cnjx
nj − xM , where cnj > 0 ∀j

(and where 0 ≤ n0 < · · · < nN−1 < M are integers), such that pt[uu
T ] ∈ PN for a single

vector u ∈ (0,∞)N with pairwise distinct coordinates. Recall that our (partial) goal is to
find a threshold that works for all rank-1 matrices uuT ∈ PN ((0, ρ)) – i.e., for u ∈ (0,

√
ρ)N .

Thus, we need to show that the supremum of the threshold over all such u is bounded:

sup
u∈(0,√ρ)N

N−1∑
j=0

snj (u)
2

cnjsn(u)
2
<∞.

Since we only consider vectors u with positive coordinates, it suffices to bound snj (u)/sn(u)
from above, for each j. In turn, for this it suffices to find lower and upper bounds for every
Schur polynomial evaluated at u ∈ (0,∞)N . This is achieved by the following result:

Theorem 43.1 (First-order approximation/Leading term of Schur polynomials). Say N ≥ 1
and 0 ≤ n0 < · · · < nN−1 are integers. Then for all real numbers 0 < u1 ≤ u2 ≤ · · · ≤ uN ,
we have the bounds

1× un−nmin ≤ sn(u) ≤
V (n)

V (nmin)
× un−nmin ,

where un−nmin = un0−0
1 un1−1

2 · · ·unN−1−(N−1)
N and V (n) is as in (17.4). Moreover, the con-

stants 1 and V (n)
V (nmin)

cannot be improved.

Proof. Recall that sn(u) is obtained by summing the weights of all column-strict Young
tableaux of shape n − nmin with cell entries 1, . . . , N . Moreover, by the Weyl dimension
formula in Proposition 42.6(3), there are precisely V (n)/V (nmin) such tableaux. Now each
such tableau can have weight at most un−nmin , as follows: the cells in the top row each have
entries at most N ; the cells in the next row at most N − 1; and so on. The tableau Tmax

obtained in this fashion has weight precisely un−nmin . Hence, by definition, we have

un−nmin = wt(Tmax) ≤
∑
T

wt(T ) = sn(u) ≤
∑
T

wt(Tmax) =
V (n)

V (nmin)
un−nmin .

This proves the bounds; we claim that both bounds are sharp. If n = nmin then all terms in
the claimed inequalities are 1, and we are done. Thus, assume henceforth that n ̸= nmin. Let
A > 1 and define u(A) := (A,A2, . . . , AN ). Then wt(Tmax) = AM for some M > 0. Hence,
for every column-strict Young tableau T ̸= Tmax as above, wt(T ) is at most wt(Tmax)/A and
at least 1 = wt(Tmax)/A

M . Now summing over all such tableaux T yields

sn(u(A)) ≤ u(A)n−nmin

(
1 +

(
V (n)

V (nmin)
− 1

)
1

A

)
,

sn(u(A)) ≥ u(A)n−nmin

(
1 +

(
V (n)

V (nmin)
− 1

)
1

AM

)
.

Divide throughout by u(A)n−nmin ; now taking the limit as A→∞ yields the sharp lower
bound 1 while taking the limit as A→ 1+ yields the sharp upper bound V (n)/V (nmin). □
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We now use Theorem 43.1, and Proposition 42.8 in the previous section, to find a threshold

for t > 0 beyond which pt[−] preserves positivity on all rank-1 matrices in PN ((0, ρ)) – and,
in fact, on all matrices in PN ((0, ρ)).

Theorem 43.2. Fix integers N ≥ 1, 0 ≤ n0 < n1 < · · · < nN−1 < M , and scalars

ρ, t, cn0 , . . . , cnN−1 > 0. The polynomial pt(x) := t
∑N−1

j=0 cnjx
nj − xM entrywise preserves

positivity on PN ((0, ρ)), if t ≥ t0 :=
N−1∑
j=0

V (nj)
2

cnjV (nmin)2
ρM−nj .

The notation in Definition 25.1 is useful here and in the sequel. Specifically, XN,̸= for a set
X and an integer N ≥ 1 denotes the set of N -tuples from X with pairwise distinct entries.

Proof of Theorem 43.2. Given u ∈ (0,
√
ρ)N,̸=, from Proposition 42.8 it follows that pt[uu

T ] ∈

PN if and only if t ≥
∑N−1

j=0

snj (u)
2

cnj sn(u)
2 . Now suppose u ∈ (0,

√
ρ)N,↑. Then by Theorem 43.1,

N−1∑
j=0

snj (u)
2

cnjsn(u)
2
≤

N−1∑
j=0

u2(nj−nmin)V (nj)
2/V (nmin)

2

cnju
2(n−nmin)

=
N−1∑
j=0

V (nj)
2

cnjV (nmin)2
u2(nj−n),

and this is bounded above by t0, since if v :=
√
ρ(1, . . . , 1)T then u2(nj−n) ≤ v2(nj−n) =

ρM−nj for all j. Thus, we conclude that

t ≥ t0 =⇒ pt[uu
T ] ∈ PN ∀u ∈ (0,

√
ρ)N,↑ =⇒ pt[uu

T ] ∈ PN ∀u ∈ (0,
√
ρ)N,̸=

=⇒ pt[uu
T ] ∈ PN ∀u ∈ (0,

√
ρ)N ,

where the first implication was proved above, the second follows by (the symmetric nature of
Schur polynomials and by) relabeling the rows and columns of uuT to rearrange the entries
of u in increasing order, and the third implication follows from the continuity of pt and the

density of (0,
√
ρ)N,̸= in (0,

√
ρ)N .

This validates the claimed threshold t0 for all rank-1 matrices. To prove the result on all
of PN ((0, ρ)), we use induction on N ≥ 1, with the base case of N = 1 already done since
1× 1 matrices have rank 1.

For the induction step, recall the extension principle (Theorem 9.12), which said that:
Suppose I = (0, ρ) or (−ρ, ρ) or its closure, for some 0 < ρ ≤ ∞. If h ∈ C1(I) is such that
h[−] preserves positivity on rank-1 matrices in PN (I) and h′[−] : PN−1(I) → PN−1, then
h[−] : PN (I)→ PN .

We will apply this result to h(x) = pt0(x), with t0 as above. By the extension principle,
we need to show that h′[−] : PN−1((0, ρ))→ PN−1. Note that

h′(x) = t0

N−1∑
j=0

njcnjx
nj−1 −MxM−1 =Mg(x) + t0n0cn0x

n0−1,

where we define

g(x) :=
t0
M

N−1∑
j=1

njcnjx
nj−1 − xM−1.

We claim that the entrywise polynomial map g[−] : PN−1((0, ρ)) → PN−1. If this holds,
then by the Schur product theorem, the same property is satisfied by Mg(x) + t0n0cn0x

n0−1

(regardless of whether n0 = 0 or n0 > 0). But this function is precisely h′ and the theorem
would follow.
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It thus remains to prove the claim, and we do so via a series of reductions and simplifications
– i.e., “working backward”. By the induction hypothesis, Theorem 43.2 holds in dimension
N − 1 ≥ 1, for the polynomials

qt(x) := t
N−1∑
j=1

njcnjx
nj−1 − xM−1.

For this family, the threshold is now given by

N−1∑
j=1

V (n′
j)

2

njcnjV (n′
min)

2
ρM−1−(nj−1),

where

n′
min := (0, 1, . . . , N − 2), n′

j := (n1, . . . , nj−1, n̂j , nj+1, . . . , nN−1,M) ∀j > 0.

Thus, the proof is complete if we show that

N−1∑
j=1

V (n′
j)

2

njcnjV (n′
min)

2
ρM−1−(nj−1) ≤ t0

M
=

N−1∑
j=0

V (nj)
2

McnjV (nmin)2
ρM−nj .

In turn, comparing just the jth summand for each j > 0, it suffices to show that

V (n′
j)√

njV (n′
min)

≤ V (nj)√
MV (nmin)

, ∀j > 0.

Dividing the right-hand side by the left-hand side, and canceling common factors, we obtain
the expression

N−1∏
k=1

nk − n0
k

·
√
nj√
M
· M − n0
nj − n0

.

Since every factor in the product term is at least 1, it remains to show that

M − n0
nj − n0

≥
√
M
√
nj
, ∀j > 0.

But this follows from a straightforward calculation:

(M − n0)2nj − (nj − n0)2M = (M − nj)(Mnj − n20) > 0,

and the proof is complete. □

Finally, we recall our original goal of classifying the sign patterns of positivity preservers
in a fixed dimension – see Theorem 41.4. We showed this result holds if one can prove its
special case, Theorem 41.5. Now this latter result follows from Theorem 43.2, by setting

cM := −t−1
0 , where t0 =

N−1∑
j=0

V (nj)
2

cnjV (nmin)2
ρM−nj as in Theorem 43.2. □
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44. Exact quantitative bound: monotonicity of Schur ratios. Real powers

and power series.

In the last two sections (Sections 42 and 43), we proved the existence of a negative threshold
cM for polynomials

f(x) =
N−1∑
j=0

cnjx
nj + cMx

M

to entrywise preserve positivity on PN ((0, ρ)). (Here N > 0 and 0 ≤ n0 < · · · < nN−1 < M
are integers.) We now compute the exact value of this threshold, more generally for real
powers; this has multiple consequences which are described after stating Theorem 44.1. Thus,
our goal is to prove the following quantitative result, for real powers – including negative
powers:

Theorem 44.1. Fix an integer N > 0 and real powers n0 < · · · < nN−1 < M . Also fix real
scalars ρ > 0 and cn0 , . . . , cnN−1 , cM , and define

f(x) :=

N−1∑
j=0

cnjx
nj + cMx

M . (44.2)

Then the following are equivalent:

(1) The entrywise map f [−] preserves positivity on all rank-1 matrices in PN ((0, ρ)).
(2) The map f [−] preserves positivity on rank-1 totally non-negative (TN) Hankel ma-

trices in PN ((0, ρ)).
(3) Either all cnj , cM ⩾ 0; or cnj > 0 ∀j and cM ⩾ −C−1, where

C =
N−1∑
j=0

V (nj)
2

cnjV (n)2
ρM−nj . (44.3)

Here V (u),n,nj are defined as in (17.4) and (42.9).

If, moreover, we assume that nj ∈ Z⩾0 ∪ [N − 2,∞) for all j, then the above conditions are
further equivalent to the “full-rank” version:

(4) The entrywise map f [−] preserves positivity on PN ([0, ρ]), where we set 00 := 1.

Theorem 44.1 is a powerful result. It has multiple applications; we now list some of them.

(1) Suppose M = N and nj = j for 0 ≤ j ≤ N − 1. Then the result provides a complete
characterization of which polynomials of degree ≤ N entrywise preserve positivity on
PN ((0, ρ)) – or more generally, on any intermediate set between PN ((0, ρ)) and the
rank-1 Hankel TN matrices inside it.

(2) In fact, a similar result to the previous characterization is implied, whenever one
considers linear combinations of at most N + 1 monomial powers.

(3) The result provides information on positivity preservers beyond polynomials, since
nj ,M are now allowed to be real, even negative if one works with rank-1 matrices.

(4) In particular, the result implies Theorem 41.6, and hence Theorem 41.7 (see its proof).
This latter theorem provides a full classification of the sign patterns of possible “count-
able sums of real powers” which entrywise preserve positivity on PN ((0, ρ)).

(5) The result also provides information on preservers of total non-negativity on Hankel
matrices in fixed dimension; see Corollary 44.11.
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(6) There are further applications, two of which are (i) to the matrix cube problem and to

sharp linear matrix inequalities/spectrahedra involving entrywise powers; and (ii) to
computing the simultaneous kernels of entrywise powers and a related “Schubert cell-
type” stratification of the cone PN (C). These are explained in the 2016 paper of
Belton, Guillot, Khare, and Putinar in Adv. in Math.; see also the 2021 paper in
Amer. J. Math. by Khare and Tao (mentioned a few lines above (41.1)).

(7) Theorem 44.1 is proved using a monotonicity phenomenon for ratios of Schur poly-
nomials; see Theorem 44.6. This latter result is also useful in extending a 2011
conjecture by Cuttler–Greene–Skandera (and its proof). In fact, this line of attack
ends up characterizing majorization and weak majorization – for real tuples – using
Schur polynomials. See the aforementioned paper by Khare and Tao [217] for more
details.

(8) One further application is Theorem 44.14, which finds a threshold for bounding by∑N−1
j=0 cnjA

◦nj , any power series – and more general “Laplace transforms” – applied
entrywise to a positive matrix A. This extends Theorem 44.1, where the power
series is simply xM , because Theorem 44.1 says in particular that (xM )[A] = A◦M is

dominated by a multiple of
∑N−1

j=0 cnjA
◦nj .

(9) As mentioned in the remarks prior to Theorem 41.4, Theorem 44.1 also provides
examples of power series preservers on PN ((0, ρ)) with negative coefficients; and of
such functions which preserve positivity on PN ((0, ρ)) but not on PN+1((0, ρ)).

44.1. Monotonicity of ratios of Schur polynomials. The proof of Theorem 44.1 uses
the same ingredients as developed in previous sections. A summary of what follows is now
provided. In the rank-1 case, we use a variant of Proposition 42.8 for an individual matrix;
the result does not apply as is, since the powers may now be real. Next, in order to find the
sharp threshold for all rank-1 matrices, even for real powers we crucially appeal to the integer
power case. Namely, we will first understand the behavior and supremum of the function
snj (u)/sn(u) over u ∈ (0,

√
ρ)N (and for each 0 ≤ j ≤ N − 1). One may hope that these

suprema behave well enough that the sharp threshold can be computed for rank-1 matrices;
the further hope would be that this threshold bound is tight enough to behave well with
respect to the extension principle in Theorem 9.12, and hence to work for all matrices in
PN ((0, ρ)). Remarkably, these two hopes are indeed justified, proving the theorem.

We begin with the key result required to be able to take suprema over ratios of Schur
polynomials sm(u)/sn(u). To motivate the result, here is a special case.

Example 44.4. Suppose N = 3,n = (0, 2, 3), and m = (0, 2, 4). As above, we have u =

(u1, u2, u3)
T and nmin = (0, 1, 2). Now let f(u) := sm(u)

sn(u)
: (0,∞)N → (0,∞). This is a

rational function, whose numerator sums weights over tableaux of shape (0, 1, 2), and hence
by Example 42.3 above, equals (u1 + u2)(u2 + u3)(u3 + u1). The denominator sums weights
over tableaux of shape (0, 1, 1); there are only three such tableaux

3

2

3

1

2

1

and hence,

f(u) :=
(u1 + u2)(u2 + u3)(u3 + u1)

u1u2 + u2u3 + u3u1
, u1, u2, u3 > 0.

Notice that the numerator and denominator are both Schur polynomials, hence positive
combinations of monomials (this is called “monomial positivity”). In particular, they are both
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non-decreasing in each coordinate. One can verify that their ratio f(u) is not a polynomial;
moreover, it is not a priori clear if f(u) shares the same coordinatewise monotonicity property.
However, we claim that this does hold, i.e., f(u) is non-decreasing in each coordinate on
u ∈ (0,∞)N .

To see why: by symmetry, it suffices to show that f is non-decreasing in u3. Using the
quotient rule of differentiation, we claim that the expression

sn(u)∂u3sm(u)− sm(u)∂u3sn(u) (44.5)

is non-negative on (0,∞)3. Indeed, computing this expression yields

(u1 + u2)(u1u3 + 2u1u2 + u2u3)u3,

and this is clearly non-negative, as desired. More strongly, the expression (44.5) turns out to
be monomial positive, which implies non-negativity.

Here is the punchline: an even stronger phenomenon holds. Namely, when we write the

expression (44.5) in the form
∑

j≥0 pj(u1, u2)u
j
3, each polynomial pj is Schur positive! This

means that it is a non-negative integer-linear combination of Schur polynomials:

p0(u1, u2) = 0,

p1(u1, u2) = 2u1u
2
2 + 2u21u2 = 2 2 2

1
+ 2 2 1

1
= 2s(1,3)(u1, u2),

p2(u1, u2) = (u1 + u2)
2 =

2 2
+

2 1
+

1 1
+

2

1
= s(0,3)(u1, u2) + s(1,2)(u1, u2),

modulo a mild abuse of notation. This yields the sought-for non-negativity, as each sn(u)
is monomial positive by definition. (See the discussion following (30.17) for the “original”
occurrence of monomial positivity and its “upgrade” to (skew) Schur positivity.)

The remarkable fact is that the phenomena described in the above example also occur for
every pair of Schur polynomials sm(u), sn(u) for which m ≥ n coordinatewise:

Theorem 44.6 (Monotonicity of Schur polynomial ratios). Suppose 0 ⩽ n0 < · · · < nN−1

and 0 ⩽ m0 < · · · < mN−1 are integers satisfying: nj ⩽ mj ∀j. Then the symmetric function

f : (0,∞)N → R, f(u) :=
sm(u)

sn(u)

is non-decreasing in each coordinate.
More strongly, viewing the expression

sn(u) · ∂uN sm(u)− sm(u) · ∂uN sn(u)

as a polynomial in uN , the coefficient of each monomial ujN is a Schur positive polynomial in

(u1, u2, . . . , uN−1)
T .

Theorem 44.6 is an application of a deep result in representation theory/symmetric function
theory, by Lam, Postnikov, and Pylyavskyy in Amer. J. Math. (2007). The proof of this
latter result is beyond the scope of this text, and hence is not pursued further; but its usage
means that in the spirit of the previous two sections, the proof of Theorem 44.6 once again
combines analysis with symmetric function theory. Moreover, this 2007 result in [231] arose
from the prior work of Skandera [339] in 2004, on determinant inequalities for minors of
totally non-negative matrices.

To proceed further, we introduce the following notation:
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Definition 44.7. Given a vector u = (u1, . . . , um)T ∈ (0,∞)m and a real tuple n =
(n0, . . . , nN−1) for integers m,N ≥ 1, define

u◦n := (u◦n0 | . . . | u◦nN−1)m×N = (u
nk−1

j )m,N
j=1,k=1.

We now extend Theorem 44.6 to arbitrary real powers (instead of non-negative integer
powers). As one can no longer use Schur polynomials, the next result uses generalized Van-
dermonde determinants instead:

Theorem 44.8. Fix an integer N ≥ 1 and real tuples

n = (n0 < n1 < · · · < nN−1), m = (m0 < m1 < · · · < mN−1)

with nj ≤ mj ∀j and n ̸= m. Then the symmetric function

f̸=(u) :=
det(u◦m)

det(u◦n)

is strictly increasing in each coordinate on (0,∞)N,̸=. (See Definition 25.1.) If n0 = m0 = 0,

then f̸=(u) is strictly increasing in each coordinate on [0,∞)N, ̸=.

While we only require f̸= to be non-decreasing in each coordinate, and only on (0,∞)N,̸=,
we will show this stronger result.

Proof. The result is immediate for N = 1; henceforth suppose N ≥ 2. For a fixed t ∈ R, if
for each j we multiply the jth row of the matrix u◦m by utj , we obtain a matrix u◦m′

where

m′
j = mj + t ∀j. In particular, if we start with real powers nj ,mj , then multiplying the

numerator and denominator of f̸= by (u1 · · ·uN )−n0 reduces the situation to working with

the non-negative real tuples n′ := (nj − n0)N−1
j=0 and m′ := (mj − n0)N−1

j=0 . Thus, we suppose
henceforth that nj ,mj ≥ 0 ∀j.

We first show that f̸= is non-decreasing in each coordinate. If nj ,mj are all integers,
then the result is an immediate reformulation of the first part of Theorem 44.6, via Propo-
sition 42.6(1). Next suppose nj ,mj are rational. Choose a (large) integer L > 0 such that

Lnj , Lmj ∈ Z ∀j and define yj := u
1/L
j . By the previous subcase, the symmetric function

f(y) :=
det(y◦Lm)

det(y◦Ln)
=

det(u◦m)

det(u◦n)
, y := (y1, . . . , yN )T ∈ (0,∞)N, ̸=

is coordinatewise non-decreasing on (0,∞)N, ̸= in the yj , and hence on (0,∞)N,̸= in the uj .
Finally, in the general case, given non-negative real powers nj ,mj satisfying the hypotheses,

choose sequences

0 ≤ n0,k < n1,k < · · · < nN−1,k, 0 ≤ m0,k < m1,k < · · · < mN−1,k

for k = 1, 2, . . . , which further satisfy:

(1) nj,k,mj,k are rational for 0 ≤ j ≤ N − 1, k ≥ 1;
(2) nj,k ≤ mj,k ∀j, k; and
(3) nj,k → nj and mj,k → mj as k →∞, for each j = 0, 1, . . . , N − 1.

By the rational case above, for each k ≥ 1 the symmetric function

fk(u) :=
det(u◦mk)

det(u◦nk)

is coordinatewise non-decreasing, where mk := (m0,k, . . . ,mN−1,k) and similarly for nk. But
then their limit limk→∞ fk(u) = f̸=(u) is also coordinatewise non-decreasing, as claimed.
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The next step is to show that f̸= is strictly increasing on (0,∞)N,̸= in each coordinate, say

in uN by symmetry. Suppose instead that f̸= is constant on the intersection with RN, ̸= of a
line segment

{(u1, . . . , uN−1, uN ) : uN ∈ [x, x′]} ⊂ (0,∞)N ,

where u1, . . . , uN−1 ∈ (0,∞) are fixed and 0 < x < x′. Here we may replace [x, x′] by a smaller
sub-interval (still of positive length) that does not contain u1, . . . , uN−1; thus, without loss

of generality the above segment is contained in (0,∞)N,̸=. Now evaluating f̸= as a function
of uN , we obtain a constant function of the form

h(uN ) :=

∑N−1
j=0 u

mj

N gj∑N−1
j=0 u

nj

N g
′
j

, uN ∈ [x, x′]

where gj , g
′
j are generalized Vandermonde determinants, hence all non-zero. Denoting the

numerator and denominator by h1(uN ), h2(uN ) respectively, if h(·) ≡ c on [x, x′] for some
c ∈ R, then h1 − ch2 has infinitely many zeros on [x, x′]. Since m ̸= n, this contradicts
Descartes’ rule of signs (Lemma 5.2).

Finally, we show that f̸= is strictly increasing in each coordinate uj at u, where one
coordinate of u, say u1, equals zero – and n0 = m0 = 0. There are two cases: if j > 1,
then both u◦m and u◦n are matrices with the first column (1, . . . , 1)T and first row eT1 =
(1, 0, . . . , 0). But then det(u◦m) = det(u◦m1

1 ), where v1 for a vector v is the sub-vector that
removes the first coordinate. Hence,

f̸=(u) =
det(u◦m1

1 )

det(u◦n1
1 )

,

and since u1 ∈ (0,∞)N−1, ̸=, the right-hand side is strictly increasing in uj for j > 1 by the

above analysis – now on (0,∞)N−1, ̸=.
The other case is if j = 1. Then we consider v := u + µe1 for some µ ∈ (0,∞). If

c := min(µ,minj>1 uj), then v(ϵ) := u + ϵe1 lies in (0,∞)N, ̸= for ϵ ∈ (0, c), so by above,
f̸=(v(·)) is strictly increasing as a function of ϵ ∈ (0, c). Hence, for ϵ ∈ (0, c/4), we have from
above:

f̸=(v) = f̸=(v(µ)) > f̸=(v(c/4)) > f̸=(v(ϵ)).

Letting ϵ→ 0+, the proof is complete:

f̸=(v) > f̸=(v(c/4)) ≥ lim
ϵ→0+

f̸=(v(ϵ)) = f̸=(v(0)) = f̸=(u). □

44.2. Proof of the quantitative bound. Using Theorem 44.8, we can now prove the main
result in this section.

Proof of Theorem 44.1. We first work only with rank-1 matrices. Clearly, (1) =⇒ (2), and
we show that (2) =⇒ (3) =⇒ (1).

If all coefficients cnj , cM ≥ 0, then f [−] preserves positivity on rank-1 matrices. Otherwise,
by the Horn–Loewner-type necessary conditions in Lemma 41.2 (now for real powers, possibly
negative!), it follows that cn0 , . . . , cnN−1 > 0 > cM . In this case, the discussion that opens
Section 42.2 allows us to reformulate the problem using

pt(x) := t
N−1∑
j=0

cnjx
nj − xM , t > 0,
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and the goal is to find a sharp positive lower bound for t, above which pt[−] preserves
positivity on rank-1 Hankel TN matrices uuT ∈ PN ((0, ρ)).

But now one can play the same game as in Section 42.2. In other words, Lemma 42.10
shows that the “real powers analogue” of Proposition 42.8 holds: pt[uu

T ] ≥ 0 if and only if

t ≥
N−1∑
j=0

det(u◦nj )2

cnj det(u
◦n)2

,

for all generic rank-1 matrices uuT , with u ∈ (0,
√
ρ)N, ̸=. By the same reasoning as in the

proof of Theorem 43.2 (see the previous section), pt[−] preserves positivity on a given test
set of rank-1 matrices {uuT : u ∈ S ⊂ (0,

√
ρ)N}, if and only if (by density and continuity,)

t exceeds the following supremum:

t ≥ sup
u∈S∩(0,√ρ)N, ̸=

N−1∑
j=0

det(u◦nj )2

cnj det(u
◦n)2

. (44.9)

This is, of course, subject to S∩ (0,√ρ)N, ̸= being dense in the set S, which is indeed the case

if {uuT : u ∈ S ∩ (0,√ρ)N} equals the set of rank-1 Hankel TN matrices as in assertion (2).
Thus, to prove (2) =⇒ (3) =⇒ (1) in the theorem, it suffices to prove: (i) the

supremum (44.9) is bounded above by the value
N−1∑
j=0

V (nj)
2

cnjV (n)2
ρM−nj ; and (ii) this value is

attained on (a countable set of) rank-1 Hankel TN matrices, hence it equals the supremum.
We now prove both of these assertions. By Theorem 44.8, each ratio det(u◦nj )/ det(u◦n) is

coordinatewise non-decreasing, hence its supremum on (0,
√
ρ)N, ̸= is bounded above by (and

in fact equals) its limit as u→ √ρ(1−, . . . , 1−). To see why this limit exists, note that every

vector u ∈ (0, ρ)N is bounded above – coordinatewise – by a vector of the form

u(ϵ) :=
√
ρ(ϵ, ϵ2, . . . , ϵN )T ∈ (0,

√
ρ)N,̸=, ϵ ∈ (0, 1).

In particular, by Theorem 44.8 the limit as u → √ρ(1−, . . . , 1−) exists and equals the limit

by using the rank-1 Hankel TN family u(ϵ)u(ϵ)T , for any sequence of ϵ → 1− – provided
this latter limit exists. We show this presently; thus, we work with a countable sequence of
ϵ→ 0+ in place of Lemma 41.2, and another countable sequence of ϵ→ 1− in what follows.
First observe:

Lemma 44.10 (Principal specialization formula for real powers). Suppose q > 0 and n0 <
n1 < · · · < nN−1 are real exponents. If n := (n0, . . . , nN−1) and u := (1, q, . . . , qN−1)T , then

det(u◦n) =
∏

0≤j<k≤N−1

(qnk − qnj ) = V (q◦n).

The proof is exactly the same as of Proposition 42.6(2), since the transpose of u◦n is a usual
Vandermonde matrix.

We can now complete the proof of Theorem 44.1. The above lemma immediately implies

det(u(ϵ)◦nj )

det(u(ϵ)◦n)
=
√
ρM−nj

V (ϵ◦nj )

V (ϵ◦n)
, ∀0 ≤ j ≤ N − 1.

Dividing the numerator and denominator by (1− ϵ)(
N
2 ) and taking the limit as ϵ→ 1− using

L’Hôpital’s rule, we obtain the expression
√
ρM−nj V (nj)

V (n) . Since all of these suprema/limits
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occur as ϵ→ 1−, we finally have

sup
u∈(0,√ρ)N, ̸=

N−1∑
j=0

det(u◦nj )2

cnj det(u
◦n)2

= lim
ϵ→1−

N−1∑
j=0

det(u(ϵ)◦nj )2

cnj det(u(ϵ)
◦n)2

=

N−1∑
j=0

V (nj)
2

V (n)2
ρM−nj

cnj

.

This proves the equivalence of assertions (1)–(3) in the theorem, for rank-1 matrices.
Finally, suppose all nj ∈ Z≥0 ∪ [N − 2,∞). In this case (4) =⇒ (1) is immediate. Con-

versely, given that (1) holds, we prove (4) using once again the integration trick of FitzGerald
and Horn, as isolated in Theorem 9.12. The proof and calculation are similar to that of The-
orem 43.2 above and are left to the interested reader as an exercise. □

44.3. Applications to Hankel TN preservers in a fixed dimension and to power
series preservers. We conclude by discussing some applications of Theorem 44.1. First,
the result implies in particular that A◦M is bounded above by a multiple of

∑N−1
j=0 cnjA

◦nj .
In particular, the proof of Theorem 41.7 above goes through; thus, we have classified the sign
patterns of all entrywise power series preserving positivity on PN ((0, ρ)).

Second, the equivalent conditions in Theorem 44.1 classifying the (entrywise) polynomial
positivity preservers on PN ((0, ρ)) – or on rank-1 matrices – also end up classifying the
polynomial preservers of total non-negativity on the corresponding Hankel test sets:

Corollary 44.11. With notation as in Theorem 44.1, if we restrict to all real powers and
only rank-1 matrices, then assertions (1)–(3) in Theorem 44.1 are further equivalent to:

(1′) f [−] preserves total non-negativity on all rank-1 matrices in HTNN with entries in
(0, ρ).

If, moreover, all nj lie in Z≥0 ∪ [N − 2,∞), then these conditions are further equivalent
to:

(4′) f [−] preserves total non-negativity on all matrices in HTNN with entries in [0, ρ].

Recall here that by Definition 12.18, HTNN denotes the set of N ×N Hankel totally non-
negative matrices.

Proof. Clearly, (4′) implies (1′), which implies assertion (2) in Theorem 44.1. Conversely, we
claim that assertion (1) in Theorem 44.1 implies (1′) via Theorem 4.1. Indeed, if A ∈ HTNN
has rank 1 and entries in (0, ρ), then f [A] ∈ PN by Theorem 44.1(1). Similarly, A(1)⊕(0)1×1 ∈
PN ((0, ρ)) and has rank 1, so f [A(1)] is also positive semidefinite, and hence Theorem 4.1
applies, as desired. The same proof works to show that (4′) follows from Theorem 44.1(4). □

The third and final application is to bounding g[A], where g(x) is a power series – or

more generally, a linear combination of real powers – by a threshold times
∑N−1

j=0 cnjA
◦nj .

This extends Theorem 44.1 in which g(x) = xM . The idea is that if we fix exponents
0 ≤ n0 < · · · < nN−1 and coefficients cnj for j = 0, . . . , N − 1, then

A◦M ≤ tM
N−1∑
j=0

cnjA
◦nj , where tM :=

N−1∑
j=0

V (nj)
2

cnjV (n)2
ρM−nj , (44.12)

and this linear matrix inequality holds for all A ∈ PN ((0, ρ)) – possibly of rank 1 if the nj are
allowed to be arbitrary non-negative real numbers, else of all ranks if all nj ∈ Z≥0∪[N−2,∞).
Here the ≤ stands for the positive semidefinite ordering, or Loewner ordering – see, e.g.,
Definition 14.7. Moreover, the constant tM depends on M through nj and ρM−nj .
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If now we consider a power series g(x) :=

∑
M≥nN−1+1 cMx

M , then by adding several linear

matrix inequalities of the form (44.12), it follows that

g[A] ≤ tg
N−1∑
j=0

cnjA
◦nj , where tg :=

∑
M≥nN−1+1

max(cM , 0)tM ,

and this is a valid linear matrix inequality, as long as the sum tg is convergent. Thus, we
now explore when this sum converges.

Even more generally: notice that a power series is the sum/integral of the power function,
over a measure on the powers which is supported on the integers. Thus, given any real measure
µ supported in [nN−1 + ε,∞), one can consider its corresponding “Laplace transform”

gµ(x) :=

∫ ∞

nN−1+ε
xt dµ(t). (44.13)

The final application of Theorem 44.1 explores in this generality, when a finite threshold
exists to bound gµ[A] by a sum of N lower powers.

Theorem 44.14. Fix N ≥ 2 and real exponents 0 ≤ n0 < · · · < nN−1 in the set Z≥0 ∪ [N −
2,∞). Also fix scalars ρ, cnj > 0 for all j.

Now suppose ε, ε′ > 0 and µ is a real measure supported on [nN−1 + ε,∞) such that gµ(x)
– defined as in (44.13) – is absolutely convergent at ρ(1 + ε′). Then there exists a finite
constant tµ ∈ (0,∞), such that the map

tµ

N−1∑
j=0

cnjx
nj − gµ(x)

entrywise preserves positivity on PN ((0, ρ)). Equivalently, gµ[A] ≤ tµ
∑N−1

j=0 cnjA
◦nj , for all

A ∈ PN ((0, ρ)).

Proof. If µ = µ+ − µ− denotes the decomposition of µ into its positive and negative parts,
then notice (e.g., by the FitzGerald–Horn Theorem 9.3) that∫

R
A◦M dµ−(M) ∈ PN , ∀A ∈ PN ((0, ρ)).

Hence, it suffices to show that

tµ :=

∫ ∞

nN−1+ε
tM dµ+(M) =

∫ ∞

nN−1+ε

N−1∑
j=0

V (nj)
2

cnjV (n)2
ρM−nj dµ+(M) <∞, (44.15)

since this would imply

tµ

N−1∑
j=0

cnjA
◦nj−gµ[A] =

∫ ∞

nN−1+ε

tM N−1∑
j=0

cnjA
◦nj −A◦M

 dµ+(M)+

∫ ∞

nN−1+ε
A◦M dµ−(M),

and both integrands and integrals are positive semidefinite.
In turn, isolating the terms in (44.15) that depend onM , it suffices to show for each j that∫ ∞

nN−1+ε

N−1∏
k=0,k ̸=j

(M − nk)2ρM dµ+(M) <∞.
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By linearity, it suffices to examine the finiteness of the integrals∫ ∞

nN−1+ε
MkρM dµ+(M), k ≥ 0.

But by assumption,
∫∞
nN−1+ε ρ

M (1 + ε′)M dµ+(M) is finite; and moreover, for any fixed

k ≥ 0 there is a threshold Mk beyond which (1 + ε′)M ≥ Mk. (Indeed, this happens when
logM
M ≤ log(1+ε′)

k .) Therefore,∫ ∞

nN−1+ε′
MkρM dµ+(M) ≤

∫ Mk

nN−1+ε′
MkρM dµ+(M) +

∫ ∞

Mk

ρM (1 + ε′)M dµ+(M) <∞,

which concludes the proof. □
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45. Polynomial preservers on matrices with real or complex entries.
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Having discussed in detail the case of matrices with entries in (0, ρ), we conclude this
part of the text with a brief study of entrywise polynomials preserving positivity in fixed
dimension – but now on matrices with possibly negative or even complex entries. The first
observation is that non-integer powers can no longer be applied, so we restrict ourselves to
polynomials. Second, as discussed following the proof of Lemma 41.2, it is not possible to
obtain structured results along the same lines as above, for all matrices in PN ((−ρ, ρ)), for
every polynomial of the form

t(cn0x
n0 + · · ·+ cnN−1x

nN−1)− xM

acting entrywise.
The way one now proceeds is as follows. Akin to the two previous sections, the analysis

begins by bounding from above the ratio snj (u)
2/sn(u)

2 on the domain – in this case, on

[−ρ, ρ]N . Since the numerator and denominator both vanish at the origin, a sufficient condi-
tion to proceed would be that the zero locus of the denominator sn(·) is contained in the zero
locus of snj (·) for every j. Since the choice of M > nN−1 is arbitrary, we therefore try to

seek the best possible solution: namely, that sn(·) does not vanish on RN \ {0}. And indeed,
it is possible to completely characterize all such tuples n:

Theorem 45.1. Fix integers N ≥ 2 and 0 ≤ n0 < · · · < nN−1. The following are equivalent:

(1) The Schur polynomial sn(·) : RN → R is positive except possibly at the origin.
(2) The Schur polynomial sn(·) : RN → R is non-vanishing except possibly at the origin.
(3) The Schur polynomial sn(·) does not vanish at the two vectors e1 and e1 − e2.
(4) The tuple n satisfies: n0 = 0, . . . , nN−2 = N − 2, and nN−1− (N − 1) = 2r ≥ 0 is an

even integer.

Using Littlewood’s definition (42.2), it is easy to see that such a polynomial is precisely
the complete homogeneous symmetric polynomial (of even degree k = 2r)

hk(u1, u2, . . . ) :=
∑

1≤j1≤j2≤···≤jk

uj1uj2 · · ·ujk , ∀uj ∈ R

for k ≥ 0, where we set h0(u1, u2, . . . ) ≡ 1.
In this section, we will prove Theorem 45.1 and apply it to study entrywise polynomial

preservers of positivity over PN ((−ρ, ρ)). We then study such preservers of PN (D(0, ρ)).

45.1. Complete homogeneous symmetric polynomials are always positive. The ma-
jor part of Theorem 45.1 is to show that the polynomials h2r do not vanish outside the origin.
This is a result by Hunter in 1977 in Math. Proc. Camb. Phil. Soc. More strongly, Hunter
showed that these polynomials are always positive, with a strict lower bound:

Theorem 45.2 (Hunter, 1977, [187]). Fix integers r,N ≥ 1. Then we have

h2r(u) ≥
∥u∥2r

2rr!
, u ∈ RN (45.3)

with equality if and only if (a) min(r,N) = 1 and (b)
∑N

j=1 uj = 0.

The proof uses two observations, also made by Hunter in the same work.
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Lemma 45.4 (Hunter, 1977, [187]). Given integers k,N ≥ 1, and u = (u1, . . . , uN )T ∈ RN ,

hk(u, ξ)− hk(u, η)
ξ − η

= hk−1(u, ξ, η)

for all real ξ ̸= η; and moreover,

∂hk
∂uj

(u) = hk−1(u, uj).

Proof. Recall from the definition that

hk(u) =
k∑

s=0

hk−s(u1, . . . , uN−1)u
s
N . (45.5)

With (45.5) at hand, the first assertion follows immediately (in fact over any ground field):

hk(u, ξ)− hk(u, η)
ξ − η

=

k∑
s=0

hk−s(u)
ξs − ηs

ξ − η
=

k∑
s=1

hk−s(u)

s−1∑
t=0

ξtηs−1−t = hk−1(u, ξ, η).

We isolate the final equality here:

hk−1(u, ξ, η) =

k∑
s=1

hk−s(u)

s−1∑
t=0

ξtηs−1−t, (45.6)

noting that it holds at all ξ, η ∈ R. Next, we show the second assertion. Since hk is a
symmetric polynomial, it suffices to work with j = N . Now compute using (45.5) and (45.6)

∂hk
∂uj

(u) =

k∑
s=1

hk−s(u1, . . . , uN−1)(su
s−1
N )

=

k∑
s=1

hk−s(u1, . . . , uN−1)

s−1∑
t=0

utNu
s−1−t
N = hk−1(u, uN ). □

With Lemma 45.4 at hand, we proceed.

Proof of Theorem 45.2. If N = 1 ≤ r, it is easy to see that (45.3) holds if and only if u1 = 0.
Similarly, if r = 1, then

h2(u) =
1

2

∥u∥2 + (
N∑
j=1

uj)
2

 ≥ ∥u∥2
2

,

with equality if and only if
∑N

j=1 uj = 0, as desired.

Henceforth we suppose that r,N ≥ 2, and claim by induction on r that (45.3) holds, with
a strict inequality. To show the claim, note that since h2r(u) is homogeneous in u of total
degree 2r, it suffices to show (45.3) on the unit sphere

h2r(u) >
1

2rr!
, u ∈ SN−1.

We are thus interested in optimizing (in fact minimizing) the smooth function h2r(u), subject

to the constraint
∑N

j=1 u
2
j = 1. This problem is amenable to the use of Lagrange multipliers,

and we obtain that at any extreme point y ∈ SN−1, there exists λ ∈ R satisfying

∂h2r
∂uj

(y) + 2λyj = 0, j = 1, . . . , N.
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Multiply this equation by yj and sum over all j; since h2r is homogeneous of total degree 2r,
Euler’s equation yields

2rh2r(y) + 2λ∥y∥2 = 0 =⇒ λ = −rh2r(y).
With this at hand, compute using Lemma 45.4

h2r−1(y, yj) =
∂h2r
∂uj

(y) = −2λyj = 2rh2r(y)yj , j = 1, . . . , N. (45.7)

We now show that at all points y ∈ SN−1 satisfying (45.7), one has (45.3) with a strict
inequality. As one of these points is the global minimum, this would prove the result.

There are two cases. First, the vectors y± := ±1√
N
1N×1 ∈ SN−1 satisfy (45.7); it may help

here to observe that the number of terms/monomials in hk(u1, . . . , uN ) is
(
N+k−1

k

)
. This

observation also implies that at these points y±, we have

h2r(y±) =

(
N + 2r − 1

2r

)
1

N2r
=

(N + 2r − 1)(N + 2r − 2) · · ·N
N2r

1

(2r)!
>

1

(2r)!
>

1

2rr!
,

and this yields (45.3). Otherwise, y ̸= y± has at least two unequal coordinates, say yj ̸= yk,
and satisfies (45.7), hence

h2r−1(y, yj)− h2r−1(y, yk) = 2rh2r(y)(yj − yk).
Rewriting this and using Lemma 45.4,

h2r(y) =
1

2r

h2r−1(y, yj)− h2r−1(y, yk)

yj − yk
=

1

2r
h2r−2(y, yj , yk)

≥ 1

2r

∥y∥2 + |yj |2 + |yk|2

2r−1(r − 1)!
,

where the final inequality follows from the induction hypothesis. Now since yj ̸= yk, the final
numerator is strictly greater than 1, and this yields (45.3). □

Theorem 45.2 allows us to prove the existence of polynomials with negative coefficients
that entrywise preserve positivity in a fixed dimension. This is discussed presently; we first
show for completeness that the polynomials h2r are the only ones that vanish only at the
origin.

Proof of Theorem 45.1. That (4) =⇒ (1) follows directly from Theorem 45.2, and that
(1) =⇒ (2) =⇒ (3) is immediate. Now suppose (3) holds. Using Littlewood’s defini-
tion (42.2), if a tableau T of shape n − nmin has two nonempty rows, then in any semi-
standard filling of T , one is forced to use at least two different variables. Now evaluating the
weight of T at e1 yields zero. This argument shows that (3) implies n − nmin has at most
one row, so by (42.2), sn(u) = hk(u) for some k ≥ 0. Now hk(e1 − e2) is easily evaluated to
be a geometric series (consisting of k + 1 alternating entries 1 and −1). This vanishes if k is
odd, so (3) implies k is even, proving (4). □

45.2. Application: entrywise polynomials preserving positivity. With the above re-
sults at hand, we now prove:

Theorem 45.8. Fix integers N ≥ 1, k, r ≥ 0, and M ≥ N +2r, as well as positive constants
ρ, c0, . . . , cN−1. There exists a positive constant t0 > 0 such that the polynomial

pt(x) := txk(c0 + c1x+ · · ·+ cN−2x
N−2 + cN−1x

N−1+2r)− xk+M

entrywise preserves positivity on PN ([−ρ, ρ]) whenever t ≥ t0.
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Proof. The result for k = 0 implies that for arbitrary k ≥ 0, by the Schur product theorem.
Thus, we henceforth assume k = 0. We now prove the result by induction on N ≥ 1 with the
N = 1 case left to the reader as an exercise.

For the induction step, notice that the proof of Proposition 42.8 goes through for u ∈ RN,̸=

as long as sn(u) ̸= 0. This is indeed the case if n = (0, 1, . . . , N − 2, N − 1 + 2r), by
Theorem 45.2. Thus, to produce a threshold t1 as in the theorem, which works for all rank-1
matrices, it suffices to show (by the discussion prior to Theorem 43.1, and using the density

of (−√ρ,√ρ)N,̸= in [−√ρ,√ρ]N ) that

sup
u∈(−√

ρ,
√
ρ)N,̸=

N−1∑
j=0

snj (u)
2

h2r(u)2
ρM−nj

cnj

<∞.

In turn, using Theorem 45.2, it suffices to show

sup
u∈(−√

ρ,
√
ρ)N, ̸=

snj (u)
2

∥u∥4r
<∞, j = 0, 1, . . . , N − 1.

Now since the polynomial snj is homogeneous of total degree 2r +M − nj ,

snj (u)
2

∥u∥4r
= snj (u/∥u∥)2∥u∥2(M−nj) ≤ K2

nj
(Nρ)M−nj

for u ∈ (−√ρ,√ρ)N, ̸=, where Knj is the maximum of the Schur polynomial snj (·) on the

unit sphere SN−1.
This shows the existence of a threshold t1 that proves the theorem for all rank-1 matrices in

PN ([−ρ, ρ]). We will prove the result for all matrices in PN ([−ρ, ρ]) by applying the extension
principle (Theorem 9.12); for this, we first note that

M−1p′t(x) = t

N−2∑
j=1

jcj
M
xj−1 +

(N − 1 + 2r)cN−1

M
xN−2+2r

− xM−1

is again of the same form as in the theorem. Hence, by the induction hypothesis, there exists
a threshold t2 such that p′t[−] preserves positivity on PN−1([−ρ, ρ]) for t ≥ t2. The induction
step is now complete by taking t0 := max(t1, t2). □

A natural question that remains, in parallel to the study of polynomial positivity preservers
of matrices in PN ([0, ρ]), is as follows:

Question 45.9. Given the data as in the preceding theorem, find the sharp constant t0.

A first step toward this goal is the related question in rank 1, which can essentially be
rephrased as follows:

Question 45.10. Given integers r ≥ 0, N ≥ 1, and

m0 ≥ 0, m1 ≥ 1, . . . , mN−2 ≥ N − 2, mN−1 ≥ N − 1 + 2r,

maximize the ratio
sm(u)2

h2r(u)2
over the punctured unit cube [−1, 1]N \ {0}.

Remark 45.11. Notice by homogeneity that this ratio of squares increases as one travels
radially from the origin. Thus, the maximization on the punctured solid cube is equivalent
to the same question on the boundary of this cube.
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45.3. Matrices with complex entries. The final topic along this theme is to explore
matrices with complex entries, say in the open disk D(0, ρ) (or its closure) for some 0 < ρ <
∞. In this case, the set of admissible “initial sequences of powers” 0 ≤ n0 < · · · < nN−1

turns out to be far more limited – and (the same) tight threshold bound is available in all
such cases:

Theorem 45.12. Fix integers M ≥ N ≥ 2 and k ≥ 0, and let nj = j + k for 0 ≤ j ≤ N − 1
– i.e., N consecutive integers. Also fix real scalars ρ > 0, c0, . . . , cN−1, and define

f(z) := zk(c0 + c1z + · · ·+ cN−1z
N−1) + cMz

k+M , z ∈ C.

Then the following are equivalent:

(1) The entrywise map f [−] preserves positivity on PN (D(0, ρ)).
(2) The map f [−] preserves positivity on rank-1 totally non-negative (TN) Hankel ma-

trices in PN ((0, ρ)).
(3) Either all cj , cM ≥ 0; or cj > 0 for all j < N and cM ≥ −C−1, where

C =
N−1∑
j=0

V (nj)
2

cjV (nmin)2
ρM−j ,

where nmin := (0, 1, . . . , N − 1) and nj := (0, 1, . . . , j − 1, j + 1, . . . , N − 1,M) for
0 ≤ j ≤ N − 1.

A chronological remark: this result was the first instance of entrywise polynomial posi-
tivity preservers with negative coefficients to be discovered, in 2016. The more refined and
challenging sharp bound for arbitrary polynomials (or tuples of real powers n) operating on
PN ((0, ρ)), as well as the existence of a tight threshold for the leading term of a polynomial
preserver operating on PN ((−ρ, ρ)), were worked out later – though in this text, we have
already proved those results.

Remark 45.13. After proving Theorem 45.12, we will also show that if the initial sequence
n of non-negative integer powers is non-consecutive (i.e., not of the form in Theorem 45.12),
then such a “structured” result does not hold for infinitely many powers M > nN−1.

Proof of Theorem 45.12. Clearly, (1) =⇒ (2). Next, notice that the constant C in (3)
remains unchanged under a simultaneous shift of all exponents by the same amount k. Thus,
(2) =⇒ (3) by Theorem 44.1 (and Lemma 41.2).

It remains to show that (3) =⇒ (1). Since the k ≥ 0 case follows from the k = 0 case
of (1) by the Schur product theorem, we assume henceforth that k = 0. Now we proceed as
in the previous two sections, by first showing the result for rank-1 matrices, and then using
an analogue of the extension principle (Theorem 9.12) to extend to all ranks via induction
on N . The first step here involves extending Lemma 42.10 to complex matrices:

Lemma 45.14. Fix w ∈ CN and a positive definite (Hermitian) matrix H ∈ CN×N . Define
the linear pencil Pt := tH −ww∗, for t > 0. Then the following are equivalent:

(1) Pt is positive semidefinite.
(2) detPt ≥ 0.

(3) t ≥ w∗H−1w = 1− det(H −ww∗)

detH
.

The proof is virtually identical to that of Lemma 42.10, and is hence omitted.
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Next, using that sn(u

∗) = sn(u) for all integer tuples n and all vectors u ∈ CN (and
snmin(u) ≡ 1), we apply Lemma 45.14 to computing the sharp threshold bound for a sin-
gle “generic” rank-1 complex matrix, parallel to how Proposition 42.8 is an adaptation of
Lemma 42.10:

Proposition 45.15. With the given positive scalars cj, and integers M ≥ N ≥ 2 and
nj = j − 1, define

pt(z) := t
N−1∑
j=0

cjz
j − zM , t ∈ (0,∞), z ∈ C.

Then the following are equivalent for u ∈ CN, ̸=:

(1) pt[uu
∗] is positive semidefinite.

(2) det pt[uu
∗] ≥ 0.

(3) t ≥
N−1∑
j=0

|snj (u)|2

cj
.

Once again, the proof is omitted.
We continue to repeat the approach for PN ((0, ρ)) in previous sections. By the discussion

prior to Theorem 43.1, and using the density of D(0,
√
ρ)N,̸= in D(0,

√
ρ)

N
, we next compute

sup
u∈D(0,

√
ρ)N,̸=

|snj (u)
2|, 0 ≤ j ≤ N − 1.

Use Littlewood’s definition (42.2) of sn(·), and the triangle inequality, to conclude that

|sn(u)| =

∣∣∣∣∣∣
∑
T

N∏
j=1

u
fj(T )
j

∣∣∣∣∣∣ ≤
∑
T

N∏
j=1

|uj |fj(T ) = sn(|u|), where |u| := (|u1|, . . . , |uN |).

Thus, equality is indeed attained here if one works with a vector u ∈ (0,
√
ρ)N,̸=. For this

reason, and since sn(u) is coordinatewise non-decreasing on (0,∞)N ,

sup
u∈D(0,

√
ρ)N, ̸=

|snj (u)
2| = snj (

√
ρ(1, . . . , 1))2 =

V (nj)
2

V (nmin)2
ρM−j , ∀j.

Akin to PN ((0, ρ)), we conclude that pt[uu
∗] ∈ PN for all u ∈ D(0,

√
ρ)N , if and only if

t ≥ C =
N−1∑
j=0

V (nj)
2

cjV (nmin)2
ρM−j .

The final step is to prove the result for all matrices in PN (D(0, ρ)), not just those of rank
1. For this we work by induction on N ≥ 1, with the base case following from above. For
the induction step, we will apply the extension principle (Theorem 9.12); to do so, we first
extend that result as follows, with essentially the same proof.

Lemma 45.16. Theorem 9.12 holds if h(z) is a polynomial and I = D(0, ρ) or its closure.

To apply this result, first note that

M−1p′t(z) = t

N−1∑
j=1

M−1jcjz
j−1 − zM−1,
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and so it suffices to show that this preserves positivity on PN−1(D(0, ρ)) if t ≥ C. By the
induction hypothesis, it suffices to show that C ≥ C′, where C′ is the constant obtained from
M−1p′t:

C′ =
N−1∑
j=1

MV (n′
j)

2

jcjV (n′
min)

2
ρM−j , where n′

j := (0, 1, . . . , j − 2, j, . . . , N − 2,M − 1),

and n′
min := (0, 1, . . . , N − 2). Thus, to show that C ≥ C′, it suffices to show that

V (nj)
2

V (nmin)2
≥

MV (n′
j)

2

jV (n′
min)

2

for j = 1, . . . , N − 1. This is not hard to show; e.g., for “most” cases of j, a straightforward
computation yields(

V (nj)/V (n′
j)

V (nmin)/V (n′
min)

)2

=

(
(N − 1)!M/j

(N − 1)!

)2

=
M2

j2
>
M

j
. □

As promised above, we conclude by showing that for every other tuple of “initial powers”,
i.e., non-consecutive powers n, one cannot always have a positivity preserver with a negative
coefficient – even on generic one-parameter families of rank-1 matrices.

Theorem 45.17. Fix integers N ≥ 2 and 0 ≤ n0 < · · · < nN−1, where the nj are not all
consecutive. Also fix N − 1 distinct numbers u1, . . . , uN−1 > 0, and set

u(z) := (u1, . . . , uN−1, z)
T ∈ CN , z ∈ C.

Then there exists z0 ∈ C and infinitely many integers M > nN−1, such that for all choices of
(a) scalar ϵ > 0 and (b) coefficients cn0 , . . . , cnN−1 > 0 > c′ ∈ R, the polynomial

f(z) := cn0z
n0 + · · ·+ cnN−1z

nN−1 + c′zM

does not preserve positivity on the rank-1 matrix ϵu(z0)u(z0)
∗ when applied entrywise.

Note that if instead all cnj , cM ≥ 0, then f [−] preserves positivity by the Schur product
theorem; while if some cnj < 0, then the FitzGerald–Horn argument from Theorem 9.3 can
be adapted to show that f [ϵu(uN )u(uN )∗] ̸∈ PN for all sufficiently small ϵ > 0, where uN ∈ C
is such that the non-zero polynomial sn(u1, . . . , uN−1, uN ) ̸= 0.

Proof. Since the nj are not all consecutive, the tableau-shape corresponding to n−nmin has
at least one row with two cells. It follows by Littlewood’s definition (42.2) that sn(u) has
at least two monomials. Now consider sn(u(z)) as a function only of z, say g(z). Then g(z)
is a polynomial that is not a constant multiple of a monomial, so it has a non-zero complex
root z0 ∈ C×. Notice that z0 is also not in (0,∞) because the Schur polynomial evaluated at
(u1, . . . , uN−1, uN ) is positive for every uN ∈ (0,∞). Thus, z0 ∈ C \ [0,∞).

By choice of z0 and Cauchy’s definition of sn(u(z0)) (see Proposition 42.6),

u(z0)
◦n = [u(z0)

◦n0 | · · · |u(z0)◦nN−1 ]

is a singular matrix. That said, this matrix has rank N − 1 by the properties of generalized
Vandermonde determinants (see Theorem 5.1); in fact, every subset of N − 1 columns here is
linearly independent. Let V0 denote the span of these columns; then the ortho-complement
V ⊥
0 ⊂ CN is one-dimensional, i.e., there exists unique v ∈ CN up to rescaling, such that

v∗u(z0)
◦nj = 0 for all j.
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Now given any N consecutive integers l+1, . . . , l+N with l ≥ nN−1, we claim there exists

an integer M ∈ [l + 1, l + N ] such that v∗u(z0)
◦M ̸= 0. Indeed, the usual Vandermonde

matrix
[u(z0)

◦(l+1)| · · · |u(z0)◦(l+N)]

is non-singular (since no coordinate in u(z0) is zero), so at least one column u(z0)
◦M ̸∈ V0.

In particular, v∗u(z0)
◦M ̸= 0, proving the claim.

Finally, choose arbitrary ϵ, cnj > 0 > c′ as in the theorem. We then assert that f [ϵu(z0)u(z0)
∗],

where f is defined using this value of M , is not positive semidefinite. Indeed,

v∗f [ϵu(z0)u(z0)
∗]v =

N−1∑
j=0

cnj ϵ
nj |v∗u(z0)

◦nj |2 + c′ϵM |v∗u(z0)
◦M |2 = c′ϵM |v∗u(z0)

◦M |2,

and this is negative, proving that f [ϵu(z0)u(z0)
∗] ̸∈ PN . □
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46. Appendix F: Cauchy’s and Littlewood’s definitions of Schur polynomials.

The (dual) Jacobi–Trudi identity and Lindström–Gessel–Viennot
bijections.

For completeness, in this section we show the equivalence of four definitions of Schur
polynomials, two of which are named identities. To proceed, first recall two other families of
symmetric polynomials: the elementary symmetric polynomials are simply

e1(u1, u2, . . . ) := u1 + u2 + · · · , e2(u1, u2, . . . ) := u1u2 + u1u3 + u2u3 + · · · ,

and in general,

ek(u1, u2, . . . ) :=
∑

1≤j1<j2<···<jk

uj1uj2 · · ·ujk

These symmetric functions crucially feature while decomposing polynomials into linear fac-
tors.

We also recall the complete homogeneous symmetric polynomials

hk(u1, u2, . . . ) :=
∑

1≤j1≤j2≤···≤jk

uj1uj2 · · ·ujk .

By convention, we set e0 = h0 = 1, and ek = hk = 0 for k < 0. Now we have:

Theorem 46.1. Fix an integer N ≥ 1 and any unital commutative ground ring. Given a
partition of N – i.e., an N -tuple of non-increasing non-negative integers λ = (λ1 ≥ · · · ≥ λN )
with

∑
j λj = N – the following four definitions give the same expression sλ+δ(u1, u2, . . . , uN ),

where δ := (N−1, N−2, . . . , 0) and λ+ δ = (λN , λN−1+1, . . . , λ1+N−1) in our convention.

(1) (Littlewood’s definition.) The sum of weights over all column-strict Young tableaux
of shape λ with cell entries u1, . . . , uN .

(2) (Cauchy’s definition, aka the type A Weyl character formula.) The ratio of the (gen-

eralized) Vandermonde determinants aλ+δ/aδ, where aλ := det(uλk+N−k
j ).

(3) (The Jacobi–Trudi identity.) The determinant det(hλj−j+k)
N
j,k=1.

(4) (The dual Jacobi–Trudi identity, or von Nägelsbach–Kostka identity.) The determi-
nant det(eλ′

j−j+k), where λ
′ is the dual partition, meaning λ′k := #{j : λj ≥ k}.

From this result, we deduce the equivalence of these definitions of the Schur polynomial
for fewer numbers of variables u1, . . . , un, where n ≤ N .

Corollary 46.2. Suppose 1 ≤ r < N and λr+1 = · · · = λN = 0. Then the four definitions
in Theorem 46.1 agree for the smaller set of variables u1, . . . , ur.

Proof. Using fewer numbers of variables in definitions (3) and (4) amounts to specializing
the remaining variables ur+1, . . . , uN to zero. The same holds for definition (1) since weights
involving the extra variables ur+1, . . . , uN now get set to zero. It follows that definitions (1),
(3), and (4) agree for fewer numbers of variables.

We will show that Cauchy’s definition (2) in Theorem 46.1 has the same property. In
this case the definitions are different: Given u1, . . . , ur for 1 ≤ r ≤ N , the correspond-
ing ratio of alternating polynomials would only involve λ1 ≥ · · · ≥ λr, and would equal

det(uλk+r−k
j )rj,k=1/ det(u

r−k
j )rj,k=1. Now claim that this equals the ratio in (2), by downward

induction on r ≤ N . Note that it suffices to show the claim for r = N − 1. But here, if we
set uN := 0, then both generalized Vandermonde matrices have last column (0, . . . , 0, 1)T .
In particular, we may expand along their last columns. Now canceling the common factors
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of u1 · · ·uN−1 from each of the previous columns reduces to the case of r = N − 1, and the
proof is completed by similarly continuing inductively. □

The remainder of this section is devoted to proving Theorem 46.1. We will show that
(4)⇐⇒ (1)⇐⇒ (3)⇐⇒ (2), and over the ground ring Z, which then carries over to arbitrary
ground rings. To do so, we use an idea due to Karlin–Macgregor (1959), Lindström (1973),
and Gessel–Viennot (1985), which interprets determinants in terms of tuples of weighted
lattice paths. The approach below is taken from the work of Bressoud–Wei (1993).

Proposition 46.3. The definitions (1) and (3) are equivalent.

Proof. The proof is divided into steps, for ease of exposition.

Step 1: In this step we define the formalism of lattice paths and their weights. Define points
in the plane

Pk := (N − k + 1, N), Qk := (N − k + 1 + λk, 1), k = 1, 2, . . . , N,

and consider (ordered) N -tuples p of (directed) lattice paths satisfying the following proper-
ties:

(1) The kth path starts at some Pj and ends at Qk, for each k.
(2) No two paths start at the same point Pj .
(3) From Pj , and at each point (a, b), a path can go either east or south. Weight each

east step at height (a, b) by uN+1−b.

Notice that one can assign a unique permutation σ = σp ∈ SN to each tuple of paths p, so
that paths go from Pσ(k) to Qk for each k.

We now assign a weight to each tuple p, defined to be (−1)σp times the product of the
weights at all east steps in p. For instance, if λ = (3, 1, 1, 0, 0) partitions N = 5, then here is
a typical tuple of paths:

• For k = 4, 5, Pk and Qk are each connected by vertical straight lines (i.e., four south
steps each).
• P2 and Q3 are connected by a vertical straight line (i.e., four south steps).
• The steps from P3 to Q2 are SESESS.
• The steps from P1 to Q1 are SEESSES.

This tuple p corresponds to the permutation σp = (13245), and has weight −u32u3u4.
Step 2: The next goal is to examine the generating function of the tuples, i.e.,

∑
pwt(p).

Note that given σ, among all tuples p with σp = σ, the kth path contributes a monomial of
total degree λk − k + σ(k), which can be any monomial in u1, . . . , uN of this total degree. It
follows that the generating function equals∑

p

wt(p) =
∑
σ∈SN

(−1)σ
N∏
k=1

hλk−k+σ(k) = det(hλk−k+j)
N
j,k=1.

Step 3: We next rewrite the above generating function to obtain
∑

T wt(T ) (the sum of
weights over all column-strict Young tableaux of shape λ with cell entries u1, . . . , uN ), which
is precisely sλ+δ(u1, . . . , uN ) by definition. To do so, we will pair off the tuples p of intersecting
paths into pairs, whose weights cancel one another.

Suppose p consists of intersecting paths. Define the final intersection point of p to be the
lattice point with maximum x-coordinate where at least two paths intersect, and if there are
more than one such points, then the one with minimal y-coordinate. Now claim that exactly
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two paths in p intersect at this point. Indeed, if three paths intersect at any point, then all
of them have to go either east or south at the next step. By the pigeonhole principle, there
are at least two paths that proceed in the same direction. It follows that a point common to
three paths in p cannot be the final intersection point, as desired.

Define the tail of p to be the two paths to the east and south of the final intersection
point in p. Given an intersecting tuple of paths p, there exists a unique other tuple p′ with
the same final intersection point between the same two paths, but with the tails swapped.
It is easy to see that the paths p and p′ satisfy have opposite signs (for their permutations
σp, σp′), but the same monomials in their weights. Therefore, wt(p) = −wt(p′), and the
intersecting paths pair off, as desired.

Step 4: From Step 3, the generating function
∑

pwt(p) equals the sum over only tuples of
non-intersecting paths. Each of these tuples necessarily has σp = id, so all signs are positive.
In such a tuple, the monomial weight for the kth path naturally corresponds to a weakly
increasing sequence of λk integers in [1, N ]. That the paths do not intersect corresponds
to the entries in the kth sequence being strictly smaller than the corresponding entries in
the (k + 1)st sequence. This yields a natural weight-preserving bijection from the tuples
of non-intersecting paths to the column-strict Young tableaux of shape λ with cell entries
1, . . . , N . (Notice that these tableaux are in direct bijection to the column-strict Young
tableaux studied earlier in this part, by switching the cell entries j ←→ N + 1 − j.) This
concludes the proof. □

Proposition 46.4. The definitions (1) and (4) are equivalent.

Proof. The proof is a variant of that of Proposition 46.3. Now we consider all tuples of paths
such that the kth path goes from Pσ(k), to the point

Q′
k := (N − k + 1 + λ′k, 1),

and, moreover, each of these paths has at most one east step at each fixed height – i.e., no
two east steps are consecutive.

Once again, in summing to obtain the generating function, given a permutation σ = σp,
the kth path in p contributes a monomial of total degree λ′k−k+σ(k), but now runs over all
monomials with individual variables of degree at most 1 – i.e., all monomials in eλk−k+σ(k).
It follows that ∑

p

wt(p) =
∑
σ∈SN

(−1)σ
N∏
k=1

eλ′
k−k+σ(k) = det(eλ′

k−k+j)
N
j,k=1.

On the other side, we once again pair off tuples – this time, leaving the ones that do
not overlap. In other words, paths in tuples may intersect at a point, but do not share an
east/south line segment. Now given a tuple containing two overlapping paths, define the
final overlap segment similarly as in Proposition 46.3; as in the previous proof, notice that
exactly two paths overlap on this segment. Then for every tuple of paths p that overlaps,
there exists a unique other tuple p′ with the same final overlap segment between the same
two paths, but with the (new version of) tails swapped. It is easy to see that p and p′ have
the same monomials as weights, but with opposite signs, so they pair off and cancel weights.

This leaves us with tuples of non-overlapping paths, all of which again corresponding to
σp = id. In such a tuple, from the kth path we obtain a strictly increasing sequence of
λ′k integers in [1, N ]. That the paths do not overlap corresponds to the entries in the kth
sequence being at most as large as the corresponding entries in the (k + 1)st sequence. This
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gives a bijection to the conjugates of column-strict Young tableaux of shape λ, and hence we
once again have

∑
pwt(p) =

∑
T wt(T ) in this setting. □

Corollary 46.5. Schur polynomials are symmetric and homogeneous.

Proof. This follows because definition (4) is symmetric and homogeneous in the variables
uj . □

Finally, we show:

Proposition 46.6. The definitions (2) and (3) are equivalent.

Proof. Once again, this proof is split into steps, for ease of exposition. In the proof below,
we use the above results and assume that the definitions (1), (3), and (4) are all equivalent.
Thus, our goal is to show that

det(uN−k
j )Nj,k=1 · det(hλj−j+k)

N
j,k=1 = det(uλk+N−k

j )Nj,k=1.

Step 1: We explain the formalism, which is a refinement of the one in the proof of Propo-
sition 46.3. Thus, we return to the setting of paths between Pk = (N − k + 1, N) and
Qk = (N −k+1+λk, 1) for k = 1, . . . , N , but now equipped also with a permutation τ ∈ SN .
The weight of an east step now depends on its height: at height N + 1− b an east step has
weight uτ(b) instead of ub. Now consider tuples of paths over all τ ; let us write their weights
as wtτ (p) for notational clarity. In what follows, we also use p or (p, τ) depending on the
need to specify and work with τ ∈ SN .

For each fixed τ ∈ SN , notice first that the generating function
∑

pwtτ (p) of the τ -
permuted paths is independent of τ , by Corollary 46.5.

Now we define a new weight for these τ -permuted paths p. Namely, given p = (p, τ),
recall there exists a unique permutation σp ∈ SN ; now define

wt′τ (p) := (−1)τµ(τ) · wtτ (p), where µ(τ) := uN−1
τ(1) u

N−2
τ(2) · · ·uτ(N−1).

The new generating function is∑
τ∈SN

∑
p

wt′τ (p) =
∑
τ∈SN

(−1)τµ(τ)
∑
p

wtτ (p) = det(hλk−k+j)
N
j,k=1 · det(uN−k

j )Nj,k=1,

where the final equality follows from the above propositions, given that the inner sum is
independent of τ from above.

Step 2: Say that a tuple p = (Pσp(k) → Qk)k is high enough if for every 1 ≤ k ≤ N , the kth
path has no east steps below height N + 1− k. Now claim that (summing over all τ ∈ SN ,)
the τ -tuples that are not high enough once again pair up, with canceling weights.

Modulo the claim, we prove the theorem. The first reduction is that for a fixed τ , we
may further restrict to the τ -tuples that are high enough and are non-intersecting (as in the
proof of Proposition 46.3). Indeed, defining the final intersection point and the tail of p as
in that proof, it follows that switching tails in tuples p of intersecting paths changes neither
the monomial part of the weight, nor the high-enough property; and it induces the opposite
sign to that of p.

Thus, the generating function of all τ -tuples (over all τ) equals that of all non-intersecting,
high-enough τ -tuples (also summed over all τ ∈ SN ). But each such tuple corresponds to
σp = id, and in it, all east steps in the first path must occur in the topmost row/height/y-
coordinate of N . Hence, all east steps in the second path must occur in the next highest
row, and so on. It follows that the non-intersecting, high-enough τ -tuples p = (p, τ) are in
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bijection with τ ∈ SN ; moreover, each such tuple has weight (−1)τµ(τ)uλ1

τ(1)u
λ2

τ(2) · · ·u
λN

τ(N).

Thus, the above generating function is shown to equal

det(uλk+N−k
j )Nj,k=1,

and the proof is complete.

Step 3: It thus remains to show the claim in Step 2 above. Given parameters

σ ∈ SN , k ∈ [1, N ], j ∈ [1, N − k],
let NHσ,k,j denote the τ -tuples of paths p = (p, τ) (with τ running over SN ), which satisfy
the following properties:

(1) p is not high (NH) enough.
(2) In p, the kth path has an east step at most by height N − k, but the paths labeled

1, . . . , k − 1 are all high enough.
(3) Moreover, j is the height of the lowest east step in the kth path; thus, j ∈ [1, N − k].
(4) The permutation associated to the start and end points of the paths in the tuple is

σp = σ ∈ SN .

Note that the set NH of tuples of paths that are not high enough can be partitioned as

NH =
⊔

σ∈SN , k∈[1,N ], j∈[1,N−k]

NHσ,k,j .

We now construct an involution of sets ι : NH → NH which permutes each subsetNHσ,k,j ,
and such that p and ι(p) have the same monomial attached to them but different τ and τ ′,

leading to canceling signs (−1)τ ̸= (−1)τ ′ .
Thus, suppose p is a τ -tuple in NHσ,k,j . Now define τ ′ := τ ◦ (N − j,N + 1− j); in other

words,

τ ′(i) :=


τ(i+ 1), if i = N − j;
τ(i− 1), if i = N − j + 1;

τ(i), otherwise.

In particular,

(−1)τ ′ = −(−1)τ and µ(τ ′) = µ(τ)uτ(N+1−j)u
−1
τ(N−j).

With τ ′ in hand, we can define the tuple ι(p) = (ι(p), τ ′) ∈ NHσ,k,j . First, change the weight
of each east step at height N +1− b, from uτ(b) to uτ ′(b). Next, we keep unchanged the paths
labeled 1, . . . , k−1, and in the remaining paths we do not change the source and target nodes
either (since σ is fixed). Notice that weights change at only two heights j and j + 1; hence
the first k − 1 paths do not see any weights change.

The changes in the (other) paths are now described. In the kth path, change only the
numbers nl of east steps at height l = j, j + 1, via: (nj , nj+1) 7→ (nj+1 + 1, nj − 1). Note,
the product of weights of all east steps in this path changes by a multiplicative factor of
u−1
τ(N+1−j)uτ(N−j) – which cancels the above change from µ(τ) to µ(τ ′). Finally, in the mth

path for each m > k, if nl again denotes the number of east steps at height l, then we swap
nj ←→ nj+1 steps in the mth path. This leaves unchanged the weight of those paths, and
hence of the tuple p overall.

It is now straightforward to verify that the map ι is an involution that preserves each of
the sets NHσ,k,j . Since wt(ι(p)) = −wt(p) for all p ∈ NH, the claim in Step 2 is true, and
the proof of the theorem is complete. □
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Bibliographic notes and references

Most of the material in this part is taken from two papers: one by Belton–Guillot–Khare–
Putinar [23] (see also [24] and [25] for summaries), and the other by Khare and Tao [217]
(see also its summary [216]). We list the remaining references. For preliminaries on Schur
polynomials, the standard reference is Macdonald’s monograph [247]. Theorem 44.6 on the
coordinatewise monotonicity of Schur polynomial ratios is proved using a deep result of Lam,
Postnikov, and Pylyavskyy [231], following previous work by Skandera [339]. There are other
ways to show this result, e.g., using Chebyshev blossoming as shown by Ait-Haddou in joint
works [6, 7], or by Dodgson condensation (see [217]). Theorem 44.8 is taken from [217] (the
coordinatewise non-decreasing property on (0,∞)N̸= ). We also remark that Equation (42.11),

like Proposition 17.5, was recently extended to arbitrary polynomials and (formal) power
series by the author in [214].

Theorem 45.2 and its proof are due to Hunter [187]. Appendix F follows Bressoud and
Wei [71], relying on the works of Karlin and McGregor [201, 202], Lindström [238], and Gessel
and Viennot [142].
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functions. Pacific J. Math., 11(3):1023–1033, 1961.
[204] Samuel Karlin and Yosef Rinott. Classes of orderings of measures and related correlation inequalities. I.

Multivariate totally positive distributions. J. Multivariate Anal., 10(4):467–498, 1980.
[205] Samuel Karlin and Yosef Rinott. Total positivity properties of absolute value multinormal variables

with applications to confidence interval estimates and related probabilistic inequalities. Ann. Statist.,
9(5):1035–1049, 1981.

[206] Samuel Karlin and Zvi Ziegler. Chebyshevian spline functions. SIAM J. Numer. Anal., 3(3):514–543,
1966.

[207] Olga M. Katkova. A certain method for constructing Pólya frequency sequences. J. Soviet Math.,
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[239] Egon Lindwart and Georg Pólya. Über einen zusammenhang zwischen der konvergenz von polynomfolgen
und der verteilung ihrer wurzeln. Rend. Circ. Mat. Palermo, 37:279–304, 1914.
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d’espace distanciés vectoriellement applicable sur l’espace de Hilbert”. Ann. of Math. (2), 36(3):724–732,
1935.

[314] Isaac Jacob Schoenberg. Extensions of theorems of Descartes and Laguerre to the complex domain. Duke
Math. J., 2(1):84–94, 1936.

[315] Isaac Jacob Schoenberg. On certain metric spaces arising from Euclidean spaces by a change of metric
and their imbedding in Hilbert space. Ann. of Math. (2), 38(4):787–793, 1937.

[316] Isaac Jacob Schoenberg. Metric spaces and completely monotone functions. Ann. of Math. (2), 39(4):811–
841, 1938.

[317] Isaac Jacob Schoenberg. Metric spaces and positive definite functions. Trans. Amer. Math. Soc.,
44(3):522–536, 1938.

[318] Isaac Jacob Schoenberg. Positive definite functions on spheres. Duke Math. J., 9(1):96–108, 1942.
[319] Isaac Jacob Schoenberg. Contributions to the problem of approximation of equidistant data by analytic

functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation
formulae. Quart. Appl. Math., 4(1):45–99, 1946.

[320] Isaac Jacob Schoenberg. On totally positive functions, Laplace integrals and entire functions of the
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