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1. INTRODUCTION

This text arose out of the course notes for Math 341: Matriz Analysis and Positivity, a
one-semester course offered in Spring 2018 and Fall 2019 at the Indian Institute of Science
(ITSc). Owing to the subsequent inclusion of additional topics, the text has now grown to
cover roughly a two-semester course in analysis and matrix positivity preservers — or, more
broadly, composition operators preserving various kinds of positive kernels. Thus in this
text, we briefly describe some notions of positivity in matrix theory, followed by our main
focus: a detailed study of the operations that preserve these notions (and, in the process,
an understanding of some aspects of real functions). Several different notions of positivity in
analysis, studied for classical and modern reasons, are touched upon in the text:

e Positive semidefinite and positive definite matrices.

e Entrywise positive matrices.

e A common strengthening of the first two notions, which involves totally positive (7'P)
and totally non-negative (T'N) matrices.

e Settings somewhat outside matrix theory. For instance, consider discrete data asso-
ciated with positive measures on locally compact abelian groups G. E.g., for G = R,
one obtains moment sequences, which are intimately related to positive semidefinite
Hankel matrices. For G = S', the circle group, one obtains Fourier-Stieltjes se-
quences, which are connected to positive semidefinite Toeplitz matrices. (See works
of Carathéodory, Hamburger, Hausdorff, Herglotz, and Stieltjes, among others.)

e More classically, functions and kernels with positivity structures have long been stud-
ied in analysis, including on locally compact groups and metric spaces (see Bochner,
Schoenberg, von Neumann, Pélya). Distinguished examples include positive definite
functions and Pélya frequency functions and sequences.

The text begins by discussing the above notions, focussing on their properties and some
results in matrix theory. The next two parts then study, in detail, the preservers of several
of these notions of positivity. Among other things, this journey involves going through
many beautiful classical results by leading experts in analysis during the first half of the
twentieth century. Apart from also covering several different tools required in proving these
results, an interesting outcome also is that several classes of “positive” matrices repeatedly get
highlighted by way of studying positivity preservers — these include generalized Vandermonde
matrices, Hankel moment matrices and kernels, and Toeplitz kernels on the line or the integers
(aka Pdlya frequency functions and sequences).

In this text, we will study the post-composition transforms that preserve (total) positivity
on various classes of kernels. When the kernel has finite domain — i.e., is a matrix — then
this amounts to studying entrywise preservers of various notions of positivity. The question
of why entrywise calculus was studied — as compared to the usual holomorphic functional
calculus — has a rich and classical history in the analysis literature, beginning with the
work of Schoenberg, Rudin, Loewner, and Horn (these results are proved in Part 3 of the
text), but also drawing upon earlier works of Menger, Schur, Bochner, and others. (In
fact, the entrywise calculus was introduced, and the first such result proved, by Schur in
1911.) Interestingly, this entrywise calculus also arises in modern-day applications from
high-dimensional covariance estimation; we elaborate on this in Section and briefly also
in Section Furthermore, this evergreen area of mathematics continues to be studied in the
literature, drawing techniques from — and also contributing to — symmetric function theory,
statistics and graphical models, combinatorics, and linear algebra (in addition to analysis).
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As a historical curiosity, the course and this text arose in a sense out of research car-
ried out in significant measure by mathematicians at Stanford University (including their
students) over the years. This includes Loewner, Karlin, and their students: FitzGerald,
Horn, Micchelli, and Pinkus. Less directly, there was also Katznelson, who had previously
worked with Helson, Kahane, and Rudin, leading to Rudin’s strengthening of Schoenberg’s
theorem. (Coincidentally, Pélya and Szegé, who made the original observation on entrywise
preservers of positivity using the Schur product theorem, were again colleagues at Stanford.)
On a personal note, the author’s contributions to this area also have their origins in his time
spent at Stanford University, collaborating with Alexander Belton, Dominique Guillot, Mihai
Putinar, Bala Rajaratnam, and Terence Tao (though the collaboration with the last-named
colleague was carried out almost entirely at IISc).

We now discuss the course, the notes that led to this text, and their mathematical contents.
The notes were scribed by the students taking the course in Spring 2018 at IISc, followed by
extensive “homogenization” by the author — and, in several sections, addition of material.
Each section was originally intended to cover the notes of roughly one 90-minute lecture, or
occasionally two; that said, some material has subsequently been moved around for logical,
mathematical, and expositional reasons. The notes, and the course itself, require an under-
standing of basic linear algebra and analysis, with a bit of measure theory as well. Beyond
these basic topics, we have tried to keep these notes as self-contained as possible, with full
proofs. To that end, we have included proofs of “preliminary” results, including:

(i) results of Schoenberg, Menger, von Neumann, Fréchet, and others connecting metric

geometry and positive definite functions to matrix positivity;

(ii) results in Euclidean geometry, including on triangulation, Heron’s formula for the

area of a triangle, and connecting Cayley—Menger matrices to simplicial volumes;

(iii) Boas-Widder and Bernstein’s theorems on functions with positive forward differences;

(iv) Sierpinsky’s result: mid-convexity and measurability imply continuity;

(v) an extension to normed linear spaces, of (a special case of) a classical result of Os-

trowski on mid-convexity and local boundedness implying continuity;

(vi) Whitney’s density of totally positive matrices inside totally non-negative matrices;
(vii) Descartes’ rule of signs — several variants;

(viii) a follow-up to Descartes, by Laguerre, on variation diminution in power series, and
its follow-up by Fekete involving Pdélya frequency sequences;

(ix) Fekete’s result on totally positive matrices via positive contiguous minors;

(x) (on a related note:) results on real and complex polynomials, their “compositions”,
and zeros of these: by Gauss—Lucas, Hermite-Kakeya—Obrechkoff, Hermite—Biehler,
Routh—Hurwitz, Hermite—Poulain, Laguerre, Mald, Jensen, Schur, Weisner, de Bruijn,
and Pdlya;

) a detailed sketch of Pélya and Schur’s characterizations of multiplier sequences;
) Mercer’s lemma, identifying positive semidefinite kernels with kernels of positive type;
xiii) Perron’s theorem for matrices with positive entries (the precursor to Perron-Frobenius);
) compound matrices and Kronecker’s theorem on their spectra;

) Sylvester’s criterion and the Schur product theorem on positive (semi)definiteness
(also, the Jacobi formula);
the Jacobi complementary minor formula;
the Rayleigh—Ritz theorem:;
a special case of Weyl’s inequality on eigenvalues;
matrix identities by Andréief and Cauchy—Binet, and a continuous generalization;

(xvi
(xvil
(xviil
(xix

~— — — —
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(xx) the discreteness of zeros of real analytic functions (and a sketch of the continuity of
roots of complex polynomials); and

(xxi) the equivalence of Cauchy’s and Littlewood’s definitions of Schur polynomials (and
of the Jacobi-Trudi and von Négelsbach-Kostka identities) via Lindstfom-Gessel-
Viennot bijections.

Owing to considerations of time, we had to leave out some proofs. These include proofs
of theorems by Hamburger/Hausdorff/Stieltjes, Fubini, Tonelli, Cauchy, Montel, Morera,
and Hurwitz; a Schur positivity phenomenon for ratios of Schur polynomials; Lebesgue’s
dominated convergence theorem; as well as the closure of real analytic functions under com-
position. Most of these can be found in standard textbooks in mathematics. We also omit
the proofs of several classical results on Laplace transforms and Pdlya frequency functions,
found in textbooks, in papers by Schoenberg and his co-authors, and in Karlin’s compre-
hensive monograph on total positivity. Nevertheless, as the previous and current paragraphs
indicate, these notes cover many classical results by past experts and acquaint the reader with
a variety of tools in analysis (especially the study of real functions) and in matrix theory —
many of these tools are not found in more “traditional” courses on these subjects.

This text is broadly divided into six parts, with detailed bibliographic notes following each
part. In Part 1, the key objects of interest — namely, positive semidefinite / totally positive
/ totally non-negative matrices — are introduced, together with some basic results as well as
some important classes of examples. (The analogous kernels are also studied.) In Part 2, we
begin the study of functions acting entrywise on such matrices, and preserving the relevant
notion of positivity. Here, we will mostly restrict ourselves to studying power functions that
act on various sets of matrices of a fized size. This is a long-studied question, including by
Bhatia, Elsner, Fallat, FitzGerald, Hiai, Horn, Jain, Johnson, and Sokal; as well as by the
author in collaboration with Guillot and Rajaratnam. In particular, an interesting highlight
is the construction by Jain of individual (pairs of) matrices, which turn out to encode the
entire set of entrywise powers preserving Loewner positivity, monotonicity, and convexity.
We also obtain certain necessary conditions on general entrywise functions that preserve
positivity, including multiplicative mid-convexity and continuity, as well as a classification of
all functions preserving total non-negativity or total positivity in each fixed dimension. We
explain some of the modern motivations, and we end with some unsolved problems.

Part 3 deals with some of the foundational results on matrix positivity preservers. After
mentioning some of the early history — including work by Menger, Fréchet, Bochner, and
Schoenberg — we classify the entrywise functions that preserve positive semidefiniteness (=
positivity) in all dimensions, or total non-negativity on Hankel matrices of all sizes. This is
a celebrated result of Schoenberg — later strengthened by Rudin — which is a converse to the
Schur product theorem, and we prove a stronger version by using a rank-constrained test set.
The proof given in these notes is different from the previous approaches of Schoenberg and
Rudin, is essentially self-contained, and uses relatively less sophisticated machinery compared
to the works of Schoenberg and Rudin. Moreover, it first proves a variant by Vasudeva for
matrices with only positive entries, and it lends itself to a multivariate generalization (which
will not be covered here). The starting point of these proofs is a necessary condition for
entrywise preservers in a fixed dimension, proved by Loewner (and Horn) in the late 1960s.
To this day, this result remains essentially the only known condition in a fixed dimension
n > 3, and a proof of a (rank-constrained, as above) stronger version is also provided in these
notes. In addition to techniques and ingredients introduced by the above authors, the text
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also borrows from the author’s joint work with Belton, Guillot, and Putinar. This part ends
with several appendices:

(1) The first appendix covers a result by Boas and Widder, which shows a converse “mean
value theorem” for divided differences.

(2) We next cover recent work by Vishwakarma on an “off-diagonal” variant of the posi-
tivity preserver problem.

(3) The third and fourth appendices classify preservers of Loewner positivity, monotonic-
ity, and convexity on “dimension-free matrices”, or on kernels over infinite domains.

(4) The fifth appendix explores the theme of Euclidean distance geometry, with a focus
on some classical results by Menger.

In Parts 4 and 5, we formulate the preserver problem in analysis terms, using composition
operators on kernels. This allows one to consider such questions not only for matrices of a
fixed or arbitrary size, but also over more general, infinite domains. It also makes available for
use, the powerful analysis machinery developed by Bernstein, Pélya, Schoenberg, Widder, and
others. Thus in Part 5, we provide characterizations of such composition operators preserving
total positivity or non-negativity on structured kernels — specifically Toeplitz kernels on
various sub-domains of R. Two distinguished classes of such kernels are Pélya frequency
functions and Pélya frequency sequences, i.e., Toeplitz kernels on RxR and Z X Z, respectively.

Before solving the preserver problem in this paradigm, we begin by developing some of the
results by Schoenberg and others on Pélya frequency functions and sequences. In fact we
begin even more classically: with a host of root-location results for zeros of real and complex
polynomials, which motivated the study of the Laguerre-Pdlya class of entire functions and
the Pdlya—Schur classification of multiplier sequences. After presenting these, we briefly
discuss modern offshoots of the Laguerre-Pdlya—Schur program, followed by Schoenberg’s
results. (Similarly, in the next part we also briefly discuss the Wallach set in representation
theory and probability.)

In Part 5, we return to the question studied in Part 2 above, of classifying the preservers
of all TN or TP kernels, on X x Y for arbitrary totally ordered sets X,Y. Here we provide
a complete resolution of this question. In a sense, the total positivity preserver problem
is the culmination of all that has come before in this text; it uses many of the tools and
techniques from the previous parts. These include (i) Vandermonde kernels, T'P kernel
completions of 2x 2 matrices, and Fekete’s result, from Part 1; (ii) entrywise powers preserving
positivity (via a trick of Jain to use Toeplitz cosine matrices), and the classification of total-
positivity preservers in finite dimension, from Part 2; (iii) the stronger Vasudeva theorem
classifying entrywise positivity preservers on low-rank Hankel matrices, from Part 3; and
(iv) preservers of Toeplitz kernels, including of Pdlya frequency functions and sequences,
from Part 4. We also develop as needed, set-theoretic tools and Whitney-type density results
— as well as understanding the structure and preservers of continuous Hankel kernels defined
on an interval. This latter requires results of Mercer, Bernstein, Hamburger, and Widder.

We remark that Part 4 contains — in addition to theorems found e.g. in Karlin’s book — very
recent results from 2020+ on Pélya frequency functions (and not merely their preservers),
which in particular are not found in previous treatments of the subject. To name a few:

e a characterization of Pélya frequency functions of order p, for any p > 3;

e strengthenings of multiple results of Karlin (1955) and of Schoenberg (1964);
e a converse to the same result of Karlin (1955);

e a critical exponent phenomenon in total positivity;



1. Introduction 7

e a closer look at a multiparameter family of density functions introduced by Hirschman
and Widder (1949); and
e a connection between Pdlya frequency functions and the Riemann hypothesis.

(Similarly, Part 2 of this text contains recent results on totally non-negative/positive matrices,
which are not found in earlier books on total positivity.) Thus, in a sense Parts 4 and 5 can
be viewed as “one possible sequel” to Karlin’s book and to the body of work by Schoenberg
on Pdlya frequency functions, since they present novel material on these classes of functions,
then use the “structural” results by the aforementioned authors about various families of
Toeplitz kernels to classify the preservers of various sub-families of these objects. In addition
to results of Schoenberg and his coauthors, as well as an authoritative survey of these results,
compiled in Karlin’s majestic monograph, both parts borrow from the author’s 2020 works
(one with Belton, Guillot, and Putinar).

In the final Part 6, we return to the study of entrywise functions preserving positivity in
a fixed dimension. This is a challenging problem — it is still open in general, even for 3 x 3
matrices — and we restrict ourselves in this part to studying polynomial preservers. According
to the Schur product theorem (1911), if the polynomial has all non-negative coefficients, then
it is easily seen to be a preserver; but, interestingly, until 2016 not a single example was
known of any other entrywise polynomial preserver of positivity in a fixed dimension n > 3.
Very recently, this question has been answered to some degree of satisfaction by the author,
in collaboration first with Belton, Guillot, and Putinar, and subsequently with Tao. The text
ends by covering some of this recent progress, and it comes back full circle to Schur through
symmetric function theory.

A quick note on the logical structure: Parts 1-5 are best read sequentially; note that
some sections do not get used later in the text, e.g. Sections [§] and and the Appendices.
That said, Part 4, which involves non-preserver results on Pdélya frequency functions and
sequences, can be read from scratch, requiring only Sections [6] and and Lemma [26.3] as
pre-requisites. The final Part 6 can be read following Section @] (also see the Schoenberg—
Rudin theorem and the Horn—Loewner theorem . We also point out the occurrence
of Historical notes and Further questions, which serve to acquaint the reader with past
work(er)s as well as related areas; and possible avenues for future work — and which can be
accessed from the Index at the end. (See also the Bibliographic notes at the end of each part
of the text.)

To conclude, thanks are owed to the scribes (listed below), as well as to Sayan Adhikari,
Alexander Belton, Shabarish Chenakkod, Projesh Nath Choudhury, Julian R. D’Costa, Sudip
Dolai, Dominique Guillot, Prakhar Gupta, Roger A. Horn, Sarvesh Ravichandran Iyer, Poor-
nendu Kumar, Gadadhar Misra, Frank Oertel, Aaradhya Pandey, Vamsi Pritham Pingali,
Paramita Pramanick, Mihai Putinar, Shubham Rastogi, Ritul, Aditya Guha Roy, Siddhartha
Sahi, Kartik Singh, Naren Sundaravaradan, G.V. Krishna Teja, Akaki Tikaradze, Raghaven-
dra Tripathi, Prateek Kumar Vishwakarma, Pranjal Warade, and Upamanyu Yaddanapudi
for helpful suggestions that improved the text. I am, of course, deeply indebted to my col-
laborators for their support and all of their research efforts in positivity — but also for many
stimulating discussions, which helped shape my thinking about the field as a whole and the
structure of this text in particular. Finally, I am grateful to the University Grants Commis-
sion (UGC, Government of India), the Science and Engineering Research Board (SERB) and
the Department of Science and Technology (DST) of the Government of India, the Council
for Scientific and Industrial Research (CSIR, Government of India), the Infosys Foundation,
and the Tata Trusts — for their support through a CAS-II grant, through a MATRICS grant
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and the Ramanujan and Swarnajayanti Fellowships and a DST-FIST grant, through a Shanti
Swarup Bhatnagar Prize, through a Young Investigator Award, and through their Travel
Grants, respectively.

Department of Mathematics, Indian Institute of Science
& Analysis and Probability Research Group
Bangalore, India
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Part 1: Preliminaries
2. THE CONE OF POSITIVE SEMIDEFINITE MATRICES. EXAMPLES. SCHUR COMPLEMENTS.

A kernel is a function K : X x Y — R. Broadly speaking, the goal of this text is to
understand: Which functions F : R — R, when applied to kernels with some notion
of positivity, preserve that notion? To do so, we first study the test sets of such kernels
K themselves, and then the post-composition operators F' that preserve these test sets. We
begin by understanding such kernels when the domains X, Y are finite, i.e., matrices.

In this text, we will assume familiarity with linear algebra and a first course in calcu-
lus/analysis. To set notation: an uppercase letter with a two-integer subscript (such as A, xn)
represents a matrix with m rows and n columns. If m,n are clear from context or unim-
portant, then they will be omitted. Three examples of real matrices are O.,xn, Lmxn, Idnxn,
which are the (rectangular) matrix consisting of all zeros, all ones, and the identity matrix,
respectively. The entries of a matrix A will be denoted a;;, a;, etc. Vectors are denoted by
lowercase letters (occasionally in bold), and are columnar in nature. All matrices, unless spec-
ified otherwise, are real; and similarly, all functions, unless specified otherwise, are defined
on — and take values in — R™ for some m > 1. As is standard, we let C, R, Q, Z, N denote the
complex numbers, reals, rationals, integers, and positive integers respectively. Given S C R,
let S=9 := SN0, 00).

2.1. Preliminaries. We begin with several basic definitions.

Definition 2.1. A matrix A, x, is said to be symmetric if a;, = a; for all 1 < 5,k < n.
A real symmetric matrix A, is said to be positive semidefinite) if the real number xT Az
is non-negative for all z € R™ — in other words, the quadratic form given by A is positive
semidefinite. If, furthermore, 27 Az > 0 for all z # 0 then A is said to be positive definite.
Denote the set of (real symmetric) positive semidefinite matrices by P,,.

We state the spectral theorem for symmetric (i.e., self-adjoint) operators without proof.

Theorem 2.2 (Spectral theorem for symmetric matrices). For A, x, a real symmetric matriz,
A =UTDU for some orthogonal matriz U (i.e., UTU = 1d) and real diagonal matriz D. D
contains all the eigenvalues of A (counting multiplicities) along its diagonal.

n
j=1
eigenvalue \;, and the v; (which are the columns of UT) form an orthonormal basis of R".

As a consequence, A = ) )\jvjva, where each v; is an eigenvector for A with real

We also have the following related results, stated here without proof: the spectral theorem
for two commuting matrices, and the singular value decomposition.

Theorem 2.3 (Spectral theorem for commuting symmetric matrices). Let A,xn and Bpxn
be two commuting real symmetric matrices. Then A and B are simultaneously diagonalizable,
i.e., for some common orthogonal matriz U, A= UTDiU and B = UTDyU for Dy and Do
diagonal matrices (whose diagonal entries comprise the eigenvalues of A, B respectively).

Theorem 2.4 (Singular value decomposition). Every real matrix Apyxn, # 0 decomposes as

A= Poxm (Zg 8) Qnxn, where P, Q) are orthogonal and X, is a diagonal matriz with
mXn

positive eigenvalues. The entries of 3, are called the singular values of A, and are the square

roots of the non-zero eigenvalues of AAT (or ATA).
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2.2. Criteria for positive (semi)definiteness. We write down several equivalent criteria
for positive (semi)definiteness. There are three initial criteria which are easy to prove, and a
final criterion which requires separate treatment.

Theorem 2.5 (Criteria for positive (semi)definiteness). Given Ay, xy a real symmetric matriz
of rank 0 < r < n, the following are equivalent:
(1) A is positive semidefinite (respectively, positive definite).
(2) All eigenvalues of A are non-negative (respectively, positive).
(3) There exists a matriz B € R"™ "™ of rank r, such that BB = A. (In particular, if A
is positive definite then B is square and non-singular.)

Proof. We prove only the positive semidefinite statements; minor changes show the corre-
sponding positive definite variants. If (1) holds and ) is an eigenvalue — for an eigenvector z
— then 27 Az = \||z||? > 0. Hence, A > 0, proving (2). Conversely, if (2) holds then by the
spectral theorem, A = Zj )\jvjv;ff with all A; > 0, so A is positive semidefinite:

ol Az = Z )\j:nijv]Tm = Z Aj(2Tv;)? >0, Vo € R".
J J

Next if (1) holds then write A = UT DU by the spectral theorem; note that D = UAU” has
the same rank as A. Since D has non-negative diagonal entries dj;, it has a square root VD,

/
which is a diagonal matrix with diagonal entries \/dj;. Write D = <DTXT 0 >,
0 O(n—'r)x(n—r)

where D’ is a diagonal matrix with positive diagonal entries. Correspondingly, write U =

<P'ET S ?( )>. If we set B := (VD'P | VD'Q),xn, then it is easily verified that
n—r)xX(n—r

BTH - PTD'P PTD'Q
- QTD/P QTD/Q
Hence, (1) == (3). Conversely, if (3) holds then #7 Az = ||Bz|? > 0 for all x € R™.

Hence, A is positive semidefinite. Moreover, we claim that B and BT B have the same null
space and hence the same rank. Indeed, if Bz = 0 then BT Bx = 0, while

BBz =0 =— 2'B"™Bx=0 = ||Bz|*=0 = Bz=0. O

> =UTDU = A.

Corollary 2.6. For any real symmetric matriz Apxn, the matriz A — Apin Idpxn 18 positive
semidefinite, where Amin denotes the smallest eigenvalue of A.

We now state Sylvester’s criterion for positive (semi)definiteness. (Incidentally, Sylvester
is believed to have first introduced the use of “matrix” in mathematics, in the nineteenth
century.) This requires some additional notation.

Definition 2.7. Given an integer n > 1, define [n] := {1,...,n}. Now given a matrix A,,x,
and subsets J C [m], K C [n], define Ajxx to be the submatrix of A with entries aj;, for
j € J,k € K (always considered to be arranged in increasing order in this text). If J, K
have the same size then det Ajx is called a minor of A. If A is square and J = K then
Ay i is called a principal submatriz of A, and det A j«x is a principal minor. The principal
submatrix (and principal minor) are leading if J = K = {1,...,m} for some 1 <m < n.

Theorem 2.8 (Sylvester’s criterion). A symmetric matriz is positive semidefinite (definite)
if and only if all its principal minors are non-negative (positive).

We will show Theorem with the help of a few preliminary results.
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Lemma 2.9. If A, «n is a positive semidefinite (respectively, positive definite) matriz, then
so are all principal submatrices of A.

Proof. Fix a subset J C [n] = {1,...,n} (so B := Ay« is the corresponding principal
submatrix of A), and let 2 € R’. Define 2/ € R" to be the vector, such that a:g = x; for

all j € J and 0 otherwise. It is easy to see that z’ Bx = (2/)T Az’. Hence, B is positive
(semi)definite if A is. O

As a corollary, all the principal minors of a positive semidefinite (positive definite) matrix
are non-negative (positive) since the corresponding principal submatrices have non-negative
(positive) eigenvalues and hence non-negative (positive) determinants. So one direction of
Sylvester’s criterion holds trivially.

Lemma 2.10. Sylvester’s criterion is true for positive definite matrices.

Proof. We induct on the dimension of the matrix A. Suppose n = 1. Then A is just an
ordinary real number, so its only principal minor is A itself, and so the result is trivial.

Now, suppose the result is true for matrices of dimension < n —1. We claim that A has at
least n — 1 positive eigenvalues. To see this, let A1, Ao < 0 be eigenvalues of A. Let W be the
n — 1 dimensional subspace of R™ with last entry 0. If v; are orthogonal eigenvectors for A;,
j = 1,2, then the span of the v; must intersect W nontrivially, since the sum of dimensions
of these two subspaces of R” exceeds n. Define u := cjv; + covo € W; then v’ Au > 0 by
Lemma [2.9] However,

ul Au = (clvf + czvg)A(clvl + couv9) = c%)\lﬂvlﬂz + c%)\2||v2||2 <0

thereby giving a contradiction and proving the claim.
Now since the determinant of A is positive (it is the minor corresponding to A itself), it
follows that all eigenvalues are positive, completing the proof. ([l

We will now prove the Jacobi formula, an important result in its own right. A corollary of
this result will be used, along with the previous result and the idea that positive semidefinite
matrices can be expressed as entrywise limits of positive definite matrices, to prove Sylvester’s
criterion for all positive semidefinite matrices.

Theorem 2.11 (Jacobi formula). Let A : R — R™ "™ be a matriz-valued differentiable
function. Letting adj(As) denote the adjugate matriz of Az, we have:
dA;

%(det Ay) =tr <adj(At)dt> : (2.12)

Proof. The first step is to compute the differential of the determinant. We claim that
d(det)(A)(B) = tr(adj(A)B), VA, B € R™".
As a special case, at A = Id,,xn, the differential of the determinant is precisely the trace.
To show the claim, we need to compute the directional derivative
. det(A+eB) —det A
lim .

e—0 €

The fraction is a polynomial in € with vanishing constant term (e.g., set € = 0 to see this);
and we need to compute the coefficient of the linear term. Expand det(A + eB) using
the Laplace expansion as a sum over permutations o € S,; now each individual summand
(=1)7 [Ti=1(ako(k) + €bro@r)) splits as a sum of 2" terms. (It may be illustrative to try and
work out the n = 3 case by hand.) From these 2" - n! terms, choose the ones that are linear
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in e. For each 1 < 4,5 < n, there are precisely (n — 1)! terms corresponding to eb;;; and
added together, they equal the (7, j)th cofactor Cj; of A — which equals adj(A);;. Thus, the
coefficient of € is

d(det)(A)(B) = Z Cijbij,
i,j=1
and this is precisely tr(adj(A)B), as claimed.
More generally, the above argument shows that if B(e) is any family of matrices, with limit
B(0) as € — 0, then
A+ eB — A
lim det(A + eB(e)) — det

e—0 €

= tr(adj(A)B(0)). (2.13)
Returning to the proof of the theorem, for ¢ € R small and t € R we write
Apye = Ay + €Ble)
where B(e) — B(0) := dd—‘? as € = 0, by definition. Now compute using (2.13)):
det(A; + eB(e)) — det A¢ dAy

d : .
%(det Ap) = 15% ; = tr(adJ(At)%). O

With these results in hand, we can finish the proof of Sylvester’s criterion for positive
semidefinite matrices.

Proof of Theorem [2.8, For positive definite matrices, the result was proved in Lemma [2.10]
Now suppose A, xn is positive semidefinite. One direction follows by the remarks preceding
Lemma [2.10, We show the converse by induction on n, with an easy argument for n = 1
similar to the positive definite case.

Now suppose the result holds for matrices of dimension < n — 1 and let A, x, have all
principal minors non-negative. Let B be any principal submatrix of A, and define f(¢) :=
det(B + t1d). Note that f’(t) = tr(adj(B + t1d)) by the Jacobi formula (2.12).

We claim that f/(t) > 0 V¢ > 0. Indeed, each diagonal entry of adj(B + tId) is the
determinant of a proper principal submatrix of A +tId,xn, say A’ +tIdgys. This submatrix
is positive definite since A’ is positive semidefinite by the induction hypothesis, and so 2 (A’ +
tIdgwr)z = 2T A’z + t]|z]|?> > 0 for € R¥ and ¢ > 0. Hence its determinant is positive, and
so f'(t) > 0.

The claim implies: f(t) > f(0) = det B > 0 V¢t > 0. Thus all principal minors of A + ¢1d
are positive, and by Sylvester’s criterion for positive definite matrices, A + t1d is positive
definite for all + > 0. Now note that 27 Az = lim;_,g+ 27 (A + tId,xy,)x; therefore the non-
negativity of the right-hand side implies that of the left-hand side for all x € R"™, completing
the proof. O

2.3. Examples of positive semidefinite matrices. We next discuss several examples.
2.3.1. Gram matrices.

Definition 2.14. For any finite set of vectors x1,...,x, € R™, their Gram matriz is given

by Gram((x;);) := ({xj, Xk))1<j k<n-
A correlation matriz is a positive semidefinite matrix with ones on the diagonal.

In fact, we need not use R™ here; any inner product space/Hilbert space is sufficient.

Proposition 2.15. Given a real symmetric matric A,xn, it is positive semidefinite if and
only if there exist an integer m > 0 and vectors X1, ..., %, € R™, such that A = Gram((x;);).
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As a special case, correlation matrices precisely correspond to those Gram matrices for
which the x; are unit vectors. We also remark that a “continuous” version of this result is
given by a well-known result of Mercer [261]. See Theorem [39.9]

Proof. If A is positive semidefinite, then by Theorem we can write A = BT B for some
matrix By, xn. It is now easy to check that A is the Gram matrix of the columns of B.

Conversely, if A = Gram(xi,...,x,) with all x; € R™, then to show that A is positive
semidefinite, we compute for any u = (u1, ..., u,)’ € R™
2
n n
ul Au = Z ujug (X, Xg) = Zujxj > 0. O
Jk=1 j=1

2.3.2. (Toeplitz) Cosine matrices.
Definition 2.16. A matrix A = (a;i) is Toeplitz if a;, depends only on j — k.

Lemma 2.17. Let 61,...,6, € [0,27]. Then the matriz C := (cos(0; — 0k))7,_, is positive
semidefinite, with rank at most 2. In particular, alyxy, + BC has rank at most 3 (for scalars
a, B), and it is positive semidefinite if o, f > 0.

Proof. Define the vectors u,v € R™ via u’ = (cosfy,...,cos6,), vI = (sinfy,...,sind,).
Then C = uu® +wvov? via the identity cos(a —b) = cos a cos b+ sin asin b, and clearly the rank
of C is at most 2. (For instance, it can have rank 1 if the 6; are equal.) As a consequence,

al,x, + BC = alnlg + Buu® + Bov”
has rank at most 3; the final assertion is straightforward. O

As a special case, if 01,...,0, are in arithmetic progression, i.e., 0,11 —0; = 6 Vj for some
0, then we obtain a positive semidefinite Toeplitz matrix

1 cos@ cos?260

cos 0 1 cosf cos?260 .
C — | cos20 cosO 1 cosf cos?260
cos260 cosf 1 cos@ cos?260

This family of Toeplitz matrices was used by Rudin in a 1959 paper [306] on entrywise
positivity preservers; see Theorem for his result.

2.3.3. Hankel matrices.

Definition 2.18. A matrix A = (a;i) is Hankel if aj;, depends only on j + k.

Example 2.19. (0 1) is Hankel but not positive semidefinite.

10
1z 22 1
Example 2.20. For each 2 > 0, the matrix [ z 2% 23| = [ » (1 T x2) is Hankel
2?2 23 ot z?

and positive semidefinite of rank 1.
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1 z z?
x a’:2 1'3 DY
A more general perspective is as follows. Define H, := | ;2 ;3 ;4 ... |, and let 0,

be the Dirac measure at + € R. The moments of this measure are given by s(d;) =
Jz y* dé.(y) = 2¥, k > 0. Thus, H, is the “moment matrix” of §,. More generally, given any
non-negative measure u supported on R, with all moments finite, the corresponding Hankel
moment matriz is the bi-infinite “matrix” given by

So S1 S2
81 52 83 DY
Hy = So 83 S4 - | where sj, = sg(p) = /Ryk du(y). (2.21)

Lemma 2.22. The matriz H,, is positive semidefinite. In other words, every finite principal
submatriz is positive semidefinite.

Note, this is equivalent to every leading principal submatrix being positive semidefinite.

Proof. Fix n > 1 and consider the finite principal (Hankel) submatrix H }’L with the first n
rows and columns. Let H (’Sz be the Hankel matrix defined in a similar manner for the measure
0., € R. Now to show that H L is positive semidefinite, we compute for any vector u € R™:

uTH/’Lu = / u’ Hj u dp(z) = /((1,1’, oz Hu)? du(x) >0,
R R

where the final equality holds because H </5x has rank 1 and factorizes as in Example
(Note that the first equality holds because we are taking finite linear combinations of the
integrals in the entries of H},.) O

Remark 2.23. Lemma is (the easier) half of a famous classical result by Hamburger.
The harder converse result says that if a semi-infinite Hankel matrix is positive semidefinite,
with (j,k)-entry sji for j,k > 0, then there exists a non-negative Borel measure on the
real line whose kth moment is s, for all k¥ > 0. This theorem will be useful later; it was
shown by Hamburger in 1920-21, when he extended the Stieltjes moment problem to the
entire real line in the series of papers [162]. These works established the moment problem in
its own right, as opposed to being a tool used to determine the convergence or divergence of
continued fractions (as previously developed by Stieltjes — see Remark .

There is also a multivariate version of Lemma, which is no harder than the lemma,
modulo notation:

Lemma 2.24. Given a measure i on R? for some integer d > 1, we define its moments for
tuples of non-negative integers n = (ny,...,ng) via

d
snu::/xnd,ux:/ z dp,
= [ e = [ T1

if these integrals converge. (Here, x™ := j:r?j.) Now suppose > 0 on R? and let W :
(22 — 720 be any bijection, such that W(0) = 0 (although this restriction is not really
required). Define the semi-infinite matriz Hy, = (ajk)7%—o via ajk = Sy-1()ywu-1(k), where
we assume that all moments of p exist. Then H,, is positive semidefinite.
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Proof. Given a real vector u = (ug,u1,...)? with finitely many non-zero coordinates, we
have

u'Hau= Z / ujukxlp_l(j)"‘q’_l(k) dp(x) :/ ((1,><\p_1(1),x\r1(2)7 Co)u)? du(x) > 0.
R4 R4

J,k=>0
([l

2.3.4. Matrices with sparsity. Another family of positive semidefinite matrices involves matri-
ces with a given zero pattern, i.e., structure of (non)zero entries. Such families are important
in applications, as well as in combinatorial linear algebra, spectral graph theory, and graphical
models/Markov random fields.

Definition 2.25. A graph G = (V, E) is simple if the sets of vertices/nodes V' and edges E
are finite, and E contains no self-loops (v,v) or multi-edges. In this text, all graphs will be
finite and simple. Given such a graph G = (V, E), with node set V' = [n| = {1,...,n}, define

Pg:={AcP, : aj,=0if j #k and (j,k) ¢ E}, (2.26)

where P, comprises the (real symmetric) positive semidefinite matrices of dimension n.
Also, a subset C' C X of a real vector space X is conver if Av + (1 — N)w € C for all
v,w e C and X € [0,1]. If instead aC' C C for all a € (0,00), then we say C' is a cone.

Remark 2.27. The set P is a natural mathematical generalization of the cone P, (and
shares several of its properties). In fact, two “extreme” special cases are: (i) G is the
complete graph, in which case P¢g is the full cone P, for n = |V|; and (ii) G is the empty
graph, in which case P¢ is the cone of |V| x |V diagonal matrices with non-negative entries.
Akin to both of these cases, for all graphs G, the set Py is in fact a closed convex cone.

Example 2.28. Let G = {{v1,v2,v3}, {(v1,v3), (v2,v3)}}. The adjacency matrix is given by

0 0 1
Ag =10 0 1]. Thisis not in Pg (but Ag — Amin(Ag) Idsxs € Pg, see Corollary |2.6)).
1 10

Example 2.29. For any graph G with node set [n], let D¢ be the diagonal matrix with (7, j)
entry the degree of node j, i.e., the number of edges adjacent to j. Then the graph Laplacian,
defined to be Lg := Dg — A (where Ag is the adjacency matrix), is in Pg.

Example 2.30. An important class of examples of positive semidefinite matrices arises from
the Hessian matrix of (suitably differentiable) functions. In particular, if the Hessian is
positive definite at a point, then this is an isolated local minimum.

2.4. Schur complements. We mention some more preliminary results here; these may be
skipped for now but will get used in Lemma [9.5] below.

P Q
R S
singular, the Schur complement of M with respect to S is given by M/S := P — QS™'R.

Definition 2.31. Given a matrix M = < >, where P and S are square and S is non-

Schur complements arise naturally in theory and applications. As an important ex-
ample, suppose Xi,...,X, and Yi,...,Y,, are random variables with covariance matrix

Y= ( ;T g), with C non-singular. Then the conditional covariance matrix of X given Y

is Cov(X|Y) := A— BC~'BT = ¥/C. That such a matrix is also positive semidefinite is
implied by the following folklore result by Albert in SIAM J. Appl. Math in 1969.
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A B
BT C /)’
matriz X is positive (semi)definite if and only if the Schur complement X/C' is thus.

Theorem 2.32. Given a symmetric matriz X = with C' positive definite, the

Proof. We first write down a more general matrix identity: for a non-singular matrix C' and
a square matrix A, one uses a factorization shown by Schur in 1917 in J. reine angew. Math.:

A B\ _(ld BCY\ (A-BC'B" 0 Id 0 (2.33)
B c¢) \0o Id 0 c)\c B 1d)° '

(Note, the identity matrices on the right have different sizes.) Now set B’ = BT; then

_ —1pT
Y = XTY X, where X = C}ldBT I?i) is non-singular, and Y = (A B(()j B g) is

block diagonal (and real symmetric). The result is not hard to show from here.

Akin to Sylvester’s criterion, the above characterization has a variant for when C' is positive
semidefinite; however, this is not as easy to prove, and requires a more flexible “inverse”:

Definition 2.34 (Moore—Penrose inverse). Given any real mxn matrix A, the pseudo-inverse
or Moore-Penrose inverse of A is an n x m matrix A! satisfying: AATA = A, ATAA = Af,
and (AAT)mxm, (ATA)an are symmetric.

Lemma 2.35. For every Apmxn, the matriz Al exists and is unique.

¥, 0

Proof. By Theorem [2.4] write A = P ( 0 0

)Q, with Pxm, @Qnxn orthogonal, and X,

0 0

works as a choice of Af. To show the uniqueness: if AJ{,A; are both choices of Moore—
Penrose inverse for a matrix A;,«n, then first compute using the defining properties:

AA} = (AALA)A] = (A4D)T(AA]DT = (ADT(AT(A)TAT) = (4)"AT = (Aah)" = a4l
Similarly, ATA = AT A, so AT = AT(44T) = AT(44]) = (AT4)A] = (AT 4) Al = Al O

-1 T
containing the non-zero singular values of A. It is easily verified that QT (E’" 0) pT

Example 2.36. Here are some examples of the Moore—Penrose inverse of square matrices.
(1) If D = diag(A1, ..., Ar,0,...,0), with all Aj # 0, then DV = diag(5-, ..., -,0,...,0).
(2) If A is positive semidefinite, then A = U7 DU where D is a diagonal matrix. It is
easy to verify that AT = UTDIU.
(3) If A is non-singular then AT = A=1,

We now mention the connection between the positivity of a matrix and its Schur comple-
ment with respect to a singular submatrix. First, note that the Schur complement is now
defined in the expected way (here S, M are square), i.e., as follows:

M= <Z g) —  M/S:=P-QS'R, (2.37)
Now the proof of the following result can be found in standard textbooks on matrix analysis.
Theorem 2.38. Given a symmetric matriz X = BAT g) , with C not necessarily invertible,

the matriz X is positive semidefinite if and only if the following conditions hold:
(1) C is positive semidefinite.
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(2) The Schur complement ¥./C' is positive semidefinite.
(3) (1d—CCHBT = 0.
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3. SCHUR PRODUCT THEOREM. TOTALLY POSITIVE/NON-NEGATIVE MATRICES.
EXAMPLES.

3.1. The Schur product. We now make some straightforward observations about the set
P,,. The first is that P, is topologically closed, convex, and closed under scaling by positive
multiples (a “cone”).

Lemma 3.1. P, is a closed, convex cone in R™*",
Proof. All properties are easily verified using the definition of positive semidefiniteness. []

If A and B are positive semidefinite matrices, then we expect the product AB to also be
positive semidefinite. This is true if AB is symmetric.

Lemma 3.2. For A, B € P,, if AB is symmetric then AB € P,,.
Proof. In fact, AB = (AB)T = BTAT = BA, so A and B commute. Writing A = U7 DU
and B = UT DyU as per the Spectral theorem for commuting matrices, we have

T (AB)x = 2T (UT DU - U DoU)2 = 27U (D1 Do)Ux = ||/ D1D2Uz||* > 0.
Hence, AB € P,. O

Note, however, that AB need not be symmetric even if A and B are symmetric. In this
case, the matrix AB certainly cannot be positive semidefinite; however, it still satisfies one of
the equivalent conditions for positive semidefiniteness (shown above for symmetric matrices),
namely, having a non-negative spectrum. We prove this with the help of another result,
which shows the “tracial” property of the spectrum.

Lemma 3.3. Given Ayxm, Bmxn, the non-zero eigenvalues of AB and BA (and their mul-
tiplicities) agree.
(Here, “tracial” suggests that the expression for AB equals that for BA, as does the trace.)

Proof. Assume without loss of generality that 1 < m < n. The result will follow if we can

show that det(AId,xn —AB) = A" " det(A Idy,xm —BA) for all A\. In turn, this follows from

the equivalence of characteristic polynomials of AB and BA up to a power of A, which is why

we must take the union of both spectra with zero. (In particular, the sought-for equivalence

would also imply that the non-zero eigenvalues of AB and BA are equal up to multiplicity).
The proof finishes by considering the two following block matrix identities

0 Adyxm B Idpxm /) AB Adxm )’

Id,xn 0 Ad,n A ~(AMdpxn A
—B  Adyxm B Idmxm ) 0 Md,,xm —BA) "

Note that the determinants on the two left-hand sides are equal. Now, equating the deter-
minants on the right-hand sides and canceling A" shows the desired identity

det(Adpxn —AB) = A" det(AIdyxm —BA) (3.4)

for A # 0. But since both sides here are polynomial (hence continuous) functions of A, taking
limits implies the identity for A = 0 as well. (Alternately, AB is singular if n > m, which
shows the identity for A = 0.) O

With Lemma [3.3| at hand, we can prove the following:

Proposition 3.5. For A,B € P,, AB has non-negative eigenvalues.
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Proof. Let X = /A and Y = VAB, where A = UTDU = +A = UTV/DU. Then
XY = AB and YX = VABVA. In fact, YX is (symmetric and) positive semidefinite, since

7Y Xz = |VBVAz|?, VxeR™

It follows that Y X has non-negative eigenvalues, so the same holds by Lemma [3.3]for XY =
AB, even if AB is not symmetric. O

We next introduce a different multiplication operation on matrices (possibly rectangular,
including row or column matrices), which features extensively in this text.

Definition 3.6. Given positive integers m,n, the Schur product of A,xn and By, «n is the
matrix Cpyxpn With cjp = ajrbji for 1 < j <m, 1 <k < n. We denote the Schur product by
o (to distinguish it from the conventional matrix product).

Lemma 3.7. Given integers m,n > 1, (R™*™ + o) is a commutative associative algebra.

Proof. The easy proof is omitted. More formally, R™*" under coordinatewise addition and

multiplication is the direct sum (or direct product) of copies of R under these operations. [

Remark 3.8. Schur products occur in a variety of settings in mathematics. These include
the theory of Schur multipliers (introduced by Schur himself in 1911 [329], in the same paper
where he shows the Schur product theorem , association schemes in combinatorics,
characteristic functions in probability theory, and the weak minimum principle in partial
differential equations. Another application is to products of integral equation kernels and
the connection to Mercer’s theorem (see Theorem . Yet another, well-known result
connects the functional calculus to this entrywise product: the Daletskii-Krein formula (1956)
expresses the Fréchet derivative of f(-) (the usual “functional calculus”) at a diagonal matrix
A as the Schur product/multiplier against the Loewner matrix Ly of f (see Theorem .
More precisely, let (a,b) C R be open, and f : (a,b) — R be C'. Choose scalars a < x1 <
<+ <z < band let A :=diag(xy,..., ). Then Daletskii and Krein [98] showed:
(Df)(A)(C) = %f(A +XC)|  =Lg(x1,...,x1)0C, VO =C*eCH (3.9
A=0

where Ly has (j, k) entry %ﬁim) if j # k, and f’(z;) otherwise. A final appearance of the

Zj

Schur product that we mention here is to trigonometric moments. Suppose f1,fo : R - R
are continuous and 27-periodic, with Fourier coefficients / trigonometric moments

2 )
ag.’“) ::/ e k0 £.0)do,  j=1,2, ke
0

If one defines the convolution product of fi, fa, via

2m
(f1*x f2)(0) == ; fi(t) f2(0 —¢) dt,
then this function has corresponding kth Fourier coefficient agk)agk). Thus, the bi-infinite
Toeplitz matrix of Fourier coefficients for f1 * fo equals the Schur product of the Toeplitz

agp—q)) (p—q)

matrices ( paez and (ay )p ez

Remark 3.10. The Schur product is also called the entrywise product or the Hadamard
product in the literature; the latter is likely owing to the famous paper by Hadamard [160]
in Acta Math. (1899), in which he shows (among other things) the Hadamard multiplication
theorem. This relates the radii of convergence and singularities of two power series » >0 @ 2
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and > >0 bjz’ with those of Y >0 ajb;z). This “coefficientwise product” will recur later in
this text, when we discuss Mald’s theorem 3), in the context of Pdlya—Schur multipliers.

Before proceeding further, we define another product on matrices of any dimensions.

Definition 3.11. Given matrices Ay, xn, Bpxq, the Kronecker product of A and B, denoted
A ® B is the mp x ng block matrix, defined as:

anB a2B - a,B

an B  axB - ayB
A® B = .

amB ameB - amnB

While the Kronecker product (as defined) is asymmetric in its arguments, it is easily seen
that the analogous matrix B ® A is obtained from A ® B by permuting its rows and columns.

The next result, by Schur in J. reine angew. Math. (1911), is important later in this text.
We provide four proofs.

Theorem 3.12 (Schur product theorem). P, is closed under o.

Proof. Suppose A, B € P,,; we present four proofs that Ao B € P,,.
(1) Let A, B € IP,, have eigenbases (\;,v;) and (g, wy), respectively. Then,

(A® B)(vj @ wi) = Ajpup(v; @ wy), V1< jk<n. (3.13)

It follows that the Kronecker product has spectrum {A;u}, and hence is positive
(semi)definite if A, B are positive (semi)definite. Hence, every principal submatrix
is also positive (semi)definite by Lemma But now observe that the principal
submatrix of A ® B with entries a;bi is precisely the Schur product A o B.

(2) By the spectral theorem and the bilinearity of the Schur product,

n n n
A= Z /\jvjvJT, B = Z,ukwkw,z — AoB= Z Ajpk(vj o wg)(vj o fwk)T.
j=1 k=1 Jk=1
This is a non-negative linear combination of rank-1 positive semidefinite matrices,
hence lies in P,, by Lemma
(3) This proof uses a clever computation. Given any commutative ring R, square matrices
A, B € R™™" and vectors u,v € R", we have

u” (Ao B)v = tr(BTD,AD,), (3.14)

where D, denotes the diagonal matrix with diagonal entries the coordinates of v (in
the same order). Now if R =R and A, B € P,(R), then

v" (Ao B)v = tr(AD,B" D,) = tr(A?*D, BT D,A'/?).

But AY/2D,BD,A'? is positive semidefinite, so its trace is non-negative, as desired.
(4) Given t > 0, let X,Y be independent multivariate normal vectors centered at 0 and
with covariance matrices A+t 1d,,xn, B+t Id, x5, respectively. (Note that these always
exist.) The Schur product of X and Y is then a random vector with mean zero and
covariance matrix (A +tId,xp) o (B +t1d,xy). Now the result follows from the fact
that covariance matrices are positive semidefinite, by letting ¢t — 0. g

Remark 3.15. The first of the above proofs also shows the Schur product theorem for
(complex) positive definite matrices: If A, B € P,(C) are positive definite, then so is their
Kronecker product A ® B, hence also its principal submatrix A o B, the Schur product.
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The Schur product theorem is “qualitative” — it says M o N > 0 if M, N > 0. In the
century after its formulation, tight quantitative non-zero lower bounds have been discovered.
For instance, in Linear Algebra Appl., Fiedler—Markham (1995) and Reams (1999) showed

MoN > Amin(N)(MoIann)a

(3.16)

MoN > M, if det(N) > 0.

1
1"N-11
We now give a lower bound by Khare, first obtained in a weaker form by Vybiral (2020):

Theorem 3.17. Fizx integers a,n > 1 and non-zero matrices A, B € C"**. Then we have
the (rank < 1) lower bound

! daprd}
min(tk AA*, tk BB*) AB"TABT
where given a square matric M = (mjy), the column vector dy = (mj;). Moreover, the
coefficient 1/ min(-,-) is best possible.

AA* o BB* >

We make several remarks here. First, if A, B are rank 1, then a stronger result holds: we
get equality above (say unlike in (3.16)), for instance). Second, reformulating the result in
terms of M = AA* N = BB* says that M o N is bounded below by many possible rank-1
submatrices, one for every (square) matrix decomposition M = AA*, N = BB*. Third, the
result extends to Hilbert—Schmidt operators, in which case it again provides non-zero positive
lower bounds — and in a more general form even on P, (C); see a 2021 paper in Proc. Amer.
Math. Soc. by Khare (following its special case in 2020 in Adv. Math. by Vybiral). Finally,
specializing to the positive semidefinite square roots A = v/ M and B = v/N yields a novel
connection between the matrix functional calculus and entrywise operations on matrices:

1
> — k
MoN = mm(rk(M),rk(N))dfM\/NdrM\/ﬁ’

Proof. We write down the proof as it serves to illustrate another important tool in matrix
analysis: the trace form on matrix space C**%. Compute using (3.14)):

uw*(AA* o BB*)u = tr(BBT DgAA*D,,) = tr(T*T), where T := A*D,B.
Use the inner product on C**¢ given by (X,Y) := tr(X*Y). Define the projection operator

VM, N € P,(C), n> 1.

P = proj(ker AL |im(BT);
thus, P € C**% Now compute
(P, P) < min(dim(ker A)*, dim im(BT)) = min(rk(A*), rk(B*)) = min(rk(AA*),rk(BB*)).
Here we use that AA* and A* have the same null space, since
Az =0 = AA*z=0 = ||[A*z]|? =0 = A*z =0,
and hence the same rank. Now using the Cauchy—Schwarz inequality (for this tracial inner
product) and the above computations, we have
(4 A¥ " (T, P)* _ [te(APB"Dg)|> _ |u*dsppr|®
AA* o BB )u=(T,T) > = -
AT BB =T = Tp ) P.P) (P.P)

1
> * y .
- min(rk(AA*),rk(BB*))u dapprdyppr

As this holds for all vectors u, the result follows because by the choice of P, we have APBT =
ABT.
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Finally, to see the tightness of the lower bound, choose integers 1 < r, s < a with r, s < n,
and complex block diagonal matrices

o DTX?“ 0 N D;Xs 0
ATLX[I L < 0 O) 9 BTLX(Z L < 0 0) )

with both D, D" non-singular. Now P = Idin(y,s) ©0q—min(r,s), and the inequality is indeed
tight, as can be verified using the Cauchy—Schwarz identity. O

Remark 3.18. Vybiral also provided a simpler lower bound for Schur products for square
matrix decompositions: if A, B € C"*", then

AA* o BB* > (Ao B)(Ao B)*,

where both sides are positive semidefinite. Indeed, if v;,w, denote the columns of A, B
respectively, then AA* = Zj vjv; and BB* = >k WEWY, SO
n n
AA* o BB* = ) (vv]) o (wgwy) = > _(vj o w;)(v] ow}) = (Ao B)(Ao B)*,

3.2. Totally Positive (T'P) and Totally Non-negative (T'N) matrices.

Definition 3.19. Given an integer p > 1, we say a matrix is totally positive (totally non-
negative) of order p, denoted T'P, (T'Np), if all its 1 x 1,2 x 2,..., and p X p minors are
positive (non-negative). We will also abuse notation and write A € TP, (A € TN,) if A is
TP, (T'Np). A matrix is totally positive (T'P) (respectively, totally non-negative (IT'N)) if A
is TP, (respectively T'N,) for all p > 1.

Remark 3.20. In classical works, as well as the books by Karlin and Pinkus, totally non-
negative and totally positive matrices were referred to, respectively, as totally positive and
strictly totally positive matrices.

Here are some distinctions between T'P/T'N matrices and positive (semi)definite ones:

e For TP/T N matrices we consider all minors, not just the principal ones.

e As a consequence of considering the 1 x 1 minors, it follows that the entries of TP
(T'N) matrices are all positive (non-negative).

e TP/TN matrices need not be symmetric, unlike positive semidefinite matrices.

1 2. .. . . 1 0).
31 6> is totally positive, while the matrix <0 1) is totally
non-negative but not totally positive.

Example 3.21. The matrix <

Totally positive matrices and kernels have featured in the mathematics literature in a
variety of classical and modern topics. A few of these topics are now listed, as well as a few
of the experts who have worked/written on them:

e Interacting particle systems, mechanics, and physics (Gantmacher—Krein), see [137,
138 and follow-up papers, as well as [74] and the references therein.

e Analysis (Aissen, Edrei, Pdlya, Schoenberg, Whitney, Hirschman and Widder), see
Part 4 for details. (Also Loewner [241] and the author, including with Belton-Guillot—
Putinar [32, 29] and [215].)

e Differential equations and applications — see, e.g., Loewner [241], Schwarz [332], the
book of Karlin [200], and numerous follow-ups, e.g. [254].

e Probability and statistics (Efron, Karlin, McGregor, Pitman, Rinott), see, e.g., [109,
199, 200, 201, 202, 204}, 205], 218|, 283] and numerous follow-ups.
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e Matrix theory and applications (Ando, Cryer, Fallat, Garloff, Johnson, Pinkus, Sokal,
Wagner), see, e.g., [12, 93], 94 112] 113|139 140, 14T, 282} 357].
e Gabor analysis (Grochenig, Romero, Stockler), see [148) [149] and related references.
e Interpolation theory and splines — see, e.g., numerous works by Schoenberg (e.g., with
Curry, Whitney), de Boor, Karlin, Micchelli (e.g., [59, 95, 06, 206, 262 319, 327]).
e Combinatorics (Brenti, Gessel-Viennot, Karlin-McGregor, Lindstrom, Skandera, Sturm-
fels), see, e.g., [69, [70), 142, 202} 238|339, [349] and follow-up works, for example, [362].
e Representation theory, flag varieties, and canonical bases (Goodearl-Launois-Lenagan,
Lusztig, Postnikov, Rietsch), e.g., [146, 245, 246, 292, 299, 300] and follow-up papers.
e Cluster algebras (Berenstein, Fomin, Zelevinsky), see, for example, [35], 36, 87, 125
126], 127] and numerous follow-up papers.

e Quadratic algebras, Witt vector theory (Borger, Davydov, Grinberg, H6 Hai, Skryabin),
see [66] [67, [99] 177, [340].

e Integrable systems (Kodama, Williams), see, e.g., [221], 222].

A very important, and widely used, property of TN, matrices and kernels K is their
variation diminishing property. Roughly speaking, if a vector u (or a function f on an
interval J) has finitely many sign changes in its values, say s, then the vector Ku (or the
function [; K(u,x) dz) has at most min(p, s) sign changes. In Math. Z. in 1930, Schoenberg
showed that if K is a TN matrix, then S™(Kz) < S™(x) Vo € R™. (See Section for a
proof.) A characterization of such matrices was then shown by Motzkin in his thesis:
Theorem 3.22 (Motzkin, 1936, [263]). The following are equivalent for a matriz K € R™*"™:

(1) K is variation diminishing: S~ (Kz) < S™(z) Vo € R". Here, S™(x) for a vector x
denotes the number of changes in sign, after removing all zero entries in x.

(2) Let K have rank r. Then K should not have two minors of equal size < r but opposite
signs; and K should not have two minors of equal size = r but opposite signs if these
minors come from the same rows or columns of K.

In this section and the next two, we discuss examples of T'N matrices. We begin by
showing that the (positive semidefinite) Toeplitz cosine matrices and Hankel moment matrices
considered above are in fact totally non-negative.

Example 3.23 (Toeplitz cosine matrices). We claim that the following matrices are T'N:

C(0) := (cos(j — k)0)} =1, where 0 € [0, ﬁ]

Indeed, all 1 x 1 minors are non-negative, and as discussed above, C'(f) has rank at most 2,

and so all 3 x 3 and larger minors vanish. It remains to consider all 2 x 2 minors. Now a 2 x 2

submatrix of C(#) is of the form C’ = <gab g‘w), where 1 <a<d<n, 1<b<c<n,
a  Cde

and Cy, denotes the matrix entry cos((a — b)f). Writing a, b, ¢, d in place of af,b6, cf,df in

the next computation for ease of exposition, the corresponding minor is

1
det C" = 5{2 cos(a — b) cos(d — ¢) — 2 cos(a — ¢) cos(d — b) }
1
= i{cos(a—bde—c)+Cos(a—b—d—|-c)—cos(a—c+d—b)—cos(a—c—d—l—b)}
= %{cos(a— b—d+c)—cos(la—c—d+Db)} = %(—2) sin(a — d) sin(c — b).

Thus, det C’ = sin(df — af) sin(cf — bh), which is non-negative because a < d,b < ¢, and

6 € [0, ﬁ] This shows that C(#) is totally non-negative.
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4. FEKETE’S RESULT. HANKEL MOMENT MATRICES ARE I'N. HANKEL POSITIVE

SEMIDEFINITE AND TN MATRICES.

Continuing from the previous section, we show that the Hankel moment matrices H,
studied above are not only positive semidefinite, but more strongly, totally non-negative
(T'N). Akin to the Toeplitz cosine matrices (where the angle 6 is restricted to ensure the
entries are non-negative), we restrict the support of the measure to [0, c0), which guarantees
that the entries are non-negative.

To achieve these goals, we prove the following result, which is crucial in relating positive
semidefinite matrices (and kernels) and their preservers, to Hankel T'N matrices (and kernels)
and their preservers, (later in this text):

Theorem 4.1. If 1 < p < n are integers, and Apxn is a real Hankel matriz, then A is TP,
(T'Ny) if and only if all contiguous principal submatrices of both A and AW of order < p,
are positive (semi)definite, Here AW s obtained from A by removing the first row and last
column; and by a contiguous submatriz (or minor) we mean (the determinant of) a square

submatriz corresponding to successive rows and to successive columns.
In particular, A is TP (TN ) if and only if A and AV are positive (semi)definite.

From this theorem, we derive the following two consequences, both of which are useful
later. The first follows from the fact that all contiguous submatrices of a Hankel matrix are
Hankel, hence symmetric:

Corollary 4.2. For all integers 1 < p < n, the set of Hankel TN, n x n matrices is a closed,
convex cone, further closed under taking Schur products.

The second corollary of Theorem provides a large class of examples of such Hankel T'IN
matrices:

Corollary 4.3. Suppose p is a non-negative measure supported in [0,00), with all moments
finite. Then H, is TN.

The proofs are left as easy exercises; the second proof uses Lemma

Remark 4.4. Akin to Lemma and the remark following its proof, Corollary is also
the easy half of a well-known classical result on moment problems — this time, by Stieltjes.
The harder converse of Stieltjes’ result says (in particular) that if a semi-infinite Hankel
matrix H is TN, with (j,k)-entry s;; > 0 for j,k > 0, then there exists a non-negative
Borel measure p on R with support in [0,00), whose kth moment is s for all £ > 0. By
Theorem this is equivalent to both H as well as H(®) being positive semidefinite, where
HW is obtained by truncating the first row (or the first column) of H.

In the 1890s, Stieltjes was working on continued fractions and divergent series, following
Euler, Laguerre, Hermite, and others. One result that is relevant here is that Stieltjes pro-
duced a non-zero function ¢ : [0,00) — R, such that [ 2Fp(x) de =0 forall k = 0,1,. ..
— an indeterminate moment problem. (The work in this setting also led him to develop the
Stieltjes integral; see, e.g., [220] for a detailed historical account.) This marks the beginning
of his exploration of the moment problem, which he resolved in his well-known memoir [347].

A curious follow-up, by Boas in Bull. Amer. Math. Soc. in 1939, is that if one replaces the
non-negativity of the Borel measure p by the hypothesis of being of the form da(t) on [0, 00)
with « of bounded variation, then this recovers all real sequences! See [53].
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The remainder of this section is devoted to showing Theorem 4.1 The proof uses a sequence

of lemmas shown by Gantmacher—Krein, Fekete, Schoenberg, and others. The first of these
lemmas may be (morally) attributed to Laplace.

Lemma 4.5. Let r > 1 be an integer and U = (ujx) an (r +2) x (r + 1) matriz. Given
subsets [a,b], [c,d] C (0,00), let Ulyp)x(c,q) denote the submatriz of U with entries uji, such
that j, k are integers and a < 7 < b, c < k <d. Then
det Up ryufra2yx(1,r41) - det Ul ry1yx (1,7
= det Upg rq2)x[1,r+1) - A€t Ut ) [1,0] (4.6)
+ det Upprigx[1,0+1] - det Upg pjugrt2yx (1,0
Note that in each of the three products of determinants, the second factor in the subscript

for the first (respectively second) determinant terms is the same: [1,r+1] (respectively [1,7]).
To give a feel for the result, the special case of = 1 asserts that

Uiy U2
U21  U22

Uil U2
U3y u32

U1 U222
u3r uU32

Uil

But this is precisely the Laplace expansion along the third column of the singular matrix

Uil U2 U1l
det | wg1 w0y w9y | = 0.
U3zl U2 U3l

Proof. Consider the (2r + 1) x (2r + 1) block matrix of the form

bT wir | b”
A a | A (wk); (wir);
M=|cT Upslr4+1 | pva _ < (J ‘ J)§[1,T+2],ke[1,r+1] j ]06[1,7"+2],k€[1,r]> :
AT upyori1 | d’ Ujk)je(2,r], ke[1,r+1] (r—1)xr
\A a | 0(7"—1)><7"/
that is, where
a— (U2,r+17 . ,’U/r,'r—l—l)T’ b :(uLl, . 7U1’,,.)T’ c = (ur—l-l,l; . 7ur+1,r)T,
d= (i1, trgar)’s A= (uj)ocjicr 1<h<r

Notice that M is a square matrix whose first » 4+ 2 rows have column space of dimension
at most r + 1; hence det M = 0. Now we compute det M using the (generalized) Laplace
expansion by complementary minors: choose all possible (7 4 1)-tuples of rows from the first
r + 1 columns to obtain a submatrix M (’T +1y) and deleting these rows and columns from M
yields the complementary r x r submatrix M(’; ) from the final r columns. The generalized

Laplace expansion says that if one multiplies det M (’T ) det M (’; ) by (—1)*, with ¥ the sum

of the row numbers in M (’ then summing over all such products (running over subsets of

r+1)’
rows) yields det M — which vanishes for this particular matrix M.

Now in the given matrix, to avoid obtaining zero terms, the rows in M (’r +1) must include

all entries from the final » — 1 rows (and the first » + 1 columns). But then it, moreover,
cannot include entries from the rows of M labeled 2,...,r; and it must include two of the
remaining three rows (and entries from only the first » + 1 columns).

Thus, we obtain three product terms that sum to: det M = 0. Upon carefully examining
the terms and computing the companion signs (by row permutations), we obtain (4.6). O
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The next two results are classical facts about totally positive matrices, first shown by

Fekete in his correspondence [I18] with Pélya, published in Rend. Circ. Mat. Palermo. (As
an aside, that correspondence was published in 1912 under the title “Uber ein Problem von
Laguerre”. This problem — from Laguerre’s 1883 paper — and its connection to T'N matrices

and to the variation diminishing property alluded to in the preceding section, are discussed
in detail in Section [29.3])

Lemma 4.7. Given integers m >n > 1 and a real matriz Ay,xn, such that

(a) all (n —1) x (n —1) minors det A jx[1n—1) > 0 for J C[1,m] of sizen —1, and
(b) all n x n minors det Ajj 41 jinjxi,n) >0 for 0 <j <m—n,

we have that all n x n minors of A are positive.

Proof. Define the gap, or “index” of a subset of integers J = {j; < jo < -+ < jn} C [1,m],
to be g7 := jn — j1 — (n — 1). Thus, the gap is zero if and only if J consists of successive
integers, and in general it counts precisely the number of integers between j; and j, that are
missing from J.

We claim that det A (1) > 0 for |J| = n, by induction on the gap g; > 0; the base case
gs = 0 is given as hypothesis. For the induction step, suppose j° is a missing index (or row
number) in J = {j; < --- < j,}. By suitably specializing the identity (4.6), we obtain

det A(jlﬂ'“’jn)x[l’n] ’ det A(jQV"'zjn—lij)X [1777‘71]

= det Ay, g g0)x(n) - deb A, gy x(1n-1] (4.8)
—det A, g1 - E A g x(Ln-1-

Consider the six factors in serial order. The first, fourth, and sixth factors have indices
listed in increasing order, while the other three factors have j° listed at the end, so their
indices are not listed in increasing order. For each of the six factors, the number of “bubble
sorts” required to rearrange indices in increasing order (by moving j° down the list) equals the
number of row exchanges in the corresponding determinants; label these numbers nq, ..., ng.
Thus, ny = ng = ng = 0 as above, while ny = ng (since j; < 7° < j,), and |ng — ns| = 1.
Now multiply Equation by (—1)"2, and divide both sides by

Ccy = (-1)”2 det A(j27_n7jn71’j0)><[17,1_1] > O

Using the given hypotheses as well as the induction step (since all terms involving j° have a
gap equal to gy — 1), it follows that

det Ay, ju)x[1,n]
= ¢y (1" det Ay, joyxiin - det A, x1n-1)
+ (1) det Ag,, o)1)+ deb Ay x(10-1)
> 0.
This completes the induction step, and with it, the proof. ]

We can now state and prove another 1912 result by Fekete for T'P matrices — extended to
TP, matrices by Schoenberg in Ann. of Math. 1955:

Lemma 4.9 (Fekete-Schoenberg lemma). Suppose m,n > p > 1 are integers, and A € R™*"
is a matriz, all of whose contiguous minors of order at most p are positive. Then A is TP,.

Notice that the analogous statement for T'N), is false, e.g., p =2 and A = (1 8 ?)
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Proof. We show that for any integer s € |I,p|, every s X s minor of A is positive. The proof

is by induction on s (and running over all real matrices satisfying the hypotheses); note that
the base case of s = 1 is immediate from the assumptions. For the induction step, suppose

2<s=|J|=|K|<p, JcCZn[l,m], KCZN[ln].

First fix a subset K that consists of consecutive rows, i.e., has gap gx = 0 (as in the proof of
Lemma et B denote the submatrix A[j )« . Then all s X s minors of B are positive,
by Lemma 4.7} In particular, it follows for all J that all s X s minors det Ay« i+ are positive,
whenever K/ C [1,n] has size s and gap g = 0. Now apply Lemma to the matrix
B := (Ajxpiq)" to obtain: det(Asx)” > 0 for (possibly non-consecutive subsets) K. This
concludes the proof. O

The final ingredient required to prove Theorem is the following result:

Lemma 4.10. If A, xy, is a Hankel matriz, then every contiguous minor of A (see Lemma
is a contiguous principal minor of A or of AW,

Recall that A®) was defined in Theorem ﬂ

Proof. Let the first row (respectively, last column) of A contain the entries sg, s1,. .., Sp—1
(respectively, sp—_1,8n,...,Sm—2). Then every contiguous minor is the determinant of a
submatrix of the form
Sj PEEY S‘]+m
M = : : , 0<i<j+m<n—1.
Sj+m tt o Sj+2m

It is now immediate that if j is even (respectively odd), then M is a contiguous principal
submatrix of A (respectively A1), O

With these results in hand, we conclude by proving the above theorem.

Proof of Theorem[{.1] If the Hankel matrix A is TN, (T'P,), then all contiguous minors of
A of order < p are non-negative (positive), proving one implication. Conversely, suppose
all contiguous principal minors of A and A of order < p are positive. By Lemma
this implies every contiguous minor of A of order < p is positive. By the Fekete-Schoenberg
Lemma A is TP, as desired.

Finally, suppose all contiguous principal minors of A, A1) or size < p are non-negative. It
follows by Lemma that every contiguous square submatrix of A of order < p is positive
semidefinite. Also choose and fix an n x n Hankel TP matrix B (note by or Lemma
below that such matrices exist for all n > 1). Applying Lemma B, BM are positive
definite, hence so is every contiguous square submatrix of B. Now for € > 0, it follows (by
Sylvester’s criterion, Theorem that every contiguous principal minor of A + eB of size
< p is positive. Again applying Lemma @l, the Hankel matrix A + eB is necessarily TP,
and taking ¢ — 0T finishes the proof.

The final statement is the special case p = n. O
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5. GENERALIZED VANDERMONDE MATRICES. CAUCHY—BINET FORMULA AND ITS
GENERALIZATION.

The previous sections discussed examples (Toeplitz, Hankel) of totally non-negative (T'N)
matrices. These examples consisted of symmetric matrices.

o We will now look at some examples of non-symmetric matrices that are totally positive
(T'P). We then prove the Cauchy-Binet formula, which will lead to the construction
of additional examples of symmetric T'P matrices.

o Let H, := (sj4r(1t))jk>0 denote the moment matrix associated to a non-negative
measure g supported on [0,00). We have already seen that this matrix is Hankel and
positive semidefinite — in fact, TN. We will show in this section and the next that
H,, is in fact TP in many cases. The proof will use a continuous generalization of the
Cauchy—Binet formula.

5.1. Generalized Vandermonde Matrices. A generalized Vandermonde matrix is a ma-
trix (az?‘k);kzl, where z; > 0 and o € R for all j. If the x; are pairwise distinct, as are
the ag, then the corresponding generalized Vandermonde matrix is non-singular. In fact, a

stronger result holds:

Theorem 5.1. If 0 < z1 < -+ < Xy, and a; < -+ < «p are real numbers, then the
generalized Vandermonde matriz Vi, xn = (:CJO”“) 1s totally positive.

As an illustration, consider the special case m = n and o« = k — 1, which recovers the
usual Vandermonde matrix

n—1
1z - 2y .
n—
1 ‘/132 e 1‘2
V:

This matrix has determinant H (xp —xj) > 0. Thus, if 0 < 21 < 23 < -+ < x,, then
1<j<k<n

det V' > 0. However, note this is not enough to prove that the matrix is totally positive.

Thus, more work is required to prove total positivity, even for usual Vandermonde matrices.

The following 1637 result by Descartes will help in the proof. (Curiously, this preliminary

result is also the beginning of a mathematical journey that led to both total positivity and

to the variation diminishing property! See Section for the details.)

Lemma 5.2 (Descartes’ rule of signs, weaker version). Fiz pairwise distinct real numbers
ay,Q,...,a, € R and n scalars c1,ca,...,c, € R, such that not all scalars are 0. Then the
function f(x) := > p_; ckx™ can have at most (n — 1) distinct positive roots.

The following proof is due to Laguerre (1883); that said, the trick of multiplying by a
faster-decaying function and applying Rolle’s theorem was previously employed by Poulain
in 1867. See Theorem [33.3

Proof. By induction on n. For n = 1, clearly f(z) has no positive root. For the induction
step, without loss of generality we may assume a; < az < --- < ay and that all ¢; are
non-zero. If f has n distinct positive roots, then so does the function

n
glx) =" f(x)=c1 + Z cpx™k T,
k=2
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But then Rolle’s theorem implies that ¢/(z) = Y 1_, ck(ag —ap)z* =~ has (n—1) distinct
positive roots. This contradicts the induction hypothesis, completing the proof. ]

With this result in hand, we can prove that generalized Vandermonde matrices are T'P.

Proof of Theorem [5.1] As any submatrix of V is also a generalized Vandermonde matrix, it
suffices to show that the determinant of V' is positive when m = n.

We first claim that detV # 0. Indeed, suppose for contradiction that V is singular.
Then there is a non-zero vector ¢ = (¢, ca, ... ,cn)T, such that Ve = 0. But then there
exist n distinct positive numbers 1, x2, ..., 2y, such that ;. cxx7* = 0, which contradicts
Lemma [5.2{ for f(z) = ;_, cxxz®. Thus, the claim follows.

We now prove the theorem via a homotopy argument. Consider a (continuous) path
v : [0,1] = R™ going from ~v(0) = (0,1,...,n — 1) to v(1) = (a1, 9,...,q,), such that at
each timepoint ¢ € [0,1], the coordinates of v(¢) are in increasing order. It is possible to
choose such a path; indeed, the straight line geodesic path is one such path.

Now let W (t) := det (ac;’“(t))zk_:l. Then W : [0,1] — R is a continuous map that never
vanishes. Since [0, 1] is connected and W(0) > 0 (see remarks above), it follows that W (1) =
det V > 0. O

Remark 5.3. If we have 0 < z,, < 1 < -+ < z1 and a,, < ap,_1 < -+ < ai, then

observe that the corresponding generalized Vandermonde matrix V' := (33;)"“ )? s is also T'P.

Indeed, once again we only need to show det V’ > 0, and this follows from applying the same
permutation to the rows and to the columns of V' to reduce it to the situation in Theorem
(since then the determinant does not change in sign).

5.2. The Cauchy—Binet formula. The following is a recipe to construct new examples of
TP/TN matrices from known ones.

Proposition 5.4. If A,xn, Buxi are both TN, then so is the matriz (AB)y,xk. This asser-
tion is also valid upon replacing “I'N” by “T'P”, provided n > min{m, k}.

To prove this proposition, we require the following important result.

Theorem 5.5 (Cauchy—Binet formula). Given matrices Apxyn and Bpxm, we have

det(AB)mxm = det(Ap ) det(B ), (5.6)

JC[n] of size m
where J' reiterates the fact that the elements of J are arranged in increasing order.

For example, if m = n, this theorem just reiterates the fact that the determinant map is
multiplicative on square matrices. If m > n, the theorem says that determinants of singular
matrices are zero. If m = 1, we obtain the inner product of a row and column vector.

Proof. Notice that
n n
Db o D abiam

j1=1 ]mzl
det(AB) = det

n n
> tmibiit Y G bjm

J1=1 Jm=1 mxm
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By the multilinearity of the determinant, expanding det(AB) as a sum over all j; yields
Aij; 0 Algy,
det(AB) = Z bjllijQ s bjmm - det :
(j17j2a"'7j7n)6[n]m amjl LR amjm
The determinant in the summand vanishes if ji = j,, for any k # m. Therefore,
A1y 0 Ay
det(AB) = > biy1bjya - Djpm - det | :

(J1,925--,m) €M™, Amiy  *°°  Gmj
all j; are distinct mi mm

= Z bj11bja2 -+ bjm - det Apnyx (s g, jin) -

(jlijQ""vjm)E[n]m7
all j; are distinct

We split this sum into two subsummations. One part runs over all collections of indices,
while the other runs over all possible orderings — that is, permutations — of each fixed collection

of indices. Thus, for each ordering j = (ji,...,Jm) of J = {j1,...,Jm}, there exists a unique
permutation oj € Sp,, such that (ji,...,Jm) = O'j(JT). Now,
det(AB) = Z Z bjllbj22 e bjmm(—l)aj det A[m]xJT
J={j1,j2,--,dm }C[n], all j; distinct o0=0;€Sm
= > det(Apyesr) det(B ity m)- O

JC[n] of size m

Proof of Proposition[5.) Suppose two matrices Ay, x, and By, are both TN. Let I C [m]
and K C [k] be index subsets of the same size; we are to show det(AB)rxx is non-negative.
Define matrices, A" := A, and B’ := By, xx. Now it is easy to show that (AB);xx =
A'B’. In particular, det(AB);xx = det(A’B’). Hence, the Cauchy-Binet theorem implies

det(AB)pxx =y det A} detB)y o= > detAp rdet By g >0. (5.7)
JC|[n], JC|n],
|J|=|K|=|1] [J1=IK|=|{]
It follows that AB is T'N if both A and B are T'N. For the corresponding T P-version, the
above proof works as long as the sums in the preceding equation are always over non-empty
sets; but this happens whenever n > min{m, k}. O

Remark 5.8. This proof shows that Proposition holds upon replacing TN/TP by TP,
for any 1 < p <mn. (E.g. the condition TP, coincides with T'P,_; if min{m, k} < n.)

5.3. Generalized Cauchy—Binet formula. We showed in Section that generalized
Vandermonde matrices are examples of totally positive but non-symmetric matrices. Using
these, we can construct additional examples of totally positive symmetric matrices: let V =

(l’?k)?kzl be a be a generalized Vandermonde matrix with 0 < 1 < 29 < -+ < x, and

o] < ag < -+- < ap. Then Proposition implies that the symmetric matrices V7V and
VVT are totally positive.
For instance, if we take n = 3 and ap = k — 1, then

3 3
1z a2 . 33 Z§:1 Ly Zg:l x?
V=|[1 mg , ViV = Z§:1 T Zg:l 5 Z§:1 3 (5.9)
L 3 a3 2 =1 m? > i1 1’? > 37?
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This is clearly the Hankel moment matrix H,, for the counting measure on the set {1, z2, z3}.
Moreover, VIV is (symmetric and) totally positive by the Cauchy-Binet formula. More gen-
erally, for all increasing oy, which are in arithmetic progression, the matrix V7V (defined
similarly as above) is a totally positive Hankel moment matrix for some non-negative mea-
sure on [0, 00) — more precisely, supported on {z{?~*, 52~ .. x0T}

The following discussion aims to show (among other things) that the moment matrices H,
defined in are totally positive for “most” non-negative measures p supported in [0, 00).

We begin with by studying functions that are TP or T'N.

Definition 5.10. Let X, Y C Rand K : X xY — R be a function. Given p € N, we say
K(z,y) is a totally non-negative/totally positive kernel of order p (denoted T'N, or T'P,) if
for any integer 1 <n < pandelements 1 < xo < - <zaxp € Xandy; <yo < - <yp, €Y,
we have det K (x;,yx)7)_, is non-negative (positive). Similarly, we say that the kernel K :
X xY — Ris totally non-negative/totally positive it K is TN, (or T'P,) for all p > 1.

Example 5.11. The kernel K(x,y) = €™ is totally positive, with X =Y = R. Indeed,
choosing real numbers 1 < 9 < --- <z, and y; < Y2 < -+ < Yp, the matrix (% )?kzl —
((e% )yk);‘ w—1 is a generalized Vandermonde matrix, hence TP, so its determinant is positive.

We next generalize the Cauchy—Binet formula to TP/TN kernels. Let X,Y,Z C R and

1 be a non-negative Borel measure on Y. Let K(z,y) and L(y, z) be “nice” functions (i.e.,
Borel measurable with respect to Y'), and assume the following function is well defined:

M:X xZ—R, M(z,z) = /YK(;U,y)L(y, 2)du(y). (5.12)

For example, consider K(z,y) = ™ and L(y,z) = e¥*. Take X = Z = {a1,a2,..., a5}
and Y = {log(z1),log(z2),...,log(xy,)}, such that 0 < z1 < 23 < -+ < 2z, and a1 < ag <
-+ < ay. Finally, let 1 denote the counting measure on Y. Then M («y, ) = Z?:l :U;)”x;”“
So (M (i, o)) kg = VTV, where V = (23*)} 1= is a generalized Vandermonde matrix.

In this “discrete” example (i.e., where the support of u is a discrete set), det M is shown
to be positive using the total positivity of V, VT and the CauchyBinet formula. In fact, this

phenomenon extends to the more general setting above as follows:

Exercise 5.13 (Pélya—Szegd, Basic Composition formula, or Generalized Cauchy—Binet for-
mula). Suppose X,Y,Z C R and K(z,y),L(y, z), M(z,z) are as above. Then using an
argument similar to the above proof of the Cauchy—Binet formula, show that

M(xl,zl) M(xl,zm)
det : . :
M(l‘m, Zl) s M(.’L‘m, Zm) (5.14)

— / - / det( (i, 7))y - det(L(wj, 2)) ey T disws).
Y1<y2<-+<ym in Y 3=1

Remark 5.15. In the right-hand side of Equation (5.14)), we may also integrate over the
region y; < --- < 9y, in Y, since matrices with equal rows or columns are singular.
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6. HANKEL MOMENT MATRICES ARE 1T'FP. ANDREIEF’S IDENTITY. DENSITY OF TP IN
TN.

6.1. Total positivity of H, for ‘most’ measures; Andréief’s identity. Continuing from
the previous section with the generalized Cauchy—Binet formula of Pélya—Szeg6, from ([5.14))
and Remark we obtain the following consequence:

Corollary 6.1. (Notation as in the previous section.) If the kernels K and L are both TN,
for some integer p > 0 (or even TN ), then so is M, where M was defined in (5.12). If
instead, K and L are T'P, kernels, where p < |supp(p)|, then so is M.

We will apply this result to the moment matrices H,, defined in (2.21)). We begin more
generally: suppose Y C R and v : Y — (0,00) is a positive and strictly increasing function,
all of whose moments exist with respect to some non-negative measure pu:

/ u(y)" du(y) < oo, Vn > 0.
Y

Then we claim:

Proposition 6.2. The kernel M : R x R — R, given by

M(n,m) := /Yu(y)’”m dp(y)
is TN as well as TPy, |, where Y, :=supp(p) C Y is finite or infinite.

Proof. To show M is T Py, |, the first claim is that the kernel K'(n,y) := u(y)" is TP on RxY".

Indeed, we can rewrite K (n,y) = e"°8((), Now given increasing tuples of elements n; € R

and y € Y, the matrix K(n;,y) is TP, by the total positivity of e*¥ (see Example |5.11]).
Similarly, L(y,m) := u(y)™ is also TP on Y x R. The result now follows by Corollary

That M is TN follows from the same arguments, via Remark O

This result implies the total positivity of the Hankel moment matrices (2.21). Indeed,
setting u(y) = y on domains Y C [0, c0), we obtain:

Corollary 6.3. Suppose Y C [0,00) and p is a non-negative measure on Y with infinite
support. Then the moment matriz H,, is totally positive (of all orders).

We now show a result that will be used to provide another proof of the preceding corollary.

Theorem 6.4 (Andréief’s identity, 1883). Suppose Y C R is a bounded interval, n > 0 is
an integer, and f1, fo,..., fn; 91,92,...,9n - Y — R are integrable functions with respect to
a positive measure i on Y. Definey := (y1,...,Yn), and

K(y) = (fily))ij=1, L) = (i) jp=1, M = </Yf@-(y)gk(y) du(y)>

n
ik=1

Then,

det s’ = [ oo [ det(x(y)) der(Ly)) [[dntwy). (65)
] 11
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Proof. We compute, beginning with the right-hand side:

/ / det(K(y)) det(L H dp(y;)

=) sgn(a)sgn(T)H / To() (i) g7y (y5) dp(y;).
=17

o,TESR

Let B = o7~!. Then a change of variables shows that this expression equals

= sgn(fB H/ gT(J fBT ])( ) du(y)

TBGS

- Zdet(/f” 99 () iy ))

TES,
= nldet M'. O

n

ik=1

As a special case, let u : Y — R be positive and strictly increasing, and set f;(y) =
u(y)™, gr(y) = u(y)™ for all 1 <14,k <n and increasing sequences of integers ny; < ng < ---

and m; < mg < ---. Then the matrix M’ has (i, k) entry / u(y)™ ™ du(y). Now using
Y
Andréief’s identity — and the analysis from earlier in this section — we obtain a second proof
of Proposition
In particular, specializing to u(y) = y and Y C [0,00) reproves the total positivity of
moment matrices H,, for measures 1 > 0 with infinite support in Y. In this case we have

nj =mj = j—1for j =1,...,n. The advantage of this proof (over using the generalized
Cauchy—Binet formula) is that we can compute det M’ ‘explicitly’ using Andréief’s identity:

M’ = (sipa(u))mys  Sishoo(n) = /Y Y dp(y),
(6.6)
det M’ = n‘/y — )% du(yr)du(ys) - - - du(yn).

1<r<s<n
(This uses the Vandermonde determinant identity det K(y) = det L(y) = H (ys — yr).)
1<r<s<n

6.2. Density of TP matrices in T'N matrices. We will now prove an important density
result due to Whitney in J. d’Analyse Math. (1952). Standard/well-known examples of such
results are:

(1) Every square real matrix can be approximated by non-singular real matrices.
(2) Symmetric non-singular real matrices are dense in symmetric real matrices.
(3) n x n positive definite matrices are dense in P,.

The goal of this section is to prove the following

Theorem 6.7 (Whitney density). Given positive integers m,n > p, the set of TP, m x n
matrices is (entrywise) dense in the set of TN, m X n matrices.

In order to prove this theorem, we first prove a lemma by Pdlya.
Lemma 6.8 (Pdlya). For all o > 0, the Gaussian kernel Tz, : R x R — R given by
T, (e,y) = e 70"
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18 totally positive.

Note that the function f(z) = e~°*" is such that the TP kernel Tg, (,y) can be rewritten
as f(z —y). Such (integrable) functions on the real line are known as Pdlya frequency (PF)
functions, and we will study these functions — and their preservers — in detail in Sections

and 38
Proof. Given real numbers z1 < z9 < -+ <z, and y1 < y3 < -+ < Y, We have:

(TGU (xj’ yk’))?,k:l = (e—amj2€2crxjyk e—O'ykZ )nk

Jk=1
620113’1 e 620'371@/7‘1
w2 ) ) , o2
= diag(e™7"")7, : . : diag(e 7" )p_1,
620'-1'ny1 e 620-x”y"
and this has positive determinant by the previous section (see Example [5.11)). O

In a similar vein, we have the following:
Lemma 6.9. For all 0 > 0, the kernel H,, : R x R — R, given by
Hy(x,y) := 7010

is totally positive. In particular, the kernels Ty, (from Lemma and H/ provide examples
of TP Toeplitz and Hankel matrices, respectively.

Proof. The proof of the total positivity of H. is similar to that of Tz, above, and hence left
as an exercise. To obtain TP Toeplitz and Hankel matrices, akin to Example we choose
any arithmetic progression x1, ..., x, of finite length, and consider the matrices with (j, k)th
entry Tq, (z;, ) and H](z;,xy), respectively. O

Now we come to the main proof of this section.

Proof of Theorem [6.7 Let Ay, xp be TN, of rank r. Define for each integer m > 0 the matrix
(Ga,m)mxm = (e—g(j—k)Q)ZLk:h
A(0) = GomAGop.

Note that G, is TP by Lemma and Ggpm — Idpxm as 0 — oo. Now as the product
of totally non-negative matrices is totally non-negative (Proposition [5.4)), and Gy, is non-
singular for all m, we have that A(c) is T'N,, of rank r.

(6.10)

Claim 6.11. A(0) is T'Pyin(rp)-

Proof. For any s < min(r,p), let J C [m]|, K C [n] of size s. Using the Cauchy-Binet
Formula, we compute:

det A(o)sxx = > det(Gom)sxr det Apyns det(Gop) k-
LC[m], MCJn]
|L|=|M|=s
Now note that for all 1 < k& < min(r,p), at least one k x k minor of A is positive, and all
other k£ x k minors are non-negative. Combined with the total positivity of Gy, and Gg p,
this shows that det A(0)sxx > 0. This concludes the proof. O



6. Hankel moment matrices are T'P. Andréief’s identity.

42 Density of T'P matrices in T'N matrices.
Returning to the proof of the theorem, if » > p then the TP matrices A(c) approximate

A as o — oo; thus the proof is complete.
For the remainder of the proof, assume that A and A(o) both have rank r < p. Define

1
A(l) = A(O’) + —Fq1,
o
where FEj; is the elementary m x n matrix with (1,1) entry 1, and all other entries 0.

Claim 6.12. A is TN, of rank r + 1.

Proof. Fix an integer 1 < s < p and subsets J C [m], K C [n] of size s. Now consider the
s X s submatrix A(JliK If1¢Jorl¢ K, then we have: det ASQK = det A(o)jxx > 0,

whereas if 1 € J N K, then expanding along the first row or column shows that A() is TNp:
1
det AfjliK = det A(U)JxK + ; det(A(U))J\{l}XK\{l} > 0.

As A, A(o) have rank r, and we are changing only one entry, all the (r+2) x (r+2) minors
of AN have determinant 0. Now an easy computation yields:

1 1
det AV yyy = det A(0) iy + — det A()pap i<y > 0,
where the last inequality occurs because A(c) is T'F, (shown above) and det A(0)(41)x[r41] =

0. Thus the rank of AM is r + 1. O

Returning to the proof: note that A™) also converges to A as ¢ — co. Inductively repeating
this procedure, after (p — r) iterations we obtain a matrix AP~ via the procedure

AP (5) == Gy AW Gy, ARFY = AW (5) 4 Lo (6.13)
g

Moreover, AP~ is a TN, matrix with rank p. As min(r,p) = p for this matrix, it follows
that AP~ (o) is TP, with AP~")(g) = AP~ (g) = ... = A as 0 — oo. Thus, A can be
approximated by T'P, matrices, and the proof is complete. O

We now make some observations that further Whitney’s theorem. First, this density
phenomenon also holds upon restricting to symmetric matrices:

Proposition 6.14. Given positive integers n > p, the set of symmetric TP, n X n matrices
is (entrywise) dense in the set of symmetric TN, n x n matrices.

Proof. The proof of Theorem goes through verbatim; at each step, the resulting matrix
is symmetric. ]

Second, a careful analysis of the above proof further shows that

A(U)jk _ Z e—a(j—l)2alm€—a(m—k)2 > ajp
lm

Thus, given A,x, that is T'N, (possibly symmetric) and ¢ > 0, there exists By,x, that is
TP, (possibly symmetric) such that 0 < bj;, — aji < € for all j, k.

Remark 6.15. In fact we can further refine this: by working with B(o) for such B, we can
insist on 0 < bj —aji < e. From this it follows that given a (possibly symmetric) T'N,, matrix
Apxn, there exists a sequence B; of m x n matrices, all of them TP, (and symmetric if A
is), such that B; — A entrywise as [ — oo, and moreover for all j, k,

(B1)jk > (B2)jk > -+ > (Bi)jk > -+ > ajg.
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7. (NON-)SYMMETRIC TP COMPLETION PROBLEMS.

The main question in matrix completion problems is as follows. Given a partially filled
matrix (that is, a partial matrix), do there exist choices for the ‘missing’ entries such that
the resulting matrix has specified properties?

1 0 7 1 0 a
For example: can |2 7 7| be completed to a Toeplitz matrix? Yes: |2 1 0],
?7 7 7 b 2 1

for arbitrary a,b. Similarly, the above partial matrix can be completed to a non-singular,
singular, or totally non-negative matrix. However, it cannot be completed to a Hankel or a
symmetric Toeplitz matrix, nor to a positive (semi)definite or totally positive matrix. These
are examples of some matrix completion problems. Similarly, one can ask if matrices with
specified entries extend to kernels on more general domains.

In this section, we discuss three TP completion problems. The first is to understand which
2 x 2 matrices can ‘embed in’ (or ‘extend to’) TP matrices — or even T'P kernels:

b

Theorem 7.1 (2 x 2 TP kernel completions). Suppose A = <(CL d

) € R2X2. The following

are equivalent:

(1) For any m,n > 2 and specified pairs of rows and columns J C [m], K C [n] respec-
twely, the matriz A can be completed to a multiple of a generalized Vandermonde
(and hence TP) matriz Ap,xn such that (A)jxx = A.

(2) For any totally ordered sets X, Y with sizes | X|,|Y| > 2 which admit a TP kernel on
X xY, and pairs of indices (x1 < x2) in X and (y1 < y2) in'Y, the matriz A can be
completed to a TP kernel K on X xY, such that K[(z1,x2); (y1,y2)] = A.

(3) AisTP.

We will also show in Theorem [7.4] below, a ‘symmetric’ variant of this equivalence. To
show these results, we first need to understand for which totally ordered sets X,Y do there
exist TP kernels on X x Y. Note, this is not possible for all X,Y". For instance, if |Y| > |R|
(e.g. Y is the power set of R) and |X| > 2, then fix 1 < x2 in X. Now any real kernel on
X x Y cannot be T'P or even TP, since when restricted to {z1,z2} x Y, it contains two
equal columns by the pigeonhole principle as |Y| > |R2|.

At the same time, T P; kernels can exist on X x Y for any totally ordered sets X,Y —e.g.,
the constant kernel 1 xyy .

Thus, we begin by classifying all domains on which TP, kernels exist. Interestingly, they
always embed in the positive semi-axis:

Lemma 7.2. Given non-empty totally ordered sets X, Y, the following are equivalent:

(1) There exists a TP kernel on X x Y.

(2) There exists a TPy kernel on X x Y.

(8) At least one of X,Y is a singleton, or there exist order-preserving maps from X,Y
into (0,00).

The same equivalence holds if Y = X and K is symmetric: K(x,y) = K(y,x) forallz,y € X.

Proof. We prove a chain of cyclic implications. Clearly (1) implies (2). Now suppose (3)
holds. If X or Y is a singleton then the kernel K = 1xyy proves (1). Otherwise, we
identify X,Y with subsets of (0,00) as given; now (1) follows by considering the kernels

Ki(z,y) := exp+(x £ 9)? as in Lemmas and
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Finally, we assume (2) and show (3). Suppose |X|,|Y| > 2. Fix 21 < z2 in X; since K is
TPs, it is an easy exercise to show that the ‘ratio function’

w(y) = K(x%y)/K(xlvy)a yey

is a strictly increasing function of y. This yields the desired order-preserving injection v :
Y < (0,00); the same argument works for X, implying (3).
This proof applies verbatim if Y = X and we consider symmetric kernels K. ([l

Proof of Theorem [7.1] Clearly, (1) or (2) both imply (3); and (1) is a special case of (2), so
we will show (3) = (2). (In fact with Lemma|7.2] at hand, we first embed X, Y into R and
then extend A to a generalized Vandermonde kernel, thereby proving a stronger statement
than (2), which now clearly implies/specializes to (1).) First use Lemma(7.2] to identify X, Y

with subsets of (0,00); then work with the TP matrix <gz §Z> for some scalar 8 > 0. We
claim there exists § > 0 such that this matrix is of the form (a:?"“)?,czl = (exp(ag-log xj))?,k:l
—i.e., a generalized Vandermonde matrix — where either z; < z9, a1 < ag or T1 > T3, 1 > Qo.
But the latter case reduces to the former, by using 1/x; and —oy, instead.

Thus, if the claim holds, then we may suppose A embeds in / can be completed to the
rescaled Vandermonde kernel K (z,y) = S~ 'e* (noting that z¥ = ¢¥1°87)., Now consider
the two unique (increasing) linear maps ¢x, ¢y : R — R, which change the ‘position’ of the
chosen rows and columns to the specified positions, either to draw from K an m x n TP
matrix as in (1), or a TP kernel K on X x Y as in (2): K(z,y) := 87 exp(ox(z)ey (y)).

Thus, it remains to show the above claim. For this, we repeatedly appeal to the total
positivity of generalized Vandermonde matrices (27*) with z; and oy, either both increasing

or both decreasing. See Theorem and Remark

Case 1: Suppose three of the four entries a,b,c,d are equal (note that all four cannot be
equal). Then up to rescaling, the possible matrices are

(x 1 (11 (1 (11

where A > 1> p > 0. Now Ay,..., Ay are of the form (x;”“
(1"1?1‘2?0‘1?0‘2) = ()\,1,1,0), (1,,&,1,0), (Ua17071)¢ (17)‘7071)'

For Aq, As, choosing any xo > 3 > -+ >z, > 0and 0 > ag > - -+ > «,, we are done. The

other two cases are treated similarly.

) with (respectively)

Case 2: Suppose two entries in a row or column are equal (but three entries are not). Up
to rescaling, the possible matrices are

11 5 51 1

and 0 <y < d. Now Af,..., A} are generalized Vandermonde matrices (z}*) with
(xlax%alva?) = (176710g77 10g5)7 (671710g5710g7)7 (5777170)7 (77 570a1)7
respectively. The result follows as in the previous case.

Case 3: In all remaining cases, {a,d} is disjoint from {b,c}. Set a; = 1, and claim that
there exist scalars §,x1,z2 > 0 and as € R such that

a b 1 x?
5(6 d):(é x§2> (7.3)
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To see why, denote L := log(3) for > 0, as well as A = log(a) (this is used locally only in
the claim of this proof), B = log(b) etc. Now applying log entrywise to both sides of (7.3)),

L+A L+ B\ (logz1 aglogz
L+C L+D) \logxs aglogxs)’

Taking determinants, we obtain:
BC - AD
(A+D)—(B+C)’

where A+ D > B + C since ad > be. Now check that z1 = eLa, To = eLc, a9 = ﬁi—ﬁ satisfies

the conditions in (7.3). (Note here that by the assumptions on a,b, ¢, d, the sum L + A is
non-zero, as are L + B, L+ C, L + D also.) This shows the claim.

a2

To complete the proof, we need to check that (il i}m) is a generalized Vandermonde
2 A2

(L+A)(L+D)—(L+B)L+C)=0 = L=

matrix. Since x1 # x2 by choice of a, ¢, there are two cases. If x1 < x9, then a < ¢, so
(r1/x2)*? =b/d < afc=mz1/xa <1 = 9> 1.
Hence we indeed get a generalized Vandermonde matrix (:c?’“ )2x2 with increasing z; and

increasing . The case when z1 > z9 is similarly verified. g

The second T'P completion result embeds symmetric 2 x 2 T'P matrices into symmetric
TP matrices or kernels, again in ‘any position’. This result, like Theorem [7.1} is used in a
later part of this text to classify total-positivity preservers of kernels on general domains.

Theorem 7.4 (Symmetric 2 x 2 kernel completions). Suppose A = <Z l;) € R?*2. The

following are equivalent:

(1) For any n > 2 and specified pair J C [n] of rows and columns, the matrix A can be
completed to a symmetric (in fact Hankel) TP matrix gnm such that (E)ij = A.

(2) For any totally ordered set X of size at least 2 which admits a TP kernel on X x X,
and any pair of indices (x1 < x2) in X, the matriz A can be completed to a symmetric
TP kernel K on X x X, such that K[(x1,x2); (x1,x2)] = A.

(3) AisTP.
As a special case, consider the assertion (3) = (1), where we want to show that A

embeds in the leading principal positions. It suffices to embed the matrix <é i), where

0 < b < 4/c, inside the square matrix

n—1
1 1 1 1 x Ty X
iVTV _ i 1 2 K 1 a9 xh
K K| : P SR
gt ot et 1w - 2!

where K > n and Vg, is (part of) a ‘usual’ Vandermonde matrix (x?il). In terms of
probability, this amounts to finding a uniform random variable, supported on {x1,...,zx},
with mean b and variance ¢ — b?. (See e.g. [1].) That is, a discrete inverse moment problem.

In fact this motivates the proof-strategy, even for the stronger result (3) = (2), which
should similarly involve continuous distributions. Thus, the proof involves continuous ran-
dom variables, and uses the Generalized Cauchy—Binet formula (one can also use Andréief’s
identity).
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Proof. Clearly (1) or (2) implies (3), and (1) is a special case of (2), so it suffices to show
(3) = (2). The proof is similar to that of Theorem first embed X inside R via
Lemma Now it suffices to embed any A as above in a continuous Hankel (hence sym-
metric) TP kernel K : R x R — (0,00), and then use an increasing linear map ¢px : X — R
to ‘change locations’. To construct K, we use Proposition [6.2l Thus, we need an increasing
function u : R — (0,00), scalars s < t € R, and a positive measure p on R such that

u 2s —a U s+t — U 2t —c.
/R (1) du(y) = a, /R (4)°*" duly) =, /R () du(y)

A solution is as follows, verified via direct computations. Define B := log(b/a), C := log(c/a)
and note that (C/2) — B = 1 log(ac/b?) > 0. Now verify that the following works:

4B - C _ 3C-4B

a 2
Sim———— ti=——— y(y) = e, =———¢c ¥ dy. O
8./(C/2) - B 8./(C/2) - B ®) ) = Y
The third TP completion problem in this section extends Theorem differently, to
completions of matrices of arbitrary sizes that are totally positive of arbitrary order:

Theorem 7.5. Suppose m,n > 1 and 1 < p < min(m,n) are integers, and J C [m], K C [n]
are ‘sub-intervals’ containing m’,n’ consecutive integers, respectively. A real m' x n' matriz
A’ can be completed to a TP, real m x n matriz, in positions J x K, if and only if A’ is T'P,.

Proof. One implication is obvious. Conversely, suppose A/ . . is TP,. It suffices to show
that one can add an extra row either above or below A’ and obtain a T'P, matrix. Then the
result follows by induction and taking transposes.

We first show how to add a row (ay,...,a, ) at the bottom. Choose any a; > 0; having
defined aq,...,ar > 0 for some 0 < k < n/, we inductively define ay,; as follows. Define
Al x et 1]
ap - Qg1
the 1 x 1, ..., p x p submatrices B’ of Bj which contain entries from the last row and
last column, whence agy1. Compute det(B’) by expanding along the last row, and from
right to left. Requiring det(B’) > 0 yields a strict lower bound for aj.1, since the cofactor
corresponding to agyq is a lower-order minor of A’, hence positive. Working over all such
minors det(B’) yields a finite set of lower bounds, so that it is possible to define ax;1 and
obtain all minors with ‘bottom corner’ ax,; and size at most p X p to be positive. By the
induction hypothesis, all other minors of By, of size at most p X p are positive, so By is T'F,,.
Proceeding inductively, we obtain the desired (m’+ 1) x n’ completion of A’ that is T'P,.

The argument is similar to add a row (ay,...,a, ) on top of A’: this time we proceed
sequentially from right to left. First, a, is arbitrary; then to define a; (given axi1,...,ay),
we require ay, to satisfy a finite set of inequalities (obtained by expanding det(B’) along the
first row from left to right), and each inequality is again a strict lower bound. O

the (m’ 4+ 1) x (k4 1) matrix By, := ( > (with unknown ayy; > 0), and consider

Remark 7.6. To conclude, we explain how Whitney density and the above T'P completion
problems are used in a later part of the text, in classifying the preservers F'o— of T'P matrices
and kernels on arbitrary domains X x Y. The first step will be to deduce from Theorem
that any 2 x 2 TP matrix can be embedded in a TP kernel on X x Y. This will help show
that the preserver F' must be continuous. We then use results akin to Whitney’s density
theorem [6.7] to show that F' preserves T'N kernels on X x Y. These latter will turn out to
be easier to classify. Similarly for the preservers of symmetric T'P kernels on X x X.
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8. THEOREMS OF PERRON AND KRONECKER. SPECTRA OF T'P AND T'N MATRICES.

We conclude this part by studying the spectra of TP/T' N matrices. For real square sym-
metric matrices A, xn, recall Sylvester’s criterion which says modulo Theorem that
such a matriz Apxn has all principal minors non-negative (or positive), if and only if all
eigenvalues of A are non-negative (positive).

The goal in this section is to show a similar result for TP/T N matrices. More precisely,
we will show the same statement as above, removing the words ‘symmetric’ and ‘principal’
from the preceding paragraph. In particular, not only are all minors of T'P and T'N matrices
positive and non-negative respectively, but moreover, so are their eigenvalues. A slightly
more involved formulation of this result is:

Theorem 8.1. Given integers m,n > p > 1 and A € R™*", the following are equivalent:

(1) For every square submatrix B of A of size < p, we have det(B) is non-negative
(respectively positive). In other words, A is TN, (respectively TP,).

(2) For every square submatriz B of A of size < p, the eigenvalues of B are non-negative
(respectively positive and simple).

Note that the analogous statement for positive semidefinite matrices clearly holds (as
mentioned above), by Sylvester’s theorem.

We will follow the original proof, written out by Gantmacher and Krein in their 1937 paper
in Compositio Math. This approach is also found in Chapter XIII.9 of F.R. Gantmacher’s
book The theory of matrices; and in an expository account by A. Pinkus [279] found in
the conference proceedings Total positivity and its applications (of the 1994 Jaca meeting in
honor of Sam Karlin), edited by M. Gasca and C.A. Micchelli. (The above paper of Pinkus
also features at the end of this section, when we discuss spectra of TN kernels.)

This approach relies on two well-known theorems, which are interesting in their own right.
The first was shown by O. Perron in his 1907 paper in Math. Ann.:

Theorem 8.2 (Perron). Let A, xn be a square, real matriz with all positive elements. Then
A has a simple, positive eigenvalue A with an eigenvector ug € R™, such that:

(a) For the remaining n — 1 eigenvalues p € C, we have |u| < A.
(b) The coordinates of ug are all non-zero and of the same sign.

This result has been studied and extended by many authors in the literature; notably, the
Perron—Frobenius theorem is a key tool used in one of the approaches to studying discrete
time Markov chains over finite state-space. As these extensions are not central to the present
discussion, we do not pursue them further.

Proof. Write v > u (or v > u) for u,v € R™ to denote the (strict) coordinatewise ordering:
vj > uj (or v; > uj) for all 1 < j < n. A first observation, used below, is:

u<vinR", u#wv = Au < Av. (8.3)
We now proceed to the proof. Define
A :=sup{p € R: Au > pu for some non-zero vector 0 < u € R"}.

Now verify that
0 <mminaj, < A < nmaxajg;
Jk gk
in particular, A is well-defined. Now for each k > 1, there exist (rescaled) vectors uy > 0 in
R™ whose coordinates sum to 1, and such that Aug > (A — 1/k)ug. But then the uy belong
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to a compact simplex S, so there exists a subsequence converging to some vector ug € S. It
follows that Aug > Aug; if Aug # Aug, then an application of leads to a contradiction
to the maximality of A. Thus Aug = Aug for non-zero ug > 0. But then Aug > 0, hence
up = A1 Aug has all positive coordinates. This proves part (b).

It remains to show part (a) and the simplicity of A. First if Av = pv for any eigenvalue p
of A (and v # 0), then defining |v| := (|v1], ..., |va|)?, we deduce:

Ayl > |Av| = |po| = |pllv] = A >|pl.

Suppose for the moment that || = A. Then Alv| = AJv|, else (as above) an application
of leads to a contradiction to the maximality of A. But then A|v| = |Av| from the
preceding computation. By the triangle inequality over C, this shows all coordinates of v
have the same argument, which we can take to be ¢?° = 1 by normalizing v. It follows that
Av = v from above, since now v = |v|. Hence p = A.

Thus we have shown that if Av = pov for |u| = A (and v # 0), then 4 = X and we may rescale
to get v > 0. In particular, this shows part (a) modulo the simplicity of the eigenvalue .
Moreover, if ug, u are linearly independent \-eigenvectors for A, then one can come up with
a linear combination v € Rug + Ruyg, with at least one positive and one negative coordinate.
This contradicts the previous paragraph, so it follows that A has geometric multiplicity one.

The final remaining task is to show that A is a simple eigenvalue of A. If not, then by the
preceding paragraph there exists u; & Rug such that (Aug = Aug and) Au; = Aug + pug for
some non-zero scalar . Now since AT has the same eigenvalues as A, the above analysis
there exists vg € R™ such that vg A= )\’UOT . Hence:

Mgy = vl Auy = vl g + pug).

But then p - vg ug = 0, which is impossible since p # 0 and ug, vg > 0. This shows that A is
simple, and concludes the proof. O

The second result we require is folklore: Kronecker’s theorem on compound matrices. We
begin by introducing this family of auxiliary matrices, associated to each given matrix.

Definition 8.4. Fix a matrix A,,x, (which we take to be real, but the entries can lie in any
unital commutative ring), and an integer 1 < r < min(m,n).
(1) Let Si,..., S(T) denote the r-element subsets of [m] = {1,...,m}, ordered lexico-
graphically. (Thus S; = {1,...,r} and S(T) ={m—r+1,...,m}.) Similarly, let
Ti,... ’T(Z) denote the r-element subsets of [n] in lexicographic order.
Now define the rth compound matriz of A to be a matrix C,(A) of dimension

(") x (), whose (j, k)th entry is the minor det(Ag;x1;).

T

(2) For r =0, define Cy(A) := Idix1.
We now collect together some basic properties of compound matrices:

Lemma 8.5. Suppose m,n > 1 and 0 < r < min(m,n) are integers, and Apxy, a matriz.

(1) Then C1(A) = A, and C,(cA) = ¢"C,(A) for all scalars c.
(2) Cr(AT) = Cr(A)T.
(4) The Cauchy-Binet formula essentially says:

Cr(AB) = Cr(A)Cr(B),  VAER™™, BER™™ p>1
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(5) As a consequence, det(Cr(AB)) = det(Cy(A))det(Cr(B)) when m = n = p (i.e.,
A, B are square).

(6) As another consequence of the multiplicativity of Cy., if A has rank 0 < r < min(m,n),
then C;j(A) has rank (;) for 5 =0,1; r,r+1,...,min(m,n).

(7) If A is square, then C,(A) = det(A); if A is moreover invertible, then C,.(A)~! =
Cr(A7Y).

(8) If A is upper/lower triangular, diagonal, symmetric, orthogonal, or normal, then
Cy(A) has the same property.

Proof. We only sketch a couple of the proofs, and leave the others as exercises. If A has rank
r, then one can write A = M, Nyxn, Where the columns of M are linearly independent, as
are the rows of N. But then C).(A) is the product of a non-zero column vector C,.(M) and a
non-zero row vector C,.(N), hence has rank 1. (Here we require the underlying ground ring
to be an integral domain.)

The other case we consider here is when A is (n x n and) upper triangular. In this case
let J={j1i < - <yjr}and K = {ky < --- < k,} be subsets of [n], with J > K in the
lexicographic order. Hence there exists a unique [ € [1,7] such that

A=k, -, goi=k-1, k<ju<jig1<-<Jp

It follows that Ay« k is a block triangular matrix of the form (C(l_l)x (=1 D > ,
0 Eu_131)x(r—1+1)
and that the leftmost column of F is the zero vector. Hence det(Ajxx) =0 if J > K. O

With Lemma [8.5) in hand, one can state and prove

Theorem 8.6 (Kronecker). Let n > 1 and suppose the complex matriz A, x, has the multiset
of eigenvalues {\1,..., \n}. For all0 <r <n, the (:f) eigenvalues of C.(A) are precisely of
the form [[;cg Aj, where S runs over all r-element subsets of [n].

In words, the eigenvalues of C,.(A) are the (Z) products of r distinct eigenvalues of A.

Proof. Let J denote an (upper triangular) Jordan canonical form of A. That is, there exists
an invertible matrix M satisfying: MJM~! = A, with the diagonal entries of .J given by
A1, ..., An. Applying various parts of Lemma [8.5

CT'(A) = CT(M) CT(J) CT(M)_17

with C,.(J) upper triangular. Thus the eigenvalues of C,.(A) are precisely the diagonal entries
of C(J), and these are precisely the claimed set of scalars. O

These ingredients help show that TP square matrices have simple, positive eigenvalues:

Proof of Theorem [8.1. Clearly, (2) implies (1). Conversely, first note that by focussing on
a fixed square submatrix B and all of its minors, the implication (1) = (2) for general
m,n > p reduces to the special case m = p = n, which we assume henceforth.

First suppose A,xy, is TP. Relabel its eigenvalues Aq, ..., A, such that |A;| > -+ > |A,].
Now let 1 < r < n; then the compound matrix C,(A) has positive entries, so by Perron’s
theorem@ there exists a unique largest positive eigenvalue Ayax -, and all others are smaller
in modulus. Hence by Kronecker’s theorem @ Amax,r = A1+ Ar, and we have

Al A >0, Vi<r<n.
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It follows that each \; is (real and) positive. Moreover, from Perron and Kronecker’s results
it also follows for each 1 < r < n — 1 that

)\1"’)\r>)\1"'>\r—1')\7‘+1a

and so A, > A\py1, as desired.

This shows the result for 7P matrices. Now suppose A, xn is TN. By Whitney’s density
theorem we may approximate A by a sequence Ay of T'P matrices. Hence the character-
istic polynomials converge: pa, (t) := det(tId,xn —Ar) — pa(t) coefficientwise, as k — oo.
Since deg(pa,) = n for all k£ > 1, it follows by the ‘continuity of roots’ — proved below — that
the eigenvalues of p4 also avoid the open set C \ [0, 00). This concludes the proof. O

Thus, it remains to show that the roots of a real or complex polynomial are continuous
functions of its coefficients. This is in fact a consequence of Hurwitz’s theorem in complex
analysis, but we restrict ourselves here to mentioning a simpler result. We provide two proofs,
which can both be found online or in books.

Proposition 8.7. Suppose py € C[t] is a sequence of polynomials, with deg(py) uniformly
bounded over all k > 1. If U C C is an open set on which no py vanishes, and p(t) — p(t)
coefficientwise, then either p =0 on U, or p is nonvanishing on U.

Proof. We restrict ourselves to outlining this argument, as this direction is not our main
focus. Suppose p|y is not identically zero, and p(w) = 0 for some w € U. Choose § > 0 such
that the closed disk D := D(w,d) C U and p(t) has no roots in D \ {w}. Then each py, is
uniformly continuous on the compact boundary 9D = D\ D, where D = D(w, §) is the open
disk. For sufficiently large k, deg(px) = deg(p) > 0 by the hypotheses. This is used to show
that the pjy converge uniformly on 9D to p, and similarly, pj — p’ uniformly on 0D.

Since p is nonvanishing on 9D, we have

= mi 0
m := min |p(z)| > 0,

and hence for sufficiently large k, we have

m
i > —, vk > 0.
min [py(2)] > 5 >

Using this, one shows that the sequence {p} /py : k > 0} converges uniformly on 9D to p'/p.
Now integrate on 9D: since py/py equals 3, 1/(z — Aj(px)) where one sums over the

multiset of roots A; of each pi, and since p;, does not vanish in U D D, we have

[ pp(2) s G
0‘7{@ Pz ﬂéw o2

Hence the right-hand integral vanishes. On the other hand, that same integral equals a
positive integer — namely, the multiplicity of the root w of p(t). This yields the desired
contradiction, and so p does not vanish on U. U

Alternate proof. This proof is even simpler, and does not use complex analysis — but assum-
ing that the polynomials are all monic. In this case, the hypotheses imply that degpy is
independent of k, say equal to m > 0. (This indeed subsumes the case when each py is the
characteristic polynomial of an m x m complex matrix Ag, and Ay — A entrywise.) Now
if m = 0 or m = 1 then the result is immediate — e.g. for m = 1, if px(x) = = — ay, then
aj € C\ U. But then limy oy also lies outside U, as desired.



8. Theorems of Perron and Kronecker. Spectra of TP and TN matrices. 51

Henceforth, we suppose m > 2. The first claim is that every root « of a complex polynomial
ap + a1z + -+ amo12™ 4 2"

satisfies: |a| < 14+ mmaxj<py, |aj]. Indeed, if ap = -+ = am—1 = 0, then we have o™ = 0,
so a = 0. Else if max;<y, |a;| > 0, then there are two cases. If |o| < 1 then the result is
immediate. Otherwise |a| > 1, and we compute via the triangle inequality in C:

’Oém| m—1 m—1
1= g ajol ™| < g max|a |- Jaf ™™ < max|a |- m|a|™t
’am| J J J
7=0 j= 0

This shows || < mmax;j<pm, |a;j|, proving the claim in the case |a| > 1.

We now come to the proof of the continuity of roots (for the case m > 2). Thus, here py
is monic of degree m > 2, for all £k > 1. Denote the roots of p; by a,gl), . ,a,(cm), for each
k > 1. Since pr — p coefficientwise, the coefficients of all pg, p are uniformly bounded, say in
D(0, M) for some M > 0. By the claim above, it follows that all roots a,(g ) lie in a bounded
disk: ‘

o] <14mM, VI<j<m, k>1

Thus, there exists a subsequence k;, { > 1 and a tuple (a(l), e oz(m)) € C™ such that
lim a](cj) = a(j), vVi<j<m.
=00 ™M

But then,

p(z) = hm pkl hm H z— akl H(z — W)y,

7j=1

Now since ag ) ¢ U for all 7,1, the same holds for all a¥ and the result follows. ]

Remark 8.8 (Spectra of continuous T'N kernels). We conclude with some remarks on the
spectral properties of totally non-negative kernels. These were studied even before the 1937
paper of Gantmacher—Krein on the spectra of TN matrices; for a detailed historical account
with complete proofs, see the article by Pinkus [279] in the compilation [I4I]. As Pinkus
mentions, the case of symmetric kernels was studied by Kellogg in his 1918 paper [211] in
Amer. J. Math. The non-symmetric case was studied in 1936 by Gantmacher [135], following
prior work by the 1909 work [328] of Schur in Math. Ann. and the 1912 work [195] of Jentzsch
in J. reine angew. Math.
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BIBLIOGRAPHIC NOTES AND REFERENCES

Most of the material in the first four sections is standard and can be found in other
textbooks on matrix theory; see e.g. Bapat and Raghavan [18], Bhatia [45] [46], Fallat and
Johnson [112], Gantmacher [136], Hiai and Petz [I72], Horn and Johnson [183, 184], Horn
and Johnson [I83] [184], Karlin [200], Pinkus [282], Zhan [376], and Zhang [378].

About the rest: the matrix factorization in (2.33)) involving Schur complements was ob-
served by Schur in [331]. Theorems and [2.38 on the positivity of a block-matrix in
terms of Schur complements, were shown by Albert [9]. Remark on applications of Schur
products to other areas is taken from discussions in the books [I83] [I84]. More broadly, a
discussion of the legacy of Schur’s contributions in analysis can be found in the comprehensive
survey [105].

The Schur product theorem was shown by Schur [329] (the proof involving Kronecker
products is by Marcus and Khan [253]), and its non-zero lower bound, Theorem is by
Khare [213] (following a prior bound by Vybiral [356]). Remark is by Vybiral [356]; and
the previous non-zero lower bounds on the Schur product in re from [120] and [296].
For more on the Hamburger and Stieltjes moment problems (see Remarks and
respectively), see the monographs [, 310, [335].

The notion of TN and TP matrices and kernels was introduced by Schoenberg in [311],
where he showed that TN matrices satisfy the variation diminishing property. (Schoenberg
then proved in [312] the Budan—Fourier theorem using TN matrices.) The character-
ization in Theorem [3.22 of this property is from Motzkin’s thesis [263]. (Instances of total
non-negativity and of variation diminution had appeared in earlier works, e.g., by Fekete [11§],
Hurwitz [188], Laguerre [229], and others.) Theorem relating positivity and total non-
negativity for a Hankel matrix, appears first in [282] for 7'P Hankel matrices, then in detail
in [I13] for the TN, TP,, and TN, variants. (Neither of these works uses contiguous minors,
which have the advantage of only needing to work with Hankel submatrices.) The lemmas
used in the proof above are given in [136] 137], and the result of Fekete and its extension by
Schoenberg are in [I18] and [325], respectively. Corollary [4.3]— on the total non-negativity of
moment matrices of measures on [0,00) — is the easy half of the Stieltjes moment problem,
and was also proved differently, by Heiligers [163].

Theorem [5.1| on the total positivity of generalized Vandermonde matrices is found in [136].
The “weak” Descartes’ rule of signs (Lemma was first shown by Descartes in 1637 [100] for
polynomials; the proof given in this text via Rolle’s theorem is by Laguerre in 1883 [229] and
holds equally well for the extension to real powers. The Basic Composition formula can
be found in the book by Pélya and Szegé [289] (see also Karlin [200]), while Andréief’s identity
is from [I3]. The subsequent observations on the total positivity of “most” Hankel moment
matrices are taken from [200]. Whitney’s density theorem is from [368]. Theorem [7.5]is due
to Johnson and Smith [196]; all other results in Section[7], on T'P completions of 2 x 2 matrices
to TP matrices/kernels on arbitrary domains, are from Belton-Guillot-Khare-Putinar [32].
Theorem|[8.1]on the eigenvalues of TP and T'N matrices is due to Gantmacher and Krein [137],
and is also found in numerous sources — to list a few, [136] [138], and Pinkus’s article [279] in
the collection [I41]. (The original result was for oscillatory matrices, and immediately follows
from Theorem [8.1]) Perron’s theorem [8.2]is from [278]. Hurwitz’s theorem, or the continuity
of zeros shown in Proposition can be found in in standard textbooks on complex analysis,
see e.g. [88].
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Part 2: Entrywise powers preserving (total) positivity in a fixed dimension
9. ENTRYWISE POWERS PRESERVING POSITIVITY IN A FIXED DIMENSION: I.

In the rest of this text (except Part 4), we discuss operations that preserve the notions of
positivity that have been discussed earlier. Specifically, we will study functions that preserve
positive semidefiniteness, or TP/T N, when applied via composition operators on positive
kernels. In this part and the next, we deal with kernels on finite domains — aka matrices —
which translates to the functions being applied entrywise to various classes of matrices. This
part of the text discusses the important special case of entrywise powers preserving positivity
on matrices; to understand some of the modern and classical motivations behind this study,
we refer the reader to Sections and below, respectively.

We begin with some preliminary definitions.

Definition 9.1. Given a subset I C R, define P, (1) := P, N I™*" to be the set of n x n
positive semidefinite matrices, all of whose entries are in I.

A function f : I — R acts entrywise on vectors/matrices with entries in I via A = (aj;) —
flA] == (f(ajx)). We say f is Loewner positive on Py(I) if f[A] € P, whenever A € P,,(I).

Note that the entrywise operator f[—] differs from the usual holomorphic calculus (except
when acting on diagonal matrices by functions that vanish at the origin).

Remark 9.2. The entrywise calculus was initiated by Schur in the same paper [329] in J.
reine angew. Math. (1911) where he proved the Schur product theorem. Schur defined f[A]
— but using different notation — and proved the first result involving entrywise maps; see
e.g. [105, Page cxii| for additional commentary.

We fix the following notation for future use. If f(z) = z® for some o« > 0 and I C [0, o0),
then we write A°* for f[A], where A is any vector or matrix. By convention we shall take
0° = 1 whenever required, so that A°Y is the matrix 1 of all ones, and this is positive
semidefinite whenever A is square.

At this point, one can ask the following question: Which entrywise power functions preserve
positive semidefiniteness, total positivity or total-negativity on n X n matrices? (We will also
study in Sections [17| and the case of general functions.) The first of these questions was
considered by Loewner [242] 243] while studying the Green’s function of the unit circle and
schlicht /univalent functions (on a separate note, the coefficients of such functions feature in
the Bieberbach conjecture). The question — i.e., which entrywise powers preserve positivity
— was eventually answered in J. Math. Anal. Appl. (1977) by two of Loewner’s students,
C.H. FitzGerald and R.A. Horn:

Theorem 9.3 (FitzGerald-Horn). Given an integer n > 2 and a scalar o € R, f(z) = x©
preserves positive semidefiniteness on Pp,((0,00)) if and only if « € Z=°U [n — 2, 00).

Remark 9.4. We will in fact show that if « is not in this set, there exists a rank-2 Hankel
TN matrix Ay, xn, such that A°* ¢ P,,. (In fact, it is the (partial) moment matrix of a non-
negative measure on two points.) Also notice that Theorem holds for entrywise powers
applied to P, ([0, 00)), since as we show, o < 0 never works while av = 0 always does work by
convention; and for a > 0 the power z® is continuous on [0,00), and we use the density of

P, ((0,00)) in P, ([0, 00)).

The “phase transition” at n — 2 in Theorem is a remarkable and oft-repeated phenom-
enon in the entrywise calculus (we will see additional examples of such events in Section .
The value n — 2 is called the critical exponent for the given problem of preserving positivity.
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(Loewner’s aforementioned papers [242] [243] are perhaps the first time that the term critical
exponent was used in this context.)

To prove Theorem we require a preliminary lemma, also by FitzGerald and Horn.
Recall the preliminaries in Section [2.4

Lemma 9.5. Given a matriz A € P,(R) with last column , the matriz A—aJLmCCT 18 positive
semidefinite with last row and column zero.

Here, ahn denotes the Moore—Penrose inverse of the 1 x 1 matrix (ann)-

Proof. If an, = 0, then ( = 0 by positive semidefiniteness and aim = 0 as well. The

B
result follows. Now suppose an, > 0 and write A = (wT w ) Then a straightforward

ann

_ B—t
A — 1 T — Ann .

Notice that B — % is the Schur complement of A with respect to a,, > 0. Now since A is

computation shows that

positive semidefinite, so is B — % by Theorem [2.32 O

Proof of Theorem[9.3 Notice that  preserves positivity on P, ((0,00)) for all a € Z=°, by
the Schur product theorem Now we prove by induction on n > 2 that if a > n — 2,
! ﬁ) € Py((0,00)), then
ac > > = (ac)® > b*® for all @ > 0. It follows that A°® € P5((0,00)), proving the base
case.

For the induction step, assume that the result holds for n — 1 > 2. Suppose a@ > n — 2 and
A € P,((0,00)); thus, an, > 0. Consider the following elementary definite integral

then z“ preserves positivity on P,((0,00)). If n = 2 and A = (

1
% —y* = alx — y)/ Az + (1= N)y)* ! dn. (9.6)
0

Let ¢ denote the final column of A; applying entrywise to z, an entry of A, and y, the

corresponding entry of B := % yields

1
AW—BW:a/XA—mouA+u—Awa®dx (9.7)
0

By the induction hypothesis, the leading principal (n — 1) X (n — 1) submatrix of the matrix
(A + (1= X)B)°(@=1 s positive semidefinite (even though the entire matrix need not be so).
By Lemmal[0.5, A — B is positive semidefinite and has last row and column zero. It follows by
the Schur product theorem that the integrand on the right-hand side is positive semidefinite.
Since B°® is a rank-1 positive semidefinite matrix (this is easy to verify), it follows that A°®
is also positive. This concludes one direction of the proof.

To prove the other half, suppose a ¢ Z="U[n —2, 00); now consider H,, where y1 = &1 + €6,
for e,z > 0, = # 1. Note that (H,)jx = sj+x(p) = 1+ ex/**; and as shown previously, H,, is
positive semidefinite of rank 2.

First, suppose a < 0. Then consider the leading principal 2 X 2 submatrix of H,*

o A+e* (Q1+ex)”
B:= <(1 +ex)® (1+ er)a) ’
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We claim that det B < 0, which shows H;* is not positive semidefinite. Indeed, note that
(1+e)(1+ex?) — (14 ex)? = e(x — 1)* > 0,

so det B = (1+ €)%(1 + ex?)* — (1 + ex)?* < 0 because a < 0.
Next, suppose that a € (0,n —2) \ N. Given x > 0, for small ¢ we know by the binomial
theorem that

(I+ex)* =1+ <Z)ekx’“ where <Z> _dazl) M(a —k+ 1)

k>1

We will produce v € R”, such that u” H l‘jau < 0; note this shows that H;* ¢ P,,.

Starting with the matrix H,, = 117 + evoT where v = (1,z,...,2" )T, we obtain:
la|+2 o
He=11"4 ) ¢ < k) (0°F) ()T + ol F?), (9.8)
k=1

where o(el®+2) is a matrix, such that the quotient of any entry by el®*+2 goes to zero as
e— 0T,
Note that the first term and the sum together contain at most n terms. Since the corre-

sponding vectors 1, v,v°2, ..., v°(l2)+2) are linearly independent (by considering the — possibly
partial — usual Vandermonde matrix formed by them), there exists a vector u € R™ satisfying
w1l = u v =uTv? = .. = Tl — g ulpoled+2) = 1,

Substituting these into the above computation, we obtain

T proa, _ _|a]+2 o T [ lal+2y
u' H%u=¢ (LaJ+2>+u o(e ) - u.

THoa

Since (L aJa Jr2) is negative if o is not an integer, it follows that lim < 0. Hence one can

o
0+ elal+2
choose a small € > 0, such that u” H xu < 0. For this €, H;* is not positive semidefinite. []

Remark 9.9. As the above proof reveals, the following are equivalent for n > 2 and « € R:
(1) The entrywise map x® preserves positivity on P, ((0,00)) (or P, ([0, c0))).
(2) a€Z2°Un —2,00).
(3) The entrywise map z® preserves positivity on the (leading principal n x n truncations

of) Hankel moment matrices of non-negative measures supported on {1,x}, for any
fixed x > 0, = # 1.

The use of the Hankel moment matrix counterexample 117 +evv” forv = (1,z,...,
and small € > 0 was not due to FitzGerald and Horn — who used v = (1,2,...,n)7 instead —
but due to Fallat, Johnson, and Sokal [I13]. In fact, the above proof can be made to work if
one uses any vector v with distinct positive real coordinates, and small enough € > 0.

As these remarks show, to isolate the entrywise powers preserving positivity on P, ((0, 00)),
it suffices to consider a much smaller family — namely, the one-parameter family of truncated
moment matrices of the measures §; + €0, — or the one-parameter family 1,,x, + evv!, where
v=(z1,...,7,)7 for pairwise distinct z; > 0. In fact, a stronger result is true. In her 2017
paper [191] in Linear Algebra Appl., Jain was able to eliminate the dependence on e:

nfl)T

Theorem 9.10 (Jain). Suppose n > 0 is an integer, and x1,x2,. .., T, are pairwise distinct
positive real numbers. Let C := (1 +33jl'k)?k:1- Then C°¢ is positive semidefinite if and only

ifa € ZZ0U [n — 2,00).
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In other words, this result identifies a multiparameter family of matrices, each one of which
encodes the positivity preserving powers in the original result of FitzGerald—Horn.

We defer the proof of Theorem (in fact, a stronger form shown by Jain in 2020,
[192]) to Section We then use this stronger variant to prove the corresponding result for
entrywise powers preserving other Loewner properties: monotonicity (again shown by Jain
in 2020), and hence convexity, both with the same multiparameter family of matrices.

The next result is an application of Theorem to classify the entrywise powers that
preserve positive definiteness:

Corollary 9.11. Given an integer n > 2 and a scalar o € R, the following are equivalent:

(1) The entrywise acth power preserves positive definiteness for nxn matrices with positive
entries.

(2) The entrywise ath power preserves positive definiteness for n x n Hankel matrices
with positive entries.

(3) a € Z7°Un —2,00).

Proof. Clearly, (1) == (2). Next, if a = 0 then z® sends every matrix with positive
entries to 1,xn, which is not positive definite. Now suppose a is not in ZZ°% U [n — 2, 00).
Then given 1 # x € (0,00), there exists ¢ > 0, such that A°® has a negative principal
minor, where A := (1 + eacj“‘k)"gi is Hankel. Now perturb A by dH; for small enough

§ > 0, where Hj := (e (G+k)? ) k; o is a Hankel “principal submatrix” drawn from the kernel
in Lemma By Theorem [4.1) A+ §H} is TP Hankel for all 6 > 0, hence positive definite;
and for small enough § > 0, its ath power also has a negative principal minor. This shows
the contrapositive to (2) = (3).

Finally, suppose (3) holds. Since the Schur product is a principal submatrix of the Kro-
necker product, it follows from the first proof of Theorem that positive integer powers
entrywise preserve positive definiteness. Now suppose a > n—2 and A, «,, is positive definite.
Then all eigenvalues of A are positive, so there exists € > 0, such that A—eId,,x, € Py (]0,0)).
Now we have

A% = (A — eld)*® + diag(aj; — (aj; —€)%)j=1,
and the first term on the right-hand side is in P,, by Theorem so A°“ is positive definite.
O

We conclude by highlighting the power and applicability of the “integration trick” of
FitzGerald and Horn. First, it in fact applies to general functions, not just to powers. The
following observation (by the author and Tao, [217]) will be useful below:

Theorem 9.12 (Extension principle). Let 0 < p < oo and I = (0,p) or (—p,p). Fizx
an integer n > 2 and a continuously differentiable function h : I — R. If h[ ] preserves
positivity on rank-1 matrices in P, (I) and h'[—] preserves positivity on P,_1(I), then h[—]
preserves positivity on Py (I).

The proof is exactly as before, but now using the more general integral identity:

T 1
h(z) — h(y) = / R'(t) dt = /0 (z —y)h' Az + (1 — N)y) d.
y

Second, this integration trick is even more powerful, in that it further applies to classify
the entrywise powers that preserve other properties of P, including monotonicity and super-
additivity. See Section for details on these properties, their power-preservers, and their
further application to the distinguished sub-cones P for non-complete graphs G.
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10. ENTRYWISE POWERS PRESERVING TOTAL POSITIVITY: I.

The next goal is to study which entrywise power functions preserve total positivity and
total non-negativity. The present section is devoted to proving:

Theorem 10.1. If A,,xn is TPs, then so is A° for all t > 1.

The proof relies on Descartes’ rule of signs (also known as Laguerre’s rule of signs —
for the connection, see Section [29.3]). Recall that we had shown a ‘weak’ variant of this in
Lemma The next variant is stronger, and relies on the following notion.

Definition 10.2. Suppose F' : R — R is infinitely differentiable. Given an integer k > 0,
we say F has a zero of order k at tg € R, if F(tg) = F'(tg) = --- = F*D(t5) = 0 and
F®)(tg) # 0. (Note that a zero of order 0 means that F(ty) # 0.)

Descartes’ rule of signs bounds the number of real zeros of generalized Dirichlet polynomials,
which are functions of the form

n
F:R—R, F(t):cheajt, cj, a5 € R.
j=1
These functions are so named because changing variables to = e’ gives
n
fla) =2 ca%: (0,00) = R,
j=1

which are known as generalized polynomials. Another special case of F'(t) is when one uses
a; = —log(j), to obtain F(t) = 2?21 ¢j/j'; these are called Dirichlet polynomials. The
generalized Dirichlet polynomials subsume both of these families of examples.

We can now state

Theorem 10.3 (Decartes’ rule of signs). Suppose F'(t) =37, cje®' as above, with c; € R

not all zero, and a1 > ag > -+ > «an also real. Then the number of real zeros of I,
counting multiplicities, is at most the number of sign changes, or ‘variations’, in the sequence
€1,C2, ..., Cn (after removing all zero terms).

For instance, the polynomial 26 — 8 = (22 — 2)(z* 4 222 + 4) has only one sign change, so
at most one positive root — which is at z = e! = 2.
To prove Theorem we require a couple of preliminary lemmas.

Lemma 10.4 (Generalized Rolle’s theorem). Given an open interval I and a smooth function
F:I—>R,let Z(F,I) denote the number of zeros of F' in I, counting orders. If Z(F,I) is
finite, then we have Z(F',I) > Z(F,I) — 1.

Proof. Suppose F has a zero of order k., > 0 at x,,1 < r < n. Then F’ has a zero of order
k. —1 >0 at z,. These add up to :

n

> (ky—1)=Z(F,I)—n

r=1
We may also suppose z1 < o9 < --- < z,. Now by Rolle’s theorem, I’ also has at least
n— 1 zeros in the intervals (x,, z,41) between the points x,. Together, we obtain: Z(F’, I) >
Z(F,I)-1. O

Lemma 10.5. Let F,G : I — R be smooth and G # 0 on I. If F' has a zero of order k at tg
then so does F - G.
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Proof. This is straightforward: use Leibnitz’s rule to compute (F-G)U)(tg) for 0 < j < k. O
With these lemmas in hand, we can prove Descartes’ rule of signs.

Proof of Theorem[10.3 The proof again follows Laguerre’s argument (1883), by induction on
the number s of sign changes in the sequence ci,ca,...,c,. (Note that not all ¢; are zero.)
The base case is s = 0, in which case F(t) = Z?:l cje®" has all non-zero coefficients of the
same sign, and hence never vanishes.

For the induction step, we first assume without loss of generality that all c¢; are non-zero.
Suppose the last sign change occurs at ¢y, i.e., c¢ycp—1 < 0. Choose and fix o € (ag, ax—1),
and define G(t) := e~*. Then,

n
H(t):=F(t) - G(t) =Y _cjel™)

j=1
has the same zeros (with orders) as F'(t), by Lemma Moreover,

H'(t) = cj(aj — a)el®)
j=1

has exactly one less sign change than F(¢), namely, s—1. It follows by the induction hypothesis
that Z(H',R) < s — 1. Hence by Lemma [10.4] Z(F,R) = Z(H,R) < 1+ Z(H',R) < s, and
the proof is complete by induction. ]

We remark that there are numerous strengthenings of Descartes’ rule of signs in the liter-
ature, obtained by Budan [75], Fourier [129], Laguerre [229], Segner [333], Sturm [348], and
many others — this was popular even in the 20th century, see e.g. the articles by Curtiss [97] in
Ann. of Math. (1918) and by Hurwitz [I89] in Math. Ann. (1920). Here we restrict ourselves
to mentioning some of these variants without proofs (although we remark that their proofs
are quite accessible — see for instance the 2006 survey [193] by Jameson in Math. Gazette).
As above, let F(t) = 37 cje®" with a; > az > -+ > .

(1) Then not only is Z(F,R) < s, but s — Z(F,R) is an even integer. This was shown by
Budan [75] and Fourier [129], and is also attributed to Le Gua. In fact, Budan—Fourier
showed a more general result, stated here for polynomials:

Theorem 10.6 (Budan—Fourier). Suppose f is a polynomial, and —oo < o < 8 < o0.
Denoting by V(x) the number of sign changes in the sequence (f(z), f'(z), f"(x),...),

s a non-negative integer, which is moreover even if o, B are not zeros of f.

Notice that V(8) — 0 as § — oo, e.g. by considering f monic. From this the above
assertion for Z(f,(0,00)) — or Z(F,R) (for rational ;) — follows. Curiously, in his
1934 paper [312] in Math. Z., Schoenberg proved this result using totally non-negative
matrices.

(2) Define the partial sums

Ci=c, Co:=c1+co, ..., Ch=ci14+co+--+cp.

Then the number of positive roots of F(t), counting orders, is at most the number of
sign changes in C1,Cy, ..., C,.
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(3) Similarly, the number of negative roots of F(t), counting orders, is the number of
positive roots of F(—t), hence at most the number of sign changes in the ‘reverse
sequence’

Di:=c¢,, Dy:=ch+cn_1, ..., Dp:=ch+cp_1+--+ci.
Finally, we use Descartes’ rule of signs to show the result stated above: that all powers

> 1 preserve total positivity of order 3.

Proof of Theorem [10.1] Tt is easy to check that all entrywise powers a > 1 preserve the TPy
property. We now show that the positivity of all 3 x 3 minors is also preserved by entrywise
applying !, ¢t > 1. Without loss of generality, we may assume m = n = 3 and work with a
TP matrix ngg = (bjk)?,kzl'

1 1 1
The first claim is that we may assume B = |1 a b ]. Indeed, define the diagonal
1 ¢ d
matrices
1/b1y 0 0 1 0 0
Dy = 0 1/bay 0 , Dy := [0 b11/b12 0
0 0 1/b31 0 0 b11/b13
Using the Cauchy—Binet formula, one shows that B = (bjk)?',kzl is totally positive if and

only if D1BD5 is T'P. But check that Dy BD, has only ones in its first row and column, as
desired.

1
1
1
and ad > be. (This is easily verified, and in turn implies d > b, c.)

Now consider A°t. For t > 1 this is TP, by above, so we only need to consider det A°¢ for
t > 1. Define the generalized Dirichlet polynomial

F(t) := det(A°) = (ad)’ — d' — (be)" +b' + ' — a, teR.

11
The next observation is that a matrix A = a b is TP, if and only if b,c > a > 1
c d

Notice from the above inequalities involving a, b, ¢, d that regardless of whether or not d > bc,
and whether or not b > ¢, the sign sequence remains unchanged when arranging the exponents
in F' (namely, logad,logd,logbc,logb,...) in decreasing order. It follows by Theorem m
that F' has at most three real roots.

As t — oo, F(t) — oo. Now one can carry out a Taylor expansion of F' and check that the
constant and linear terms vanish, yielding;:

F(t) = etloslad) _ ptlos(d) _ ... — 42(log(a) log(d) — log(b) log(c)) + o(t?).

It follows that F' has (at least) a double root at 0. Now claim that F' is indeed positive on
(1,00), as desired. For if F is negative on (1,00), then since F(1) = det A > 0, it follows
by continuity that F' has at least two more roots in (1,00), which is false. Hence F' > 0 on
(1,00). If F(ty) = 0 for some tg > 1, then ty is a global minimum point in [1,ty + 1] for F,
hence F'(tp) = 0. But then F has at least two zeros at tg € (1,00), which is false. O

While Theorem sufficed in proving Theorem we will need in Section below
a similar variant for ‘usual’ polynomials — more precisely, for Laurent series with degrees
bounded below. This is now shown:
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Theorem 10.7. Fiz an integer ng > 0 and an open interval I C (0,00). Suppose F: I — R,
sending t — Z;’ifno c;t! is a convergent power series with not all ¢; € R zero. Then the
number of zeros of F in I, counting multiplicities, is either infinite or at most the number of

sign changes in the sequence c_pny,Ci—ny,--. (after removing all zero terms).

Proof. If the Maclaurin coefficients ¢; have infinitely many sign changes then the result is
immediate. Otherwise suppose there are only finitely many sign changes in the c;, say s
many. We show the result by induction on 0 < s < oo, with the result immediate for s = 0.
For the induction step, suppose the last sign change occurs sat cg, i.e., ¢, has sign opposite
to the immediately preceding non-zero Maclaurin coefficient of F.

Now let R > 0 denote the radius of convergence of the power series t"0 F(t), so that F' is
smooth on (0, R) by (repeatedly) using the quotient rule. Consider the function

G(u) ==u'"?*F(u?), 0<u<VR.
Then G is smooth on (0,vR), and we now proceed as in (Laguerre’s 1883) proof of Theo-
rem via Rolle’s theorem — now working solely in (0,v/R). The Laurent series G'(u) has
one less sign change than does F, so at most s — 1 roots (counting multiplicities) in (0, vR)

by the induction hypothesis. Hence, G has at most s roots in (0,v/R). But then so does F
in (0, R), hence in I. O
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11. ENTRYWISE POWERS PRESERVING TOTAL POSITIVITY: II.

In the previous section, we used Descartes’ rule of signs to show that ® entrywise preserves
the 3 x 3 T'P matrices, for all & > 1. Here the goal is twofold: first, to completely classify
the entrywise powers that preserve TP/TN for m x n matrices for each fixed m,n > 1; and
second, to then classify all continuous functions that do the same (at present, only for TN).

Corollary 11.1. If a > 1, then z% entrywise preserves the 3 x 3 TN matrices.

Proof. Let Asx3 be TN and o > 1. By Whitney’s density theorem there exist 3 x 3 TP
matrices By, that entrywise converge to A, as m — oo. Hence B;® — A°® for aw > 1. Since
Bp® is TP by Theorem it follows that A°* is T'N, as claimed. O

The next result classifies all entrywise powers preserving total non-negativity for matrices
of any fixed size.

Theorem 11.2. Given integers m,n > 0, define d := min(m,n). The following are equiva-
lent for a € R.

(1) x* preserves (entrywise) the m x n TN matrices.
(2) x* preserves (entrywise) the d x d TN matrices.
(3) Either o =0 (where we set 0° := 1), or

(a) Ford=1,2: a > 0.

(b) Ford=3: a>1.

(¢) Ford>4: a=1.

Thus we see that in contrast to the entrywise preservers of positive semidefiniteness (see
Theorem [9.3]), almost no powers preserve the TN matrices — nor the T'P matrices, as we
show presently.

Proof. That (2) = (1) is straightforward, as is (1) == (2) by padding by zeros —
noting that negative powers are not allowed (given zero entries of T'N matrices). To show
(3) = (2), we use Theorem as well as that 20 applied to any TN matrix yields the
matrix of all ones.

It remains to prove (2) = (3). We may rule out negative powers since (0gxq)°* is not
defined for d > 1. Similarly, 2 always preserves total non-negativity. This shows (3) for
d=1,2. For d =3, suppose a € (0,1) and consider the matrix

)OOL

1
Lk
0 7 1

This is a Toeplitz cosine matrix, hence TN (see Example or verify directly). Now
compute:

1 (vV2)~@ 0
det A°* = det [ (v/2)~@ 1 (V2)~ | =12
0 (vV2)~@ 1
which is negative if @ < 1. So A°® is not TN (not even positive semidefinite, in fact), for
a < 1, which shows (3) for d = 3.
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Next suppose d = 4 and consider the matrix

000 O
01 2 3

N(z) =14x4+x 02 4 6l x>0
0 3 8 14

One verifies that: all 2 x 2 minors are of the form az + bx?, where a > 0,b > 0; all 3 x 3
minors are of the form cx?, where ¢ > 0; and det N(x) = 0. This implies N(z) is TN for
x > 0. Moreover, for small z > 0, computations similar to the proof of Theorem show
that

det N(z)°t = 2(¢3 — tY)z? + o(2?),
so given t > 1, it follows that det N(x)°* < 0 for sufficiently small x > 0. Thus N (z)° is not
TN, hence x® does not preserve 4 x 4 TN matrices for o« > 1. If on the other hand « € (0, 1),

1
1

then we work with the 4 x 4 TN matrix C = \65 , proceeding as in the
0

st~ 5k
S o
o O O O

d = 3 case. This concludes the proof for d = 4.
Finally if d > 4 then we use the T'N matrices <N($) 0

; for small x > 0 this rules
0 0/,
xd

out the powers o > 1 as above. Similarly, using the T'N matrix (g 8> rules out the
dxd
powers in (0, 1). O

In turn, Theorem helps classify the powers preserving total positivity in each fixed
size.

Corollary 11.4. Given m,n > 0, define d := min(m,n) as in Theorem[I11.3 The following
are equivalent for a € R:

(1) =% preserves entrywise the m x n TP matrices.
(2) x* preserves entrywise the d X d TP matrices.
(8) We have:

(a) Ford=1: a € R.

(b) Ford=2: a>0.

(c) Ford=3: a>1.

(d) Ford>4: a=1.

Proof. That (2) = (1) is straightforward, as is (1) = (2) (as above) by now using
Theorem That (3) = (2) was shown in Theorem [10.1] for d = 3, and is obvious for
d # 3. Finally, we show (2) = (3). The d =1 case is trivial, while the d = 2 case follows

by considering , say. Next, if d > 3 and if z“ preserves the d x d TP matrices, then

2 1
1 2
a > 0, by considering any TP matrix and applying ¢ to any of its 2 x 2 minors. Hence
z® extends continuously to x = 0; now z® preserves the d x d T'N matrices by continuity.

Theorem [T1.2] now finishes the proof. O

Next, we tackle the more challenging question of classifying all functions that entrywise
preserve total positivity or total non-negativity in fixed dimension m x n. We will show that
(i) every such function must be continuous (barring a one-parameter exceptional family of
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TN preservers), and in turn, this implies that (ii) it must be a power function. We first
show (ii), beginning with an observation on the (additive) Cauchy functional equation.

Remark 11.5 (Additive continuous functions). Suppose g : R — R is continuous and satisfies
the Cauchy functional equation g(x + y) = g(z) + g(y) for all z,y € R. Then we claim that
g(x) = cx for some ¢ € R (and all z). Indeed, g(0 + 0) = g(0) 4+ ¢(0), and hence g(0) = 0.
Next, one shows by induction that g(n) = ng(1) for integers n > 0, and hence for all integers
n < 0 as well. Now one shows that pg(1) = g(p) = g(q-p/q) = q- g(p/q) for integers p, q
with g # 0, from which it follows that g(p/q) = (p/q)g(1) for all rationals p/q. Finally, using
continuity we conclude that g(z) = xg(1) for all z € R.

Proposition 11.6. Suppose f : [0,00) — R is continuous and entrywise preserves the 2 x 2
TN matrices. Then f(x) = f(1)x® for some o > 0.

We recall here that 0° := 1 by convention.

Proof. Define the matrices
[ wy _(xy =
A(x,y)—<1 y> B(Sv,y)—<y 1>, z,y > 0.

Clearly, these matrices are TN, so by the hypotheses,

det f[A(z,y)] = f(2)f(y) = FQ)f(zy) =0
det f[B(x,y)] = f(1)f(zy) — f(x)f(y) = 0
It follows that

f@)f(y) = f)f(xy),  Va,y=0. (11.7)
There are two cases. First if f(1) = 0 then choosing x = y > 0 in gives f =0
n [0,00). Else if f(1) > 0 then we claim that f is always positive on (0,00). Indeed, if
f(zo) =0 for xp > 0, then set = g,y = 1/x0 in to get: 0= f(1)?, which is false.
Now define the functions

g(z) = f(z)/f(1), >0,  h(y) :=logg(e’), y €R.
Then (11.7) can be successively reformulated as:

9(zy) = g(x)g(y),  Vz,y >0,

h(a + b) = h(a) + h(b), Va,b € R.

Moreover, both g, h are continuous. Since h satisfies the additive Cauchy functional equa-
tion, it follows by Remark that h(y) = yh(1) for all y € R. Translating back, we get
g(x) = 2"V for all > 0. It follows that f(x) = f(1)z® for > 0, where o = h(1). Finally,
since f is also continuous at 07, it follows that o > 0; and either « = 0 and f =1 (so we set
0% := 1), or f(0) =0 < a. (Note that o cannot be negative, since f[—] preserves TN on the
zero matrix, say.) O

(11.8)

Corollary 11.9. Suppose f : [0,00) — R is continuous and entrywise preserves the m x n
TN matrices, for some m,n > 2. Then f(x)= f(1)z® for some a > 0, with f(1) > 0.

Proof. Given m,n > 2, every 2 x 2 T'N matrix can be embedded as a leading principal
submatrix in a m x n T'N matrix, by padding it with (all other) zero entries. Hence the
hypotheses imply that f[—] preserves the 2 x 2 TN matrices, and we are done by the above
Proposition [11.6 ]
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12. ENTRYWISE FUNCTIONS PRESERVING TOTAL POSITIVITY. MID-CONVEX IMPLIES

CONTINUITY. THE TEST SET OF HANKEL T'N MATRICES.

We continue working toward the classification of all entrywise functions preserving m x n
TP/TN matrices. Thus far, we have classified the power functions among these preservers;
and we also showed that every continuous map that preserves m xn T'N matrices is a multiple
of a power function.

We now show that every function that entrywise preserves the m x n TP/TN matrices
is automatically continuous on (0, 00) — which allows us to classify all such preservers. The
continuity will follow from a variant of a 1929 result by Ostrowski [275] on mid-convex
functions on normed linear spaces, and we begin by proving this result.

12.1. Mid-convex functions and continuity.

Definition 12.1. Given a convex subset U of a real vector space, a function f: U — R is

said to be mid-convex if
(Ery) < 101
2 2
and f is convez if f(Az+ (1 — AN)y) < Af(z)+ (1 —A)f(y) for all z,y € U and A € (0,1).

Notice that convex functions are automatically mid-convex. The converse need not be true
in general. However, if a mid-convex function is continuous, then it is easy to see that it is
also convex. Thus, a natural question for mid-convex functions is to find sufficient conditions
under which they are continuous. We now discuss two such conditions, both classical results.
The first condition is mild: f is locally bounded, on one neighborhood of one point.

Vz,y € U;

Theorem 12.2. Let B be a normed linear space (over R) and let U be a convex open subset.
Suppose f: U — R is mid-convex and f is bounded above in an open neighborhood of a single
point xg € U. Then f is continuous on U, and hence conve.

This generalizes to normed linear spaces a special case of a result by Ostrowski, who showed
in Jber. Deut. Math. Ver. (1929) the same conclusion, but over B = R and assuming f is
bounded above in a measurable subset.

The proof requires the following useful observation:

Lemma 12.3. If f : U — R is mid-convex, then f is rationally convez, i.e., f(Ax+(1—=N)y) <
M)+ Q=N f(y) for allz,y € U and X € (0,1) N Q.

Proof. Inductively using mid-convexity, it follows that

p(Etret e dre) flxy) + -+ f(z2n)
2n - 2n ’

Now suppose that \ = g € (0,1), where p, ¢ > 0 are integers and 2"~! < g < 2" for some

VneN, x1,...,x9n € U.

n € N. Let z1,...,24 € U and define 7 = %(m1+--~+:):q). Setting xg41 = -+ = xan =T, we
obtain

s <:c1 SRR +m2qn+ (2" — q)93> < flz)+-+ f(i;ql) + (2" — q) f(T)

= 2"f(@) < f(21) + -+ flzg) + (2" — @) f(T)
— af(@) < fla1) + -+ flxg)

TiA o tag _ fle) £ fEg)
S e Bl
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In this inequality, set z1 = --- =2, = v and 7,11 = - -+ = 4 = y to complete the proof:
fz+ (1 =Ny) <Af(z) + (1 =) f(y). O

With Lemma in hand, we can prove the theorem above.

Proof of Theorem [12.3, We may assume without loss of generality that 2o =0 € U C B, and
also that f(z¢) = f(0) = 0.

We claim that f is continuous at 0, where f was assumed to be bounded above in an open
neighborhood of 0. Write this as: f(B(0,r)) < M for some r, M > 0, where B(x,r) C B
denotes the open ball of radius r centered at z € B. Now given e € (0,1) N Q rational and
z € B(0,er), we compute using Lemma [12.3}

$:€<E>+(1—6)0 = f(x)gef(§>+0<eM.

€
€ —X X
0= —
<1+e> < ¢ >+1+e’

so applying Lemma [12.3| once again, we obtain:

€ -z f(x) eM f(zx)
O§<1+€>f(e>+1+e<1+e+1+E — f(x) > —eM.

Therefore, we have = € B(0,er) = |f(x)| < eM.

Now given € > 0, choose 0 < € < min(M, ¢), such that €/ /M is rational, and set  := re’/M.
Then 6 < r, so |f(z)] < dM/r =€ < e whenever x € B(0,4). Hence, f is continuous at x.

We have shown that if f is bounded above in some open neighborhood of zy € U, then f
is continuous at xg. To finish the proof, we claim that for all y € U, f is bounded above on
some open neighborhood of y. This would show that f is continuous on U, which combined
with mid-convexity implies convexity.

To show the claim, choose a rational p > 1, such that py € U (this is possible as U is
open), and set U, := B(y, (1 — 1/p)r). Note that U, C U since for every v € U, there exists
x € B(0,r), such that

Moreover,

1 1
v=y+ =V = S on) + (1-3)
p p
Thus, v is a convex combination of py € U and x € B(0,r) C U. Hence, U, C U; in turn,

1 1 1
fw) < =flpy) + <1 - ) fz) < Hey) (1 —~ ) M, Yvel,
p p P P
by Lemma Since the right-hand side is independent of v € U,, the above claim follows.
Hence, by the first claim, f is indeed continuous at every point in U. U

The second condition, which will be used in a later part in this text, is that f is Lebesgue
measurable. Its sufficiency was proved a decade before Ostrowski’s result, independently by
Blumberg in Trans. Amer. Math. Soc. (1919) and Sierpirisky in Fund. Math. (1920).
However, the following proof goes via Theorem [12.2

Theorem 12.4. If I C R is an open interval and f : I — R is Lebesque measurable and
mid-convex, then f is continuous, hence conver.
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Proof. Suppose [ is not continuous at a point x¢ € 1. Fix ¢ > 0, such that (zo—2c¢, zo+2c) C

I. By Theorem f is unbounded on (xg — ¢,z0 + ¢). Now let By, :={z € I : f(z) > n}
for n > 1; note this is Lebesgue measurable. Choose u,, € B, N (29 — ¢, z9+¢) and X € [0, 1];
then by mid-convexity,

Up + AC Up — AC

n< f(up) = f 5 + 5

Thus, B,, contains at least one of the points u, + Ac € I, i.e., one of +Ac lies in B, — u,. We
now claim that each B,, has Lebesgue measure pu(B;,) > ¢. Assuming this claim,

< S (Flunt 2e) + Flu — Ae)).

c< lim p(By) = p(Nu>1Bn) ,
n—oo

since the B,, are a nested family of subsets. But then S := N,,>1B,, is non-empty, so for any
v € S, we have f(v) > n for all n, which produces the desired contradiction.

Thus, it remains to show the above claim. Fix n > 1 and note from above that M, :=
By, — u, is a Lebesgue measurable set, such that for every A € [0, 1], at least one of Ac, —Ac
lies in M,,. Define the measurable sets A; := M, N [—¢,0] and Az := M, N [0,¢], so that
—A; U Ay =[0,c¢]. This implies

c < (A1) + pu(A2) = p(Ar) + p(A2) = p(Ar U Az) < p(M,,). O

12.2. Functions preserving total non-negativity. With Theorem in hand, it is
possible to classify all entrywise functions that preserve total non-negativity or total positivity
in a fixed size, or even positive semidefiniteness on 2 x 2 matrices. A major portion of the
work is carried out by the next result. To state this result, we need the following notion.

Definition 12.5. Suppose I C [0,00) is an interval. A function f : I — [0, 00) is multiplica-

tively mid-convex on I if and only if f(\/zy) < \/f(x)f(y) for all x,y € I.

Remark 12.6. A straightforward computation yields that if f : I — R is always positive
and 0 € I, then f is multiplicatively mid-convex on [ if and only if the auxiliary function
g(y) :=log f(e¥) is mid-convex on log([).

We now prove the following important result, which is also crucial later.

Theorem 12.7. Suppose I = [0,00) and I := I\ {0}. A function f : I — R satisfies

<'§;EZ§ ;Ei;) is positive semidefinite whenever a,b,c € I and (Z i) is TN, if and only if

f is non-negative, non-decreasing, and multiplicatively mid-convex on I. In particular,
(1) fli+ is never zero or always zero.
(2) flr+ is continuous.
The same results hold if I = [0,00) is replaced by I = (0,00),[0, p), or (0, p) for 0 < p < co.

This result was essentially proved by H.L. Vasudeva [353], under some reformulation. In
the result, note that T'N is the same as ‘positive semidefinite with non-negative entries’, since
we are dealing with 2 x 2 matrices; thus, the test set of matrices is precisely Po(I), and the
hypothesis can be rephrased as:

f[—] : PQ(I) — PQ = PQ(R)
Moreover, all of these matrices are clearly Hankel. This result will therefore also play an

important role when we classify the entrywise preservers of positive semidefiniteness on low-

rank Hankel matrices (see Theorems and |19.1]).
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Proof. Let I be any of the domains mentioned in the theorem. We begin by showing the

equivalence. Given a T'N matrix
a b
(b c)’ a,bce I, 0<b<+/ac,
compute via the non-negativity, monotonicity, and multiplicative mid-convexity respectively:
0 < f(b) < f(Vac) </ f(a)f(c).
It follows that (f (a) f (b)) is TN and hence positive semidefinite.

f(®)  fle)
Conversely, if (via the above remarks) f[—] : Pa(I) — Py, then apply f[—] entrywise to the

matrices
a b a Vac
<b a)’ (\/& . ), a,b,cel, (12.8)

with 0 < b < a. From the hypotheses, it successively (and respectively) follows that f is
non-negative, non-decreasing, and multiplicatively mid-convex. This proves the equivalence.

As a brief digression that will be useful later, we remark that the test matrices <Z 2)

(Z Z>’ <\ZE @), a,b,cel, (12.9)

with 0 < b < a, to conclude as above that f is non-decreasing and multiplicatively mid-convex
on I. Indeed, we obtain f(a), f(b) > 0, and either f(b) =0 < f(a), or 0 < f(b)?> < f(b)f(a),
leading to the same conclusion.

We now show the two final assertions (1) and (2) in the theorem, again on I for any of
the domains I above; in other words, It = (0, p) for 0 < p < co. For (1), suppose f(z) =0
for some x € I'". Since f is non-negative and non-decreasing on I", it follows that f = 0 on
(0,z). Now claim that f(y) =0ify >z, y € I = (0,p). Indeed, choose a large enough
n > 0, such that y ¥/y/z < p. Set ( := {/y/x > 1 and consider the following rank-1 matrices
in Py(IT):

_(* ¢ _ (g 2 N ESE
Al = (:CC $<2> ) A2 = (‘TCQ $<3> ) ) A'rl T ( an x<n+1> .

The inequalities det f[Ag] > 0, 1 < k < n yield:

0< facH) < \/faChD)f(agH),  k=12,....n.

From this inequality for £ = 1, it follows that f(z¢{) = 0. Similarly, these inequalities
inductively yield: f(z¢*) =0 for all 1 < k < n. In particular, we have f(y) = f(x¢") = 0.
This shows that f =0 on IT, as claimed.

We provide two proofs of (2). If f =0 on IT, then f is continuous on I". Otherwise by
(1), f is strictly positive on (0, p) = I'. Now the “classical” proof uses the above “Ostrowski-
result”: define the function g : log I := (—o0,log p) — R via

can be replaced by

g(y) :=log f(e¥), y < log p.

By the assumptions on f and the observation in Remark g is mid-convex and non-
decreasing on (—o00,log p). In particular, g is bounded above on compact sets. Now apply
Theorem to deduce that g is continuous. It follows that f is continuous on (0, p).
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A more recent, shorter proof is by Hial in 2009 [171]: given f as above which is strictly

positive and non-decreasing on (0, p), fix t € (0, p) and let 0 < € < min(t/5, (p —t)/4). Then
O0<t+e< /(t+4e)(t—e€) <p,so

ft+e) < f(VEF A=) < VIT+ae - o).
Now letting € — 07, this implies f(¢) < f(t7), so
0<f() <fET) < f7) < f(t),  Vte(0,p).

Since t € (0, p) was arbitrary, this shows f is continuous as claimed. O

Remark 12.10. From the proof — see (12.8) — it follows that the assumptions may be
further weakened to not work with all symmetric 2 x 2 T'N matrices, but with only the
rank-1 symmetric and the Toeplitz symmetric 2 x 2 T'N matrices.

As an application, Theorem [12.7] allows us to complete the classification of all entrywise
maps that preserve total non-negativity in each fixed size.

Theorem 12.11. Suppose m,n > 2 and f : [0,00) — R entrywise preserves the m x n TN

matrices. Then either f(x) = f(1)x® for f(1),a > 0 and all x > 0 (and these powers were

classified in Theorem|11.2), or min(m,n) = 2 and f(x) = f(1)sgn(z) for x > 0 and f(1) > 0.
If instead min(m,n) = 1, then f can be any function that maps [0, 00) into itself.

Proof. The result is trivial for min(m,n) = 1, so we assume henceforth that m,n > 2. By
embedding 2 x 2 T'N matrices inside m xn TN matrices, it follows that f[—] preserves the 2x 2
TN matrices. In particular, f is continuous on (0,00) by Theorem and non-negative
and non-decreasing on [0,00). Now one can repeat the proof of Proposition above, to
show that

f@)f(y) = flzy) f(1),  Va,y >0, (12.12)
and moreover, either f =0 on [0,00), or f(z) = f(1)z® for z > 0 and some o > 0.

We assume henceforth that f # 0 on [0,00), so f(z) = f(1)x® as above, with f(1) > 0.
If now f(0) # 0, then substituting z = 0,y # 1 in shows that a = 0, and now using
r=y=0in shows f(0) = f(1), i.e., f|[o,00) is constant (and positive).

Otherwise f(0) = 0. Now if @ > 0 then f(x) = f(1)a® for all z > 0 and f is continuous on
[0,00). The final case is where f(0) = 0 = «, but f # 0. Then f(0) = 0 while f(z) = f(1) >0
for all > 0. Now if min(m,n) = 2 then it is easy to verify that f[—] preserves T'N,,x,. On

1

1 == 0
V2
the other hand, if m,n > 3, then computing det f[A] for the matrix A = % 1 %
1
0 7 1
shows that f[—] is not a positivity preserver on A @ 0(—3)x(n—3) € T Nimxn- O

12.3. Functions preserving total positivity. Akin to the above results, we can also clas-
sify the entrywise functions preserving total positivity in any fixed size, and they too are
essentially power functions.

Theorem 12.13. Suppose f : (0,00) — R is such that f[—] preserves the m xn TP matrices
for some m,n > 2. Then f is continuous and f(z) = f(1)z%, with « >0 and f(1) > 0.

Recall that the powers preserving the m x n TP matrices were classified in Corollary
To show the theorem, we make use of the following intermediate lemma, which is also
useful later in studying preservers of T'P Hankel kernels. A cruder version of the next result
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says that if f]—] preserves total positivity on 2 X 2 maftrices, then f is confinuous. More

strongly, we have:

Lemma 12.14. Suppose p € (1,00), and f : (0,00) — R. The following are equivalent:

(1) fl—] preserves total positivity on all symmetric 2 x 2 TP matrices.
(2) fl—] preserves positive definiteness on the symmetric TP Hankel matrices

<Z IC)>, a,c>0, \Jac/p < b < +ac.

(3) f is positive, increasing, and multiplicatively mid-convex on (0, 00).

In particular, f is continuous.

Proof. Clearly, (1) = (2), and that (3) = (1) is left to the reader as it is similar to the
proof of Theorem We now assume (2) and show (3). The first step is to claim that f is
positive and strictly increasing on (0,00). Suppose 0 < x < y < co. Choose n > log,(y/z),
and define the increasing sequence

1/n 2/n
Y )

ro=x, z1=21x(y/7) zo = z(y/) sy Tpn =Y.

Now the matrix ("Tifl ik) is in the given test set, by choice of n, so applying f[—] and
k k
taking determinants, we have

f@r), f(@rs1), flar)(f(@rer) = f(ze) >0,  0<k<n-1
It follows that f is positive on (0,00), hence also strictly increasing, since f(z) = f(xg) <
fler) <o < flan) = f(y).

We next show continuity, proceeding indirectly. From above, f : (0,00) — (0,00) has at
most countably many discontinuities, and they are all jump discontinuities. Let f(z) :=
lim, .+ f(y), for £ > 0. Then f(z*) > f(z) Va, and f(z*) coincides with f(z) at all points
of right continuity and has the same jumps as f. Thus, it suffices to show that f(z™) is
continuous (since this implies f is also continuous).

Now given 0 < x < y < oo, apply f[—] to the matrices

[ x+e ry+te
M($,y,€).— <\/@+6 y+6 )a xay7€>07

where € > 0 is small enough that (z + €)(y + €) < p(,/Ty + €)®. Then an easy verification
shows that M(z,y,€) is in the given test set. It follows that det f[M(z,y,€)] > 0, i.e.,
flx+e)f(y+e€) > f(/7y + €)?. Taking ¢ — 07, we obtain

FEN ™) = f(Vay™)?, Yo,y >0,
Thus, f(zT) is positive, non-decreasing and multiplicatively mid-convex on (0, 00). From the

proof of Theorem [12.7|(2), we conclude that f(z*) is continuous on (0,0), so f(z) = f(z™)
is also continuous and multiplicatively mid-convex on (0, c0). O

Using this lemma, we now show:

Proof of Theorem [12.15. We first show the result for m = n = 2. By Lemma fis
continuous, positive, and strictly increasing on (0,00). Now claim that f(x) = f(1)x® for all
x > 0 (and some « > 0). For this, consider the matrices

Az, y,€) = (1 f ) a;y) , B(z,y,€) := (Zy 1 i e) , where x,y,e > 0.
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These are both T'P matrices, hence so are f|A(x,y,€)] and f|B(x,y,€)]. The positivity of

both determinants yields:

f@)fy) > fley)f(l—e),  flay)f(1+e) > f(2)f(y),  Yz,y,e>0.

Taking ¢ — 0T, the continuity of f and the assumptions imply that % is multiplicative,

continuous, positive, non-constant, and strictly increasing on (0,00). Hence (e.g. as in the
proof of Proposition [L1.6)), f(z) = f(1)z* for all z > 0, where o > 0 and f(1) > 0.

This completes the proof for m = n = 2. Now suppose more generally that m,n > 2.
Recall by a TP completion problem (see Theorem that every 2 x 2 T'P matrix can be
completed to an m x n TP matrix. It follows from the assumptions that f[—] must preserve
the 2 x 2 T'P matrices, and we are done. (]

12.4. Symmetric TN and TP matrix preservers. Having classified the preservers of
total positivity on all matrices of a fixed size, we turn to T'N symmetric matrices:

Theorem 12.15. Suppose f : [0,00) — R and d > 1. Then f[—] preserves the symmetric
TN d x d matrices if and only if f is a non-negative constant, or:

(1) (d =1). The function f is non-negative.

(2) (d =2). fis non-negative, non-decreasing, and multiplicatively mid-convex on [0, 00).

In particular, f is continuous on (0,00).

(3) (d=3). f(x) =cx® for some ¢ >0 and o > 1.

(4) (d=4). f(x) = cx® for some ¢ >0 and o € {1} U [2,00).

(5) (d=5). f(x) = cx for some ¢ > 0.

Proof. For d = 1 the result is immediate. If d = 2, the result follows from Theorem[12.7] Now
suppose d = 3. One implication follows from Theorem [I2.11] Conversely, every symmetric
2 x 2 can be padded by a row and column of zeros to remain T'N, so by Theorem [12.7] f is
continuous, non-negative, and non-decreasing on (0,00). We next show that f is continuous
at 0 and that f(0) = 0 for non-constant f. First, the matrix f[z Idsxs] is TN for each = > 0.
If £(0) > 0, considering various 2 x 2 minors yields f(xz) = f(0) for all x > 0, so f is constant.
The remaining case is f(0) = 0. Now let A3x3 be as in Equation . By the hypotheses,
flzA] is TN for all x > 0, so

0 < det flzA] = —f(0T)3.

Thus f(07) =0 = f(0), and f is continuous.
Next, consider the symmetric 7'V matrices

2 r xy %y xy x
Alz,y)=[=2 1 y |, B(z,y) =2y vy 1|, x>0, y>0.
ry y oy x 1 1y

T Ty Ty x
1y and y o1
proof of Proposition to conclude that f is either a constant or f(x) = cx® for some
¢ > 0,a > 0. Finally, again using the matrix A in and the computations following it,
we conclude that o > 1.

The next case is d = 4. As above, embedding 3 x 3 matrices via padding by zeros shows
that f(x) = cx®, with ¢ > 0 and a > 1. From the proof of Theorem given « € (1,2)
one obtains a 4 x 4 Hankel moment matrix (hence this is TN), corresponding to the measure
01 + €dy for 1 # z € (0,00) and small € > 0, whose ath entrywise power is not positive

Since these contain as non-principal submatrices, we can repeat the
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semidefinite. This proves one implication; for the reverse, the preceding parts for d = 2,3

imply that the determinants of all proper submatrices of f[A] are non-negative, for every
4 x 4 symmetric TN matrix A. That det f[A] > 0 follows from Theorem [9.3]

The final case is d > 5. In this case, one implication is trivial, and the reverse implication
for d = 5 implies the same for all d > 5, by padding 5 x 5 TN matrices by zeros. Thus,
it suffices to classify the non-constant preservers of 5 x 5 symmetric TN matrices. By the
preceding part, these are of the form cx® for « =1 or a > 2, and ¢ > 0. Now suppose a > 2,
and consider the family of 5 x 5 matrices

2 3 6 14 36
3 6 14 36 98

T(x):=1505+2| 6 14 36 93 276 |, >0 (12.16)
14 36 98 284 842
36 98 276 842 2604

Straightforward computations show that all k x k minors of M (z) are of the form az*~1 +ba*
for a,b > 0, for 1 < k < 4, and det M(z) = 0. Thus M(z) is TN for all z > 0. Let
N(z) := M(z)) be the truncation of M (z), i.e., with its first row and last column removed.
Another computation reveals that for small x > 0,

det N (z)°® = 28584(a — a*)z* + O(2°),
so if & > 1, then there exists small x > 0 such that M (x)°* is not T'N. O

From this result, it is possible to deduce the classification of T'P preservers on symmetric
matrices of each fixed size:

Corollary 12.17. Suppose f : (0,00) — (0,00). Then f[—] preserves total positivity on
symmetric TP d x d matrices, if and only if f satisfies:

(1) (d =1). The function f is positive.

(2) (d = 2). f is positive, increasing, and multiplicatively mid-convex on (0,00). In

particular, f is continuous.

(3) (d=3). f(z) = cax® for some ¢ >0 and o > 1.

(4) (d=4). f(x) = cx® for some ¢ >0 and a € {1} U [2,00).

(5) (d=05). f(x) = cx for some c > 0.

Proof. The equivalence is obvious for d = 1, and was shown for d = 2 in Lemma [12.14]
Now suppose d > 3 and A is any symmetric TP 2 x 2 matrix. By Theorem A extends
to a symmetric TP d x d matrix, hence f[A] is TP. The d = 2 case now implies that f
is continuous, increasing, and positive on (0, 00), and hence extends to a continuous, non-
negative, increasing function f: [0,00) — [0,00). By Whitney density for symmetric matrices
(Proposition , fN[—] preserves symmetric TN 2 X 2 matrices, so f is of the desired form
for each d > 3 by Theorem Conversely, the d = 3 case follows from Theorem the
d > 5 case is obvious; and for d = 4, given Ayx4 symmetric TP and o > 2, note that all 3 x 3
submatrices of A°® are TP by Theorem while det A°® > 0 by Corollary O

12.5. Totally non-negative Hankel matrices — entrywise preservers. We have seen
that if the entrywise map f[—] preserves the m x n TP/TN matrices for m,n > 4, then f
is either constant on (0,00) (and f(0) equals either this constant or zero) or f(x) = f(1)x
for all . In contrast, the powers z® that entrywise preserve positive semidefiniteness on
P,.((0,00)) (for fixed n > 2) are Z=° U [n — 2, 00).
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This discrepancy is also supported by the fact that P, is closed under the Schur (or

entrywise) product, but already the 3 x 3 T'N matrices are not. (Hence neither are the
m X n TN or TP matrices for m,n > 3, by using completions and density arguments.) For

111 110 110
example, A:= |1 1 1|, B:==AT=|1 1 1] arebothTN,but AocB=|1 1 1
01 1 111 01 1

has determinant —1, and hence cannot be T'N.

Thus, a more refined (albeit technical) question would be to isolate and work with a class
of T'N matrices that is a closed, convex cone, and which is further closed under the Schur
product. In fact, such a class has already been discussed earlier: the family of Hankel TN
matrices (see Corollary . With those results in mind, and for future use, we introduce
the following notation:

Definition 12.18. Given an integer n > 1, let HIN,, denote the n x n Hankel T'N matrices.

We also study in this text the entrywise preservers of TN on HTN,, for a fixed n and for
all n — see Remark Corollary and Corollary This study turns out to be
remarkably similar (and related) to the study of positivity preservers on P, — which is not
surprising, given Theorem For now, we work in the setting under current consideration:
entrywise power-preservers.

Theorem 12.19. Forn > 2 and o € R, % entrywise preserves TN on HIN,,, if and only if
a€Z>°U[n —2,00).

In other words, x® preserves total non-negativity on HTN,, if and only if it preserves positive
semidefiniteness on P, ([0, 00)).

Proof. If a € ZZ° U [n — 2,0), then we use Theorem u together with Theorem Con-
versely, suppose a € (0,n — 2) \ Z. We have previously shown that the moment matrix
H = (1+ exj+k_2)?7k:1 lies in HTN,, for z,e > 0; but if x # 1 and € > 0 is small, then
H°* ¢ P,,, as shown in the proof of Theorem (Alternately, this holds for all € > 0 by
Theorem [9.10}) It follows that H°* & T'N,,. O
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13. ENTRYWISE POWERS (AND FUNCTIONS) PRESERVING POSITIVITY: II. MATRICES WITH

ZERO PATTERNS.

Having completed the classification of entrywise functions preserving the TP/T N matrices
in any fixed size, in this part of the text and the next we restrict ourselves to understanding
the entrywise functions preserving positive semidefiniteness — henceforth termed positivity —
either in a fixed dimension or in all dimensions. (As mentioned above, there will be minor
detours studying the related notion of entrywise preservers of HTN,,.)

In this section and the next, we continue to study entrywise powers preserving positivity
in a fixed dimension, by refining the test set of positive semidefinite matrices. The plan for
these two sections is as follows:

(1) We begin by recalling the test set P ([0, 00)) associated to any graph G, and discussing
some of the modern-day motivations in studying entrywise functions (including pow-
ers) that preserve positivity.

(2) We then prove some results on general entrywise functions preserving positivity on
P¢ for arbitrary non-complete graphs. (The case of complete graphs is the subject
of the remainder of the text.) As a consequence, the powers — in fact, the functions
— preserving Pg([0, 00)) where G is any tree (or collection of trees) are completely
classified.

(3) We show how the integration trick of FitzGerald and Horn (see the discussion around
Equations and ) extends to help classify the entrywise powers preserving
other Loewner properties, including monotonicity, and in turn, super-additivity.

(4) Using these results, we classify the powers preserving Pg for G the almost complete
graph (i.e., the complete graph minus any one edge).

(5) We then state some recent results on powers preserving P for other G (all chordal
graphs; cycles), and conclude with some questions for general graphs G, which arise
naturally from these results.

13.1. Modern-day motivations: graphical models and high-dimensional covariance
estimation. As we discuss in Section the question of which functions preserve positivity
when applied entrywise has a long history, having been studied for the best part of a century
within the analysis literature. For now, we explain why this question has attracted renewed
attention owing to its importance in high-dimensional covariance estimation.

In modern-day scientific applications, one of the most important challenges involves un-
derstanding complex multivariate structures and dependencies. Such questions naturally
arise in various domains: understanding the interactions of financial instruments, studying
markers of climate parameters to understand climate patterns, and modeling gene-gene as-
sociations in cancer and cardiovascular disease, to name a few. In such applications, one
works with very large random vectors X € RP, and a fundamental measure of dependency
that is commonly used (given a sample of vectors) is the covariance matrix (or correlation
matrix) and its inverse. Unlike traditional regimes, where the sample size n far exceeds the
dimension of the problem p (i.e., the number of random variables in the model), these mod-
ern applications — among others — involve the reverse situation: n < p. This is due to the
high cost of making, storing, and working with observations, for instance; but moreover, an
immediate consequence is that the corresponding covariance matrix built out of the samples
T1,...,Tyn €RP
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is highly singular. (Its rank is bounded above by the sample size n < p.) This makes > a

poor estimator of the true underlying covariance matrix 3.

A second shortcoming of the sample covariance matrix has to do with zero patterns. In the
underlying model, there is often additional domain-specific knowledge which leads to sparsity.
In other words, certain pairs of variables are known to be independent, or conditionally
independent given other variables. For instance, in probability theory one has the notion of
a Markov random field, or graphical model, in which the nodes of a graph represent random
variables and the edges the dependency structure between them. Or, in the aforementioned
climate-related application — specifically, temperature reconstruction — the temperature at
one location is assumed to not influence that at another (perhaps far away) location, at least
when conditioned on the neighboring points. Such (conditional) independences are reflected
in zero entries in the associated (inverse) covariance matrix. In fact, in the aforementioned
applications, several models assume most of the entries (~ 90% or more) to be zero.

However, in the observed sample covariance matrix, there is almost always some noise, as
a result of which very few entries are zero. This is another reason why sample covariance is
a poor estimator in modern applications.

For such reasons, it is common for statistical practitioners to reqularize the sample covari-
ance matrix (or other estimators), in order to improve its properties for a given application.
Popular state-of-the-art methods involve inducing sparsity — i.e., zero entries — via convex
optimization techniques that impose an ¢!-penalty (since /’-penalties are not amenable to
such techniques). While these methods induce sparsity and are statistically consistent as
n,p — 00, they are iterative and hence require solving computationally expensive optimiza-
tion problems. In particular, they are not scalable to ultra high-dimensional data, say for
p ~ 100,000 or 500,000, as one often encounters in the aforementioned situations.

A recent promising alternative is to apply entrywise functions on the entries of sample
covariance matrices (see, e.g., [I5], 48| 110} 167, 168, 236], 304, B77] and numerous follow-up
papers). For example, the hard and soft thresholding functions set very small entries to zero
(operating under the assumption that these often come from noise, and do not represent
the most important associations). Another popular family of functions used in applications
consists of entrywise powers. Indeed, powering up the entries provides an effective way in
applications to separate signal from noise.

Note that these entrywise operations do not suffer from the same drawback of scalability,
since they operate directly on the entries of the matrix, and do not involve optimization-based
techniques. The key question now, is to understand when such entrywise operations preserve
positive semidefiniteness. Indeed, the regularized matrix that these operations yield must
serve as a proxy for the sample covariance matrix in further statistical analyses, and hence
is required to be positive semidefinite.

It is thus crucial to understand when these entrywise operations preserve positivity — and
in a fixed dimension, since in a given application one knows the dimension of the problem.
Note that while the motivation here comes from downstream applications, the heart of the
issue is very much a mathematical question involving analysis on the cone P,,.

With these motivations, the current and last/next few sections deal with entrywise powers
preserving positivity in a fixed dimension; progress on these questions impacts applied fields.
At the same time, the question of when entrywise powers and functions preserve positivity,
has been studied in the mathematics literature for almost a century. Thus (looking slightly
ahead), in the next part and the last part of this text, we return to the mathematical advances,
both classical and recent. This includes proving some of the celebrated characterization
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results i this area — by Schoenberg, Rudin, Loewner/Horn, and Vasudeva — using fairly

accessible mathematical machinery.

13.2. Entrywise functions preserving positivity on Ps for non-complete graphs.
In this section and the next, we continue with the theme of entrywise powers and functions
preserving positivity in a fixed dimension, now under additional sparsity constraints — i.e.,
on Pq for a fixed graph G. In this section, we obtain certain necessary conditions on general
functions preserving positivity on Pg.

As we will see in Section [I6.1], the functions preserving positive semidefiniteness on P,, for
all n (and those preserving T'N on HTN,,) for all integers n > 1 can be classified, and they are
precisely the power series with non-negative coefficients

oo
flz) = Z cra®, with ¢ > 0V k.
k=0
This is a celebrated result of Schoenberg and Rudin (see Theorems and . However,
the situation is markedly different for entrywise preservers of P,, for a fized dimension n > 1:
e For n =1, clearly any f :[0,00) — [0, 00) works.
e For n = 2, the entrywise preservers of positive semidefiniteness (or of total non-
negativity) on P2((0,00)) have been classified by Vasudeva in Ind. J. Pure Appl.
Math. (1979): see Theorem [12.7]
e For n > 3, the problem remains open to date.

Given the open (and challenging!) nature of the problem in fixed dimension, efforts along
this direction have tended to work on refinements of the problem: either restricting the
class of entrywise functions (to, e.g., power functions, or polynomials as we study later),
or restricting the class of matrices: to T'P/T'N matrices, to Toeplitz matrices (by Rudin),
or Hankel TN matrices, or to matrices with rank bounded above (by Schoenberg, Rudin,
Loewner and Horn, and subsequent authors), or to matrices with a given sparsity pattern —
i.e., Pg for fixed G. It is this last approach that we focus on, in this section and Section

Given a (finite simple) graph G = (V, E), with V = [n] = {1,...,n} for some n > 1, and
a subset 0 € I C R, the subset Pg(I) is defined to be:

Po(I) :={A€P,(I) : aj=0ifj#kand (j,k) ¢ E}. (13.1)

For example, when G = Az (the path graph on three nodes), Pg = € P33,

o e

b
b
0

Qo OO0

and when G = K, (the complete graph on n vertices), we have Pg(I) = P, ().
We now study the entrywise preservers of Pg for a graph G. To begin, we extend the
notion of entrywise functions to P, by acting only on the “unconstrained” entries:

Definition 13.2. Let 0 € I C R. Given a graph G with vertex set [n], and f: I — R, define
fal=]: Pg(I) — R™" via

07 ifj#k7 (j?k)¢E7
f(ajr), otherwise.

(felA])jk = {

Here are some straightforward observations on entrywise preservers of Pg([0,00)):

(1) When G is the empty graph, i.e., G = (V, ), the functions f, such that fg[—] preserves
P¢ are precisely the functions sending [0, 00) to itself.
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(2) When G 1s the disjoint union of a positive number oi disconnected copies of K9 and

isolated nodes, Pg consists of block diagonal matrices of the form @é?:lAj, where the
A; are either 2 x 2 or 1 x 1 matrices (blocks), corresponding to copies of K3 or isolated
points respectively, and @ denotes a block diagonal matrix of the form

Ay
Ao

Ay

(The remaining entries are zero.) By assumption, at least one of the A; must be a
2% 2 block. For such graphs, we conclude by Theorem[12.7]that fg[—] : Pg([0,00)) —
P ([0,00)) if and only if f is non-negative, non-decreasing, multiplicatively mid-
convex, and 0 < f(0) < lim,_,o+ f(z).
(3) More generally, if G is a disconnected union of graphs: G = | |, ; Gj, then fg[—]:
Pg([0,00)) = Pg([0,00)) if and only if the entrywise map fg,[—] preserves Pg, ([0, c0))
for all j.
In light of these examples, we shall henceforth consider only connected, non-complete
graphs G, and the functions f, such that fg][—] preserves Pg([0,00)). We begin with the
following necessary conditions:

Proposition 13.3. Let I = [0,00) and G be a connected, non-complete graph. Suppose
f I — R s such that fg[—]: Pa(I) = Pg(I). Then the following statements hold:

(1) £(0) =0.

(2) f is continuous on I (and not just on (0,00)).

(3) f is super-additive on I, i.e., f(x +y) > f(z)+ f(y) Vx,y > 0.

Remark 13.4. In particular, fg[—] = f[—] for (non-)complete graphs G. Thus, following
the proof of Proposition we use f[—] in the sequel.

Proof. Clearly, f : I — I. Assume that G has at least three nodes, since for connected graphs
with two nodes, the proposition is vacuous. A small observation — made by Horn [I82], if not
earlier — reveals that there exist three nodes, which we may relabel as 1,2, and 3 without loss
of generality, such that 2 and 3 are adjacent to 1 but not to each other. Since Py(I) — Pg([)

Via
a b a b
b o) 7y o) DOqvi-xvi-2):

it follows from Theorem that f| (o o) is non-negative, non-decreasing, and multiplicatively
mid-convex; moreover, f| ) is continuous and is identically zero or never zero.
To prove (1), define

a+pB a B
B(a, p) = Q@ a 0], o, 8> 0.
g0 p
Note that B(a, 8) © 0v|—3)x(|v|-3) € Pa(l). Hence, fa[B(a, ) ®0] € Pg(I), from which we
obtain:
fla+B) fla) f(B)
felBla,p)l = | [fla)  fla) 0 ) ePs(I), Va,520. (13.5)

f(B) 0 f(B)
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For o= =70, ([13.9) yields that det j¢[B(0,0)] = —f(0)° = 0. But since j is non-negative,
it follows that f(0) = 0, proving (1).

Now if f[(0,00) = 0, the remaining assertions immediately follow. Thus, we assume in the
sequel that f \(0700) is always positive.

To prove (2), let « = 8 > 0. Then (|13.5)) gives:

det f[B(a,a)] 20 = f(@)’(f2a) =2f(@)) 20 = f(2a) —2f(a) 2 0.
Taking the limit as ¢ — 07, we obtain — f(07) > 0. Since f is non-negative, f(07) =0 = f(0),
so f is continuous at 0. The continuity of f on I now follows from the above discussion.

Finally, to prove (3), let o, 8 > 0. Invoking ((13.5)) and again starting with det fg[B(«a, 8)] >
0, we obtain

F@)f(B)(fla+B) = fle) = f(B) 20 = fla+p)=fla)+ f(B).

This shows that f is super-additive on (0, 00); since f(0) = 0, we obtain super-additivity on
all of 1. -

Proposition [13.3]is the key step in classifying all entrywise functions preserving positivity
on Pg for every tree G. In fact, apart from the case of Py = Pg,, this is perhaps the
only known case (i.e., family of individual graphs) for which a complete classification of the
entrywise preservers of P is available — and proved in the next result.

Recall that a tree is a connected graph in which there is a unique path between any two
vertices; equivalently, where the number of edges is one less than the number of nodes; or
also where there are no cycle subgraphs. For example, the graph As considered above (with
V ={1,2,3} and E = {(1,2),(1,3)}) is a tree.

Theorem 13.6. Suppose I = [0,00) and a function f : I — I. Let G be a tree on at least
three vertices. Then the following are equivalent:

(1) fl=]: Pg(I) = Pg().

(2) fl=]: Pp(I) = Pp(I) for all trees T.

(3) fl=]:Pa,(I) = Pa,(I).

(4) f is multiplicatively mid-conver and super-additive on I.

Proof. Note that G contains three vertices on which the induced subgraph is Az (consider
any induced connected subgraph on three vertices). By padding P4, by zeros to embed inside
P|), we obtain (1) == (3). Moreover, that (2) = (1) is clear.

To prove that (3) = (4), note that Ky — As. Hence, f is multiplicatively mid-convex
on (0,00) by Theorem By Proposition f(0) =0 and f is super-additive on I. In
particular, f is also multiplicatively mid-convex on all of I.

Finally, we show that (4) = (2) by induction on n for all trees T' with at least n > 2
nodes. For the case n = 2 by Theorem [12.7] it suffices to show that f is non-decreasing.
Given v > « > 0, by super-additivity we have

fO) =z fle) + fy—a) = fla),

proving the result.

For the induction step, suppose that (2) holds for all trees on n nodes and let G' = (V, E)
be a tree on n + 1 nodes. Without loss of generality, let V' = [n+ 1] = {1,...,n + 1}, such
that node n + 1 is adjacent only to node n. (Note: there always exists such a node in every
tree.) Let G be the induced subgraph on the subset [n] of vertices. Then, any A € P/ (1)
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can be writfen as

A:(B be,,

bel ) , wherebeR, cel, BePg(I),
en € J(nt1)x(nt1)

and e, := ((0,0,...,0, 1)1Xn)T is a standard basis vector. Since f is non-negative and super-
additive, f(0) = f(0+0) > 2f(0) > 0, hence f(0) = 0. If f = 0, we are done. Thus, we
assume that f # 0, so f|(,) is positive by Theorem

If ¢ = 0, then b,,c — b?> > 0 implies b = 0, and so f[A] = (g[B] O"OXI) € Pg @ 01x1

1xn

by the induction hypothesis. Otherwise, ¢ > 0, hence f(c) > 0. From the properties of
Schur complements (Theorem [2.32)) we obtain that A is positive semidefinite if and only if
B-— ﬁEnn is positive semidefinite, where FE,,, is the elementary n x n matrix with (j, k) entry

d;n0kn; and similarly, f[A] is positive semidefinite if and only if f[B] — J;((bg; E,,, is positive

semidefinite. ,
By the induction hypothesis, we have that f[B — %Enn] is positive semidefinite. Thus, it

suffices to prove that f[B] — %E,m - fIB— %Enn] is positive semidefinite. Now compute:
fb)? b f(0)? b

fIB] — Enn — fIB — —Ep| = aby,, where a = f(byn) — — f(bpn — —).
(Bl = LB = 1B = ZFy (o) = L2 = Fbun = %)
Therefore, it suffices to show that o > 0. But by super-additivity, we have
f(v)? b’
o= f(bpn) — — flbpn — —
Foua) = 20 = 10 = %)
b2 b2 f(b)? b?
—f(bnn_* ;)_ f(c) _f(bnn_?)
b? b2, f(b)? b?
> _ i _ _
_f(bnn C)+f(C) f(c) f(bnn C>
v f(b)?
SVCOREN
¢’ flo)
Moreover, by multiplicative mid-convexity, we obtain that f (%) f(e) > f(b)%. Hence, a >0
and f[A] is positive semidefinite, as desired. O

An immediate consequence is the complete classification of entrywise powers preserving
positivity on Pr ([0, 00)) for T a tree.

Corollary 13.7. f(x) = x“ preserves Pr([0,00)) for a tree on at least three nodes, if and
only if a > 1.

The proof follows from the observation that z® is super-additive on [0,00) if and only if
a > 1.
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14. ENTRYWISE POWERS PRESERVING POSITIVITY: III. CHORDAL GRAPHS. LOEWNER
MONOTONICITY AND SUPER-ADDITIVITY.

We next study the set of entrywise powers preserving positivity on matrices with zero
patterns. Recall the closed convex cone Pg ([0, 00)) studied in Section[13] for a (finite simple)
graph G. Now define

He :={a>0: A € Ps([0,00)) VA € P([0,0))}, (14.1)

with the convention that 0° := 1. Thus, Hg is the set of entrywise, or Hadamard, powers
that preserve positivity on Pg.

Observe that if G C H are graphs, then Hg O Hpy. In particular, by the FitzGerald-Horn
classification in Theorem

Hg D Hi, = Z72° U [n — 2,00) (14.2)

whenever GG has n vertices. Specifically, there is always a point 5 > 0 beyond which every
real power preserves positivity on Po. We are interested in the smallest such point, which
leads us to the next definition (following the FitzGerald—Horn theorem in the special case
G=K,):

Definition 14.3. The critical exponent of a graph G is
ag :=min{f > 0: «a € Hg Ya > B}.

Example 14.4. We saw earlier that if G is a tree (but not a disjoint union of copies of K5),
then ag = 1; and FitzGerald-Horn [123] showed that ag, =n — 2 for all n > 2.

In this section we are interested in closed-form expressions for ag and Hg. Not only is
this a natural mathematical refinement of Theorem but as discussed in Section [13.1]
this moreover impacts applied fields, providing modern motivation to study the question.
Somewhat remarkably, the above examples were the only known cases until very recently.

On a more mathematical note, we are also interested in understanding a combinatorial
interpretation of the critical exponent ag. This is a graph invariant that arises out of posi-
tivity; it is natural to ask if it is related to previously known (combinatorial) graph invariants,
and more broadly, how it relates to the geometry of the graph.

We explain in this section that there is a uniform answer for a large family of graphs, which
includes complete graphs, trees, split graphs, banded graphs, cycles, and other classes; and
moreover, there are no known counterexamples to this answer. Before stating the results,
we remark that the question of computing Hg, ag for a given graph is easy to formulate,
and one can carry out easy numerical simulations by running (software code) over large sets
of matrices in Pg (possibly chosen randomly), to better understand which powers preserve
Pg. This naturally leads to accessible research problems for various classes of graphs: say
triangle-free graphs, or graphs with small numbers of vertices. For instance, there is a graph
on five vertices for which the critical exponent is not known!

Now on to the known results. We begin by computing the critical exponent ag — and Hg,
more generally — for a family of graphs that turns out to be crucial in understanding several
other families (split, Apollonian, banded, and in fact all chordal graphs).

Definition 14.5. The almost complete graph KT(LI) is the complete graph on n nodes, with
one edge missing.
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We will choose a specific labeling of the nodes in K, ’; note this does not affect the set

He or the threshold aq. Specifically, we set the (1,n) and (n, 1) entries to be zero, so that
o0

P ) consists of matrices of the form | : . | €P,. Our goal is to prove:
0

Theorem 14.6. For all n > 2, we have H ) = Hk, = 272U [n —2,00).

14.1. Other Loewner properties. In order to prove Theorem [14.6] we need to understand
the powers that preserve super-additivity on n x n matrices under the positive semidefinite
ordering. We now define this notion, as well as a related notion of monotonicity.

Definition 14.7. Let I C R and n € N. A function f: I — R is said to be

(1) Loewner monotone on P, (I) if we have A > B > Opxrn, = f[A] > f[B].

(2) Loewner super-additive on P,,(I) if f[A+ B] > f[A] + f[B] for all A, B € P,,(I).
In these definitions, we are using the Loewner ordering (or positive semidefinite ordering) on
n X n matrices: A > B if A— B € P,(R).

Remark 14.8. A few comments to clarify these definitions are in order. First, if n = 1,
then these notions both reduce to their usual counterparts for real functions defined on
[0,00). Second, if f(0) > 0, then Loewner monotonicity implies Loewner positivity. Third,
a Loewner monotone function differs from — in fact is the entrywise analogue of — the more
commonly studied operator monotone functions, which have the same property but for the
functional calculus: A> B >0 = f(A4) > f(B)>0.

Note that if n = 1 and f is continuously differentiable, then f is non-decreasing if and only
if f’ is non-negative. The following result generalizes this fact to powers acting entrywise on
P, and classifies the Loewner monotone powers.

Theorem 14.9 (FitzGerald—Horn). Given an integer n > 2 and a scalar a € R, the power
x® is Loewner monotone on Py ([0,00)) if and only if « € Z=°U[n—1,00). In particular, the
critical exponent for Loewner monotonicity on Py, is n — 1.

We will see in Section [I5]a strengthening of Theorem [I4.9) by using individual matrices from
a multiparameter family, in the spirit of Jain’s theorem [0.10] for Loewner positive powers.

Proof. The proof strategy is similar to that of Theorem use the Schur product theorem
for non-negative integer powers, perform induction on n for the powers above the critical
exponent, and employ (the same) rank-2 Hankel moment matrix counterexample for the
remaining powers. First, if &« € N and 0 < B < A, then repeated application of the Schur
product theorem yields

Opxr < B°* < Bo(a—l) 0 A< Bo(a—?) o A°2 << A0

Now, suppose o > n — 1. We prove that z¢ is Loewner monotone on P, by induction
on n; the base case of n = 1 is clear. For the induction step, if & > n — 1, then recall the
integration trick (9.7) of FitzGerald and Horn:

1
A% — B = a/ (A= B)o (M + (1—A)B)°@ b gx,
0

Since a —1 > n—2, the matrix (AA+ (1 —X)B)°(@~1 is positive semidefinite by Theorem
and thus, A°® — B°* € P,,. Therefore, A°® > B°*, and we are done by induction.
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Finally, to show that the threshold ae = n — 1 is sharp, suppose « € (0,n — 1)\ N (we leave

the case of @ < 0 as an easy exercise). Consider again the Hankel moment matrices

Ale) := H,, for pp = 61 + €d,, B := A(0) = 1,xn,

where z,¢ > 0, x # 1, and H, is understood to denote the leading principal n x n sub-
matrix of the Hankel moment matrix for p. Clearly, A(e) > B > 0,xpn. As above, let
v=(1,z,...,2" 17T so that A(e) = 117 + evv. Choose a vector u € R" that is orthog-
onal to v,v°2, ... v+ and Tyollel+2) = 1, (Note, this is possible since the vectors
v,v°2, ..., v°l2)*2) are linearly independent, forming the columns of a possibly partial gen-
eralized Vandermonde matrix.)

We claim that u” (A(e)°® — B°*)u < 0 for small € > 0, which will show that z® is not
Loewner monotone on P, ([0,00)). Indeed, compute using the binomial series for (1 4+ z)*:

ul A(e)°®u — vl Bu = v (117 + evv”)°u — w117y

o] +2
=ul. ; <2> FvF ()T T - o(eleIF2) Ly

_ (L JO[+ 2>6Laj+2+uT0(6Laj+2)u
«

o (0 Yo ot ).

and this is negative for small € > 0. (Here, o(-) always denotes a matrix, as in (9.8).) O

Theorem is now used to classify the powers preserving Loewner super-additivity. Note
that if n = 1, then z® is super-additive on P, ([0, 00)) = [0, 00) if and only if « > n = 1. The
following result generalizes this to all integers n > 1:

Theorem 14.10 (Guillot, Khare, and Rajaratnam, [I51]). Given an integer n > 1 and
a scalar o € R, the power xz% is Loewner super-additive on P,(]0,00)) if and only if o €
N U [n,00). Moreover, for each o € (0,n) \ N and x € (0,1), for ¢ > 0 small enough the
matrix

(117 + evo)o> — 117 — (evoT)>

is not positive semidefinite, where v = (1,z,..., 2" YT, In particular, the critical exponent
for Loewner super-additivity on P, is n.

Thus, once again the same rank-2 Hankel moment matrices provide the desired counterex-
amples, for non-integer powers a below the critical exponent.

Proof. As above, we leave the proof of the case @ < 0 or n = 1 to the reader. Next, if a = 0,
then super-additivity fails, since we always get —117 from the super-additivity condition,
and this is not positive semidefinite.

Thus, henceforth o > 0 and n > 2. If « is an integer, then by the binomial theorem and
the Schur product theorem,

(A + B)oa _ Z (Z)Aok o Bo(afk) > Acw + Booz’ VA,B e Pn
k=0
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Next, it a > nand A, B € PP,(|0,00)), then % * preserves Loewner monotonicity on P,
by Theorem Again, use the integration trick to compute

1
(A+ B)°® — A° = a/ Bo(MA+B)+ (1 —X)A)°™D dx
0

1
> a/ Bo (AB)°@D g) = B°,
0

The final case is if « € (0,n) \ Z. As above, we fix z > 0, z # 1, and define

n=hT, Ale) := evv” (e >0), B := A(0) = 1,xn.
2

vi=(l,z,...,x

Clearly, A(e), B > 0pxpn. Now, since o € (0,n), the vectors v, v° ..., vl o are linearly
independent (since the matrix with these columns is part of a generalized Vandermonde
matrix). Thus, we may choose u € R that is orthogonal to v,...,v°l% (if o € (0,1), this is
vacuous) and such that u” v°® = 1. Now compute as in the previous proof, using the binomial
theorem

la]
(A(E) + B)oa _ A(e)oa _ Boa — Z (Z‘) ekvok(vok)T _ 6ozvooc(vooz)T + O(EO‘);
k=1

the point here is that the last term shrinks at least as fast as el®/*1. Hence, by the choice of
u?

ul ((A(e) + B)°® — A(€)°® — B°*)u = —* 4+ ul - 0(?) - u,
and this is negative for small ¢ > 0. Hence, ¢ is not Loewner super-additive even on rank-1
matrices in P, ((0, 1]). O

Remark 14.11. The above proofs of Theorems [14.9] and [14.10] apply for arbitrary v =
(v1,...,v,)T, consisting of pairwise distinct positive real scalars.

14.2. Entrywise powers preserving Pg;. We now apply the above results to compute the

set of entrywise powers preserving positivity on P IR (the almost complete graph).

Proof of Theorem 4.6, The result is straightforward for n = 2, so we assume henceforth that
n > 3. It suffices to show that H ) C 779 U [n — 2,00), since the reverse inclusion follows
from Theorem via (14.2). Fix x > 0, = # 1, and define

1 17 0
vi=(1,z,...,2" )T e R"2, Ale):= |1 117 4 ev” fev , e > 0.
0 VeuT 1
nxn

Note that if p, ¢ > 0 are scalars, a,b € R"~2 are vectors, and B is an (n —2) x (n — 2) matrix,
then using Schur complements (Theorem [2.32]),

p al 0 D al
a B b)eP = _ eP,_
0 BT g " (a B—q 1bbT> o (14.12)

<~ B-plaal —¢ 'bb! e P, _s.
Applying this to the matrices A(e) and A(e)°®, we obtain: A(e) € P, and
Al eP, <= (117 + e’ — (117" — (0@ € P, _».
For small € > 0, Theorem now shows that o € ZZ% U [n — 2, 00), as desired. O
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In the remainder of this section, we present what is known about the critical exponents

a¢ and power-preserver sets He for various graphs. We do not provide proofs below, instead
referring the reader to the 2016 paper [153] by Guillot, Khare, and Rajaratnam in J. Combin.
Theory, Ser. A.

The first family of graphs is that of chordal graphs, and it subsumes not only complete
graphs, trees, and almost complete graphs (for all of which we have computed H¢, ag with
full proofs above), but also other graphs including split, banded, and Apollonian graphs,
which we shall now discuss.

Definition 14.13. A graph is chordal if it has no induced cycle of length > 4.

Chordal graphs are important in many fields. They are also known as triangulated graphs,
decomposable graphs, and rigid circuit graphs. They occur in spectral graph theory, but
also in network theory, optimization, and Gaussian graphical models. Chordal graphs play a
fundamental role in areas including maximum likelihood estimation in Markov random fields,
perfect Gaussian elimination, and the matrix completion problem.

The following is the main result of the aforementioned 2016 paper [153], and it computes
He for every chordal graph:

Theorem 14.14. Let G be a chordal graph with n > 2 nodes and at least one edge. Let r
denote the largest integer, such that K, or Kﬁl) C G. Then Hg = 72U [r—2,00).

The point of the theorem is that the study of powers preserving positivity reduces solely
to the geometry of the graph and can be understood combinatorially rather than through
matrix analysis (given the theorem). While we do not prove this result here, we remark that
the proof crucially uses Theorem [I4.6)and the “clique-tree decomposition” of a chordal graph.

As applications of Theorem we mention several examples of chordal graphs G and
their critical exponents a; by the preceding theorem, the only powers below ai that preserve
positivity on Pg are the non-negative integers.

(1) The complete and almost complete graph on n vertices are chordal and have critical
exponent n — 2.

(2) Trees are chordal and have critical exponent 1.

(3) Let C,, denote a cycle graph (for n > 4), which is clearly not chordal. Any minimal
planar triangulation G of C), is chordal, and one can check that ag = 2 regardless of
the size of the original cycle graph or the locations of the additional chords drawn.

(4) A banded graph with bandwidth d > 0 is a graph with vertex set [n] = {1,...,n}
and edges (j,j + ) for x € {—d,—d+1,...,d — 1,d}, such that 1 < j,j7+z < n.
Such graphs are chordal, and one checks (combinatorially) that ag = min(d,n — 2)
if n>d.

(5) A split graph consists of a clique C' C V and an independent (i.e., pairwise discon-
nected) set V' \ C', whose nodes are connected to various nodes of C'. Split graphs are
an important class of chordal graphs, because it can be shown that the proportion of
(connected) chordal graphs with n nodes that are split graphs grows to 1 as n — co.
Theorem implies that for a split graph G,

ag = max(|C| — 2, maxdeg(V \ C)).

(6) Apollonian graphs are constructed as follows: start with a triangle as the first itera-
tion. Given any iteration, which is a subdivision of the original triangle by triangles,
choose an interior point of any of these “atomic” triangles, and connect it to the three
vertices of the corresponding atomic triangle. This increases the number of atomic
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triangles by 2 at each step. If G is an Apollonian graph on n > 3 nodes, one shows

that ag = min(2,n — 2). Notice, for n > 4 this is independent of n or the specific
triangulation.

It is natural to ask what is known for non-chordal graphs. We mention one such result,
also shown in the aforementioned 2016 paper [153].

Theorem 14.15. Let C, denote the cycle graph on n vertices (which is non-chordal for
n>4). Then Hc, = [1,00) for all n > 4.

Remarkably, this is the same combinatorial recipe as for chordal graphs (in Theorem [14.14))!
We end with some questions, which can be avenues for further research into this nascent
topic.

Question 14.16.

(1) Compute the critical exponent (and set of powers preserving positivity) for graphs
other than the ones discussed above. In particular, compute ag for all G = (V, E)
with [V] < 5.

(2) For all graphs G with known critical exponent, the critical exponent turns out to be
r — 2, where r is the largest integer, such that G contains either K, or qul). Does
the same result hold for all graphs?

(3) In fact, more is true in all known cases: Hg = Z=° U [ag,00). Is this true for all
graphs?

(4) Taking a step back: can one show that the critical exponent of a graph is an integer
(perhaps without computing it explicitly)?

(5) Does the critical exponent have connections to — or can it be expressed in terms of —
other, purely combinatorial graph invariants?

(6) More generally, is it possible to classify the entrywise functions that preserve positivity

on Pg, for G a non-complete, non-tree graph? Perhaps the simplest example is a cycle
G =C,.
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I5. LOEWNER CONVEXITY. SINGLE MATRIX ENCODERS OF ENTRYWISE
POWER-PRESERVERS OF LOEWNER PROPERTIES.

In Section we classified the entrywise powers that are Loewner monotone or super-
additive on all matrices in P,([0,00)). In this section, we similarly classify the Loewner
convex powers on P, (a notion that is not yet defined). Before doing so, we show that there
exist individual matrices that turn out to encode the sets of entrywise powers preserving
Loewner positivity and monotonicity.

15.1. Matrices encoding Loewner positive powers. We begin with the Loewner positive
powers and recall Jain’s Theorem [9.10f This was strengthened by Jain in her 2020 paper in
Adv. Oper. Theory:

Theorem 15.1 (Jain). Suppose n > 2 is an integer, and x1,x2,. .., Ty, are pairwise distinct
real numbers, such that 1 + zjxp, > 0 for all j, k. Let C := (1 + xjxk)?kzl. Then C° is
positive semidefinite if and only if a € ZZ° U [n — 2, 00).

The remainder of this subsection is devoted to proving Theorem beginning with the
following notation:

Definition 15.2. Given a real tuple x = (z1,...,2,), define Ay := —oo if all z; < 0, and
—1/max; x; otherwise. Similarly, define By := oo if all z; > 0, and —1/min; z; otherwise.

Here are a few properties of Ay, By; the details are straightforward verifications, which are
left to the reader.

Lemma 15.3.
(1) Suppose x € R. Then 1+ yx > 0 for a real scalar y, if and only if sgn(z)y €
(—1/|x|, 00), where we set 1/|x| := oo if x = 0.
(2) Given real scalars xi,...,%n,y, we have 1 +yx; > 0 for all j if and only if y €
(Ax, Bx).

(8) A_x = —Bx and Ax < 0 < By for all x € R".

Proof sketch. The first part follows by using x = sgn(z)|z|; the second follows by intersecting
the solution-intervals for each z;. The final assertion is a consequence of the first two. O

We now show an intermediate result that resembles Descartes’ rule of signs (Lemma [5.2)),
except that it holds for powers of 1 + ux rather than exp(ux):

Proposition 15.4. Fiz a real numberr, an integer n > 1, and two real tuplesc = (c1,...,¢n) #
0 and x = (1,...,zy) with pairwise distinct x;. Then the function

n
Px,c,r (AXa Bx) — R, u = Z Cj(l + u‘rj)r
j=1

etther is identically zero or has at most n — 1 zeros, counting multiplicities.

Proof. The proof of this Descartes-type result once again employs the trick by Poulain and
Laguerre — namely, to use Rolle’s theorem and induct. If » = 0, then the result is straight-
forward, so assume henceforth that r» # 0. Let s = S~ (c) denote the number of sign changes
in the non-zero tuple ¢ = (¢1,...,¢,). Now claim more strongly that the number of zeros is
at most s. The proof is by induction on n > 1 and then on s € [0,n — 1]. The base case of
n = 1 is clear; and, for any n, the base case of s = 0 is also immediate. Thus, suppose n > 2
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and s > 1, and suppose the result holds for all tuples ¢ of length < n, as well as for all tuples
c € R\ {0} with at most s — 1 sign changes. Because of this, we may also assume that all
¢; are non-zero and S (c) = s.
We begin by relabeling the z; if required, to lie in increasing order:

T < < T

Now, suppose there does not exist 0 < k < n, such that c;_1cx < 0 (there is a sign change
here in the tuple c, which is also relabeled corresponding to the z; if required) and zj > 0.

Then x <0, so that z;_1; < 0. Now work with the tuples —x and ¢’ := (¢, ..., 1), i.e.,
1
Ty < —Tp_1 < -+ < =17, Y_xe (V) 1= ch(l —uxj;)".
j=n

Here v = —u € (—Bx,—Ax) = (A_x, B_x) by Lemma [15.3] so the result for ¢_x ¢ (v)
would prove that for ¢x c,r(u). Using this workaround if needed, it follows that there exists
1 <k < n, such that c;_1c; < 0 and zp > 0. In particular, there exists v > 0, such that

l—vz, < - <1l—vxp <0<l —vxp 1 <--- <1 —0x27.

Define
n
¥ (Ax, Be) 2 R, p(u) = ¢i(1 —vay)(1+ uay)
j=1
By choice of v, the sequence (¢;(1 —vzy),...,cn(1 —vzy)) has precisely s — 1 sign changes,

so 1 has at most s — 1 zeros. Now, for u € (Ax, Bx), we compute
n
Y(u) = > ¢l +ua; — (u+v)z) (1 + uwy)""
j=1

(u+v)rtt

= Px,cr(u) — (u+0) Z cjxi(1+ ua:j)r_l = —Th’(u),
j=1

where h(u) == (v + v) "xcr(u) and r # 0. Since x > 0, we obtain from above
u€ (Ax,Bx) = u+tv>Actv=v—a,'>v—a2,">0.

Thus, u — u+wv is positive on (Ax, Bx), hence h : (Ax, Bx) — R is well defined. From above,
1 has at most s — 1 zeros on (Ax, Bx), hence so does /. But then by Rolle’s theorem, h has
at most s zeros on (Ax, Bx), and hence, so does ¢x cr. O

A second intermediate result involves a homotopy argument that will be crucial in proving
Theorem [15.1}

Proposition 15.5. Let n > 2 be an integer and fix real scalars
T < - < Tp, 0<y1<<?/n7
such that 14 x;xp, > 0 for all j, k. Then there exists eg > 0, such that for all 0 < € < €, the
linear homotopies (between x; and ey;)
acg.e) (t) = xj + t(ey; — xj), t €10,1]
all satisfy

L+ 2902 (1) >0, Vik=1,...n, teo]l].
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Notice that this is not immediate, nor even true for arbitrary e. For instance, suppose

n=2,e=1,and (y1,y2) = (1,2). If, say, (x1,22) = (—199,0), then an easy “completion of
squares” shows that the assertion is false at most times in the homotopy:

1), (1) 398 1 \/W 308 1 /3982
1 Nz < te |20 2 [P0 2 2 [P ] S 10,0026, 0.9924].
ta(Hzy (6 <0, Ve [800 50V 202 ~ V500 20V 102 o ) ]

Similarly, if, say, (1, z2) = (—8.5,0.1), then
8 —v61 8461
19 7 19

1+ a2V )it <0, vte [ > [0.01,0.8321].

Thus, the € in the statement is crucial for the result to hold.

Proof of Proposition[15.5 We begin with three observations; in all of them, x;(t) = 335-6) (t)
for some fixed € > 0, and all j,¢t. First, we have x1(t) < -+ < x,(t) for all ¢ € [0, 1].

Second, if 1 > 0, then it is clear that z;(¢) > 0 for all j € [1,n] and all ¢t € [0,1], and the
result is immediate. Thus, we suppose henceforth that xz; < 0.

Third, if there exist integers j < k and a time t € [0, 1], such that 1+ x;(¢)z,(t) < 0, then
xj(t) <0 < zk(t), and hence z1(t) < 0 < x,(t). One then verifies easily that 14z (t)x,(t) <
1+ z;(t)x(t) <O.

Thus, for every choice of xj,y; as above, with x1 < 0, it suffices to produce ¢y > 0, such
that 1 +x§€) (t)ng) (t) >0forallt € (0,1) and all 0 < € < €. There are two cases, depending
on the sign of xz,:

Case 1: x, > 0. Then z, < 1/|x1|. We claim that ey := 1/(|z1|y,) works; to see this,
compute using the known inequalities on x;, y;:

1428962 (t) = 1+ (teys + (1 — ) (teyn + (1 — D)ay)
> 1+ (1 =t)ateyn + (1= t)an) > 14+ (1 = )z (teyn + (1 — 1) /[z1]),
where the (final) two inequalities are strict because t € (0,1). Continuing, this last expression
equals
=1—(1—t)? +t(1 —t)eypzy >t (2 —t — (1 — t)eoyn|z1|) =t > 0.
Case 2: z,, < 0. For € close to 0, define
E(Tny1 — T1yn)?
fle):=1- )
A(eyr — x1)(€yn — n)
This function is continuous in € and f(0) > 0. Hence, there exists ¢y > 0, such that f(e) >0

for all 0 < e < ¢.
We show that ¢ satisfies the desired properties. Let 0 < € < ¢p, and set

) = —a;/(ey;—x;),  1<j<n

Note that :1:5-6) (t) is negative, zero, or positive when ¢ < t;e), t= tge), ort > tg-e), respectively.
Also note by the observations above, and since tg-e) is the time at which :rg-&)(-) vanishes, that
0<t <t «.octld <1,

Now, if 0 <t < tgf) or tge) <t <1, then l'ge) (1), a:,(f) (t) are both non-positive or non-negative,

respectively. Hence, 1 4 l'ge) (t)mgf)(t) > 1, as desired.
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Next, suppose ¢ € (tn,t; ). Observe that

x§€)(t) =tey; + (1 —t)x; = (t — tg.e))(eyj —xj), Vi€ [1,n], t €[0,1].
Now, using the AM—-GM inequality, the proof is complete:

1+ 29Oz (8) = 14 (t = 89)(t — ) (eyr — x1)(eyn — @)

>1- %(tﬁf) — )2 (eyr — 1) (eyn — Tn) = f(e) > 0. =

With all of the above results at hand, we can proceed:
Proof of Theorem [15.1]. For ease of exposition, we break up the proof into steps.

Step 1: The first observation is slightly more general than applies here. Suppose y1,...,yn
are distinct real numbers, such that 1 + ypax; > 0 for all 1 < j,k < n. Let S := (1 + yrxj),
and let v be real. If r € {0,1,...,n— 2}, then S°" has rank r + 1, else S°" is non-singular.

Indeed, for r € {0,...,n — 2}, we have

1 1 - 1
xl -’BQ “ e [En
S = (WyT))TDW,Y), where W= |0 7 A

and where D, 11)x(r41) is a diagonal matrix with entries @) (1),

singular, and W)(CT), W}(,T) are submatrices of Vandermonde matrices and hence of full rank —
so S°" has rank r + 1.

Now suppose r # 0,1,...,n—2 and S°"c’ = 0 for some tuple ¢ = (c1,...,c,) # 0. Rewrite
S°7c” = 0 to obtain

.,(T). Now D is non-

r

n
Oxer(yr) = O cj(L+ypz;) =0,  k=1,...n
j=1

Since 1 + yrx; > 0 for all j,k, we have y, € (Ax, Bx) by Lemma m(Q) S0 ¢Yx,cr = 0 on
" (1) _ _

Xy =X ) N X,C,T - — VU, ly..., 70— . .
(Ax, Bx), by Proposmon and hence ¢xc,(0) =0forl =0,1 n—1 by Lemma(3)
Reformulating this,

n
S er(r—1)--(r—1+1)al=0, VI=0,1,...,n—1,
j=1

ie., W,En_l)DcT = 0, where D is a diagonal matrix with diagonal entries 1, r,r(r—1),...,r(r—
1)---(r—m+2). Now Wi s a non-singular (Vandermonde) matrix, as is D by choice of
r. Thus, the tuple c is zero, i.e., S°" is non-singular.

Step 2: We now turn to the proof of the theorem. First, if a € Z=%U[n — 2, c0), then C°® is
positive semidefinite by Theorem Next, if a < 0, then the leading 2 x 2 principal minor
of C(x)°* is easily seen to be negative. Finally, suppose a € (0,n — 2) \ Z. Given a real
vector y € R, define C(y) := 1,xn +yy’. Now apply the previous step, fixing r = a and
all y; = xj. Thus, det C(x)°* # 0 for every x with all 1 + z;x, > 0.
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Now recall the proot of Theorem [9.3, and the subsequent remarks. Thus, if ¢ < min; zj,

then there exists ¢ > 0, such that C(y/e(x — 291))°® has a negative eigenvalue for all

0 < € < €1. Now consider the linear homotopy

x(t) :== (1 — t + ty/e2)x — ty/eax01, t e [0,1],

which goes from x to (/€z(x — x1) as t goes from 0 to 1. Here we choose €2 € (0,¢€1), such
that eg := /€3 satisfies the conclusions of Proposition for x; as above and y; := x; —
(suitably relabeled to be in increasing order if desired).

Again applying the previous step (for the same fixed r = «), det C(x(¢))°® # 0 for all
t € [0,1]. We also know that C'(x(1))°* has a negative eigenvalue, hence Amin (C(x(1))) <
Now claim by the “continuity of eigenvalues” that Apuin(C'(x(t))) < 0 for all ¢ € [0,1], and in
particular at ¢ = 0. This is shown in the next step and completes the proof.

Step 3: The claim in the preceding paragraph follows from this more general fact: Suppose
C :[0,1] = C™" 4s a continuous Hermitian matriz-valued function, such that each C(t) is
non-singular. If C'(1) has a negative eigenvalue, then so does C(t) for all t € [0, 1].

It remains to show this statement, and we use a simpler approach (than the full power of
‘continuity of roots’ in Proposition[8.7above) to do so. Let X := {t € [0,1] : Amin(C(t)) > 0}.
Since the cone of positive semidefinite matrices is closed, it follows that X is closed in [0, 1].
Now the claim follows from the sub-claim that X€¢ := [0,1] \ X is also closed: since [0,1] is
connected and 1 € X¢, it follows that X¢ = [0,1] and so 0 € X€ as desired.

1/2
To show the sub-claim, let ||C(t)] := (szzl \cjk|2) . It is clear using the Cauchy—

Schwartz inequality that all eigenvalues of C(t) lie in [—||C(t)]|, [|C(¢)|]]. Now, given a se-
quence t, € X that converges to to € [0, 1], all entries of {C(t,) : n > 1} lie in a compact
set, hence so do the corresponding minimum eigenvalues Apyin(C(t,)). Pick a subsequence
ng, such that the sequence Apmin(C(ty,)) is convergent, with limit Ag, say. Now Ao < 0. Also
pick a unit-length eigenvector v, of C(t,,) corresponding to the eigenvalue A\yin (C(t,)); as the
unit complex sphere is compact, there is a further subsubsequence ny,, such that Vpy, = V0
as [ — oo, with vy also of unit norm.

With these choices at hand, write the equation C(tn,, )vn,, = Amin(C(tn,, ))vn,, and let [ —
oo. Then C(tg)vg = Agvg, with Ao < 0. It follows from the hypotheses that A\nin(C(tg)) < 0,
and the proof is complete. O

15.2. Matrices encoding Loewner monotone powers. We now turn to Loewner mono-
tonicity (recall Theorem [14.9)). The next result — again by Jain in 2020 [192] — shows that,
akin to Theorem [15.1] there exist individual matrices that encode the Loewner monotone
powers:

Corollary 15.6. Suppose n > 1 and x1,...,x, are distinct non-zero real numbers, such that
1+ zjxp >0 for all j, k. Let x := (x1,. .. 2n)! and o € R. Then (1nup +xx1)°% > 1,5 if
and only if « € Z=° U [n —1,00), if and only if x* is Loewner monotone on P, ((0,00)).

Notice that here we cannot take x; = 0 for any j; if, for instance, x,, = 0 and we call the
matrix X, then the monotonicity of X°% over 1,,«, is actually equivalent to the positivity of
X°% and so the result fails to hold.

Proof. If a € Z=° U [n — 1,00), then Theorem implies 2% is Loewner monotone on
P,,((0,00)), hence on X := 1,5, +xx! > 1,x,. Conversely, suppose 2 is Loewner monotone
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faal
pa

on X > I,xn. Let X = (x1,0)7 € R™ T then

- X 1
X =1y (nin) + X (X)) = (1T 1)

satisfies the hypotheses of Theorem m Now, by the theory of Schur complements (Theo-
rem , X° > 1,4, ifand only if X°* € P,,, 1. But this is if and only if « € ZZU[n—1, 0),
by Theorem ]

15.3. Loewner convex powers, and individual matrices encoding them. Finally, we
turn to the entrywise powers preserving Loewner convexity.

Definition 15.7. Let I C R and n € N. A function f: I — R is said to be Loewner convex
on a subset V.C P, (I) if f]NA+ (1 —A)B] < Af[A] 4+ (1 — \)f[B], whenever A > B > 0,,xn
lie in V, and A € [0, 1].

The final theorem in this section classifies the Loewner convex powers in the spirit of

Theorems [14.9] and [14.10] It shows in particular that there is a critical exponent for
convexity as well. It also shows the encoding of these powers by individual matrices, in the

spirit of Corollary

Theorem 15.8 (Loewner convex entrywise powers). Fix an integer n > 1 and a scalar
a € R. The following are equivalent:

(1) The entrywise power x* is Loewner conver on Pp(]0,00)).
(2) Fiz distinct non-zero real numbers x1,...,Ty, such that 1 + x;x > 0 for all j, k.
Then x® is Loewner convex on A := (1 + xjxk);kzl >B=1,x,>0.
(3) a €Z2°Un, ).
In particular, the critical exponent for Loewner convexity on P, is n.

Thus, there are rank-2 Hankel TN matrices (with x; = ) for zy € (0,00) \ {1}), which
encode the Loewner convex powers.

To prove this result, we require a preliminary result connecting Loewner convex functions
with Loewner monotone ones. We also prove a parallel result connecting monotone maps to
positive ones.

Proposition 15.9. Suppose n > 1 and A > B > Opxn are positive semidefinite matrices
with real entries, such that A — B = wu”, with u having all non-zero entries. Fiz any open
interval I containing the entries of A, B, and suppose f : I — R is differentiable.

(1) Then both notions of the “interval” [B, A] agree, i.e.,
{C:B<C<A}={DA+(1-NB:X€]0,1]}.

(2) If f|—] is Loewner monotone on the interval [B, A, then f'[—] is Loewner positive on
(B, A). The converse holds for arbitrary matrices 0 < B < A.

(3) If f[—] is Loewner convex on the interval [B, A], then f'[—] is Loewner monotone on
(B, A). The converse holds for arbitrary matrices 0 < B < A.

Proof.
(1) That the left-hand side contains the right is straightforward. Conversely, if B <
C < A, then 0 < C — B < A — B, which has rank 1. Write A — B = uu”; now, if
uv = 0, then ||[v/C — B -v||> = vI(C — B)v = 0, so (C — B)v = 0. This inclusion
of kernels shows that ker(C' — B) has a codimension of at most one. If C' # B, then
ker(C' — B) = keru! and C — B has column space spanned by u, by the orthogonality
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ol eigenspaces of Hermitian matrices for different eigenvalues. Thus, C'— B = Auu’
for some A € (0,1]. But then,

C=B+MNA—-B)=A+(1-)\)B,

as desired.

(2) Suppose f’ is Loewner positive on (B, A) (for any 0 < B < A). We show that f is
monotone on this interval by using the integration trick (9.7)) (see also Theorem|9.12)).
Indeed,

1
FIA] - f[B] :/0 (A= B)o M+ (1—A\)B] dA.

By assumption and the Schur product theorem, the integrand is positive semidefinite,
hence so is the left-hand side, as desired. The same argument applies to show that
fIAN] > f[AL], where Ay == XA+ (1-AN)Band 0<p <A< 1

Conversely, suppose f[A\] > f[A,] for all 0 < p < A < 1. Now, given A € (0,1),
let 0 <h <1-— A\, then f[Axin] > f[AA], so

1
0< hl_i>%l+ - (f[Axsn] — fIAN])

= lim, % (FIM + (1= A)B + h(A— B)] — fIAN + (1= \)B))

= f|Ax o (A~ B).

By the assumptions, (A — B)°(~1) is also a rank-1 positive semidefinite matrix with
all non-zero entries, so taking the Schur product, we have f'[A,] > 0 for all X € (0,1),
as desired.

(3) Suppose f’ is Loewner monotone on (B, A) (for any 0 < B < A). As above, we use
the integration trick to show that f is convex, beginning with:

1
fl(A+ B)j2] - f1B] = ;/0 (A—B)of' [AA+B+(1—)\)B] ax,
(15.10)
f[A];f[B] — f[B) = f[A];f[B] :;/I(A—B)of’[AAHl—A)B} dx.
0

Now, by the hypotheses on f’ and the Schur product theorem, it follows that
A+ B
2

(A—B)of’[)\A—i—(l—)\)B]>(A—B)of’[)\ —|—(1—)\)B].
This, combined with (15.10)), yields f[(A+ B)/2] < (f[A]+ f[B])/2. One now proves
by induction — first on N and then on j — that

J J J J . N

A 1- == |B|<=f[A 1—- = B VN >1, 1 <45 <27,

Flavas (1= 50 ) B < festare (1= ) £BL w11
Now, given any \ € [0,1], approximate A by a sequence of dyadic rationals j/2V as
above, and use the continuity of f[—| and the preceding inequality to conclude that
f[—] is Loewner convex on {B, A}. The same argument can be adapted to show that
fl—] is Loewner convex on {Ay, A,}, as in the preceding part.
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Conversely, since we have fIAA+ (1T —A)B] < AJ[A|+ (T -A)f[B]for 0 <A<,
it follows for A € (0,1) that
fIB+ A - B)] - f[B]
A

fIA+ (1= N(B - 4)] - f[A]
B < f1B] - flAL.

Letting A — 0T and X\ — 17, respectively, yields

(A=B)o f[B] < flA] - f[B],  (B—A)o f[A] < f[B] - flAl.
Adding these yields (A — B) o (f'[A] — f'[B]) > 0. Finally, A — B has all non-
zero entries, so has a rank-1 Schur-inverse; taking the Schur product with this yields

f'[A] > f'[B]. As above, the same argument can be adapted to show that f/'[—] is
Loewner monotone on {Ay, A4,}. O

< flA] - f[B],

Finally, we have:

Proof of Theorem [15.8, Clearly, (1) = (2). Now setting f(z) := 2%, both (2) = (3)
and (3) = (1) follow via Proposition [15.9(3) and Corollary O

The above results on individual (pairs of) matrices encoding the entrywise powers preserv-
ing Loewner positivity, monotonicity, and convexity naturally lead to the following question.

Question 15.11. Given an integer n > 1, do there exist matrices A, B € P, ((0,00)), such
that (A + B)°® > A°® + B° if and only if a € Z=°U[n,00)? In other words, for each n > 1,
is the set of Loewner super-additive entrywise powers on P, ([0, 00)) (see Theorem also
encoded by a single pair of matrices?

We provide a partial solution here, for the matrices studied above. Suppose u = (u1, ..., u,)?’

(0,00)™ has pairwise distinct coordinates. Let A := 1,,x,, B := uu’. By computations similar
to the proof of Theorem it follows that

1+ uul 1,«1 u
(A+ B)°™ > A°* + B« Lixn 1 0] €eP,.. (15.12)
ul 0 1
When « = 1, denote the matrix on the right in by M (u); this is easily seen to have
rank 2. Now considering any diagonal entry of the inequality on the left in , we obtain
a > 1. By Theorem and Remark it suffices to now assume « € (1,n) \ Z. But
if « € (1,n — 1), then Theorem yields the desired result, by considering the leading
principal (n + 1) x (n + 1) submatrices in the preceding inequality on the right in .
Thus, it remains to show that for a € (n — 1,n), the matrix M(u)°® ¢ P, for all u
with pairwise distinct, positive coordinates. In fact, we claim that it suffices to show for
a € (n—1,n) that M(u)°® is non-singular for all u as above. Indeed, this would imply by
a different homotopy argument that M (y/eu)°® is non-singular for all € > 0; but for small
enough € > 0 the proof of Theorem shows that M (y/eu)°® has a negative eigenvalue,
so the same holds for all € > 0 by the continuity of eigenvalues (or see Step 3 in the proof of
Theorem .
In light of this discussion, we end this section with a question closely related to the pre-
ceding question above.

o

Question 15.13. Suppose n > 2 and o € (n — 1,n). Is M(u)°® € P42, where u € (0,00)"
has pairwise distinct coordinates and M (u) is as in (15.12))7

€
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BIBLIOGRAPHIC NOTES AND REFERENCES

Entrywise calculus was initiated by Schur in 1911, when he defined the map f[A] (although
he did not use this notation), in the same paper [329] where he proved the Schur product
theorem. Schur also proved the first result involving entrywise maps; see also page cxii of the
survey [105].

Theorem and Lemma [9.5] which help classify the Loewner positive powers, are by
FitzGerald and Horn [123]. The use of the rank-2 Hankel matrices in the proof, as well as the
powers preserving positive definiteness in Corollary are by Fallat—Johnson—Sokal [113].
The “individual” matrices encoding Loewner positive powers were constructed in Theo-
rem by Jain [191]; the extension principle in Theorem is by Khare-Tao [217]. Also
note the related papers by Bhatia-Elsner [47], Hiai [I71], and Guillot-Khare-Rajaratnam [151],
which study “two-sided” powers : R — R, and which of these are Loewner positive on P, (R)
for fixed n > 1.

The historical account of Descartes’ rule of signs in Theorem [10.3] is taken in part from
Jameson’s article [193]; once again the proof of this result — via Rolle’s theorem — can be
attributed to Laguerre [229]. The proof provided of Theorem — which classifies the
powers preserving totally positive 3 x 3 matrices — is by Fallat—Johnson—Sokal [IT3]. The
Cauchy functional equation (see Remark has been studied in numerous papers; we
mention Banach [I7] and Sierpinisky [337], both papers appearing in the same volume of
Fund. Math. in 1920. The results in Section [I1] prior to Remark are shown by Fallat—
Johnson—Sokal [I13], or essentially follow from there. The results following Remark are
by Belton-Guillot-Khare-Putinar [32].

Section on the continuity of bounded mid-convex functions is taken from the book of
Roberts and Varberg [301]; the first main Theorem there closely resembles a result by
Ostrowski [275], while the second Theorem was proved independently by Blumberg [51]
and Sierpinsky [337]. Theorem [12.7 classifying the Loewner positive maps on P2 ((0, 00))
and P2 ([0, 00)), is essentially by Vasudeva [353]; see also [30) [I55] for the versions that led
to the present formulation. The short argument for mid-convexity implying continuity, at
the end of that proof, is due to Hiai [I7I]. The remainder of Section classifying all
entrywise maps preserving TN and T'P in each fixed dimension (for all matrices and for all
symmetric matrices) is taken from Belton—Guillot—-Khare—Putinar [32]. The two exceptions
are the example in due to Fallat—-Johnson—Sokal [I13], and Theorem which
classifies the powers preserving Hankel TN n x n matrices; this latter is from [30].

Section on the entrywise functions preserving positivity on Pg for G a non-complete
graph (and specifically, a tree) follows Guillot—Khare-Rajaratnam [152]. Section |14] classify-
ing the Loewner positive powers on Pg for G a chordal graph — and hence, computing the criti-
cal exponent of G for Loewner positivity — is due to Guillot—-Khare-Rajaratnam [153] (see also
the summary in [I54]). The two exceptions are Theorem by FitzGerald and Horn [123]
and Theorem by Guillot-Khare-Rajaratnam [I51], which classify the Loewner mono-
tone and super-additive powers on P, ((0,00)), respectively. Also see [197] for a survey of
critical exponents in the matrix theory literature.

Theorem and Corollary about individual matrices encoding the Loewner positive
and monotone powers respectively, are by Jain [I92]. The arguments proving these results
are taken from [192] (some of these are variants of results in her earlier works) and from
Khare [215] — specifically, the homotopy argument in Proposition which differs from
Jain’s similar assertion in [192] and avoids SSR (strictly sign regular) matrices. Finally,
the classification of the Loewner convex powers on P, (i.e., the equivalence (1) < (3)
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in Theorem [15.8) was shown by Hiai [I71], via the intermediate Proposition see also
Guillot-Khare-Rajaratnam [I51] for a rank-constrained version of Theorem The further

equivalence to Theorem MQ), which obtains individual matrix-encoders of the Loewner
convex powers, is taken from [215].
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Part 3: Entrywise functions preserving positivity in all dimensions

16. HISTORY — SCHOENBERG’S THEOREM. RUDIN, HERZ, VASUDEVA. METRIC
GEOMETRY, POSITIVE DEFINITE FUNCTIONS, SPHERES, AND CORRELATION MATRICES.

In the forthcoming sections in this part, we take a step back and explore the foundational
results on entrywise preservers of positive semidefiniteness — as well as the rich history that
motivated these results.

16.1. History of the problem. In the forthcoming sections, we will answer the question:
“Which functions, when applied entrywise, preserve positivity (positive semidefiniteness)?”

(Henceforth, we use the word ‘positivity’ to denote “positive semidefiniteness.”) This
question has been the focus of a concerted effort and significant research activity over the
past century. It began with the Schur product theorem (1911, [329]) and the following
consequence:

Lemma 16.1 (Pdlya and Szegs, 1925, [289]). Suppose a power series f(z) = > 5o, cxx® is
convergent on I C R and ¢, > 0 for all k > 0. Then f[—]: Py(I) = Pp(R) for alln > 1.

Proof. By induction and the Schur product theorem f(z) = 2 preserves positivity on
P,,(R) for all integers k > 0 and n > 1, and hence sends P,,(I) to P,,(R). From this the lemma
follows, using that P,,(R) is a closed convex cone. O

With Lemma [16.1] in hand, Pdlya and Szegé asked if there exist any other functions that
preserve positivity on P, for all n > 1. A negative answer would essentially constitute
the converse result to the Schur product theorem; and indeed, this was shown by Schur’s
student Schoenberg (who features extensively in the next part, and is also well known for his
substantial contribution to the theory of splines), for continuous functions:

Theorem 16.2 (Schoenberg, 1942, [318]). Suppose I = [—1,1] and f : I — R is continuous.
The following are equivalent:
(1) The entrywise map f[—] preserves positivity on Py, (I) for alln > 1.

(2) The function f equals a convergent power series y .- cpx® for all x € I, with the
Maclaurin coefficients ¢, > 0 for all k > 0.

Schoenberg’s 1942 paper (in Duke Math. J.) is well-known in the analysis literature.
In a sense, his Theorem is the (harder) converse to the Schur product theorem, i.e.,
Lemma which is the implication (2) = (1). Some of these points were discussed in
Section

Schoenberg’s theorem can also be stated for I = (—1,1). In this setting, the continuity
hypothesis was subsequently removed from assertion (1) by Rudin, who, moreover, showed
that in order to prove assertion (2) in Theorem one does not need to work with the full
test set (J,,~; Pn(f). Instead, it is possible to work only with low-rank Toeplitz matrices:

Theorem 16.3 (Rudin, 1959, [306]). Suppose I = (—1,1) and f : I — R. Then the
assertions in Schoenberg’s theorem [16.4 are equivalent on I, and further equivalent to:

(8) fl—] preserves positivity on the Toeplitz matrices in Pp(I) of rank < 3, for allm > 1.
Schoenberg’s theorem also has a one-sided variant, over the semi-axis I = (0, 00):

Theorem 16.4 (Vasudeva, 1979, [353]). Suppose I = (0,00) and f : I — R. Then the two
assertions of Schoenberg’s theorem are equivalent on I as well.
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Our goal in this part of the text is to prove stronger versions of the theorems of Schoenberg
and Vasudeva. Specifically, we will (i) remove the continuity hypothesis, and (ii) work with
severely reduced test sets in each dimension, consisting of only the Hankel matrices of rank
at most 3. For instance, we will show Theorem but with the word “Toeplitz” replaced
by “Hankel.” Similarly, we will show a strengthening of Theorem [16.4] using totally non-
negative Hankel matrices of rank at most 2. These results are stated and proved in this part
of the text.

16.2. Digression: the complex case. In the aforementioned 1959 paper in Duke Math. J.,
Rudin made some observations about the complex case a la Pdlya—Szeg6, and presented a
conjecture, which is now explained. First, observe that the Schur product theorem holds for
complex Hermitian matrices as well, with the same proof via the spectral theorem:

“If A, B are n x n complex (Hermitian) positive semidefinite matrices, then so is Ao B.”

As a consequence, every monomial z — zF preserves positivity on P,(C) for all integers
k>0 and n > 1. (Here P,,(C) comprises the complex Hermitian matrices A, x,, such that
u*Au > 0 for all w € C™.) But more is true: the (entrywise) conjugation map also preserves
positivity on P, (C) for all n > 1. Now using the Schur product theorem, the functions

z e 26 E)™, k,m=>0

each preserve positivity on P,(C), for all n > 1. Since P,,(C) is easily seen to be a closed
convex cone as well, Rudin observed that if a series

f(z)= Z chmz" ()™, with g, > 0,
k,m>0

is convergent on the open disk D(0,p) := {z € C : |z| < p}, then f[—] entrywise preserves
positivity on P, (D(0, p)) for n > 1. Rudin conjectured that there are no other preservers.
This was proved soon after:

Theorem 16.5 (Herz, Ann. Inst. Fourier, 1963). Suppose I = D(0,1) C C and f : I — C.
The following are equivalent:

(1) The entrywise map f[—] preserves positivity on P, (I) for alln > 1.
(2) [ is of the form f(z) =3 4 >0 ckmz28(Z)™ on I, with cgm >0 for all k,m > 0.

For completeness, we also point out [276] for a recent, non-commutative variant of the Schur
product and Schoenberg’s theorem.

The real and complex cases of Schoenberg/Herz’s theorems have been since proved using
alternate tools. Christensen and Ressel showed Schoenberg’s theorem [16.2| using Choquet’s
representation theorem, in 1978 in Trans. Amer. Math. Soc. [82]. In fact, they removed the
continuity assumption of Schoenberg, while continuing to work over the domain [—1,1]. In
this case, the preservers turn out to be almost the same as in Schoenberg’s theorem — i.e.,
limits of functions in the convex hull of the monomials — but now, one needs to include the
pointwise limits on [—1, 1] of the odd powers and of the even powers:

Theorem 16.6 (Christensen and Ressel, 1978, [82]). Suppose I = [-1,1] and f : I — R.
The following are equivalent:

(1) The entrywise map f[—] preserves positivity on Py, (I) for all n > 1.
(2) The function f equals a power series plus two other terms:

f(z) = chxk 1[Iy () = Ly (@)] + c2ly_y 13 (2), zel,
k=0
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with the Maclaurin coefficients ¢, > 0 jor all k> =2 and ) ;,~ _, ¢ < 00.

Christensen and Ressel also proved the complex analogue: namely, for preservers of posi-
tivity on Gram matrices from unit complex spheres, in Math. Z. in 1982:

Theorem 16.7 (Christensen and Ressel, 1982, [83]). Suppose f : D(0,1) — C is continuous
on the closed unit disk, and H is an infinite-dimensional complex Hilbert space with unit
sphere S. Then the following are equivalent:
(1) f is “positive definite” on S, in that for all n > 1 and points z1,...,2z, € S, the
matriz with (j,k)-entry f((z;,zx)) is positive semidefinite.
(2) f(2) has the unique series representation f(z) = 3. .~ Clm?™(Z)™, with all gy > 0
and kazo Ch,m < 00.

This resembles Herz’s theorem m (which proved Rudin’s conjecture) similar to the rela-
tion between Schoenberg’s theorem [16.2] and Rudin’s theorem [16.3

As a final remark, the Schoenberg/Rudin/Vasudeva/Herz results are reminiscent of an
earlier, famous result, by Loewner in the parallel (and well studied) setting of the matrix
functional calculus. Namely, given a complex Hermitian matrix A with eigenvalues in a real
interval (a,b), a function f : (a,b) — R acts on A as follows: let A = UDU™ be a spectral
decomposition of A; then f(A) := Uf(D)U*, where f(D) is the diagonal matrix with diagonal
entries f(dj;). Now, Loewner showed in Math. Z. (1934) even before Schoenberg:

Theorem 16.8 (Loewner). Let —oco < a < b < o0, and f : (a,b) = R. The following are
equivalent:

(1) f is matrix monotone: if A < B are square matrices with eigenvalues in (a,b), then

f(A) < f(B).
(2) fis C' on (a,b), and given a < x1 < --- < xp < b for any k > 1, the Loewner matrix
gwen by Ly(xj,xy) = % if j # k, else f'(x}), is positive semidefinite.

(8) There exist real constants p > 0 and q, and a finite measure p on R\ (a,b), such that

1+ 2z
f(z) =q+p:r+/ Y du(y).
R\(a,b) Y — T

(4) There exists a function f that is analytic on (C\R)U (a,b), such that (a) f = ﬂ(a,b)

and (b) if Sz > 0 then Sf(z) > 0.

Notice similar to the preceding results, the emergence of analyticity from the dimension-
free preservation of a matrix property. (In fact, one shows that Loewner monotone functions
on n x n matrices are automatically C?"~3.) This is also the case with a prior result of
Rudin with Helson, Kahane, and Katznelson in Acta Math. in 1959, which directly motivated
Rudin’s 1959 paper discussed above. (The bibliographic notes at the end of this part provide
a few more details.)

16.3. Origins of positive matrices: Menger, Fréchet, Schoenberg, and metric ge-
ometry. In this subsection and the next two, we study some of the historical origins of
positive (semi)definite matrices. This class of matrices of course arises as Hessians of twice-
differentiable functions at local minima; however, the branch of early twentieth-century math-
ematics that led to the development of positivity preservers is metric geometry. More pre-
cisely, the notion of a metric space — emerging from the works of Fréchet and Hausdorff —
and isometric embeddings of such structures into Euclidean and Hilbert spaces, spheres, and
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hyperbolic and homogeneous spaces, were studied by Schoenberg, Bochner, and von Neu-

mann among others; and it is this work that led to the study of matrix positivity and its
preservation.

Definition 16.9. A metric space is a set X together with a metric d : X x X — R, satisfying:
(1) Positivity: d(z,y) > 0 for all z,y € X, with equality if and only if z = y.
(2) Symmetry: d(x,y) = d(y,x) for all z,y € X.
(3) Triangle inequality: d(x,z) < d(z,y) + d(y, z) for all z,y,z € X.

In this section, we will state and prove three results by Schoenberg, which explain his
motivations in studying positivity and its preservers, and serve to illustrate the (by now
well explored) connection between metric geometry and matrix positivity. We begin with a
sample result on metric embeddings, shown by Fréchet in Math. Ann. in 1910: If (X, d) is
a metric space with | X|=n+ 1, then (X,d) isometrically embeds into (R™, || - ||c0)-

Such results led to exploring which metric spaces isometrically embed into Euclidean
spaces. Specifically, in Menger’s 1931 paper [260] in Amer. J. Math., and Fréchet’s 1935
paper [131] in Ann. of Math., the authors explored the following question: Given integers
n,r > 1, characterize the tuples of (”;1) positive real numbers that can denote the distances
between the vertices of an (n + 1)-simplex in R” but not in R"~'. In other words, given a
finite metric space X, what is the smallest r, if any, such that X isometrically embeds into
R"?

In his 1935 paper in Ann. of Math., Schoenberg gave an alternate characterization of all
such “admissible” tuples of distances. This characterization used ... matrix positivity!

Theorem 16.10 (Schoenberg, 1935, [313]). Fix integers n,r > 1, and a finite set X =

{zo,...,xn} together with a metric d on X. Then (X,d) isometrically embeds into some R”
(with the Euclidean distance/norm), if and only if the n x n matriz
A= (d(wo, x5) + d(o, xk)? — d(wj, 21)) e (16.11)

is positive semidefinite. Moreover, the smallest such r is precisely the rank of the matriz A.

This classical theorem is at the heart of multidimensional scaling; see, e.g., [90]. Addition-
ally, the matrix A features later in this text when we study a result of Menger in Appendix E;
it is an alternate form of the Cayley—Menger matrixz associated to the metric space X. See
Section 27, where we also extend this theorem to embeddings of separable metric spaces.

Proof. If (X, d) isometrically embeds into (R", || - || = || - ||2), then

d(zo, ;)% + d(zo, xi)? — d(zj,2) = |0 — x;||* + [lzo — zx||* — [|(wo — 2;) — (w0 — ) |?

— 2<£L’0 — Tj,T0 — l‘k> (16.12)

But then the matrix A in is the Gram matrix of a set of vectors in R", and hence,
is positive semidefinite. In the rest of this section, we use Theorem and Proposition [2.15)
(and their proofs) without further reference. Thus, %A = BT B, where the columns of B are
xo —x; € R". But then A has rank at most the rank of B, hence at most r. Since (X,d)
does not embed in R"~!, by the same argument A has rank precisely 7.

Conversely, suppose the matrix A in is positive semidefinite of rank r. First,
consider the case when r = n, i.e., A is positive definite. By Theorem %A = BTB for a
square invertible matrix B. Thus, left-multiplication by B sends the r-simplex with vertices
0,eq,...,e, to an r-simplex, where e; comprise the standard basis of R".
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Now claim that the assignment xg — 0, z; — Be; for T < j <r,is an isometry : X — R’

whose image, being the vertex set of an r-simplex, necessarily cannot embed inside R™ 1.
Indeed, computing these distances proves the claim, and hence the theorem for r = n:

1 Qi
d(Be;, ) = ”BeJH2 TAeJ ;j = d($07$j)27

aii + QgL
d(Be;, Bey)* = || Be; — BekHQ = ”T — ajy

= d(x(], $j)2 + d(l’o, xk)2 — (d(xo, J}j)g + d(x(], xk)Q — d(l’j, xk)Q) = d(acj, {L‘k)Q.

Next, suppose r < n. Then %A = BT PB for some invertible matrix B, where P is the

projection operator (Id”r 0 ) Let A := {PBej, 1 < j <n}U{0} denote the
0 O(nfr)x(nfr)

projection under P of the vertices of an (n + 1) simplex. Repeating the above proof shows

that the map : z9 — 0, x; — PBe; for 1 < j < n, is an isometry from X onto A. By

construction, A lies in the image of the projection P, hence in a copy of R". But being the

image under P of the vertex set of an n-simplex, A cannot lie in a copy of R"~! (otherwise
so would its span, which is all of P(R"™) 2 R"). O

We end this part with an observation. A (real symmetric square) matrix A’(n +1)x (n+1)
is said to be conditionally positive semidefinite if (u')” A’'u’ > 0 whenever > j—ou; = 0.
Such matrices are also studied in the literature (though not as much as positive semidefinite
matrices). The following lemma reformulates Theorem into the conditional positivity
of a related matrix:

Lemma 16.13. Let X = {xo,...,xn} be a finite set equipped with a metric d. Then the
matrix Apxn as in (16.11) is positive semidefinite if and only if the (n+ 1) x (n+ 1) matrix

A= (=d(zj, 26)*) ko (16.14)
1s conditionally positive semidefinite.

In particular, Schoenberg’s papers in the 1930s feature both positive semidefinite matrices
(Theorem and conditionally positive semidefinite matrices (Theorem. Certainly,
the former class of matrices were a popular and recurrent theme in the analysis literature,
with contributions from Carathéodory, Hausdorff, Hermite, Nevanlinna, Pick, Schur, and
many others.

Proof of Lemma[16.13. Let uy,...,u, € R be arbitrary, and set ug := —(uj + -+ + uy).
Defining u := (u1,...,u,)? and ' := (uo,...,u,)’, we compute using that the diagonal
entries of A’ are zero:

n n n
(u')TA' ' = Z Zu] (zo, k) uk—l-Zu] xj,x0) (Zuk> — Z ujd(xj,a:k)zuk
k=1

k=1 \j=1 j=1 4. k=1

Z ujuy, (d(zo, x1)* + d(2j,70)% — d(25, 75)?) = u’ Au,
k=1

for all u € R™. This proves the result. 0
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16.4. Origins of positivity preservers: Schoenberg, Bochner, and positive defi-

nite functions. We continue with our historical journey, this time into the origins of the
entrywise calculus on positive matrices. As Theorem [16.10| and Lemma [16.13| show, apply-
ing entrywise the function —z? to any distance matrix (d(z;, xk))? w—o from Euclidean space

yields a conditionally positive semidefinite matrix A’.

It is natural to want to remove the word “conditionally” from the above result. Namely:
which entrywise maps send distance matrices to positive semidefinite matrices? These are
precisely the positive definite functions:

Definition 16.15. Given a metric space (X, d), a function f : [0,00) — R is positive definite
on X if for any finite set of points z1, 22, ... 2, € X, the matrix f[(d(z;, x))’;_,] is positive
semidefinite.

By considering 2 x 2 distance matrices, note that positive definite functions are not the
same as positivity preservers; no distance matrix is positive semidefinite unless all x; are
equal (in which case we get the zero matrix). On a different note, given any metric space
(X, d), the positive definite functions on X form a closed convex cone, by Lemma

In arriving at Theorem Schoenberg was motivated by metric geometry — as we just
studied — as well as the study of positive definite functions. The latter was also of interest to
other mathematicians in that era: Bochner, Pélya, and von Neumann, to name a few. In fact,
positive definite functions are what led to Schoenberg’s Theorem and the development of
the entrywise calculus. Note that Bochner — and previously Carathéodory, Herglotz, Mathias,
and others — studied functions on groups G that were positive definite in the “more standard”
sense — namely, where in the above definition f : G — C, and one substitutes d(z;,xy) by
x; 'z, The above definition seems due to Schoenberg, in his 1938 paper in Trans. Amer.
Math. Soc.

We now present — from this paper — another characterization by Schoenberg of metric
embeddings into a Euclidean space R", this time via positive definite functions. This requires
a preliminary observation involving the positive definiteness of an even kernel:

Lemma 16.16. Given o > 0, the Gaussian kernel Tg, (x,y) := exp(—c||z — y||?) — in other
words, the function exp(—ox?) — is positive definite on R™ for all v > 1.

Proof. Observe that the case of R" for general r follows from the r = 1 case, via the Schur
product theorem. In turn, the r = 1 case is a consequence of Pélya’s lemma ([l

The following result of Schoenberg in Trans. Amer. Math. Soc. relates metric space em-
beddings with this positive definiteness of the Gaussian kernel:

Theorem 16.17 (Schoenberg, 1938, [317]). A finite metric space (X, d) with X = {zg,...,xn}
embeds isometrically into R" for some r > 0 (which turns out to be at most n), if and only if
the (n+ 1) x (n + 1) matriz with (j,k) entry

exp(—a?d(zj, vx)?), 0<j,k<n

is positive semidefinite, along any sequence of non-zero scalars o, decreasing to 0% (equiva-
lently, for all o € R).

For another application of this result and those in the previous Section [16.3] see Sec-
tion [27.J]
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Proof. Clearly, i (X, d) embeds isometrically into R", then identifying the x; with their
images in R", it follows by Lemma that the matrix with (7, k) entry

exp(—o?||lz; — zp||*) = Ta, (0, o)

is positive semidefinite for all o € R.
Conversely, let o, | 07. From the positivity of the exponentiated distance matrices for
Om, it follows for any vector u := (ug, ..., u,)’ € R that

n
Z ujug exp(—o2,d(z;, vx)%) > 0.
]7k:D

Expanding into Taylor series and interchanging the infinite sum with the two finite sums,
Z o Z wjugpd(zj, w)* > 0, Vm > 1.

1!
1=0 3,k=0

Suppose we restrict to the vectors u’ satisfying: Z?:o u; = 0. Then the [ = 0 term vanishes.
Now dividing throughout by o2, and taking m — oo, the “leading term” in o, must be non-
negative. It follows that if A" := (—d(z;, xk)z);-fk:o, then (u’)” A’u’ > 0 whenever > juj =0.
By Lemma and Theorem (X,d) embeds isometrically into R", where r < n
denotes the rank of the matrix A, x, as in . ]

16.5. Schoenberg: from spheres to correlation matrices, to positivity preservers.
The previous result, Theorem says that Euclidean spaces R" — or their direct limit
/ union R*> (which should more accurately be denoted RY), or even its completion ¢ of
square-summable real sequences (which Schoenberg and others called Hilbert space) — can be
characterized by the property that the maps

exp(—o2z?), o€ (0,p) (16.18)

are all positive definite on each (finite) metric subspace. As we saw, such a characterization
holds for each p > 0E|

Given this characterization, it is natural to seek out similar characterizations of distin-
guished submanifolds M in R” or R> or ¢2. In fact, in the aforementioned 1935 Ann. of Math.
paper, Schoenberg showed the first such classification result, for M = S"~! a unit sphere — as
well as for the Hilbert sphere S°°. Note here that the unit sphere S"1 := {z € R" : ||z||? = 1},
while the Hilbert sphere S® C ¢? is the subset of all square-summable sequences with unit
¢>-norm. (This is the closure of the set of all real sequences with finitely many non-zero
coordinates and unit £>-norm — which is the unit sphere | J,~; 5" in J,»; R".)

One defines a rotationally invariant metric on S (hence on each S™!) as follows. The
distance between x and —x is 7, and given points z # t+y in S, there exists a unique plane
passing through x,y, and the origin. This plane intersects the sphere S in a unit circle S*
given by

{ax + By, B €R, 1= |laz + By|* = o® + 5% + 2a8(z,y)} € 5,
and we let d(x,y) denote the angle — i.e., arclength — between x and y:
d(z,y) := <(x,y) = arccos((z,)) € [0,7].

1A related result on positive definite functions on — or Hilbert space embeddings of — a topological space

X is by Kolmogorov around 1940 [223]. He showed that a continuous function K : X x X — C is positive

definite if and only if there exists a Hilbert space H and a norm-continuous map ¢ : X — H, such that
K(z1,22) = (p(x1), p(x2)) for all 1,22 € X.
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Now we come to Schoenberg’s characterization for metric embeddings into Euclidean

spheres. He showed that in contrast to the family (|[16.18]) of positive definite functions
for Euclidean spaces, for spheres it suffices to consider a single function! This function is the
cosine:

Proposition 16.19 (Schoenberg, 1935, [313]). Let (X,d) be a finite metric space with X =
{x1,...,2n}. Fiz an integer r > 2. Then X isometrically embeds into S™~' but not S™=2, if
and only if d(zj,x) < m for all 1 < j,k < n and the matriz (cosd(z;,zy))} —, is positive
semidefinite of rank r.

In particular, X embeds isometrically into the Hilbert sphere S°° — with the spherical metric
—if and only if (a) diam(X) < 7 and (b) cos(-) is positive definite on X .

Thus, matrix positivity is also intimately connected with spherical embeddings, which may
not be surprising given Theorem [16.10}

Proof. If there exists an isometric embedding ¢ : X < S"~! as claimed, we have as above

cosd(zj, xr) = cos U(p(x;), p(zk)) = (p(z)), p(xk)),
which yields a Gram matrix of rank at most 7, hence exactly r (since X does not embed
isometrically into S"~2). Moreover, the spherical distance between z;,z) (for j,k > 0) is at
most 7, as desired.
Conversely, since A := (cosd(z;,xk))7,_; is positive, it is a Gram matrix (of rank r), and
hence A = BT B for some By, of rank r by Theorem Let y; € R" denote the columns
of B; then clearly y; € S"=1 ¥j: moreover,

COS{(ijyk) = <y]ayk> = Qjf = COSd(x]'?xk), V1 < ja k <n.

Since d(z;, zy,) lies in [0, ] by assumption, as does <((y;, yx), we obtain an isometry ¢ : X —
Sm=1 sending x; — y; for all j > 0. Finally, im(¢) is not contained in S"~2, for otherwise A
would have rank at most ~ — 1. This shows the result for S”~!; the case of S is similar. O

The proof of Proposition [16.19| shows that cos(:) is a positive definite function on unit
spheres of all dimensions.
Note that Proposition [16.19 and the preceding two theorems by Schoenberg in the 1930s:

(1) characterize metric space embeddings into Euclidean spaces via matrix positivity;

(2) characterize metric space embeddings into Euclidean spaces via the positive definite
functions exp(—o2(-)?) on R” or R (so this involves positive matrices); and

(3) characterize metric space embeddings into Euclidean spheres S”~! or S (with the
spherical metric) via the positive definite function cos(-) on S*°.

Around the same time (in the 1930s), S. Bochner [56] 57] had classified all of the positive
definite functions on R. This result was extended in 1940 simultaneously by Weil, Povzner,
and Raikov to classify the positive definite functions on any locally compact abelian group.
Amid this backdrop, in his 1942 paper [318] Schoenberg was interested in understanding the
positive definite functions of the form focos : [~1,1] — R on a unit sphere S"~! C R", where
r> 2.

To present Schoenberg’s result, first consider the r = 2 case. As mentioned above, distance
(i.e., angle) matrices are not positive semidefinite; but if one applies the cosine function
entrywise, then we obtain the matrix with (j,k) entry cos(f; — 0)), and this is positive
semidefinite by Lemma But now f[—] preserves positivity on a set of Toeplitz matrices
(among others), by Lemma and the subsequent discussion. For general dimension r > 2,
we have cos(d(zj, x)) = (x, k) (see also the proof of Proposition[16.19), so cos|(d(x;, zx)) ]



16. History — Schoenberg’s theorem. Rudin, Herz, Vasudeva. Metric geometry,

positive definite functions, spheres, and correlation matrices. 109
always ylelds Gram maftrices. Hence, f[—] would once again preserve positivity on a set of

positive matrices. It was this class of functions that Schoenberg characterized:

Theorem 16.20 (Schoenberg, 1942, [318]). Suppose f : [-1,1] — R is continuous, and r > 2
1s an integer. Then the following are equivalent:

(1) (f o cos) is positive definite on S™~1.

r-2 r—2
(2) The function f(x) = > 72, CkC,g 2 )(x), where ¢, > 0,Yk, and {C’,g 2 )(m) : k> 0}
comprise the first Chebyshev or Gegenbauer family of orthogonal polynomials.

Remark 16.21. Theorem has an interesting reformulation in terms of entrywise pos-
itivity preservers on correlation matrices. Recall that on the unit sphere S™™!, applying
cos[—| entrywise to a distance matrix of points xz; yields precisely the Gram matrix with
entries (x;,xy), which is positive of rank at most 7. Moreover, as the vectors x; lie on the
unit sphere, the diagonal entries are all 1 and hence we obtain a correlation matrix. Putting
these facts together, f o cos is positive definite on S"~! if and only f[—] preserves positivity
on all correlation matrices of arbitrary size but rank at most r. Thus, Schoenberg’s works
in 1935 [313] and 1942 [3I8] already contained connections to entrywise preservers of cor-
relation matrices, which brings us around to the modern-day motivations that arise from
precisely this question (now arising in high-dimensional covariance estimation, and discussed

in Section [13.1)).

Remark 16.22. Schoenberg’s work has been followed by numerous papers attempting to
understand positive definite functions on locally compact groups, spheres, two-point homo-
geneous metric spaces, and products of these. See, for example, [19, 21, 22} [41], 142}, [58], [79]
1111 150, 256], 257, 373 [374], 379)] for a selection of works. The connection to spheres has also
led to work in statistics on spatio-temporal covariance functions on spheres, modeling the
earth as a sphere [144] 2971, 367]. (Note that a metric space X is n-point homogeneous [361]
if for all 1 < p < n and subsets X1, Xo C X of size p, every isometry : X; — Xy extends
to a self-isometry of X. This was first studied by Birkhoff [50] and differs from the more
widespread usage for spaces G/H. We will study this further in Section )

Remark 16.23. Schoenberg’s (and subsequent) work on finite- and infinite-dimensional
spheres has many other applications. One area of recent activity involves sphere packing,
spherical codes, and configurations of points on spheres that maximize the minimal distance
or some potential function. See, for example, the work of Cohn with coauthors in J. Amer.
Math. Soc. 2007, 2012 [84) [85] and in Duke Math. J. 2014, 2018 [86, 87]; and Musin in Ann.
of Math. 2008 [268].

Returning to the above discussion on Theorem [16.20], if instead we let r = oo, then the
corresponding result would classify positivity preservers on all correlation matrices (without
rank constraints) by Remark [16.21] And indeed, Schoenberg achieves this goal in the same

paper:
Theorem 16.24 (Schoenberg, 1942, [318]). Suppose f : [—1,1] — R is continuous. Then

f ocos s positive definite on S if and only if there exist scalars ¢, > 0, such that

f(cos @) = ch cos® 0, 0 € [0,n].
k>0

Notice here that cos® 6 is positive definite on S for all integers k > 0, by Proposition|16.19
and the Schur product theorem. Hence, so is ).~ Ck cos® 6 if all ¢, > 0.
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Freed from the sphere context, the preceding theorem says that a continuous function
f :[=1,1] — R preserves positivity when applied entrywise to all correlation matrices, if

and only if f(z) = > ,~ockz® on [—1,1] with all ¢, > 0. This finally explains how and
why Schoenberg arrived at his celebrated converse to the Schur product theorem — namely,
Theorem [16.2] on entrywise positivity preservers.

16.6. Digression on ultraspherical polynomials. Before proceeding further, we describe
the orthogonal polynomials C,ga) (x) for k > 0, where a = «a(r) = (r — 2)/2. Given r > 2,
note that a(r) ranges over the non-negative half-integers. Though not used below, here are

(a)

several different (equivalent) definitions of the polynomials C}
First, if o = 0, then C\”)(2) := Ty(x), the Chebyshev polynomials of the first kind

for general real a > 0.

To(z) =1, Ti(z)==z, To(x)=22>—1, ..., Ti(cos(h)) = cos(kf) Vk > 0.

A second way to compute the polynomials C(O) (x) is through their generating function
1—at (0)
Cy
1— 2zt + 12 Z

For higher a: setting o = % yields the family of Legendre polynomials. If & = 1, we obtain

the Chebyshev polynomials of the second kind. For general o > 0, the functions (C,ga) (@))k>0
are the Gegenbauer/ultraspherical polynomials, defined via their generating function

(1 — 22t + %)~ ZC

For all o > 0, the polynomials (C,ga)(x)) k>0 form a complete orthogonal set in the Hilbert
space L%([—1,1],w,), where w, is the weight function

walz) == (1—2%)*"2, e (-1,1).

Thus, another definition of C,ga) (x) is that it is a polynomial of degree k, with C’éa) (x) =1,
and such that the C,ga) are orthogonal with respect to the bilinear form

1
- / @@ de. fog € (=11 w)

and satisfy:
7217207 (k + 20)
Kk + a)(T(a))?

Yet another definition is that the Gegenbauer polynomials C,ga)(a;) for o > 0 satisfy the
differential equation

(C® o)y =

(1—22)y" — (2a + 1) zy + k(k + 2a)y = 0.
We also have a direct formula

. Lk/2] CT(k— i+ a N
Cia) = 3 (-1 s ),

J=0
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as well as a recursion

C’éa)(:c) =1, C'fa) () = 2azx,

i (z) :

L (20(k+ 0= 1O, (&) — (k420 - 2)0(0)) Wh>2

16.7. Sketch of proof of Theorem Schoenberg’s theorem has subsequently
been studied by many authors, and in a variety of settings over the years. This includes
classifying the positive definite functions on different kinds of spaces: locally compact groups,
spheres, and products of these. We next give a proof-sketch of this result. In what follows, we
use without reference the observation that (akin to Lemma , the set of functions f, such
that f o cos is positive definite on S"~!, also forms a closed convex cone, which is, moreover,

closed under entrywise products.
We first outline why (2) = (1) in Theorem [16.20l By the above observation, it suffices

to show that C,ga) o cos is positive definite on S"~!. The proof is by induction on 7. For the
base case r = 2, let 01,0,...,0, € S' = [0,27). Up to the sign, their distance matrix has
(t,7) entry d(6;,60;) = 6; — 0; (or a suitable translate modulo 27). Now, by Lemma the
matrix (cos(k(6; —6;)));';—; is positive semidefinite. But this is precisely the matrix obtained

(0)

by applying C} "’ o cos to the distance matrix above. This proves one implication for d = 2.

(a)

The induction step (for general r > 2) follows from addition formulas for C}
For the converse implication, set a := (r —2)/2 and note that f € L?([—1,1],w,). Hence,

/ has a series expansion » 2 =0 ckC’( )( ), with ¢, € R. Now recover the ¢ via

ck—/ F(@)C (@)wa(a) da,

since the C’,ga) form an orthonormal family. Note that C’Iga) and f are both positive definite

(upon precomposing with the cosine function), hence so is their product by the Schur product
theorem. A result of W.H. Young now shows that ¢; > 0 for all k£ > 0. ]

16.8. Entrywise preservers in a fixed dimension. We conclude by discussing a natural
mathematical refinement of Schoenberg’s theorem:

“Which functions entrywise preserve positivity in a fixed dimension?”

This turns out to be a challenging, yet important question from the point of view of
applications (see Section for more on this.) In particular, note that there exist functions
which preserve positivity on P, but not on P,,4;: the power functions z* with a € (n—3,n—2)
for n > 3, by Theorem By Vasudeva’s theorem it follows that these non-integer
power functions cannot be absolutely monotonic.

Surprisingly, while Schoenberg’s theorem is classical and provides a complete description
in the dimension-free case, not much is known about the fixed-dimension case: namely, the
classification of functions f : I — R, such that f[—] : P,(I) — P,(R) for a fixed integer
n > 1.

e If n =1, then clearly, any function f : [0, 00) — [0, 00) works.

e For n =2 and I = (0,00), these are precisely the functions f : (0,00) — R that are
non-negative, non-decreasing, and multiplicatively mid-convex. This was shown by
Vasudeva (see Theorem , and it implies similar results for I = [0, 00) and I = R.

e For every integer n > 3, the question is open to date.
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Given the scarcity of results in this direction, a promising line ol attack has been to study

refinements of the problem. These can involve restricting the test set of matrices in fixed
dimension (say, under rank or sparsity constraints) or the test set of functions (say, to only
the entrywise powers) as was studied in Sections @, and or to use both restrictions.
See Section for more on this discussion, as well as the final part of the text, where we
study polynomial preservers in a fixed dimension.

To conclude: while the general problem in fixed dimension n > 3 is open to date, there
is a known result: a necessary condition satisfied by positivity preservers on P,, shown by
R.A. Horn in his 1969 paper [182] in Trans. Amer. Math. Soc. and attributed to his advisor,
Loewner. The result is over 50 years old; yet even today, it remains essentially the only
known result for general preservers f on P,. In the next two sections, we will state and prove
this result — in fact, a stronger version. We will then show (stronger versions of) Vasudeva’s
and Schoenberg’s theorems, via a different approach than the one by Schoenberg, Rudin, or
others: we crucially use the fixed-dimension theory, via the result of Horn and Loewner.
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17. HORN’S THESIS: A DETERMINANT CALCULATION. PROOF FOR SMOOTH FUNCTIONS

As mentioned in the previous section the goal in this part is to prove a stronger form
of Schoenberg’s theorem [16.2] in the spirit of Rudin’s theorem but replacing the word
“Toeplitz” by “Hankel”. In order to do so, we will first prove a stronger version of Vasudeva’s
theorem [16.4] in which the test set is once again reduced to only low-rank Hankel matrices.

In turn, our proof of this version of Vasudeva’s theorem relies on a fixed-dimension result,
alluded to at the end of Section Namely, we state and prove a stronger version of a 1969
theorem of Horn (attributed by him to Loewner), in this section and the next (Section [18]).

Theorem 17.1 (Horn-Loewner theorem, stronger version). Let I = (0,00), and fix ug €
(0,1) and an integer n > 1. Define u := (1,u0,...,u8_1)T. Suppose f : I — R is such
that f[—] preserves positivity on the set {alpx, +buu’ : a,b > 0} as well as on the rank-1
matrices in Po(I) and the Toeplitz matrices in Po(I). Then

(1) feC"3(I) and f,f',..., f"3) are non-negative on I. Moreover, f"=3) is convex
and non-decreasing on I.
(2) If, moreover, f € C"1(I), then f*=2), f(=1) are also non-negative on I.

All test matrices here are Hankel of rank < 2 — and are, moreover, totally non-negative by
Corollary since they arise as the truncated moment matrices of the measures ady + by, .
This is used later in this part, to prove stronger versions of Vasudeva’s and Schoenberg’s
theorems (see Section , with similarly reduced test sets of low-rank Hankel matrices.

Remark 17.2. In the original result by Horn (and Loewner), f was assumed to be continuous
and to preserve positivity on all of Py ((0,00)). In Theorem we have removed the
continuity hypothesis, in the spirit of Rudin’s work, and also greatly reduced the test set.

Remark 17.3. We also observe that Theorem [17.1]is the “best possible,” in that the number
of non-zero derivatives that must be positive is sharp. For example, let n > 2, I = (0, 00),
and f : I — R be given by: f(z) := z®, where « € (n —2,n — 1). Using Theorem [9.3
f[—] preserves positivity on the test sets {al,x, + buu’ : a,b > 0} and Py(I). Moreover,
fecr (1) and f, f',..., f™ 1 are strictly positive on I. However, f(™ is negative on I.
This low-rank Hankel example (and more generally, Theorem also shows that there
exist (power) functions that preserve positivity on P, but not on P, ;. In the final Part of
these notes, we will show that there also exist polynomial preservers with the same property.

We now proceed toward the proof of Theorem for general functions. A major step is
the next calculation, which essentially proves the result for smooth functions. In the sequel,

define the Vandermonde determinant of a vector u = (ug,...,u,)’ to be 1if n =1, and
1w - u?—i
1 U9 e un_
V)= ] (w-w)=det|. 72 |, ifn>1 (17.4)
1<j<k<n - - :
1 un . e uz_l

Proposition 17.5. Fiz an integer n > 0 and define N := (g) Suppose a € R and let a
function f : (a —e€,a+¢€) — R be N-times differentiable for some fized e > 0. Now fix vectors
u,v € R", and define A : (—€,€') — R via A(t) := det flal,xn + tuv’] for a sufficiently
small € € (0,€). Then A(0) = A'(0) =--- = AN-D(0) =0, and

n—1
AM () = (07 L ‘N >V(u)V(v) 1T "),

on—1
k=0
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where the first factor on the right is the multinomial coefficient.

This computation was originally due to Loewner. While the result seemingly involves
(higher) derivatives, it is in fact a completely algebraic phenomenon, valid over any ground
ring. For the interested reader, we isolate this phenomenon in Proposition its proof is
more or less the same as the one now provided for Proposition [17.5] To gain some feel for
the computations, the reader may wish to work out the N = 3 case first.

Proof. Let wy, denote the kth column of al,x, + tuv’; thus, wj has jth entry a+tujvy. To
differentiate A(t), we will use the multilinearity of the determinant and the Laplace expansion
of A(t) into a linear combination of n! “monomials”, each of which is a product of n terms
f(-). Using the product rule, taking the derivative yields n terms from each monomial, and
we may rearrange all of these terms into n “clusters” of terms (grouping by the column which
gets differentiated), and regroup back using the Laplace expansion to obtain

A'(t) =Y det(ffwa] | - | fiwir] [ ogwo f'wi] | fiwia] | -+ | flwa).
k=1

Now apply the derivative repeatedly, using this principle. Using the chain rule, for M > 0
the derivative AMM)(t) — evaluated at t = 0 — is an integer linear combination of terms of the
form

det(v"'u’™ o f(ml)[al] | - [ ormu®™ o f(m”)[al])

= (m1) mioomy | . (mn) My 310My, o _ (17.6)
det(f (CL)'Ul u ’ ’ f (CL)’Un u )7 mi + +my M,

where 1 = (1,...,1)T € R™ and all m; > 0. Notice that if any m; = my, for j # k, then
the corresponding determinant vanishes. Thus, the lowest degree derivative AM)(0)
whose expansion contains a non-vanishing determinant is when M = 0+1+---+(n—1) = N.
This proves the first part of the result.

To show the second part, consider AMY) (0). Once again, the only determinant terms that
do not vanish in its expansion correspond to applying 0,1, ...,n—1 derivatives to the columns
in some order. We first compute the integer multiplicity of each such determinant, noting
by symmetry that these multiplicities are all equal. As we are applying N derivatives to A
(before evaluating at 0), the derivative applied to get f’ in some column can be any of (];[ );
now the two derivatives applied to get f” in a (different) column can be chosen in (N 9 1)
ways; and so on. Thus, the multiplicity is precisely

G0 (o) -0 ) e G )

We next compute the sum of all determinant terms. Each term corresponds to a unique
permutation of the columns o € S, with say o — 1 the order of the derivative applied to
the kth column f[wy]. Using (17.6)), the determinant corresponding to o equals

n—1
[T FO @ (=17 - det(® [ wt | - | wl)
k=0
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Summing this term over all o € S, yields precisely

n—1 n—1 n—1
V) [T %@ > 07 [ = v [[ P a) - Viv).
k=0 k=0 k=0

oESy
Now, multiply by the (common) integer multiplicity computed above, to finish the proof. [

We next present the promised algebraic formulation of Proposition [I7.5] For this, some
notation is required. Fix a commutative (unital) ring R and an R-algebra S. The first step
is to formalize the notion of the derivative, on a subclass of S-valued functions. This involves
more structure than the more common notion of a derivation, so we give it a different name.

Definition 17.7. Given a commutative ring R, a commutative R-algebra S (with R C S),
and an R-module X, a differential calculus is a pair (A, d), where A is an R-subalgebra of
functions : X — S (under pointwise addition and multiplication and R-action) which contains
the constant functions, and 9 : A — A satisfies the following properties:

(1) 0 is R-linear, i.e., 8erfj = erﬁfj for all r; € R, f;j € A (and all j).

J J
(2) 0 is a derivation (product rule): d(fg) = f - (9g) + (0f) - g for f,g € A.
(3) O satisfies a variant of the chain rule for composing with linear functions. Namely, if
2 € X,r € R, and f € A, then the function g : X — S, g(z) := f(2' + rx) also lies
in A, and moreover, (9g)(x) =1 - (0f)(a’ + rx).

With this definition in hand, we can now state the desired algebraic generalization of
Proposition the proof is essentially the same.

Proposition 17.8. Suppose R, S, and X are as in Definition with an associated dif-
ferential calculus (A, D). Now, fix an integer n > 0, two vectors u,v € R", a vector a € X,
and a function f € A. Define N € N and A : X — R via

N = (Z), A(t) ;= det flalpxn + tuvT], te X.

Then A(Ox) = (8A)(0x) =...= (8N71A>(0)() = 0g, and

n—1
@ao0=(,, " revm e,
,1,...,n—1 Pt
Notice that the algebra A is supposed to remind the reader of “smooth functions”, and is
used here for ease of exposition. One can instead work with an appropriate algebraic notion
of “N-times differentiable functions” in order to truly generalize Proposition [L7.5} we leave
the details to the interested reader.

Remark 17.9. Note that Proposition|17.5|is slightly more general than the original argument
of Horn and Loewner, which involved the special case u = v. As the above proof (and
Proposition [17.8) shows, the argument is essentially algebraic, hence holds for any u, v.

Finally, we use Proposition to prove the Horn—Loewner theorem for smooth
functions. The remainder of the proof — for arbitrary functions — will be discussed in the
next section (Section [18)).

Proof of Theorem for smooth functions. Suppose f is smooth — or more generally, CN
where N = (g) Then the result is shown by induction on n. For n = 1 the result says that f is
non-negative if it preserves positivity on the given test set, which is obvious. For the induction
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step, we know that f, f/,..., f(»=2) > 0 on I, since the given test set of (n — 1) x (n — 1)
matrices can be embedded into the test set of n x n matrices. (Here we do not use the test
matrices in Po(I).) Now define f.(z) := f(z) + ex™ for each ¢ > 0, and note by the Schur
product theorem (or Lemma that f. also satisfies the hypotheses.

Given a,t > 0 and the vector u = (1, u, ... ,ug_l)T as in the theorem, define A(t) :=
det f.[al,xn + tuu?] as in Proposition m (but replacing f,v by fe, u respectively). Then
A(t) > 0 for t > 0 by assumption, so

tsot+ tNV 7
On the other hand, by Proposition and applying L’'Hopital’s rule,

LAm _AME) 1 N 2 TT 70 — v TT £ (@)
tim 20 = (0.1, )V<>kr_[0f€ @=ver 75"

0< lim M where N = <Z>

o+t N! T NI n—1 k!

Thus, the right-hand side here is non-negative. Since u has distinct coordinates, we can
cancel all positive factors to conclude that

n—1

H f®)(a) >0, Vea>0.

k=0

But fe(k)(a) = f®)(a) +en(n—1)---(n—k+1)a™*, and this is positive for k =0,...,n — 2
by the induction hypothesis. Hence,

Fr V() = f@ (@) +ean! >0, Ve, a > 0.
It follows that £~ (a) > 0, hence =1 is non-negative on (0, 00), as desired. O

We conclude this line of proof by mentioning that the Horn—Loewner theorem, as well
as Proposition and its algebraic avatar in Proposition afford generalizations; the
latter results reveal a surprising and novel application to Schur polynomials and to symmetric
function identities. For more details, the reader is referred to the recent paper [214] in Trans.
Amer. Math. Soc. by the author.

The final remark is that there is a different, simpler proof of Theorem for smooth
functions, essentially by Vasudeva (1979, [353]) and along the lines of FitzGerald-Horn’s
1977 argument ([123] and see also the proof of Theorem . Vasudeva’s proof is direct, so
does not lead to the connections to Schur polynomials mentioned in the preceding paragraph.

Simpler proof of Theorem [17.1] for smooth functions. This proof in fact works for f € C"~1(I).

Akin to the previous proof, this argument also works more generally than for u = (1, uy, .. ., ugfl
choose arbitrary distinct real scalars v1,. .., v, and write v := (vy,...,v,)". Then for a > 0

and small t > 0, al,x, + tvv? € P,(I). Now, given 0 < m < n — 1, choose a vector u € R"
which is orthogonal to the vectors 1, v, v°2, v°(m=1) Hut not to v°™, and compute using the

hypotheses and the Taylor expansion of f at a:

m—1 l m m
& ¢ ¢
0 < u” flalpsn + tvvTu = u” < > [P @) @) + m@) w= e Cn
=0

where Cp,xp, has (4, k) entry (vjvr)™f™ (a+ 60;tvjvy) with all 054, € (0,1). Divide by ™ /m!
and let t — 07F; since f is C™, we obtain 0 < (u”v°™)2f(™)(a). As this holds for all
0 <m <n —1, the proof is complete. ]

)
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18. THE STRONGER HORN-LOEWNER THEOREM. MOLLIFIERS.

We continue with the proof of the Horn—Loewner theorem This is in three steps:

(1) Theorem holds for smooth functions. This was proved in the previous section.

(2) If Theore holds for smooth functions, then it holds for continuous functions.
Here, we need to assume n > 3.

(3) If f satisfies the hypotheses in Theorem [I7.1] then it is continuous. This follows from
Vasudeva’s 2 x 2 result — see (the proof of) Theorem and Remark

To carry out the second step — as well as a similar step in proving Schoenberg’s theorem,
see Section [22.2| — we will use a standard tool in analysis called mollifiers.

18.1. An introduction to (one-variable) mollifiers. In this subsection, we examine some
basic properties of mollifiers of one variable: the theory extends to R™ for all n > 1, but that
is not required in what follows.

First, recall that one can construct smooth functions ¢ : R — R, such that g and all its
derivatives vanish on (—o0,0]: for instance, g(z) = exp(—1/z) - 1(x > 0). Indeed, one shows
that ¢(™ (z) = p,(1/2)g(x) for some polynomial p,; hence, ¢ (x) — 0 as z — 0. Hence:

Lemma 18.1. Given scalars —1 < a < b < 0, there exists a smooth function ¢ that vanishes
outside |a,b], is positive on (a,b), and is a probability distribution on R.

Of course, the assumption [a,b] C (—1,0) is completely unused in the proof of the lemma,
but is included for easy reference since we will require it in what follows.

Proof. The function p(x) := g(x—a)g(b—x) is non-negative, smooth, and supported precisely
on (a,b). In particular, [ ¢ > 0, so the normalization ¢ := ¢/ [, ¢ has the desired properties.
]

We now introduce mollifiers.

Definition 18.2. A mollifier is a one-parameter family of functions (in fact probability
distributions)
{65(e) = 1o(5) : 6 > 0},
with real domain and range, corresponding to any function ¢ satisfying Lemma [I8.1
A continuous, real-valued function f (with suitable domain inside R) is said to be mollified
by convolving with the family ¢s. In this case, we define

fota) = [ F(®)0s(a—1) dt
where one extends f outside its domain by zero. (This is called convolution: fs= f * ¢s.)

Remark 18.3. Mollifiers, or Friedrichs mollifiers, were used by Horn and Loewner in the
late 1960s, as well as previously by Rudin in his 1959 proof of Schoenberg’s theorem. They
were a relatively modern tool at the time, having been introduced by Friedrichs in his seminal
1944 paper [132] on PDEs in Trans. Amer. Math. Soc., as well as slightly earlier by Sobolev
in his famous 1938 paper [343] in Mat. Sbornik (which contained the proof of the Sobolev
embedding theorem).

Returning to the definition of a mollifier, notice by the change of variables u = z — t and

Lemma [I8.1] that
0
fite) = 5 [ =0 (§)au= [ @ = w)iu) du. (18.4)
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In particular, fsis a “weighted average” of the image set f([z, z+4]), since ¢ is a probability
distribution. Now it is not hard to see that fy5 is continuous and converges to f pointwise as
§ — 0", In fact, more is true:

Proposition 18.5. If I C R is a right open interval and f : I — R is continuous, then for
all 6 > 0, the mollified functions fs are smooth on R (where we extend f outside I by zero),
and converge uniformly to f on compact subsets of I as § — 0F.

To prove this result, we show two lemmas in somewhat greater generality. First, some
notation: a (Lebesgue measurable) function f : R — R is said to be locally L' if it is L' on
each compact subset of R.

Lemma 18.6. If f : R — R is locally L', and ¢ : R — R is continuous with compact support,
then fx1 : R — R is also continuous.

Proof. Suppose x, — z in R; without loss of generality |z, —z| < 1 for all n > 0. Also choose
r,M > 0, such that v is supported on [—7, 7] and M = [[¢)[| o (r) = maxg [¢(z)|. Then for
each t € R, we have

fOp(n —t) = )Y@ —1),  [f(O)P(en =) < MIf(O)]- 1z —t] <7 +1)

(the second inequality follows by considering separately the cases |z —t| < r+1 and |z —¢t| >
r + 1). Since the right-hand side is integrable, Lebesgue’s dominated convergence theorem
applies:

im (/+6)(en) = Jim [ F(O(on 1) dt = /R lim f(t)(zn — ) dt

n—oo n—oo n—oo
= [ e =0 de = (7 < 0) )
so f 1 is continuous on R. ]

Lemma 18.7. If f : R — R is locally L', and ¢ : R — R is C! with compact support, then
f*1p:R =R is also C* and (f x¢) = f*1' on R.

Proof. We compute
(F 0@ = Jim 2 [ fota+h—y dy—/f
h—
= hm/f(y) (z+ yf)L Yl = dy

h—0

:lim/f "(x —y + c(h,y)) dy,
h—0

where for each y € R, ¢(h,y) € [0,h] is chosen using the Mean Value Theorem. While
c(h,y) — 0 as h — 0, the problem is that y is not fixed inside the integral. Thus, to proceed,
we argue as follows: suppose 9 is supported inside [—r, 7] as above, hence so is ¢'. Choose
any sequence h, — 0. Now claim that the last integral above, evaluated at h,,, converges to
(f *x1')(x) as n — oo — hence so does the limit of the last integral above. Indeed, we may
first assume all h,, € (—1,1); and then check for each n that the above integral equals

(r+1)
/f (& —y + c{hn, >>dy=/( F@W (@ —y+ c(hn, ) dy

—(r+1)
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by choice of . Now the integrand on the right-hand side is bounded above by Mi|f(y)| in

absolute value, where M := ||{)'|| Lo (r). Hence, by the dominated convergence theorem,
z+(r+1) , z+(r+1) . .
lim W@ =g+ el dy= [ @)=y dy = () (a),
n=00 Jr—(r+1) z—(r+1)

where the first equality also uses that v is C' and the second is by choice of r. Since this
happens for every sequence h,, — 0, it follows that (f ) (x) = (f *v¢’)(x). Moreover, f*’
is continuous by Lemma since v is C'. This shows f ¢ is C! as claimed. O

Finally, we show the claimed properties of mollified functions.

Proof of Proposition[18.8. Extending f by zero outside I, it follows that f is locally L' on
R. Repeatedly applying Lemma to ¥ = ¢5, ¥, &5, . .., we conclude that f5 € C°(R).

To prove local uniform convergence, let K be a compact subset of I and ¢ > 0. Denote
b := supK and a := inf K. Since [ is right open, there is a number I > 0, such that
J :=[a,b+1] C I. Since f is uniformly continuous on J, given € > 0 there exists ¢ € (0,1),
such that |z —y| <6, v,y e J = |f(x) — f(y)| <e.

Now claim that if 0 < & < 0 then | f¢ — fllx) < € note this proves the uniform
convergence of the family f5 to f on K. To show the claim, compute using for z € K:

0
/ (7 =) = @)oo

|[fe(x) = flz)| =

0 0
S/_Elf(:r—U)—f(w)I%(U)du < e/_qug(u)du:e.

This is true for all x € K by the choice of £ < § < I, and hence, proves the claim. ]

18.2. Completing the proof of the Horn—Loewner theorem. With mollifiers in hand,
we finish the proof of Theorem As mentioned at the start of this section, the proof can
be divided into three steps, and two are now already worked out. It remains to show the
second step, that is, if n > 3 and if the result holds for smooth functions, then it holds for
continuous functions.

Thus, suppose I = (0,00) and f : I — R is continuous. Define the mollified functions
fs, 6 > 0 as above; note each f5 is smooth. Moreover, given a,b > 0, by the function
fs satisfies

0
fslalpxn +buu’] = /_5 ¢5(y) - fl(a+ [y Lnxn + buu’] dy, (18.8)

and this is positive semidefinite by the assumptions for f. Thus, fs[—| preserves positivity
on the given test set in P, (I); a similar argument shows that fs[—] preserves positivity on

Py(I). Hence, by the proof in the previous section, fs, f5,..., f(gn_l) are non-negative on I.

Observe that the theorem amounts to deducing a similar statement for f; however, as f
is a priori known only to be continuous, we can only deduce non-negativity for a discrete
version of the derivatives — namely, divided differences:

Definition 18.9. Suppose [ is a real interval and a function f : I — R. Given h > 0 and an
integer k > 0, the kth order forward differences with step size h > 0 are defined as follows:

k
AU)(@) o= f@), (AE) = (AE ) ath)—(AE 1)) = 3 (k) (—1)87 f (o),

=0
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whenever k > 0 and =,z + kh € I. Similarly, the kth order divided differences with step size
h > 0 are

(DEF) () = %(A’}jf)(x), Wk >0, 2,2+ kh e I.

The key point is that if a function is differentiable to some order, and its derivatives of that
order are non-negative on an open interval, then using the mean value theorem for divided
differences, one shows the corresponding divided differences are also non-negative, hence so
are the corresponding forward differences. Remarkably, the converse also holds, including
differentiability! This is a classical result by Boas and Widder:

Theorem 18.10. Suppose I C R is an open interval, bounded or not, and f : I — R.

(1) (Cauchy’s mean value theorem for divided differences: special case.) If f is k-times
differentiable in I for some integer k > 0, and x,z + kh € I for h > 0, then there
exists y € (v, + kh), such that (DFf)(z) = f®(y)/k!.

(2) (Boas—Widder, Duke Math. J., 1940.) Suppose k > 2 is an integer, and f : I — R is
continuous and has all forward differences of order k non-negative on I:

(A¥f)(z) >0, whenever h >0 and x,x +kh € 1.

Then on all of I, the function f*=2) exists, is continuous and convez, and has non-
decreasing left- and right-hand derivatives.

We make a few remarks on Boas and Widder’s result. First, for £k = 2 the result seems
similar to Ostrowski’s theorem [12.2] except for the local boundedness being strengthened
1)
claim here that the lower-order derivatives f, ..., f(*~2) are non-decreasing on I. Indeed, a
counterexample for such an assertion for f), where 0 <1< k—2, is f(z) = -2 onTCR.
Finally, we refer the reader to Section for additional related observations and results.

to continuity. Second, note that while fj(tk_ is non-decreasing by the theorem, one cannot

Proof. The second part will be proved in detail in Section For the first, consider the
Newton form of the Lagrange interpolation polynomial P(X) for f(X) at X = z,x+h,...,z+
kh. The highest term of P(X) is

(DEFY(z) - (X — 2p1) - (X — 1) (X — x0), where x; = zg + jh Vj > 0.

Writing ¢(X) := f(X) — P(X) to be the remainder function, note that g vanishes at =,z +
h,...,x + kh. By successively applying Rolle’s theorem to g,¢/,...,¢%*=1, it follows that
¢ has a root in (z,z 4 kh), say y. But then,

0=9"(y) = rO) - (DL ()Y,
which concludes the proof. O

Returning to our proof of the stronger Horn-Loewner theorem since f5, f§,. .., f én_l) >
0 on I, by the above theorem the divided differences of fs5 up to order n — 1 are non-negative
on I, hence the same holds for the forward differences of fs5. Applying Proposition [18.5
the forward differences of f of orders k = 0,...,n — 1 are also non-negative on I. Finally,
invoke the Boas—Widder theorem for k = 2,...,n — 1 to conclude the proof of the (stronger)
Horn—Loewner theorem — noting for “low orders” that f is non-negative and non-decreasing
on I by using forward differences of orders k = 0, 1 respectively, and hence f, f > 0 on I as
well. O
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19. THE STRONGER VASUDEVA AND SCHOENBERG THEOREMS. BERNSTEIN'S THEOREM.

MOMENT SEQUENCE TRANSFORMS.

19.1. The theorems of Vasudeva and Bernstein. Having shown (the stronger form of)
the Horn—Loewner theorem [17.1] we use it to prove the following strengthening of Vasudeva’s
theorem In it, recall from Definition that HTN,, denotes the set of n x n Hankel
totally non-negative matrices. (These are automatically positive semidefinite.)

Theorem 19.1 (Vasudeva’s theorem, stronger version — also see Remark [19.18)). Suppose
I =(0,00) and f: I — R. The following are equivalent:

(1) The entrywise map f[—] preserves positivity on Py (I) for alln > 1.
e entrywise map f|—] preserves positivity on all matrices in HIN,, with positive
(2) Th trywi p fl-] p positivity 1l matri ) ith positi
entries and rank at most 2 for allmn > 1.
e function f equals a convergent power series » - ,cpx” for all x € I, wi e
3) Th ti l gent j > o CkT” I I, with th
Maclaurin coefficients ¢, > 0 for all k > 0.

To show the theorem, we require the following well-known classical result by Bernstein:

Definition 19.2. If I C R is open, we say that f : I — R is absolutely monotonic if f is
smooth on I and f(k) >0on I for all kK > 0.

Theorem 19.3 (Bernstein, [44]). Suppose —oco < a <b < oo. If f:[a,b) = R is continuous
at a and absolutely monotonic on (a,b), then f can be extended analytically to the complex
disk D(a,b — a).

With Bernstein’s theorem in hand, the “stronger Vasudeva theorem” follows easily:

Proof of Theorem[19.1 By the Schur product theorem or Lemma [16.1] (3) = (1); and
clearly (1) = (2). Now suppose (2) holds. By the stronger Horn-Loewner theorem [17.1]
f® > 0on I for all k£ > 0, i.e., f is absolutely monotonic on I. In particular, f is non-
negative and non-decreasing on I = (0, 00), so it can be continuously extended to the origin
via f(0) := lim,_,g+ f(x) > 0. Now apply Bernstein’s theorem with ¢ = 0 and b = oo to
deduce that f agrees on [0, c0) with an entire function ) 7, crz®. Moreover, since fF) >0
on I for all k, it follows that f®*) (0) >0, i.e., ¢t > 0 Vk > 0. Restricting to I, we obtain (3),
as desired. g

On a related note, recall Theorems and which showed that when studying entry-
wise powers preserving the two closed convex cones P, ([0,00)) and HTN,,, the answers were
identical. This is perhaps not surprising, given Theorem In this vein, we observe that
such an equality of preserver sets also holds when classifying the entrywise maps preserving
Hankel TN matrices with positive entries:

Corollary 19.4. With I = (0,00) and f : I — R, the three assertions in Theorem are
further equivalent to:

(4) The entrywise map f[—] preserves total non-negativity on all matrices in HIN,, with
positive entries, for all n > 1.

(5) The entrywise map f|—| preserves total non-negativity on the matrices in HIN,, with
positive entries and rank at most 2, for alln > 1.

Proof. Clearly (4) = (5) = (2), where (1)—(3) are as in Theorem That (3) =
(4) follows from Lemma and Theorem O
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Remark 19.5. Here is one situation where the two sets of preservers — of positivity on P,

for all n, and of total non-negativity on HTN,, for all n — differ: if we also allow zero entries,
as opposed to only positive entries as in the preceding corollary and Theorem In this
case, one shows that the preservers of HTN,, for all n are the functions f, such that f )
is absolutely monotonic, and hence a power series with non-negative Maclaurin coefficients;
and, such that 0 < f(0) < lim,_,g+ f(z), since the only Hankel TN matrices with a zero entry
arise as truncated moment matrices of measures adg. On the other hand, by considering the

2 11
rank-2 Hankel positive semidefinite matrix A:= [ 1 1 0], and considering the inequality
1 01

lim det flzA] >0,
g dee Tl 2

it follows that f is continuous at 07. (Note, A is not T'N.) In particular, the entrywise
preservers of positivity on (51 Pn([0,00)) are precisely the functions ;- cpz®, with all
Ck > 0.

Remark 19.6. As a reminder, we recall that if one instead tries to classify the entrywise
preservers of total non-negativity on all (possibly symmetric) TN matrices, then one obtains
only the constant or linear functions f(z) = ¢, cx for ¢,z > 0. See Theorem [12.11| above.

To complete the proof of the stronger Vasudeva theorem [19.1] as well as its corollary
(Corollary , it remains to show Bernstein’s theorem.

Proof of Bernstein’s theorem [19.3. First we claim that f(*)(a) exists and equals lim,_,,+ f*) ()
for all k& > 0. The latter limit here exists because f**1) > 0 on (a,b), so f*)(z) is non-
negative and non-decreasing on [a, b).

It suffices to show the claim for kK = 1. But here we compute:

ity = tim OEZIO 1oy,

where c(h) € [0, h] exists and goes to zero as h — 0, by the Mean Value Theorem. The
claim now follows from the previous paragraph. In particular, f*) exists and is continuous,
non-negative, and non-decreasing on [a, b).

Applying Taylor’s theorem, we have

Fa) = fla®) + Flat)a—a) -+ FO@H T @),
where R, is the Taylor remainder
Ru(z) = / ’ (x;'t)n FOHD () dt. (19.7)

By the assumption on f, we see that R, (z) > 0. Changing variables to t = a + y(z — a), the
limits for y change to 0,1, and we have

(x —a)"t!

Bn(z) = n!

1
/0 (1= )" F D (0 + y(z — a)) dy.

Since f("*2) > 0 on [a,b), if a < x < ¢ for some ¢ < b, then uniformly in [a,c] we have
0< ft)(a+y(z—a)) < Pt (a+y(c—a)). Therefore, using Taylor’s remainder formula
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once again, we obtain

x_anl 1
0 Balw) < Co8 [0yt gl - a)) dy
: 0
w_an+1
-l = gy
x —a)"t! " c—a)k
::&_5L1<ﬂ@— ﬂ“wﬂ(kﬂ))
k=0 '
x_an+1
Sf(c)((c_a))nH-

From this it follows that lim, . Ry(z) = 0 for all € [a,c). Since this holds for all
¢ € (a,b), the Taylor series of f converges to f on [a,b). In other words,

© (k) (ot
=T 00wk, welab)
k=0

Now if z € D(a,b—a), then clearly a+|z—a| < a+(b—a) = b. Choosing any ¢ € (a+|z—al,b),
we check that the Taylor series converges (absolutely) at z:

o oo
F®(at) F®(a™)
Z k! (z—a)* SZ k! |z —al*
k=0 k=0
oo
f®)(at)
< Z k! e~ a|k
k=0
= f(c) < o0.
This completes the proof of Bernstein’s theorem — and with it, the stronger form of Vasudeva’s
theorem. 0

Remark 19.8. We mention for completeness that Bernstein’s theorem admits an extension,
which was already shown by Bernstein in 1926 [43], and which says that even if f*) > 0 in
(a,b) only for k > 0 even, then f is necessarily analytic in (a,b). (In fact, Bernstein worked
only with divided differences — see Theorem ) This was further extended by Boas in
Duke Math. J., as follows:

Theorem 19.9 (Boas, 1941, [54]). Let {n, : p > 1} be an increasing sequence of positive
integers, such that nyi1/ny, is uniformly bounded. Let (a,b) C R and f : (a,b) — R be smooth.

If for each p > 1, the derivative ) does not change sign in (a,b), then f is analytic in
(a,b).

19.2. The stronger version of Schoenberg’s theorem. We now come to the main result
of this part of the text: the promised strengthening of Schoenberg’s theorem.

Theorem 19.10 (Schoenberg’s theorem, stronger version). Given f : R — R, the following
are equivalent:

(1) The entrywise map f[—] preserves positivity on P, (R) for all n > 1.

(2) The entrywise map f[—| preserves positivity on the Hankel matrices in P, (R) of rank
at most 3 for allm > 1.

(3) The function f equals a convergent power series y po cpx® for all x € R, with the
Maclaurin coefficients ¢, > 0 for all k > 0.
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See also Theorem [19.19 for two a priort weaker, yet equivalent, assertions.

Remark 19.11. Recall the two definitions of positive definite functions, from Definition [16.15]
and the discussion preceding Lemma The metric-space version for Euclidean and
Hilbert spheres was connected by Schoenberg to functions of the form f o cos, by requiring
that (f((x;,7k)));k>0 be positive semidefinite for all choices of vectors z; € S™! (for 2 <
r < o0). A third notion of positive definite kernels on Hilbert spaces #H arises from here,
and is important in machine learning among other areas: (see, e.g., [281 345, 352]): one
says f : R — R is positive definite on H if, for any choice of finitely many points z;,j > 0,
the matrix (f({x;,zk)));kr>0 is positive semidefinite. Since Gram matrix ranks are bounded
above by dim A, this shows that Rudin’s 1959 theorem [I6.3] classifies the positive definite
kernels/functions on H for any real Hilbert space of dimension > 3. The stronger Schoenberg
theorem [19.10] provides a second proof.

Returning to the stronger Schoenberg theorem[19.10] clearly (1) = (2), and (3) = (1)
by the Pdélya—Szegd observation Thus, the goal over the next few sections is to prove
(2) = (3). The proof is simplified when some of the arguments below are formulated
in the language of moment sequences and their preservers. We begin by defining these
and explaining the dictionary between moment sequences and positive-semidefinite Hankel
matrices, due to Hamburger (among others).

Definition 19.12. Recall that given an integer £ > 0 and a real measure pu supported on a
subset of R, u has kth moment equal to the following (if it converges):

sk(p) = /Rick dj.

Henceforth, we only work with admissible measures, i.e., such that p is non-negative on R
and si(u) converges for all k > 0. The moment sequence of such a measure p is the sequence

s(p) = (so(m), s1(p), - )-

We next define transforms of moment sequences: a function f : R — R acts entrywise, to
take moment sequences to real sequences:

fls(w)] = (f (s (1)) k>0- (19.13)

We are interested in examining when the transformed sequence ((19.13) is also the moment
sequence of an admissible measure supported on R. This connects to the question of positivity
preservers via the following classical result.

Theorem 19.14 (Hamburger, [162]). A real sequence (s;)r>0 is the moment sequence of an
admissible measure, if and only if the semi-infinite Hankel matriz H := (sj4); k>0 i positive
semidefinite.

Recall that the easy half of this result was proved early on, in Lemma

Thus, entrywise functions preserving positivity on Hankel matrices are intimately related
to moment sequence preservers. Also note that if a measure p has finite support in the
real line, then by examining for example , the Hankel moment matrix H,, (i.e., every
submatrix) has rank at most the size of the support set. From this and Hamburger’s theorem,
we deduce all but the last sentence of the following result:

Theorem 19.15. Theorem [19.10(2) implies the following a priori weaker statement:
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(4) For each measure
= ady + boy, +co_1, with ug € (0,1), a,b,c >0, (19.16)
there exists an admissible (non-negative) measure o = o, on R, such that f(sp(p)) =
Sk(U) Vk > 0.

In turn, this implies the still-weaker statement:
(5) For each measure p as in (19.16), with semi-infinite Hankel moment matriz H,,, the
matriz f[H,| is positive semidefinite.
In fact, these statements are equivalent to the assertions in Theorem |19.10.

Remark 19.17. In this text, we do not prove Hamburger’s theorem; but we have used it
to state Theorem [19.15(4) — i.e., in working with the admissible measure o = ;. A closer
look reveals that the use of Hamburger’s theorem and moment sequences is not required to
prove Schoenberg’s theorem, or even its stronger form in Theorem which is explained
in (proving) Theorem [19.15(5). Our workaround is explained in the next section (Section [20)),
via a “positivity-certificate trick” involving limiting sum-of-squares representations of poly-
nomials. That said, moment sequences help simplify the presentation of the proof, and hence
we will continue to use them in the proof, in later sections (Sections [21] and .

The next three sections are devoted to proving (5) = (3) (in Theorems|19.10{and [19.15)).
Here is an outline of the steps in the proof:

(1) All matrices A = <Z i) € P3((0,00)) with a > ¢ occur as leading principal subma-

trices of the Hankel moment matrices H,, where 1 is as in .

(2) Apply the stronger Horn—-Loewner theorem and Bernstein’s theorem to deduce
that f|(0.c0) = Dopeg cka® for some ¢y > 0.

(3) If f satisfies assertion (5) in Theorem then f is continuous on R.

(4) If, moreover, f is smooth and satisfies assertion (5) in Theorem then f is real
analytic.

(5) Real analytic functions satisfy the desired implication above: (5) = (3).

(6) Using mollifiers and complex analysis, one can go from smooth functions to continuous
functions.

Notice that Steps 3, 4-5, and 6 resemble the three steps in the proof of the stronger Horn—
Loewner theorem [I7.11
In this section, we complete the first two steps in the proof.

Z g) € P9((0,00)) with a > ¢. There are three
cases. First, if b = y/ac then use u = ady,, since 0 < b/a < 1.

Henceforth, assume 0 < b < y/ac < a. (In particular, 2b < 2y/ac < a + ¢.) The second
case is if b > ¢; we then find ¢t > 0, such that A — t1ayo is singular. This condition amounts
to a linear equation in ¢, with solution (to be verified by the reader)

Step 1: For the first step, suppose A = (

B ac — b? -0
a-+c—2b '
2
Thenc—t:M>O,soa—t,b—t>0andA: so(u)  s1() , where
a+c—2b s1(p)  s2(p)
—b? —b)? b—
MZL&—F (a ) Ob—c, with—ce(o,l).

a+c—2b a+c—2b ab a—>b
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The third case is when 0 < b < ¢ < /ac < a, with b < y/ac. Now find ¢ > 0, such that
the matrix Z;; lc)i_i € Py((0,00)) and is singular. To do so requires solving a linear
equation, which yields:
_}2 2 2
POl Gl 1) . ) SO G| Uk}
a+c+2b a+c+2b a+c+2b a+c+2b
and all of these are strictly positive. So a, b, c > 0 are the first three moments of
ac — b? (a+b)? b+c
=———0_ 1+ ———0bic, ith —— € (0,1].
K a+c+2b 1+a+c+2b2i+b A a+b (0,1]

Step 2: Observe that the hypotheses of the stronger Horn—Loewner theorem m (for all
n) can be rephrased as saying that f[—| sends the rank-1 matrices in Py(I) and the Toeplitz
matrices in Py(I) to P2(R), and that assertion (4) in Theorem holds for all measures
ady + bdy,, where ug € (0,1) is fixed and a,b > 0. By Step 1 and the hypotheses, we can
apply the stronger Horn-Loewner theorem in our setting for each n > 3, hence f|( ) is
smooth and absolutely monotonic. As in the proof of the stronger Vasudeva theorem [19.1

extend f continuously to the origin, say to a function f, and apply Bernstein’s theorem [19.3
It follows that f|g ) is @ power series with non-negative Maclaurin coefficients, and Step 2

follows by restricting to f(0,00) = fl(0,50)- O

Remark 19.18. From Step 2, it follows that assertions (1) and (2) in the stronger Vasudeva
theorem can be further weakened, to deal only with the rank-1 matrices in Py(I), the
Toeplitz matrices in Py(7), and with the (Hankel 7N moment matrices of ) measures ad; +bd,,,
for a single fixed ug € (0,1) and all a,b > 0 with a +b > 0.
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20. PROOF OF STRONGER SCHOENBERG THEOREM: I. CONTINUITY. THE
POSITIVITY-CERTIFICATE TRICK.

We continue with the proof of the stronger Schoenberg theorem [19.10} Previously, we have
shown the first two of the six steps in the proof (these are listed following Theorem [19.15)).

Step 3: The next step is to show that if assertion (4) (or (5)) in Theorem [19.15| holds, then
f is continuous on R. Notice from Steps 1 and 2 of the proof that f is absolutely monotonic,
hence continuous, on (0, co).

20.1. Integration trick and proof of continuity. At this stage, we transition to moment
sequence preservers, via Hamburger’s theorem The following “integration trick” will
be used repeatedly in what follows: Suppose p(t) is a real polynomial that takes non-negative
values for t € [—1,1]. Write p(t) = > 5, axt® (with only finitely many aj non-zero, but not
necessarily all positive, note). If ;1 > 0 is an admissible measure — in particular, non-negative
by Definition — then by assumption and Hamburger’s theorem we have f(sg(p)) =
si(ou) Yk > 0, for some admissible measure o, > 0 on R, where f : R — R satisfies
Theorem [19.15{(4) or (5). Now assuming o, is supported on [—1,1] (which is not a priori
clear from the hypotheses), we have

1 0 1 0 00
0< [ ptydo,=3" [ atdo, =3 ausilo) = 3 e flsuln). (20.1)
-1 k=071 k=0 k=0

Example 20.2. Suppose p(t) = 1 —t% on [~1,1], for some integer d > 1. Then f(so(p)) —
f(sq(p)) > 0. As a further special case, if p = ad; + bdy, + cd_1 as in Theorem [19.15(4), if
o, is supported on [—1,1] then this would imply

fla+b+c)> fla+bud +c(—1)%), Yug € (0,1), a,b,c>0.

It is not immediately clear how the preceding inequalities can be obtained by considering
only the preservation of matrix positivity by f[—] (or more involved such assertions). As we
will explain shortly (see Section , this has connections to real algebraic geometry; in
particular, to a well-known program of Hilbert.

Returning to the proof of continuity in Schoenberg’s theorem, we suppose without fur-
ther mention that f satisfies only Theorem [19.15(5) — and hence, is absolutely monotonic
on (0,00). We begin by showing two preliminary lemmas, which are used in the proof of
continuity.

Lemma 20.3. f is bounded on compact subsets of R.

Proof. If K C R is compact, say K C [-M, M] for some M > 0, then note that fl
is non-decreasing, hence 0 < |f(z)| < f(M), Yz € (0,M]. Now apply f[—] to the matrix
B = <_wx —;E)’ arising from p = xd_1, with 2 > 0. The positivity of f[B] implies
|f(—z)] < f(x) < f(M). Similarly considering u = %61 + %5,1 shows that |f(0)] <
f(M). O

Now say p = ady + béy, + cd_1 as above, or more generally, 1 is any non-negative measure
supported in [—1, 1]. It is easily seen that its moments s;(x), & > 0 are all uniformly bounded
in absolute value — in fact, by the mass so(¢). Our next lemma shows that the converse is
also true.

Lemma 20.4. Given an admissible measure o on R, the following are equivalent:



20. Proof of stronger Schoenberg Theorem: I. Continuity.

128 The positivity-certificate trick.
(1) The moments of o are all uniformly bounded in absolule value.

(2) The measure o is supported on [—1,1].

Proof. As discussed above, (2) = (1). To show the converse, suppose (1) holds but (2)
fails. Then o has positive mass in (1, 00) U (—oo, —1). We obtain a contradiction in the first
case; the proof is similar in the other case. Thus, suppose o has positive mass on

(Loo)=[1+ 1,14+ HUl+3,1+PU- U+ 77, 1+5)U---,

where 1/0 := co. Then o(1,,) > 0 for some n > 0, where we denote I, :== [1 + %H’ 1+ 1) for
convenience. But now we obtain the desired contradiction:

1+ 14+
sor(0) = /Rx% do > /1 22 o > /1 (14 =10)F do > (L) (1 + L1,

+at o
and this is not uniformly bounded over all & > 0. (|

With these basic lemmas in hand, we have:

Proof of Step 3 for the stronger Schoenberg theorem: continuity. Suppose f : R — R satis-
fies Theorem 4). (We explain in Section how to weaken the hypotheses to The-
orem (5)) Given a measure p = ady + béy, + cé_1 for ug > 0 and a,b,c > 0, note
that |sg(u)| < so(n) = a+ b+ c. Hence, by Lemma the moments s (o) are uniformly
bounded over all k. By Lemma it follows that o, must be supported in [—1,1]. In
particular, we can apply the integration trick above.

We use this trick to prove continuity at —3 for 8 > 0. (By Step 2, this proves the continuity
of f on R.) Thus, fix 8 >0, up € (0,1), and b > 0, and define

ni= (6 + buo)(Ll + bduO.

Let py1(t) := (1 £ ¢)(1 — t?); note that these polynomials are non-negative on [—1,1]. By
the integration trick (20.1]),

1
/ p+,1(t) do,(t) >0

-1

= so(oy) — s2(0p) > £(s1(0p) — s3(op))

= f(so(p) — f(s2(n)) > [f(s1(1)) — f(s3(w))]

= f(B+b(1+uo)) — f(B+bluo +uj)) > |f(=B) — f(—=B — buo(1 — ug))|.

Now let b — 0F. Then the left-hand side goes to zero by Step 2 (in the previous section),
hence so does the right-hand side. This implies f is left continuous at —j for all 5 > 0. To
show f is right continuous at —f, use p’ := (8 + bu%)é,l + bdy, instead of p. (|

Remark 20.5. Akin to its use in proving the continuity of f, the integration trick ([20.1))
can also be used to prove the boundedness of f on compact sets [—M, M], as in Lemma
To do so, work with the polynomials p4 o(t) := 1 £ ¢, which are also non-negative on [—1, 1].

Given 0 <z < M, applying (20.1) to u = Md, 5 and p’ = 01 shows Lemma

20.2. The integration trick explained: semi-algebraic geometry. In Section [20.1] we
used the following integration trick: if o > 0 is a real measure supported in [—1,1] with all
moments finite, i.e., the Hankel moment matrix Hy := (s;4£(0))7%—¢ i positive semidefinite;
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and if a polynomial p(f) = ) ,~qaxt” 1s non-negative on [—1, 1], then

o

1 1 o0
0< / p(t) do = Z/ apt® do = Zaksk(a).
! k=0" "1 k=0

This integration trick is at the heart of the link between moment problems and (Hankel)
matrix positivity. This trick is now explained; namely, how this integral inequality can be
understood purely in terms of the positive semidefiniteness of H,. This also has connections
to real algebraic geometry and Hilbert’s seventeenth problem.

The basic point is as follows: if a d-variate polynomial (in one or several variables) is
a sum of squares of real polynomials — also called a sum-of-squares polynomial — then it
is automatically non-negative on R?. However, Hilbert showed in his 1888 paper [I73] in
Math. Ann. — following the doctoral dissertation of Hermann Minkowski — that for d > 2,
there exist polynomials that are not sums of squares, yet are non-negative on R?. The first
such example was constructed in 1967, and is the well-known Motzkin polynomial M (z,y) =
ohy? 4+ 22yt — 3229% + 1 [267] Hﬂﬁ Such phenomena are also studied on polytopes (results of
Farkas, Pélya, and Handelman), and on more general “semi-algebraic sets” including compact
ones (results of Stengle, Schmiidgen, Putinar, and Vasilescu, among others).

Now given, say, a one-variable polynomial that is non-negative on a semi-algebraic set such
as [—1, 1], one would like a positivity certificate for it, meaning a sum-of-squares representation
mentioned above, or more generally, a limiting sum-of-squares representation. To make this
precise, define the L'-norm, or the Wiener norm, of a polynomial p(t) = > k>0 apt® as:

()l o= Y lal. (20.6)

k>0

One would thus like to find a sequence p,, of sum-of-squares polynomials, such that ||p,(t)—
p(t)||1,+ — 0 as n — co. Two simple cases are if there exist polynomials g, (t), such that (1)

Pa(t) = qn(t)* Y or (2) pa(t) = Y5_; qr(t)? n.

2Indeed7 as explained, e.g., in [309], by the AM-GM inequality we have M(z,y) > 2t5 — 3t> + 1 =
(2t —t — 1)(t — 1), where t = |zy|. Now either ¢ € [0,1], so both factors on the right are non-positive;
or t > 1, so both factors are positive. Next, suppose M(z,y) = Zj fi(z,3)? is a sum of squares; since
M(z,0) = M(0,y) = 1, it follows that f;(x,0), f;(0,y) are constants, and hence the f; are of the form
filz,y) = aj + bjzy + c;z’y + d;zy®. Now equating the coefficient of z2y? in M = > f7 gives: —3 = > b2,
a contradiction.

3Hilbert then showed in [I74] that every non-negative polynomial on R? is a sum of four squares of rational

e?y? (2?42 —2)° (@ 4y  + D + (2" —y?)?

@222 . For more on this problem,

functions; e.g., the Motzkin polynomial equals
see, e.g., [309].

4The reader may recall the name of Motzkin from Theorem in an entirely different context. As
a historical digression, we mention several relatively “disconnected” areas of mathematics, in all of which,
remarkably, Motzkin made fundamental contributions. His thesis [263] was a landmark work in the area of
linear inequalities/linear programming, introducing in particular the Motzkin transposition theorem and the
Fourier—Motzkin Elimination (FME) algorithm. Additionally, he proved in the same thesis the fundamental
fact in geometric combinatorics that, a convex polyhedral set is the Minkowski sum of a compact (convex)
polytope and a convex polyhedral cone. Third, in his thesis Motzkin also characterized the matrices that
satisfy the variation diminishing property; see Theorem [3.22

Then in [264], Motzkin studied what is now called the Motzkin number in combinatorics: this is the number
of different ways to draw non-intersecting chords between n marked points on a circle. In [265], he provided
the first example of a principal ideal domain that is not a Euclidean domain: Z[(1 + +/—19)/2]. In [266],
he provided an ideal-free short proof of Hilbert’s Nullstellensatz, together with degree bounds. Motzkin also
provided in [267] the aforementioned polynomial M (z,y) in connection to Hilbert’s seventeenth problem.
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How does this connect to matrix positivity? It turns out that in our given situation, what

is required is precisely a positivity certificate. For example, say p(t) = (3—t)? = 9—6t+t> > 0
on R. Then

Lo _ s0(0) s1(0)
/_1p do = 9s0(c) — 651(0) + s3(0) = (3,—1) <S?(U) 8;(0)> (3, 1)7
= (36’0 — 61)THJ(3€0 — 61),

where ey = (1,0,0,...)T,e; = (0,1,0,0,...)T,... comprise the standard basis for RN},
and H, is the semi-infinite, positive semidefinite Hankel moment matrix for . From this
calculation, it follows that [ _11 p do is non-negative — and this holds more generally, whenever
there exists a (limiting) sum-of-squares representation for p.

We now prove the existence of such a limiting sum-of-squares representation in two different
ways for general polynomials p(¢) that are non-negative on [—1, 1], and in a constructive third
way for the special family of polynomials

pra(t):=1£)1—-)",  n>0.

(20.7)

(Note, we used p+o and p+; to prove the local boundedness and continuity of f on R,
respectively; and the next section uses p4 , to prove that smoothness implies real analyticity.)

Proof 1: We claim more generally that for any dimension d > 1, every polynomial that is
non-negative on [—1, 1]d has a limiting sum-of-squares representation. This is proved at the
end of the 1976 paper [39] of Berg, Christensen, and Ressel in Math. Ann.

Proof 2: Here is a constructive proof of a positivity certificate for the polynomials p4 ,,(t) =
(14+¢)(1 -3, n > 0. (It turns out, we only need to work with these in order to show the
stronger Schoenberg theorem.) First, notice that

p+o(t) = (1+1), p—o(t)=(1-1),
pra(t) = (L—t)(1+1)% pa(t) = (L+1)(1—1)% (20.8)
pra(t) = (L+1)(1 1) p-2(t) = (1—t)(1 —1%)?,

and so on. Thus, if we show that p4 o(t) = 1 £t are limits of sum-of-squares polynomials,
then so are p4 ,(t) for all n > 0 (where limits are taken in the Wiener norm). But we have

1 1 t2
—(1+t)=-+t+—
1) =5 +t+ 5,
1 I
it t%)? 1Tt (20.9)
1 R A
(1t = - =+ -
8( ) 8 4 + 8’
and so on. Adding the first k of these equations shows that the partial sum
1 2" 12" —1
P (t) = (L) Et+ o = (140 + ——

is a sum-of-squares polynomial, for every k > 1. This provides a positivity certificate for
1+t, as desired. It also implies the sought-for interpretation of the integration trick in Step
3 above:

1 1 19 1 ok 1
‘/ [pf(t)—(l:i:t)] do §/ \p,f(t)—(l:l:tﬂ dag/ 2kd0—|—/ I;—kd(ng—k-QsO(a),
-1 -1 -1

-1
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which goes to 0 as £ — oo. Hence, using the notation following (20.7]),

—1 k—o00 -1

! ! 1 = 1
/ (1£t) do = lim pf(t) do = i(eozi:el)THU(eO:i:el)—i—Z g(eo—emq)THJ(eo—ey;l),
j=2

and this is non-negative because H, is positive semidefinite.

Proof 3: If we only want to interpret the integration trick in terms of the positivity
of the Hankel moment matrix H,, then the restriction of using the Wiener norm || - ||; 4 can
be relaxed, and one can work instead with the weaker notion of the uniform norm. With
this metric, we claim more generally that every continuous function f(ti,...,tq) that is non-
negative on a compact subset K C R? has a limiting sum-of-squares representation on K.
(Specialized to d = 1 and K = [—1, 1], this proves the integration trick.)

To see the claim, observe that \/f(t1,...,tq) : K — [0,00) is continuous, so by the Stone—
Weierstrass theorem, there exists a polynomial sequence g, converging uniformly to +/f in
L>®(K). Thus, ¢2 — f in L%°(K), as desired. Explicitly, if d = 1 and g, (t) = 332 cnrtF,
then define the semi-infinite vectors

uy = (Cpo,Cnls--- )T, n>1.

Now compute for any admissible measure o supported in K:

/ f do= lim ¢2(t) do = lim ul Hyu, >0, (20.10)
K K n—oo

n—oo

which is a positivity certificate for all continuous, non-negative functions on compact K C R.
This reasoning extends to all dimensions d > 1 and compact K C R%, by Lemma m

20.3. From the integration trick to the positivity-certificate trick. Proof 2 in Sec-
tion [20.2] is the key to understanding why Hamburger’s theorem is not required to prove the
stronger Schoenberg theorem (namely, (5) = (3)). Specifically, we only need to use
the following fact:

For each fized n > 0, if >, art® is the expansion of py,(t) = (1 £t)(1 — )" > 0 on
(~1,1], then 3 af (su(n)) = 0.

This was derived above using the integration trick via the auxiliary admissible
measure o, which exists by Theorem (4) We now explain a workaround via a related
“positivity-certificate trick” that requires using only that f[H,] is positive semidefinite, hence
allowing us to work with the weaker hypothesis, Theorem (5) instead. In particular,
one can avoid using Hamburger’s theorem and requiring the existence of o,.

The positivity-certificate trick is as follows:

Theorem 20.11. Fiz a semi-infinite real Hankel matric H = (fj1r)jr>0 that is positive
semidefinite (i.e., its principal minors are positive semidefinite), with all entries f; uniformly
bounded. If a polynomial p(t) = ijo a;t’ has a positivity certificate — i.e., a Wiener-limiting
sum-of-squares representation — then Zj>0 a;f; > 0.

According to Proof 2 in Section m (see the discussion around ), Theorem @
applies to p = p+,, for all n > 0 and H = f[H,], where f,; are as in Theorem [19.15(5).
This implies the continuity of the entrywise positivity preserver f in the above discussion,
and also suffices to complete the proof in the next two sections, of the stronger Schoenberg

theorem (Theorem [19.10)).
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Proof of Theorem|20.11 As an illustrative special case, if p(Z) is the square of a polynomial

q(t) = ijo cjt’, then as in (20.7)),

T T
Zajff: chckf]urk:u Hu >0, where u=(cg,c1,...)".
Jj=0 J,k>0

By additivity, the result therefore also holds for a sum of squares of polynomials. The subtlety
in working with a limiting sum-of-squares representation is that the degrees of each sum-of-
squares polynomial in the limiting sequence need not be uniformly bounded. Nevertheless,
suppose in the Wiener norm that

p(t) = lim g,(t), where gu(t) =)  gni(t)?

n—o0

is a sum of squares of polynomials for each n.
Define the linear functional Wy (given the Hankel matrix H) that sends a polynomial
p(t) = > ;>0 a5t to the scalar Wy (p) := Zj>0 a;fj. Now define the vectors u, ; via

QHk Zq[ﬂ t] 7 Upk = (qLO]]@qS]ka)T
320

Similarly, define ¢,,(t) = 3,5 qy]tj. Then for all n > 1,

Ky
qufj =Vpulq Z\IJH ) Zuz’kHumk > 0.

>0 k=0
Finally, taking the limit as n — oo, and writing p(t) = >, a;jt/, we claim that
AT 4] £,
>_aify = lim > gl f; > 0.
>0 >0

Indeed, the (first) equality holds because if M > sup; |f;| is a uniform (and finite) upper
bound, then

Sdl =Y aifi| < la - a4l 1£i] < Mllgn — pllss

J=0 J=0 j=0
and this goes to zero as n — oo. O
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21. PROOF OF STRONGER SCHOENBERG THEOREM: II. SMOOTHNESS IMPLIES REAL
ANALYTICITY.

Having explained the positivity-certificate trick, we return to the proof of the stronger
Schoenberg theorem. The present goal is to prove that if a smooth function f : R — R
satisfies assertion (5) in Theorem[19.15] then f is real analytic and hence satisfies assertion (3)
in Theorem (See Steps (4) and (5) in the list following Remark [19.17}) To show these
results, we first discuss the basic properties of real analytic functions that are required in the
proofs.

21.1. Preliminaries on real analytic functions.

Definition 21.1. Suppose I C R is an open interval, and f : I — R is smooth, denoted
f € C=(I). Recall that the Taylor series of f at a point x € I is

() )
TP =3 L@ _ay, e,

]
PR

if this sum converges at y. Notice that this sum is not equal to f(y) in general.
Next, we say that f is real analytic on I, denoted f € C¥(I),if f € C*°(I) and for all z €
there exists d, > 0, such that the Taylor series of f at x converges to f on (x — dz, x + 65).

Clearly, real analytic functions on I form a real vector space. Less obvious is the following
useful property, which is stated without proof:
Proposition 21.2. Real analytic functions are closed under composition. More precisely, if
I L> J LR, and f, g are real analytic on their domains, then so is go f on I.

We also develop a few preliminary results on real analytic functions, which are needed to

prove the stronger Schoenberg theorem. We begin with an example of real analytic functions,
which depicts what happens in our setting.

Lemma 21.3. Suppose I = (0,R) for 0 < R < oo, and f(z) = Y oy ckx® on I, where
ck > 0Vk. Then f € C¥(I), and (Tf)q(x) converges whenever a,x € I are such that
|t —al <R —a.

In particular, if R = oo and a > 0, then (T f),(z) — f(z) on the domain of f.

Proof. Note that Y72 cxa® converges on (—R, R). Thus, we denote this extension to (—R, R)
also by f, and show more generally that (Tf),(z) converges to f(z) for |z —a| < R — a,
a € [0, R) (whenever f is defined at x). Indeed,

ch v - a)+ a)f ZZ() — aiabd,

k=0 5=0
Notice that this double sum is absolutely convergent, since

ZZ< >Ck|$—a|J M= fla+ |z —al) < oo,

k=0 j=0

Hence, we can rearrange the double sum (e.g., by Fubini’s theorem), to obtain

fw) =3 (Z ( “)cmﬂ-am> w0y = T oy =

7=0 \m=0 J
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using standard properties of power series. In particular, f is real analytic on I. ]
We also require the following well-known result on zeros of real analytic functions:

Theorem 21.4 (Identity theorem). Suppose I C R is an open interval and f,g: I — R are
real analytic. If the subset of I where f = g has an accumulation point in I, then f =g on

I.
In other words, the zeros of a non-zero (real) analytic function form a discrete set.

Proof. Without loss of generality, we may suppose g = 0. Suppose ¢ € [ is an accumulation
point of the zero set of f. Expand f locally at ¢ into its Taylor series, and claim that
f%)(¢) = 0 for all k > 0. Indeed, suppose for contradiction that

fOe) == () =0# fPe)
for some k£ > 0. Then,

f@) W)
@—oF = + o(x — ¢),
so f is non-zero close to ¢, and this contradicts the hypotheses. Thus, f(k)(c) =0Vk >0,
which in turn implies that f = 0 on an open interval around c.
Now consider the set Iy := {z € I : f*)(z) = 0 Vk > 0}. Clearly Iy is a closed subset of I.
Moreover, if ¢y € Iy then f = (Tf)., = 0 near ¢y, hence the same happens at any point near
co as well. Thus, Iy is also an open subset of I. Since [ is connected, Ip = I, and f=0. O

21.2. Proof of the stronger Schoenberg theorem for smooth functions. We con-
tinue with the proof of the stronger Schoenberg theorem ((5) = (2) in Theorems [19.10

and [19.15)).

Akin to the proof of the stronger Horn—Loewner theorem [17.1] we have shown that any
function satisfying the hypotheses in Theorem 5) must be continuous. Hence, by the
first two steps in the proof — listed after Remark — we have that f(z) = Y70, cxz® on
[0, 00), with all ¢ > 0.

Again, similar to the proof of the stronger Horn-Loewner theorem we next prove the
stronger Schoenberg theorem for smooth functions. The key step here is:

Theorem 21.5. Let f € C*°(R) be as in the preceding discussion, and define the family of
smooth functions

Hy(x) = f(a+€%), a,z € R.
Then H, is real analytic on R, for all a € R.
For ease of exposition, we break the proof into several steps.
Lemma 21.6. For alln > 1, we have
H(M(2) = an1f'(a + e")e” + anaf(a+ €)™ + -+ annf™(a+ e”)e,
where an; 1s a positive integer for all 1 < j <n.

Proof and remarks. One shows by induction on n > 1 (with the base case of n = 1 immediate)
that the array a, ; forms a weighted variant of Pascal’s triangle, in that

1, if j =1,n,
an,; = . .
J p—1,j—1+ Jan—1, otherwise.



21. Proof of stronger Schoenberg Theorem: II. Smoothness implies real analyticity. 135

This concludes the proof. Notice that some of the entries of the array a, ; are easy to compute
inductively:

n
Qn,1 = 1, Gp2 = on—t 1, Upn—1 = <2>7 ann = 1.
An interesting combinatorial exercise may be to seek a closed-form expression and a combi-
natorial interpretation for the other entries. O
Lemma 21.7. We have the following bound:
[H{(z)| < HD(),  Va,z €R, nez?. (21.8)

Proof. By Lemma [21.6| we have that H|(:|) (x) > 0 for all a,z,n as in (21.8)), so it remains to

show the inequality. For this, we assume a < 0, and use the positivity-certificate trick from
the previous section — i.e., Theorem applied to the polynomials

pan(t) = (1 £1)(1 -3, n>0

and the admissible measure

= |a|d_1 + €"0p—n, a,h >0, z e R.

Notice that p+, > 0 on [—1,1]. Hence, by Theorem [20.11| - and akin to the calculation in
the previous section to prove continuity — we get

S (1) 0t ey 2 5 (1) gt ke

k=0 k=0
Dividing both sides by (2h)" and sending h — 0%, we obtain
H () > |[H (x)]. 0

Remark 21.9. In this computation, we do not need to use the measures p = |a|d_1 + "0 —n
for all h > 0. It suffices to fix a single ug € (0, 1) and consider the sequence hy, := —log(ug)/n,

so we work with p = |a|d_1 + €0 1/n (supported at 1,u(1]/n) fora >0,z € Ron > 1.
0

Lemma 21.10. For all integers n > 0, the assignment (a,z) — H((Zn) (z) is non-decreasing
i both a > 0 and z € R. In particular if a > 0, then H, is absolutely monotonic on R, and
its Taylor series at b € R converges absolutely at all x € R.

Proof. The monotonicity in a > 0 follows from the absolute monotonicity of f|y ) men-
tioned at the start of Section The monotonicity in x for a fixed a > 0 follows because
ngnﬂ)(x) > 0 by Lemma w

To prove the (absolute) convergence of (T'H, ), at € R, notice that

(T'H, I—ZH

We claim that this ﬁnal (Taylor) series is bounded above by H,(b+ |x — b|), which would
complete the proof. Indeed, by Taylor’s theorem, the nth Taylor remainder term for H, (b +

|x — b|) can be written as (see, e.g., (19.7))
b

<ZH |“’”_b‘ = (THy)y(b + |z — b]).

n!
which is non-negative, see above. Taking n — oo shows the claim and completes the proof. [
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Now we can prove the real analyticity of Hy:

Proof of Theorem[21.5 Fix scalars a,0 > 0. We show that for all b € [—a,a] and = € R,
the nth remainder term for the Taylor series T'H; around the point z converges to zero as
n — 0o, uniformly near . More precisely, define
Un(z) = sup [Rn((THp)z)(y)l
yE[CE—é,CE-}—(g]

We then claim ¥, (z) — 0 as n — oo for all . This will imply that at all x € R, (T Hp),
converges to Hp on a neighborhood of radius §. Moreover, this holds for all § > 0 and at all
b € [—a,a] for all a > 0.

Thus, it remains to prove for each z € R that ¥, (z) — 0 as n — co. By the above results,
we have:

Hy () < Hy () < B (y) < B (@ +0), W€ [~a,a], y € [0 — 6,2 +0], n ez,

Using a standard estimate for the Taylor remainder, for all b,y,n as above, it follows that
‘y _ m‘n+1 5n+1

(n+1)! (n+ 1)
But the right-hand term goes to zero by the calculation in Lemma [21.10} since

|Ra(THy)2)(y)| < HID (@ +6) < H{" V(@ + 6)

o 5n+1
0< Y H™V(z+96)

n=-—1

] < Hy(x+640) = fla+e*P) < .

Hence, we obtain

lim sup  |R,((THp)z)(y)| — 0, VreR, 6 >0, be[—a,a], a>0.
N=00 yelx—6,3+6)

From above, this shows that the Taylor series of Hj converges locally to Hy at all z € R, for
all b as desired. (In fact, the “local” neighborhood of convergence around z is all of R.) O
With the above analysis in hand, we can prove Steps 4 and 5 of the proof of the stronger
Schoenberg theorem (see the list after Remark :
Suppose f: R — R satisfies assertion (5) of Theorem[19.15
(4) If f is smooth on R, then f is real analytic on R.
(5) If f is real analytic on R, then f(z) =Y po,ckx® on R, with ¢, > 0 Vk.

Proof of Step 4 for the stronger Schoenberg theorem. Given x € R, we want to show that the
Taylor series (T'f), converges to f locally around . Choose a > |z| and define

La(y) :=log(a +y) = log(a) +log(1 +y/a), y € (—a,a).
This is real analytic on (—a,a) (e.g., akin to Lemma [21.3)). Hence, by Proposition and
Theorem the composite

L, H_q
y = log(a +y) — H_o(La(y)) = f(=a +exp(log(a +y))) = f(y)
is also real analytic on (—a,a), so around x € R. O

Proof of Step 5 for the stronger Schoenberg theorem. By Step 4, f is real analytic on R; and,
by Steps 1 and 2 f(z) = Y pogckx® on (0,00), with ¢ > 0 Vk. Let g(z) := > 50, cxa® €
C¥(R). Since f =g on (0,00), it follows by the Identity Theorem that f=gonR. O
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22. PROOF OF STRONGER SCHOENBERG THEOREM: III. COMPLEX ANALYSIS. F'URTHER
REMARKS.

We can now complete the proof of the final Step 6 (listed after Remark [19.17) of the
stronger Schoenberg theorem. Namely, suppose f : R — R is such that for each measure

= ady + bdy, +co_1, with ug € (0,1), a,b,ec >0,

with semi-infinite Hankel moment matrix H,,, the matrix f[H,] is positive semidefinite.
Under these assumptions, we have previously shown (in Steps 1, 2; 3; 4, 5 respectively):

e There exist real scalars cg, c1, -+ > 0 such that f(z) =Y 5o, cxa” for all z € (0, 00).
e f is continuous on R.
e If f is smooth, then f(z) = >3 cxz” on R.
We now complete the proof by showing that one can pass from smooth functions to con-
tinuous functions. The tools we will use are the “three Ms”: Montel, Morera, and Mollifiers.
We first discuss some basic results in complex analysis that are required.

22.1. Tools from complex analysis.

Definition 22.1. Suppose D C C is open and f : D — C is a continuous function.
(1) (Holomorphic.) A function f is holomorphic at a point z € D if the limit lim,,_, . %
exists. A function f is holomorphic on D if it is holomorphic at every point of D.

(2) (Complex analytic.) f is said to be complex analytic around ¢ € D if f can be
expressed as a power series locally around ¢, which converges to f(z) for every z
sufficiently close to c. Similarly, f is analytic on D if it is so at every point of D.

(3) (Normal.) Let F be a family of holomorphic functions : D — C. Then F is normal
if given any compact K C D and a sequence {f, : n > 1} C F, there exists a
subsequence f,, and a function f : K — C, such that f,, — f uniformly on K.

Remark 22.2. Note that it is not specified that the limit function f be holomorphic. How-
ever, this will turn out to be the case, as we shall see presently.

We use without proof the following results (and Cauchy’s theorem, which we do not state):

Theorem 22.3. Let D C C be an open subset.
1) A function f : D — C is holomorphic if and only if f is complex analytic.
4 Y 14 Y
(2) (Montel.) Let F be a family of holomorphic functions on D. If F is uniformly
bounded on D, then F is normal on D.
3) (Morera.) Suppose that for every closed oriented piecewise C* curve v in D, we have
( pp Y p gt

f,y f dz=0. Then f is holomorphic on D.

22.2. Proof of the stronger Schoenberg theorem: conclusion. Let f : R — R be as
described above; in particular, f is continuous on R and absolutely monotonic on (0, c0).
As discussed in the proof of the stronger Horn—-Loewner theorem [17.1, we mollify f with

the family ¢5(u) = ¢(u/d) for 6 > 0 as in Proposition As shown in ([18.8]), fs satisfies
assertion (5) in Theorem [19.15] so (e.g., by the last bulleted point above, and Steps 4 and 5)

o
fs(x) = chﬁmk Vo eR, withe¢,s >0Vk>0,0>0.
k=0
Since f5 is a power series with infinite radius of convergence, it extends analytically to an
entire function on C (see, e.g., Lemma . Let us call this fs as well; now define

F={fin:n=>1}
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We claim that for any 0 < r < oo, the family F is uniformly bounded on the complex disk
D(0,r). Indeed, since f5s — f uniformly on [0, r] by Proposition [18.5, we have that |f; /, — f]
is uniformly bounded over all n and on [0, 7], say by M, > 0. Now if z € D(0,r), then

oo
i) <3 camlalt = fiynll2l) < M, + £(|2]) < M, + £(r) < oo,
k=0
and this bound (uniform over z € D(0,r)) does not depend on n.

By Montel’s theorem, the previous claim implies that F is a normal family on D(0,r) for
each r > 0. Hence, on the closed disk D(0, ), there is a subsequence f; /n; With ny increasing,
which converges uniformly to some (continuous) g = g,. Since f; /n; is holomorphic for all
I > 1, by Cauchy’s theorem we obtain for every closed oriented piecewise C! curve vy C D(0,7)

Jf gr dz = é lim fi,, d= = Jim 75 Fipmy 2 =0,

It follows by Morera’s theorem that g, is holomorphic, hence analytic, on D(0,r). Moreover,
gr = f on (—r,7) by the properties of mollifiers; thus, f is real analytic on (—r,r) for every
r > 0. Now apply the Identity Theorem and use the power series for f on (0,00). O

22.3. Concluding remarks and variations. We conclude with several generalizations of
the above results. First, the results by Horn—Loewner, Vasudeva, and Schoenberg (more
precisely, their stronger versions) that were shown in this part of the text, together with
the proofs given above, can be refined to versions with bounded domains (0, p) or (—p, p) for
0 < p < 0. The small change is to use admissible measures with bounded mass

= ady + bdy, + cd_1, where uy € (0,1), a,b,c >0

as above, but moreover, one now imposes the condition that so(u) =a+b+c < p.

Second, all of these results, including for bounded domains (i.e., masses of the underlying
measures), can be extended to studying functions of several variables. In this case, given a
domain I C R and integers m,n > 1, a function f : I"™ — R acts entrywise on an m-tuple of

n X n matrices Ay = (a(l)), A = (ag.zl)) in I"™*™, via

J
1 m)\\n
FlAL - An] = (f(al), - al)) . (22.4)
One can now ask the multivariable version of the same question as above:

“Which functions applied entrywise to m-tuples of positive matrices preserve positivity?”

Observe that the coordinate functions f(z1,...,xn) := x; work for all 1 <[ < m. Hence,
by the Schur product theorem and the Pélya—Szeg6 observation (Lemma since P, is a
closed convex cone for all n > 1), every convergent multi-power series of the form

f(x):= Z X", with ¢p > 0Vn >0 (22.5)
n>0

preserves positivity in all dimensions (where x® := z]* - - -z etc.). Akin to the Schoenberg—
Rudin theorem in the one-variable case, it was shown by FitzGerald, Micchelli, and Pinkus
in Linear Algebra Appl. (1995) that the functions are the only such preservers.

One can ask if the same result holds when one restricts the test set to m-tuples of Hankel
matrices of rank at most 3, as in the treatment above. While this does turn out to yield the
same classification, the proofs get more involved and now require multivariable machinery.
For these stronger multivariate results, we refer the reader to the paper “Moment-sequence
transforms” by Belton, Guillot, Khare, and Putinar in J. Eur. Math. Soc.
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23. APPENDIX A: THE BOAS—WIDDER THEOREM ON FUNCTIONS WITH POSITIVE
DIFFERENCES.

In this Appendix, we reproduce the complete proof of the theorem by Boas and Widder
on functions with non-negative forward differences (Duke Math. J., 1940). This result was
stated as Theorem (2), and we again write its statement here for convenience. In it
and throughout this Appendix, recall from just before Theorem that given an interval
I C R and a function f : I — R, the kth order forward differences of f with step size h > 0
are defined as follows:

k
(AUF)(@) = f(),  (ALF)(@) == (AE ) (e th)—(AET (@) = 3 ("") ()R f (),

: J
7=0
whenever k > 0 and x,x + kh € I. It is easily seen that these difference operators commute:
AT (AL f(z)) = AL(AS f(2)), whenever z,x +md + ne € I,

and so, we will omit parentheses and possibly permute these operators below, without further
reference. Now we (re)state the theorem of interest:

Theorem 23.1 (Boas and Widder). Suppose k > 2 is an integer, I C R is an open interval,
bounded or not, and f : I — R is a function that satisfies the following condition:

(AF £)(z) > 0 whenever h > 0 and z,x + kh € 1, and f is continuous on I.  (Hy)

(In other words, f is continuous and has all forward differences of order k non-negative on I.)
Then on all of I, the function f*=2) exzists, is continuous and convez, and has non-decreasing
left- and right-hand derivatives.

This is a “finite-order” result; for completeness, an order-free result can be found in Bern-
stein’s theorem [39,.10] below.

23.1. Further remarks and results. Before writing down Boas and Widder’s proof of
Theorem we make several additional observations beyond the result and its proof. The
first observation (which was previously mentioned following Theorem [18.10)2)) is that while
fj([k_l) is non-decreasing by the above theorem, it is not always true that any other lower-
order derivatives f, ..., f*~2) are non-decreasing on I. For example, let 0 < [ < k — 2 and
consider f(z) := —z!*! on I C R; then fU is strictly decreasing on I.

Second, it is natural to seek examples of non-smooth functions satisfying the differentia-
bility conditions of Theorem but no more — in other words, to explore if Theorem [23.1
is indeed “sharp.” This is now verified to be true:

Example 23.2. Let I = (a,b) C R be an open interval, where —oo < a < b < co. Consider
any function g : I — R that is non-decreasing, hence Lebesgue integrable. For any interior
point ¢ € I, the function fo(z) := [ g(t) dt satisfies (Ha):

x z+h x+2h
i) = [owy -2 [ gwar [ g di
Cm+2h ‘ xz+h ‘
= [ awyar- [ gt

+h

x+h
- / (Bng)(®) dt > 0.
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However, not every monotone g gives rise to an antiderivative that is differentiable on all
of I.

Finally, to see that the condition (Hy) is sharp for all k¥ > 2 as well, define f to be the
(k — 1)-fold indefinite integral of g. We claim that f satisfies (Hg|). Continuity is obvious;
and to study the kth order divided differences of f, first note by the fundamental theorem
of calculus that f is (k — 2)-times differentiable, with f*=2)(z) = fy(z) = [Fg(t) dt. In

particular, A? f € C*~2(a,b — kh) whenever a < x < z + kh < b as in (Hy).
Now given such z, h, we compute using the Cauchy mean value theorem[18.10(1) for divided

differences (and its notation)

_ ok hF=2 _
Abfx) = AL2(ARN) () = DI AR ) = 5 =g (BEN (),
for some y € (a,b — 2h). But this is easily seen to equal
hka hk72
_ A2 (k—2) _ 7A2
and we just showed that this is non-negative. O

The final observation in this subsection is that there are natural analogues for £ = 0,1
of the Boas—Widder theorem (which is stated for & > 2). For this, we make the natural
definition: for k < 0, f%) will denote the |k|-fold antiderivative of f. Since f is assumed to
be continuous, this is just the iterated indefinite Riemann integral starting at an(y) interior
point of I. With this notation at hand:

Proposition 23.3. The Boas—Widder theorem also holds for k=0,1.

Proof. In both cases, the continuity of f*~2) is immediate by the fundamental theorem of
calculus. Next, suppose k = 1 and choose ¢ € I. Now claim that if f is continuous and non-
decreasing (i.e., (Hy)), then f(-V(z) := [ f(¢) dt is convex on I. Indeed, given zg < x1 € I,
define x := (1 — N)zg + Az for A € [0,1], and compute

(1 =2 (o) + Af Y (@1) = F7 (@)
=(1-2X\ /m 1(t < o) f(t) dt + /\/I1 L(t < aq)f(t) dt — /I1 1(t < ) f(t) dt

——-n [Crwaea [ g

But since f is non-decreasing, each integral — together with the accompanying sign — is
bounded below by the corresponding expression where f(t) is replaced by f(z)). An easy
computation now yields

(1= A) D @o) + ATV (1) — FTD (@) > f@n) (Mt — 2) — (1= N)(@n — 20)) = 0

therefore, f (=1 is convex, as desired.

This shows the result for k = 1. Next, if K = 0 then f is continuous and non-negative on I,
hence f(-1) is non-decreasing on I. Now the above computation shows that f(=2) is convex;
the remaining assertions are obvious. O
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23.2. Proof of the main result. In this subsection, we reproduce Boas and Widder’s proof
of Theorem We first make a few clarifying remarks about this proof.

(1) As Boas and Widder mention, Theorem was shown earlier by T. Popoviciu
(Mathematica, 1934) via an alternate argument using divided differences involving
unequally spaced points. Here we will only explain Boas and Widder’s proof.

(2) There is a minor error in the arguments of Boas and Widder, which is resolved by
adding one word. See Remark and the proof of Lemma for more details.
(There are a few other minor typos in the writing of Lemmas and and in
some of the proofs; these are corrected without elaboration in the exposition in this
Appendix.)

(3) Boas and Widder do not explicitly write out a proof of the convexity of f (in the
case k = 2). This is addressed below as well — see the paragraph following Proposi-
tion

Notice that Theorem 3.1l follows for the case of unbounded domain I from that for bounded
domains, so we assume henceforth that

I =(a,b), with — oo <a <b < oo.

We now reproduce a sequence of 14 lemmas shown by Boas and Widder, which culminate in
the above theorem. These lemmas are numbered “Lemma 23.1]', ..., “Lemma 23.14] and
will be referred to only in this Appendix. The rest of the results, equations, and remarks
— starting from Theorem and ending with Proposition — are numbered using the
default counter in this text. None of the results in this Appendix are cited elsewhere in the
text.

The first of the 14 lemmas by Boas and Widder says that if the kth order “equispaced”
forward differences are non-negative, then so are the kth order “possibly non equispaced”
differences (the converse is immediate):

Lemma 23.1. If f(z) satisfies (Hg|) in (a,b) for some k > 2, then for any k positive numbers
01,...,0 >0,

As Ag, - Dg, f(x) >0, whenever a < x < x + 01+ do + -+ & < b.
Proof. The key step is to prove using (Hy) that
Ai_lAglf(x) >0, whenever a <z <z + (k—1)h + 01 < b. (23.4)

After this, the lemma is proved using induction on k > 2. Indeed, is precisely the
assertion in the base case k = 2; and using we can show the induction step as follows:
for a fixed 01 € (0,b — a), it follows that Ag, f satisfies (Hg_1) in the interval (a,b — 7).
Therefore,

Ag, - DNg (As, f(x)) >0, whenever a < x <z + 01+ -+ 0 < b.

Since the As; commute, and since §; was arbitrary, the induction step follows.
Thus, it remains to show (23.4). Let A > 0 and n € N be such that a < z < z + h/n +
(k—1)h < b. One can check using an easy telescoping computation that

n—1
Apf(z) = Z Apnf (@ + ih/n);

=0
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and iterating this procedure, we obtain

n—1
A @)= % Z Ah/n (x4 [ix 4 -+ ig_1]h/n). (23.5)

11=0 tp—1=0

(This works by induction on k > 2: the previous telescoping identity is the base case for
k = 2, and for the induction step we evaluate the innermost sum using the base case.)
From the above computations, it further follows that

n—1
Apm5 @) =) - Z A f(@+ i+ +ixalh/n) > 0
11=0 ip_1=0
where the final inequality uses the assumption (Hg). From this it follows that Aiil flz) <
A’f;lf@ + h/n).

Now suppose z is such that a < < x + mh/n + (k — 1)h < b. Applying the preceding

inequality to x,z + h/n,...,x + (m — 1)h/n, we obtain
Aﬁ_lf(x) < A’fl_lf(a: +h/n) < < Aﬁ_lf(:c + mh/n). (23.6)

We can now prove (23.4). As in it, choose §; > 0, such that a < x < z+ 1+ (k—1)h < b;
and choose sequences mj, n; of positive integers, such that m;/n; — 61 /h and  +mjh/n; +
(k—=1)h <bforall j >1.

Since f(z) is continuous, f(x 4+ mjh/n;) converges to f(x + d1), and Af;lf@ +mjh/n;)
to Aiilf(:c +01), as j — oo. Hence, using (23.6) with m;,n; in place of m,n respectively,
we obtain by taking limits

A (@) < AR (o 6).
But this is equivalent to (23.4)), as desired. O
Lemma 23.2. If f(z) satisfies in (a,b) for some k > 2, then AF=1f(z) and AF~1 f(x—e)
are non-decreasing functions of x in (a,b — (k — 1)e) and (a + €,b — (k — 2)¢), respectively.

Proof. For the first part, suppose y < z are points in (a,b — (k — 1)¢), and set
01 =z —v, 0g =+ =0 = €.
Then by Lemma — or simply — it follows that
AT (2) = AT f(y) = A5 AT f(y) 2 0

which is what was asserted.

Similarly, for the second part we suppose y < z are points in (a + €,b — (k — 2)e). Then
Yy — € < z — € are points in (a,b — (k — 1)€), so we are done by the first part. (Remark: Boas
and Widder repeat the computations of the first part in this second part; but this is not
required.) O

We assume for the next four lemmas that f satisfies (Hz) in the interval = € (a,b).

Lemma 23.3. Suppose f satisfies (Hs) in (a,b) and z € (a,b). Then h='Anf(z) is a
non-decreasing function of h in (a —x,b — x).

Remark 23.7. Notice that h = 0 lies in (a — z,b — z), and at this point the expression
h='Apf(z) is not defined. Hence, the statement of Lemma actually says that h —
h='Ap, f(z) is non-decreasing for h in (0,b — z) and separately for h in (a — x,0). The latter
can be reformulated as follows: since A_p, f(x) = —Ap f(x — h), Lemma asserts that the
map h > h™'Ay f(x — h) is a non-increasing function of h in (0, — a).
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Proof of Lemma[23.3. We first prove the result for h € (0,b— x). Thus, suppose 0 < € < § <
b — x. By condition (Hy), for all integers n > 2 we have

AFf(x) >0, AL, fle+8/n)>0, ..., A, flz+(n—2)5/n)>0
= Dgmf (@) < Bspf(x+06/n) < < Ay f (x4 (n—1)5/n).

If 0 < m < n, then the average of the first m terms here cannot exceed the average of all n

terms. Therefore,
fl@+md/n) — f(z) _ flx+0)— flz)
md/n ) ’
Now since € € (0,6), choose integer sequences 0 < m; < n;, such that m;/n; — €/ as
Jj — o0. Applying the preceding inequality (with m,n replaced respectively by m;,n;) and
taking limits, it follows that e 1A f(x) < 6 'Asf(x), since f is continuous. This proves the
first part of the lemma, for positive h.
The proof for negative h € (a — z,0) is similar, and is shown using the reformulation of
the assertion in Remark Given 0 < € < § < x — a, by condition (Hz) it follows for all
integers 0 < m < n that

Aspuf(@ = 8) < Dgjuf(a — (n = 1)3/n) < - < Agjuf (e — 5/n)
_, @) fe-9) _f@) - flz-min)
0 - md/n
this time using the last m terms instead of the first. Now work as above: using integer

sequences 0 < m; < nj, such that m;/n; — €/9, it follows from the continuity of f that
S1Asf(z —0) < e 'Acf(z — €), as desired. O

<

We next define the one-sided derivatives of functions.
Definition 23.8. Let f be a real-valued function on (a,b). Define

Fo@) = tim 2@ oy gy 20I@ g Aef@ )

s—ot 5§ 6—0— 0 50+ )

Lemma 23.4. Suppose f satisfies (Ha) in (a,b). Then fi, f' exist and are finite and non-
decreasing on all of (a,b).

Proof. That f/. exist on (a,b) follows from Lemma though the limits may possibly be
infinite. Now fix scalars 6, €, x, y, z satisfying

0<d<e and a<z—e<zrz—e<zr<zr+e<y+e<hb,
which implies that a < z < x <y < b. Then we have
Af(c =9 _Aflo—o) _ Dsflo=8) _Asfla) _ Acfl@) _ Af(w),
€ - € - ) - 0 - € - €
where the five inequalities follow respectively using Lemma 23.2] Remark [23.7, Lemma [23.2]

Lemma [23.3] and Lemma [23.2]

Now let § — 0T keeping ¢, x,y, 2 fixed; this yields
Aef(z — 6)

€

< fL) < fytw) < 2L,

which implies that f) (x) are finite on (a,b). In turn, letting e — 07 yields:

fl(z) < flz) < fi(z) < £ (y),

which shows that f are non-decreasing on (a,b). O
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Lemma 23.5. If f satisfies (Hs) in (a,b) then f approaches a limit in (—oo,+00] as x goes
to a™ and x goes to b™.

Proof. Note by Lemma that As f(z) is non-decreasing in = € (a,b—3). Hence, lim,_,,+ Asf(x)
exists and is finite, or equals —oo. (The key point is that it is not +oc.) Therefore, since f
is continuous,

oo > lim Asf(x) = lim (f(z+6) — f(2)) = f(a+0) - f(a®).

z—at z—at
It follows that f(a™) exists and cannot equal —oo.
By the same reasoning, the limit lim,_,;_5- Asf(7) exists and is finite, or equals +oo, in
which case

o<l Asf(r) = f(b7) ~ [(0—0).

It follows that f(b™) exists and cannot equal —oco. O

Lemma 23.6. Suppose f(x) satisfies (Hz) in (a,b).
(1) If f(a™) < +oo, define f(a) := f(a™). Then f! (a) exists and is finite or —ooc.
(2) If f(b™) < 400, define f(b) := f(b™). Then f' (b) exists and is finite or +oc.

Proof. First, if f(a™) or f(b~) are not +oc then they are finite by Lemmal[23.5 To show (1),
by Lemma for h € (0,b — a) the map h + h~!A, f(x) is non-decreasing. Therefore,
h + h=*Ap, f(a) is the limit of a set of non-decreasing functions in h, so it too is non-decreasing
in h. This proves (1).

The second part is proved similarly, using that h + h™'A,f(b — h) is a non-increasing
function in h. g

Common hypothesis for Lemmas 7-14: f satisfies (Hy) in (a,b), for some k > 3.
(We use this hypothesis below without mention.)

Lemma 23.7. Foranya < x < b, the map h — h_kHA’,j_lf(x) is a non-decreasing function
of h in (0,(b—z)/(k —1)).

Proof. First, note that the given map is indeed well-defined. Now we prove the result by
induction on k > 2; the following argument is similar in spirit to (for instance) computing by
induction the derivative of zF~ 1.

For k = 2 the result follows from Lemma [23.3] To show the induction step, given fixed
0O<h<(b—-a)/(k—2)and 6 € (0,b—a), it is clear by Lemma that if f satisfies (Hg))

in (a,b), then we have, respectively:
Af;%f satisfies (Hg) in (a,b — (k — 2)h),
Asf satisfies (Hi_1) in (a,b — 9).

In particular, if 0 < § < e < (b—x)/(k — 1), then we have

ANE2f() o AsAE2f () _ AP Asf ()  AFT2Asf (2)

k=2 ¢ = k=2 § - k=2 § = Sk=2§

Indeed, the first inequality is by the assertion for k = 2, which follows via Lemma from
the first condition in (23.9); and the second inequality is by the induction hypothesis (i.e.,
the assertion for k£ — 1) applied using the second condition in (23.9).

We saw in the preceding calculation that e *+1AF1 f(z) > §=*1AE~1 f(2). But this is
precisely the induction step. O

(23.9)
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Lemma 23.8. There is a point ¢ € [a,b], such that f(z) satisfies (Hi—1) in (¢,b) and —f(z)
satisfies (Hi—1) in (a,c).
Proof. Define subsets A, B C (a,b) via

A:={z € (a,b): A]g*lf(x) >0forall de(0,(b—x)/(k—1))},

B := (a,b) \ A.
If both A, B are non-empty, and z € A,y € B, then we claim that y < z. Indeed, since y & A,
there exists 0 < € < (b —1v)/(k — 1), such that A*~1 f(y) < 0. By Lemma if 2 € (a,y],
then A1 f(2') < 0, and hence 2’ ¢ A. Now conclude that z > y.

The above analysis implies the existence of ¢ € [a,b], such that (a,¢) C B C (a,c| and

(¢,b) C A C[e,b). Tt is also clear that f satisfies (Hi_1) in (c,b).

It remains to show that if a < ¢, then —f satisfies (Hi_1) in (a,c). Begin by defining a

map ¢ : (a,c) — (0,00) as follows: for z € (a,c), there exists € € (0, (¢ — z)/(k — 1)), such
that A*=1f(z) < 0. By Lemmas and this implies that

AFlfy) <0, Va<y<az, 0<i<e
Now define ¢ : (a,c) — (0,00) by setting
e(x) := sup{e € (0, =7) : AFL(2) < 0},

By the reasoning just described, € is a non-increasing function on (a, c).

With the function ¢ in hand, we now complete the proof by showing that —f(x) satisfies
(Hk—1) in (a,c). Let & € (a,c) and let h > 0 be such that x + (k — 1)h < ¢. Choose any
y € (x+ (k—1)h,c) as well as an integer n > h/e(y). It follows that Ak/ Lf(y) <o0.

Now recall from Equation (23.5) that

AFLf Z Z A f(@ =+ [i+ -+ dga]h/n).

11=0 t—1=0

But in each summand, the argument x+[i1 +- - -+ix_1|h/n < y, so by Lemmas?and-,
the previous paragraph implies that each summand is negative. It follows that A} Ly (x) <O.
This shows that — f(z) satisfies (Hx—1) in (a,c), as desired, and concludes the proof. O

Lemma 23.9. There are points

a=x90 <21 <--<xp=>, withlﬁpﬁ?kil,
such that in each interval x; < x < xj41, either f(x) or —f(x) satisfies (Ha).
This follows immediately from Lemma by induction on k£ > 2.
Lemma 23.10. The derivatives f. both exist and are finite on all of (a,b).

We remark here that f/ are both needed in what follows, yet Boas and Widder completely
avoid discussing f’ in this lemma or its proof (or in the sequel). For completeness, the proof
for f’ is also now described.

Proof. By Lemmas [23.9) [23.4] and [23.6] the functions f/ exist on all of (a,b), and are finite,
possibly except at the points z1,..., 7,1 in Lemma We now show that f are finite
at each of these points x;.

First, suppose f’ (x;) or f’(x;) equals +00. Choose § > 0 small enough, such that

Tj—1 <l’j-(k§-2)5<l’j<l’j+5<$]’+1.
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Now if f () = 400, then
ALF (k= 2)6) = —o0
c oLk ‘ _
= hli)r(r)l+ EA‘S Apf(zj— (k—2))) = —o0
= AF'ALf(zj — (k—2)8) <0 for all small positive h.
But this contradicts Lemma . Similarly, if f’ (z;) = 400, then
Ak 1f (2 — (k — 2)8) = —ox
: k—1 L o o _
= hlgél+ EA‘S Apf(x;—(k—2)0 —h) =
= AMALf(zj — (k—2)6 —h) <0 for all small positive h,

which again contradicts Lemma [23.1
The other case is if f/ (x;) or f/ (z;) equals —oco. The first of these subcases is now treated;
the subcase f’ (x;) = —oo is similar. Begin as above by choosing § > 0, such that

Tj—1 < Tj— (kj — 1)5 <Tj < Tjy1-
Now if f (zj) = 400, then a similar computation to above yields
AL (2 — (k= 1)8) = —o0
N =
= hl;]f(r)l+ EA‘S Apf(x; —(k—1)0) = —o0

= A’g_lAhf(a;j —(k—=1)6) <0 for all small positive h,

which contradicts Lemma 23.1] O

The above trick of studying Afg(y —pd) wherep=k—1lork—2(andn=~k—1, g= fi
so that we deal with the kth order divided differences/derivatives of f) is a powerful one.

Boas and Widder now use the same trick to further study the derivative of f, and show its
existence, finiteness, and continuity in Lemmas 23.11] and 23.13]

Lemma 23.11. f’ exists and is finite on (a,b).

Proof. We fix x € (a,b), and work with § > 0 small, such that a < a+kd <z <b—2§ <b.
Let p € {0,1,...,k}; then

0< A5f3:—p5 52() D f (4 (i — p)d).

Subtract from this the identity 0 = 61 f(2)(1 — 1)¥ = 671 f(x )ZZ 0 (k)(—l)k_i7 so that the
i = p term cancels, and multiply and divide the remaining terms by (i — p) to obtain

i=k .
o< sabse - = 3 (7)o R,

i#p
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Letting § — 0T, it follows that

p—1 L ‘
Apfl(z) + By f' (x) > 0, where A, := Z <) (—1)*7(i — p),
(23.10)

=0
k
B, = Z

note here that

L ' L R ‘ L '
a8, =3 (F) i =e X (7 e - (V) ei-o
=0 i=1
Now specialize p to be £ — 1 and k& — 2. In the former case B, = 1, so A, = —1, and
by (23.10) we obtain f) (z) > f’(x). In the latter case p = k — 2 (with £ > 3), we have
B, =2—k <0. Thus, A, = k—2 > 0, and by (23.10) we obtain f’ (z) > f/ (). Therefore,
/'(z) exists and by Lemma [23.10| it is finite. O

Lemma 23.12. Ifa <z <z + (k—1)h <b, then AF~'f/(z) > 0.

AsAF ()
Proof. A}~ f'(z) = lim ——h_2"-
roof. Ay (@) = lim, 5

, and this is non-negative by Lemma [23.1 g

Lemma 23.13. [’ is continuous on (a,b).

Remark 23.11. We record here a minor typo in the Boas—Widder paper [55]. Namely, the
authors begin the proof of Lemma by claiming that f’ is monotonic. However, this is
not true as stated: for any k > 3, the function f(x) = 23 satisfies on I =(-1,1) but f’
is not monotone on I. The first paragraph of the following proof addresses this issue, using
that f is piecewise monotone on (a,b).

Proof of Lemma[23.13. By Lemmas and there are finitely many points zj, 0 < j <
p < 2871 such that on each (zj,2;41), fi = f’ is monotone (where this last equality follows

from Lemma [23.11)). Thus, f’ is piecewise monotone on (a,b).
Now define the limits
fl(z®) = lim f(x+h), =z (ab).

h—0+
It is clear that f’(z%) exists on (a,b), including at each x; # a,b. Note that f’(m;-t) €
[—00, +00], while f/(z%) € R for all other points = # z;. First, claim that f/(z7) = f/(z7) -
where this common limit is possibly infinite — and then that f/(z%) = f/(x), which will rule
out the infinitude using Lemma [23.11] and complete the proof.
For each of the two steps, we proceed as in the proof of Lemma Begin by fixing
x € (a,b), and let 6 > 0 be such that a < x —kd < x < x+26 <b. Let p € {0,1,...,k};

then by Lemma [23.12

k-1

k— .
o< a0 =3 (7 )0k -t b
1=0
Let 6 — 07; then,

Apf'(x™) = Apf'(zt) >0, where A, := pzl <k - 1) (=11 = — kf (k - 1) (—1)k—1=1,

2 1
=0 i:p
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Now specialize p to be k—1 and k—2. In the former case A, = —1, hence f/'(z7) < f'(a™);
whereas if p = k — 2, then A, = k —2 > 0, hence f'(z7) > f’(x"). These inequalities and
the trichotomy of the extended real line [—oo, +00] imply that f/(z7) = f'(z™).

Using the same 0 € ((x — a)/k, (b—x)/2) and p € {0,1,...,k}, Lemma [23.12| also implies

0 < A f' (2 = po).
Taking 6 — 07 and using that f/(z7) = f/(z) yields
k-1

Bf'0) ~ Buf %) 2 0. whore Byi= (")t = 3 (7 ) e

p i=0 !
iF#p
Now specialize p to be k — 1 and k — 2. In the former case B, = 1, hence f'(z) > f'(z");
whereas if p = k — 2, then B, =1 —k < 0, hence f'(x) < f’(z%). These inequalities imply
that f/(z%) = f'(x7) equals f(x), and in particular is finite, for all z € (a, b). O

The final lemma simply combines the preceding two:
Lemma 23.14. [’ satisfies the condition (Hi_1) in (a,b).
Proof. This follows immediately from Lemmas [23.12] and [23.13] O

Having shown the 14 lemmas above, we conclude with:

Proof of the Boas—Widder Theorem[23.1. The proof is by induction on k > 2. The induction
step is clear: use Lemma [23.14, We now show the base case of k = 2. By Lemma [23.4] the
functions f! exist and are non-decreasing on (a, b). Moreover, f is continuous by assumption.
To prove its convexity, we make use of the following basic result from one-variable calculus:

Proposition 23.12. Let f : [p,q] — R be a continuous function whose right-hand derivative
fh exists on [p,q) and is Lebesgue integrable. Then,

1) = 1)+ | “rwd,  Vyelpa

Proposition applies to our function f satisfying (Hz), since f! is non-decreasing
by Lemma and hence Lebesgue integrable. Therefore, f(y) — f(z) = fxy fi(t) dt for
a < x <y <b. Now repeat the proof of Proposition to show that f is convex on (a,b).
This completes the base case of k = 2 and concludes the proof. O
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24. APPENDIX B: FUNCTIONS ACTING OUTSIDE FORBIDDEN DIAGONAL BLOCKS.

DIMENSION-FREE NON-ABSOLUTELY-MONOTONIC PRESERVERS.

In this section, we explore a variant of the question of classifying the dimension-free pre-
servers. Recall that Schoenberg’s original motivation in proving his result was to classify
the entrywise positivity preservers f[—] on correlation/Gram matrices — with or without
rank constraints — since these are the matrices that arise as distance matrices on Euclidean
spheres (after applying cos(-) entrywise). In a sense, this is equivalent to applying f/f(1) to
the off-diagonal entries of correlation matrices and preserving positivity.

In a similar vein, and motivated by modern applications via high-dimensional covariance
estimation, Guillot and Rajaratnam in Trans. Amer. Math. Soc. (2015) classified entrywise
maps that operate only on off-diagonal entries, and preserve positivity in all dimensions.

Theorem 24.1 (Guillot-Rajaratnam). Let 0 < p < 0o and f : (—p, p) — R. Given a square
matric A € Pn((—p,p)), define f*[A] € R™™ to be the matriz with (j,k)-entry f(a;i) if
Jj #k, and a;; otherwise. Then the following are equivalent:

(1) f*[=] preserves positivity on P, ((—p, p)) for alln > 1.
(2) There exist scalars ¢, > 0, such that f(z) = > ;5 cxx® and |f(x)| < |z| on all of
(—=p,p). (Thus, if p = oo, then f(x) = cx on R, for some c € [0,1].)

Once again, the robust characterization of absolute monotonicity emerges out of this vari-
ant of entrywise operations.

The main result of this section provides — in a closely related setting — an example of a
dimension-free preserver that is not absolutely monotonic. To elaborate: Theorem was
recently strengthened by Vishwakarma in Trans. Amer. Math. Soc., where he introduced the
more general model in which a different function g(x) acts on the diagonal entries. Even more
generally, Vishwakarma allowed g[—] to act on prescribed principal submatrices/diagonal
blocks and f[—] to act on the remaining entries. To explain his results, we adopt the following
notation throughout this section:

Definition 24.2. Fix 0 < p < o0, I = (—p,p), and f,g : I — R. Also fix families of
subsets T}, C (2", C) for each n > 1, such that all elements in a fixed family T}, are pairwise
incomparable. Now given n > 1 and a matrix A € I"*", define (g, f)71, [A] € R™*™ to be the
matrix with (j, k)-entry g(ajx) if there is some E € T), containing j, k (here, j may equal k),
and f(aji) otherwise.

Adopting this notation, Vishwakarma classifies the pairs (g, f) which preserve positivity
according to a given sequence {7}, : n > 1}. Notice that if 7,, = {[n]} for n > ng and
T, is empty for n < ng, this implies from Section that g(x) is absolutely monotonic
as in Schoenberg—Rudin’s results; and that f[—] preserves positivity on P,,((—p, p)). Such
functions f do not admit a known characterization for ng > 3; and the following result will
also not consider them. Thus, below we require T, # {[n]} for infinitely many n > 1.

Theorem 24.3 (Vishwakarma). Notation as in Definition [24.3 Suppose {T),} is such that
T, # {[n]} for infinitely many n > 1. Then (g, f)1,[—]| preserves positivity on P, (I) for all
n > 1, if and only if exactly one of the following occurs:
(1) If T,, is the empty collection, i.e., (g, f)r,[—] = fl—] for all n > 1, then f(z) =
Y k>0 cpz® on I, where ¢ > 0 for all k > 0.
(2) If some T,, contains two non-disjoint subsets of [n], then g(x) = f(x), and f(z) is a
power series as in the preceding subcase.
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(3) IT'T, C {1}, ..., insf Jor alln > 2, and some I3, 1s non-empty, then [ is as in (1),
and 0 < f < g on [0,p).
(4) If To = {{1,2}} and T,, C {{1},....{n}} for alln > 3, then f is as in (1), g(x) is
non-negative, non-decreasing, and multiplicatively mid-convex on [0, p), and |g(x)| <
g(|x|) for all x. If, moreover, some T,, is non-empty for n > 3, then 0 < f < g on
[0, p).
(5) Otherwise T,, € {{1},....{n}} for some n > 3; and T, is a partition of some subset
of [n] for each n > 1. In this case, with the additional assumption that g(z) = ax®
for some a >0 and k € 720
(a) If for all n > 3 we have T,, = {[n]} or {{1},...,{n}}, then f is as in (1) and
0<f<gon0p)

(b) If T,, is not a partition of [n] for some n > 3, then f(x) = cg(x) for some
ce|0,1].

(¢) If neither (a) nor (b) holds, then f(x) = cg(x) for some ¢ € [-1/(K — 1),1],

where

K :=max|T,| € [2,+00].
n>1

In fact, the assertions in the above cases are equivalent to the weaker assertion (than above)
that (g, )1, [—] preserves positivity on the rank < 3 matrices in |J,,~1 Pn(1).

We refer the reader to Vishwakarma’s work for similar results with the domain I replaced
by (0, p), [0, p), or even the complex disk D(0, p). As mentioned above, one interesting feature
here is that in the final assertion (5)(c), we find the first example of a function that is not
absolutely monotonic, yet is a dimension-free preserver, in this setting.

To prove Theorem [24.3] we require two well-known preliminaries, and a couple of additional
results, shown below:

Proposition 24.4. Given a Hermitian matriz A,xn, denote its largest and smallest eigen-
values by Amax(A) and Apin(A), respectively.

(1) (Rayleigh—Ritz theorem.) If A € C™*™ is Hermitian, then the ratio v*Av/v*v, as v
runs over C™ \ {0}, attains its maximum and minimum values, which equal Amax(A)
and Amin(A), respectively.

(2) (Weyl’s inequality, special case.) If A, B € C"*" are Hermitian, then

Amin(A) + )\min(B) S )\min(A + B) S )\min(A) + )\max(B)- (245)
The second assertion holds more generally; we do not state/prove/require it below.

Proof. For the first part, it suffices to show the minimum bound, since Ayax(A) = —Amin(—A4).
(That the bound is attained follows from the compactness of the unit complex sphere.)
The matrix A — Apin(A) Idy, <y is Hermitian with smallest eigenvalue zero, hence, is positive
semidefinite. Thus, we compute for non-zero v € C™:
(A — Amin(A) Id *A
0 < SAZ A duen)v _ VA L),

v*U v*vU

This shows the first assertion. For the second, let v € ker(A — Apin(A) Id,xr) be non-zero.
Applying the previous part twice,
v*(A+B)v v*Av  v*Buv
Amin(A + B) S ( ) - + < )\min(A) + )\maX(B)~

v*v v*v v T
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Similarly, if v is a non-zero eigenvector for A + B with eigenvalue Anin (A + B), then by the
previous part applied twice,
v'(A+ B)v v*Av v*Bu
Amin(A 4+ B) = LATB A0 0B ) 4 A (B). 0

v*v v*v v T

We also require the following special case of the main result:

Lemma 24.6. Let 0 < p < 00, I = (—p,p), and f : I — R. Let g(x) = az® for a > 0 and
k€ 220, Finally, let T3 = {{1,2}} and co = 0. The following are equivalent:

(1) (g, f)1[A] € P3 for all matrices A € P3(I).
(2) (9, f)r[A] € P3 for all rank-1 matrices A € P3(I).
(3) f(z) =cg(x) on I for some c € [cp, 1].
The same equivalence holds if Tz = {{1,2},{3}} and cp = —1.

Proof. First suppose T3 = {{1,2}} and ¢y = 0. Clearly (1) = (2). Now suppose (2) holds.
If f =0 or g =0, then the result is immediate, so suppose f,g # 0 (hence, & > 0). Now
given z,w € (—p, p) such that

0< |z <w, 0<w<p,

define
2w oz oz 1
Alw, z) :== z w w|=—uu", where u=(z,w,w)’. (24.7)
z  w w

By choice of w, z, we have A(w, z) € P3(I), so det(g, f)r,[A(w, z)] > 0.
There are now two cases. First, if &k = 0, then g(x) = a > 0. Let w > 0 and expand the
above determinant along the third row to compute

0 < det(g, f)ry[A(w, 2)] = —a(f(z) — f(w))2

Using an increasing sequence 0 < w, — p~, this shows that f is constant on I, and by
considering (g, f)r;[03x3], we have f(z) = ca for some ¢ € [0, 1].

The other case is if k¥ > 0, so that g(0) = 0. Now f(0) = 0 by considering (g, f)z,[03x3]-
Again expand the above determinant along the third row, to obtain

(whr() 1 w) (24.8)

Thus, we have f(2)/2% = f(w)/w* whenever 0 < |z|] < w < p. By using an increasing
sequence 0 < wy, T p~, this shows f(z)/z* is constant on I \ {0}, say ¢ € R. By considering
A(w,w) = wlsys for w > 0, it is not hard to see that ¢ € [0, 1], which proves (3).

Finally, if (3) holds, then (g, f)r,[A] is the sum of cg[A] and (1 — ¢)g[B] (padded by a zero
row and column at the end), where B is the leading principal 2 x 2 submatrix of A. This
shows (1) by the Schur product theorem.

The proof is similar if T3 = {{1,2},{3}} and ¢y = —1. Clearly, (1) = (2); similarly,
the proof of (2) = (3) is unchanged (including the computation (24.8))) until the very last
steps for both k£ = 0 and k£ > 0, at which points we can only conclude ¢ € [—1,1]. Finally, we
assume (3) holds and show (1). The point is that for any scalar ¢ € [—1,1] and any matrix
A € IP3(I), the principal minors of (g, cg)r,[A] equal those of (g, |c|g)r;[4], so that we may
work with |c¢| € [0,1] instead of ¢ € [—1,1]. Now one shows (1) similarly as the previous
case. U

(0}

0 < det(g, f)m[A(w,2)] = ——
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A final preliminary result — the second part easily follows from the first, and in turn
strengthens Lemma [24.6

Proposition 24.9. Suppose for an integer n > 3 that T,, C 2" is a partition of [n] into
k > 2 non-empty subsets.

(1) Let g(0) =1 and f(0) = c. Then (g, f)1,[Onxn] is positive semidefinite if and only if
ce[-1/(k—1),1].

(2) Suppose 0 < p < oo, I = (—p,p), and f : I — R. Also suppose g : I — R is
multiplicative and preserves positivity on Pp(I). If T,, # {{1},...,{n}}, then the
following are equivalent:

(a) (g, )7, [—] preserves positivity on Py (I).
(b) (g, f)1,[—] preserves positivity on the rank-1 matrices in Py (I).
(c) f(z) =cg(z) on I, for some c € [-1/(k —1),1].

The non-zero functions in part (2) include the powers z*,k € ZZ° by the Schur product
theorem; but also — as studied by Hiai in Linear Algebra Appl. (2009) — the “powers”
da(z) = |2|%, Yo(z) := sgn(zx)|z|%, a>n-—2.
Proof. Let T,, = {Ji,..., Ji} with U;J; = [n].
(1) Choose elements j1, ..., jir with j; € J;. By possibly relabeling the rows and columns,

we may assume without loss of generality that 1 < j; < -+ < j < n. Now if
(9, )1, [0nxn] € Py, then by considering the principal k X k submatrix corresponding
to the indices {j1,...,jx}, we obtain
C = clpxr + (1 — ¢) Idgxi € Py. (24.10)
Since this matrix has eigenvalues (1 — ¢) and 1+ (k — 1)c, we get ¢ € [-1/(k — 1), 1],
as desired.
For the converse, define the “decompression” of C, given by
k
C = clopwn+ (1 =0)Y 1y, = (9, )1, [Onxn) € T (24.11)
j=1

We now show that if ¢ € [~1/(k —1),1], then C € P,,. Indeed, given a vector u € C",
define ug, € C* to have jth coordinate ;. J; Wi~ Then,

w*Cu = ur, Cur, >0, Vu € C,

because the matrix C as in (24.10|) is positive semidefinite as above.

(2) If g = 0, then the result is easy to prove, so we suppose henceforth that g # 0. Clearly,
(a) implies (b). Next if (b) holds, then one can restrict to a suitable 3 x 3 submatrix
— without loss of generality indexed by 1,2, 3, such that 7, N {1,2,3} = {{1,2}, {3}}
by a slight abuse of notation. Hence, f(z) = cg(z) on I for some ¢ € [—1,1], by
Lemma Now if g(x¢) # 0, then (g, f)7, [To1lnxn] has as a principal submatrix,
g(z0)C, where C is as in (24.10). Hence, ¢ € [-1/(k — 1),1] by the previous part,
proving (c). Finally, given any matrix A € P,,(I), we have

(9,cg)1,[A] = g[A] o C,

where C is as in (24.11). Now if (c) holds, then CeP, by the previous part, and
this shows (a) by the assumptions on g, f as well as the Schur product theorem. [

With these results in hand, we are ready to proceed.
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Proof of Theorem|24.5 Clearly if (g, f)1,[—] preserves positivity on P, (1), then it does so
on the rank < 3 matrices in P, (7). Thus, we will prove that this latter assertion implies
the conclusions on (g, f) in the various cases; and that these conclusions imply in turn that
(9, )1, [—] preserves positivity on P, (). This is done in each of the subcases (which place
constraints on the family 7). First if (1) all T,, are empty sets, then the result follows
from the stronger Schoenberg—Rudin Theorem (which holds over (—p, p) instead of R,
as remarked in Section .

Next, suppose from (2) some 7;, contains subsets I1, Iy C [n] that are not disjoint. Clearly,
if g= f and f is as in (1), then (g, f)71,,[—] = f[—] preserves positivity by the Schur prod-
uct theorem. Conversely, if (g, f)1,[—] preserves positivity even on the rank-1 matrices in
P, ((—p, p)) for all n > 3, then there exist integers n > 3 and a, b, ¢ € [n], such that

a,be Iy, C¢Il, b,c € I, a€]2.

By relabeling indices if needed, we will assume without loss of generality that a = 1,b = 2,

2| = =z
and ¢ = 3. Now let x € (—p, p) and define A := | = |z| [2] | © 0p_3)x(n—3) € Pu(I). If
z o Ja| |al

B denotes the leading principal 3 x 3 submatrix of (g, f)r,[A], then

g(l=[) g(z)  f(z)
0<detB=det | g(x) g(lz]) g(|z]) | = —g(2)(f(z) - g(2))*.
f(@) g(lzl) g(l=])

If g(|x|) = 0, then by considering the 2 x 2 submatrices of B, we see that f(z) = g(z) = 0. If
g(|x|) # 0, then it is positive, so we obtain f(z) = g(x). This implies f = g on (—p, p). Hence,
(9, f)r, =] = f[-], and we reduced to case (1). This proves the equivalence for case (2).

Next suppose (3) holds. First assume f is as in (1) and 0 < f < g on [0,p). If
AeP,((—p,p)), then (g, f)7,[A] is the sum of f[A] and a diagonal matrix with non-negative
entries. Hence, (g, f)r1,[4] is positive semidefinite by the Schur product theorem. The con-
verse has two subcases. Let s, := # Uger, £, so 0 < s, < n, and hence, either n — s, or
spn is an unbounded sequence. If the former, then by restricting to the corresponding princi-
pal submatrices (padded by zeros), we are done by case (1) — considering the 2 x 2 matrix

(9(@ f (x)> or <9(5") ! (“")> for 2 € [0, p), we obtain f(z) < g(z), as desired.

f(x) g(x) flx) flz)
Thus, we henceforth assume the latter holds, i.e., s, is unbounded; restricting to these
principal submatrices, we may assume without loss of generality that 7,, = {{1},...,{n}}

for all n > 1. We claim that f[—] preserves positivity on rank < 3 matrices in P, (I) for all

n. This would finish the proof in case (3), since now f is as in (1), and as above, this implies

0'< f(x) < glx) for z € [0, p).

To prove the claim, let A € P,,((—p, p)), and let D4 be the diagonal matrix with (7, j)-entry

A ... A

g(a;j)— f(aj;). If 1,,xm denotes the all-ones m xm matrix, then 1, @A =11 . |,
A ... A

a matrix in P,,,(I). Also note that if A has rank < 3, then by (3.13)), so does 1,,xm ® A.

Now applying (g, /)1, [~ vields

(97 f)Tmn[]-me & A] — 1m><m ® f[A] + Idmxm ®DA > 0.
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Hence, by (124.5)),
0< /\min((97 f)T"m[lmxm ® A]) < /\min(lmxm ® f[A]) + )‘maX(Idmxm ®DA)
= MAmin(f[A]) + max {g(aj;) — f(ajj)},
where the equality holds because of and since the eigenvalues of 1,,x,, are 0, m. From

this it follows that Amin(f[A]) > —max;(g(aj;) — f(aj;))/m for all m > 1. This shows f[A]
is positive semidefinite, and concludes the proof in case (3).

If (4) holds, the proof in case (3) shows f is as in (1); and using (g, f)n,[—] = g[—] via
an argument similar to Theorem [12.7] shows the desired constraints on g. (This is left to the
reader to work out.) The converse is shown using (variations of) the same proofs.

It remains to prove the equivalence in case (5); here we are also given that g(z) = aa®

for a, k > 0 (and k an integer). If & = 0, then the result is easy, so we suppose henceforth
without loss of generality that a = 1. In subcase (a), since T,, = {{1},...,{n}} for infinitely
many n by assumption, we can repeat the proof for case (3) to show that any preserver-pair
(g, f) must satisfy 0 < f < g on [0,p) and f is as in (1). Conversely, given such (g, f), if
T,, = {[n]}, then (g, f)1,,[—] = g[—], which preserves positivity by the Schur product theorem.
Otherwise, for A € P,,(I), we compute

(9, )1, [A] = f[A] + diag(g(aj;) — f(a;5))j=1,
and both matrices are positive, hence so is (g, f)r,[A], as desired.

Next for (b), we fix ny > 3 such that T,,, € {{1},...,{n1}}; also fix ng > 3 such that T,
is not a partition of [ng]. If f(z) = cg(z) for ¢ € [0,1], then (g, f)r, [A] is the sum of cAF
and matrices of the form (1 — ¢)B°%, where B is a principal submatrix of A € P,,,, hence
positive semidefinite. It follows by the Schur product theorem that (g, f)z,,[~] preserves
positivity. Conversely, suppose (g, f)1,[—] preserves positivity for all n > 1, on rank < 3
matrices in P, (I). At n = ny, we can find three indices — labeled 1,2, and 3 without loss of
generality — such that for all A € Py, (), the leading 3 x 3 submatrix of (g, f)z,, [A] equals
(g, f){{l,Q}}[A[S]X[?)}] or (g, f){{112},{3}}[A[3]><[3]]‘ Now using rank-1 matrices via Lemma
shows f(z) = cg(z) for ¢ € [—1,1]. Finally, considering matrices in Py, (I) yields ¢ > 0, as
desired.

The remaining subcase is (5)(c), in which case every T,, is a partition of [n]. Also note
by the hypotheses that K > 1; and there exists n; > 3 and three indices — labeled 1, 2, and
3 without loss of generality — such that for all A € P, (I), the leading 3 x 3 submatrix of
(9, F)r,, [A] equals (g, f)g1.2),4311[A3)x(3))- Now using rank-1 matrices via Lemma or
Proposition implies f = ¢g, with ¢ € [-1/(K — 1),1]. Conversely, if f and g are as
specified and T,, = {[n]} then (g, f)1,[—] = g[—], which preserves positivity by the Schur
product theorem. Else we are done by Proposition since k = |T,,| < K. O
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25. APPENDIX C. PRESERVERS OF POSITIVITY ON KERNELS.

We now present two Appendices on the transforms that preserve positive (semi)definiteness,
and Loewner monotonicity and convexity, on kernels on infinite domains. We begin with pre-
servers of positive semidefinite and positive definite kernels.

Definition 25.1. Let X, Y be non-empty sets, and K : X x Y — R a kernel.

(1) Given x € X™ and y € Y for integers m,n > 1, define K[x;y] to be the m x n real
matrix, with (j, k) entry K(z;,yx).

(2) Given an integer n > 1, define X ™% to be the set of all n-tuples in X with pairwise
distinct coordinates.

(3) A kernel K : X x X — R is said to be positive semidefinite (respectively, positive
definite) if K is symmetric —i.e., K(z,y) = K(y,z) Vz,y € X —and for all n > 1 and
tuples x € X™7, the matrix K[x;x] is positive semidefinite (respectively, positive

definite).
(4) Given an integer n > 1, and a totally ordered set X, define X™ to be the set of all
n-tuples x = (z1,...,2,) € X with strictly increasing coordinates: 1 < -+ < .

(Karlin calls this the open simplex A, (X) in his book [200].)

By “padding principal submatrices by the identity kernel,” it is easily seen that given
subsets X C Y and a positive (semi)definite kernel K on X x X, we can embed K into

a kernel K : Y x Y — R that is also positive (semi)definite: define K (z,y) to be 1,_ —y if
(z,y) ¢ X x X, and K(z,y) otherwise.
Now given a set X and a domain I C R, we will study the inner transforms

9}’(5(1([) ={F:I - R|if K:X x X — Iis positive semidefinite, so is F'o K'},
9§d(I) ={F:I - R|if K:X xX — Iis positive definite, so is F' o K}.

(see the beginning of this text). Here, F'o K sends X x X to R.

Notice that if X is finite then f?d([ ) is precisely the set of entrywise maps preserving
positivity on P|x|(/); as mentioned in Section this question remains open for all | X| > 3.
If instead X is infinite, then the answer follows from Schoenberg and Rudin’s results:

Theorem 25.2. Fiz 0 < p < oo, and suppose I is any of (0,p), [0,p), or (—p,p). If

X is an infinite set, then 9§Sd(f ) consists of all power series with non-negative Maclaurin
coefficients, which are convergent on I.

This observation is useful in the study of positive definite kernels in computer science.

Proof. For I = (0, p) or (—p, p) with p = oo, the result follows by embedding every positive
semidefinite matrix into a kernel on X x X, and applying Theorems[16.4]and [T6.3] respectively.
If I =10, p), then from above we have the desired power series expansion on (0,00), and it
remains to show that any preserver F is right continuous at 0. To see why, first note that
F(0) > 0, and F is non-decreasing and non-negative on (0,00), so F(0") := lim,_,q+ F(2)
exists. Now consider a three-point subset {1, x2, 23} of X, with complement X', and define

3, ifx =y,
Ko(z,y) :== {1, if (z,y) = (21, 22), (x2, 3), (23, x2), (x2, 21), (25.3)
0, otherwise.
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Thus, Ky is the padding by the identity of a positive definite 3 x 3 matrix. It follows that

F(3c) F(0) cp
F(0) F(3c) z
It follows by taking determinants and then ¢ — 0 that F(0") > F(0) > 0. Finally,

0< Clir(l)l+ det F[cKo[x;x]] = —F(07)(F(0T) — F(0))?, x = (z1, T2, T3).

F o (cK)y) is positive semidefinite for ¢ > 0, so its principal submatrix (

Thus, either F(0%) > 0 and so F(07) = F(0); or else F(0") = 0, hence F(0) =0 = F(0")
as well. This ends the proof for p = oo; for p < oo, use the remarks in Section [22.3 (|

We next classify the preservers of positive definite kernels. As above, if X is finite, then
the fixed-dimension case remains open; but for infinite X we have:

Theorem 25.4. Fiz 0 < p < oo, and suppose I is any of (0,p), [0,p), or (—p,p). If X

is an infinite set, then fi)lzd(l) consists of all non-constant power series with non-negative
Maclaurin coefficients, which are convergent on 1.

Proof. By the Schur product theorem, every monomial ¥ for k > 1 preserves positive def-
initeness. This observation shows one implication. Conversely, first say F € ff)l:;d(l ) is
continuous. Now every positive semidefinite kernel K : X x X — R is the pointwise limit
as € = 07 of the family K, : X x X — R, given by K(z,y) := K(z,y) + €ly—,. It follows
that F' preserves positive semidefinite kernels, reducing the problem to the preceding result.
Moreover, F' is not constant, e.g., by considering its action on the identity kernel.

The rest of the proof is devoted to showing that F' is continuous on I. First suppose
I = (0,p) and A € Py(]) is positive definite. Then there exists ¢ € (0,p/2) such that
A’ := A — €ldgys is still positive definite. Choose x1, x5 € X and define the kernel

Ak, lfx:xjay:xkv 1§]7k§27
KXXX—)R7 (x7y)'_> p/2a 1f$:y¢{$171'2}7
€, otherwise.

Clearly,

K =elxxx + (A, ©® (p/2 - 6) IdX\{ml,rz})a
and so K is positive definite on X with all values in I = (0, p). Hence, F o K is also positive
definite. It follows that the entrywise map F[—| preserves positive definiteness on 2 x 2
matrices. Now invoke Lemma to conclude that F' is continuous on (0, p).

This concludes the proof for I = (0, p). Next, suppose I = [0, p); by the preceding case,
F' is given by a non-constant power series as asserted, and we just need to show F' is right
continuous at 0. Since F is increasing on (0, p), the limit F(07) := lim,_,o+ F(z) exists and
F(0%) > F(0) > 0. Now use the kernel K from and repeat the subsequent arguments.

The final case is if I = (—p, p). In this case we fix up € (0,1) and a countable subset
Y :={xp,z1,...} C X. Denote Y¢:= X \ Y. Given a,b > 0 such that a + b < p, let

H = Hlap = (15_1 + b(suo

The corresponding Hankel moment matrix is H,, with (j,k) entry a(—1)7F + bu6+k, and
this is positive semidefinite of rank 2. Now for each € > 0, define K, : X x X — R, via

H j)k7 if xr,Yy)=\T;,Tk), j?ék7
K(z,y) = { HOH) : (_) (3. :
€, ifr=yeYs

0, otherwise.
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Clearly, K. is positive definite, with entries in I = (—p, p) for sufficiently small ¢ > 0. It
follows that F' o K, is positive definite. Since F' is continuous on [0, p) by the previous cases,
lim g+ FoK, = F[H,®0ycxye| is positive semidefinite, and so F[—] preserves positivity on
the Hankel moment matrices H,, for all u = p1, 3 as above. It follows by the proof of Step 3 for
the stronger Schoenberg theorem above (see the computations following Lemma that
F' is continuous on (—p, p), as desired. This concludes the proof in all cases. D
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26. APPENDIX D. PRESERVERS OF LOEWNER MONOTONICITY AND CONVEXITY ON
KERNELS.

Thus far, we have studied the preservers of (total) positivity and related variants, with
a brief look in Section [15| at entrywise powers preserving other Loewner properties. In this
Appendix, we return to these properties. Specifically, we classify all composition operators
preserving Loewner monotonicity and convexity, on kernels on infinite domains. (The case
of finite domains remains open, as for positivity preservers.)

The results for infinite domains will crucially use the finite versions; thus, we begin by
reminding the reader of the definitions. Roughly speaking, a function is Loewner monotone
(see Definition [14.7)) if f[A] > f[B] whenever A > B > 0,,x,,. Similarly, a function is Loewner
convex (see Definition if fINA+(1—X)B] < Af[A]+ (1 — ) f[B] whenever A > B >0
and A € [0,1].

As explained in Remark[I4.8] for n = 1 the usual notion of a monotonically non-decreasing
function coincides with Loewner monotonicity. The same holds for convex functions vis-a-vis
Loewner convex functions, for n = 1. Now for n = 1, a differentiable function f : (0,00) — R
is monotone (respectively, convex) if and only if f’ is non-negative, i.e., has image in [0, 00)
(respectively, monotone). The following result by Hiai in Linear Algebra Appl. (2009) extends
this to the corresponding Loewner properties, in every dimension:

Theorem 26.1 (Hiai, fixed dimension). Suppose 0 < p < 0o, [ = (—p,p), and f: I — R.

(1) Given n > 2, the function f is Loewner convex on P, (I) if and only if f is differen-
tiable on I and [’ is Loewner monotone on P, (I). This result also holds if we restrict
both test sets to rank < k matrices in P, (I) for every 2 < k < n.

(2) Given n > 3, the function f is Loewner monotone on P,(I) if and only if f is
differentiable on I and f’ is Loewner positive on Py (I).

Recall the related but somewhat weaker variant in Proposition [15.9

Here we show the first part and a weaker version of the second part of Theorem — see
Hiai’s 2009 paper for the complete proof. (Note: Hiai showed the first part only for k = n;
also, we do not use the second part in the present text.) First, as a consequence of the first
part and the previous results, we obtain the following Schoenberg-type classification of the
corresponding “dimension-free” entrywise preservers:

Theorem 26.2 (Dimension-free preservers of monotonicity and convexity). Suppose 0 < p <
oo, I = (—p,p), and f : I — R. The following are equivalent:

(1) f is Loewner monotone on P, (I) for all n.
(2) f is Loewner monotone on the rank < 3 Hankel matrices in P (I) for all n.
(3) f(z) =30 ckxk on I, with c1,c2, - > 0.

Similarly, the following are equivalent conditions characterizing Loewner convezity:

(1) f is Loewner convex on P, (I) for all n.
(2) f is Loewner convex on the rank < 3 matrices in P, (I) for all n.
(3) f(z) =302 ckx® on I, with ca,c3,- - > 0.

Proof. We begin with the dimension-free Loewner monotone maps. Clearly, (1) = (2).
To show (3) = (1), note that f(x) — ¢p is also Loewner monotone for any ¢y € R if f(x)
is, so it suffices to consider f(z) = 2* for k > 1. But such a function is clearly monotone, by
the Schur product theorem. This is an easy exercise, or see e.g., the proof of Theorem [14.9
Finally, note from the definition of Loewner monotonicity that f — f(0) entrywise preserves
positivity if f is Loewner monotone — on P,,(I) or on subsets of these that contain the zero
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matrix. In particular, if (2) holds then f — f(0) is a dimension-free positivity preserver, hence
of the form ), -, cpx® with all ¢, > 0 by Theorem [19.10| — or more precisely, its variant for
restricted domains (—p, p) as in Section 22.3, Since f — f(0) also vanishes at the origin, we
have ¢y = 0, proving (3).

We next come to convexity preservers. Clearly, (1) = (2). To show (3) = (1), note
that f(z) — cog — ci1x is also Loewner convex for any cp,c; € R if f(x) is, so it again suffices
to consider f(z) = 2* for integers k > 2. In fact, we claim by induction that 2* is Loewner
convex for all k& > 0. The convexity of 1,z is immediate, and for the induction step, if z* is
convex, then for any integer n > 1, scalar A € [0, 1], and matrices A > B > Opxn,

(AA 4 (1 = N)B)°FH) < (AA + (1 — A)B) o (AA°* + (1 — X\)B°F)
= AA°KHD L (1 — B _ \(1 — \)(A — B) o (4°% — B°¥)
< /\Ao(kJrl) + (1 . )\)BO(IC+1)7

where the final inequality follows from the Loewner monotonicity of ¥ and the Schur product
theorem. Finally, if (2) holds, then by Theorem [26.1|(1) for k = 3, f’ exists and is Loewner
monotone on rank < 3 matrices in P, (I) for all n, hence a power series as in the preceding
set of equivalent statements. This immediately implies (3). O

The remainder of this section is devoted to proving Theorem [26.1[1), beginning with some
elementary properties of convex functions:

Lemma 26.3 (Convex functions). Suppose I C R is an interval and f : I — R is convex.

t —
(1) The function (s,t) — w
—s

(2) If I is open, then f exist on I. In particular, f is continuous on I.

(3) If I is open and z1 < x < zo in I, then fi(z1) < fL(z) < fi(z) < fl(22). In
particular, f. are non-decreasing in I, hence each continuous except at countably
many points of jump discontinuity.

(4) If I is open, then for all x € I,

fi(z) = lim fi(2), f(z) = lim f,(2).
z—xt

zZ—x~

, where t > s, is non-decreasing in both t,s € I.

(5) If I is open, there exists a co-countable (therefore dense) subset D C I on which f’
exists. Moreover, [’ is continuous and non-decreasing on D.

Note that the assertions involving open intervals I may be carried over to the interiors of
arbitrary intervals I on which f is convex.

Proof.
(1) Suppose s <t < u lie in I. One needs to show

F0) = () _ f)= () _ flw) = f(0)

t—s - uU—S - u—t

But both inequalities can be reformulated to say

ft) < f(w),

which holds as f is convex.

u—t t—s

fls) +

u—=S u—=s
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(2) Given t € I, choose s <t < u in I, and note by the previous part that the ratio

fz) = f()

ety

is non-increasing in z as z — t* and bounded below by

f(t])f — £<8) Thus, f(t)

exists; a similar argument works to show f’ (¢) exists. In particular, the two limits
lim, .+ f(x) — f(t) are both zero, proving f is continuous at t € I.

(3) The second sentence follows from the first, which in turn follows from the first part
by taking limits and is left to the reader.

(4) The preceding part implies f/(z) are non-decreasing as z — x~ and non-increasing
as z — 7, and shows “half” of the desired inequalities. We now show f/ (z) >
lim, ,,+ f(2); the remaining similar inequalities are shown similarly, and again left
to the reader. Let y € I, y > x; then the first part implies

fy) =1z o 1) - f(z)

: Ve <z<y <uy.

y—z = Y-z
Taking y' — 27, we have f/ (z) < % From above, f is continuous on I, so
y—x z—zxt y—z z—axt

Finally, taking y — = concludes the proof.

(5) Let D C I be the subset where f’ exists, which is if and only if f is continuous
(by the preceding part). In particular, D is co-countable from a previous part, and
f"'= f! is continuous and non-decreasing on D by the same part. O

The next preliminary result shows the continuity (respectively, differentiability) of mono-
tone (respectively, convex) functions on 2 x 2 matrices:

Proposition 26.4. Suppose 0 < p < oo, I =(—p,p), and g: I — R.

(1) If g[—] is monotone on Pa(I), then g is continuous on I.
(2) If g|—] is convex on Po(I), then g is differentiable on I.

Proof. We begin with the first assertion. It is easily verified that if g is monotone on Py(I),
then g — g(0), when applied entrywise to Po(I), preserves positivity. Hence, by (the bounded
domain-variant of ) Theorem[12.7] g is continuous on (0, p). Moreover, we may assume without
loss of generality that ¢g(0) = 0.

Now let 0 < a < p and 0 < € < p — a; then the monotonicity of g implies

(0 0)2 (6 0)zome = (0" ) 2

Pre- and post-multiplying this last matrix by (1,—1) and (1,—1)7 respectively, we have
gla+¢€) — g(a) > g(e), and by the monotonicity of g (applied to elaxgy > €1y for 0 < € <
€ < p), it follows that g is non-decreasing on [0, p). Now taking the limit as ¢ — 0", we have

0=yg(a™) —g(a) > g(0%) >0,

where the first equality follows from the continuity of g. Hence, g is right continuous at 0.
Next, for the continuity of g on (—p,0), let

a€(0,p), 0<e<min(a,p—a), Az(_ll 11),
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and deduce from the monotonicity of g:
(a+e)A>aA>(a—e)A>0 = gl(a+e)A] > glad] > g[(a—e€)A].
The positivity of the difference matrices implies, upon taking determinants:
lgla=£e) —g(a)| = |g(—a F €) — g(—a)l.

Let € — 07; then the continuity of g at a implies that at —a, as desired. A similar (one-sided)
argument shows the left continuity of ¢ at 0, via the step g(e) — g(0) > |g(—¢) — g(0)|.

Next, we come to the second assertion. If g is convex on Ps([l), then restricting to the
matrices alaxo for a € [0, p), it follows that g is convex on [0, p). Hence, ¢, exists on (0, p)
by Lemma [26.3] Now suppose 0 < s <t < p and 0 < € < p —t. Then by the convexity of g,

<t+e t) > <s+e s> > Opxy —> <g(/\(t+6)+(1—)\)(8+6)) g()\t—i—(l—/\)s))

t ot s s gAt+ (1 —=XN)s) gAt+ (1 —=N)s)
gt gt) gs+e) gls)
<A ( g(t) g<t>> A=A < o(s) g<s>> :

for all A € [0, 1]. Write this inequality in the following form: <g g) > 02x2. As above, pre-

and post-multiplying this last matrix by (1,—1) and (1, —1)T respectively yields
gAt+ (1= N)s+e) —g(At+ (1= A)s) < A(g(t +e€) —g(t) + (1 = AN)(g(s +€) — g(s)).

Divide by € and let e — 07; this shows ¢/, is convex, hence continuous by Lemma on

(0,p).
Next, denote by go, g1 the even and odd parts of g, respectively:

g0(t) = o) + 9(~0),  a1(t) = 5(9(6) — (1))

We claim that go, g1 are convex on [0,p). Indeed, by the convexity of g we deduce for
0<s<t<pandAel0]1]

t -t s =S
(—t t>2<—s 3)20
glex) 9(—@)) < 9(t) g(—t)> ( 9(s) g(—S))
() <A ) a0 (19
where ¢y = At + (1 — A)s. Pre- and post-multiplying this last inequality by (1,+1) and
(1,+£1)T respectively, yields
gt + (L= N)s) £ g(= (At + (1 = N)s)) < Ag(t) £ g(=1)) + (1 = X)(g(s) £ g(—s)).
This yields: gg, g1 are convex on [0,p). Next, note that if 0 < s < ¢t < p, and 0 < € <
min(t — s, p — t), then
g(t) —g(t —€)
€ € ’
by Lemma [26.3(1). Taking € — 07 shows that ¢/, (s) < ¢’ (¢) if 0 < s < ¢ < p and g is convex.
Similarly, ¢” (t) < ¢/, (t); therefore,

94 () < g2 (t) = (90)_(t) + (91)_(t) < (90)’ (1) + (1) () = gl (1)
Since ¢/, is continuous, letting s — ¢~ shows (g;)’_(t) = (g;)/.(¢) for j = 0,1. Thus, g; is

differentiable on (0, p). Since gg is even and g¢; is odd, they are also differentiable on (—p,0).
Hence, go,¢1,9 are differentiable on I \ {0}. Finally, let I’ := (—2p/3,2p/3) and define

g(s+¢) = 9g(s)

<



26. Appendix D. Preservers of Loewner monotonicity and convexity on kernels. 163

h(z) := g(z + p/3). It is easy to check that h is convex on Py(I’), so it is differentiable at
—p/3 by the above analysis, and hence g is differentiable at 0, as desired. O

With these preliminary results in hand, we now complete the remaining proof:

Proof of Theorem[26.1. We begin by showing the first assertion. First, suppose f is differen-
tiable on I and f’ is monotone on the rank < k matrices in Py, (I). Also assume A > B > 0,,xp,
are matrices of rank < k. Now follow the proof of Proposition m(?:) to show that f[—] is
Loewner convex on rank < k matrices in P, (I). Here we use the fact that since A > B > 0,
we have the chain of Loewner inequalities

A+ B

2
and hence the ranks of all matrices here are at most rk(A) < k.

The converse is shown in two steps; in fact, we will also prove that f is continuously
differentiable on I. The first step is to show the result for n = k = 2. Note by Proposition [26.4]
that f is differentiable on I. Now say A > B > Ogx2 with A # B in Py(I). Writing A =
(21 ;;) and B = (bbl bb2>, we have a; > b; > 0for j =1,2and (a—b)? < (a1—b1)(az—bs).
Define 6 € [0,a; — b1] and the matrix Coxo via

A>AA+(1=NB >\ +(1-\B > B, (26.5)

(@—b)2 = (a1 — b1 —8)(as —by), Ci= <b1 o0 bb2> € Po(I).

Clearly, A > C > B, all matrices are in Py(/), and A — C,C — B have rank at most 1.
Thus, we may assume without loss of generality that A — B has rank 1; write A — B =

<\7ch \/l;Tb) € Py. First, if ab = 0, then f’[A] — f'[B] is essentially a scalar on the main

diagonal. Now since f is convex on [0, p) by considering alsys for a € [0, p), we have [’ is
non-decreasing on (0, p), and hence f'[A4] > f'[B].

The other case is a,b > 0. In this case A > B > 0 and A — B is rank-1 with no zero
entries. Now follow the proof of Proposition [15.9)(3) to infer f'[A] > f'[B]. Together, both
cases show that f’ is monotone on Py(I), so f’ is continuous on I by Proposition [26.4]1).

This shows the result for n = k = 2. Now suppose n > 2. First, f is convex on Py(I), so
/" is monotone on P2(I) and hence continuous on I by the previous case. Second, to show
that f’ is monotone as asserted, suppose A > B > 0,,x, are matrices in P, (I) of rank < k.
Now claim that there is a chain of Loewner matrix inequalities

A=A,>A,12>--> Ay =B,

satisfying: (1) A; € P,(I) for all 0 < j < n, and (2) A; — Aj_; has rank at most 1 for each
1 < j < n. Note that such a chain of inequalities would already imply the reverse inclusions
for the corresponding null spaces, so each A; has rank at most k.

To show the claim, spectrally decompose A — B = UDUT, where U is orthogonal and
D = diag(A1, ..., A\,) with A\; > 0, and write

Aj = B+ Udiag(\g,..., A, 0,...,00U7, 0<j<n.

Note that A; < A, so the same applies to each of their corresponding (non-negative) diagonal
entries. Thus, 0 < (A;)y < ay for 1 <1 < n. Thus, the diagonal entries of each A; lie in
I = (—p, p), hence so do the off-diagonal entries. This shows the claim.

Thus, to show f/[A] = f'[A,] > f'[Ao] = f[B], it suffices to assume, as in the previous case
of n = k = 2, that A— B has rank 1. First, if A— B has no zero entries, then f'[A] > f'[B] by
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Proposition M(ZS) Otherwise, suppose A — B = uu’, with u € R™ a non-zero vector having

zero entries. Without loss of generality, write u = 8 , with v € R! having no zero entries
. . . A A12 .. .
for some 1 <1 < n —1. Accordingly, write A = A A ) and similarly for B; it follows
21 A2

that A;; = B;j for all (4, j) # (1,1), and A1 = By +vv!. Now since f is Loewner convex on
[B, A], it is so on [Bj1, A11], where all matrices are positive semidefinite and also have rank
< k. Moreover, f’ exists and is continuous on I from above. Again, by Proposition M(B),
it follows that f’ is Loewner monotone on [Bi1, A1) (if & = 1 then this assertion is true by
one-variable calculus). But then,

F'IA] - f'[B] = <f'[A11] BfI[BH] 8) > 0.

This proves the first assertion; we turn to the second. First, suppose A > B > Opxp,
and f’ is Loewner positive on P,,(I). Then follow the proof of Proposition [15.9(2) to infer
fl[A] > f[B]. Conversely, we prove the result under a stronger hypothesis: namely, f is
differentiable. Now the proof of Proposition m(Z) again applies: given A € P, (1), we have
A+ €l,xp € Py(I) for small € > 0. By monotonicity, it follows that

%(f[A + €lnxn] — f[A]) € Py
Taking € — 0T proves f'[A] € P, as desired. O
We now move to kernels.

Definition 26.6. Suppose X is a non-empty set, I C R a domain, and V is a set of (real
symmetric) positive semidefinite kernels on X x X, with values in I.

(1) The Loewner order on kernels on X x X is: K = L for K, L kernels on X x X, if
K — L is a positive semidefinite kernel. (Note, if X is finite, this specializes to the
usual Loewner ordering on real | X| x | X| matrices.)

(2) A function F' : I — R is Loewner monotone onV if FoK = FolL whenever K = L =0
are kernels in V.

(3) A function F' : I — R is Loewner conver on V (here I is assumed to be convex) if
whenever K > L > 0 are kernels in V, we have

AMFoK+(1—ANFoL>Fo(AK+(1—-X)L), VA e [0,1].
The above results for matrices immediately yield the results for kernels:

Theorem 26.7. Suppose 0 < p < oo, I = (—p,p), and F : I - R, and X is an infinite set.
The composition map F o — is Loewner monotone (respectively, Loewner convex) on positive
kernels on X x X, if and only if F' satisfies the respective equivalent conditions on matrices

of all sizes, in Theorem[26.3.

Proof. First, if F' is Loewner monotone or convex on kernels on X x X, then by restricting
the defining inequalities to kernels on Y x Y (padded by zeros) for finite sets ¥ C X, it
follows that F' is, respectively, Loewner monotone or convex on P, (I) for all n > 1.

To show the converse, suppose first that F(y) = > 2 cky” on I, with ¢1,c2,--- > 0. To
show that F' o — is Loewner monotone on kernels on X x X, it suffices to do so on every
“principal submatrix” of such kernels — i.e., for every finite indexing subset of X. But this is
indeed true for F', by Theorem A similar proof holds for Loewner convex maps. O
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27. APPENDIX E. MENGER’S RESULTS AND EUCLIDEAN DISTANCE GEOMETRY.

We conclude this part of the text with a brief detour into the same area where we started
this part of the text: metric geometry, specifically, that of Euclidean spaces R™ — and of their
closure, Hilbert space ¢?. This is a beautiful area of mathematical discovery, which has fea-
tured work by several prominent mathematicians, including Birkhoff, Cauchy, Cayley, Godel,
Menger, Schoenberg, and von Neumann, among others. See [237] for a modern exposition of
some of the gems of distance geometry (which begins, interestingly, with Heron’s formula for
the area of a triangle, from two millennia ago).

The main result of this section is a 1928 theorem of Menger:

Theorem 27.1 (Menger, [258]; see also [315]). A metric space (X,d) can be isometrically
embedded in Hilbert space 2 if and only if X is separable and every subset of X of size n+ 1
can be isometrically embedded in R" (equivalently, in (?) for n > 2.

This result, together with Schoenberg’s theorems [16.10| and [16.17) on Hilbert space embed-
dings of finite metric spaces X, immediately yields those theorems for all separable X:

Theorem 27.2 (Schoenberg). Suppose (X,d) is a separable metric space.

(1) X embeds isometrically into Hilbert space ¢2 if and only if for every integer n > 2 and
(n+1)-tuple of points Y := (g, ...,x,) in X, the “alternate Cayley—Menger matriz”
CM'(Y) = (d(zo, ;) + d(z0, 7x)* — d(x;, xk)z)gkzl is positive semidefinite.

(2) X embeds isometrically into Hilbert space ¢* if and only if the Gaussian kernel
exp(—0o(-)?) is a positive definite function on X for all o > 0 (equivalently, for some
sequence o, of positive numbers decreasing to 0 ).

Here, we explore some simple, yet beautiful observations in Euclidean distance geometry,
which help prove Theorem and also provide connections to Cayley—Menger matrices [78),
259] and to n-point homogeneous spaces (see Remark [16.22)). We begin with the latter.

27.1. n-point homogeneity of Euclidean and Hilbert spaces. As early as 1944, in his
influential work [50] Birkhoff defines a metric space (X, d) to be n-point homogeneous if given
two equinumerous subsets of X of size at most n, an isometry between them extends to a
self-isometry of X. The heart of the present proof of Theorem [27.1]is to show that Euclidean
space R¥ is n-point homogeneous for all k,n > 1:

Theorem 27.3. Fiz an integer k > 1.

(1) The Euclidean space R¥ with the Euclidean metric is n-point homogeneous for all n.
More strongly: any isometry between two subsets M, N C RF is, up to a translation,
the restriction of an orthogonal linear transformation of RF.

(2) Hilbert space €% is n-point homogeneous for all n.

The first step in proving Theorem [27.3]is the following observation about Gram matrices:

Lemma 27.4. Given vectors yo, . ..,yn € {2 for some n > 0, the Gram matric ((yy, Z/k>)?k:0
is invertible if and only if the y; are linearly independent.

Proof. We prove the contrapositive. If Y} cxyr = 0 is a nontrivial linear combination, then
applying (y;, —) for all j yields Gram((yx)x)c = 0, where ¢ = (cg,...,c,)T # 0. Conversely,
if Gram((yx)x)c = 0 and ¢ # 0, then

2

n
> cryi

k=0

0 = ¢ Gram((yp)x)c =

)
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so that some nontrivial linear combination of the y; vanishes, as desired. O

This simple lemma leads to striking consequences. We will presently mention two, the first
of which involves a classical concept (which already featured in Theorem [16.10)):

Definition 27.5. Given a metric space X = ({zo,1,...,2n},d), write dj;, := d(xj, xy) for
0 < j,k <n. The associated Cayley—Menger matriz is
0 dfy dgp - di, 1
d;o g d%Q A d;n 1
d20 d21 O A d2 ].
CM(X)mi2)x(mt2) == | . . . . :n e (27.6)
dpy dpy dng oo 01
1 1 | 1 0
Similarly, the “alternate form” of the Cayley—Menger matrix here is
, 2d2(2)1 , doy + d(2)22 —diy - dgn + d(§n - din
dgy +dg, — d 2d s dgy +dg, —d
CM (X ) = 01 92 12 .02 . 01 (?n in (27.7)

Recall that the positive semidefiniteness of the second matrix features in Schoenberg’s
recasting of Menger and Fréchet’s results on Hilbert space embeddings of finite metric spaces.
We now write down a preliminary observation that relates the two determinants above:

Lemma 27.8. For all finite metric spaces X with at least two points,
det CM(X) = (-1l det CM'(X). (27.9)

Proof. Starting with the matrix CM (X), perform elementary row and column operations,
leaving the determinant unchanged. First, subtract the first row from all non-extremal rows.
Then subtract the first column and dgj times the last column each from the non-extremal
columns. This yields

0 ol 1
(d)i —CM'(X) 0y |,
1 ol 0
a bordered matrix with determinant (—1)""!det CM’(X), as desired. O

We can now state and prove the two consequences of Lemma, promised above. The
first of these is a well-known result, proved in 1841 by Cayley during his undergraduate days
[78]. The second is the underlying principle behind the Global Positioning System, or GPS —
trilateration (also referred to more colloquially as “triangulation”): every point in the plane
(or on the surface of a sphere “like” the Earth) is uniquely determined by intersecting three
circles that denote distances from three non-collinear points (or four spheres centered at four
non-coplanar points).

Proposition 27.10.

(1) (Cayley, [T8]). Suppose an isometry ¥ sends a finite metric space (X = {xo,...,zn},d)
into Hilbert space ¢?. Then the vectors V(xg), ..., V(x,) are affine linearly dependent
(i.e., lie on an (n — 1)-dimensional subspace) in 2, if and only if the Cayley—Menger
determinant of X vanishes.

(2) Fiz vectors yo = 0,y1,...,yn € £2. Given any y € £2, the following are equivalent:
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Proof.
(1)

(a) y is (uniquely) determined by the tuple of Euclidean distances (||yl|, ly—vll,-- -, |ly—
yn”) c Rl
(b) y is in the span of y1,...,Yn-

Denote y; := ¥(z;) for 0 < j < n. Now compute, as in Equation ((16.12) in the proof
of Theorem [16.10k

d(yo, y5)* + d(yo, yx)* — d(y5, y1)* = (Yo — Y5 Yo — i),
so that CM'(X) = Gram((yo — y;)—1). Now CM(X) is singular if and only if so is
CM’(X). From above and by Lemma this happens if and only if the vectors
Yo — yj, 1 < j < n are linearly dependent. This completes the proof.
For this part, let V' C ¢* denote the span of the y;. First, suppose y ¢ V. Write
y = yv @ yy 1 as the orthogonal decomposition of y. One verifies that for any unit
vector v € V1 (for instance, v = +y1 /||y L ||), both y as well as the vector

yv @ [lyyLllv

have the same distances from every vector in V' —in particular, from each of 0, y1, . .., Y.
This shows (the contrapositive of) one implication.

Conversely, suppose y € V. We show that y is uniquely determined by the distances
to the y; and to 0 — in fact, it suffices to consider the distances to a basis of V.
Thus, suppose without loss of generality that the y; are linearly independent. Let
y = >0 ¢yj, and let do := |lyll,d; := ||y — y;[l. We show that the d; uniquely
determine the ¢;, and hence y. Indeed, a straightforward computation yields

g — dj = chyk - chyk_yj :_HyjH2+QZCk<yj7yk>7 1<j<n.
k=1 k=1 k=1
Rewriting this system of linear equations (in ¢ = (c1,...,¢p)) yields
1
Gram((y;);)e = 5 (Iyll* + lly;11* = lly = 51*)j=1- (27.11)
Hence, c is unique, by Lemma [27.4] O

Equipped with these preliminaries, we are now ready to proceed toward proving Menger’s
result. We first show:

Proof of Theorem |27.5

(1)

First suppose that both M, N contain the origin, and ¥ : M — N sends 0 to itself.
This is not really a constraint: if here we can show that ¥ = T'|; for some orthogonal
matrix T € Ok(R), then for a general isometry ¥ and an arbitrary (base)point m, €
M, the isometry
O:M—mo— V(M) —T(m,), v U(me +v) — U(mo)
sends 0 to 0, hence equals the restriction to M of some T € Ok (R). Thus,
U(m) =T(m)+ (¥(mo) — T'(mo)), Vm e M.

Therefore, we may assume without loss of generality that mo, := 0 € M NN and
U(0) = 0. In this case, we need to show that W is the restriction to M of an orthogonal
matrix.



168 27. Appendix E. Menger’s results and Euclidean distance geometry.

Begin by isolating a basis mq,...,m, € M of the R-span of M. We assume
r > 0, else M is a singleton, hence so is N, and then the result is immediate. Let
Yj = \I/(mj); then

2(yj, ye) = W (my) — L) + ¥ (my) — C(0)||* — [[¥(my) — ¥ (my)||?

. (27.12)
= [lmyl[* + l[mgl® = [[m; — ma||* = 2(mj,my),  V1<jk<r

Hence, by Lemma the y; are also linearly independent. By the same reasoning,
for any m € M \ {mq,...,m,} we have that the Gram matrix of my,...,m,,m is
singular, hence so is the Gram matrix of y1, ..., y,, ¥(m). Again, using Lemma
the image W(M) = N is contained in the R-span of {y; = ¥(m;) : 1 < j <r}.

At this point, we define the linear map

T : spang (M) — spang(N), mj—y; V1 <5 <.

The next claim is that 7= W on M. Indeed, given m € M, write
' '

m=> cj(mym;,  U(m)=_c(m)y;.

j=1

j=1

We now apply Proposition 27.10[ to both m and W¥(m). Since Gram((m;);) =
Gram((y;);) by (27.12), the computation in Equation (27.11)) for both y; and m;
reveals that c;(m) = c(m) for all m € M, 1 < j <r. In particular,

T r

T(m) =Y ¢j(m)T(m;) => di(m)y; =T¥(m), VYmeM
=1 i=1

which proves the claim. Finally, we assert that T' preserves lengths on spang(M).
But this is clear by (27.12): if v := Zj c;m; with all ¢; € R, then

s T

(Tv, Tv) = Z cick(Yj, Yk) = Z cicp(mjmy) = (v, ).

J,k=1 J,k=1

To conclude the proof of this part, choose orthonormal bases of the ortho-complements
in R of spang (M) and spang(N), and map one basis to another to extend T to an
orthogonal linear map on all of R¥.

(2) This is clear by the previous part: given z;,y; € ¢* with 1 < j < n, such that

o — @il = lly; —well,  V1<jk<n,

choose a finite-dimensional subspace of £? which contains all xj,y;. Apply the previous
part to this subspace; modulo the translation, one has an orthogonal transformation
of this subspace, which we augment by the identity map on its ortho-complement. [

Remark 27.13. The proof of Theorem [27.3]is reminiscent of the well-known “lurking isom-
etry” method — so named by J. Ball — in bounded analytic interpolation. This involves using
Hilbert space realizations, and has numerous applications, including to the problems of Pick—
Nevanlinna and Carathéodory—Fejer, among others (see, e.g., [2, B]), and also indirectly in
Ho, methods in control theory (see [16] and the references therein).

Finally, we use Theorem to prove Menger’s result:
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Proof of Theorem [27.1. The “only if” part is immediate, modulo a translation in order to
map one of the points to the origin. Conversely, if X is finite, then the result is again easy.
Thus, we now assume that X is both infinite and separable. Let D := {z,, : n > 0} denote
a countably infinite dense subset of X and define D,, := {zq,...,z,} for n > 0. We are
given isometric embeddings ¥,, : D,, < ¢? for each n > 2, where we assume without loss of
generality that W, (zo) = 0 ¥n > 0. We now construct an isometric embedding : D < (2
once again sending xg to 0.

To do so, fix and start at any integer ng > 2, say. Given n > ng, we have ¥,, : D,, < ¢?
(sending x¢ to 0). Now

U, 0,2yt Uy (Dy) = V(D)

is an isometry of an (n+1)-point set in £2, sending 0 to 0. Extend this to an orthogonal linear
transformation on ¢2 by (the proof of) Theorem say Ty41. Thus, we have “increased”
U, (Dy,) to an isometric image of D, 1, namely T}, 11(Vy,+1(Dp+1)), while not changing the
images of zg,x1,...,Tn.

We now repeatedly compose the T, to obtain the increasing family of sets

Sn = (Tno—i-l o---0Tp 10 Tn)(\Ijn(Dn))7 n = ng

which satisfy
0 G S’no = \II’I’LO(DTLO) C ST'L0+1 C STL0+2 C e,

Moreover, each S,, = {yo = 0,41, ...,yn} for n > ng, together with an isometry : D,, — S,
sending x; + y; for 0 < j < n. The union of these sets provides the desired isometric
embedding ® : D < J,, Sp = limy 00 Sy-

The final step is to apply the following standard fact from analysis, with Y = ¢?:

Suppose (X, d), (Y,d') are metric spaces, with’Y complete. If D C X is dense, any isomet-
ric embedding ® : D — Y extends uniquely to an isometric embedding d:X Y. O

27.2. Cayley—Menger determinants, simplex volumes, and Heron’s formula. It is
impossible to discuss Cayley-Menger matrices C'M (X)) without explaining their true content:
their connection to the squared volume of the simplex with vertices the elements of X.

Theorem 27.14. Suppose n > 1 and X = {xg,...,z,} C R™. Then the volume V,,(X) of
the (n + 1)-simplex with vertices x; satisfies

—1)"*tdet CM(X)  det CM'(X)

V”(X>2:( 2 (n)2 T 2n(nl)2

As a special case, if the points x; are affine linearly dependent, then the volume of the
corresponding simplex is zero, as is the determinant by Cayley’s proposition [27.10

Corollary 27.15. For all finite subsets X of Fuclidean (or Hilbert) space, det CM'(X) > 0.

Remarkably, Theorem [27.14| can be proved using only determinants (and a bit of visual
geometry). Variants of the following proof can be found in several sources, including online.

Proof of Theorem |27.14 This proof is split into two parts. In the first part, we show the
“usual /Cartesian” description of the volume of the simplex via determinants. Recall that the
n-volume of a simplex in R™ having n + 1 vertices is obtained inductively, by integrating the
area of cross section as one goes from the base (which is a simplex in R"~! with n vertices) to
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the apex/remaining vertex along an “altitude” of height h,,. An easy undergraduate calculus
exercise reveals that if the base has (n — 1)-volume V,,_1, then
hnvnfl

Vi = .
n

One can now proceed inductively. Thus, let h; denote the length |z¢o — x1||, let ha denote
the “height” of xo “above” the segment joining xg,z; (so it can be written as the norm of a
suitable orthogonal complement), and so on. Then,

1
Vo(X) = Ehnhn_l - hy.
We now show that this product expression equals (up to sign) a determinant. Write

zj= (M, ai)TeR,  0<j<n

and claim that up to a sign,

1 1
—hnhooy ooy =% det(4),  where A= (@ —af)m . (27.16)

To show the claim, note that working with A essentially amounts to assuming zy = 0. Choos-
ing a suitable orthonormal basis (i.e., by applying a suitable orthogonal transformation), we
may further assume that z1,...,z,—1 € R"™! —i.e., the final column of A has all entries zero
except at most the (n,n) entry. Now the final row of A, which denotes the vector x,, — xo,
may be replaced by its orthogonal complement to the span of {x; —z¢ : j < n} without
changing the determinant, and so we obtain (up to a sign) the height h, — and in the nth
coordinate since x; — xg € R"™! for j < n. This scalar can be taken out of the determinant
and we are now left with the determinant of an (n — 1) X (n — 1) matrix.

Applying the same arguments for x; — xo with j <n — 2 now, we obtain h,_1, and so on.
Proceeding by downward induction (and taking the absolute value), we obtain .

The second step is now easy: square the identity in the first step, to get:

det AAT
(n!)?

Vi(X)2 = (n1!)2 (det A)(det AT) =

But AAT is precisely the Gram matrix of the vectors {x; — z¢ : 1 < j < n} — which has
(4, k)-entry

1
(xj — 0, T — T0) = i(d]zo +dyy — d?k)

as in Equation (16.12). Hence AAT = 271CM’'(X), so that

det CM'(X)
2 _
Valo)” = =5
The proof is complete by Equation (27.9)). O

As a special case, this result leads to a well-known formula from two thousand years ago:

Corollary 27.17 (Heron’s formula). A (Euclidean) triangle with edge lengths a,b,c and
semi-perimeter s = 3(a+ b+ c) has area \/s(s — a)(s — b)(s — ).
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Proof. Explicitly expand the determinant in Theorem [27.14] for n = 2, to obtain:

0 a®> b 1
-1 a2 0 1 -
2 _ 4 - _ _ _
Vs = G det 22 0 1 16( (a+b+c)a+b—c)(b+c—a)(c+a—D)),
1 1 1 0
and this is precisely s(s —a)(s — b)(s — ¢). O

27.3. Complements: completely monotone functions and distance transforms. In
parallel to the use of absolutely monotone functions earlier in this text — to characterize
positivity preservers of kernels on infinite domains (or all finite domains) — we present here
a related result by Ressel that features completely monotone functions. We then provide a
sampling of early results in metric geometry, again by Schoenberg, that feature such functions.

Definition 27.18. A function f : (0,00) — R is completely monotone if f is smooth and
(—1)*f*) is non-negative on (0,00) for all k > 0. A continuous function f : [0,00) — R is
completely monotone if the restriction of f to (0,00) is completely monotone.

For instance, =% for a < 0 is completely monotone on (0, 00).
We start with two results which are easily reformulated in the language of kernels:

(1) In his 1974 paper [297], Ressel characterized the functions that are positive definite in
a different sense: given an abelian semigroup (S, +), a function f : S — R is said to be
positive semidefinite if f is bounded and for any finite set of elements si,...,s, € .5,
the matrix (f(s; + sx))}—; is positive semidefinite. Ressel then showed for all p > 1
that the continuous and positive semidefinite functions on the semigroup [0, co)?P are
precisely Laplace transforms of finite non-negative Borel measures on [0,00)?. In
particular, for p = 1, this is further equivalent — by a result attributed to Bernstein,
Hausdorff, and Widder — to f being completely monotone on [0, c0).

(2) A related result to this was shown by Schoenberg [316] in Ann. of Math. (1938). It
says that a continuous function f : [0,00) — R satisfies the property that for all
integers m,n > 1 and vectors x1,...,2, € R", the matrix (f(||z; — :Uk||2));7fk:1 is
positive semidefinite, if and only if f is completely monotone — i.e., as mentioned in
the previous part, there exists a finite non-negative measure p on [0, 00), such that

flx) = /000 exp(—xt) du(t), Va > 0.

Completely monotone functions also feature in the study of metric “endomorphisms” of
Euclidean spaces. For instance, Schoenberg proved (in the aforementioned 1938 paper):

Theorem 27.19. Given a continuous map f : [0,00) — [0,00), the following are equivalent:

(1) For all integers m,n > 1 and vectors x1,...,xm € R", the matriz (f(||lz; — zxll))] %=,

is Buclidean — i.e., {x;} with the metric f o | - || isometrically embeds into ¢*.
(2) We have f(0) =0 and the function %(f(\/f)Q) is completely monotone on (0, 00).

This result and paper are part of Schoenberg’s program [313, 316, 317, 318, B355] to under-
stand the transforms taking distance matrices from Euclidean space E, of one dimension n,
isometrically to those from another, say E,,. Schoenberg denoted this problem by {E,; E,,},
with 1 < m,n < oo, where Eo = ¢? is Hilbert space. Schoenberg showed:
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(1) If n > m, then {E,; E,} is given by only the trivial function f(¢) = 0. Indeed, first
observe by induction on n that the only Euclidean configuration of n + 1 points that
are equidistant from one another is an “equilateral” (n + 1)-simplex A in R" (or E,,),
hence in any higher-dimensional Euclidean space — and this cannot exist in R?~!,
hence not in R™ for m < n. If now f(z¢) # 0 for some x > 0, then applying f to the
distance matrix between vertices of the rescaled simplex zgA C R", produces n + 1
equidistant points in R™, which is not possible if 1 < m < n.

(2) If 2 <n < m < oo, then {E,; E,,,} consists only of the homotheties f(z) = cx for
some ¢ > 0. (With von Neumann in 1941 [355], Schoenberg then extended this to
answer the question for n = 1 < m < o0.) Schoenberg also provided answers for
{EQ; Eoo}

(3) The solution to the problem {E; Ex} is precisely the content of Theorem

As a special case of Theorem all powers d € (0, 1) of the Euclidean metric embed into
Euclidean space. We provide an alternate proof using the above results on metric geometry.

Corollary 27.20 (Schoenberg, [315, 316]). Hilbert space (2, with the metric ||z —y||®, embeds
isometrically in “usual” £? for any § € (0,1).

This was shown in 1936 by Blumenthal in Duke Math. J. [52] for four-point subsets of £2
and ¢ € (0,1/2). Schoenberg extended this to all finite sets.

Proof. As observed by Schoenberg in [315], it suffices to show the result for (n + 1)-element
subsets {zo,...,z,} C £2, by Menger’s theorem Now note that for ¢ > 0, the function
g(u) := (1—e~")/u is bounded and continuous on (0, 1], hence admits a continuous extension
to [0,1]. Since u~° is integrable in (0,1], so is the product

v :(0,1] —» R, w—s w1 — e,
Clearly, ¢ : [1,00) — R is also integrable, being continuous, non-negative, and bounded above
by ©~ 179, By changing variables, we obtain a normalization constant ¢s > 0, such that

$20 — 05/ (1—eMON 2 g0 vt > 0.
0

Set t := ||z; — z||, and let u = (ug, ..., u,)T € R" with >_juj = 0. Then,

n s n
2 2
> wjugllzy — ]| = Ca/ 3 wjup(l — e Nl ) \-1-20 gy,
4,k=0 0 \jk=0

N~

But the double-sum inside the integrand equals — Zj i WjUge , and this is non-

positive by Theorem [16.17| It follows that the matrix (—(||z; — || )2)? k—o s conditionally
positive semidefinite, and so we are done by Theorem [16.10] and Lemma [16.13 ]
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in fully classifying the total positivity preservers on bi-infinite domains.

Loewner’s theorem on operator/matrix monotone functions is from [240]; see also
Donoghue’s book [103], as well as the recent monograph by Simon [338] that contains a
dozen different proofs.

The results in distance geometry are but a sampling from the numerous works of Schoen-
berg. Theorem relating Fuclidean embedding of a metric and the conditional neg-
ativity of the corresponding squared-distance matrix, is from [313], following then-recent
works by Menger [258] 259] 260] and Fréchet [131]. Schoenberg’s theorem (respectively,
Proposition, characterizing Hilbert space (respectively, the Hilbert sphere) in terms of
positive definiteness of the Gaussian family (respectively, the cosine), is from [317] (respec-
tively, from [313]). We point out that Schoenberg proved these results more generally for
separable (not just finite) metric spaces, as discussed in Section See also Schoenberg’s
paper [316] and another with von Neumann [355] (and its related work [223] by Kolmogorov).
For the works of Bochner in this context, we restrict ourselves to mentioning [56l 57]. Theo-
rems [16.20| and [16.24] by Schoenberg on positive definite functions on spheres are from [31§].
Also, see the survey [346] of positive definite functions by James Drewry Stewart (who is
perhaps somewhat better known for his series of calculus textbooks).

While Schoenberg’s motivations in arriving at his theorem lay in metric geometry, as
described above, Rudin’s motivations were from Fourier analysis. More precisely, Rudin was
studying functions operating on spaces of Fourier transforms of L' functions on groups G,
or of measures on G. Here, G is a locally compact abelian group equipped with its Haar
measure; Rudin worked with the torus G = T, while Kahane and Katznelson worked with
its dual group Z. These authors together with Helson proved [I64] a remarkable result in
a converse direction to Wiener—Levy theory, in Acta Math. 1959. That same year, Rudin
showed Schoenberg’s theorem without the continuity hypothesis, i.e., Theorem [16.3] For
more details on this part, on the metric geometric motivations of Schoenberg, and other
topics, the reader is referred to the detailed recent twin surveys of Belton—Guillot—Khare—
Putinar [27, 28].

The Horn-Loewner Theorem m (in a special case) originally appeared in Horn’s pa-
per [182], where he attributes it to Loewner. The theorem has since been extended by the
author (jointly) in various ways; see, e.g., [30} [I55]; a common, overarching generalization of
these and other variants has been achieved in [214]. Horn-Loewner’s determinant calculation
in Proposition [17.5| was also extended to Proposition by Khare [214]. The second, direct
proof of Theorem [17.1]is essentially due to Vasudeva [353].

Mollifiers were introduced by Friedrichs [132], following the famous paper of Sobolev [343],
and their basic properties can be found in standard textbooks in analysis, as can Cauchy’s
mean value theorem for divided differences. The remainder of the proof of the stronger
Horn-Loewner theorem is from [I82], and the Boas-Widder theorem [18.10](2) is from [55].
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Bernstein’s theorem is from his well-known memoir on absolutely monotone func-
tions [44]; see also Widder’s textbook [370]. Boas’ theorem on the analyticity of smooth
functions with SSR (strictly sign regular) derivatives is from [54]. Hamburger’s theorem [19.14]
is a folklore result, found in standard reference books — see, e.g., [8, 310, B35]. The remainder
of Section [19]is from Belton-Guillot—Khare-Putinar [30]. Section [20]is taken from the same
paper, with the exception of Theorem which is new, as are “Proofs 1 and 2” of the
existence of a positivity certificate/limiting sum-of-squares representation for (141¢)(1—¢2)".
The former proof cites a result by Berg—Christensen—Ressel [39], and the latter, direct proof,
is new.

Sections [21| and [22| are again from [30], save for the standard Identity Theorem and
Proposition [21.2| on the closure of real analytic functions under composition; these can be
found in, e.g., [227]. The complex analysis basics, including Montel and Morera’s theorems,
can be found in standard textbooks; we cite [88]. The multivariate Schoenberg-Rudin the-
orem was proved by FitzGerald, Micchelli, and Pinkus in [124], and subsequently, under
significantly weaker hypotheses in [30].

Appendix A on the Boas—Widder theorem is from [55] except for the initial observations.
Boas and Widder mention Popoviciu [290] had proved the same result previously, using un-
equally spaced difference operators. The very last “calculus” Proposition can be found
in standard textbooks. Appendix B, classifying the dimension-free preservers of positivity
when not acting on diagonal blocks, is from the recent work of Vishwakarma [354], with the
exception of the textbook Proposition and Theorem by Guillot-Rajaratnam [157].

Theorems and [26.2]in Appendix D, understanding and relating the Loewner positive,
monotone, and convex maps, were originally proved without rank constraints on the test sets,
by Hiai in [I71]. Lemma is partly taken from [I71] and partly from Rockafellar’s book
— see [302, Theorems 24.1 and 25.3]. The remainder of Section [26| (i.e., Appendix D), as well
as Section [25| (i.e., Appendix C), are taken from Belton—-Guillot—-Khare—Putinar [32].

Theorem is due to Menger [258]. Theorem comes from various works of Schoen-
berg on metric geometry (cited on the preceding page). Theorem was already known
to experts at the time; we cite here Birkhoff’s famous paper [50]. The first part of Proposi-
tion was shown by Cayley [78], and features Cayley—Menger determinants. The proof
of Theorem can be found in numerous sources, including online. The results in Sec-
tion are taken from the sources mentioned in it (e.g., the proof of Corollary .
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Part 4: Pdlya frequency functions and sequences
28. TOTALLY NON-NEGATIVE FUNCTIONS OF FINITE ORDER.

In this part and the next, we approach the preserver problem in the above settings through
a more classical viewpoint: that of spaces of kernels and their endomorphisms. The material
in this part of the text is drawn primarily from the work of Schoenberg and his coauthors
(as well as its account in Karlin’s monograph), and a few recent preprints, all from 2020.

We begin by describing this part of the text and the next. We are interested in character-
izing the preservers of totally non-negative or totally positive kernels, on X x Y for arbitrary
totally ordered sets X,Y. The case of XY finite was studied in Part 2, and if | X|, |Y] > 2,
the only such functions — up to rescaling — are powers. Next, if exactly one of X,Y is finite, a
workaround can be achieved by using a generalization of Whitney’s density theorem we
show this in Section [40] The difficulty lies in the remaining case: classifying the total posi-
tivity preservers for kernels on X x Y when both X,Y are infinite. In this case, the families
of kernels we have encountered so far, do not suffice to yield a complete classification.

Thus, we begin by relaxing our goal, to classifying such preservers for structured kernels, on
specific domains. Our first goal is to study the inner transforms of TN/T P Toeplitz kernels
on R x R. This is not an arbitrary choice: indeed, such kernels have long been studied in
the analysis literature, under the name of Pdlya frequency functions, and so it is natural to
study this test set — as well as the related Pdlya frequency sequences — and to understand the
endomorphisms of these classes. This understanding is achieved in the next part of the text.

The class of Pélya frequency functions is fundamental to time-frequency analysis and to
interpolation theory, the latter via splines (a subject which begins with many papers by
Schoenberg and his coauthors). Pélya frequency functions possess beautiful properties that
were established by Schoenberg and others in the twentieth century, and that allow us to
exploit tools from harmonic analysis to try and classify their preservers. Looking ahead (and
using these tools), we will find that Toeplitz TN kernels turn out to be quite rigid, and
the results in the next few sections will help resolve — again in the next part — the original
problem, of classifying the T'N/T'P kernel preservers on arbitrary domains. (See Section [40])

Thus, a roadmap of this part and the next: We begin by discussing some preliminaries on
Pélya frequency (PF) functions and sequences, including the variation diminishing property
and its history. This is followed by a selection of results from the landmark paper of Schoen-
berg in J. d’Analyse Math. (1951), which establishes a host of properties of PF functions
and surveys the development of the subject until that point. (Following Schoenberg’s papers,
Karlin’s book also develops the theory comprehensively.) We also discuss several examples
of PF functions and sequences. We next discuss several classical results on root-location, the
Laguerre-Pélya class of entire functions, and its connection to both Pélya frequency func-
tions as well as the Pélya—Schur theory of multiplier sequences (and some well-known modern
achievements). Finally, we discuss very recent results (2020) on T'N, functions. This part
can be read from scratch, requiring only Sections [f] and and Lemma when invoked.

In the next part: in Section [36[ we will see results of Schoenberg and Karlin (and a con-
verse to the latter) which reveal a ‘critical exponent’ phenomenon in total positivity, akin to
Section [0 In Sections [37] and we prove a host of classification results on preservers: of
Pélya frequency functions and sequences, one-sided variants, and other structured Toeplitz
kernels on various sub-domains of R. In Section we classify the preservers of TN and T'P
Hankel kernels. Finally, these results all come together in Section [0, along with discretiza-
tion techniques and set-theoretic embedding arguments, to solve the overarching problem of
classifying the preservers of totally positive kernels on all totally ordered domains.
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28.1. T'N> functions — basic properties. We begin with notation.

Definition 28.1. Given an integer p > 1, we term a function f : R — R totally non-negative
of order p, or T'N,, if f is Lebesgue measurable and the associated Toeplitz kernel

T :RxR =R, (z,y) — flz —y) (28.2)

is TN, (see Definition [5.10). We will say f is totally non-negative, or TN, if f is Lebesgue
measurable and T is TN. This definition extends to 77 : X x Y — R (where X,Y C R) if
f is only defined on the Minkowski difference X —Y C R.

We discuss examples in the next section; first, we explore basic properties of these functions.

Lemma 28.3. Suppose p > 1 is an integer, and f : R — R is a TN, function. Then
cf(ax +b) and ce™ f(x) are also TN, functions, for any a,b € R and ¢ > 0.

Proof. The first part is left as an exercise to the reader, noting if a < 0 that (the sign of) a
determinant remains unchanged upon reversing all rows as well as columns. For the second
part, if x,y € R™T for 1 <r < p (see Definition [25.1), and g(z) := ce®® f(x), then
Tylx; y| = diag(ce™ )i, Ty[x; y] diag(e™**)j_y,
and hence det Ty[x;y] > 0 by the hypotheses. O
The following result reveals the nature of T'Ns functions over symmetric intervals:

Theorem 28.4. Suppose an interval J C R contains the origin and has positive length, and
f:J—J — R is Lebesque measurable. The following are equivalent:

(1) There exists an interval I C J — J such that f is positive on I and vanishes outside
I, and log(f) is concave on I.

(2) f is TNa, i.e., given a < b and ¢ < d in J, the matric <J}EZ: 3 J}EZ: (Cii))

If so, f is continuous in the interior of I, so discontinuous in J — J at most at two points.

) s TN.

The proof uses a preliminary fact on concave functions:

Lemma 28.5. Suppose p < q are real numbers and g : [p,q] — R is concave. If p <r <s<gq
and v+ s =p+q, then g(r) + g(s) > g(p) + 9(q).

Proof. Suppose for some A € [0,1] that » = Ap 4+ (1 — A)g; then s = (1 — A\)p + A\g. Now
concavity implies:

g(r) = Ag(p) + (1 = Ng(q),  g(s) = (1= Ng(p) + Ag(q).

Adding these inequalities, we are done. O

Proof of Theorem[28.]]. First if f is non-zero at most at one point then the result is clear, so
assume throughout this proof that f is non-zero at least at two points. Suppose (1) holds,
and a < b and ¢ < d index the rows and columns of a ‘2 x 2 submatrix’ drawn from the kernel

Ty on J x J. By the hypotheses, all entries of the matrix M := <‘§,EZ : 3 ‘?EZ : Z;) are

non-negative. Also,

a—c, b—de(a—d, b—c).
Now there are several cases. If either a — ¢ or b — d lie outside I, then M has a zero row or
zero column, whence it is T'No. Otherwise a —¢,b—d € I. If now a — d or b — ¢ lie outside [
then M is a triangular matrix, hence T'Ns. Else we may suppose all entries of M are positive.
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Now the above ordering and the concavity of log(f) easily imply via Lemma (applied to
g =log(f),p=a—d,q="0b—c) that det(M) > 0. This proves (1) = (2).

Conversely, suppose (2) holds, so that f > 0 on J — J, and suppose f(zp) > 0. First fix
d > 0 such that either [0,d) or (—¢,0] is contained in J. We now claim that if f vanishes at
x1 > xo (respectively, xo < (), then it vanishes on the intersection of J — J with [z, 00)
(respectively, with (—oo,x2]). We only show this for 21 > z(; note moreover that it suffices
to show this for y € (x1,z1 4+ ) N (J — J). If (=9,0] C J, consider the T'Ny submatrix

Trl(zo,z1); (21 — y,0)] = (f(xo ;(5)1 +v) f%xo%)
)

where we note that zg — xz; +y € (x0,y) C J — J. If instead [0,6) C J, then

Ty[(xo — x1 +y,9); (0,y — 21)] = <f(x0 j_f(?aj)1 i ﬁi?D

yields the same T'Ny submatrix. In both cases, taking determinants gives: — f(zo)f(y
and since f(zp) > 0, the claim follows. This shows the existence of an interval I C J —
positive measure, such that f > 0 on I and f = 0 outside 1.

We next claim that —log(f) is mid—convex on I. Indeed, given y —e <y <y +ein I, it
suffices to show f(y) > \/ fly+e) €). The following argument owes its intuition to the
theory of discrete- tlme Markov Chalns on a finite state space, but can also be made direct.
Begin by defining ng := 2[¢/d]; thus €/ng € (0,6). Set 2z := f(y + ke/ng) for —ng < k < ng;
since all arguments lie in I, z; > 0 Vk. There are now two cases: if (—d,0] C J, then

0 < det Ty[(y — (k + 1)e/no,y — ke/no); (—e/no, 0)] = 27 — 2k_12k+1, YV —ng < k < np.

If instead [0,6) C J, use 0 < det T¢[(y — ke/no, y — (k—1)e/ng); (0, €/ng)] for the same values
of k. Thus, it follows that z > \/zx_12x+1 for —ng < k < ng. Now one shows inductively:

) =0,
J of

/210
20> (z12-1)Y2 > (20222 9)/A > > H 2 no Z

Note at each step that the powers of z4,, are not touched, while all remaining terms zz are
lower-bounded by \/m“// 2. Now think of each step as a (positive) integer time ¢ > 0,
and consider the exponents at each step. These give a probability distribution 7; on the set
S :={-ng,...,0,1,...,n9}. This is a well-studied model in probability theory: the simple
random walk with absorbing barriers +ng, on the state space S. In particular, this is the
Markov chain called the symmetric gambler’s ruin. Specifically, the transition probabilities
are £1/2 to go from a non-absorbing state —ng < k < ng are £1/2 to k = 1. Denoting by m;
the probability distribution on S at each time point t € ZZ9, we thus obtain:

x> [[ 45V, t=012...

Moreover, each m; has equal mass at +ng, so the same holds as ¢ —+ oo. Now by Markov
chain theory, the limiting probability distribution as ¢ — oo exists and has mass only at the
absorbing states +ng. As these masses must be equal, we obtain by translating back:

fy) =20 2 \/zZng2ng = \/f fly+e).
In this special case, the argument can be made direct as well; here is a sketch. Let
cp = Z;‘E_l(no HT m(j) for t =1,2,.... If —ng < j < ng, then after 2ng — 1 steps, the power
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. . n, +
z7.”(] ) will ‘contribute’ at least zm(J )/2m0 0

: i r zgé(j )2 From this it follows that

Ci42no—1 < ci(1 — 21-n0), vt € 220

via the AM—GM inequality. Choosing t = m(2ng — 1) for m = 0,1, ..., and recalling that
m(—ng) = m(ng) for all ¢, we have the desired conclusion as m — oc.

Thus —log(f) is mid-convex on I. Moreover, —log(f) is Lebesgue measurable on I by
assumption, so Theorem implies — log(f), hence f, is continuous on the interior of I.
(This shows the final assertion.) In particular, a continuous mid-convex function is convex,
so that —log(f) is convex in the interior of I. To show it is convex on I, it remains to show:

log f(Aa + (1 — A)b) > Aog f(a) + (1 — X)log f(b), VA e (0,1), a,be . (28.6)

To show this, approximate A\ by a sequence of dyadic rationals A, € (0,1), and note by
mid-concavity /mid-convexity that

log f(Ana+ (1 — Ap)b) > Ay log f(a) + (1 — Ay) log f(b), Vn > 1.

Since A\, A € (0,1), the arguments on the left are always in the interior of I, where f is
positive and continuous. Thus, the preceding inequality shows (28.6)) as n — oo. O

An immediate consequence of Theorem [28.4] is:

Corollary 28.7. If0 € J C R is as in Theorem [28.4), and functions f,g:J —J — R are
TNy, then so are f-g and f* for a > 0.

This follows from the fact that log(f) + log(g), alog(f) are concave if log(f),log(g) are.
We now revert to the ‘classical’ setting of T'Ny functions, i.e., f : R — R. These functions
decay exponentially at infinity, except for the exponentials themselves:

Proposition 28.8. Suppose f : R — R is T'Ny (whence measurable), and has unbounded
support. Then either f(x) = e+ for suitable scalars a,b € R, or there exists v € R such that
the T'Ny function e f(z) tends to zero exponentially fast as |x| — oo, whence is integrable.

Proof. Via Theorem let I denote the largest interval on which f is positive, and set
g(x) :=log f(x). We show the result for I = R; the proof is similar (but easier) for other I.
First note that —g(x) is convex on I. Now recall Lemma ¢’ exists on a co-countable,
dense subset of I, and ¢/, exist and are non-increasing on the interior of I (whence have only
jump discontinuities).

Suppose g(z) is not linear (i.e., f(z) is not of the form e®*?). Then ¢/ is not constant
on I, so there exist points 21 < 3 in I such that ¢'(x1) > ¢'(x2). It follows that there exist
constants c1, co € R satisfying:

log f(z) < ¢'(xj)x+¢;,  j=12.

Choose 7 € (¢'(x2),¢'(x1)). Then,

. (¢'(x1) —v)x + c1, x € IN(—0,0),
log f(@) = < {(g'(xz)—y)w@, v €10 (0,00).

Now exponentiating both sides gives the result. O
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28.2. Classification of T'N,, functions for higher p. The preceding subsection saw a char-
acterization of T'Ny functions, by Schoenberg (1951). It has taken longer to obtain a char-
acterization for T'N,, functions for p > 3. (A 1983 result in Appl. Anal. of Weinberger [365]
toward characterizing T'N3 functions has a small gap; see Section ) We conclude this
section by showing such a characterization: to check if a non-negative function is T'N,, (with
some decay properties), it suffices to check the signs of all p x p minors, but no smaller ones.
Remarkably, such a result was discovered only in 2020, leading to a characterization (by this
author) in a subsequent preprint. We begin with the earlier result, for integrable functions:

Lemma 28.9 (Forster—Kieburg—Kosters, [128]). Suppose f : R — [0,00) is integrable and
every p x p matriz (f(x; — yk;))?,k:l has non-negative determinant, for x,y € RPT. Then f
is T'Np.

Notice that not every T'N,, (or even T'N) function is integrable — for instance, e *? which
isa T'N function by Lemma[28.3since f(z) = 1is TN. Thus, Lemma[28.9 cannot characterize
the T'N,, functions. However, we shall presently see a characterization result along these lines,
among other variants of Lemma As a first variant, the result can be extended to hold
for more general domains X,Y C R, and for functions that merely decay, and at one of +oo:

Proposition 28.10. Fix scalars ty,p € R and a subset Y C R unbounded above. Suppose
X CR contains t,+y forallp<yeY. Let f : X =Y — [0,00) be such that f(t.) >0 and

lim  f(wo —y)f(t« +y —v0) =0, Vg€ X, yo € Y.
yeyY, p<y—oo

If det Tyx;y] > 0 Vx € XPT y € YPT, then the Toeplitz kernel Ty is TNy on X xX Y.

Lemma[28.9]is the special case X =Y = R, where p € R is arbitrary and ¢, € R any value
at which f : R — R is non-zero. (If no such t, exists, i.e., f = 0, the result is immediate.)
Thus it applies to detect “Pédlya frequency functions of order p” (i.e., integrable T'N,, functions
on R). Proposition is more general in two ways: first, it also specializes to other domains
— for instance, X =Y = Z, i.e., to detect “Pdlya frequency sequences of order p” that vanish
at +oo (with ¢, an integer). More generally, one can specialize to X = Y = @G, for any
additive subgroup G C (R, +). Second, Proposition can accommodate non-integrable
functions such as e*~1# (which is seen to be TN in below).

Proof. Tt suffices to show that if det T¢[x;y] > 0 for all x € X" and y € YPT, then the same
condition holds for all x’ € XP~1T and y’ € YP~LT. Thus, fix such x’,y’. We are to show

Y(zp, yp) = det Tf[(xl,xp); ¥, yp) >0Vey,>zp1,yp >yp—1 = det Tf[x';y'] > 0.

To see why, first define the (p — 1) x (p — 1) matrix A := Ty[x;y’] and AU*) to be the
submatrix of A with the jth row and kth column removed. Note that the following maximum
does not depend on x,, yp:

L:= max |det AUP|>0.
1<) k<p—1

Next, given m > 1, define t,,, € Y such that t,,, > to := max{x,—1 — ts, yp—1, p} and
f(ycj — tm)f(t* +tn — yk) < 1/m, YO < 5,k <p.
We now turn to the proof. Expand the determinant 1 (z,,y,) along the last column, and
apart from the cofactor for (p, p), expand every other cofactor along the last row. This yields:

p—1
U(@p, yp) = flzp — yp) det(A) + > (1) f(a; — ) f(ap — yr) det ATP).
7,k=1
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Given t, as above, and m > 1, let
yz(om) =t, €Y, x(m) =ty +t, € X,

Then :cl()m) > x,—1 and y]() m s Yp—1, and 1/1( ,y,(;m)) > 0 by the hypotheses, so from above,

m p— 1 2
F(t) det(4) > (™, yim) - L Z oy ) f ) ) 2 L8
7,k=1
As this holds for all m > 1, we have det(A) = det T¢[x';y'] > 0, as desired. O

This result specializes to provide a characterization of T'N,, kernels for arbitrary p > 2:

Corollary 28.11. Given f: R — [0,00) and an integer p > 2, the following are equivalent:

(1) Either f(x) = e®™®*b for a,b € R, or: (a) f is Lebesque measurable; (b) for all
zo,y0 € R, f(xo —y)f(y —yo) = 0 as y — oo; and (c) det T¢[x;y] > 0 Vx,y € RP:T.
(2) The function f:R — R is TN,.

This result improves on Lemma in that not every T'N, function is integrable or an
exponential e, For example, we will see in ([32.14) below such a function, when a8 < 0.

Proof. The result is obvious for f = 0 on R, so we assume henceforth that this is not the
case. That (1)(a)-(c) == (2) is now immediate from Proposition specialized to
X =Y = R and arbitrary p € R. If instead f(z) = e®**? then by Lemma it is TN
because the constant function f =1 is obviously T'N.

Conversely, suppose (2) holds and f(z) is not of the form e®**°. Now (1)(a) and (1)(c)
are immediate; if the support of f is bounded, then (1)(b) is also immediate. Otherwise f is
T N with support R, whence by the proof of Proposition 28.8] there exist 3,7 € R and § > 0
such that e~ f(z) < e#~%*l. Now a straightforward computation shows (1)(b). O

We conclude this section with another variant for arbitrary positive-valued kernels on
X x Y, for arbitrary X, Y C R:

Proposition 28.12. Fiz nonempty subsets X,Y C R, and suppose a kernel K : X XY —
(0,00) satisfies one of the following four decay conditions:

supY €Y, lim K(z9,y) =0, Vo € X,
y€eY, y—(supY )~
infY €Y, li K(zg,y) =0, Vg € X,
MY EY ey ey 08 0
sup X € X, lim K(z,y0) =0, Yy €Y,
z€X, x—(sup X)~
inf X ¢ X, lim K(x,yp) =0, Yyo € Y.

z€X, r—(inf X)*t
Then the following are equivalent for an integer p > 2:
(1) Every p x p minor of K is non-negative.
(2) K is TN, on X x Y.

Proof. Clearly (2) = (1); conversely, it suffices to show by induction that det K[x’;y’] > 0
for x’ € XP~LT and y’ € YP~LT. We show this under the last of the four assumptions; the
other cases are similar to the following proof and to the proof of Proposition [28.10, Thus, let

X':(JJQ,...,:I:p), y’:(yg,...,yp)
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and y; < ya2,y1 € Y be fixed. Let A := K[x';y']; thus the maximum

L:= max \detA(Jk | > 0.
1<4,k<p

Next, construct a sequence l’gm) € X, m > 1 such that xg ™) < x9 and

K(wgm),yk) <1/m, Vk=2,...,p
Now compute as in the proof of Proposition [2

p
K@mewzmm®>>m, |- LY Kz, y)K (@™, )
7,k=2

s

L—1
> det K[(™,x); (y1,y)] - L2~ 1 ZK%w

where we expand the determinant along the first row and column. Slnce the first term on the
right is non-negative, and K > 0 on X x Y, taking m — oo shows det(A) > 0, as desired. O
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29. POLYA FREQUENCY FUNCTIONS. THE VARIATION DIMINISHING AND SIGN
NON-REVERSAL PROPERTIES. SINGLE-VECTOR CHARACTERIZATIONS OF TP AND TN
MATRICES.

In this section, we introduce and study the distinguished class of Pdlya frequency functions,
as well as their variation diminishing property (including a look at its early history, from
Descartes to Motzkin). Both of these studies were carried out by Schoenberg in his landmark
1951 paper [324]. The latter property will require first studying the variation diminishing
property of TN matrices — carried out even earlier, by Schoenberg in 1930 in Math. Z.

We begin by introducing the titular class of functions in this part of the text.

Definition 29.1. A function A : R — R is said to be a Pdlya frequency (PF) function if A
is an integrable T'N function that does not vanish at least at two points.

Some historical remarks on terminology follow. The term frequency function tradition-
ally meant being integrable, or (up to normalization) a density function. Pdlya frequency
functions were introduced by Schoenberg in his landmark 1951 paper in J. d’Analyse Math.
His definition means that the class of ‘Dirac’ TN functions A(z) = 1,—. (see Example
below) are not Pdélya frequency functions. In fact, Schoenberg also studied a wider class of
TN functions in loc. cit., again excluding the Dirac functions. Specifically, he worked with
(what he called) totally positive functions — which are (measurable) TN functions that do
not vanish at least at two points.

Remark 29.2. We also refrain here from discussing either Schoenberg’s motivations or the
prior results by Laguerre, Pélya, Schur, and Hamburger that led Schoenberg to developing
the theory of PF functions. This discussion will take place in Sections [33] and [34}

We begin by specializing the results in Section 28| to Pélya frequency (PF) functions:

Proposition 29.3.

(1) The results in Section hold for all PF functions.
(2) The class of PF functions is closed under the change of variables x — ax + b for
a # 0, and under convolution.
(8) If f is a TN function that is non-vanishing at least at two points, and f is not of the
form e®®*b for a,b € R, then there exists v € R such that e " f(x) is a PF function.
In other words, there is a strict trichotomy for (measurable) TN functions f : R — R:
(a) f(x) is monotone, or equivalently, an exponential e®**® for some a,b € R.
(b) f is supported (and positive) at a single point in the line.
(c) Up to an exponential factor e¥* with v € R, the function f is integrable, whence
a Pdlya frequency function — in fact, this latter decays exponentially as |x| — oo.

The final trichotomy holds more generally for all TNy functions, by Proposition m (The
final part of the second assertion is not involved, and follows from Corollary [32.9 below, using
basic properties of convolution.)

We next provide examples. The results in the preceding section studied T'N,, functions for
p > 2. We now discuss several important examples of all of these: in fact, of Pdlya frequency
functions (so, T'N,, for all p > 1). The first is the Gaussian family.

Example 29.4. For all 0 > 0, the Gaussian function G,(x) := e %" is a PF function, as
shown in Lemma For future use, we record its Laplace transform (discussed later):

B(G,)(s) = s /40 /o, seC.
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Example 29.5. The kernel f(z) = e © 1s totally non-negative. Indeed, the ‘submatrix’

Ti[x;y] = (exp(a;B))ipey, n2>1, x,y € R

is a generalized Vandermonde matrix, where both o; = €%, 8, = —e Y form increasing

sequences. While e ¢ 4 0 as £ — —oo, by Lemma e* " is integrable, so a PF
function.

The next example is an integrable T'INV function that is pathological in nature, so not a PF
function:

Example 29.6. The Dirac function f(x) = 1,—. can be easily verified to be TN, for ¢ € R.

29.1. Variation diminishing property for TP and TN matrices. A widely-used prop-
erty exhibited by TP and T'N matrices is the variation diminishing property (this phrase —
or ‘variationsvermindernd’ in German — was coined by Pélya; see Section [29.3] for more on
its history). We now prove this property; it will be useful in Section in explaining the
real-rootedness of generating functions of finite Pdlya frequency sequences. To proceed, we
require some notation.

Definition 29.7. Given a vector z € R™, let S™(x) denote the number of changes in sign,
after removing all zero entries in x. Next, assign to each zero coordinate of = a value of +1,
and let ST (z) denote the largest possible number of sign changes in the resulting sequence
(running over all assignments of +1). We also set S~ (0) := 0 and ST(0) := m, for 0 € R™.

For instance, S™(1,0,0,—1) =1 and S™(1,0,0,—1) = 3. In general, it is easy to see that
St (x), S~ (x) are the largest and smallest number of sign changes possible, when one keeps
the non-zero coordinates of z unchanged and modifies the zero coordinates.

We begin by characterizing T'P matrices in terms of the variation diminishing property
and an additional property.

Theorem 29.8. Suppose m,n > 1 are integers, and A € R™*™. The following are equivalent:

(1) A is totally positive.

(2) For all x € R™\ {0}, ST(Ax) < S~ (x). Moreover, if equality holds and Ax # 0,
then the first (last) component of Ax has the same sign as the first (last) non-zero
component of x. (If either component in Az is zero, we replace it by the sign of the
changed component in computing ST .)

This result can be found in Pinkus’s book, and follows prior work by Gantmacher—Krein
and also the 1981 paper in [J. Amer. Statist. Assoc.] by Brown-Johnstone-MacGibbon. Very
recently, Choudhury has refined this result to require only a finite set of test vectors — exactly
one vector z¥ for every contiguous square submatrix B of A. Moreover, 27 = adj(B)v? (with
adj(B) the adjugate matrix of B), where v® can be chosen to be any non-zero vector with
alternating signs, belonging to a closed orthant:

Theorem 29.9 (Choudhury, [80]). The assertions in Theorem are equivalent to:

(3) For all integers 1 < r < min(m,n) and contiguous r X r submatrices B of A, and
given any fived vector 0 # vP == (a1, —ag, ..., (=1)""Lay)T with all a; > 0, we have
SH(BzP) < S™(2B), where 2P = adj(B)vP. If equality occurs here, then the first
(last) component of Bx® has the same sign as the first (last) non-zero component of
xB. (If either component in Bx® is zero, we replace it by the sign of the changed
component in computing ST.)
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Proof. For this proof, define d,, := (I, —1,..., (1) )" € R?, Tor any integer p > 1.

We begin by showing (1) = (2). We first take a 7P matrix A and draw some conclusions.
Let 0 # z € R™ with S~ () = p < m — 1. Thus there exists s € [m]”" such that

(1,021 )y (Tsyq1yo o3 Tsg)s vony (Tspt1y e vy Tn) (29.10)

are components of T, with all non-zero coordinates in the tth component having the same
sign, which we choose up to ‘orientation’ to be (—1)!~!. Here we also have that not all
coordinates in each sub-tuple (s, ,+1,...,2s,) are zero. Moreover, we set sp := 0 and
sp+1 = m for convenience.
Denote the columns of A by ci,...,c¢y € R”, let
St
yi = Z |zi|c; € R™, t=1,...,p+1,
i=s¢—1+1

and let Ynx(p+1) = [YI| T |yp+1]‘
The first claim is that Y is TP. Indeed, given 1 < r < min(n, p+1) and subsets J € [n]™",
Iep+ l]T’T, standard properties of determinants imply
Siq Sip
det Y s = Z Z ]mk1|~-|xkr|detijK,
k1=s;; —1+1 kr=s;,.—1+1

where K = {ki,...,k.} and we have det Aj«x > 0 for all J, K. Since there exist suitable
indices k; € [sj,—1 + 1, s;,] such that [[;_; |x,| > 0, it follows that det Y;.; > 0 for all I, J
as desired. Hence Y is T'P.
With this analysis in hand, we now show (1) = (2). The first claim is that ST (Ax) <
S (x); we consider two cases:
e Suppose n < p+1. If Az # 0, then ST(Ax) <n—1<p= 5" (z). Otherwise Az = 0.
If n = p+ 1 then Y would be non-singular. But since 0 = Ax = Y'd, 11, where dp 1
was defined at the start of this proof, this would imply d,; = 0, a contradiction.
Hence if Az = 0 then n < p, whence ST (Ax) =n <p=S"(x).
e Otherwise, n > p + 1. Define w := Az = Yd, 1, and assume for contradiction that
ST(Az) > p+1>p=S—(z). Thus there exist indices 1 < j; < -+ < jpra < n and
a sign € = £1 such that ew;,(—1)"" > 0 for ¢ € [1,p + 2]. Moreover, not all w;, are
zero, given the rank of Y. Now consider the matrix

My 2)xpr2) = WalYixpeyls  where  J = {ji,... jpt2}.
This is singular because the first column is an alternating sum of the rest. Expanding
along the first column,
p+2

0=detM = Z(—l)t_let det YV(J\{jt})x[p—i-l]-
t=1

But all determinants in this sum are positive, all terms (—1)*"1w;, have the same
sign €, and not all w;, are zero. This produces the desired contradiction.

Thus if A is TP, then ST(Az) < S~ (), and it remains to show the remainder of the
assertion (2). Using the notation in the preceding analysis, it remains to show that if
St(Az) = S™(x) = p with Az # 0, and if moreover cwj,(—1)""! > 0 for t € [1,p+1] -
as opposed to [1,p + 2] in the second subcase above — then e = 1 (given our original choice
of ‘orientation’ above).
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'To show this, we use that Y is totally posifive, so the submatrix Y ,,1) 1s non-singular,
where J = {j1,...,jp+1}. In particular, Y;, p11jdps1 = wy. Using Cramer’s rule to solve

this system for the first coordinate of dp 1,

L g = 3ot W Yo gprnp)
' det Yy ppi1)

Multiplying both sides by € det Y, [p41], we have
p+1
edet Yyuppen) = Y e(=1)" Mwj, det Y gy (prap 1)
t=1
Since each summand on the right is non-negative, and Y is T'P, it follows that ¢ = 1.

We next show (2) == (3), where B is not necessarily required to be a contiguous
submatrix of A, and 2® # 0 can be arbitrary. Suppose B = Ajxx with J C [n], K C [m]
both of size 1 < r < min(m,n). Let K = (k1 < --- < k) C [m], and define z € R™ to have
coordinates ¥ at position k; (for [ € [r]) and 0 elsewhere. By (2), we have

S~ (zP) =57 (7) > S+ (A7),

and this last quantity is at least ST (Bxz?) because Bz is a ‘sub-string’ of the vector AZ.
Next, if S~ (28) = ST(Bx?) then we draw the following conclusions:

(1) S*(BxB) <r —1, whence BxP # 0, so 2% # 0.

(2) T # 0, and AT is non-zero as it contains Bz? as a sub-string.

(3) Let ¢ € {£1} be the sign of the first (respectively last) component, in any ‘filling’
of AT that attains ST (AZ)-many sign changes. Also suppose the first (respectively
last) non-zero component in its sub-string Bz® occurs in position I € [1,7]. Then
since S*T(AZ) = ST (Bz?), the coordinates of an ‘S*-completion/filling’ of AZ in
positions 1, ..., j; (respectively j,,...,n) are all non-zero with the same sign (—1)""'e
(respectively (—1)""le).

From this it follows that the first/last coordinates in any S*-completion/filling of
AT and of B2? have the same sign. Clearly, so do the first/last non-zero coordinates
of T and 2.

(4) Finally, we also have S™(Z) = ST(AZ) by the above calculation. Hence by the

hypotheses in assertion (2) and the preceding paragraph, we deduce assertion (3).

Finally, we show that the (restricted) assertion (3) implies that A is totally positive. By
the Fekete—Schoenberg lemma it suffices to show for all contiguous submatrices By, of
A that det B > 0. This is shown by induction on > 1. If » = 1, then adj(B) = (1)1x1, and
so 0 = S~ (2P) > ST(B2B), whence St (Bxz?) < 1. It follows that Bx® # 0, and hence that
all entries of A are positive.

For the induction step, we suppose all contiguous minors of A of size at most r — 1 are
positive, whence given a contiguous submatrix By, it is T P._1 by the Fekete—Schoenberg
lemma In particular, its adjugate matrix adj(B) has a checkerboard sign pattern: the
(4,k) entry has sign (—1)7**. Now it is not hard to verify that z” has all entries non-zero,
with alternating sign pattern (+, —, +,...)T. In particular, S~ (z%) =r — 1.

The first claim is that B is invertible. If not, then Bx® = (det B)v® = 0, whence r =
ST (BxzB) > S~ (2P). But this is false from above, hence shows the claim. Now we show that
det B > 0. Indeed, the same computation as just above gives:

r—1=5"(2B) > $T(Bz?) = ST((det B)vP).
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Now note that regardless of the zero entries in v, the conditions on the «; imply that v” can
be ‘St-completed’ to a vector with all non-zero entries and alternating signs. In particular,
S*((det B)v?B) = r — 1, so the hypotheses in (3) now imply that det B > 0. This completes
the induction step, and hence the proof. ]

A similar characterization via variation diminution holds for totally non-negative matrices.

Theorem 29.11. Suppose m,n > 1 are integers, and A € R"*™. The following are equiva-
lent:
(1) Ais TN.
(2) For all z € R™\ {0}, S™(Az) < S~ (z). Moreover, if equality holds and Az # 0,
then the first (last) non-zero component of Ax has the same sign as the first (last)
non-zero component of x.

This result is again taken from Pinkus’s book; and as above, Choudhury recently provided
a single-vector strengthening:

Theorem 29.12 (Choudhury, [80]). The assertions in Theorem |29.11| are equivalent to:

(8) For all integers 1 < r < min(m,n) and r x r submatrices B of A, and given any
fized vector vB = (a1, —ag,...,(=1)""tay)T with all a; > 0, we have S™(BzB) <
S~ (xB), where 2B = adj(B)vB. If equality occurs here and Bx® # 0, then the
first (last) non-zero component of Bx® has the same sign as the first (last) non-zero
component of xB.

The proofs require a preliminary lemma on sign changes of limits of vectors:

Lemma 29.13. Given x = (x1,...,Tm) € R™, define X := (v1, —x2,73,...,(—1)™ tx,,).
Then
ST(x)+S (X)) =m — 1.
Also, if xp, — x # 0 in R™, then
lim inf S™(xx) > S~ (x), lim sup ST (x;) < ST (x).
k—o0 k—o0
Proof. We begin with the first identity. Note that both S* are (a) invariant under the
automorphism y — —y of R™, and (b) additive over substrings intersecting at one non-zero
number (where this common ‘endpoint’ is considered in both strings). Thus it suffices to
prove the result for vectors x € R™ \ {0} with m > 2 and 29 = --- = 2,1 = 0. Thisis a
straightforward verification.

For the second part, by considering k£ large enough, we may assume that if the jth coor-
dinate of x is non-zero, then it has the same sign as the jth coordinate of every x; — in fact,
we may take these coordinates to all have the same value, since this does not affect .S i(xk).
Now by the observation in the paragraph following Definition [29.

§7(x) < §™(xi) < SHxi) < SH(),
and the result follows. O
We can now prove the above characterizations of TN matrices.

Proof of Theorems|[29.11] and [29.12 The proof of (1) = (2) uses the two preceding results
and Whitney’s density Theorem Since A is T'N, there exists a sequence Ay of TP
matrices converging entrywise to A. Now use Theorem [29.8] and Lemma [29.13] to compute:

S~ (Az) <lim inf S~ (Agz) <lim inf ST(Agz) <lim inf S~ (z) =S~ (z).
k—o00 k—o0 k—o00
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Next, if equality holds and Az # 0, then for all £ Jarge enough, we have

p:= 8" (Az) < S (Apzr) < ST(Arr) < S~ (2) = p,
by Theorem and Lemma In particular, these are all equalities, whence S™(Agz) =
ST (Agz) for k> 0. This implies (for large k) that the sign changes/patterns in Az have
no dependence on zero entries. At the same time, both vectors x and Agx admit ‘partitions’
of the form with alternating signs, with precisely p sign changes. Now Theorem m
implies that these signs are in perfect agreement, for all large k. Hence the same holds for
the sign patterns of x and Azx.

We next show that (2) == (3), again for arbitrary vectors 0 # 2” € R", where 1 < r <
min(m,n); this is similar to the proof of Theorems and Say B = Ajxk for some
J C [n], K C [m] of equal size r. Embed x into a vector z € R™ at positions K, with zero
entries in the other positions. Then Ba? is a sub-string of AZ, so by (2),

S™(BzB) < S7(AZ) < §7(T) = S ().
Moreover, if S~ (Bz?) = S~ (x) and Bx? # 0, then:

e All four S™-terms here are equal.
e BzP is non-zero, whence so are

B 5o 7, and hence AZ.

Now suppose the first (last) non-zero entry of Bx® € R" occurs in position [ € [1,7], and
J=(j1 < <jr) C[n]. Since S~ (BzB) = S~(AZ), all entries of AT before (after) position
§; must have the same sign. This shows (2) == (3) for any 0 # 27.

Finally, we show that (3) = (1), with the vectors v?, 2 as specified. The claim that
all » x r minors of A are non-negative, is shown by induction on r > 1. For the base case, if
B = (ajk)1x1 = 0 then there is nothing to prove; otherwise adj(B) = (1), so 2P = v8 = (ay),
where a; > 0. Hence S~ (Bz?) =1 = 5~ (2?), and so a;r and 1 have the same sign.

For the induction step, suppose B, is a submatrix of A, which we may assume is T'IN,_.
If det B = 0 then there is nothing to prove, so suppose B is non-singular. Then every row
/ column of adj(B) is non-zero (otherwise one can expand B along a suitable column / row
and get det B = 0). Moreover, adj(B) has entries in a checkerboard pattern:

sgn(adj(B);x) = (—1)71F, V1<j,k<r.

Since all coordinates of v¥ are non-zero, it follows that 2% = (81, —fa,...,(=1)""13,)T with
all B; > 0. Hence,

S~ (zB)=r—-1=8"(P), S™(BzB) = S7((det B)v?) = r — 1.

Hence by (3), the first non-zero coordinates of 27, (det B)v? have the same signs, which
implies det B > 0. This completes the induction step, and with it the proof. O

29.2. Variation diminishing property for Pdlya frequency functions. The above
characterizations of TN and T'P matrices have many applications in mathematics and other
sciences; we do not expound on these, referring the reader to Karlin’s treatise [200] and nu-
merous follow-up papers in the literature. Here we present continuous analogues of the above
results on the variation diminishing property, albeit only in one direction. These are again
found in Schoenberg’s 1951 paper in J. d’Analyse Math. We begin with the definition of the
‘variation’ that will diminish under the action of a TN kernel.

Definition 29.14. Suppose I C R is an interval with positive measure, and a function
f+I —=R. The number S} (f) of variations of sign of f(x) on I is defined as follows:

S (f) = sup{S™((f(z1),.... f(zp))) :p > L x € [P},
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With this notion at hand, one can show the variation diminishing property for Pélya

frequency functions.

Proposition 29.15 (Schoenberg, [324]). Suppose A : R — [0,00) is a Pdlya frequency
function. Suppose f : R — R is integrable on all finite intervals in R, and such that the

integral
/ Az —1t)f(t) dt

converges at all x € R. Then Sg (g9) < Sg (f)-

Proof. We will write S7(-) for Sy () in what follows. We may assume in the sequel that
S7(g) > 0 and S~(f) < co. Now if x € R™LT satisfies: g(21),g(x2), ..., g(xmy1) are all
non-zero and alternate in sign, then it suffices to show that S7(f) > m, for one can now take
the supremum over all such tuples x to deduce S~ (g) < S7(f). Note that

b
sa) = tm [ Aa@=ns) a

and this convergence is uniform when considered simultaneously at the m + 1 coordinates of
x. Thus, select —oco < a < b < 0o such that the function

:/bA(xt)f(t) dt

also alternates in sign at x1,...,xmnmy1. Approximating this function by Riemann sums over
n > 0 sub-intervals of [a, b] of equal length, simultaneously at x1, ..., %41, it is possible to
choose n > 0 (large enough) such that the sequence of Riemann sums

( kb+ (n—k)a > f (kb"‘(”_k)a) , j=1....m+1 (29~16)

n

also alternates in sign. In other words, S~ (z(™) = m, ¥n > 0.
We now invoke the total non-negativity of the kernel Ty, applied to x € R™+1T as above,
and y € R™T given by y = (kb+ (n — k)a)/n for k = 1,...,n. Thus the matrix

(mt1)xn = TA[X; Y] ( <l’j — >>je[m+1], cel
is totally non-negative. Now (29.16)) and Theorem imply that
m=S5"(z™) =87 (Av) < S~ (v), where v=(f(yr))P_;
But then m < S7(f), as desired. O

Schoenberg goes on to prove an analogue of this variation diminishing property, when f
and hence ¢ (in the preceding result) are polynomials. The diminution is now in the number
of real roots.

Proposition 29. 17 Suppose A is a Pélya frequency function, and f € R[x] is a polynomial of
degree n. Then g(x) := [ A( f(t) dt is also a polynomial of degree n, with Z(g) < Z(f).
Here Z(f) denotes the number of real roots of f, counted with multiplicity.

Proof. By Proposition [29.3|(3)(c), A has finite moments

= / AP dt < oo,  j=0,1,.... (29.18)
R
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This implies in particular that g is well-defined everywhere, since

:/A(t)f(x—t) dt:/A(t)Zn:f(j)(x)( ) dt:iM. (29.19)
R R §=0 j=0

7!
Since ug > 0 by assumption on A, it follows that g(z) is a polynomial of degree n. Now
change the ‘monomial’ basis diagonally, and write the coefficients of f, g as follows:

f(x) = apz™ + (T) a1z '+ + ap,

g(x) = box" +<>b1x L4,

where ag # 0. This yields a triangular, invertible change of basis from (ax)x to (by)x:

k
b= (f) (~1V s (29.20)

§=0

We now turn to the real roots. If g has a real root ¢, say a factor of (z — ¢)”, then replace
this by (z —c¢)(x —c—¢€) -+ (x —c— (n—1)e) for sufficiently small € > 0. Carrying this out for
every real root yields a perturbed polynomial, which we call (¢ )( ) Inverting the triangular
transformation (29.20)) yields a perturbed polynomial £(¢), with g(¢ fR r—t f(6 (t) dt
for all € > 0. Note moreover that f(9), () still have degree n for all e > 0, and converge
coefficientwise to f, g respectively, as ¢ — 0. Hence for ¢ > 0 small enough, the continuity
of roots implies Z(f(©)) < Z(f).

The key observation now is that if if p(x) is a real polynomial, then Sg (p) < Z(p), with
equality if and only if all real roots of p are simple. Applying this to the above analysis, we
conclude for small ¢ > 0:

Z(g) = Z(9'9) = Sx (9'9) < S (f19) < 2(f9) < Z(#),
where the first inequality follows by Proposition O

We conclude with analogues of the above results for one-sided Pélya frequency (PF') func-
tions — also proved by Schoenberg in [324]. A distinguished class of PF functions consists of
those vanishing on a semi-axis, and we will see examples of such functions later in this part
of the text. By a linear change of variables, we may assume such a function A vanishes on
(—00,0). In this case the above transformation becomes

:/x Az — ) f(t) dt.

If we now consider f : (—oo,0] — R, then the upper limit in the preceding integral may be
changed to 0, to yield another function g defined on (—o0,0]. In this case, Schoenberg proved
in [324] similar results to above, and we now state these without proof.

Proposition 29.21. Suppose A is a Pdlya frequency function which vanishes on (—o00,0).
(1) Let f : (—o00,0] — R be integrable on every finite interval, and such that g(x) =
fo A(x —t) f(t) dt converges for all x < 0. Then 5’( 70](9) < S(_OO 0](f).
(2) Suppose f is a real polynomial of degree n, and let g(z fo (x—t) dt. Then

g is also a real polynomial of degree n, and Z_(9) < Z_ (f), where Z (f) denotes the
number of non-positive real roots of f, counted with multiplicity.
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29.3. Early results on total non-negativity and variation diminution. We next dis-
cuss some of the origins of the variation diminishing property, and its connection to total
non-negativity. First observe by Theorem and Remark for Hankel moment matrices,
that total non-negativity is implicit in the solution of the Stieltjes moment problem — as also
in the Routh-Hurwitz criterion for stability; see Theorem — both from the 1800s.

Coming to the variation diminishing property: it shows up in the correspondence [I1§]
between Fekete and Pélya (published in 1912) that has been mentioned above in the context
of proving the ‘contiguous minor’ test for total positivity of a matrix. (As a bit of trivia:
Fekete, Pélya, and Szasz were three of the earliest students of L. Fejér; his last student was
Vera So6s; and other students include Erdds, von Neumann, Turan, Aczel, Egervary, Téth,
and Marcel Riesz, among others.)ﬂ

We now discuss a result of Fekete from his correspondence with Pélya, which not only
dealt with variation diminution but also gave rise to the notion of Pdlya frequency sequences
— discussed in the next section.

A common, historical theme underlying this section and the next, as well as Section
below (on the Laguerre-Pélya—Schur program), involves understanding real polynomials and
their roots. In fact this theme dates back to Descartes, who in his 1637 work [I00] proposed
his ‘Rule of Signs’ — see e.g. Lemma [5.2] The question of understanding the roots remained
popular (and does so to this day; see Section . As a notable example, we recall Laguerre’s
1883 paper [229], which deals with this theme, and opens by recalling Descartes’ rule of signs
and proving it using Rolle’s theorem (the ‘standard’ proof these days). In [229], Laguerre used
the word ‘variations’ to denote the sign changes in the Maclaurin coefficients of a polynomial
or power series. Among the many results found in his memoir, we list two:

Theorem 29.22 (Laguerre, 1883, [229]).

(1) Given an interval [a,b] C R and an integrable function ® : [a,b] — R, the number of
zeros of the Fourier—Laplace transform f; e~ ®(x) dx is at most the number of zeros
of the antiderivative fat ®(z) dx fort € [a,b].

(2) Suppose f(x) is a polynomial. Then the number of variations (sign changes in the
Maclaurin coefficients) of the power series e f(x) is a non-increasing function of
s € [0,00), and is uniformly bounded below by the number of positive roots of f.

In particular, in part (2), the variation for any s > 0 is ‘diminishing’, and always finite, since
it is bounded above by the variation at s = 0. See Section for the proof of part (2).
Especially this latter result was pursued by Fekete, who wrote to Pélya to the effect that
“Laguerre did not fully justify” Theorem (2) in his work [229]. To address this, Fekete
considered a formal power series with real coeflicients c¢g + c1t + - - -, acting by multiplication
on the space of such power series. With respect to the standard basis of monomials, this

5As another bit of trivia, the descendants of K. T.W. Weierstrass and E.E. Kummer feature prominently
in the study of (total) positivity. Their joint students include:

(1) F.G. Frobenius and L.I. Fuchs, who in turn mentored I. Schur, who was the advisor of I.J. Schoenberg;
(2) L. Koénigsberger, who mentored G. Pick, who advised C. Loewner; and
(3) L. Fejér, who mentored G. Pélya and M. Fekete.
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transformation is given by the triangular matrix
co 0 O
Cc1 O 0
Te =

Fekete then stated the following result on variation diminution (a term coined by Pélya)
— further asserting that it could be used to prove Theorem [29.22(2):

Proposition 29.23 (Fekete, 1912, [118]). Suppose for an integer p > 2 that the matriz
Te (supported on Z2° x 72°) is TN, — i.e., every finite submatriz is T Np. Given a vector
x = (20,21, -+, 2p-1,0,0,...)T (the coefficients of a polynomial), we have S~ (Tex) < S~ (x).

Note here that Tcx represents the coefficients of a formal power series, and hence can form
a sequence with infinitely many non-zero terms. Nevertheless, every such sequence has fewer
sign changes than the finite sequence x. (To deduce Laguerre’s result, Fekete showed that
for s > 0, Proposition applies to the special case ¢, = sk/k!.)

Thus, we have journeyed from Descartes (1637), to Laguerre (1883), to Fekete (1912), to
Schoenberg (1930) and Motzkin (1936) — see Theorem from Motzkin’s thesis and the
preceding paragraph — to Schoenberg (1951), in studying the origins of variation diminution
and subsequent developments. (This omits, with due apologies, the substantial contributions
of Gantmacher, Krein, and others; the connections to the work of Sturm and to Sturm-—
Liouville eigenvalue problems; as well as the 1915 paper [285] of Pélya, which proved a
different variation-diminishing property of PF functions on polynomials, led Schoenberg to
coin the phrase ‘Pdlya frequency functions’, and is briefly discussed in Section ) Certainly
Fekete’s result and the aforementioned developments led Schoenberg and Gantmacher—Krein
to develop the theories of total positivity, Pdlya frequency functions, and variation diminution.

We conclude this historical section with yet another connection between total non-negativity
and Descartes’ rule of signs. In his 1934 paper [312] in Math. Z., Schoenberg proved the fol-
lowing result. In it, we use the notation that a finite sequence fy, f1,..., f, of functions obeys
Descartes’ rule of signs in an open sub-interval (a,b) C R if the number of zeros in (a, b) of
the nontrivial real linear combination

n
cofo(z) + -+ cnfnl(z), cj € R, Zc§>0
§=0
is no more than the number of sign changes in the sequence (co, ..., ¢,).

Theorem 29.24 (Schoenberg, [312]). Fiz a sequence of real polynomials p;j(x) := ajo+ajix+
R ajj:cj for 0 < 5 <mn, with all a;; > 0. The following are equivalent:
(1) The sequence (po, ..., pn) obeys Descartes’ rule of signs in (0, 00).

apo a0 "t Gno
_ _ a1l -t apl | _
(2) The upper triangular matriz ) . 1s totally non-negative.
Gnn

(E.g., for the ‘usual’ Descartes’ rule of signs, this matrix is precisely the identity matrix.)
Schoenberg also extended Descartes and Laguerre’s results to more general domains in C; see
his 1936 paper [314] in Duke Math. J.
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29.4. The sign non-reversal property. We now discuss another fundamental — and very

recent — characterization of total positivity. To motivate this result, begin with Schoenberg’s
1930 result asserting that every T'N matrix has the variation diminishing property. From
here, it is natural to proceed in two directions:

(1) Characterize all matrices with the variation diminishing property. This was carried
out by Motzkin in his 1936 thesis; see Theorem [3.22]

(2) Find additional conditions that, together with the variation diminishing property,
characterize TN and TP matrices. This was carried out in Theorems [29.8 and [29.17],
and involves a ‘sign non-reversal’ phenomenon.

Our goal here is to show that in fact, it is the variation diminishing property that is not
necessary in Theorems and[29.11] To proceed, we isolate the key notion into the following
definition.

Definition 29.25. Fix integers n > 1.

(1) A square real matrix Ay, x, has the sign non-reversal property on a set of vectors
S C R™, if for all non-zero vectors = € S there exists a coordinate j € [n] such that
xj(Azx); > 0. If the set S is not specified, it is taken to be R".

(2) We also require the non-strict sign non-reversal property for a matrix A € R™*" on
a set of vectors S C R™. This says that for all 0 # x € S there exists a coordinate
J € [n] such that z; # 0 and z;(Ax); > 0.

3) Define R”,. to be the open bi-orthant consisting of the vectors in R™ whose coordinates

alt
are all non-zero and have alternating signs.

(4) Finally, define d, := (1,—1,...,(-=1)"" )T e RY,.

With these notions defined, in their recent work in Bull. London Math. Soc., Choudhury,
Kannan, and Khare have characterized TP/T N matrices purely in terms of their sign non-
reversal property. More strongly:

Theorem 29.26 ([81]). Fiz integers m,n > p > 1 and a real matric A € R™*"™. The
following are equivalent:

(1) The matriz A is TP,.
(2) Every square submatriz B of A of size r € [1,p] has the sign non-reversal property.
(8) Every contiguous square submatriz B of A of size r € [1,p| has the sign non-reversal

property on R}, C R".

A part of this theorem was previously shown in 1966 by Ky Fan [114]. Also note that
(2) = (3), so we will show (1) = (2) and (3) = (1). The latter implication can
be weakened even further, to require the sign non-reversal property for a single alternating
vector (chosen from an orthant) — the same orthant as in Theorem This was shown
very recently:

Theorem 29.27 (Choudhury, [80]). The three conditions above are further equivalent to:

(4) For each contiguous square submatriz B of A of sizer € [1,p], and any choice of vector
0 # v8 = (a1, —ag,...,(—=1)"ta,)T with all a; > 0, B has the sign non-reversal
property for 2B .= adj(B)v?, where adj(B) is the adjugate matriz of B.

(As the proof will reveal, one can also work with —v® instead of v?.) Following the proof
of these results, we will show that A, is T'N, if and only if every square submatrix of size
< p satisfies a condition similar to this one. See Theorem [29.28 and the subsequent result.
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Proof. We Tfirst show that (1) implies the sign non-reversal property on vectors with non-

negative coordinates — under the weaker assumption of working only with the positivity of the
principal minors of B, of size < r. (Such matrices are called P-matrices; see e.g. [105] 121, 134]
for this argument.) The result is by induction on r > 1, with the r = 1 case obvious. Suppose
the result holds for all (r — 1) x (r — 1) real matrices with positive principal minors. Now
let B, x, have the same property, with , —Bx € R" having all non-negative coordinates. We
need to prove z = 0.

By choice (and Cramer’s rule), B~! has positive diagonal entries. Let b denote the first
column of B~!, and define

T
0:= min =L,
j€[r]:b;>0 b;
noting that the minimum is taken over a non-empty set. Hence it is attained: 0 < 6 = z;,/bj,
at some jo € [r]. Then y := x — 6b has non-negative coordinates, by choice of #, and it has

joth coordinate zero. But we also have
—By = —Bxz + 0Bb = —Bx + feq,

and this has non-negative coordinates again.

We now claim y = 0. Indeed, if we obtain y’ by deleting the joth coordinate, and B’ by
deleting the joth row and column, then an easy verification yields that —B’y’, y’ have non-
negative coordinates. By the induction hypothesis, y’ = 0, whence y = 0. But then Bz = fe;
has non-negative coordinates. Since so does —Bz, we have Bz = 0. Since det(B) > 0, we
obtain z = 0. This completes the proof of (1) = (2) by induction - for z with non-negative
coordinates.

Now suppose x € R" and z;(Bz); < 0 for all j. Let J C [r] index the negative coordinates
of z, and define the diagonal matrix Dy with (k, k) entry (—1)**€/)). Ifnow z; and (Bz); have
opposite signs for all j (meaning their product is non-positive), then so do (e]TD)x = e]T(Dx)
and (e?D)(Bx) = ejT(DBD)(D:c). Thus Dz, (DBD)(Dx) have corresponding coordinates
of opposite signs. As DBD also has all principal minors positive, the above analysis implies
Dz =0, and so x = 0. Hence (1) = (2) for all vectors x € R".

(Though we do not require it, we also mention quickly why (2) = (1). Let B be any
square submatrix of A; as the set of non-real eigenvalues is closed under conjugation, their
product is strictly positive. It thus suffices to show that every real eigenvalue is positive.
By the sign non-reversal property, if Bx = Az with A € R and z € R", and if z; # 0, then
zj(Bx)j = Az > 0, whence X > 0.)

Next, that (2) = (3) = (4) is immediate. Finally, suppose (4) holds. By the Fekete—
Schoenberg lemma [4.9] it suffices to show that all contiguous r X r minors are positive, for
1 <r < p. The proof is by induction on r < p; the r = 1 case directly follows from (4) using
r =1 and Byx1 = (a;i), using that adj(B) = (1).

For the induction step, suppose B,x, is a contiguous square submatrix of A, with r» < p,
and all contiguous minors of B of size < r — 1 are positive. Then the same holds for all
proper minors of B by Lemma and so adj(B) is a matrix with a ‘checkerboard’ pattern
of signs: sgn(adj(B);x) = (—1)7* for 1 < j,k < r. It follows for any v® # 0 as specified that
2B = adj(B)v? € R7),. Now compute for jo € [1,7]:

0< (ZB)jo ) (BZB)jO = (_1)j071|(23)j0| ’ (det B)(UB)jo = det(B)‘(ZB)jo‘ajo-

It follows that all three factors are non-zero, and det B > 0, which completes the proof. [
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The final results here, again by Choudhury—Kannan—Khare and Choudhury (2021), char-

acterize T'N, matrices through their sign non-reversal:

Theorem 29.28 ([81]). Fiz integers m,n > p > 1 and a real matrizc A € R™ ™. The
following are equivalent:

(1) The matriz A is TN,.

(2) Every square submatriz B of A of size r € [1,p] has the non-strict sign non-reversal
property on R".

(8) Every square submatriz B of A of size r € [1,p] has the non-strict sign non-reversal
property on R,

As in Theorem [29.27|(4) above, this can be further weakened:

Theorem 29.29 (Choudhury, [80]). The preceding three conditions are further equivalent to:

(4) Every square submatriz B of A of size r € [1,p], has the non-strict sign non-reversal
property for the single vector 2P := adj(B)v?, where v € R, @s arbitrarily chosen.

Proof. First suppose (1) holds. By Whitney’s density theorem there is a sequence A®

of T'P, matrices converging entrywise to A. Now given B, let Bﬁlx)r be the submatrix of A(Y)
indexed by the same rows and columns as B. Now fix a vector 0 # & € R", and index by
J C [r] the non-zero entries in x. Since BY) is TP, by Theorem there exists j; € [r]
such that z;,(B®z); > 0; moreover, j; € J VI. As J is finite, there exists jo € [r] and an

increasing subsequence of positive integers I, such that j;, = jo for all ¢ > 1. Now (2) follows:
. T . (lq) ) - .
Tjo (BL)jo = qlggo Ljig (B x)]zq 20, zjo 7 0.

(The proof of (2) = (1) is essentially the same as in the preceding proof, with )\x? >0
now; once again, we do not require it.) That (2) = (3) = (4) is immediate. Finally,
assume (4) and claim by induction on r < p, that every r x r minor of A is non-negative.
The base case is immediate; for the induction step, let B, be a submatrix of A, and assume
that all (r — 1) x (r — 1) minors of B are non-negative. If det B = 0 then we are done; else
assume B is invertible. Now no row or column of adj(B) is zero, and adj(B); is either zero
or has sign (—1)7** for all 4, k. Thus, adj(B)v? € R?,;- Now a similar computation as in the
preceding proof shows that for some jg € [1, 7], we have by (4):

0 < (Badj(B)v®);, (adj(B)v"”);, = (det B)v} 7.

Since all factors here are non-zero and va;, szg have the same sign, it follows that det B > 0,

and so we are done by induction. O
Remark 29.30. In this section, we have seen classical results which help characterize totally
positive/non-negative matrices A using the variation diminishing property and the sign non-
reversal property — both of which involve certain conditions holding for all vectors in R™. We
also explained recent results of Choudhury [80, [8I] that provided single test vectors, one for
every (contiguous) submatrix of A. In [80], Choudhury also provides a third characterization
of total positivity — via the Linear Complementarity Problem, which has applications in
bimatrix games, linear programming, and other areas. Once again, he is able to improve this
characterization to use a single test vector. See [80] for details.
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30. POLYA FREQUENCY SEQUENCES AND THEIR GENERATING FUNCTIONS.

In this section, we introduce and study Polya frequency sequences, and take a look at root-
location phenomena for their generating functions. Recall Fekete’s proposition (1912)
from the preceding section, on the variation diminishing property of T'N,, triangular Toeplitz
matrices that are supported on Z x Z. Such matrices are now known as PF sequences:

Definition 30.1.

(1) A real sequence a = (an)nez is a Pdlya frequency (PF) sequence if the associated
Toeplitz kernel T, : Z x Z — R, sending (x,y) — ag—y, is TN.

(2) The PF sequence a is said to be one-sided if there exist ny € Z such that a, = 0
either for all n < n_ or for all n > n, (or both).

(3) More general is the notion of a p times (i.e., multiply) positive sequence, or a TN,
sequence a, which corresponds to the matrix T, : Z x Z — R being T'N,,. (This too
has a one-sided version, as above.)

For instance, one can specialize the results of Section to X =Y = Z, to obtain
characterizations of T'N,, sequences or PF sequences.

30.1. Examples. We begin by studying examples of PF sequences, and of the subclass of
one-sided PF sequences (T'N or T'N,). Clearly, every constant (non-negative) sequence a, = c
for ¢ > 0 is a PF sequence. Our first source of non-constant PF sequences comes from Pélya
frequency functions:

Lemma 30.2. If A: R — R is a PF function, or even a TN function, then (A(an + b))nez
is a PF sequence for a,b € R. If a # 0 and A is TP, then so is (A(an + b))nez.

Proof. If a = 0 then the result is immediate. Now suppose a # 0, and x,y € ZP" for some
p > 1. Then the p X p matrix

T bl: ay], if a > 0,
(Ala(z; — yi) + D)2, :{ Alax + b1; ay] if a

Ta[laly + b1;]alx]T, if a <0,
and both choices have non-negative determinant. The final assertion is showed similarly. [J

Another elementary result is the closure of the set of T'N, sequences. The proof is easy.

Lemma 30.3. Suppose p > 1 and a¥) = (agﬂ))nez is a TN, sequence for all k > 1. If
al®) - a pointwise as k — oo, then a is also TNy.

The above lemmas allow one to ‘draw’ PF sequences from PF functions, along any infinite
arithmetic progression. Here are two examples:

Example 30.4. For a real number ¢ > 0, the sequences (¢")nez and (¢"1,>0)nez are both
PF sequences. The former is because (g%~ Y )Zkzl is a rank-1 matrix with positive entries
for any choice of integers x;,yi, so TN. If ¢ € (0,1), then the latter kernel is drawn from
A1(x) = e *1z>¢ (which is shown in Example below to be a PF function), at the
arguments x = —nlog(q). If ¢ > 1 then it is drawn from f.(z) = e**\1(z) at the arguments
nlog(g) and with ¢ = 2. (By Lemma[28.3] f. is now a T'N function as well.) Finally, if ¢ = 1
then it is drawn from the Heaviside kernel

Hl(x> =1;>0= (1:1—>H% fc(x)

at any infinite arithmetic progression. (Alternately, for all ¢ one can use the analysis

above (30.11]), later in this section.)
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Example 30.5. For a real number ¢ € (0,1), the sequence (q”z)nez is a TP PF sequence.
Indeed, this sequence is drawn from the Gaussian PF function G, for o0 = —log(q) > 0 (see
Example [29.4)).

30.2. Generating functions and representation theorem for one-sided PF sequences.
Given a real sequence a = (ay,),>0 of finite or infinite length, it is natural to encode it by the
corresponding generating function

Ua(z) = Z anx”.
n>0
When the sequence (...,0,0,a9,a1,as,...) is a TN, sequence, and only finitely many terms
ay, are non-zero, one can deduce results about the locations of the roots of the corresponding
generating polynomial WU,(z) — and in turn, use this information to classify all finite TN
sequences. We carry out this analysis in the present subsection and the next; it will be useful
in the next part of this text, in classifying the preservers of total positivity for PF sequences.
The present subsection ends by revealing the most general form of the generating function of
one-sided PF sequences.

Proposition 30.6. Suppose (ap)nez is T'Na, shifted and normalized such that ay = 1.

(1) If ap, = 0 for some k > 0 (respectively k < 0), then a; = 0 for all | > k (respectively
I <k).

(2) If ap, = 0 for alln < 0, and the sequence a is TN, for some p > 2, then its generating
function ¥, has a non-zero radius of convergence.

(3) If ap = by, =0 for alln <0, and a,b are TN, sequences, then so is the sequence of
Maclaurin coefficients of Wa(x)Up(x).

(4) If a,, =0 for alln < 0, and a is TN, then so is the sequence of Maclaurin coefficients
of 1/Wa(—x).

Note that the final assertion here does not go through if we assume a to be merely T'N,,
and not TN; see e.g. [294]. Also note the similarity of the first assertion to Theorem [28.4]

Proof. The first part is easy to check: given integers k, m with a; = 0, note that

. _ ag ao\ _
det Ta[(k, k +m); (0, k)] = det <ak+m am> = —Qkim-

Now if 0 < k,m then work with this matrix; if 0 > k, m then reverse its rows and columns.
Either way, the non-negativity of the determinant implies ajy,, = 0 for all m > 0 (or all
m < 0), as desired.

For the second part, if only finitely many terms are non-zero then the result is obvious;
otherwise by the first part, a,, > 0 for all n > 0. Now given n > 1, we have

Gn an—1

0 < detTy[(n,n+1);(0,1)] = det ( ) = a2 — apy10n 1.

an+1 Gnp

From this it follows that a,11/a, > 0 is non-increasing in n. Let 8; > 0 be the infimum /limit
of this sequence of ratios; then the power series Wa(x) =) - a,x™ has radius of convergence
1/p1, by basic calculus. -

To show the third part, first observe that the Z x Z Toeplitz matrices Ty, T}, are both T'N,,
by definition. Moreover, their product is a well-defined, lower-triangular Toeplitz matrix by
inspection, and corresponds precisely to ‘convolving’ the two sequences. But this ‘convolution’
also corresponds to multiplying the two generating functions. Thus, it suffices to show that
TaTy is TNp. This follows by the Cauchy-Binet formula (see Theorem [5.5)).
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Finally, for the fourth part, the reciprocal of W,(x) has a positive radius of convergence
around 0, by basic calculus. Develop the reciprocal around 0, on the interval of convergence:

1 n
) = anx .

n>0

Denote the tuple of coefficients by b. By the arguments used to prove the previous part, this
yields the lower triangular Toeplitz matrix T}, (indexed by Z x Z) such that TaTy, = TpTa =
Idzxz. Since T, is TN, we claim that so is the matrix with (j, k) entry (—1)7"%b;_; =
(—=1)7=*b;_y — which is precisely T for ¢, = (—1)"b,. But this would correspond to the
desired generating function:

1
S (1) =
>0 Va(—x)
It thus remains to prove the above claim. This requires the well-known Jacobi complemen-
tary minor formula [190]: given integers 0 < p < n, an invertible n x n matrix A (over a

commutative ring), and equi-sized subsets J, K € [n]? T
det A - det(A Y ey je = (—1)HRtFintke det A, g, (30.7)

where J¢ := [n] \ J, and similarly for K°.

We first quickly sketch the proof of this result (via an argument found on the internet); by
pre- and post- multiplying A by suitable permutation matrices, one can reduce to the case of
J = K = [p] — in which case the sign on the right is +1. Now let A; denote the jth column
of A, and A;l of A~! respectively. Writing e; for the standard basis of R", we have:

Aletl - leplAghil- 1471 = [Adl -+ | Aplepsal - len]

This can be rewritten as:

(AJXK AJch> <Idp><p AI_{IXJC) _ (AJXK 0 >
Ajexr  Agexie 0 At ) \Asexx Idp_pxmn-p))
Taking the determinant of both sides proves Jacobi’s result for J = K = [p].

To conclude the proof of the fourth part, we now use Jacobi’s identity to prove the afore-
mentioned claim (in bold). Let M be a square submatrix of T¢, with ¢, = (—1)"b, as above.
There exists a suitably large principal submatrix B’ of T, indexed by contiguous rows and
columns, of which M is a p x p submatrix for some p. Let A be the corresponding ‘contiguous’
principal submatrix of T,. Multiplying every row and column of B’ indexed by even numbers
by —1, we obtain a matrix B such that AB = Id. Finally, let N be the ‘complementary’
submatrix of A, indexed by the rows and columns not indexing M in B (or in B’). Applying
Jacobi’s identity and carefully keeping track of signs shows that det(M) > 0, as desired. [

We now proceed toward the form of the generating series ¥, for an arbitrary one-sided
Pdélya frequency sequence. First consider the case when a contains only finitely many non-zero
terms, which by Proposition must be ‘consecutive’. In other words,

a=(...,0,0,a9,...,am,0,0,...), m >0, ag,...,am > 0.

Lemma 30.8. With a as above, if m =0 or m = 1 (with ag, a,, arbitrary positive scalars),
then a is a PF sequence. In particular, if Wa(x) is a polynomial with all roots in (—o0,0),
then a is a PF sequence.


https://mathoverflow.net/questions/87877/jacobis-equality-between-complementary-minors-of-inverse-matrices
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Proof. We first make the useful observation that a block diagonal (but not necessarily square)

Ann A =0
A =0 A
plication is obvious, and for the reverse one, consider any square submatrix B indexed by
rows Iy U Iy and columns J; U Jo (with A;; indexed by rows I; and columns J; respectively,
for 1 < 4,5 < 2). Suppose |I;| > |Ji|; then the first |I1| rows of B essentially lie in R”,
and hence are linearly dependent. Thus det B = 0. Similarly, det B = 0 if |I;| < |J1]. Thus
|I1| = |J1|, whence |I3]| = |J2|, and hence B = <B(}1 BO22> is block diagonal with each By; a
square submatrix of A;; for i = 1,2. As A;; is TN, det(B) > 0. Thus, A is TN.

With this observation at hand, we proceed to the proof. First note that the bi-infinite
Toeplitz matrix T}, is T'N if and only if the semi-infinite matrix (74 ); ;>0 is T'N, if and only
each leading principal submatrix (Ta)o<ij<n is TN (since every square, finite submatrix of
Ta embeds inside one of the latter).

Now let m = 0. Then each (T3 )o<i,j<n is a diagonal matrix with each diagonal entry/block
a > 0. By the preceding observation, T, is TN for m = 0.

For m = 1, at first glance it may seem as if there are only two alternatives: either a square
submatrix M of T, has a zero row or zero column; or all entries along the main diagonal of
M are ap (whence the sub-diagonal has all entries a1, and all other entries in M are zero),
or they are all a; (whence the super-diagonal has all entries ag, and all other entries in M

matrix < > is TN if and only if A1, Ao are so. Indeed, the forward im-

are zero). Both cases yield det M > 0. However, there is at least one more choice: <%0 C? >
1
(whose determinant is indeed positive).
Thus, here is a cleaner argument for m = 1. Notice that since the product of elementary

matrices Ey,_1E,14r4a—1 = 0 for all r,a > 1, one can show by induction on n > 1 that

a a
(Ta)o<ij<n = a0 (Idn +CT;E21 +-F a(l)En,n—1> (30.9)

a a a
ag <Idn+a(1)E21) <Idn+a;E32) <Idn+a(1]En,n1> :

As each factor is a block diagonal matrix with 1 x 1 blocks (1) and a unique 2 x 2 block
(ajao (1)>, each factor is TN by the above observation. Hence so is (Ta)o<i,j<n by
and Proposition and hence T, is T'N as asserted.

Finally, suppose W,(x) is a polynomial with all roots in (—o00,0). Writing this as a,,(z +
B1)(x+ B2) - -+ (x+ Bm) (with —fF; the roots of ¥,), we note by the preceding paragraph that
r+Bj = W (..0,8;.10,..) is the generating polynomial of a PF sequence, asis am = ¥ 0.4,,.0,...)-
Therefore, so is their product = W,(z), by Proposition m(3)

Example 30.10. Let 6 > 0. Lemma and Proposition m@) show that the finite
sequence ay,, with U, (z) = (14 dz/m)™ is a PF sequence. Taking limits via Lemma [30.3]
the sequence a,, = 1,>00"/n! now forms a PF sequence, since its generating power series is
Ua(z) = €% = limy, 00 (1 + d2/m)™.

We now make some deductions from the above results in this section. Choose scalars § > 0,
as well as aj,8; > 0 for integers j > 1 such that ) ;(a; + ;) < co. Then J[7_,(1 + ajz)
generates a PF sequence for all n > 1, by Lemma and Proposition Take the limit
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as n — oo; since |1 + ajz| < e®l?l and ;@ < oo, the limit, given by

oo

[T+ a2

j=1
is an entire function, which generates a PF sequence by Lemma Similarly, 1/(1 — B;z)
generates an infinite one-sided PF sequence for each j > 1, by Lemma and Proposi-
tion m(ll) (For a far easier proof for (1 — 8jx)~!, one can instead use Example
below to show this assertion for 3; = 1, then deduce the case of general §; by pre- and post-
multiplying a given submatrix by diagonal matrices having suitable powers of ;.) It follows
as above that 1/ H;’il(l — Bjz) also generates a PF sequence. Applying Proposition W(S),

e}

(o]
1 .
awnﬁgﬂ where aj, 8,8 >0, Y (a; + ;) < 0o (30.11)
j=1 J 7j=1

is the generating function of a one-sided Pdlya frequency sequence a, with ag = 1.

Remarkably, this form turns out to encompass all one-sided Pélya frequency sequences.
This is a deep result, shown in a series of papers [4, [5, 106, 107] by Aissen—Schoenberg—
Whitney and Edrei — separately and together — and is stated here without proof.

Theorem 30.12 (Aissen-Edrei-Schoenberg-Whitney, 1951-52). A function > 7, anaz™ with
ap = 1, is the generating function Wa(x) for a one-sided Pdlya frequency sequence a =

(ag,a1,...) if and only if W, is of the form (30.11)).

(As a historical remark: Whitney was Schoenberg’s student, while Aissen and Edrei were
students of Pélya.) For proofs, the reader can either look into the aforementioned papers, or
follow the treatment in Karlin [200, Chapter 8]; one also finds there a representation theorem
for the generating function of a two-sided PF sequence. The proof involves using ideas of
Hadamard from his 1892 dissertation [I58], as well as Nevanlinna’s refinement of Picard’s
theorem [270)].

Remark 30.13. For completeness, we refer the reader to the recent paper [104], in which Dy-
achenko proves similar representation results involving the total non-negativity of generalized
Hurwitz-type matrices.

Remark 30.14. Also for completeness, we mention the analogous, ‘two-sided’ result:

An arbitrary real sequence (an)nez s a Pdlya frequency sequence if and only if it is either
of the form (ap™)nez with a,p > 0; or else its generating Laurent series converges in some
annulus 1 < |z| < ro with 0 < ry < re, and has the factorization

A (14 aj;z 1—}—0/ -1
Zanzn — (Oetrta'z mH 1 7ﬁ] 1 75/271)’
3% J

where C' >0, m € Z, a,d’,aj, Bj, a5, B; > 0 and 3_ (o + Bj + ol + B}) < oo.
The ‘if” part was proved by Schoenberg [322], and the harder, ‘only if’ part was shown by
Edrei [108].

This part concludes by specializing to the case where W, has integer coefficients. Here we
refer to papers by Davydov [99] and Ho6 Hai [177], in which they show that the Hilbert series
of a quadratic R-matrix algebra (over a field of characteristic zero) generates a PF sequence.
The result relevant to this text is:
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Theorem 30.15 (Davydov). A power series Wa(z) € 1+ 2Z[[z]] generates a PF sequence a
if and only if Vo has the form (30.11), with 6 = 0 and all but finitely many o, B; also zero.

30.3. Application 1: (Dual) Jacobi—Trudi identities. We now provide some applica-
tions of the above results. The first is to algebra and symmetric function theory. As mentioned
above, Theorem [30.15 was applied to the theory of quadratic R-matrix algebras over a field of
characteristic zero. We briefly touch upon this area, starting with two examples of this phe-
nomenon, which are Hilbert series of two well-known quadratic (and Koszul dual) algebras.
Recall that for a Z=-graded algebra A := @,>0A, with finite-dimensional graded pieces, its
Hilbert series is H(A,x) := ) ~,x" dim A,. Now suppose V is a finite dimensional vector
space, say of dimension m. The Hilbert series of its exterior algebra A®V is

H(A*V,z) = (1+2)™,
and this is the generating function of a (finite, binomial) PF sequence by the above results.
These results also imply the same conclusion for the Hilbert series of the symmetric algebra:
1
(1 =)™
More generally, one fixes an operator, or R-matriz R:V ® V — V ® V, which satisfies
two conditions:

H(S*V,z) =

e The Yang—Baxter equation RisRo3R12 = RogRi2Ro3, i.e.,
(R®1d)(Id®R)(R®1d) = (Id@R)(R® Id)(Id®R) on VaVeV.

e The Hecke equation (R + Id)(R — ¢Id) = 0, where ¢ is a non-zero element in the
underlying ground field.

Associated to this R-matrix, define two Z=%-graded algebras, by quotienting the tensor

algebra by two-sided ‘quadratic’ ideals:

(1) The R-exterior algebra is AR(V) :=T*(V)/(im(R + 1d)).

(2) The R-symmetric algebra is S p(V) :=T*(V)/(im(R — ¢1d)).
(For example, if R is the flip operator v; ® vy — v ® v1 and ¢ = 1, then we obtain the usual
exterior and symmetric algebras above.) It is well-known that the Hilbert series H(A%L(V), )
and H (S p(V), —x) are reciprocals of one another. In this general setting, Davydov [99] and
Ho6 Hai [I77] showed:

Proposition 30.16. Let V be finite-dimensional over a field of characteristic zero, q a scalar
either equal to 1 or not a root of unity, and R: V Q®V — V®V an R-matriz as above. Then
the Hilbert series H(AR(V'), ), whence H(S; r(V),z) (by Proposition (4)), generates a
PF sequence.

These results by Davydov and H6 Hai hold in the case when the underlying ‘Iwahori—
Hecke algebra’ (which operates on tensor powers V®" via the R-matrix) is semisimple, which
happens when 1+ ¢+ -+ ¢" 1 # 0 for all n > 0. We add for completeness that when ¢ is
a root of unity instead, such a result was proved very recently by Skyrabin [340] under an
additional hypothesis: the “1-dimensional source condition”.

We now move from algebra to algebraic combinatorics. Restrict to the special case of R
being the flip operator and ¢ = 1; but now allow for V to have a ‘multigraded’ basis v;
with degree oz, where a; > 0 for j > 1. This leads to distinguished objects in algebraic
combinatorics. Indeed, the Hilbert series is now the polynomial ¥,(x) = (1 + ajz)--- (1 +
am), with aq,...,am;, > 0 (so ap = 1) — so ag,a1,...,a, are precisely the elementary
symmetric polynomials aj = e;j(ai, ..., amy) in the roots ay,.
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Taking limits as in the above analysis in this section, if a; > 0 and Z;’il aj < oo,
then a; = ej(a1,ag,...) for all j > 0. Here, the mth elementary symmetric polynomial in
(in)finitely many variables uy,ug, ... is defined to be

ej(u) := E Uy * " Uk,
1<k <ko <<k

with ep(u) := 1 and e;(u) := 0 if u has fewer than j entries.
In fact a stronger phenomenon occurs: if we replace the «; by variables u = (u1,us,...),
then every minor of the infinite triangular Toeplitz matrix

1 0 0 0
er(u) 1 0 O
e2(u) ei(u) 1 0 (30.17)
es(u) ex(u) ej(u) 1

is monomial positive, meaning that any minor drawn from it is a non-negative sum of mono-
mials in the u;. In fact an even stronger result is true: the above matrix is a (skew) Schur
polynomial in the w;. In particular, it is (skew) Schur positive (i.e., a non-negative sum of
Schur polynomials). This phenomenon is known as the dual Jacobi—Trudi identity, and is in
a sense, the ‘original’ case of numerical positivity being monomial positivity — in fact, being
Schur positivity. See Appendix F for more on this. (We will see another, more recent such
instance in Theorem which follows from a more general Schur positivity phenomenon
shown by Lam—Postnikov—Pylyavskyy [231].)

An analogous phenomenon holds for the ‘usual’ Jacobi—-Trudi identity. Namely, suppose
Ua(z) = (1 —oqa)-- (1 — ama)) " for scalars a, > 0 (so once again, ag = 1). Then
ap,ai, ... are precisely the complete homogeneous symmetric polynomials

aj = hj(ai,...,ap) = Z Qg * " O Jj=1
1<k <ko <---<k;

and ho(au, ..., o) := 1. Now take limits as above, with a;; > 0 and 377, a; < 0o to obtain
aj = hj(al,ag, .. ) for j Z 0.

Once again, a stronger phenomenon than ‘numerical total non-negativity’ holds: if one
replaces the «; by variables u = (u1,ug,...) as above, then every minor of the infinite
Toeplitz matrix

1 0 0 0
hl(u) 1 0 0
ha(a) hi(w) 1 0 (30.18)
hg(u) hg(u) h1 (u) 1

is monomial positive, — and more strongly, (skew) Schur positive. Thus, total positivity
connects to the Jacobi—Trudi identity.

30.4. Application 2: Results of Fekete and Laguerre. We now complete the proof of
a result by Laguerre in the preceding section, as promised there. The first step is to prove a
strengthening of a weaker version of Fekete’s Proposition [29.23

Proposition 30.19. Suppose T : Z=9 x Z2° - R is TNy, for some integer p > 2. Given a
real vector x = (z9, . ..,Tp-1,0,0,...)T, we have S=(Tx) < S~ (x).
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Proof. Suppose S~ (Tx) > S~ (x) for some finite vector x = (xg,z1,...)? with z, = 2,11 =
-+ = 0. Then there exists an initial segment y of Tx of length m + 1 such that S~ (y) >
S7(x). Let x' := (w0, ...,2p—1), and let the submatrix 7" := (t;k)j<m, k<p- Then T"is TN
by assumption, and y = 7'x/, so by the variation diminishing property (Theorem [29.11)),
S~ (y) =S5 (T'x') < S~ (x') = S~ (x), a contradiction. O

Using this result, we now prove Laguerre’s result as mentioned by Fekete in [I18] — but
using finite matrices instead of power series:

Proof of Theorem [29.29(2). For s > 0, let Ty denote the infinite Toeplitz matrix with (j, k)
entry s77%/(j—k)!if j > k, and 0 otherwise. This corresponds to the sequence with generating
function e%*, so by Example the matrix T is T N; moreover, the map e’ — T,, s >0
is a homomorphism of monoids under multiplication.

We now turn to the proof. Applying Proposition S™(Tsx) < S~ (x) for any finite
vector x (padded by infinitely many zeros). In particular, the integers {S~(Tsx) : s > 0} are
uniformly bounded above by S™(x) < co. Moreover, S™(Tsx) and S™(x) are precisely the
number of variations in the functions e**Wy(z) and W (x), respectively.

We first show that S™(Tsyx) < S (Tsx) if s,t > 0. Given m > 0 and s > 0, let Ts(m)
represent the leading principal (m+1) x (m+1) submatrix of T}; and let x(™) = (zq, ..., z,)7
as above. Since S~ (Tsx) < oo for all s > 0, there exists m such that

ST (Terx) = S™(TIX™), 87 (Tux) = S~ (Tx™).
Now compute, using for Tt(m) the variation diminishing property in Theorem
ST = (T Timxm) < §7(T{mxm) = §7(Tx).

Finally, we claim that S™(7sx) < oo is at least the (finite) number of positive zeros of
e** Wy (z), which clearly equals the number of zeros of ¥y (z) and hence would show the result.
This follows from a variant of the (stronger) Descartes’ Rule of Signs — see Theorem m O

30.5. Location of the roots, for generating functions of finite 7'N, sequences. Recall
by Lemma that if a polynomial f has only negative (real) roots, then it generates a PF
sequence. In the rest of this section, we prove the converse result: namely, if a real sequence
a has only finitely many non-zero entries, then it is a PF sequence only if the polynomial
U, (z) has all negative zeros.

To do so, we will deduce necessary (and sufficient) conditions for a finite sequence to be
T'N,. The aforementioned conclusion will then follow by considering all p > 1. We begin with
a result by Schoenberg [325] in Ann. of Math. 1955, which says: in order to check whether or
not (...,0,ap,a1,...,am,0,...) is a TN, sequence, we do not need to check infinitely many
minors of unbounded size.

Theorem 30.20. Suppose (...,0,a9,a1,...,am,0,...) is a real sequence with ag, a1, . .., am >
0 for some m > 0. This sequence is TN, (for some integer p > 1) if and only if the matriz

ap aj - e A 0 0 e 0
0 ay - e e A 0 e 0
Ay =
0 0 - a - Gm—pt1 Gm—pt2 Am—p+3 " Om

pXx(m-+p)
is TN. Moreover, in this case the generating polynomial Wo(z) = ag + -+ + amz™ has no
zeros in the sector |argz| < pr/(m +p—1).
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To show this result, Schoenberg first proved a couple of preliminary lemmas.

Lemma 30.21. Suppose (an)nez is a summable sequence of non-negative numbers, such that
the p X Z ‘matriz’

A, = (ar-j)o<j<pikez,
has rank p, i.e., an invertible p x p submatriz. Then (ay)n is TN, if and only if the matriz
Al is TN.

Proof. One implication is immediate. Conversely, suppose A; is TN, and for every o > 0,

. . (k)2
draw a Z x Z matrix from a Gaussian kernel, say M, := (e7?U~%"), ;7. By Lemma
this matrix is symmetric and totally positive, and goes entrywise to Idzxz as ¢ — oo. Now
since ), .z an is finite, one can form the matrix

By :=TaMy, (Bo)jp = ajne "™ ke
nez

We claim that B, is T'P,. To see why, it suffices to check that any contiguous submatrix
of B, is T'Py; in turn, for this it suffices to check for all 1 < r < p that all contiguous r x r
minors of B, are positive, by the Fekete-Schoenberg Lemma [1.9] But each such minor is the
determinant of the product of a contiguous r x Z submatrix A* of T, and a contiguous Z X r
submatrix My . of the totally positive matrix M,. By the generalized Cauchy-Binet formula,
given contiguous r-sized index-sets J C [p] and K C Z, first note that the submatrix A%,
can be moved up and to the left, to assume that J = [r] and K ~» K’ := K + 1 —minjec; j.
Now,

det(By)sxx = det(By)xrr = Y det(A)s det(Mo) sy k.
Je(7)

The second factor in the summand is always positive since M, is TP, and the first factor is
always non-negative, so it remains to find some J such that (A )[T]X 7 is invertible. But A’ has
rank p, so there exist p linearly independent columns indexed by J' := {j; < --- < ]p} say.
Hence the matrix (A})}]«. has full row rank, hence it contains r-many 1inearly independent
columns. Index them by J, and we are done.

Thus the matrix B, is T'P for all o > 0. It is not hard to see that these matrices converge
to A}, as 0 — oo, and the proof is complete. O

The next lemma is interesting in its own right, hence isolated into a standalone result.
Lemma 30.22. Given matrices A, B, define their ‘concatenation’ AH B to be the ‘block

diagonal’ matriz 0 g , but with a horizontal shift such that the final column of A is

directly above the initial column of B. Now AW B is TN if and only if A, B are TN.

This will use the following observation: If a square block diagonal matriz M = My ® Ms
is invertible, then My, My are square. (This is because if M; and hence My are not square,
their row (or column) ranks do not add up to the size of M, and so det(M) = 0.)

Proof. One implication is immediate. Conversely, suppose A, B are T'N, and the column
common to them is numbered n in A H B. Choose a square submatrix M of AH B. If M
does not have a column of AH B from before the nth column and one from after the nth,
then either M has a zero row or M is a submatrix of A or of B, whence det(M) > 0.

Otherwise M has two columns indexed in A H B by ni,ne with ny < n < ng. There are
now two cases:
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(1) Suppose M does not include the nth column. Then M is a submatrix of AB B with
the nth column removed, which is a block diagonal matrix. Now the diagonal blocks
are both square, in which case det(M) > 0 by the hypotheses; or neither diagonal
block is square, in which case the above observation (following the statement of the
lemma) yields det(M) = 0.

(2) Otherwise M also includes the nth column of AH B. Now M is of the form

/
v=(3 1 m)
If B’ is square, then expanding det(M) along the ‘common’ column, we claim that
det(M) = det(B’) det[A|va],
since t%/le cofactors in M corresponding to the coordinates of vp are of the form
0o
Hence each such cofactor vanishes, by the above observation; and we are left with
det(B’) det[A’|va]. As both determinants are non-negative by assumption, det(M) >

0 as desired.
The proof is similar if A’ is square. Finally, if neither A’ nor B’ is square then the co-

det , where B” is obtained by removing a row from B’ and so is not square.

: . . A"
factor against each coordinate of the ‘common’ column is of the form det < 0 BP">’

with at least one of A” ) B” not square. By the above observation (preceding this
proof), all such cofactors vanish, so det(M) = 0. O

With these preliminaries at hand, we can proceed.

Proof of Theorem [30.20, The first part follows from Lemma [30.21] since now most of the
columns of the matrix A;, defined in that lemma are zero. Here we use not A,, but the
matrix obtained by reversing the rows and columns of A,, which is T'N if and only if A, is.

Now suppose A, is TN. If m = 0 then the result is obvious, so we assume m > 0

henceforth. By Lemma so is the np x (nm + np — n + 1) matrix
My,=AS":=A, 8B4, n>1,
where the ‘sum’ is n times, and we use that H is associative.

The first observation is that M, = A;'f” has full rank np. Indeed, we may consider from
each component A, the initial p columns, which yields an upper triangular np x np submatrix
with all diagonal entries ag > 0. For future use, denote the set of these np columns by J.

Let a = pe? be a root of U,(2). If §# = 7 then we are done, and if § = 0 then W,(z) > 0.
Since @ is also a root, we may therefore assume that 6 € (0,7). Define z; := S(a) =
o’ sin(jO) for 0 < j < n(m-+p—1). We now count the number of sign changes S~ ((zo, . .., 7))
for ¢ > 0: this equals the number of times o/ crosses the X-axis in C, so

ST ((zoy...,zt)) = [tO/7]| + ¢, where € € {0, —1}. (30.23)

At the same time, Z;‘n:o ajoz”“‘j = a’V¥,(a) = 0, so taking the imaginary parts yields:

Zajal’ﬂ sin((v + j)0)) =0, Vv € 270,
=0

In other words, M,x = 0, where x := (xo, ... ,xn(m+p_1))T. Also note that if some z; = 0
for 0 < j <n(m+p—1), then x;_12;41 < 0, since € (0,7) by assumption. Hence small
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enough perturbations to x will not change the number of sign-changes except at most at the
extremal coordinates.

Now let y := (=1,1,...,(=1)"")T and let xq := (Mn)[_n;]X
the set of columns chosen above, containing ag. Let Xg € R?™TP~7F1\ {0} denote the vector
with the coordinates of x( in the positions indexed by J, and padded by zeros otherwise.
Then M,Xg = y. Now by the end of the preceding paragraph, choose ¢ > 0 small enough
such that S™(x + exg) < S7(x) + 2. Recalling that M, x = 0, we have:

np—1 = S (ey) = 8™ (Mn(x + €0)) < 5 (x + o) < S~ (x) +2,

;¥, with J C [nm +np —n + 1]

where the first inequality is by the variation diminishing property of the T'N matrix M, =
A;'f" (see Theorem [29.11)). Hence by (30.23) with t = n(m +p — 1),

nim+p—1)0
T

np—1<|nm+p—-1)0/m|+2< +2.

Since n was arbitrary, letting n — oo finishes the proof. O
We can now deduce the desired corollary about finite Pélya frequency sequences.

Corollary 30.24. Supposea = (...,0,ap,...,am,0,...) is a real sequence, with ag, ..., Gy >
0. The following are equivalent:

(1) a is a Pélya frequency sequence.

(2) Va(x) = 37"y aja’ has m negative real roots, counted with multiplicity.

(3) Va(z) =370, ajx? has m real roots, counted with multiplicity.

Proof. That (1) = (2) follows from the final assertion of Theorem letting p — oc.
That (2) = (1) follows from Lemma Clearly (2) = (3), and the converse holds
since W, does not vanish at 0, and does not have positive roots by Descartes’ Rule of Signs
— see e.g. Theorem [10.7] with I = (0, 00). O

30.6. Jacobi T'N, matrices and a sufficient condition for 7'V, sequences. We conclude
this section with a result by Schoenberg that is ‘opposite’ to his Theorem Namely, if
the generating polynomial above has all roots in the sector |arg(z) — 7| < «/(p + 1), then
the finite sequence (...,0,aq,...,am,0,...) is TN,. To do so, we first study when ‘infinite
Toeplitz tri-diagonal (Jacobi) matrices’” are T'N,. This was carried out by Karlin in Trans.
Amer. Math. Soc. (1964), and he showed the following lemma.

Lemma 30.25 (Karlin, [199]). Given a,b,c € (0,00), define the corresponding Jacobi matriz
J(a,b,c)zxz via J(a,b,c)jr equals a,b,c if k = j — 1,7, + 1 respectively, and 0 otherwise.
Then J(a,b,c) is TN, for an integer p > 1, if and only if 2%/% > cos(mw/(p+1)).

Proof. When considering submatrices of K := J(a, b, c) of the form K|[x;y] for x,y € Z"", it
is not hard to verify that if z; # y; for some 1 < t < r, then (a) the matrix K[x;y] has a row or
a column with at most one non-zero entry; (b) expanding along this row or column breaks up
the matrix into the single non-zero entry (if it exists) and a product of two smaller minors of
K = J(a,b,c). From this it follows that every minor of K is a product of principal minors and
elements of K. Thus, to check if J(a,b,c) is TN, we need to examine the principal minors
of size at most p. If such a submatrix is not contiguous, then it automatically becomes a
block diagonal matrix, and so we only need to consider the contiguous (equivalently, leading)
principal minors of J(a,b,c) of size < p.
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For the ensuing discussion, fix a,¢ > 0. Given A € C, b € (0,00), and an integer r > 1,
define J,. () to be the r x r leading principal submatrix of J(a,b,c) — Aldzxz. Expanding
along an initial/terminal row/column, it is easy to observe that the determinants

dyp(N) = det Jpp(N), r=12,...
are polynomials in A, which satisfy the recurrence:
dry1p(z) = (b—x)dpp(x) — acdr—1p(z), 7 >0
with the initial conditions do () = 1,d_; 3(x) = 0. Reformulate this in terms of the ‘shifted’
polynomials
erp(r) = Vac "d.p(b— 2v/acx), r>1,
to obtain the recurrence:
er—15(7) + er15(7)
2 )

Restricting to x = A € (—1,1), so that = cos(#) for some 6 € (0,7), one can show by
induction that e,(x) = sin((r + 1)8)/sin(@) satisfies the initial conditions and the recurrence.
In fact, this corresponds to the Chebyshev polynomials of the second kind, given by
sin(r +1)6

sin 0

Continuing with the fixed scalars a,c¢ > 0, we show that J(a,b,c) is TN, for b > 0 if and
only if b > 2y/accos(m/(p + 1)). There are two cases. First if b € (0,2y/ac), then write

bac = cos(#) € (0,1), where 6 € (0,7/2). Our desired value of interest is the determinant

2\/ac
»sin((r +1)6)
sinf

dr(o) = \/%rer,b(b/Z\/&) = \/%Ter,b(cos 0) = \/%
b

This is non-negative if and only if (r+1)0 < 7, if and only if 1 > e 2 cos(m/(r+1)). This
completes the classification if 0 < b < 2y/ac, since the sequence cos(w/(r + 1)) is increasing
inl<r<np.

The second case is if b > 2\/ac > 2y/accos(m/(p + 1)). We need to show that J(a,b,c)
is T'Np, for which (from above) it suffices to show that det J,;(0) > 0 for 1 < r < p. To
show this, we use a well-known identity: by the multilinearity of the determinant in the

rows/columns, it follows for any square r x r matrix B over a unital commutative ring that
det(B+vId)=v"+ Y v 1ldet By (30.26)
0#£IC[r]
We now apply this identity to the matrices J,4(0), if b > 2\/ac. Set
by := 2y/accos(m/(r+ 1)) € [0,], B := J,,(0), v:i=b—"b,>0.
By the analysis above in this proof, det Brx; > 0 for all I. It follows from that

det J,.5(0) > 0. Since this holds for all 1 <7 < p, the proof is complete. O

werp(2) = r>1; epp() =1, e_1p(z) =0.

er(cosf) = 6 € (0,m), r>—1.

With Lemma [30.25| at hand, we present the final proof in this section: that of a sufficient
condition for a polynomial to generate a finite Pdlya frequency sequence.

Theorem 30.27 (Schoenberg, [326]). Fiz an integer p > 1, and suppose a polynomial f(z) =
ag+ a1z + -+ - + am 2™ with positive coefficients, such that all zeros of f lie in the sector

|arg(z) — 7| < ——.
p+1
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Then the sequence a = (...,0,aq,...,am,0,...) is TN,.

Proof. If p = 1 then the result is clear, so we suppose below that p > 2. Decompose f into
linear and complex-conjugate factors:

F(2) = am [[(z = ) [ [ (z = ore™ ) (2 + pre™),
j k
with all p;, > 0. The hypotheses imply that a; < 0 and |0, — 7| < 7/(p+1). Now z — a;
generates a PF sequence by Lemma [30.8] and each irreducible quadratic
(z — pre” ) (z + ppe'®) = 2% — 2zp;, cos(0y,) + p

does the same by Lemma [30.25] since the condition — cosfy, > cosm/(p + 1) is equivalent to
|0 — m| < 7/(p+ 1) (with p > 2). Hence their product f(z) also generates a PF sequence,
by Proposition [30.6{3). O

Finally, we present a (standalone) sufficient condition for a square matrix to be T'P:
Theorem 30.28. Let A = (aji);r>1 with all aj, € (0,00). If
QjkQj+1 k+1 > G k+10k+1,5 4COSQ(TF/(7”L +1)), Vi k> 1,
then A is T P,; moreover, the constant 4cos®(m/(n + 1)) cannot be reduced.

This result only uses the positivity of the entries and a growth condition on the 2 x 2
minors. It was conjectured by Dimitrov—Pena in 2005 [101], and proved (independently)
by Katkova—Vishnyakova in 2006 [209]. (Also worth mentioning is their 2008 follow-up pa-
per [210] on (Hurwitz) stability of polynomials.) That the constant is best possible is revealed

via Lemma [30.25, as follows: given 0 < ¢ < 4cos?(m/(n + 1)), choose 0 € (nL_H, 73—]:1) such

that ¢ < 4cos” . Now consider the Jacobi matrix J(1,2cos#,1),xn.
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31. COMPLEMENT: ROOT-LOCATION RESULTS AND T'N HURWITZ MATRICES

We take a short detour to discuss some well-known matrices associated to finite Polya
frequency sequences and their generating polynomials. First, Corollary has received
recent attention: instead of working with the matrix A, as in Theorem one can study
other variants. This section opens with a few results along these lines, presented without
proof.

Definition 31.1. Given a polynomial with real coefficients
f(2) =apz" +a12" 1+ +ay,, n,ag,...,a, >0,

and an integer 1 < M < n, define a; := 0 for j < 0 or j > n, and the Mth generalized
Hurwitz matriz to be the Z x Z matrix Hps(f), given by

HM(f)ij = AMk—j, J k€. (31.2)

We now present five results (without proof, and perhaps not all of them ‘best possible’)
in the literature, which are similar to each other, and one of which is the Aissen—Edrei—
Schoenberg—Whitney corollary

Theorem 31.3. Let n,aq,...,a, > 0 and define f(z) = apz™ + a12" 1 + -+ + a,. Also fir
an integer 1 < M < n.

(1) (M =2, Routh—Hurwitz, see e.g. [I88,305].) The polynomial f is ‘stable’, i.e., has no
zeros z with |arg z| < w/2, if and only if all leading principal minors of the Hurwitz
matriz Ha(f), of order < n, are positive.

(2) (M =2, Asner [14], Kemperman [212], Holtz—Tyaglov [181].) The polynomial f has
no zeros z with |arg z| < /2 if and only if the Hurwitz matriz Ha(f) is TN.

(3) (M =1, Aissen—Edrei-Schoenberg—Whitney.) The polynomial f has no zeros z with
|arg z| < 7 if and only if the Toeplitz matrix Hy(f) is TN.

(4) (M = n, Cowling—Thron [89].) The polynomial f has no zeros z with |arg z| < 7/n.

(5) (M € [1,n], Holtz—Khrushchev—Kushel [I80].) The polynomial f has no roots z with
|arg z| < w/M if the generalized Hurwitz matriz Hp(f) is TN.

We now come to further results on root-location (of real polynomials), in the spirit of
Theorems [30.20], [30.27], and [31.3] These three results revealed a connection between Pdlya
frequency sequences, totally non-negative matrices, and root-location.

As a ‘warmup’, we show the Gauss—Lucas theorem, found in Lucas’s 1874 work [244].

Theorem 31.4 (Gauss—Lucas). If p(z) is a non-constant polynomial, then the roots of p'(z)
in C are contained in the convex hull of the set of roots of p(z).

Proof. Let p(z) = py H}Ll(z—gj). If ¢; is a root of p’ as well as p, then §; = 1-§j+2k# 0-&.
If £ is a root of p’ but not of p, then we compute:

P(z) = 1 PO &~ g
_Zz—é’j - 0_19(5)_;%—6;'!2'

J=1

Setting A := Z?Zl |€ — &]72 > 0, we obtain via simplifying and conjugating:

n n =2
A=Y k-4l = =Y L9,
Jj=1 j=1

and so £ is in the convex hull of the &;. O
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The next theorem is a ‘real’ variant of the Hermite—Biehler theorem — the classical version is
due to Hermite [165] and Biehler [49] in J. reine angew. Math., in 1856 and 1879 respectivelyﬁ
The real variant presented here requires the following preliminary result.

Lemma 31.5. Suppose p, q are differentiable functions on a closed interval [a, b, with p(a) =
p(b) =0, p >0 on (a,b) and ¢ <0 on [a,b]. Then there exist A\, u > 0 such that A\p + uq has
a repeated root in (a,b).

Proof. Since q is continuous and negative on [a, b], define

h(z) = Zgg, x € [a,b].
Clearly h is differentiable on [a, b], negative on (a, b), and vanishes at the endpoints. Hence
it has a global minimum, say at xy € (a,b) — whence the function
h(z) — h(xo) : [a,b] = R
has a repeated root at xy. Returning to p,q, let A =1 and u = —h(zp) > 0; then the function

Ap(z) + pg(z) = q(x) (h(x) — h(xo))

can be easily verified to have a repeated root at zy € (a,b). O
We also require the notion of interlacing.

Definition 31.6. Let f, g € R[z] be two real-rooted polynomials, with deg(f)—1 < deg(g) <
deg(f). We say g interlaces f if between any two consecutive roots of f (possibly equal),
there exists a root of g. We say f, g are interlacing, or interlace (one another) if either of f, g
interlaces the other.

For the next few results, and related variants, and an in-depth treatment, the reader is
referred to the monograph [295] of Rahman and Schmeisser. The treatment here is from [179].

Theorem 31.7 (Hermite—Biehler, ‘real’ version). Fiz polynomials p,q € Rlx] and set f(z) :=
p(22) + 2q(2?). The following are equivalent:

(1) The polynomial f(x) has no roots z with R(z) > 0.
(2) The polynomials p(—x?), xq(—x?) have real, simple roots, which are interlacing. More-

over, there ezists zo € C, R(zp) > 0 such that ?R( p(z5) ) > 0.

z0q(23)

Proof. We begin by assuming (2). Notice that all roots of p, ¢ lie in (—o0, 0]. Thus the ratio

R ( :q(('z;))> is non-vanishing, whence always positive by (2), on the half-plane $(z) > 0 (which

is an open ‘sector’ with aperture m; this is defined and used in a later section). It follows

that the equation
_ _ 2 P(Z2)

has no solution with R(z) > 0. Moreover, at a point iz on the imaginary line, we have
fliz) = p(=a?) + izq(~2?),
which cannot vanish by (2). This shows that all zeros z of f satisfy: R(z) < 0.

6Two historical asides: Biehler’s thesis in the same year 1879 is dedicated to his “master M. Charles
Hermite”; and Pierre Fatou was a student of Biehler in the Collége Stanislas.
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Conversely, suppose (1) holds. Write f(2) = a[[iL,(» — «;), with a # 0 and R(«a;) < 0.
Verify that if 3(z) > 0, then |iz + &;| > |iz — ;| for all j, so that

[f@2) = lal [[ | =iz + ajl = lal [ [ liz + @] > lal ] ] liz — oy = | £ (i2)].

Square both sides and expand, to deduce using that p(x), ¢(x) € Rlz]:
1 : _ o _
0> Z(!f(ZZ)IZ —[f(i2)]}) = Rlip(=2")2q(—2%) = Sp(—2)ze(-=")) < 0.

This holds if $(z) > 0; taking conjugates, if 3(z) < 0 then S(p(—2%)zq(—2z?)) > 0. That is:

p(=2%)
In other words, the functions
_ 52 _ .2
s B
2q(—2?) p(—2?)

do not take real values for z € C\ R. Thus, if the first (or second) function here equals —p /A
(or =X\/p) for A\, pp € R, then z must be real — that is, the following functions are real-rooted:

Ap(=2%) + pzq(—=2%),  ApeR, N+ " #£0 (31.9)

We next claim that the polynomials p(—x?), 2zq(—22) — which are now real-rooted — are
moreover coprime. Suppose not, for contradiction. If p(c) = ¢(c¢) = 0 for ¢ € (—00,0) then
f(£iy/]c]) = 0, which violates (1). If p(0) = 0 then f(0) = 0, again violating (1). Otherwise
p(—2?), 2q(—2?) must have a pair of common, non-real conjugate roots, say z4+ = a +1ib with
b > 0. Now

fliaFb) = flizs) = p(~=#3) + izzq(=22) =0,
which violates (1) yet again. This contradiction shows that p(—z?), zq(—x?) are coprime.

We now explain why no function (31.9) can have a multiple root. (Recall that these

functions are all real-rooted.) Indeed, if there existed such a multiple root, then one of the
p(=2%) zq(=2°)
2q(—2%)" p(—2?)
‘multiplicity’. More precisely, there exists xo € R such that (z — x0)? divides Ap(—x?) +
pxq(—x?) with (A, i) # (0,0). Notice by the coprimality above that p(—z?), zq(—2?) do not
vanish at zg. Let k£ > 2 denote the order of the multiple root zg. Thus,

g(z) —r = (z — 20)" (),

where we expand near zy and so all functions involved are analytic; moreover, h(zg) # 0.
But then for small € > 0, the equation g(z) = r — ¥ has solutions

x = xg + 2D/ Ep () VR 4 o(e), j=1,2,...,k.

ratio-functions

— call it g(z) — would equal a real number, say r € R, with

This implies that the ratio-function g(x) takes real values outside the real axis, which con-
tradicts a conclusion above.

We have thus shown that p(—xz?), zq(—22), and indeed, all nontrivial real-linear combina-
tions of them, are real-rooted with simple roots. By (the contrapositive of) Lemma it
follows that the roots of p(—x?), rq(—x?) interlace. Finally, return to (31.8) and let 2z := iz

for arbitrary z € (0,00). Then 0 > ( p(=4) ) — 2E) ¢ R, 0

i20q(20)? 204(20)?
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Remark 31.10. Theorem |31.7(2) is equivalent to the polynomials p, ¢ having simple, nega-
tive roots, which interlace with the rightmost zero being that of p, and p(0)g(0) > 0.

As an application, we show the heart of the Routh—Hurwitz scheme [I88] [305]. This will
presently lead us back to TN matrices.

Theorem 31.11 (Routh-Hurwitz). Fiz polynomials p,q € R[x] and set f(x) := p(x?) +
xq(z?). The following are equivalent:

(1) The polynomial f(x) has no roots z with R(z) > 0.
(2) The scalar ¢ := p(0)/q(0) is positive and the polynomial fi(z) := p1(z?) +xq (x?) has
no roots z with R(z) > 0 — where p1(x) := q(x) and q1(z) := L(p(z) — cq(x)).

T

For completeness, we highlight the applicability of the above approach, by deducing another
well-known result on interlacing. This is attributed to several authors: Hermite [165] in 1856;
Kakeya, whose proof was presented by Fujiwara [133] in 1916; and Obrechkoff [273] in 1963.

Theorem 31.12 (Hermite, Kakeya, Obrechkoff). Suppose f,g are real polynomials with no
common root. The following are equivalent:

(1) The roots of f,g are real and simple, and f, g interlace (so |deg(f) — deg(g)| < 1).
(2) For all \, i € R with A2+ u? > 0, the polynomial Af (z)+ pg(x) has real, simple roots.

Proof. In both assertions, note that the deg(f) + deg(g) roots of f, g are pairwise distinct
and all real, so say f (respectively, g) has roots oy < -+ < ayy, (respectively, f1 < -+ < ).
These divide the real line into m + n + 1 open intervals, on each of which f, g do not change
sign. Enumerate these intervals from right to left, so that I) = (max{au,, 5}, c0). Moreover,
on any two adjacent intervals, one of f, g does not change sign, while the other does.

We now turn to the proof. First given (2), we need to show that the polynomials f,g
interlace. (Note that both have real, simple roots.) This follows from the claim that no
bounded interval I has both endpoints as roots of either f or of g. In turn, the claim is a
consequence of Lemma [31.5

Conversely, we assume (1) and show (2). We can assume both A, # 0, so suppose without
loss of generality that (a) A =1, (b) f, g are monic, and (c) deg(f) = m > n = deg(g), with
n € {m — 1,m}. There are now several cases:

(1) w > 0. In this case, the function \f + pg is positive on I, negative on I3, positive
on I5, and so on, until it has sign (—1)""! on I, 1, and (—1)™ as z — —oo. From
this, it follows that \f 4+ ug has at least m sign changes on R, and degree m, whence
precisely m simple roots.

(2) < 0and m =n -+ 1. In this case, A\f + ug is positive as  — 400, negative on Io,
positive on Iy, and so on, until it has sign (—1)™ on Is,,. Now the final sentence of
the previous case again applies.

(3) =1 < u < 0 and m = n. Now there are two subcases, corresponding to if «,, > 3, or
Qm < Bn. In the former case, Af + g is positive as x — +00, negative on Iy, positive
on I4, and so on, until it has sign (—1)™ (as in the preceding case). Hence the final
sentence of the first case again applies.

Otherwise we have au,, < 8y, whence Af + ug is positive on I, negative on I, and
so on, until it has sign (—1)™~! on I5,,, and sign (—1)™ as # — —oc. Hence the final
sentence of the first case applies.

(4) If p < —1 and m = n, this reduces to the preceding case, by replacing f +— g and
()‘ = 13/" € (—OO, _1)) — (:u_l € (_170)? 1)
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(5) This leaves the final subcase, in which 4 = —1 and m = n (and recall that A = 1
and f, g are monic). Given the interlacing of the roots of f,g, it is not hard to see
that deg(Af + ug) = m — 1. Notice that shifting the origin simultaneously for both
polynomials does not affect either assertion in the theorem, nor does interchanging
A =1 with g = —1. Thus, we assume henceforth that both f and ¢ have negative,
simple roots a;; and j3; respectively, and that without loss of generality,

0> am>Bm>amo1>->a > [
We now ‘invert the coefficients’ of both polynomials: let fiu,(z) := 2™ f(1/x) and
ginv(x) := 2™g(1/x). These have roots a;l and B;l respectively, so these roots

are once again negative and interlacing (now f; 1is the closest root to the origin).

Moreover, finy(0) = ¢inv(0) = 1. Applying Remark [31.10| (and Theorem , the
polynomial

F($) = ginv(xz) + xfinv(x2)
has no roots z with ®(z) > 0. Hence by Theorem [31.11| with ¢ = 1, the polynomial
Fi(z) := g1(2?) + zf1(2?) has no roots z with R(z) > 0, where

gl(x) - finv(x)a fl(ﬂf) = %(ginv(x) - fznv(x))

Now apply Theorem for I, and Remark for g1, f1, to deduce that
the roots of g1, fi are simple, negative, and interlace. In particular, the roots of
L (Ginv(2) = finv(@)) = (9 — finv(x) (by abuse of notation) are simple and negative.
Inverting back the coefficients (via p(z) — z9°8®)p(1/x)), so are the roots of g(z) —
f(z), whence of \f + g, as desired. O
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32. EXAMPLES OF POLYA FREQUENCY FUNCTIONS: LAPLACE TRANSFORM,
CONVOLUTION.

In Section we saw some characterizations of T'N,, functions, and also studied the expo-
nential decay of TNy (whence all TN,,) functions. We also saw several examples of TN (in
fact, Pélya frequency) functions in Section We now return to Pélya frequency functions,
and discuss additional examples as well as a recipe to generate new examples of T'N,, or PF
functions from old ones.

32.1. The bilateral Laplace transform of a totally non-negative function. We begin
by defining and studying the Laplace transform more generally — for T'Ns functions.

Definition 32.1. The bilateral Laplace transform of a (measurable) function f : R — R is
denoted by B(f), and defined at a complex argument s € C to be

BUU@):iéé‘”f@Od%

This expression is defined if the following integrals both converge as R — oo:

R 0
/ e f(x) dx, / e f(x) dz,
0 -R
in which case the sum of their limits is taken to be B(f)(s).

The following result uses the characterization of T'Ny functions in Theorem [28.4] above, to
show the existence of the Laplace transform:

Lemma 32.2. Suppose f: R — R is TNy and not an exponential. Then B(f) exists in the
open vertical strip in C, given by
—o0 < a:=inf (log f)(z) < B :=sup (log f)'(z) < oo,
zel xel
where [’ exists on a co-countable set, and we set o ;= —oo (respectively, B := o0) if f(x) =0
for sufficiently large © > 0 (respectively, sufficiently small x < 0). If f is integrable then this
strip contains the imaginary axis.

Proof. Let I denote the interval of support of f, as in Theorem There are three
possibilities: (a) I is bounded, in which case the result is easy; (b) I is unbounded only on
one side (in which case f can be an exponential function on I); or (¢) I = R, in which case
f(x) is not an exponential.

We will work in the third case, as the cases for I C R are simpler. It suffices to show that
the integral in B(f) is absolutely convergent on a vertical strip. We now appeal to Propo-
sition [28.8] and its proof, used henceforth without further reference. First by Lemma [26.3
(log f)' is defined on a co-countable subset of I and is non-increasing there. Thus the following
limits make sense, and equal the asserted formulae:

/! /
o= lim / (x)’ B := lim ! (x)’
Z—00 f(x) T——00 f(a:)
moreover, —oo < a < # < o0, since f is not an exponential on I = R.
We claim that the integral in B(f)(s) is absolutely convergent for R(s) € (a, ), whence
convergent as desired. Indeed:

(32.3)

0

rwmwséwﬂwmm=fiﬂ%W@m+/eﬂMW@m.

—00
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Since @ < R(s) < B, choose points z1 < 2 in I such that a < ¢'(x2) < R(s) < ¢'(z1) < B.
Then convergence follows because f shrinks to zero faster than the exponential bounds in
the proof of Proposition [28.8

Finally, suppose f is integrable on I, where we once again assume I = R. Then f(z) — 0
as |x| — oo, whence log f(z) — —oco as |z| — oco. It follows that o < 0 < S. O

We next bring the limits of the vertical strip «, 8 into the form found in the literature:

Proposition 32.4. The limits in Lemma can also be written as

1 1
a = lim 7ng($), £ := lim 7ogf(:c)7
where once again, we set a := —oo (respectively, B := 0o) if f(x) = 0 for sufficiently large

x >0 (respectively, sufficiently small xz < 0).

Proof. The result is nontrivial only for I unbounded on one or both sides of the origin; we
show it here only for the case I = R. Since —log f is convex, the result follows from a more
general fact about arbitrary convex functions:

Suppose g : R — R is convex, so that ¢ is defined on a co-countable set. Then,

supg'(x) = lim ¢'(z) = lim M,

zE€R T—00 T—00 I
PR S ([ C))

e@= o )= 1o =7

We only show the first part; the second is similar. By Lemma, m(l), the divided difference
9(y) —g(z)
ha,y) =="—-=, x#y
y—x
is coordinatewise non-decreasing. Choose any xg at which g is differentiable. Then for y > xg,

h(wo,y) = lim h(zo,y) = ¢'(wo);

y—)aco
but now taking y — oo,
J(xo) < lim W =9@0) _ W)
Yy—00 Y — xg y—oo Y
Taking the supremum over zy € R (or the limit as g — 00) yields one inequality. For the
other, let g be differentiable at g and let y < xy. Then

h(y,z0) < lim h(y,z0) = ¢'(z0) < Supg "(2).
y—zo

Since this holds for all ¢y > y, now taking g — co yields the desired result:

xg) — x
supg’(r) > lim 79( 0) =9(y) = lim L( 0). O
z€R Tro—00 xro — y To—r00 i)

32.2. Examples of Pélya frequency functions; convolution. Having discussed the

Laplace transform, we next discuss a recipe to generate new examples of T'N, functions

(or Pélya frequency functions) from old ones, for all p > 1.

Definition 32.5. Given Lebesgue measurable functions f,g : R — R, define their convolu-
tion, denoted by f * g, to be the function given by the following integral, wherever defined:

(f*g)(z /f y) dy.
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The recipe can now be stated: if f,g are integrable T'N,, functions for any 1 < p < oo,
then so is f * g. To show this, we require some basic properties of convolutions, which are
now collected together for ease of future reference.

Lemma 32.6 (Convolution properties). Suppose f,g: R — R are both in L'(R).

(1) For almost all x € R, the function y — f(y)g(z — y) is Lebesque measurable and
integrable, so that f * g is defined for almost every x € R.

(2) fxg=g*fe€L'(R), and | f*glli <|fllillglh-

(8) If g is also in L°(R), then f % g is continuous on R.

(4) If f,9 >0 on R, then so is f *x g.

(5) The Laplace transform is an ‘algebra homomorphism’ for addition and convolution:

B(f *g)(s) = B(f)(s)B(g)(s),

whenever the two terms on the right converge absolutely at a common point s € R.

Regarding the last part, we leave to the reader the verification that L!(R) under addition
and convolution forms a commutative R-algebra.

Proof.

(1) First note that A(z,y) := f(x)g(y) is Lebesgue measurable, since f, g are. Moreover,
L(z,y) := (y,x — y) is an invertible linear transformation of R?, whence measurable.
Thus (Ao L)(x,y) := f(y)g(z — y) is measurable. But now A o L is also integrable:

J[ e vtz ay= | (/R l9( —y) da:) )] dy = gl flls < oo.

Hence the assertion follows by Fubini’s theorem.
(2) This is now straightforward:

£ sl = [ 17+ @] do< [[ 1ot =1 do dy,

and as in the preceding part, the right-hand side equals ||g||1]|f||1- That (f *g)(x) =
(g * f)(x) follows by substituting y — x — y in the (improper) integral defining the
convolution.

(3) Suppose z, — x in R as n — oco. Then

(f * g)(xn) = (f * 9)(2)] < /R [f(@n—y) = flz = y)llgW)l dy < |[7n,, f = fllillglleo, (32.7)

where h,, is a real sequence going to 0, and (7, f)(y) := f(y+h) for y, h € R is the shift
operator. Now recall via Urysohn’s lemma and properties of the Lebesgue measure
that the space of compactly supported functions C.(R) is dense in (L*(R),] - [|1)-
Thus, let fi € C.(R) converge to f as k — oo; then by the triangle inequality,

| Th, f = fllt < N7 f = T frllt + |70, fe = frlle + 11 fx = flI1- (32.8)

The first and third terms on the right agree, since the Lebesgue measure is translation-
invariant. Thus, to show the left side of goes to zero as n — oo, it suffices to
show that the right side of goes to zero. For this, fix € > 0, then fix £ > 0 such
that || fr — fll1 < €/3. Suppose fi is supported on [—p, p] for 0 < p < oco. Choose
no > 0 such that |h,| < p for n > ng; then 7, fr — fx is continuous and supported
on J :=[—2p,2p]. Since f, is uniformly continuous on J, there exists ¢ > 0 such that
€

ry€d, |z —yl <o = |fulz) - frly)] < o
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Now choose ny > ng such that |h,| < min(p,d) for n > ny. Then 73, fr and fi

disagree at most on the interval [—2p, p] if h,, > 0, and on [—p, 2p] if h,, < 0. Hence
€ €
i = flls = [ 1y o) = )] dy < 30+ = &
R 9/) 3

for all n > ny. Using (32.§), it thus follows for each € > 0 that |75, f — f||1 < € for
all sufficiently large n. This shows continuity on R, by .

(4) This is immediate from the definition of f * g.

(5) We compute:

B(/)(s)B(g)(s) = /R f(y) dy / ~st g () du = /R £(y) dy / (e —y) du

Re Re_
_ /R ( /R Fw)gle— ) dy) o = /R e (f 5 g)() da = B(f * g)(s).

where f * g is defined almost everywhere from above. The interchange of integrals in
the first equality on the second line is justified by Fubini’s theorem — which applies
here because

JL 1t ate =l dy e = [ i)y [ gt an

and both integrals are finite by assumption. O
As an immediate consequence, the above recipe follows:

Corollary 32.9. Suppose f,g: R — R are integrable TN, functions for some p > 1 (or both
TN functions). Then so is f xg.

Proof. That f * g is integrable follows from Lemma [32.6| That it is T'NV,, follows from the
Basic Composition Formula (see (5.14))) and Corollary [6.1 O

Two applications of this corollary will be provided presently.
Having studied the Laplace transform and convolution, we now come to additional exam-
ples of TN and Pdlya frequency functions.

Example 32.10. The Heaviside function Hj(x) := 1;>0 is TN. This can be shown using
direct computations, see e.g. Chapters 1,3 of Karlin’s book [200], where it is shown that the
‘transpose’ kernel K (z,y) = 1,<, satisfies:

det K[x;y] = 1(z1 <y1 <2 <yo < --- <xp < Yp),
for all integers p > 1 and tuples x,y € RPT,

Example 32.11. We are now interested in convolving the previous example with itself several
times. However, the function H; is not integrable. Thus, first use Lemma [28:3] to define

M(z) =€ "Hi(x) = 1z>0e .

Note, this is an integrable TNV function on R, which is discontinuous at the origin. We now
claim that the n-fold convolution f, of A1 with itself is the function %Al(x), foralln > 1.

The verification is by induction on n > 1, with the base case immediate. To show the
induction step, use that f,(x) := 2" A1 (x)/(n — 1)!, and compute:

furr(z) = /R fulw) ol — ) dy.
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By the induction hypothesis, the integrand vanishes unless y, x — y are both non-negative,
whence so is . Thus f,4+1(x) =0 for x < 0, and for z > 0, we compute:

fusa(z) = /0 ) fala— ) dy = /O(ny_l)'

In particular, ™\ (z) is an integrable T'N function, by Corollary Similar to the Gauss-
ian, we record the Laplace transform of these functions, for future use. More generally, given
a non-negative power o > 0 and a scalar 8 > 0, let g, g(z) := “A;(Bx). Then,

n—1 "

-y . o—(z—y) — Tl
e e dy=ce T

o 0 INa+1)
B :/ e TP dy = / e Pt Gy = —— /. s>—0p. (3212
(gohﬂ) 0 0 (3+6)a+1 6 ( )
These examples will play a role below, in classifying the total-positivity preservers on
arbitrary domains. For now we present a final example, again obtained via convolution:

Example 32.13. Let f(z) := Ai(z) and g(z) := Ai(—=z). As these are integrable T'N
functions, so is their convolution, which one verifies is e 1#1 /2. Hence e(®=Izl/2 is TN for
all a < 8. Multiplying by e(®t9%/2 it follows by Lemma that the function

cePlz—10) if z < x,
fla) = { -

= 32.14
ce®(®=w0) if x > x9 ( )

is TN for ¢ > 0 and zp € R — and integrable when a < 0 < 3, as above. Notice also that
the limiting cases of @« = —o00, 8 = 400 (both leading to f vanishing on a semi-axis), are
integrable T'N functions; while if &« = 8 then f is an exponential, whence also T'N.

32.3. Pélya frequency functions and the Laguerre—Pdlya class. It is rewarding to
place the theory of Pdlya frequency functions (and more generally, TN functions) in its
historical context before proceeding further. Begin with a scalar § > 0 and a summable
positive sequence:
Q >0, 5=1,2,..., EE:CQ'<:OO,
Jj=1

so that the terms 1/«a; are bounded below by a positive number. Then the convolution

Fal@) 1= (o R0 )@)s pala) = Ni(/a)

is a Pélya frequency function with Laplace transform H?Zl(l +a;s)7L. Given § > 0, the PF
function A, (x) := f,(z — 0) therefore satisfies:

6—55

H;L:1(1 +ays)

Notice for n > 2 that the @ are dominated uniformly on the imaginary axis by an integrable
function:

B(Ay)(s) = ®(s), Yn > 1, R(s) > Ijngaé((—l/aj), where @7 (s) :=

1
<
= 0 o)1+ ai)]
Hence for n > 2, the Laplace inversion formula recovers A,, from @ via the Fourier-Mellin
integral, which converges absolutely:

| D) (ix) Ve eR, n > 2. (32.15)

1 ) T i}
An(z) = 2—7”%1_1)20 . e’ T Pr (s) ds, vV € R.
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Now since j>1Qj < 00, we have the convergence of the functions

6—65

H]O‘;(l +ajs)’

where the infinite product in ®*(s) is defined in the vertical strip max;(—1/a;) < R(s) < oo,
and converges there since

oo oo o0
[T+ ajsl =TT+ ajlsl) < exp D (ayls]) < oo.
j=1 j=1 j=1

o7 (s) — P¥(s) :=

Hence by Lebesgue’s dominated convergence theorem, the integrals A,, also converge to a
function:
1 T 1 T
lim A,(z) = lim — lim e ®r (s) ds = — lim e’ T d*(s) ds,
n—00 n—00 2% T—o0 | _;T 2mi T—oo J _ir
and this holds for all real . Denote the function on the right by A(x); then one can show that
A is also a Pdlya frequency function, which vanishes on (—o0,0) and is such that B(A)(s) =
¢*(s) for R(s) > max;j(—1/a;). Moreover, the reciprocal of this bilateral Laplace transform
is the restriction to the strip #(s) > max;(—1/a;) of an entire function with only (real)
negative zeros:

o0

: = ! = ¢’ ;s
B(A)(s)  ®*(s) [T +ays). (32.16)

j=1

A similar phenomenon occurs when one considers Pdlya frequency functions that need
not vanish on a semi-axis. In this case one can convolve functions of the form ¢,(£x) for
0 # a € R, as well as the Gaussian kernel (and shifted variants of these). Further taking
limits produces Pélya frequency functions whose Laplace transforms are of the form

6782—68
P*(s) = , 32.17
O T 0T ame s 217
where
v€0,00), aj,0 eR, 0 < v+ Za? < oo, max(—1/a;) < R(s) < min(—1/a;).
- a; >0 ;<0

J

Schoenberg showed in J. d’Analyse Math. (1951) the following remarkable result: the above
toy examples and (created by convolving variants of \; and the Gaussian)
are in fact representative of all Pélya frequency (PF) functions A satisfying [p A(z) de =1 -
with the first toy example a prototype for all PF functions that vanish on (—o0,0). E.g. the
PF functions A as in are characterized by the fact that m is (the restriction to
a vertical strip, of) an entire function ce®® H;;(l + ajs), where ¢ € (0,00), §,;j > 0, and
>0 < 00,

In fact, such entire functions were the subject of a beautiful theory built up around the
turn of the 20th century, by experts before Schoenberg — including Laguerre, Polya, and
Schur. In the next section, we provide a brief detour into this rich area, before returning to
its connections to Pdlya frequency functions and T'N functions.
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33. HISTORY — THE LAGUERRE POLYA SCHUR PROGRAM: MULTIPLIER SEQUENCES AND
ENTIRE FUNCTIONS. MODERN RESULTS.

This section undertakes a brief historical journey through one of the most longstanding
and mathematically active areas in analysis, with a rich history as well as modern activity:
the study of the zeros of (complex) polynomials and entire functions. We already saw some
classical results in Section here we see more such results, now from the viewpoint of linear
operators on polynomial spaces that preserve real-rootedness and similar properties.

The study of roots of complex polynomials has always attracted tremendous attention. To
name two dozen experts with related work before 1930: Descartes (1637); Budan, Gauss,
Fourier, Sturm, Cauchy (1800-1840); Chebyshev, Hermite, Poulain, Weierstrass, Routh,
Biehler, Lucas (1840-1880); Laguerre, Hadamard, Malé, Markov, Hurwitz, Grace, Van Vleck
(1880-1910); Fekete, Kakeya, Pdlya, Jensen, Schur, Cohn, Szegs, Walsh, Obrechkoff (1910-
1930). For these and many other classical contributions, see e.g. the 1929 survey [351] by
Van Vleck in Bull. Amer. Math. Soc. In the subsequent nine decades, activity in this area
has continued, including papers, surveys, and books; in this section, we briefly allude to the
works [91], [92] by Craven-Csordas (and Smith) and the classic text of Levin [235]. (See the
monograph [295] by Rahman—Schmeisser for more on this area.) The section concludes by
alluding to a few important contributions to this area, all taken from this millennium.

We begin with notation.

Definition 33.1.

(1) Given a region S C C, let 7(S) denote the class of polynomials with all zeros in S,
and coefficients in R (sometimes this is replaced by C). Given an integer n > 1, let
7 (S) C 7(S) denote the subset of polynomials with degree at most n.

(2) Given a complex polynomial p, let Z,,,(p) denote the number of non-real roots of p.

A question that has interested analysts for more than a century is to understand operations
— even linear ones — under which 7,(S) is stable. This is an old question for which not
many nontrivial answers were known — especially until 2004; see the discussion preceding
Theorem below. Certainly, some easy answers have long been known. For example, if
p(z) € m(C) = R]z] is real-rooted, then so are:

(1) its product p(z)g(x) with a real-rooted polynomial ¢(x).

(2) the ‘shift” ap(bx + ¢) for scalars a,b,c € R, a # 0.

(3) the derivative p’(x) — this is Rolle’s theorem. Notice, the derivative operator com-
mutes with all additive shifts/translations.

(4) ‘multiplicative differentiation’ xp’(x), again by Rolle’s theorem. In contrast to the
preceding operation, this operator commutes with all multiplicative shifts/dilations.

(5) the ‘inversion’ z9¢8(P)p(1/z), whose roots are 0 if p(0) = 0, and xq # 0 if p(1/z0) = 0.

All but the first of these operations also are answers to the more general question, of
understanding linear transformations on m,(C) that do not increase the number of non-
real roots Z,,(-). In particular, they answer our first question, of understanding linear
operators preserving real-rootedness. A related, second question involves understanding
which (linear) operations T' preserve real-rootedness, now only on real polynomials with all
non-positive roots (or all non-negative roots). Notice that the operations above are also
(positive) examples of such linear operations (e.g. assuming ¢(x) also has one-sided roots).

Often, one assumes a further restriction on the linear map 7" in order to have more structure
to work with. Two such conditions are that 7" commutes with the usual/additive derivative
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d, or with the multiplicative derivative xd. Clearly, the latter operators are of the form

T(xk) :’Yk‘xk7 Y0, V1, eR

(or v, € C if one considers the analogous problem). Similarly, one can show that the former
operators each have a ‘power series expansion’

T=> T(k)o*,  T(k)eR.
k=0

Notice here that applying such an operator to a polynomial only requires finitely many terms,
so the sequence T'(k) can be arbitrary. One associates to this operator its symbol:

Gr(s) =Y _T(k)s". (33.2)
k=0

In this section we present the characterizations of both classes of operators — commuting
with additive and multiplicative differentiation 0,z respectively — and they both bear the
name of Pélya (with Benz and Schur, respectively). We will mostly focus on the latter case,
in which the scalars 7 are called multipliers. Thus, the Pélya—Schur theorem classifies all
multiplier sequences (which preserve real-rooted polynomials).

For now, we return to the opening discussion of preserving real-rootedness, or more gen-
erally, diminishing the number of non-real roots. Our journey begins with a classical result
due to Poulain [293] in 1867, answering a question of Hermite [I66] from the previous year:

Theorem 33.3 (Hermite-Poulain). Suppose q(z) = >}, qex® is a polynomial with qo, ¢, 7
0 and all real roots.

(1) If p(x) € R[z|, then Zn,(q(0)p) < Zny(p); here the differential operator q(0) acts via

(2) If q has only positive (respectively, negative) zeros, and A € R, then the number of
zeros in [A, 00) (respectively, (—oo, A]) of q(0)q exceeds that of q.

Thus, the Hermite-Poulain theorem extends Rolle’s theorem — i.e., that differentiation
diminishes the number of non-real roots of a polynomial — which is the special case ¢(z) = .

Proof. To show (1), write ¢(x) = gm [];(z — a;), where no «; is zero since gy # 0. Since
q(0) = gm [1;(0 — a;), it suffices to show that (0 — a)p(x) has at least as many real roots as

p. We now present Poulain’s proof of this, in a sense ‘differential-equation theoretic’: since
(0 — a)p(x) = e**0(e” " p(x)),

it suffices to show p(z) has at most as many real roots as (e **p(z))’, where a # 0. This
follows by Rolle’s theorem, since e~ **p(x) vanishes at the roots of p as well as axz — oo.
(This is the trick that was used in proving the weak and strong versions of Descartes’ rule of
signs, in Lemma [5.2] and Theorem respectively.)

This shows the first part, but also the second: the preceding sentence suggests how to
proceed if all roots of ¢ are non-zero, with a common sign. Indeed, a small refinement of the
preceding proof now works on [4, co) (respectively, (—oo, A]). O

Notice that the operator ¢(9) commutes with ‘additive’ differentiation 9, a notion discussed
above — and it preserves real-rootedness. A complete characterization of such linear preservers
was carried out by Benz, in Comment. Math. Helv. in 1934:



33. History — The Laguerre-Pdélya—Schur program:
multiplier sequences and entire functions. Modern results. 227
Theorem 33.4 (Polya—Benz theorem, [34]). Suppose 1" is a linear operalor on the space

of complex polynomials, which commutes with dz’ﬁer@ntz’ation 0. Then T preserves real-
rootedness if and only if its symbol Gr(s) == Y ;o OT( )s¥, defined in (33.2), is an entire
function that is either zero or in the Laguerre—Pdlya class EPQ (see Definition [33.20)):

o0 o
Gr(s) = C'sMe s Hos H(l—l—ajs)e_o‘fs, with C € C*;m € Z2%~ > 0;6, a; € R; Za? < 0.
j=1 Jj=1
33.1. Multiplier sequences and early results. In the remainder of this section, we focus
on the linear transformations which preserve real-rootedness, commute with ‘multiplicative
differentiation’ xd, and turn out to be intimately linked to our main objects of focus: Pélya
frequency functions. These are the so-called ‘diagonal transforms’ of (C) — i.e., multiplying
each monomial z* in a polynomial p(x) by a scalar v, € R. They are called multipliers;
corresponding to the two related questions after Definition they come in two varieties:

Definition 33.5 (Pdlya—Schur, [288]). Given a sequence I' = (7;)72, of real numbers, define

the linear map I'[—] : R[[z]] — R][z]] (in particular, acting on polynomials) via
Zakxk = Z’ykakxk.
k>0 k>0

We now say that a sequence I' is a multiplier sequence of the first kind if T'[p] is real-rooted
whenever the polynomial p(x) is; and of the second kind if I'[p] is real-rooted whenever the
polynomial p(z) has all roots real, non-zero, and of the same sign.

Example 33.6 (Laguerre, 1884). Given a real number a > 0 and an integer k£ > 0, the
sequence

ala+1)---(a+k-1), (a+1)(a+2)---(a+k),

is a multiplier sequence which preserves the real-rootedness/one-sidedness of roots — and more
generally, diminishes the number of non-real roots. This follows from a more general result by
Laguerre — see Theorem [33.8](2), specialized here to ¢(z) = (z+a)(z+a+1)--- (z+a+k—1).

In their famous 1914 work [288] in J. reine angew. Math., Pélya and Schur provided
‘algebraic’ and ‘transcendental’ characterizations of the above two classes of multipliers; these
are explained below. That said, the study of such multipliers had begun well before. We
present here a quintet of well-known results in this direction — these are shown presently:

e by Laguerre, in 1882 in C. R. Acad. and in 1884 in Acta Math.;

e by Mal6 in 1895 in J. Math. Spéc. (this is briefly used in the next part of the text);
e by Jensen in 1913 in Acta Math.; and

e by Schur in 1914, in J. reine angew. Math.

To state and prove these, define the Schur composition ® of two polynomials/power series:

= pid, q@) =) g2, = (o) =) jpgal. (33.7)

320 320 >0
Theorem 33.8. Suppose p(z) = po+pix+ -+ ppx” and ¢(z) = g+ qrx + -+ + @nx™ are
polynomials in R[z|, with m,n > 0 and q real-rooted.

(1) (Laguerre [228], 1882.) The polynomial Zkzo(qk/k!)azk is real-rooted. In other words,
1,1,1/21,1/3!, ... is a multiplier sequence of the first kind.
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(2) (Laguerre |230], 1884.) Suppose g # 0 on [0,n]. Then the polynomial

q(x) == q(0)po + q(V)prz + - - + q(n)pnz"
has at least as many real roots as p, that is, Zn,y(q) < Znr(p).
(3) (Malé [249], 1895.) Suppose the roots of q are all non-zero and of the same sign. If
p is real-rooted, so is the Hadamard composition poqo + prqrx + - - - + prqzt (provided
it is not identically zero), where | = min{m, n}.
(4) (Jensen [194], 1913.) The following is a multiplier sequence of the first kind forn > 1:

n—1

1 1 2 j
L1,1—— (1-——)(1--), ... 1—=),0,0, ...
) ) na( n)( 77,)7 7][[1( 77,)7 ) )

(5) (Schur composition theorem [330], 1914.) Suppose the roots of q are all non-zero
and of the same sign. If p is real-rooted, so is the Schur composition p ® q (or else

p©q=0).
Thus, parts (3) and (5) yield ‘finite’ multiplier sequences of the first kind.

To show these results, we first present a more general theorem, shown in 1949 by de Bruijn:

Theorem 33.9 (de Bruijn, [73]). For an aperture 0 < o < 7, let S, denote an open sector
in the complex plane, given by

Sa :={2€C*:arg(z) € (0a,00 + )} (33.10)
for a fized ‘initial angle’ 0. Similarly, let Sg denote an open sector for 5 € [0,7] and
fized initial angle 05. Now suppose p(z) = > p_oprz"® and q(z) = Y1 o 2™ are complex
polynomials, with pp,qm # 0. If p(2),q(z) have all roots in the sectors S.,Sg respectively,
then their Schur composition p ® q has all roots in the open sector

—SaSp i ={—21220 € C: 21 € Su, 22 € S3}.

Proof. First suppose (p ® ¢)(z) = 0 for some z ¢ —5,53. For any such z, (by abuse of
notation) —zS, ! is then disjoint from Ss, so we can embed both of these in open half-planes
(i.e. open sectors of aperture 7) —zS; ! C S1 and Sp C Sy such that S1NSy = 0. In particular,
it suffices to show the result for « = § = 7. Now for a second reduction: the polynomials

p1(2) == p(—ize?) = Zpldz q1(2) := q(—ize') = qu’]z

can be verified to have all of thelr roots in the left half-plane in C, i.e., in
L:={zeC:R(z) <0}. (33.11)
Hence in this ‘reduction’ case, if we show the following claim — that the polynomial

(1 © q1)(2) := (p © q)(—ze'P=08))

has no roots in (0,00) — then (p ® ¢)(2) has no roots in C\ —S,.53, as desired.

While this claim can be shown using Grace’s Apolarity Theorem (see e.g. [360] ), we mention
de Bruijn’s direct argument. First claim that if A € (0,00), n € L, and P(z) is any non-zero
polynomial with degree n > 0, leading coefficient P,, # 0, and all roots in L, then ()\8 n)P
is not identically zero and its roots still lie in L. Indeed, write P(z) = P, H io1(z —&); then

MO-nP() =P [ -2 -], wec\L
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The first factor on the right is non-zero by assumption, while each summand and —n both

have positive real part, so that the second factor on the right is in —L. It follows that the
non-zero polynomial (A0 — n)P(z) again has all roots in L. Now start with

n

P(z) = p1(2) = p1a H(Z = &), a1(2) = qm H(Z —nj),
j=1

Jj=1

and apply the above reasoning inductively for each n = 7;, to conclude that

(@(A)p1)(2) = qrop1(2) + @idph(2) + -+ + g A"\ (2)

has all its roots in L. In particular, it does not vanish at 0, so
0 # qrop10 + Ugripiad+ -+ + Ugr i\, | = min{m,n}.

This precisely says 0 # (p1 © ¢1)(\); as A € (0,00) was arbitrary, the proof is complete. ]

This result led de Bruijn to derive a host of corollaries, which we discuss before returning
to the proof of Theorem [33.8] The first is the ‘closed’ sector version of Theorem [33.9

Corollary 33.12 (de Bruijn, [73]). Suppose p,q # 0 are complex polynomials, whose roots
all lie in closed sectors ?mﬁﬁ respectively. If both o, B € [0,], then either p® q = 0 or it
has all roots in the sector —S, Sg. (If an aperture is 0, that closed sector is a half-line.)

Proof. This is obtained from Theorem via limiting arguments (and the continuity of
roots, e.g. by Hurwitz’s theorem), when the apertures of both sectors are positive. If either
aperture is zero, write the corresponding half-line as an intersection of a sequence of nested
closed sectors with positive apertures, and apply Corollary for each of these. (Note that
if the apertures «, 5 € [0,7), then one can write each closed sector as an intersection/limit
of a decreasing family of open sectors of apertures < m, and then the result follows from

Theorem simply by taking intersectons.) O

The next corollary shows two results of Weisner, from his 1942 paper in Amer. J. Math.:

Corollary 33.13 (Weisner, [366, Theorem 1 and its Corollary]). Suppose p, q are polynomials
in Rlz] with q(x) having all real roots.

(1) If the roots of p(x) lie in a closed sector S, with aperture < 7, then either p® q =0
or it has all roots in the ‘double sector’ £8S,.

(2) If the roots of q are moreover negative, and a closed sector with aperture in [0, 7]
contains the roots of p, it also contains the roots of p ® q.

Proof. For the first part: if p© g = 0 or S, has aperture 7 then the result is immediate; now

suppose neither condition holds. Apply Corollary [33.12] twice: with Sz the lower and upper
half-planes +iL, where L is the left half-plane (33.11)). It follows that the roots of p ® ¢ lie in

(—iL-Sa)N (L - Sy) = Sa U—S,.
This shows the first part; for the second, apply Corollary |33.12| with Sz = (—o0, 0]. O

The next corollary is a mild strengthening of another result by de Bruijn [73]; his proof
works for the following as well.
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Corollary 33.14 (de Bruijn, [73]). Fiz scalars —oo < 0 < 0 < A < Fo00, and suppose the

polynomials p,q € C[z]\ {0} both have all roots in the strip I(z) > —A. Then the polynomial

Z k,p ®)(z)

has all roots also in the same strip S(z) 2 fA.

Notice that ¢s(z) has the same form as the Schur composition, but in the ‘other’ parameter.
Namely, ¢,(0) = (p ® q)(2). This is used in the proof.

Proof. Fix a non-real number w with (w) < —A. We need to show that ¢s(w) # 0. To do
so, consider the polynomials

< ) (y 2 W (w
)=y M ,f, ) _petw), Q) =Y Y k(, ) = 4z +w).
k=0 ’ k=0 ‘

By assumption, the zeros z of P,@Q lie in the upper half-plane, which is an open sector
with aperture m. Hence by Theorem the roots z (not w) of their Schur composition
v:(w) = (P®Q)(2) all lie in C\ (—o0,0]. In particular, ps(w) = (P © Q)(d) # 0, by choice
of 4. 0

Remark 33.15. If instead p, ¢ have all roots in the strip 3(z) < A, a similar argument shows
that so does ;. Intersecting these two results yields the version in de Bruijn’s paper [73], i.e
for the strip [3(z)| < A. In particular, if A = 0, this also shows that if p, ¢ are real-rooted,
then so is 5. However, the above approach has the advantage that de Bruijn’s results also
yield root-location results in asymmetric strips S(Z) € [-A, A'] for 0 < A £ A,

Finally, we prove the classical results stated above.

Proof of Theorem [33.8, We show the five parts in a non-sequential fashion, beginning with
part (2) by Laguerre. It turns out this is precisely the counterpart of the Hermite-Poulain
theorem [33.3] now for the ‘multiplicative differential’ operator x0 instead of the usual deriv-
ative 0. Indeed, write q(z) = gm [ [}~ (z — a;) with a; € R, and compute at each monomial:

q(20)(z*) = g H(:C(? —a)(z®) = 2% qm H(k — ;) = q(k)2”
=1 =1

Since the factors (z0 — o) pairwise commute, it again suffices to show (20 — «)p(z) has at
least as many real roots as p, if @ € R\ [0,deg(p)] (so we may assume deg(p) = n). We
now study the order of the root at 0, and the positive/negative roots of both polynomials p
and (z0 — a)p. The orders of the root at zero agree. Coming to positive roots, write using
Poulain’s idea:
(20 — a)p(a) = 2“1 D@ p(a)).

Now if @ < 0 then z7“p(x) has an additional zero at = 0; while if @ > n, x7%p(z) has an
additional ‘zero’ at x = +o00. In both cases, one argues as in the proof of the Hermite-Poulain
theorem above, using Rolle’s theorem to obtain that the positive roots of (z0 — a)p(x)
are at least as many as that of p(x) — if > 0. A similar argument holds for z < 0.

Next, part (5), i.e., the Schur composition theorem, is a special case of Corollary 33.13(1)
in which the roles of p and ¢ are reversed, and one takes S, to be a closed semi-axis in R.
To now obtain the result of Laguerre (part (1)), first apply ‘inversion’ to observe that if

¢z) =q+qz+-+ gnz™
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is real-rooted, then so is its ‘inversion” (possibly up to a power of z),

Q(l‘) = qm + Gm-17 + -+ qox"".
Now let P(z) := (1 + x)™; then by part (5) the polynomial

m! m!
),55+me2( ,$2+"'+40m!33m

(PoQ)(r) ZQm'f'melm m

is also real-rooted. Again invert this (and multiply by powers of z if necessary), and then
divide throughout by m! to obtain Laguerre’s result, i.e., part (1).

The proof of Jensen’s result (part (4)) is similar to that of part (1). Start with a real-rooted
polynomial p(z) and take the Schur composition with (1 + x)™. Hence the polynomial

Zpk‘n(n—l)'--(n—k—l-l)-a:k
k>0

is real-rooted. Replacing x by x/n, so is the polynomial

1
po+p1z+ (1 - g)p2$2+"'

Since this holds for all polynomials, Jensen’s result follows. Finally, Malé’s result (part (3))
immediately follows by combining parts (1) and (5). O

Remark 33.16. For additional variants of Theorem [33.8(2) due to Laguerre — involving the
multiplicative differentiation operator xd, see Pinkus’s paper [280].

Remark 33.17. By using inversion twice, and Theorem |33.8(1) in between, we obtain yet
another result of Laguerre: if ¢(z) = qo + - - - + ¢na™ is real-rooted, then so is the polynomial
Qe gmx™

q0
ml | m—1y T o

Some concluding remarks: the study of root-location of real /complex polynomials remains
evergreen; see e.g. the very recent work [76] on “zero-sector reducing” linear operators on
R[z] (in addition to related highlights of modern mathematics, described presently). Finally,
we present without proof, a result of Schur [330] and Szegé [350] — as well as one by Pdélya —
which involve a different kind of ‘composition’:

Theorem 33.18. Let n > 1 be an integer, and p(z),q(z) be polynomials given by

n

p(z) = (Z)pkzk, q(2) = i (Z) qrz".

k=0 k=0

(1) (Schur—Szeg6 composition theorem.) If q is real-rooted with all roots in (—1,0), and
the roots of p lie in a convex region K containing the origin, then all roots of the
following ‘composition’ of theirs lie in K:

n

)= (st

k=0

(2) (Pélya — see [366, Theorem 3].) If q is real-rooted, and the roots of p lie in a sector
S, then the roots of h(x) lie in the double sector £8S.
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33.2. Laguerre—P0olya entire functions. We now proceed toward Polya and Schur’s char-

acterizations of multiplier sequences. Definition [33.5] implies that the multipliers of the first
kind form a subclass of the second kind. It turns out that these characterizations are related
to the polynomials being acted upon, and we begin by understanding these polynomials.

Recall that the Hermite-Poulain theorem m(l) says that if p,q are real-rooted poly-
nomials, then ¢(9)p is also thus. (As a special case, Rolle’s theorem says that the class of
real-rooted polynomials is closed under differentiation.) If we now take limits of such poly-
nomials — in a suitable sense — then we may expect that such properties hold as well. This
does turn out to be true in several cases:

(1) As just mentioned, Theorem M(l) says that if ¢ is a real-rooted polynomial, then
the differential operator ¢(9) preserves real-rootedness on polynomials.

(2) More generally, the same turns out to hold if one considers functions that are the
limits, uniform on every compact subset of C, of real-rooted polynomials.

(3) Notice for the exponential function e** that ¢(9)e™” = g(a)e®*. ‘Dually’, it turns out
that the differential operator e®? (for o € R) preserves real-rootedness on polynomials.
Indeed, this clearly holds when e®? acts on linear polynomials, so we need to show
that the same property is preserved under products. But this is a straightforward

calculation:
O plraa) = 30O z ( )@ = 3w 3 )
n=>0 n! k=0 k! j=0 J! (33.19)

= (e p(w))(€°‘3Q($)),

where all sums are finite, since p, ¢ are polynomials. In fact, since the product rule
says that the locally nilpotent operator 0 is a derivation of the algebra R[z] of poly-
nomials, is simply an instance of the fact that a nilpotent derivation of an
algebra R exponentiates to an algebra automorphism of R.

In the spirit of the two questions following Deﬁnition note that the final case (among
others) works even if & > 0 and p, ¢ have non-positive roots, since it works for each linear
factor. Thus, we consider limits — again uniform on each compact subset of C — of polynomials
with all roots lying on a real semi-axis (i.e., in (—o0, 0] or in [0,00)). Such limiting functions
always turn out to be entire; they were famously characterized by Laguerre [228] (1882)
and Polya [284] (1913). These characterizations, which are now presented, preceded — and
motivated — Pélya and Schur’s work on multipliers and their classification.

Definition 33.20. An entire function W(z) # 0 is in the first Laguerre—Pdlya class, denoted
v € LP;, if it admits a Hadamard—Weierstrass factorization

o0
U(s) = Cs™e% H(l + ajs), with C € R*, m e Z=°, 4, a; >0, Zaj < oo. (33.21)
Jj=1 J
Similarly, ¥ # 0 is in the second Laguerre—Pdlya class, denoted W € LPs, if it admits a
Hadamard—Weierstrass factorization

oo
U(s) = CsMe 75" +os H(l + ajs)e” %%, with C € R*, m e Z=°, v >0, 4, aj € R,
j=1
and Za? < 0. (33.22)
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A few observations are in order: the first is the inclusion between these classes: LP; C LP».

Second, all functions in £P,, whence in LP;, have real roots. Third, a function ¥(s) € LP;
has all non-positive roots, so ¥(—s) is also entire, with all non-negative roots.

We now have the following relationship between the Laguerre—Pdlya classes LP1, LP5, and
the discussion on uniform limits of real-rooted polynomials previous to Definition [33.20

Theorem 33.23.

(1) (Laguerre, [228].) Suppose an entire function V(s) lies in the class LPy (respectively,
in LPs). Then there exists a sequence P, (s) of polynomials with all roots in (—oo, 0]
(respectively, in R), that converges locally uniformly on C (i.e., on every compact
subset).

(2) (Pélya, [284].) Conwversely, fix a neighborhood U C C of the origin. Suppose a se-
quence Yy (s) of polynomials, each of which has roots in (—o0,0] (respectively, in R),
converges uniformly on U to a function not identically zero. Then the 1, converge
locally uniformly on C to an entire function W in the class LPy (respectively, LPs).

In fact, one can write down concrete sequences of polynomials converging to the Laguerre—
Pélya entire functions ¥(z) in Definition [33.20

P1n(s) == Cs™(1 + %)" [T+ ays),
j=1

R e s (33.24)
Po.n(s) = Cs™(1 1+ =) [T+ azs)(

n n

n
: w)
7j=1
At first a weaker variant of Theorem [33.23|(2) was shown by Laguerre, who assumed U = C
to conclude that ¥ € LP; or LP,. The stronger version above is by Pélya in [284], and is
presently used to classify the multiplier sequences. Similarly: considering locally uniform

limits of polynomials with non-negative zeros yields functions W(—s) such that ¥(s) € LP;.

Remark 33.25. Lindwart—P6lya showed [239] that in the above cases and more general ones,
the uniform convergence of polynomials 1, (s) on some disk D(0,r) C C implies uniform
convergence on any compact subset of C. (The reader may recall here the ‘convergence
extension theorems’ of Stieltjes and Vitali.) This has since been extended to smaller sets
than D(0,r), e.g. by Korevaar—Loewner, Levin, and others.

Theorem [33.23| has seen several generalizations in the literature; see the works of Korevaar
and Obrechkoff among others, e.g. [224], 225] 271], 272], 273, 274]. We present here a sample
result, taken from Levin [235], on uniform limits of polynomials with zeros in a sector in C:

Theorem 33.26. Fiz a neighborhood U C C of the origin, and a closed sector Sy with
aperture 0 < w. Suppose a sequence n(s) of polynomials, each having roots in Sy, converges
uniformly on U to a function Wy £ 0. Then the 1, converge locally uniformly on C to

o
\Ilg(s) = Cs™e’* H(l + OéjS),
j=1
where C € C*, m € Z2°, «;,6 are either 0 or lie in —§9_1 = {-1/s:0 # s € Sy}, and
Zj laj| < co. Moreover, an entire function ¥ can be locally uniformly approximated by a
sequence 1y, with the above properties (over Sy) if and only if U is of the above form Uy.

Note, the same polynomials as in (33.24]) (with suitable parameter values) converge to Wy.
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33.3. From Laguerre—Podlya to Pdélya—Schur. Finally, we come to Polya and Schur’s

classification of multiplier sequences (see Definition [33.5)). We begin with basic properties.

Lemma 33.27. Suppose I' = (70,71, ... ) is a multiplier sequence of the first kind.
(1) Then so is (Vk, Vk+1,---) for all k > 0; this also holds if T is of the second kind.
(2) If v0 # 0 but v, = 0 for k > 0, then Yygip =0 for all n > 0.
(3) If vo # 0, then all non-zero vy, have either the same sign or alternating signs.

Proof.

(1) Suppose a polynomial p(z) = ijo pja’ has all roots real (or real and of the same
sign, in which case py # 0). Then so does q(x) := 2 *T[z¥p(x)] = >oi>0 Vit P,
and note that if py # 0 then ¢(0) # 0. -

(2) The first step is the following assertion by Schur [330]: If p(z) = > 7, pjz’ € Rlz]
is real-rooted, with po,pn # 0, then (i) no two consecutive coefficients p; vanish; and
(i1) if pj = 0 for some j € (0,n), then pj_1pj+1 <O0.

Indeed, since pg # 0, no root «; of p(x) is zero, whence an easy computation shows:

n n
pi—2pop2=p5 Y ;> >0,  where  p(x):=po [[(1 - 2/ay),
j=1 Jj=1

Fix the least j > 0 with p; = 0. Now p(jfl)(m) is real-rooted by Rolle’s theorem, and

i . J! Jj+1)! n! »
pV D (z) = (j - Dlpj—1+ 1P + ( o1 ) pj1r’ 4o+ mpnfﬁn s

In particular, applying the preceding analysis to pU—1(z)/(j — 1)! yields:

0<jpi—(j+1)pj—1pja1 =  pj—1pj+1 <O0.
This implies Schur’s assertion. We now prove the second part of the Lemma. Suppose
Y # 0 = 7, for some n > k > 0. Then v;_17x+1 < 0 by Schur’s assertion. On the
other hand, the following polynomial is also real-rooted, which is impossible:
Dlz*tt — 2P = 2P Yy 2 — yimy). (33.28)
(3) Suppose v, # 0 for some n > 0. By (33.28), vx_1,7Vk+1 have the same sign for all
0 < k < n. Now consider the signs of v9 and 71, and let n — oc. ([

Now Polya and Schur provide the following two characterizations of multiplier sequences.
Given Lemma [33.27, we work with non-negative sequences, else use ¥r(—zx) in place of Ur(z).
Theorem 33.29 (Pélya—Schur, [288]). Given real I' = ()32, the following are equivalent:

(1) T is a multiplier sequence of the first kind.

(2) (Algebraic characterization.) For all n > 0, the polynomial T'[(1 + x)"] is real-rooted,
with all zeros of the same sign, i.e., in the Laguerre—Pdlya class LP;.

(3) (Transcendental characterization.) The generating series

belongs to the Laguerre—Pdlya class LP1, or else Ur(—x) does so.

We now outline why this result holds, modulo Theorem [33.23}
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Prooj-sketch of Theorem[35.29 Suppose I'|—| is a multiplier ol the first kind, and all v, >

0. (The case of 7y alternating, via Lemma is handled by considering ¥r(—z).) In
particular, defining p,(x) := (1 4+ z/n)" for n > 1, all roots of

lp ()] = ki:ovk (1)@m= ;O’gkr:[ (1-2)

are real, and necessarily non-positive since all Maclaurin coefficients of I'[p,(x)] are non-
negative. This last assertion holds by Descartes’ Rule of Signs — see e.g. Theorem with
I = (0,00). One then shows that this sequence I'[p,] of polynomials forms a normal family,
hence converges locally uniformly as n — oo to an entire function, which is clearly given by
Ur(x). Moreover, Ur(x) = I'[e*] must be in LP;.

Conversely, if Up(x) € LPy, then it can be approximated locally uniformly by a sequence
of polynomials ¥, (z) = > ;< ¥ k¥, all of whose roots are in (—o0, 0]. Now suppose p(x) =

Zkzo prx” is a polynomial with all real roots. By Corollary [33.13(1), the polynomial (¢, ®
p)(x) is real-rooted. Taking n — oo, the same holds for I'[p(z)], as desired. O

There is a similar characterization of multipliers of the second kind (see also Theorem |34.5)):

Theorem 33.30 (Pélya—Schur, [288]). Given real I' = ()72, the following are equivalent:

(1) T is a multiplier sequence of the second kind.

(2) (Algebraic characterization.) For all n >0, the polynomial T'[(1 + x)"] is real-rooted,
i.e., in the Laguerre—Pdlya class LPo.

(3) (Transcendental characterization.) The generating series Vr(z) = I'[e*] is an entire
function, and belongs to the Laguerre—Pdlya class LPs.

Clearly (1) = (2). The proof of (2) = (3) = (1) resembles the corresponding
proof for multiplier sequences of the first kind.

Remark 33.31. Notice the ‘reversal’, in a rough sense: ¥r in £P; acts on — and preserves
real-rootedness on — functions in £P5, and vice versa. This is because acting on larger test
sets imposes more constraints and reduces the available functions / generating series.

We close this part with a few connections to Pélya frequency sequences — specifically, to
the representations of one-sided PF sequences in Theorem [30.12] following the discussion
prior to (30.11)). First, the latter theorem implies the following 1951 observation:

Theorem 33.32 (Aissen-Edrei-Schoenberg-Whitney, [4]). Suppose a = (an)n>0 is a real
sequence, with ag = 1, such that its generating function WUa(s) := > > a,s™ is entire. Then
the following are equivalent:

(1) ais a Polya frequency sequence, i.e., the bi-infinite matriz (a;—y);rez is totally non-

negative (where we set a, := 0 for n <0).

(2) The function Uy(s) = % [T72:(1+ays), for some d, o € [0,00) such that 3 ; aj < oo.

(8) The function W4 (s) belongs to the Laguerre-Pdlya class LP;.

(4) The sequence (nlap)n>0 is a multiplier sequence of the first kind.

Proof. That (2) <= (3) and (3) <= (4) follow from Theorems|33.23|and |33.29] respectively.
Finally, that (1) <= (2) follows from Theorem [30.12} since W, is entire. O

Remark 33.33. See also [68] for additional connections. Yet another connection is that
Aissen et al’s representation theorem [30.12| implies the Laguerre-Pdlya theorem [33.23(2)
for LP;. Indeed, as the authors observe in [4], let a sequence p,(s) of polynomials satisfy:
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pn(0) = T and all roots negative, and suppose p, — W. Then the Maclaurin coeflicients of

each p, generate a ‘finite’ Pélya frequency sequence by Corollary [30.24] Hence so do the
coefficients of ¥(s), so ¥ € LP; by Corollary [33.32

A final result, by Katkova in 1990 [207], connects PF sequences, Laguerre’s theorem [29.22(2),
and the algebraic and transcendental characterizations of Pdolya—Schur multipliers:

Theorem 33.34 (Katkova, [207]). Fiz an integer p > 1 and a polynomial f € Rlx] with
f(z) >0 on [0,00). There exists no(p) > 0 such that the following sets of Maclaurin coeffi-
cients form a (one-sided) TN, sequence:

(1) The Maclaurin coefficients of (1 + x)" f(x), for all integers n > no(p).
(2) The Maclaurin coefficients of e5* f(x), for all real s > ny(p).

33.4. The Laguerre—Pdlya class, the Riemann hypothesis, and modern applica-
tions of real-rootedness. While at first glance, the definitions do not reveal a connection
between the Laguerre-Pdlya class and Pdlya frequency functions, we saw at the end of the
preceding section that there is at least a ‘one-way’ connection. In fact the (remarkable)
connection goes both ways — parallel to the theory of Pdlya—Schur multipliers — and will be
precisely described in the next section, via the bilateral Laplace transform.

To conclude this section, we start with this transform and conduct a very quick tour
of some of the gems of modern mathematics — starting with the (not modern) Riemann
hypothesis. In 1927 in J. reine angew. Math., Pélya initiated the study of functions A(t)
such that B(A)(s) has only pure imaginary zerosfﬂ Pélya’s work [286] was motivated by
the Riemann hypothesis, conjectured in 1859 by Riemann [298]. It says that the analytic
continuation of the Riemann zeta function

((s):=)_n""  R(s)>1
n>1
has (trivial zeros at s = —2,—4,... and) nontrivial zeros all on the critical line R(s) = 1/2.
An equivalent formulation is via the Riemann wzi-functions

€(s) = gsls — DrT(s/2)C(s), B(s) = 6(1/2 4 is),

where I' is Euler’s gamma function. Note that £(s) = £(1 — s) and Z(s) = E(—s). Now the
Riemann hypothesis is equivalent to the fact that = has only real zeros. (In fact this was how
Riemann stated his conjecture.) Since the function = is entire of order one, this leads to a
folklore result, which can be found in e.g. Pélya’s 1927 work [287]:

Theorem 33.35. The Riemann hypothesis is equivalent to the statement: = € LPs.

Thus, the Laguerre-Pdlya class occupies a special place in analytic number theory.

The Riemann hypothesis is one of the most studied problems in modern mathematics.
It was originally formulated in the context of the distribution of prime numbers, and has
far-reaching consequences. Most of the work toward settling this conjecture has employed
methods from complex analysis and analytic number theory.

We now present three mutually inter-related reformulations of the Riemann hypothesis
from analysis, very recently presented by Grochenig, and ‘orthogonal’ to the aforementioned

7Curiously7 several authors cite Pélya’s paper in J. London Math. Soc. (1926), pp. 98-99 for this; but a
glance at the journal website| reveals that such a paper seems not to exist!

8Pélya’s question is studied even today; see e.g. the 2019 work [102] of Dimitrov and Xu, which provides
a characterization for a class of functions that contains the Riemann xi-function E (defined presently).


https://londmathsoc.onlinelibrary.wiley.com/toc/14697750/1926/s1-1/2
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methods. The main ingredients are Theorem [33.59] and Schoenberg’s theorem [34.9] below,

which asserts that a function is a Pdlya frequency function if and only if its bilateral Laplace
transform is the reciprocal of a function ¥ in the Laguerre-Pdlya class with ¥(0) > 0:

Theorem 33.36 (Grochenig, 2020, [147]). Let 1/2 + ity be the first zero of the zeta function
on the critical line R(s) = 1/2. The Riemann hypothesis holds, if and only if there exists a
Pdlya frequency function A satisfying:
1
E(s)
Taking the Fourier transform instead of the Laplace transform, this yields the Riemann hy-
pothesis if and only if the function

1 1 —iTU
Alx) = 27T/R£(u—|—1/2)e du

is a Polya frequency function. Equivalently, write Z(s) = Z1(—s%) (since Z is even); thus
E1 is entire of order 1/2. Now the Riemann hypothesis holds, if and only if there exists a
one-sided Pdélya frequency function A with support in [0,00), and a scalar o < 0, satisfying:

1
Ei(s)

See also the 2007 paper of Katkova [208] for more connections between the Riemann
hypothesis and total positivity, this time through Pélya frequency sequences. We provide
here a few details. Let &1(s) := £(1/2 + +/s); then the Riemann hypothesis is equivalent to
& € LPy, or by Theorem & =V, for a PF sequence a. Now Katkova shows:

Theorem 33.37 (Katkova, [208]). We have §&§ = ¥, for a sequence a that is Pdlya frequency
(or totally non-negative) of order at least 43. Moreover, the sequence a is asymptotically PF,
i.e., for all p > 0 there exists N > 0 such that the matriz (an,+j—k)o<j, o<k<p—1 8 TN.

=B(A)(s),  [R(s)| < to

= B(A)(s), R(s) > a.

We follow the above discussion with a disparate development, in mathematical physics:
the Lee—Yang program. In material science, it has been observed that certain magnetic
materials lose magnetism at a critical temperature. This phase transition is called the Curie
point/temperature. Such phenomena in statistical physics led to work on the Ising and other
models, by Ising, Onsager, and several others. In the 1950s, Lee and Yang related this study
to locating zeros of the ‘partition function’ associated with the model (and the underlying
Lee—Yang measure). As a result, they were able to compute the phase transition for the
Ising model. (This was part of their body of work that earned them the 1957 Nobel Prize
in Physics.) Lee—Yang showed in [233] 375] that under desirable conditions, all zeros of the
partition function are purely imaginary, or under a specialization, all on the circle:

Theorem 33.38 (Lee—Yang, 1952). Given an integer n > 1, a matriz J € [0,00)"*" (the

‘ferromagnetic coupling constants’), and magnetic fields hy, ..., h, € C, define
Zj(h) = Z exp(o? Jo 4+ o'h)
ce{-1,1}"

to be the corresponding ‘partition function’. (Here, the o; are the ‘spins’.) Then Zj(h) is
non-zero if R(h;) > 0 Vj, and all zeros h € C of Zj(h,h, ..., h) are purely imaginary.

This result leads to the so-called Lee—Yang circle theorem (see also [307] for its connections
to the original work of Lee—Yang):
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Theorem 33.39. Let A = A™ € C"*" be Hermitian, with all a;i in the closed unit disk.

Then the multiaffine Lee—Yang polynomial

f(z1,.0 0y 2n) = Z szHajk

SCln]jeS  kgS

has no zeros in D™, where D is the open unit disk. In particular, the map f(z,...,z) has all
zeros on the unit circle S*.

An essential part of the ensuing analysis in the program initiated by these results, involves
understanding operators preserving spaces of polynomials with roots lying in / avoiding a
prescribed domain in C. More precisely, we are back to understanding linear operators on
spaces of (multivariate) polynomials, preserving (higher dimensional) versions of stability,
real-rootedness, and hyperbolicity. This includes higher-dimensional versions of Pélya—Schur
multipliers. Such tools were developed, and a host of classification results obtained, around
the turn of the millennium by Borcea and Bréandén, in a series of remarkable papers.

As late as 2004, Craven—Csordas mention in their survey [91] that a classification of linear
maps preserving 7, (S) (see the paragraph following Definition [33.1]) was not known even for
important classes of domains S C C, including S = R, or a half-plane, or more generally a
strip over an imaginary interval (a,b); or a (double) sector centered at 0. Answers started
to come in only a few years after that; we present one result. In their 2009 paper in Ann. of
Math., Borcea—Bréndén showed:

Theorem 33.40 ([61]). Let T : ©,(C) — 7w(C) be a linear operator on polynomials. The
following are equivalent:

(1) T preserves real-rootedness, i.e., T : m,(R) — 7(R).

(2) The linear map T has rank at most 2, and is of the form T(p) = a(p)f+ B(p)g, where
a, B : Rlz] = R are linear functionals, and f,g € m(R) have interlacing roots.

(3) The symbol of T(z,y), given by Gr(z,y) == T((z +y)") = >p_ ()T (z")y" ", is
stable. In other words, it has no root (z,y) with (x),S(y) > 0.

(4) The symbol of T'(x, —y), given by Gr(xz,—y) =T ((z —y)"), is stable.

Here Borcea—Brandén define stability in keeping with Levin’s notion of H-stability; note
that a univariate real polynomial ¢(z) is stable (i.e., has no roots in the upper half-plane) if
and only if it is real-rooted: Z,,(q) = 0.

Returning to the historical account, in [60, [61), 62} 63, [64] Borcea—Brandén also

e characterized linear operators preserving S-stability for other prescribed subsets S C
C (including — in [61] — S a line, a circle, a closed half-plane, a closed disk, and the
complement of an open disk);

e developed a multivariable Szasz principle and multidimensional Jensen multipliers;

e proved three conjectures of C.R. Johnson;

e presented a framework that incorporated a vast number of (proofs of) Lee—Yang and
Heilmann—Lieb type theorems;

among other achievements. See also a detailed listing of the modern literature in the field,
in [61]. Together with Liggett in [65], they also developed the theory of negative dependence
for “strongly Rayleigh (probability) measures”, enabling them to prove various conjectures
of Liggett, Pemantle, and Wagner, and to construct counterexamples to other conjectures on
log-concave sequences. See also the survey of Wagner [358] for more details and connections.
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The above works, originating from the Laguerre-Poélya—Schur program on the location

of roots of polynomials, were taken forward very recently, by Marcus, Spielman, and Sri-
vastava. In another series of striking papers that used interlacing families of polynomials,
real stability, and hyperbolicity (among many other ingredients), the authors proved the
longstanding Kadison—Singer conjecture [198], and also showed the existence of bipartite Ra-
manujan (expander) graphs of every degree and every order (settling conjectures of Lubotzky
and Bilu—Linial). See [250, 251], 252]. These contributions are only a small part of a larger
and very active current area of research, referring to the geometry of roots of polynomials.
Stability of dynamical systems, global optimization, and in particular control theory were
and are immediate beneficiaries of the theoretical advances. Under the covers of the newly
founded SIAM Journal of Applied Algebra and Geometry many exciting discoveries touching
the subject have appeared, with key concepts such as linear matrix inequalities, hyperbolic
polynomials, spectrahedra, and semi-definite programming.
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34. SCHOENBERG’S RESULTS ON POLYA FREQUENCY FUNCTIONS.

Having discussed the Laguerre—Pdlya entire functions and the Pélya—Schur multiplier se-
quences, we return to our primary objects of interest: Pdlya frequency functions. The goal
in this section is to discuss some of the foundational results on these functions.

We first recall the definition of these functions and two closely related classes of functions:

Definition 34.1. Suppose A : R — [0, 00) is Lebesgue measurable.

(1) A is said to be totally non-negative (TN ) if given an integer p > 1 and tuples x,y €
RPT det T [x;y] := det(A(z; — yk))ikzl > 0.

(2) We will say A is non-Dirac if A does not vanish at least at two points.

(3) Ais a Pdlya frequency (PF) function if A is non-monotone — equivalently, integrable

with mass a positive real number.
The equivalence in the third assertion was proved in Proposition 3).

Remark 34.2 (Non-Dirac T'N functions). The functions in Definition [34.1)(2) were termed
totally positive functions by Schoenberg — recall that in his papers and Karlin’s book, and
even later, TN and TP matrices/functions were termed TP and STP, i.e., (strictly) totally
positive. Finally, by Theorem [28.4] a non-Dirac T'N function is strictly positive on an interval
of positive length, and continuous on its interior.

34.1. Precursors by Pdlya and Hamburger. We now discuss the origins of Pdlya fre-
quency functions. Recall that in his 1951 paper [324], Schoenberg proved the variation
diminishing property for Pélya frequency functions A, in terms of the values of functions as
well as for real zeros of polynomials. (See Propositions [29.15 and [29.17] respectively.) To
the collection of prior results proved about the variation diminishing property — including for
power series by Fekete in 1912 [I18] and for matrices by Schoenberg in 1930 [311], Motzkin
in 1936 in his thesis [263], and others including prominently by Gantmacher—Krein — we now
add a result shown in 1915 by Pdlya, in connection with the Laguerre-Pdlya class LP5.

Specifically, Pélya studied the reciprocal of a function Wi (s) € LPy for k = 1,2, where
U (0) > 0. He expanded the meromorphic function 1/¥y, as:

- S (34.3)

Ui(s) =
Pélya then applied the differential operator 1/W5(9) to a real polynomial p(z), via
1 : P (x) P (x)
— _p(z) = _ P _ 4 34.4
Tl a)p(ﬂb‘) pop(a) — pp' () + 2=, Hn = (34.4)

in the spirit of the preceding section, and where n = deg(p) > 0. Notice that since 0 is
locally nilpotent on C|xz], every formal power series in 0 yields a well-defined operator on
C[x], yielding an algebra homomorphism T from C|[[s]] to linear operators on Cl[z].

With these preliminaries, as a first result Pélya showed another condition equivalent to
being in the second Laguerre-Poélya class, i.e., a multiplier sequence of the second kind:

Theorem 34.5 ([285]). Given a formal power series 1(s) := 3 5 i (—s)? /4! with po > 0,
the following are equivalent:
(1) Given a polynomial p € Rlz], 1¥(9)(p(x)) has no more real roots than p(x):
Znr(Y(9)p(2)) = Znr (p(x)).
(2) Wa(s) :=1/1¢(s) is in the Laguerre-Pdlya class LPs.
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Proof-sketch. First, given the algebra homomorphism T sending a power series ¥(s) to ¥(0),
and since 1(0) > 0, the assertion (1) can be rephrased as:

(1) Let Wao(s) :=1/1(s). If p € R[z], then Uo(D)p has at least as many real roots as p.

We now show that (2) = (1’). If U5 is constant then (1’) is immediate; else approximate
Us(s) locally uniformly by a sequence of real-rooted polynomials v, (s); since pg = W2(0) > 0
and Wy is non-constant, the same holds for v, for n > 0. In particular, for large n, the
Hermite-Poulain theorem yields Z,,(¢n(9)p) < Znr(p); and we also have deg(v,(9)p) =
deg(p) = deg(¥2(0)p). Hence Z,, (V2(0)p) < Zp,(p) by the continuity of roots.

Conversely, we assume (1’) and show (2). Let g(z) := 2" for some n > 0. If Wy(s) =
>0 v;87 /4!, then by (1'), the polynomial

w0 = (”) vy

=0

has at least m roots, whence is real-rooted for n > 0. Define the real sequence N :=
(vo,v1,...); thus Wy(9)(x"™) = N[(1 + )" is real-rooted for all n > 0. It follows by the
Pélya—Schur characterizations of multiplier sequences of the second kind (see Theorem [33.30))
that ¥n(x) = Ne*] = ¥a(x) is in the class LPs, as desired. O

Thus, Pélya showed that Wo(0) weakly increases (i.e., does not decrease) the number of
real roots. We return to this result and proof presently; first we continue with the account
of Pélya’s work [285]. Another result dealt with the reciprocal functions 1/Wg(s), k =1, 2:

Theorem 34.6 (Pélya, [285]). Suppose ¥y (s) € LPy for k € {1,2} is such that Ui (0) > 0
and Uy (x) # Ce®®. Let 1/¥(s) = >i>0 i (—s) /4!, and define the Hankel matrices

My Hij+1 0 Hj+n
Hi+1 Hj+2 0 Hj4ntd .
HMJJI = . . . . ) ] Z O
Hj+n  Hj+n+1 -0 Hjton

Then det Hy, 0y > 0 Vn > 0. If k =1 then moreover det H, 1, > 0 Vn > 0.

Proof-sketch. Poélya first showed in [285, Satz IT and Satz III] the following claim:

“Suppose k = 1 or 2, and a function Vi is as in the assumptions. If a non-zero real
polynomial is non-negative on R and k = 2 (respectively, non-negative on |a,c0) and k = 1
for some a € R), then the polynomial p s always positive on R (respectively, on
[a,00)).”

Now to prove det Hy, 0, > 0, choose a non-zero vector v = (uo, . .. ,un)T € R"!, and set
p(x) == (Z?:o u;z7)2. By the previous paragraph and a straightforward computation,

1
Vi ((=1)%0)

n

= poud— i1 (ugur +ui o)+ (uous+ud +ugug)—- - - = Z (=17 iy pujug.
J,k=0

,00) ",

Since this inequality holds for all non-zero vectors u, the matrix ((—1)j+kuj+k)§‘7k:0 has
positive determinant by Sylvester’s criterion (Theorem [2.8)). But H,, o, is obtained from this
matrix by pre- and post-multiplication by the matrix diag(1, —1,1,...,(—1)""1).



34. Schoenberg’s results on Pdlya frequency functions. 243

This shows the result for k = 2; similarly for £ = 1, choose a non-zero vector u as above,
and set p(z) ==z (37, ujz?)? > 0 on [0,00). By the opening paragraph, we compute:

1
U (—a)

n
= E Hjtk+1U5UE,
=0 jk=0

0<

similar to the k = 2 case. Since this holds for all v # 0, it follows that det H, 1, > 0. O

These positive determinants were taken up at the turn of that decade by Hamburger, who
in 1920-21 published his solution to the Hamburger moment problem [162]. Around the same
time, he applied this solution to Pélya’s theorem [34.6] and showed that the positivity of the
Hankel determinants in it is not sufficient to recover the Laguerre—Podlya class. Hamburger
also showed, however, that the functions 1/¥; are Laplace transforms:

Theorem 34.7 (Hamburger, 1920, [161]). Fiz an entire function V(s) with ¥(0) > 0 and
1/¥(s) = ijo i (—s)?/3!.

(1) Ifdet H, o > 0 for alln > 0, then the reciprocal 1/ (s) is the bilateral Laplace trans-
form of a certain function A(z) > 0, in the maximal strip R(s) € (a, ) containing
the origin where 1/Y(s) is regular.

(2) If det Hy, 0.,det Hy, 14, are positive for all n > 0, then the reciprocal 1/¥(s) is the
(bilateral) Laplace transform of a certain function A(x) > 0, with A =0 on (—o0,0),
in the maximal half-plane R(s) € (o, 00) of reqularity of 1/¥(s).

From these results, one sees that the y; are precisely the moments of A (see (29.18))), or
of the non-negative measure A(t)dt:

1 ::/A(t)tj dt <00,  j=0,1,....
R

Combined with the Hamburger and Stieltjes moment problems — see Remarks and
respectively — and since A(t)dt has infinite support, this explains why the moment-matrices
H, 0n,Hy,1,n have positive determinants, i.e., are positive definite by Sylvester’s criterion.

34.2. Schoenberg’s characterizations of PF functions. Schoenberg built upon the above
results, by (a) understanding the nature of the functions A in Hamburger’s theorem and
(b) characterizing the functions A(z) € L'(R) that satisfy the variation diminishing property:

S7(g) < S (f)Vf R =R, where g;(z)i= / Az —Df(t) dt.  (348)
R
Remarkably, the A in both cases are essentially one and the same, as explained below.

Theorem 34.9 (Schoenberg, [320, 324]). Suppose A : R — R is Lebesgue measurable. If A is
a non-Dirac TN function (see Definition , not of the form e®*® for a,b € R, then the
bilateral Laplace transform of A is 1/¥(s), with ¥(0) > 0 and V(s) in the Laguerre—Pdlya
class LPs, i.e., of the form

o

U(s) = Ce 75" +0s H(l + ajs)e” %%,

j=1
where C > 0,7 >0, §,0 €ER, 0 <y +3_; oz? < 00, and the equality B(A)(s) = 1/U(s) holds
on a mazximal strip R(s) € (o, B). Here —oo < a < 8 < o0, and if o and/or [ is finite then
it is a zero of W(-).
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Conversely, if U € LPy is as above, then 1/Y(s) is the (bilateral) Laplace transform of a
non-Dirac TN function A, not of the form e®*° for a,b € R.

In particular, the condition 0 < ~ + Zj ajz < oo implies that ¥(s) is not of the form Ce’*.
Moreover, in light of Proposition [29.3] one can translate the maximal strip by multiplying by
an exponential factor:

Corollary 34.10. Given a non-Dirac TN function A : R — R, the following are equivalent:
(1) A is a Pdlya frequency function.
(2) The maximal strip in the preceding theorem contains the imaginary axis.

(3) A is non-monotone.
(4) A is integrable.

The above results were for general Pélya frequency functions (or non-Dirac T'N functions)
vis-a-vis the Laguerre-Pdlya class LP,. The corresponding equivalence for one-sided TN /PF
functions was also shown by Schoenberg, in the same works [320], 324]:

Theorem 34.11. Suppose A : R — R is Lebesgue measurable. If A is a non-Dirac TN
function, vanishing on (—00,0), and such that B(A)(s) converges for R(s) > 0 (in particular
not an exponential e+ for a > 0), then the bilateral Laplace transform of A is 1/¥(s), with
U(s) >0 for s >0 and ¥(s) in the Laguerre—Pdlya class LP1, i.e., of the form
o
U(s) = Ced* H(l + ajs),
j=1
where C > 0, d,a; > 0, 0 < >, < o0, and the equality B(A)(s) = 1/¥(s) holds on a
mazimal strip R(s) € (o, 00). Here a denotes the first zero of W(-).
Conversely, if U € LPy is as above, then 1/V(s) is the (bilateral) Laplace transform of a
non-Dirac TN function A with the aforementioned properties.
Moreover, such a function A is a Pdlya frequency function if and only if ¥(0) > 0.

Note that W(0) > 0 if and only if A is integrable; thus it cannot be constant on (0, c0).
Schoenberg’s theorems [34.9] and [34.11] characterize non-Dirac TN functions and Pdlya
frequency functions, both one- and two-sided, in terms of the Laguerre—Pdlya class.

Proof-sketch of Theorem[34.9 In the concluding portion of Section (see the discussion
around (32.16) and (32.17)) we saw an outline of why for k = 1,2, the function 1/¥(s) for
any Wy € LPy is the Laplace transform of a Pélya frequency function (one-sided or general,
for k = 1,2 respectively). We outline here a proof of why the reverse implication holds for
k = 2. The outline opens with Schoenberg’s words [320]:

“A proof of Theorem[34.9 s essentially based on the results and methods developed by Pdlya
and Schur. The only additional element required is a set of sufficient conditions insuring that
a linear transformation be variation diminishing.”

This last sentence of Schoenberg refers to his 1930 paper, in which he showed that TN ma-
trices are variation diminishing. Using this property, he showed the same for Pélya frequency
functions, whence for polynomials (and then did the same for one-sided PF functions); see
Section Now suppose A is a PF function; we proceed to outline the proof of why B(A),
which converges on a maximal strip R(s) € («, 5) with @ < 0 < 3, is of the form 1/WUs(s) for
Us(s) in the Laguerre-Pdlya class LP5. Following Pélya, write

B =3 S s, R € (a6),
j=0
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where p; = [, A(t)t7 dt are the moments, as discussed after Theorem Also note that
B(A)(0) = up > 0, so we write the reciprocal power series:

Now return to the integral transformation f +— g as in (34.8). By Proposition [29.17]
Z(gf) < Z(f), where Z(-) denotes the number of real roots. Next, recall Schoenberg’s

computation , perhaps inspired by Pdlya’s trick :
@) = [ MO~ 0 dt =3 "0 @) = (BN (a).

j=0

We use here that both sides are polynomials, so that only finitely many terms ,uj(?j act
nontrivially. Now take the reciprocal power series, e.g. via the map T following (34.4)), to
obtain: f(x) = W2(9)(gr)(x). In fact since f + gy is invertible (see the proof of Proposi-
tion [29.17)), the linear operator g — f; := Wo(0)g is also invertible, and it weakly increases
the number of real roots. Finally, use (1') = (2) in the proof of Pélya’s theorem [34.5, O

Remark 34.12. Thus, Schoenberg showed in [321), 324] the connection between his charac-
terization of PF functions via the Laguerre—Pdlya class, Pélya—Schur multipliers, and Pdlya’s
theorem |34.5| proving the variation diminishing property over polynomials. This explains why
Schoenberg proposed in [321] the name Pdlya frequency functions for this family of functions.

We conclude with another characterization of Pélya frequency functions, which Schoenberg
announced in [321] and showed in [323]. This occurs via the variation diminishing property:

Theorem 34.13 (Schoenberg, [321], B23]). Given A : R — R Lebesgue integrable, let the
kernel f — gf as in (34.8), for continuous, bounded f : R — R. The following are equivalent:

1) A is variation diminishing: S (9f) < Si (f) for all continuous, bounded f : R — R.
R\If R
(2) One of £A is a PF function, or A is a Dirac function Cl,—, for some C,a € R.

Thus, the converse to Proposition [29.15| holds as well. For yet another characterization of
Pélya frequency functions — in terms of splines — see [95, [96] by Curry and Schoenberg.

34.3. Support of PF functions; (strict) total positivity. We now discuss two conse-
quences of the above results, which were also proved by Schoenberg. The first is that a Pélya
frequency function necessarily cannot be compactly supported:

Proposition 34.14. The support of a Pdlya frequency function A : R — R is unbounded.

Recall by Theorem that the support of a T'Nsy function is an interval, so in fact the
support of a PF function now must be of the form (a, b) where at least one of |al, |b| is infinite.

Proof. We already know the support of a Pdlya frequency function is not a singleton. Let I
be a bounded interval with endpoints —oco < a < b < co. The claim is that for any function
A : R — R supported on I and continuous in its interior, the Laplace transform

b
B(A)(s) == / e "A(z) dz, seC

is entire, with kth derivative (—1)* f; e **2¥A(x) dzx. Indeed, one shows that the series

(9" / A () da

n!

n=0
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is uniformly convergent for s in any bounded domain in C. Hence its sum is entire, and
equals B(A)(s); moreover, one can differentiate term by term to compute its kth derivative:

e n—k

S b b

Having shown the claim, we proceed to the proof. By Theorem [34.9

[e.e]

A — 1 vs2—6s e
B = T

Qs

(34.15)

for appropriate values of the parameters. Now if A has bounded support, then from above
the right-hand side is entire. It follows that «; = 0 Vj. But then B(A)(s) = CLers®=os,
Now by Laplace inversion and Example A itself is a (shifted) Gaussian density, hence
has unbounded support. This provides the necessary contradiction. ]

The final result here, due to Schoenberg and Whitney in Trans. Amer. Math. Soc. (1953),
provides a sufficient condition when a Pélya frequency function is (strictly) totally positive.
We mention only a part of their results, and show only the sub-part relevant for our purposes.

Theorem 34.16 (Schoenberg-Whitney).
(1) If Af, Ao : R — R are PF functions, and A+ yields a TP kernel, then so does Ay *Ag.

(2) Suppose A(x) has bilateral Laplace transform (34.15)). If v > 0, or v =0 and Zj |laj]
diverges, then the kernel Ty is TP (of all orders).

Proof. For the first part: that A, * Ag is a PF function follows from Corollary We now
claim that given p > 1 and y € RP'T, there exists t = (t1,...,t,) € RP" such that T, [t;y] is
non-singular. The proof is by induction on p > 1; for the base case, since [, Ag(z) dz € (0, 00),
it is positive on an interval, so we can choose t; as desired.

For the induction step, let p > 2 and y € RPT. Choose t := (1, ... Jtp—1) € RP~LT such
that the matrix (Ag(t; — yk))ﬂl:l is non-singular, whence has positive determinant since Ag
is TN. Now expand the determinant of T, [(t;?);y] along the last row; if this vanishes for
all t € R, we obtain an equation Zzzl arAo(t—yx) =0, where all a;, € R and a), > 0. Taking
the bilateral Laplace transform of both sides,

p
(s) Z ape” Yk
k=1

must vanish for s in some interval, where ¥ # 0 by the Schoenberg representation theorems.
Hence the sum vanishes identically on an interval — which is false by Descartes’ rule of signs
(Theorem |10.3)). Thus, Ta,[(t;);y] is non-singular for some t € R. Clearly ¢ # t; Vj, so by
suitably permuting the rows (and relabeling the ¢,¢; if needed), the induction step is proved.

Having shown the claim, and using the continuity on an interval of both A, Ag, one checks
using the Basic Composition Formula that Ay x Ag is T'P, for each p > 1:

det((AL*Ag)(zi—y zk 1= / / det(Ay(x ))” 1 det(Ao(tj—yr)) ]k 1 H du(yk).
t1<to<-<tm in R j=1
We only (require, hence) show the second part for v > 0. By Theorem e 2B(A)(s)

is the bilateral Laplace transform of a PF function, say Ag; and e¥5*/2 of a TP (Gaussian)
PF function A4, say by Example By the preceding part, A = AL « Ay is TP. O
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35. FURTHER ONE-SIDED EXAMPLES: THE HIRSCHMAN—WIDDER DENSITIES.
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BIBLIOGRAPHIC NOTES AND REFERENCES

Section on Pélya frequency functions, and totally non-negative/positive functions, is
essentially from the monumental work by Schoenberg [324]. See also the accounts in Karlin’s
book [200] and in the survey [I05]. The modification of Theorem (characterizing the
TN, functions) to arbitrary domains J—J is taken from Khare [215]. Section[28.2] containing
the characterization of T'N, functions for all p > 3 and related results, is by Khare [215],
following Lemma which is taken from Forster-Kieburg-Kosters [12§].

Proposition [29.3] collecting basic properties of Pdlya frequency functions, is from Schoen-
berg [324] — as are the results in Section[29.2 on the variation diminishing properties of these
functions. The precursor to these facts is the variation diminishing property for T'N and
TP matrices. This is the focus of Section the treatment in this part can essentially
be found in Pinkus’ book [282, Chapter 3] — following Gantmacher—Krein [I38] and Brown-
Johnstone-MacGibbon [72] — as well as the recent work of Choudhury [80]. Section [29.4]
on the characterization of TN and TP matrices through sign non-reversal, is taken from
Choudhury-Kannan-Khare [81] and Choudhury [80]; see also [114].

Pélya frequency sequences were introduced by Fekete and Pélya [118], in an attempt to
prove a result by Laguerre [229]. The treatment in Section of generating functions
of one-sided Pdlya frequency sequences, is taken from the works [4], [5 [106] 107, 325] by
Aissen—Schoenberg-Whitney and Edrei, separately and together. Similarly, Corollary
characterizing finite PF sequences was first shown by Edrei [I07], and also follows from the
papers cited just above. Theorem [30.20] on the root-location properties of such generating
functions, as well as the two subsequent lemmas used in its proof, are from Schoenberg’s
1955 paper [325]. The connection to elementary symmetric polynomials is classical; see
e.g. Macdonald’s monograph [247]. Lemma on the total non-negativity of Jacobi
matrices, is from Karlin’s 1964 paper [199]; and Theorem is from Schoenberg’s 1955
paper [200].

The proofs in Section [3I]of the theorems of Hermite-Biehler and Routh-Hurwitz, as well as
their consequences involving Hurwitz matrices, are drawn primarily from the short note [179]
by Holtz. The proof of the Hermite-Kakeya—Obrechkoff theorem [31.12] additionally uses
arguments in the online book by Fisk [122, Chapter 1]. (The original, classical papers are
referred to in the exposition itself.) Theorem 7?7 & is taken from the work of Garloff and
Wagner [140].

The contents of Section (apart from the basics of convolution and the Laplace trans-
form) are from Schoenberg’s 1951 paper [324] — including the examples of T'N functions: the
discontinuous functions Hi(z) and A\(z), their shifted variants, convolutions of these, and
the concluding connection to the Laguerre-Pdlya class.

The exposition of the Laguerre—Pdlya class and results preceding its development are taken
from numerous sources — we mention the surveys [91] by Craven—Csordas and [105] by Dym-
Katznelson, the book by Karlin [200], and the paper by Aleman-Beliaev—Hedenmalm [10]
for the ‘general flavor’. Coming to specific proofs: the treatment of the Hermite—Poulain
Theorem and Laguerre’s theorem [33.§|2) (on the multiplier sequence ¢(k)) are taken
from Pinkus’s article [280]. The remaining parts of Theorem — involving Laguerre’s
multipliers 1/k! and the composition theorems by Malé and Schur — are proved using the
approach in Levin’s monograph [235]. These proofs also draw from de Bruijn’s short note [73],
where he showed Theorem m (on ‘roots lying in sectors’) and its numerous corollaries listed
out above, including the ones by Weisner [366]. (For historical completeness: the Hadamard—
Weierstrass factorization emerges primarily out of [159, [364]; see also the monograph [235].)
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Theorems and involving early findings of Pélya about functions 1/W¥(s) for ¥
in the Laguerre-Pdlya class, are taken from [285]. Theorem showing that 1/W¥(s) has
a Laplace transform representation, is taken from Hamburger’s paper [I61]. Section
containing characterizations of Pélya frequency functions (both general or one-sided) in
terms of the Laguerre-Pdlya class or variation diminution, is taken from the two announce-
ments [320, B21] and the subsequent ‘full papers’ [323] 324] by Schoenberg. Proposition [34.14]
on the unbounded support of a Pélya frequency function is from [324], and Theorem [34.16
on the total positivity of certain PF functions is from Schoenberg and Whitney’s paper [327].
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36. CRITICAL EXPONENT FOR POWERS PRESERVING T'N,,. THE
JAIN-KARLIN-SCHOENBERG KERNEL.

Having classified — in a previous part of this text — the preservers of Loewner positivity,
monotonicity, and convexity on infinite domains, we now turn to preservers of total non-
negativity and total positivity. This section is concerned with preservers of T'N,, for p finite,
with emphasis on power functions. In particular, we will see the occurrence of a critical
exponent phenomenon in total positivity — this time for powers of one-sided T'IV,, functions.

36.1. Connections to representation theory and probability. We end this second look
at critical exponents (the first was in Part 2 of this text) by providing connections to other
areas of mathematics — specifically, via the Wallach set (or Gindikin ensemble, or Berezin—
Wallach set). The following is a very brief account of these topics, and the references here
should provide the reader with starting points for further exploration into this rich area, at
the intersection of representation theory, complex analysis, and probability.

Suppose n > 1 and D C C" is a tube domain, i.e., of the form D = R" + {2, where € is a
homogeneous irreducible self-dual convex cone in R™. Denote by H; the associated Bergman
space, consisting of holomorphic functions F' on D satisfying:

/ |F(x +iy)|* dzdy < oo,
D

and let Hy denote the Hardy space, consisting of holomorphic functions F' on D satisfying:

sup/ |F(x + iy)|? dz < cc.
yeN JR?

Let P(z — w) denote the Bergman kernel on D; thus F(w) = (F, P,) g, for all F € Hj,
where P, (z) := P(z —w). Then the Hardy space Hy has a reproducing kernel of the form
PP, for some power p < 1 of the Bergman kernel. In Acta Math. (1976), Rossi and Vergne
classified the powers of P which are reproducing kernels for some Hilbert space of holomorphic
functions on D. They called the set of such powers p the Wallach set, and showed in [303]
that it consists of an arithmetic progression and a half-line: {0,¢/r,2¢/r,...,c} U (¢, 00) for
some ¢ > 0 and r > 0. The exact meaning of p, ¢, r can be found in [303].

Rossi—Vergne named the aforementioned set after Wallach, who was studying it at the time
(note, Wallach’s papers [359] appeared in print later, in 1979 in Trans. Amer. Math. Soc.).
Wallach, following up on work of Harish-Chandra, was studying the holomorphic discrete
series of connected, simply connected Lie groups GG. Specifically, he classified the set of twist-
parameters p of the center of K (a maximal compact reductive subgroup of GG) for which the
corresponding K-finite highest weight module over g = Lie(G) (complexified) is irreducible
and unitarizable, or it is reducible and its radical is unitarizable. In [303], Rossi and Vergne
obtained the same (Wallach) set of parameters p, with the sufficiently large p leading to
the holomorphic discrete series of weighted Bergman spaces. See also [116], where Faraut
and Koranyi worked over symmetric domains D, and studied Hilbert spaces of holomorphic
functions on D.

The Wallach set also appears in at least two other settings, both again in the 1970s:

e Berezin [38] had encountered such a set while studying Kéhler potentials of Siegel
domains, in the context of quantization. (See also [269] for a recent avatar of this
set of exponents, defined in the context of positive semidefinite kernels and recalling
various results discussed above).
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e Gindikin [I43] had shown that given a symmetric cone, and a Riesz distribution R,
associated to it, R, is a positive measure if and only if i € C lies in an associated
Wallach set. A simple proof of this result (and more) was given in 2011 by Sokal [344].

On a conceptual note: the work of Gindikin on the Wallach set arises through
ratios of gamma functions on symmetric cones, which are of the form G/K for a
group G and a maximal compact subgroup K. Now, the ‘usual’ gamma function can
be defined via the Laplace transform on the cone R*. In fact, this can be done over
arbitrary symmetric cones in FEuclidean Jordan algebras — for instance, in the cone
P,(R) = GL,(R)/O,(R), where G = GL,,, K = O,, stand for the general linear and
orthogonal groups of n x n real matrices, respectively.

Via the Iwasawa decomposition G = K - A- N, carrying out the Laplace transform
on such a cone G/K is the same as doing so on A- N. This turns out to be a solvable
group, and the associated Haar measure is closely related to Lebesgue measure. This
provides a ‘natural’ setting for Gindikin’s work and for proving his results — see the
1991 paper of Kostant—Sahi [226] in Adv. Math. for details. As the authors remark,
the main ingredient in the above working is the Laplace transform on a self-dual cone;
the origins of this can be found in the 1935 paper [3306] of Siegel in Ann. of Math.
(see also the book of Hua [I85]).

Gindikin’s work leads us to another recent manifestation of the critical exponent in matrix
analysis — specifically, in random matrix theory. We first mention the 1987 paper [232] of
Lassalle in Invent. Math., which approached the same problem through the formalism of
positive cones in formally real Jordan algebras. Lassalle recovered the results of Wallach and
Rossi—Vergne concerning the Wallach set.

The results of Gindikin, Berezin, Rossi—Vergne, Wallach, and Lassalle parallel a phenom-
enon for shape parameters of (non-central) Wishart distributions. We begin with the more
standard “central” Wishart distribution, defined by Wishart in 1920 [37I]. One way to define
this is through the Laplace transform of its density function. More precisely, fix an integer
n > 1; now given the shape parameter p € [0,00) and the scale parameter ¥, which is a
positive definite n x n real matrix, I'(p, ¥) denotes the Wishart distribution, say with density
f, satisfying:

L{T(p, %) }(s) ::/ ® e "(sA) f(dA) equals det(Idy,x, +2s%) 77, s € P,(R).

It is a well-known fact (see e.g. [117]) that such a distribution exists if and only if p is in
the Wallach set {0,1/2,...,(n—2)/2} U (((n —1)/2), 00).

We now come to recent work along these lines. The non-central Wishart distribution is
similarly defined — now also using a non-centrality parameter Q € P, (R) — via its Laplace
transform

L{T(p, %, D)} (5) = det(Id,xp +25%) Pe 2022 (Mdnxn 12570 5 c p(R),

In 2018, Graczyk Malecki-Mayerhofer [145] and Letac-Massam [234] showed (akin to
above) that such a distribution exists if and only if (a) p belongs to the same Wallach set as
above:

pe{0,1/2,...,(n=2)/2; U(((n—1)/2),00),
and (b) if p < (n — 1)/2 then tkQ < 2p. The same result was shown by Mayerhofer
in Trans. Amer. Math. Soc. in 2019, building on ideas of Faraut [115] (1988) and Peddada—
St. Richards [277] (1991). To do so, Mayerhofer [255] extended prior analysis by the aforemen-
tioned authors, on the positivity of generalized binomial coefficients that occur in Euclidean
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Jordan algebras. See e.g. [I17] for an introduction to this; also see the 2011 work [308],
Theorems 1 and 5] by Sahi, for stronger positivity results.

We end with a (superficial) relation between the Wallach set here and the set of powers
preserving positivity on P, ((0,00)) (and total non-negativity of order n for the powers of
the kernel Tq) studied by FitzGerald—Horn, Karlin, and Jain. These powers were studied in
Sections [9] and [I5] above, as well as in the present section. It would be interesting to find a
deeper, conceptual connection between the two problems.

We begin with the positivity preservers side. Recall from the proof of Theorem that if
a€ (0,n—2)\Z,and x1,...,z, € (0,00) are pairwise distinct, then the Taylor expansion of
the entrywise power ((1+ zjxx))7,_; yields

(2 e = 3 (2 ) @)

m>0

where (%) = a(a —1)---(« —m+ 1)/m! and z°™ := («*,...,2")". Now the key is that
for m = |a] + 2, the binomial coefficient is negative. Thus one can pre- and post-multiply
the above matrix by u”, u respectively, for some u € R™ orthogonal to the smaller entrywise
powers of . Using this, one can deduce that ((1+4 x;zx)%)7,_; is not positive semidefinite.

The connection to the Wallach set W is via the fact that the analysis for powers that
do not lie in W (to show that a (non)central Wishart distribution does not exist) also goes
through the negativity of certain generalized binomial coefficients. As a simple example, we
look into the argument in the aforementioned work of Peddada—Richards in Ann. Probab.
1991. (A similar computation concludes the proof of [255, Theorem 4.10].) Given integers
ki >--- >k, >0, define the shifted factorial by:

:Hp G- where Pk =plp+1)---(p+k—-1)

if k > 0, and (p)o := 1. Now it is shown in [277] — via the use of zonal polyomials — that if the
(non)central Wishart density with shape parameter p exists, then (p)x > 0 for all n-tuples k
as above. But if ¢ = 2p € (0,n — 1) \ Z, then set
g2 k= =hm= 1 k== Ey =0,

Then the associated generalized binomial coefficient is

qq—1 q—[q/ -1

2 2 2
and this is negative by choice of q.

S(1-1---1),
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37. PRESERVERS OF POLYA FREQUENCY FUNCTIONS.
37.1. Preservers of T'N functions.
37.2. Preservers of Pélya frequency functions.

37.3. Preservers of TP Pdélya frequency functions.
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38. PRESERVERS OF POLYA FREQUENCY SEQUENCES.

Having classified the preservers of TN functions and their subclass of (T'P) Pélya frequency
functions, we turn to such Toeplitz kernels on distinguished subsets. This section deals with
Pdélya frequency sequence, i.e., Toeplitz T'N kernels on Z x Z. However, several of the results
will be shown to hold over more general domains X,Y C R with arbitrarily long arithmetic
progressions. The full power of these more general domains SX,Y will be revealed in the
next section, which concludes this part of the text.

As we saw in the previous three sections, working with kernels on intervals allows one to
use powerful tools and results from analysis. These tools are also used in the present section,
where we will use PF functions (on R x R) to classify the preservers of (T'P) PF sequences
(onZ x 7).

38.1. Preservers of PF sequences.

38.2. Preservers of TP PF sequences. Discretization: if I’ is continuous and preserves
PF sequences, then F' preserves measurable T'N Toeplitz kernels.

38.3. Preservers of one-sided PF sequences.

38.4. Further questions. To conclude this section, here are a few open questions involving
Pélya frequency functions and sequences, and their preservers.

Question 38.1. In light of Schoenberg’s theorem [28.4] characterizing the T'Ny functions,
classify the preservers of these functions.

For example, the aforementioned theorems imply that all powers ¢ preserve the T'N,
functions for p = 2,3, if a € ZZ0 U [p — 2,00). We also saw in & that 2%1,>¢ is a TN,
function if and only if o € Z=° U [p — 2,00). In light of this, a natural question involves
studying the powers preserving total non-negativity of each degree:

Question 38.2. Given an integer p > 2, classify the powers x® which preserve the class of
TN, functions. Note by & that every such power is in Z=° U [p — 2, 00).

Coming to Pdlya frequency sequences, the above classification results lead to additional,
theoretical questions about related sequences, which are mentioned for the interested reader.

Question 38.3. Classify the preservers of one-sided Pdlya frequency sequences: (i) that
have finitely many diagonals, or (ii) generated by evaluating a polynomial at non-negative
integers.

Like a question above, both of these classes of functions have nontrivial power-preservers.
Indeed, 2™ preserves both of these classes for all integers n > 1, by Mald’s theorem and
a result of Wagner [357], respectively. Akin to the above discussion involving non-integer
‘one-sided powers’ which are T'N,,, a related question is:

Question 38.4. Classify the power functions x +— x®, such that if ) j ajx’ is a polynomial
with positive coefficients and real roots, then so is ) j ajo-‘xj. In particular, find the ‘critical
exponent’ oy, for polynomials of a fixed degree p, such that every a > «, satisfies this property
on polynomials of degree at most p.

Note again by Mald’s theorem that every integer o > 1 satisfies this property. Re-
cently, Wang and Zhang showed in [363] the existence of the threshold «,. Notice by & that
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this question is connected to entrywise powers preserving PF sequences with up to p non-zero
diagonals, and hence refines the preceding question.
A final, Whitney-type density question is:

Question 38.5. Are the totally positive Pdlya frequency sequences dense in the set of all
Pélya frequency sequences?

Such a result could help obtain the preservers of the T'P PF sequences from the preservers
of all PF sequences. (Note that this goal is achieved above via alternate means.)
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39. PRESERVERS OF TP HANKEL KERNELS.

In this section, we change gears, and work with a setting studied above for matrices: Hankel
kernels, now defined on a sub-interval of R instead of on the integers {0, 1,...}. As should
be clear from the previous sections, working with kernels on intervals (e.g. R x R) allows one
to use a host of powerful, classical techniques and results from analysis, which help prove
results even on discrete domains (e.g. Z X Z).

We begin with terminology. Given subsets X, Y C R, define their Minkowski sum X +Y :=
{r+y:2¢e€ X,y Y} Nowakernel K : X xY — R is said to be Hankel if there is a
function f : X +Y — R such that K(z,y) = f(z +y) for all z € X,y € Y. Note that if
X =Y then any such ‘square’ kernel is symmetric.

A natural class of such kernels in analysis is when X is an interval, and in this section we
focus on this case. In keeping with the above sections, here is a typical example of a Hankel
TN kernel: given finitely many positive scalars cq, ..., ¢y, u1,. .., Uy,, define

n
Kew RXR=R,  Keu(z,y) =) cul™.
j=1

We show in Theorem that this kernel is TN on R x R (whence on X x X for any
sub-interval X C R).

39.1. Preservers of Hankel T'N kernels on intervals. In this section, we classify the
preservers of Hankel TN and TP kernels, on X x X for X an interval that is always assumed
to have positive measure. The first main result addresses Hankel T'N kernels:

Theorem 39.1. Let X C R be an interval with positive measure, and F' a function : [0,00) —
R. The following are equivalent:

(1) The composition map F o — preserves total non-negativity on the continuous Hankel
TN kernels on X x X.

(2) The composition map F o — preserves positive semidefiniteness on the continuous
Hankel TN kernels on X x X.

(3) The function F is a power series with non-negative coefficients: F(x) = 3 32, cxxk
for x > 0, with all ¢, > 0; and F(0) > 0.

The proof of this result uses a discretization technique that will also be useful later:

Lemma 39.2 (Discretization of Hankel kernels). Suppose X C R is an interval with positive
measure, and K : X x X — R. Then each of the following statements implies the next.
(1) K is TN.
(2) All principal submatrices drawn from K are TN.
(8) All principal submatrices drawn from K, with arguments lying in an arithmetic pro-
gression, are TN.
(4) All principal submatrices drawn from K, with arguments lying in an arithmetic pro-
gression, are positive semidefinite.

Conversely, (2) = (1) for all kernels, (3) = (2) for continuous kernels, and (4) = (3)
for continuous Hankel kernels.

Proof. The forward implications are immediate from the definitions. Conversely, using the
notation in Definition @ if x,z € X™' for some n > 1, then the matrix K[x;z| is a
submatrix of K[x U z;x U z], where x U z denotes the union of the coordinates of x and z,
together arranged in increasing order. Thus (2) = (1).
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Now suppose K is continuous and (3) holds. We will show (2): given 21 < -+ < z, in X,
let € := min;(z;41 — ;)/2, and approximate each z; by a rational sequence zj(-k) with:

z%k) € [z1,21 + €), 20 e (2, — €, ), z](-k) €(zj—exj+e), je(l,n).

Choose an integer N > 1 such that z](-k) € N%CZ for all k, and define:

k) (K I 2 k k) _(k
zF) = (zg),zg)—i-m,z%)—i-m,...,zg“)), zg)': (z() k) .. PA)

By assumption, the matrix K|[z(¥);z(¥)] is TN, whence so is the submatrix K[zgk); zgk)] for all
k. Let k — oo; since K is continuous, it follows that K[x;x] is TN, where x = (z1,...,Zy).
This shows (2).

Finally, suppose K is continuous and Hankel, and (4) holds. Given an arithmetic progres-
sion x € X™', let A := K[x;x] be the corresponding positive semidefinite Hankel matrix.
Now define the progression of running averages y € X" V" by: y; = (x; + x;41)/2 for
1<j<n-—1;andlet B:= Kly;y]. Since B is positive semidefinite, Hankel, as well as the
truncation A®) of A, it follows by Theorem that A is T'N, as desired. O

Now just as Corollary shows that Hankel matrices/kernels form a closed convex cone
for X = {1,...,n} (for any integer n > 1), the same immediately follows in the present
setting:

Corollary 39.3. Suppose X C R is an interval. The continuous Hankel TN kernels on
X x X form a closed conver cone, which is further closed under taking pointwise/Schur
products.

Proof. This follows from the condition Lemma m(4) being closed under addition, dilation,
taking pointwise limits, and taking pointwise products (by the Schur product theorem). [

Remark 39.4. The last two conditions of Lemma [39.2] can be further refined to ask for the
arithmetic progressions in question to be rational (or to belong to a translate of any dense
additive subgroup of R). This does not affect either Lemma or Corollary

The next preliminary result identifies when a continuous Hankel T'N (or T'N,, for any p > 2)
kernel vanishes at a point. Recall for an interval X C R that 0X denotes its boundary, i.e.,
the set of endpoints of X.

Lemma 39.5. Let X C R be an interval of positive length, and K : X x X — R a Hankel,
TNy kernel. If K(z,y) = 0 for some x,y € X, then K vanishes outside ‘corners’, i.e., on
X x X\ {(zo,20) : o € 0X}. If moreover K is continuous, then K =0 on X x X.

Proof. Suppose K is as given, and X has interior (a,b) for —oo < a < b < co. Suppose some
K(z,y) = 0; then so is K(do,dp) for dy = (x +y)/2, as K is Hankel. Again by this property,
it suffices to show K(d,d) = 0Vd € X \ 0X. We show this for d € (a, dp); the proof is similar
for d € (dp,b).

Let d € (a, dp); the TNy property of K([(d,dp); (d,dp)] gives

0 < K(d,dy)? < K(d,d)K (dy, do) = 0.

This shows K ((d + dp)/2,(d + dy)/2) = 0. Now if @ = —oco then running over all d we are
done. Else say a is finite. Then the above argument shows that

K(d,d) =0, Vde ((a+dy)/2,do).
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Now define the sequence
dpy1 = (a+3dn)/4€ ((a+dn)/2adn)a n > 0.

Clearly d,, decreases from dy to a™. Now claim by induction that K(d,d) = 0 for all d €
[dn+1,dy). The base case of n = 0 was shown above, and the same computations show the
induction step as well. Finally, the last assertion is now immediate. O

With these preliminaries in hand, we can show the above classification result.

Proof of Theorem [39.1] Clearly (1) = (2); we next show (3) = (1). Suppose (3) holds
and K : X x X — R is Hankel and T'N. There are two cases. First, K vanishes at a point
and hence K = 0 by Lemma in which case F'(0) > 0 gives: (F o K)(0) = F(0)1xxx is
TN. Otherwise F' > 0 on X x X, in which case F' o K is again continuous, Hankel, and T'IN
by Corollary

It remains to show (2) = (3). First if K = 0 then F(0)1xxx = (F o K) is positive
semidefinite, so F'(0) > 0. Otherwise K > 0 by Lemma We now appeal to Theoremm
and Remark Thus, it suffices to show that F[—] preserves positivity on the matrices
(a + buf)Jrk)Zk:O for all a,b > 0 with a + b > 0 and all n, as well as on all rank-1 and all
Toeplitz matrices in Py((0,00)). For this, it suffices to produce continuous Hankel T'N kernels
on R x R which contain the given test set of matrices at equispaced arguments.

First, by the assumptions there exist linear maps ¢, : R — R, n > 1 with positive slopes
such that [0,n] C ¢,(X). Now consider the continuous kernel

Ky(x,y) :=a+ bug"(mH@”(y), xz,y € R.

This is a rank-2 kernel, and easily verified to be Hankel and TN on R X R, whence on X x X.
Applying F, it follows that the matrix

(F o Kn)[xix] = (F(a+ bup ™)) g
is positive semidefinite as desired. Here x := (¢, 1(0),...,¢,1(n)) € X"*LT for all n > 0.
Next, if A = (p 7 ) has positive entries and rank one, then consider the continuous

q ¢*/p

Hankel kernel associated to the measure pd,,,, i.e., K(z,y) := p(q/p)**¥ for z,y € R.

a/p>

Z , with 0 < a < b. It suffices to produce a

continuous Hankel TN kernel containing this matrix. While one can use Theorem [7.4] we
provide a direct proof as well. By rescaling by b, we may assume b = 1. Now choose any
a € (1 —a?,1) and consider the continuous Hankel kernel

Tty oty
K(x’y)::a<a_\/(1_a)(1_a2)) +(1—a)<a+ OM) |

Finally, consider the Toeplitz matrix

o e
for z,y € R. It is easy to check that K(0,0) = K(1,1) =1 and K(0,1) = a. Moreover, K is
TN because we reduce to Theorem [4.1] via Lemma [39.2)(4). O

39.2. Structure of Hankel TP kernels on intervals. We next turn to Hankel TP kernels.
For this, we need to understand both Hankel TN and TP kernels in greater detail:

Theorem 39.6. Suppose X C R is an non-empty open interval.

(1) The following are equivalent for K : X x X — R a continuous Hankel kernel:
(a) K is TN.
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(b) K is positive semidefinite.
(¢) There exists a non-decreasing function o : R — R such that K (z,y) = [ e” @+ do(u)
forall z,y € X.
Furthermore, the kernel K is TP if and only if the non-negative measure associated
to o has infinite support.
(2) The continuous Hankel TP kernels on X x X are dense in the continuous Hankel
TN kernels on X x X.
(3) The space of continuous Hankel TP kernels on X x X is a convex cone, which is
further closed under taking pointwise/Schur products.

The first part is a representation theorem by Widder (1940) in Bull. Amer. Math. Soc.,
which solves a moment problem in the spirit of Hamburger, Hausdorff, Stieltjes, and others,
but now for ‘exponential moments’ of non-negative measures on the real line. These are
termed ‘exponentially convex functions’ by Bernstein. The second part reveals a Whitney-
type density result for Hankel kernels on an interval, in the spirit of Whitney’s theorem [6.7]
for matrices. In the next few sections, we will see similar variants for other structured kernels.

We now turn to Widder’s proof of Theorem [39.6(1). This uses an intermediate notion of
‘kernels of positive type’, which are now introduced.

Definition 39.7. Given real numbers a < b, a continuous symmetric function K : [a,b] X
[a,b] — R is said to be a kernel of positive type on [a,b]? if for all continuous functions
€ :[a,b] — R, we have

/b /bK(s,t)g(s)g(t) ds dt > 0.

If now I C R is a sub-interval, and K : I x I — R is continuous, we say K is of positive type
if it is so on every closed sub-interval of I.

The following result relates positive semidefinite kernels with kernels of positive type.

Lemma 39.8 (Mercer, 1909). Suppose a < b are real numbers and K : [a,b] x [a,b] — R is
continuous. Then K is a positive semidefinite kernel if and only if K is of positive type.

Thus, Mercer’s lemma provides an alternate equivalent condition to Theorem [39.6(1) for
X compact. It was shown by Mercer in Phil. Trans. Royal Soc. A (1909), en route to showing
the following famous result (which we do not use, nor pursue in this text):

Theorem 39.9 (Mercer, 1909). Suppose K : [a,b]> — R is a kernel of positive type. Then
there exists an orthonormal basis {e; : j > 1} of L?[a,b], such that: (a) each e; is an

eigenfunction of the integral operator Trp(x) = fab K(z,s)p(s) ds; (b) the corresponding
eigenvalue \; is non-negative; (c) if \j > 0 then e; is continuous; and (d) K has the repre-
sentation

K(s,t) =Y Ajej(s)e;(t).

Jj=1

Proof of Mercer’s lemma[39.8 If K is a positive semidefinite kernel, and ¢ : [a,b] — R is
continuous, then the double integral

/ab /abK (s, 0)E(s)&(t) ds dt
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can be expressed as a limit of Riemann sums:

-1
. (b—a)® : T
e 3 K )E()e(on) = Jim v K,
]7 =
where
1 _b—a

sj=a+jb—a)/n, K = (K (s, 5%))} 0 tn =

But the right-hand limit is non-negative since K is positive semidefinite.

Conversely, suppose there exist scalars a < s; < -+ < s, < b such that the matrix K, :=
(K(sj, k)7 o is not positive semidefinite. Since K is continuous, a perturbation argument
allows us to assume sg > a and s, < b. Thus there exists an eigenvector u, = (&, ...,&)7
such that ul K,u, = A <0.

We now construct a ‘toothsaw’ test function, as follows: we will choose €, > 0, running
only over values satisfying:

e+n<min{sy—a,(s2 —51)/2,...,(Sn — Sp—-1)/2,b — sp }.

Define 6. ,(x) to be the unique piecewise linear, continuous function on (a, b) such that

§j7 1fx€(33_7773]+77)7
e () := <0, if x € (a,s0 —€—n]U[sy,+€e+n,b),
Oa ifxEU?:I[SJ*1+€+n’Sj76777]7

and 6, is linear on all remaining sub-intervals [s; — e —n,s; —n] and [s; +7,s; + € +n].
Now define F}, : [-n,7]? — R via

)i= Y K(sj+ 2,55 +9) &k
k=0

A straightforward computation yields:

b b
/ / K(5,t)0e(5)0c,(t) ds dt =

Tj+e+n xk—i-e—l-n
/ / )0y (5)0cp(t) ds di

G k=0"TiTeTN E—€=1

/ / n(z,y) doe dy + Jy,

Jy = Z/ K (8,8)0c.,(5)0c(t) ds dt,

7,k=0 ij

where

with @ the ‘annular’ region between the squares
[vj —e—majt+etn x[yp —e—nye+e+n] and [z;—n,z;+ 0] X [yp — 0,y + 7).

Now for (s,t) € Qjx we have |0 (5)0e,(t)| < |£;€k], so by an easy computation:
2

/1] < 4€(2n +¢) Z 61 11K oo
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where || K| is the supnorm of K on the compact domain [a, b]%. Note that F,(0,0) = A <0
(as above), so by continuity there exists a small n > 0 such that F,(xz,y) < A/2 when
||, |y| < n. Fixing such an 7,

b b n n
/ / K (5,6)00(8)0en(t) ds dt < 1] + / / AJ2 da dy
a a —nJ-=n
2

< 4e(2n+ €) Z|5J 1K [|oo + 2477,

for € sufficiently small. Choose € > 0 small enough such that the right-hand side is negative
(since A < 0); this yields the desired contradiction. U

Another preliminary result required to show Theorem is by Bernstein in his 1926
memoir. This is a ‘dimension-free’ analogue of the Boas-Widder theorem (2) — also
recall the related Theorem [19.9) by Boas. In fact, Boas and Widder write that they were
motivated to prove their Theorem (2) ‘in an effort to make more accessible’ the following
result of Bernstein, which Widder used in proving Theorem [39.6]1).

Theorem 39.10 (Bernstein, 1926). Given a sub-interval (a,b) C R and a continuous func-
tion f : (a,b) = R, if the even-order forward differences

2n m )
@@ =3 ()i, ce @, s .60/

=0 7
are all non-negative, then f is analytic in (a,b).
The final preliminary result is by Hamburger (1920) in Math. Z.:

Proposition 39.11 (Hamburger). If f(z) is analytic in (a,b) and there exists ¢ € (a,b) such
that the semi-infinite Hankel matriz (fU%)(c)); x>0 is positive semi-definite, then

f@) = [ e dotu)
R
for some non-decreasing function o, with the integral converging on x € (a,b).

These two results are used without proofs.

Proof of Theorem[39.4,.

(1) That (a) and (b) are equivalent follows by Lemma [39.2] Next assume (b) holds, let
[a,b] C X, and let the continuous function f: X + X — R be given by: f(z +y) =
K(z,y) for x,y € X. Suppose a < ¢ < ¢+ 2nd < b for some integer n > 0 and scalar
0 < § < %:¢. The Hankel matrix K, . 5 := (f(e+70+kG))7 —g is positive semidefinite
by assumption; we evaluate it against the vector

=%, )", &= i(—l)ﬂ'+1 (f)m

I=j
for some scalars ng, ..., n,. In the language of forward differences, this yields:

6 Knc(sg_ Z AjJr "7]77]9 > 0.
J,k=0
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Nowset g =n1 = -+ =np—1 = 0, , = 1, we have (A2" f)(c) > 0. By Theorem|39.10
since f is continuous, f is analytic in (a,b). Now replacing n; in the preceding
computation by n;/d’, we obtain as § — 07

n
> LI emymi > 0.
4,k=0
As this holds for all integers n > 0 and all nqg,...,7n, € R, Proposition implies
f is of the desired form.

Conversely, if (c) holds, then to show that a principal submatrix drawn from K at
arguments xg < x1 < --- < x, in X is positive semidefinite, it suffices to consider
K restricted to [a, b]?, where a = 29 and b = z,,. Now by Mercer’s lemma m it
suffices to show that K ‘[a’b]z is of positive type. But this is straightforward: given a
continuous function ¢ : [a,b] — R, we have

b/2 /2 b/2 [ b/2
/ F(s+DE()E(t) ds dt = / / £(5)E(t) / =+ o (u) ds dt
a/2 Ja/2 a/2 Ja/2 R

_ /R ( / jf eS¢ (s) ds>2 do(u) > 0.

The final step involves a change of order of integration, which is justified because the
integral representation of f converges uniformly in [a, b].

This ends the proof of the equivalence. Now suppose the measure associated to o
has infinite support. Then the kernel K (z,y) = f(z+y) is TP, by Proposition If
needed, we can use the fact that a kernel K (x,y) on X xY (for X, Y C R)is TN/TP if
and only if the kernel K(—z, —y) is so, because drawing square submatrices from one
or the other kernel are equivalent, modulo applying the order reversing permutation
to the rows as well as the columns.

Next, suppose the measure for o has finite support, say with mass ¢ at ux € R for

k=1,...,7r. Given two n-tuples of points x,y € X™T, we see that
T T
K[x;y] = Z ck(e’(zﬁyﬂ')”k)ﬁj:l = Z crxo Fy o, (39.12)
k=1 k=1

where xo = (e7®)iL;,y0 = (e7%)}_;. Thus K[x;y| has rank < r, hence is singular if
n > r. It follows that K is not T'P.

Given a continuous Hankel T'N kernel K (x,y) = f(z+y) on X x X, with the function
f as in the previous part, K is the limit as € — 07, of the kernels

1
Ke(z,y) :== K(z,y) + e/ e~ @ty gy,
0

Since each underlying measure in K, has infinite support, K. is T'P by the previous
part.

Note that TP kernels are closed under dilations. If now K, K’ are TP, with under-
lying representative functions o, o’, then the measures corresponding to these have
infinite supports, whence the same holds for o +0¢’. Hence K + K’ is also T P. Finally,
K-K'is TN by Corollary If it is not T'P, then the representative function 7 has
underlying measure of finite support, say of size r. Now choose an arithmetic pro-
gression x € X" 1T, then the principal submatrices K[x;x] and K'[x;x] are Hankel
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by the choice of x and T'P by assumption. Hence so is their Schur product, which is
precisely (K - K')[x;x], by Theorem In particular, this is a principal submatrix
of K - K’ of rank r + 1, which contradicts the choice of r, say by (39.12) for K - K.

O

39.3. Preservers of Hankel T'P kernels. To conclude, we classify the preservers of Hankel
TP kernels, parallel to the TN version in Theorem [39.1}

Theorem 39.13. Let X C R be an open sub-interval with positive measure, and a function
F :(0,00) — R. The following are equivalent:

(1) The composition map F o — preserves total positivity on the continuous Hankel T P
kernels on X x X.

(2) The composition map F o — preserves positive definiteness on the continuous Hankel
TP kernels on X x X.

(3) The function F is a power series with non-negative coefficients: F(x) = Y 3o, cxx®
for x > 0, with all ¢, > 0; and F' is non-constant.

Proof. Clearly (1) = (2). Next, suppose (3) holds, with ¢,, > 0 for some ng > 0. Let
K : XxX — R be a continuous T'P Hankel kernel, then so is K™ by Theorem[39.6] Moreover,
Corollary shows G'o K is a continuous T'N Hankel kernel, where G(z) := F(x) — cp ™.
Now G o K and K™ have integral representations as above, say with corresponding non-
negative measures v and p respectively. Since p has infinite support from above, so does
v+ cpop > 0. Hence Fo K =G o K + ¢, K™ is TP.

It remains to show (2) = (3). First note by Theorem that every 2 x 2 T'P matrix
occurs as a ‘principal submatrix’ of a continuous Hankel T'P kernel on R x R, drawn from
a function evaluated at equispaced arguments. Hence by Lemma f is continuous,
positive, and strictly increasing on (0, 00). It follows that f preserves continuous Hankel TN
kernels, hence is of the desired form by Theorem m&) Clearly f is non-constant, and the
proof is complete. 0
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40. TOTAL POSITIVITY PRESERVERS: ALL KERNELS.

We now bring together many of the techniques and results discussed above — not only in
this part, but in the previous parts of this text — to solve the motivating problem in this part:
Classify the functions preserving totally non-negative/positive kernels on X XY, where X,Y
are (arbitrary) non-empty totally ordered sets.

Recall the characterizations in Theorems [12.11] and [12.13] which resolved this question for
X,Y finite. Similarly, Theorem[12.15land Corollary[12.17|respectively classified the preservers
of TN and T'P symmetric kernels, for X =Y finite.

40.1. Finite-continuum kernels. In this section, we answer the above question when at
least one of X, Y is infinite. The first step is to resolve this when exactly one of X, Y is finite
and the other is infinite; in this case we do not consider symmetric kernels.

The key result which is required to solve the classification question is a recent extension
of Whitney’s density theorem, which uses discretized Gaussian convolution.

Theorem 40.1. Given an integer p > 2, and a bounded T'N,, kernel K on R xR, let C' C R?
denote the points of continuity of K. Then there exists a sequence of T P, kernels (K;);>1 that
converge to K locally uniformly on C. If moreover K is ‘symmetric’, i.e., K(z,y) = K(y, z)
for all x,y € R, then the sequence K; may also be taken to be symmetric for all 1 > 1.

Theorem is due to Belton, Guillot, Khare, and Putinar (2020), for arbitrary subsets
X,Y C R — which is not more general because one can always extend such a kernel to
one on R x R, by padding by zeros. Notice also that the assumption that X =Y = R is
itself not unnecessarily restrictive, given Lemma (For p = 1, a TP, kernel is merely a
positive-valued function, and so K + %1 approximates any 7'N; kernel K.)
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BIBLIOGRAPHIC NOTES AND REFERENCES

Most of the material in this part is taken from Belton—Guillot—Khare—Putinar [32], and we
discuss the remaining references.

Theorem [39.6(1) is a representation theorem for totally non-negative continuous Hankel
kernels on an open interval, shown by Widder [369]. Mercer’s lemma and theorem m
are from [261]. Bernstein’s theorem guaranteeing analyticity from the positivity of
even-order forward differences is from [43]. Hamburger’s theorem is from [I61]. (See
also [44] and [8, Theorem 5.5.4].)
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Part 6: Entrywise polynomials preserving positivity in a fixed dimension

41. ENTRYWISE POLYNOMIAL PRESERVERS. HORN—LOEWNER TYPE NECESSARY
CONDITIONS. CLASSIFICATION OF SIGN PATTERNS.

In Part 3 of this text, we classified the entrywise functions preserving positivity in all di-
mensions; these are precisely the power series with non-negative coefficients. Earlier in Part 2,
we had classified the entrywise powers preserving positivity (as well as total positivity and
total non-negativity) in fixed dimension. In this final part of the text, we study polynomials
that entrywise preserve positive semidefiniteness in fixed dimension.

Recall from the Schur product theorem and its converse, the Schoenberg—Rudin the-
orem that the only polynomials that entrywise preserve positivity in all dimensions are
the ones with all non-negative coefficients. Thus, if one fixes the dimension N > 3 of the test
set of positive matrices, then it is reasonable to expect that there should exist more polyno-
mial preservers — in other words, polynomial preservers with negative coefficients. However,
this problem remained completely open until very recently ( ~ 2016): not a single polynomial
preserver was known with a negative coefficient, nor was a non-existence result proved!

In this final part, we answer this existence question as well as stronger variants of it.
Namely, not only do we produce such polynomial preservers, we also fully resolve the more
challenging question: which coefficients of polynomial preservers on N X N matrices can be
negative? Looking ahead in this part:

o We classify the sign patterns of entrywise polynomial preservers on Py for fixed N.

e We extend this to all power series; but also, countable sums of real powers, such as
Zae(@, a>N—2 cox®. This case is more subtle than that of polynomial preservers.

e We will also completely classify the sign patterns of polynomials that entrywise pre-
serve totally non-negative (T'N) Hankel matrices of a fixed dimension. Recall from
the discussions around Theorems [12.19| and [19.1] that this is expected to be very
similar to (maybe even the same as) the classification for positivity preservers.

In what follows, we work with P ((0, p)) for N > 0 fixed and 0 < p < co. Since we work
with polynomials and power series, this is equivalent to working over Py ([0, p)) by density
and continuity. If p = 400, one can prove results that are similar to the ones shown in this
part of the text; but for a first look at the proofs and techniques used, we restrict ourselves
to Pn((0, p)). For full details of the p = +o0 case, as well as for the proofs, ramifications,
and applications of the results below, we refer the reader to the paper “On the sign patterns
of entrywise positivity preservers in fived dimension” in Amer. J. Math. by Khare and Tao.

41.1. Horn—Loewner-type necessary condition; matrices with negative entries. In
this section and beyond, we work with polynomials or power series

f(x) = g™ + cpa™ 4+, with ng,n1, ... pairwise distinct (41.1)
and ¢,; € R typically non-zero. Recall the (stronger) Horn-Loewner theorem which
shows that if f € CN~(I) for I = (0,00), and f[—] preserves positivity on (rank-2 Hankel

TN matrices in) Py(I), then f, oo fON=D > 0 on I. In the special case that f is a
polynomial or a power series, one can say more, and under weaker assumptions:

Lemma 41.2 (Horn-Loewner-type necessary condition). Fiz an integer N > 0. Let p > 0
and f: (0,p) = R be a function of the form (41.1) satisfying:

(1) [ is absolutely convergent on (0, p), i.e., 3 ;~q |cn;|z"™ < 00 on (0, p).

(2) fl—] preserves positivity on rank-1 Hankel TN matrices in Pn((0, p)).
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Iy Cnj, < 0 for some jo = 0, then ¢,,; > 0 for at least N values of j for which nj < mnj,.

Remark 41.3. In both (41.1]) as well as Lemma (and its proof), we have deliberately not
insisted on the exponents n; being non-negative integers. In fact, one can choose {n; : j > 0}
to be an arbitrary sequence of pairwise distinct real numbers.

Proof of Lemma[{1.2 By the properties of f, the function
g(z) := Z |cn, |2

j;ﬁjo:cnj <0

entrywise preserves positivity on rank-1 Hankel TN matrices in Px((0, p)). Hence, so does

f(.’E) —{—g(ﬂ?) = Z anxnj + anoxnjo'

j:cnj >0

Now suppose the result is false. Then the preceding sum contains at most & terms n; that
lie in (0,n;,) (for some 0 < k < N), and which we label by ng, ...,ng_1. Also, set m := nj,.
Choose any ugy € (0,1) and define u := (1, ug, . . . ,uévfl)T € RN. Then u°™, ..., u®™-1;u°™
are linearly independent, forming (some of) the columns of a generalized Vandermonde ma-
trix. Hence, there exists v € RV, such that

ong_1 Tuom - 1.

vLiu™, . . . ,u and v

For 0 < € < p, we let A, := euu’, which is a rank-1 Hankel moment matrix in Py ((0, p))
(and hence T'N). Now compute using the hypotheses:

0<vI(f+9)Av=v" Z ey €0 (07)T 4+ e (w7 | v
j:cnj >0
— Cmem(vTuom)2 + Z Cn, i (vTuon]-)2
Jien; >0, mi>nj,

= cme™ 4 o(e™).

T
Thus, 0 < lim v_(f+9)lAdv
e—0t em

the claim. 0

= ¢, < 0, which is a contradiction. Hence, kK > N, proving

By Lemma every polynomial that entrywise preserves positivity on Py ((0, p)) must
have its N non-zero Maclaurin coefficients of “lowest degree” to be positive. The obvious
question is if any of the other terms can be negative, e.g., the immediate next coefficient.

We tackle this question in the remainder of this text, and show that, in fact, every other
coefficient can indeed be negative. For now, we point out that working with positive matrices
with other entries cannot provide such a structured answer (in the flavor of Lemma [41.2).
As a simple example, consider the family of polynomials

pra(x) = t(L+ 22 4+ 2?) =22 >,

where k£ > 0 is an integer. Now claim that pj, ;[—] can never preserve positivity on Py ((—p, p))
for N > 2. Indeed, if u := (1,—1,0,...,0)T and A := (p/2)uu’ € Py((—p,p)), then

" pe Al = —4(p/2)! < 0.
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Therefore, py :[A] 1s not positive semidefinite for any £ > 0. I one allows complex entries,
similar examples with higher-order roots of unity can be constructed, in which such negative
results (compared to Lemma can be obtained.

41.2. Classification of sign patterns for polynomials. In light of the above discussion,
henceforth we restrict ourselves to working with matrices in Py ((0,p)) for 0 < p < oo.
By Lemma every polynomial preserver on Py ((0,p)) must have its N lowest-degree
Maclaurin coefficients (which are non-zero) to be positive.

We are interested in understanding if any (or every) other coefficient can be negative. If,
say, the next lowest-degree coefficient could be negative, this would achieve two goals:

e It would provide (the first example of) a polynomial preserver in fixed dimension,
which has a negative Maclaurin coefficient.

e It would provide (the first example of) a polynomial that preserves positivity on
Pxn((0,p)), but necessarily not on Pn11((0,p)). In particular, this would show that
the Horn—Loewner-type necessary condition in Lemma is “best possible”. (See
Remark in the parallel setting of entrywise power preservers for the original Horn
condition.)

We show in this part of the text that these goals are indeed achieved:

Theorem 41.4 (Classification of sign patterns, fixed dimension). Fiz integers N > 0 and
0<ny<ng <--<ny_1, as well as a sign epy € {—1,0,1} for each integer M > ny_1.

Given reals p,cpy,Cnys- -, Cny_, > 0, there exists a power series
_ no nN-1 M
flx) =cpex™ + -+ epp_ T + ey,

M>npn_1

satisfying the following properties:
(1) f is convergent on (0, p).

(2) fI=]:Pn((0,p)) = Pn.
(8) sgn(car) = enr for each M > ny_1.

This is slightly stronger than classifying the sign patterns, in that the “initial coefficients”
are also specified. In fact, this result can be strengthened in two different ways, see (1) The-
orem in which the set of powers allowed is vastly more general; and (2) Theorem
and the discussion preceding it, in which the coefficients for M > ny_; are also specified.

Proof. Suppose we can prove the theorem in the special case when exactly one €,y is negative.
Then for each M > ny_1, there exists 0 < 0y < ﬁ, such that

Ny
fu(@) =" cna™ + eprz™
7=0

preserves positivity on Py ((0, p)) whenever |cas| < dpr. Set epr := eprdns for each M > ny_q
and define f(z) =3 /0, | 2nN-1=M g, (). If & € (0, p), then we have

N-1
f@) < >0 2w Mgy @) < 0 e M N e g gy
M>npn_1 M>npn_1 7=0
N-1
< Z Cn, "+ e" < oo.
j=0
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Hence, f converges on (0, p). As each fjs|—] preserves positivity and Py is a closed convex
cone, f[—] also preserves positivity. It therefore remains to show that the result holds when
one coefficient is negative. But this follows from Theorem [41.5] O

Thus, it remains to show the following “qualitative” result:

Theorem 41.5. Let N >0, 0<ng <ny <...<ny_1 <M be integers, and p,cny,Cn,,- - -,
cny_, > 0 be real. Then the function f(x) = Z;y;ol cn,a™ 4 ey entrywise preserves
positivity on Pn((0, p)), for some cpr < 0.

We will show this result in the next two sections (Sections [42] and [43).

41.3. Classification of sign patterns for sums of real powers. After proving Theo-
rem [41.5] we further strengthen it by proving a quantitative version — see Theorem -
which gives a sharp lower bound on ¢js. For now, we list a special case of that result (without
proof, as we show the more general Theorem [44.1)). In the following result and beyond, the
set Z=Y U [N — 2,00) comes from Theorem

Theorem 41.6. Theorem holds even when the exponents ng,ni,...,ny_1, M are real
and lie in the set ZZ° U [N — 2, 00).

With Theorem in hand, it is possible to classify the sign patterns of a more general
family of preservers, of the form f(x) = 3772 cn 2", where n; € ZZ9 U[N — 2,00) are an
arbitrary countable collection of pairwise distinct non-negative (real) exponents.

Theorem 41.7 (Classification of sign patterns of power series preservers, fixed dimension).
Let N > 2 and let ng,ny,... be a sequence of pairwise distinct real numbers in ZZ° U [N —
2,00). For each j >0, let ¢; € {—1,0,1} be a sign, such that whenever €;, = —1, one has
€; = +1 for at least N choices of j satisfying: n; < nj,. Then for every p > 0, there exists a
series with real exponents and real coefficients

o
x) = E Cn; "
Jj=0

which is convergent on (0, p), which entrywise preserves positivity on Pxn((0, p)), and in which
sgn(cy,;) = €5 for all j > 0.

That the sign patterns must satisfy the given hypotheses follows from Lemma[d1.2] In par-
ticular, Theorem shows that the Horn—Loewner-type necessary condition in Lemma
remains the best possible in this generality as well.

Remark 41.8. A key difference between the classifications in Theorems and is that
the latter is more flexible, since the sequence ng,n1, ... can now contain an infinite decreasing
subsequence of exponents. This is more general than even the Hahn or Puiseux series, not
just power series. For instance, the sum may be over all rational powers in Z=° U [N — 2, c0).
Proof of Theorem [{1.7. Given any set {n; : j > 0} of (pairwise distinct) non-negative powers,
x"
= Jnglt
Indeed, if we partition Z*° into the disjoint union of Ji := {j > 0:n; € (k — 1,k]}, k > 0,
then usmg Tonelli’s theorem, we can estimate

k+$k1 .
Zk'z < —|—Z Z <e+e(e®+a€e") < oo.

]>0 k>0 jeJk k=1 jed,
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We now turn to the proof. Set J :={j :¢; = —1} C Z=". By the hypotheses, for each

I € J there exist ji(1),...,jn(l), such that ¢, ;) = 1 and n;, ¢y <ny, for k =1,..., N. Define

N xnjk(” ™

— 0 ;
1 [njk(lﬂ' [nﬂ'

where §; € (0, 1) is chosen, such that f;[—] preserves positivity on Px((0, p)) by Theoremm
Let J' C Z=Y consist of all j > 0, such that ; = +1 but j # jx(l) for any [ € J,k € [1, N].

Finally, define
‘ fi(zx) ™
f(ﬂf)-zz 1 +Z x> 0.

les jeJ’ g1t

Repeating the calculation in (41.9)), one can verify that f converges absolutely on (0, 00) and
hence on (0,p). By the above hypotheses and the Schur product theorem, it follows that
f[—] preserves positivity on Px((0, p)). O

fi(z) ==
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42. POLYNOMIAL PRESERVERS FOR GENERIC RANK-ONE MATRICES. SCHUR POLYNOMIALS.

The goal in this section and the next (Section is to prove the “qualitative” Theoremm
from the previous section (Section . Thus, we work with polynomials of the form

N-1
f(z) = Z anxnj + CMJ?M;
§=0
where N > 0,0 <ng <n; <...<ny—1 <M are integers, and p, ¢y, Cpy,...,Cny_, > 0 are

real.

42.1. Basic properties of Schur polynomials. In this section, we begin by defining the
key tool required here and beyond: Schur polynomials. We then use these functions — via
the Cauchy—Binet formula — to understand when polynomials of the above form entrywise
preserve positivity on a generic rank-1 matrix in Py ((0, p)).

Definition 42.1. Fix integers m, N > 0, and define np;, := (0,1,..., N — 1). Now suppose
0<nj<nj <---<nly_, are also integers.

(1) A column-strict Young tableau, with shape n’ := (ng,n},...,nfy_;) and cell entries
1,2,...,m, is a left-aligned two-dimensional rectangular array T of cells, with n( cells
in the bottom row, nj cells in the second lowest row, and so on, such that:

e Each cell in T has integer entry j with 1 < j < m.
e Entries weakly decrease in each row, from left to right.
e Entries strictly decrease in each column, from top to bottom.

(2) Given variables uj,us,...,u, and a column-strict Young tableau T as above, define
its weight to be

m
wt(T) := Hufj,
j=1

where f; equals the number of cells in 7" with entry j.

(3) Given an increasing sequence of integers 0 < ng < --- < ny_1, define the tu-
ple n := (ng,n1,...,nny-1), and the corresponding Schur polynomial over u :=
(u1,u2, ..., um)T to be

sa(u) == wt(T), (42.2)
T

where T runs over all column-strict Young tableaux of shape n’ := n — ny,;, with
cell entries 1,2,...,m. (We will also abuse notation slightly and write sp(u) =
Sn(ui,...,up) on occasion.)

Example 42.3. Suppose N = m = 3 and n = (0,2,4). The column-strict Young tableaux
with shape n — npin = (0,1, 2) and cell entries (1,2,3) are

33\ 33\ 32\ 32\ 31\ 301 2|2 211
2 1 2 1 2 1 1 1

As a consequence,

2 2 2 2 2 2
3(07274)(1“, U2, u3) = usuz + uzul + uzuy + 2ugugul + usui + usul + ugug
= (u1 + u2)(uz + us)(ug + uq).



280 42. Polynomial preservers for generic rank-one matrices. Schur polynomials.

Remark 42.4. A visible notational distinction with the literature is that column-strict Young
tableaux traditionally have entries that are increasing down columns, and weakly increasing
as one moves across rows. Since we only work with sets of tableaux through the sums of
their weights occurring in Schur polynomials, this distinction is unimportant in the text, for
the following reason: define an involutive bijection ¢ : j — m + 1 — j, where {1,...,m} is
the alphabet of possible cell entries. Then the column-strict Young tableaux in our notation
bijectively correspond under ¢ — applied to each cell entry — to the “usual” column-strict Young
tableaux (in the literature); and as Schur polynomials are symmetric under permuting the
variables by ¢ (see Proposition , the sums of weights of the two sets of tableaux coincide.

Remark 42.5. Schur polynomials are fundamental objects in type A representation theory
(of the general linear group, or the special linear Lie algebra), and are characters of irreducible
finite-dimensional polynomial representations (over fields of characteristic zero). The above
example is a special case, corresponding to the adjoint representation for the Lie algebra
of 3 x 3 traceless matrices. This interpretation will not be used in this text.

Schur polynomials are always homogeneous — and also symmetric, because they can be
written as a quotient of two generalized Vandermonde determinants. This is Cauchy’s defi-
nition; the definition using Young tableaux is by Littlewood. One can show that these
two definitions are equivalent, among other basic properties:

Proposition 42.6. Fiz integers m=N >0 and 0 <ng<ny <---<ny_1.
(1) (Cauchy’s definition.) If F is a field and u = (uy,...,un)’ € FN, then
det(u®™ | u®™ | ... | u”"N ) yen = V(u)sp(u),

where for a (column) vector or (row) tuple u, we denote by V(u) := [[1<; <y (ur —
uj) the Vandermonde determinant as in (17.4)). In particular, sy(u) is symmetric
and homogeneous of degree Zj‘\[;ol (nj — 7).

(2) (Principal specialization formula.) For any q € F that is not a root of unity or else
has order > N, we have

- q" —q"
sn(l,q,qQ,...,qN 1) = H kg
0<j<k<N-—1 q 4

(3) (Weyl dimension formula.) Specialized to ¢ = 1, we have

V(n)
w1, 1) = e
° ( ) V(nmin) <
In particular, there are V(n)/V (nmin) column-strict tableauz of shape n — npyi, and
cell entries 1,...,N. Here and below, we will mildly abuse notation and write V (n)

for a tuple/row vector n to denote V(nT).

Proof. The first part is proved in Theorem below. Using this, we show the second part.

Set u:= (1,¢,¢%,...,¢" 17T with ¢ as given. Then it is easy to verify that
det(u®™ | u®™ | ... | u™N-1)  V((g",...,q"N-1)) q"r — g™
Sn(u) = V( = V 0 N1 = H i o
u) (@ a™ ) oenay €4
as desired.

Finally, to prove the Weyl dimension formula, notice that by the first part, the Schur
polynomial has integer coefficients and hence makes sense over Z, and then specializes
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to sn(u) over any ground field. Now work over the ground field Q, and let f,(T) :=
sn(1,T,... ,TN-1) ¢ Z[T) be the corresponding “principally specialized” polynomial. Then,

V(¢ dV N ale) = V™, g™ ), YgeQ.
In particular, for every ¢ # 1, dividing both sides by (¢ — 1)(];), we obtain:
IIT @+asvg™ D —fal [ @+ =0,
0<j<k<N—-1 0<j<k<N-—1
for all ¢ € Q\ {1}. This means that the left-hand side is (the specialization of) a polynomial
with infinitely many roots, hence the polynomial vanishes identically on Q. Specializing this
polynomial to ¢ = 1 now yields the Weyl dimension formula

V(n) ng — n;
—_— = —_— = 1) = 1,...,1).
0<j<k<N-1
The final assertion now follows from Littlewood’s definition (42.2) of sy (u). O

42.2. Polynomials preserving positivity on individual rank-one positive matrices.
We return to proving Theorem and hence Theorem on sign patterns. As we have
shown, it suffices to prove the theorem for one higher degree (leading) term with a negative
coefficient. Before proving the result in full, we tackle the following (simpler) versions. Thus,
we are given a real polynomial as above: f(x) = Z;V:_Ol cn, @™ + epra™ ) where ¢, > 0 V5.

(1) Does there exist ¢y < 0, such that f[—]: Px((0,p)) — Pn?
Here is a reformulation: dividing the expression for f(x) throughout by |cas| =
1/t > 0, define

N—-1
pe(z) =1t Z Cp; ™ — 2™, where ¢,; > 0 V5. (42.7)
j=0

Then it is enough to ask for which ¢ > 0 (if any) does p;[—] : Pn((0, p)) — Pn?
(2) Here are two simplifications: Can we produce such a constant ¢ > 0 for only the
subset of rank-1 matrices in Py ((0, p))? How about for a single rank-1 matrix uu’?
(3) A further special case: let u be generic, in that u € (0, p)N has distinct coordinates,
and p; is as above. Can one now compute all ¢ > 0, such that p;[uu’] € Pxy? How
about all ¢ > 0, such that det p;[uu’] > 0?

We begin by answering the last of these questions — the answer crucially uses Schur poly-
nomials. The following result shows that, in fact, det p;[uu’] > 0 implies p;[uu’] is positive
semidefinite!

Proposition 42.8. With N > 1 and notation as in (42.7)), define the vectors

n:= (no,...,n]\[,l), n; := (’I’Lo,...,njfl,ﬁ;,anrl,...,anl,M), 0<j <N, (429)
where 0 < ng < --- <ny_1 < M. Now if thenj and M are integers, and a vectoru € (0, oo)N
has pairwise distinct coordinates, then the following are equivalent:

(1) pi[uu®] is positive semidefinite.
(2) det p;[uu’] > 0.
sn, (1

N-1 )2
(3)t>) 0.
= (u)

Cn;Sn
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In particular, at least for “most” rank-1 matrices, it is possible to find polynomial preservers
of positivity (on that one matrix), with a negative coefficient.

The proof of Proposition [42.8] uses the following even more widely applicable equivalence
between the non-negativity of the determinant and of the entire spectrum for “special” linear
pencils of matrices:

Lemma 42.10. Fiz w € RY and a positive definite matriz H. Define the linear pencil
P, :=tH —ww?’, fort > 0. Then the following are equivalent:

(1) P, is positive semidefinite.

(2) det P, > 0.
det(H — wwT)
t>w H 'w=1-
(3)tzw v det H

This lemma is naturally connected to the theory of (generalized) Rayleigh quotients, al-

though we do not pursue this further.

Proof. We show a cyclic chain of implications. That (1) = (2) is immediate.
(2) = (3) : Using the identity (2.33]) from Section on Schur complements, we obtain

by taking determinants

A B _
da(R D):dap-@aABDIBS

whenever A, D are square matrices, with D invertible. Using this, we compute:

Ty tH w . 1 WT o T —1
0 < det(tH — ww" ) = det <WT 1) = det <w I =det(tH)det(1 —w" (tH) "w).

Since the last quantity is a scalar, and det(tH) > 0 by assumption, it follows from (2) that
1>t wH 'w) — t>wlH 'w.
Now substitute £ = 1 in the above computation, to obtain
det(H — ww?l) = det(H)det(1 — wl H 'w)

det(H — ww')
det H

=1-w'H'w>1-t
which implies (3).

(3) = (1) : It suffices to show that x? P;x > 0 for all non-zero vectors x € RY. Using a
change of variables y = v Hx # 0, we compute:

-1
xI'Px =tyly — (yIVH w)?

— ly|P(t = (y)"VH 'w)?),  wherey = o

2
> I3~ Iy') [VETw)  (using Cauchy-Sehwarz)
= lyllPt—w"H'w) >0 (by assumption). 0

We can now answer the last of the above questions on positivity preservers, for generic
rank-1 matrices.
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Proof of Proposition[/2.8. The result is easily shown for N = 1, so we now assume N > 2.
We are interested in the following matrix and its determinant:

N—-1
I [uuT] —t Z Cn, (uonj)<uonj)T _ (qu)(qu)T_
7=0

We first work more generally: over any field F, and with matrices uv’, where u,v € FV.
Thus, we study

N-1
D [LIVT] —¢ Z Cn, u"i (Vonj)T o qu(VoM)T’
§=0

where t,c,; € F, and ¢,; # 0 Vj. Setting D = diag(tcy,, ... teny_,,—1), we have the
decomposition

pifuvl] = U(u)DU(v)T,  where U) yx(n41) = (@] 0 a1 uM).
Applying the Cauchy-Binet formula to A = U(u), B = DU(v)T, as well as Cauchy’s defini-

tion in Proposition M(l)7 we obtain the following general determinantal identity, valid over
any field:

=2

— Sn,; (1)sn; (V)

an

N-1
det pifuv”] = V@)V T e, - | sn(w)sn(v)t - (42.11)
7=0

i
=)

J
Now specialize this identity to F = R, with ¢,¢,; > 0 and u=v € (0, o0)™ having distinct
coordinates. From this we deduce the following consequences. First, set

N-1
H = Z Cn, (uuT)onj = U,(U)D,U/(H)T, W = uOM’
7=0

where D' := diag(cpg, - - -, Cny_, ) 18 a positive definite matrix and U’(u) := (u°™ | ... [u®"~N-1)
is a generalized Vandermonde matrix which has determinant V(u)sn(u) # 0. From this it
follows that H is positive definite, so Lemma applies. Moreover, H —ww! = p; [uuT],
so using the above calculation and the Cauchy—Binet formula respectively, we have

i V- , sy (n)?
det(H — ww?) = V(u) ]HO cn, sa(w)? [ 1— ]Z; onsm(W? |

N—-1
det H = V(u)? H Cn; - sn(u)?.
=0

In particular, from Lemma [42.10|(3) we obtain

N-—1 2
Sn;(u
wlH 'w = E L)Q
= Cn;5n(0)

Now the proposition follows directly from Lemma [42.10} since P; = p;[uu’] for all t > 0. O
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43. FIRST-ORDER APPROXIMATION / LEADING TERM OF SCHUR POLYNOMIALS. FROM

RANK-ONE MATRICES TO ALL MATRICES.

In the previous section, we computed the exact threshold for the leading term of a poly-

nomial
N—

Z 2 — M where Cn; >0 V)

j=0
(and where 0 < ng < --- < ny_1 < M are integers), such that p;[uu’] € Py for a single
vector u € (0,00)"V with pairwise distinct coordinates. Recall that our (partial) goal is to
find a threshold that works for all rank-1 matrices uu’ € Py((0, p)) — i.e., for u € (0, /p)"
Thus, we need to show that the supremum of the threshold over all such u is bounded:

N-1 Snj (u)Q

sup < 00.

ue(0,,/p)N = ansn(u>2

Since we only consider vectors u with positive coordinates, it suffices to bound sy, (u)/sn(u)
from above, for each j. In turn, for this it suffices to find lower and upper bounds for every
Schur polynomial evaluated at u € (0,00)". This is achieved by the following result:

Theorem 43.1 (First-order approximation/Leading term of Schur polynomials). Say N > 1
and 0 < ng < --- < ny_1 are integers. Then for all real numbers 0 < u; < ug < -+ < up,
we have the bounds

. V(n) .
1 xu™ Mmin < g (u) < ——— x y Pmin
n( ) V(nmin) )
where uPPmin = 0702171 N1 W=D ond V(n) is as in (17.4). Moreover, the con-

stants 1 and ‘(/( n) 0 cannot be improved.

Proof. Recall that sp(u) is obtained by summing the weights of all column-strict Young
tableaux of shape n — np;, with cell entries 1,..., N. Moreover, by the Weyl dimension
formula in Proposition [42.6(3), there are precisely V(n)/V (nmin) such tableaux. Now each
such tableau can have weight at most u™ ™min_ as follows: the cells in the top row each have
entries at most N; the cells in the next row at most N — 1; and so on. The tableau Ti.x

obtained in this fashion has weight precisely u® ™min, Hence, by definition, we have
. V(n) 4
u” tmin = wi (T, wt(T u) < wt (T, = ————u" Pmin,
) £ (D) = sa0) £ 3 wtlTo) =

This proves the bounds; we clalm that both bounds are sharp. If n = n,,;;, then all terms in
the claimed inequalities are 1, and we are done. Thus, assume henceforth that n # ny,;,. Let
A > 1 and define u(A) := (A, A%,...  AN). Then wt(Tinax) = AM for some M > 0. Hence,
for every column-strict Young tableau 1" # Tiax as above, wt(T") is at most wt(7iax)/A and
at least 1 = wt(Tinax)/AM. Now summing over all such tableaux T yields

sauld) < (e (14 (et 1) 1),

s V(n) 1
a(u(A)) > u(A)?* tmin (] -1 .
sau() 2 (e (14 (e 1) )
Divide throughout by u(A)? ™min; now taking the limit as A — oo yields the sharp lower
bound 1 while taking the limit as A — 17 yields the sharp upper bound V(n)/V (ny,). O




43. First-order approximation / leading term of Schur polynomials.

286 From rank-one matrices to all matrices.
We now use Theorem [43.1] and Proposition [42.8[in the previous section, to find a threshold

for t > 0 beyond which p[—] preserves positivity on all rank-1 matrices in Px((0, p)) — and,
in fact, on all matrices in Py ((0, p)).

Theorem 43.2. Fiz integers N > 1, 0 < ng < n1 < -+ < ny_1 < M, and scalars
Pt Cngy - -sCny_y > 0. The polynomial pi(x) = tZ;V;Ol Cn; " — M entrywise preserves
= V(n;)*
positivity on Pn((0, p)), if t > tg := ——— = T

(( ) )); ; anv(nmin)2

The notation in Definition is useful here and in the sequel. Specifically, X V% for a set
X and an integer N > 1 denotes the set of N-tuples from X with pairwise distinct entries.
Proof of Theorem [{3.3. Givenu € (0, \/ﬁ)Nﬁé, from Proposition it follows that p;[uu’] €

2
Py if and only if t > Z;V:_Ol % Now suppose u € (0, \/ﬁ)N’T. Then by Theorem [43.1

N-1 N=1_ 9(p.—n N-1
T sn; (1)? - W)V (0)? V (nin)? 3 V(ny)* 2, -n)
2 — 2(n—npin 2 ’
= Cn;5n (1) = ¢, ) = cn; V (Mmin)
and this is bounded above by tg, since if v := |/p(1,. .., D7 then u 2(nj—n) < y2(nj—n) —

pM~"i for all j. Thus, we conclude that
t>ty = plun’]ePyvue(0,p)"" = puu’]ePyvue(0,/p)"7
= pluu’] € Py Vu € (0, /p)"

where the first implication was proved above, the second follows by (the symmetric nature of
Schur polynomials and by) relabeling the rows and columns of uu’ to rearrange the entries
of u in increasing order, and the third implication follows from the continuity of p; and the
density of (0, \/ﬁ)N’7é in (0, /p)"

This validates the claimed threshold ¢ for all rank-1 matrices. To prove the result on all
of Pn((0,p)), we use induction on N > 1, with the base case of N = 1 already done since
1 x 1 matrices have rank 1.

For the induction step, recall the extension principle (Theorem , which said that:
Suppose I = (0, p) or (—p, p) or its closure, for some 0 < p < oco. If h € C(I) is such that
h|—] preserves positivity on rank-1 matrices in Py(I) and h'[—] : Pny_1(I) — Pn_1, then
h[—} : PN(I) — PN.

We will apply this result to h(z) = py,(x), with ¢y as above. By the extension principle,
we need to show that h'[—] : Py_1((0,p)) — Pn_1. Note that

=t Z njcn].x"jfl — MM = Mg(z) + tongcp,z™ 1,

where we define
. N-1
) ) ni—1 M-1
x) =7 E njcp, " —x .
j=1

We claim that the entrywise polynomial map g[—] : Py_1((0,p)) — Py_;. If this holds,
then by the Schur product theorem, the same property is satisfied by Mg(z) + tonoc, 2™ !
(regardless of whether ng = 0 or ng > 0). But this function is precisely h’ and the theorem
would follow.
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1t Thus remains to prove the claim, and we do so via a series of reductions and simplifications

— i.e., “working backward”. By the induction hypothesis, Theorem holds in dimension
N —1 > 1, for the polynomials

N-1
q(z) =t Z njcnjx”j_l — M-
7=1
For this family, the threshold is now given by

N—-1 1\2
Z V(n}) pM—1=(;=1)
j=1 njcnjv(n;nin)z
where
n;nin = (0, 1,...,N — 2), n;- = (’)”Ll, - ,nj_l,ﬁ;,njﬂ, - ,TLN_l,M) Vi > 0.

Thus, the proof is complete if we show that

N-1 2 N-1

V(nj) M—1—(n;—1) to _ V(ny)? M—n;
: 2P = § : .

njcn, V(ng ;) M Mec

min

j=1
In turn, comparing just the jth summand for each j > 0, it suffices to show that
V)  _ V(ny)
V njv(ninin) v Mv(nmin)
Dividing the right-hand side by the left-hand side, and canceling common factors, we obtain
the expression

Vj > 0.

N-1

ng—ng /Nj M —ng
kE[l kK VM nj—no
Since every factor in the product term is at least 1, it remains to show that
M —ng S VM
n; —ng \/@
But this follows from a straightforward calculation:
(M —n9)*nj — (nj = no)*M = (M — nj)(Mn; — ng) > 0,
and the proof is complete. ]

, Vi > 0.

Finally, we recall our original goal of classifying the sign patterns of positivity preservers
in a fixed dimension — see Theorem We showed this result holds if one can prove its
special case, Theorem Now this latter result follows from Theorem by setting

N—1
V(ny)?

-1
cyr = —ty -, where tg = —_—
0 j:ZO anV'(nrnin)2

pM~" as in Theorem [43.2 O
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44. EXACT QUANTITATIVE BOUND: MONOTONICITY OF SCHUR RATIOS. REAL POWERS
AND POWER SERIES.

In the last two sections (Sections [42/and , we proved the existence of a negative threshold
¢y for polynomials

N—
fl@) =" ena™ + epz™

J

—_

to entrywise preserve positivity on Py ((0,p)). (Here N >0and 0 <np < -+ <ny_1 < M
are integers.) We now compute the exact value of this threshold, more generally for real
powers; this has multiple consequences which are described after stating Theorem [4.1] Thus,
our goal is to prove the following quantitative result, for real powers — including negative
powers:

Theorem 44.1. Fixz an integer N > 0 and real powers ng < --- < ny_1 < M. Also fix real

scalars p > 0 and ¢y, ..., Cny_ 4, CM, and define
N—1
f(z) = Z e, 2" + epa™. (44.2)
§=0

Then the following are equivalent:

(1) The entrywise map f[—] preserves positivity on all rank-1 matrices in Pn((0, p)).

(2) The map f|—] preserves positivity on rank-1 totally non-negative (I'N ) Hankel ma-
trices in Pn((0, p)).

(3) Either all c,,,cp = 0; or ¢, > 0 Vj and cpy > —C~ 1, where

N-1
V(nj)2 M—n,;
= E _— ", 44.
‘ =0 anv(n)Qp ] (44.3)

Here V(u),n,n; are defined as in (17.4) and (42.9).

If, moreover, we assume that n; € 7Z7° U [N — 2,00) for all j, then the above conditions are
further equivalent to the “full-rank” version:

(4) The entrywise map f[—] preserves positivity on Py([0, p]), where we set 0° := 1.

Theorem [44.1] is a powerful result. It has multiple applications; we now list some of them.

(1) Suppose M = N and nj = j for 0 < j < N — 1. Then the result provides a complete
characterization of which polynomials of degree < N entrywise preserve positivity on
Pxn((0,p)) — or more generally, on any intermediate set between Py ((0,p)) and the
rank-1 Hankel T'N matrices inside it.

(2) In fact, a similar result to the previous characterization is implied, whenever one
considers linear combinations of at most IV + 1 monomial powers.

(3) The result provides information on positivity preservers beyond polynomials, since
n;, M are now allowed to be real, even negative if one works with rank-1 matrices.

(4) In particular, the result implies Theorem[41.6] and hence Theorem [41.7)(see its proof).
This latter theorem provides a full classification of the sign patterns of possible “count-
able sums of real powers” which entrywise preserve positivity on Py ((0, p)).

(5) The result also provides information on preservers of total non-negativity on Hankel
matrices in fixed dimension; see Corollary
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(6) There are further applications, two of which are (1) to the matrix cube problem and to

sharp linear matrix inequalities/spectrahedra involving entrywise powers; and (ii) to
computing the simultaneous kernels of entrywise powers and a related “Schubert cell-
type” stratification of the cone Py (C). These are explained in the 2016 paper of
Belton, Guillot, Khare, and Putinar in Adv. in Math.; see also the 2021 paper in
Amer. J. Math. by Khare and Tao (mentioned a few lines above (41.1))).

(7) Theorem is proved using a monotonicity phenomenon for ratios of Schur poly-
nomials; see Theorem This latter result is also useful in extending a 2011
conjecture by Cuttler—-Greene-Skandera (and its proof). In fact, this line of attack
ends up characterizing majorization and weak majorization — for real tuples — using
Schur polynomials. See the aforementioned paper by Khare and Tao [217] for more
details.

(8) One further application is Theorem which finds a threshold for bounding by
ZN 01 Cp; A, any power series — and more general “Laplace transforms” — applied
entrywise to a positive matrix A. This extends Theorem where the power
series is simply ™, because Theorem says in particular that (z™)[A] = A°M is
dominated by a multiple of Z;V:_Ol Cn AT

(9) As mentioned in the remarks prior to Theorem Theorem also provides
examples of power series preservers on Py ((0, p)) with negative coefficients; and of
such functions which preserve positivity on Py ((0, p)) but not on Pxn1((0, p)).

44.1. Monotonicity of ratios of Schur polynomials. The proof of Theorem [44.1] uses
the same ingredients as developed in previous sections. A summary of what follows is now
provided. In the rank-1 case, we use a variant of Proposition for an individual matrix;
the result does not apply as is, since the powers may now be real. Next, in order to find the
sharp threshold for all rank-1 matrices, even for real powers we crucially appeal to the integer
power case. Namely, we will first understand the behavior and supremum of the function
sn,(u)/sn(u) over u € (0,/p)" (and for each 0 < j < N —1). One may hope that these
suprema behave well enough that the sharp threshold can be computed for rank-1 matrices;
the further hope would be that this threshold bound is tight enough to behave well with
respect to the extension principle in Theorem and hence to work for all matrices in
Px((0, p)). Remarkably, these two hopes are indeed justified, proving the theorem.

We begin with the key result required to be able to take suprema over ratios of Schur
polynomials sm(u)/sn(u). To motivate the result, here is a special case.

Example 44.4. Suppose N = 3,n = (0,2,3), and m = (0,2,4). As above, we have u =
(u1,ug,u3)T and nyin = (0,1,2). Now let f(u) := Zr:((:;)) : (0,00)Y — (0,00). This is a
rational function, whose numerator sums weights over tableaux of shape (0, 1,2), and hence
by Example above, equals (u; + u2)(u2 + u3)(us + u1). The denominator sums weights

over tableaux of shape (0, 1,1); there are only three such tableaux

flu) = (u1 + uz)(u2 + ug)(u3 + u1)
UU2 + U2U3 + UzUy

Notice that the numerator and denominator are both Schur polynomials, hence positive

combinations of monomials (this is called “monomial positivity”). In particular, they are both

and hence,

; uy, ug, ug > 0.
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non-decreasing in each coordinate. One can verily that their ratio f(u) is not a polynomial;

moreover, it is not a priori clear if f(u) shares the same coordinatewise monotonicity property.
However, we claim that this does hold, i.e., f(u) is non-decreasing in each coordinate on
u € (0,00)V.

To see why: by symmetry, it suffices to show that f is non-decreasing in us. Using the
quotient rule of differentiation, we claim that the expression

$n(1)OusSm (1) — Sm(1)yysn (1) (44.5)

is non-negative on (0, 00)3. Indeed, computing this expression yields

(u1 + u2)(urus + 2ujug + ugug)us,
and this is clearly non-negative, as desired. More strongly, the expression (44.5) turns out to
be monomial positive, which implies non-negativity.
Here is the punchline: an even stronger phenomenon holds. Namely, when we write the
expression in the form ) i>0Dj (u1,u2)u}, each polynomial p; is Schur positive! This
means that it is a non-negative integer-linear combination of Schur polynomials:

po(u1,ug) =0,

p1(uy,ug) = 2u1u§ + 2u%u2 =2 +2

212 ‘ 21 ‘: 25(173)(1017”2)’
1

1
pg(ul,UQ) = (U1 +U2)2 = ’ 2 | 2 + ‘ 2 | 1 ‘—l—‘ 1 | 1 ‘—i— :8(0,3)(u1,u2) +3(172)(u1,u2),

modulo a mild abuse of notation. This yields the sought-for non-negativity, as each sn(u)
is monomial positive by definition. (See the discussion following (30.17)) for the “original”
occurrence of monomial positivity and its “upgrade” to (skew) Schur positivity.)

The remarkable fact is that the phenomena described in the above example also occur for
every pair of Schur polynomials sm(u), sp(u) for which m > n coordinatewise:

Theorem 44.6 (Monotonicity of Schur polynomial ratios). Suppose 0 < ng < --- < ny_1
and 0 < mgp < --- < mpy—_1 are integers satisfying: n; < mj Vj. Then the symmetric function

Sm(u)
f:(0,00)N = R, fla) =
(0,00) () i=
1s non-decreasing in each coordinate.
More strongly, viewing the expression

sn(W) - Ouy Sm(w) = Sm() - Juy sn(u)
as a polynomial in up, the coefficient of each monomial u?v s a Schur positive polynomial in
(u1,uz,..., UNfl)T‘

Theoremis an application of a deep result in representation theory/symmetric function
theory, by Lam, Postnikov, and Pylyavskyy in Amer. J. Math. (2007). The proof of this
latter result is beyond the scope of this text, and hence is not pursued further; but its usage
means that in the spirit of the previous two sections, the proof of Theorem [44.6] once again
combines analysis with symmetric function theory. Moreover, this 2007 result in [231] arose
from the prior work of Skandera [339] in 2004, on determinant inequalities for minors of
totally non-negative matrices.

To proceed further, we introduce the following notation:
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Definition 44.7. Given a vector u = (u1,...,up)" € (0,00)™ and a real tuple n =
(ng,...,ny—1) for integers m, N > 1, define
o o o - N
u = (w0 L NN = (u;”c 1);”:1’,6:1.

We now extend Theorem to arbitrary real powers (instead of non-negative integer
powers). As one can no longer use Schur polynomials, the next result uses generalized Van-
dermonde determinants instead:

Theorem 44.8. Fix an integer N > 1 and real tuples
n:(n0<n1<-~<nN,1), m:(mg<m1<-~<mN71)
with nj < mj Vj and n # m. Then the symmetric function
det(u°™)
u) = ——=
f(w) det(u°m)
is strictly increasing in each coordinate on (0,00)"7. (See Definition|25.1.) If ng = mg = 0,
then fx(u) is strictly increasing in each coordinate on [0, 00) V7.
While we only require f to be non-decreasing in each coordinate, and only on (0, oo)N#
we will show this stronger result.

i

Proof. The result is immediate for N = 1; henceforth suppose N > 2. For a fixed t € R, if
for each j we multiply the jth row of the matrix u®™ by “E’v we obtain a matrix u®™ where

mg- = mj +t Vj. In particular, if we start with real powers n;, m;, then multiplying the
numerator and denominator of fx by (u1---un)™"° reduces the situation to working with
the non-negative real tuples n’ := (n; — ng)jy:_ol and m’ := (m; — ng)é\f:_ol. Thus, we suppose

henceforth that n;,m; > 0 Vj.

We first show that f. is non-decreasing in each coordinate. If n;,m; are all integers,
then the result is an immediate reformulation of the first part of Theorem via Propo-
sition [42.6(1). Next suppose n;,m; are rational. Choose a (large) integer L > 0 such that
Lnj, Lm; € Z ¥j and define y; := u;/L
fy) = det(y°F™)  det(u"™)

Y7 = det(y°ln)  det(u°m)’

is coordinatewise non-decreasing on (0,00)™7 in the yj, and hence on (0, 00)™7 in the u;j.
Finally, in the general case, given non-negative real powers n;, m; satisfying the hypotheses,
choose sequences

. By the previous subcase, the symmetric function

y = (y1,--- ,yN)T € (0, oo)NJé

0<mnor <nig<---<ny_1k, 0<mor <mip<---<my_1x
for k =1,2,..., which further satisfy:

(1) njx, mjy are rational for 0 < j < N -1, k> 1;
(2) njr <mj Vi, k; and

(3) njr — nj and mj, — m; as k — oo, for each j =0,1,...,N — 1.
By the rational case above, for each £ > 1 the symmetric function
det(u°™r)
fi(w) = oy
det(u°mx)
is coordinatewise non-decreasing, where my, := (mg, ..., my—1) and similarly for n;. But

then their limit limy_, fr(u) = fx(u) is also coordinatewise non-decreasing, as claimed.
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The next step is to show that f is strictly increasing on (0, co) Y710 each coordinate, say

in ux by symmetry. Suppose instead that f. is constant on the intersection with RN# of a

line segment

{(u1,...,un_1,uy) : un € [z,2']} € (0,00)",
where uy, ..., un—_1 € (0,00) are fixed and 0 < x < 2’. Here we may replace [z, 2’| by a smaller
sub-interval (still of positive length) that does not contain uy,...,uy—_1; thus, without loss

of generality the above segment is contained in (0, oo)Nﬁé. Now evaluating f as a function
of up, we obtain a constant function of the form

Z]-\Ll Ul g
=0 UN 9j
EN_I unj !

j=0 YN 9j

where g;, g} are generalized Vandermonde determinants, hence all non-zero. Denoting the

h(un) := , uy € [z, 2]

numerator and denominator by hi(uy), ha(uy) respectively, if h(-) = ¢ on [z, 2] for some
¢ € R, then hy — chy has infinitely many zeros on [z,2z']. Since m # n, this contradicts
Descartes’ rule of signs (Lemma [5.2).

Finally, we show that f. is strictly increasing in each coordinate w; at u, where one
coordinate of u, say wui, equals zero — and ng = mg = 0. There are two cases: if j > 1,

then both u®™ and u°® are matrices with the first column (1,...,1)” and first row e =
(1,0,...,0). But then det(u®™) = det(uj™"), where v; for a vector v is the sub-vector that

removes the first coordinate. Hence,

det(u™")

f#(u)__zﬁfﬁﬁﬁTj’

N 71’75, the right-hand side is strictly increasing in u; for j > 1 by the
N—1,#

and since u; € (0, 00)
above analysis — now on (0, 00)

The other case is if j = 1. Then we consider v := u + pe; for some p € (0,00). If
¢ := min(p, minj> u;), then v(e) := u+ ee; lies in (0,00)N7 for € € (0,¢), so by above,
f£(v(+)) is strictly increasing as a function of € € (0, c). Hence, for € € (0,c/4), we have from
above:

f2(v) = f2(v() > fz(v(c/4)) > f2(v(e)).

Letting € — 0T, the proof is complete:

F2) > f2(v(e/0) 2 T F2(v(e)) = F2(v(0) = f(w) 0

44.2. Proof of the quantitative bound. Using Theorem [44.8, we can now prove the main
result in this section.

Proof of Theorem [{4.1. We first work only with rank-1 matrices. Clearly, (1) = (2), and
we show that (2) = (3) = (1).

If all coefficients ¢,,, cpr > 0, then f[—] preserves positivity on rank-1 matrices. Otherwise,
by the Horn-Loewner-type necessary conditions in Lemma (now for real powers, possibly
negative!), it follows that c¢py,...,cny_; > 0 > cpr. In this case, the discussion that opens
Section allows us to reformulate the problem using

N-1
() ZZtZan$nj — M t>0,
3=0
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and the goal is to find a sharp positive Iower bound for ¢, above which p;|—| preserves

positivity on rank-1 Hankel TN matrices uu’ € Py ((0, p)).
But now one can play the same game as in Sectio In other words, Lemma

shows that the “real powers analogue” of Proposition [42.8 holds: p;[uu’] > 0 if and only if

N-1
t >
7=0

det(u®™)?
Cn, det(u°m)?’

for all generic rank-1 matrices uu?, with u € (0, \/ﬁ)Nﬁé. By the same reasoning as in the
proof of Theorem (see the previous section), p;[—] preserves positivity on a given test
set of rank-1 matrices {uu’ : u € S C (0, /p)"}, if and only if (by density and continuity,)
t exceeds the following supremum:

T det(um)?

t > su _
B P YN~ = Cn, det(uon)2

uesSN(0,,/p

(44.9)

This is, of course, subject to SN (0, ﬁ)N’# being dense in the set S, which is indeed the case
if {uu” :ue SN (0,,/p)V} equals the set of rank-1 Hankel T'N matrices as in assertion (2).
Thus, to prove (2) = (3) = (1) in the theorem, it suffices to prove: (i) the
N-1 2
supremum is bounded above by the value Z %
= cn; V()
attained on (a countable set of) rank-1 Hankel T'N matrices, hence it equals the supremum.
We now prove both of these assertions. By Theorem each ratio det(u°™)/ det(u") is
coordinatewise non-decreasing, hence its supremum on (0, W)Nﬁé is bounded above by (and
in fact equals) its limit as u — /p(17,...,17). To see why this limit exists, note that every
vector u € (0, p)" is bounded above — coordinatewise — by a vector of the form

u(e) == /ple, ..., eMT € (0, \fp)N’¢7 ee€ (0,1).
In particular, by Theorem M the limit as u — /p(17,...,17) exists and equals the limit
by using the rank-1 Hankel TN family u(e)u(e)”, for any sequence of ¢ — 1~ — provided
this latter limit exists. We show this presently; thus, we work with a countable sequence of
€ — 07 in place of Lemma and another countable sequence of € — 1~ in what follows.
First observe:

pM=": and (ii) this value is

Lemma 44.10 (Principal specialization formula for real powers). Suppose ¢ > 0 and ng <

ny < --- <ny_1 are real exponents. If n:= (ng,...,ny_1) and u:= (1,q,...,¢""1)T, then
det(u™) = [ (@™ —q")=V(¢™)
0<j<k<N-1

The proof is exactly the same as of Proposition M(Z), since the transpose of u°" is a usual

Vandermonde matrix.
We can now complete the proof of Theorem The above lemma immediately implies
det(u()™) oy, V(™)

deitu@m) Y Ve

VO<j<N-1

Dividing the numerator and denominator by (1 — e)(g) and taking the limit as € — 1~ using
M—n; V(n;)

Vi) - Since all of these suprema/limits

L’Hopital’s rule, we obtain the expression ,/p
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occur as € — 1~ , we finally have

- N-—1 det(uonj)2 oy JVZ_I det(u(e)onj)2 B N-—1 V(nJ)Q prnj
we(0,yp)N* =5 det(u°m)? 51 = Cng det(u(e)°m)? = V(n)?2 ¢y

This proves the equivalence of assertions (1)—(3) in the theorem, for rank-1 matrices.
Finally, suppose all n; € Z=° U [N — 2,00). In this case (4) = (1) is immediate. Con-
versely, given that (1) holds, we prove (4) using once again the integration trick of FitzGerald
and Horn, as isolated in Theorem [9.12] The proof and calculation are similar to that of The-
orem [43.2] above and are left to the interested reader as an exercise. O

44.3. Applications to Hankel T'N preservers in a fixed dimension and to power
series preservers. We conclude by discussing some applications of Theorem [d4.1] First,
the result implies in particular that A°™ is bounded above by a multiple of Z;V:_Ol Cp AT
In particular, the proof of Theorem above goes through; thus, we have classified the sign
patterns of all entrywise power series preserving positivity on Px((0, p)).

Second, the equivalent conditions in Theorem classifying the (entrywise) polynomial
positivity preservers on Px((0,p)) — or on rank-1 matrices — also end up classifying the
polynomial preservers of total non-negativity on the corresponding Hankel test sets:

Corollary 44.11. With notation as in Theorem if we restrict to all real powers and
only rank-1 matrices, then assertions (1)—(3) in Theorem are further equivalent to:

(1') f[—] preserves total non-negativity on all rank-1 matrices in HTNy with entries in
(0,p).
If, moreover, all n; lie in 779 U [N — 2,00), then these conditions are further equivalent
to:

(4') fl—] preserves total non-negativity on all matrices in HTNy with entries in [0, p].

Recall here that by Definition [12.18] HTNy denotes the set of N x N Hankel totally non-
negative matrices.

Proof. Clearly, (4') implies (1’), which implies assertion (2) in Theorem [44.1] Conversely, we
claim that assertion (1) in Theorem implies (1’) via Theorem Indeed, if A € HINy
has rank 1 and entries in (0, p), then f[A] € Py by Theorem 1). Similarly, AN @ (0)1x; €
Px((0,p)) and has rank 1, so f[A(V] is also positive semidefinite, and hence Theorem
applies, as desired. The same proof works to show that (4’) follows from Theorem 44.1(4). O

The third and final application is to bounding g[A], where g(x) is a power series — or
more generally, a linear combination of real powers — by a threshold times Z;V: _01 Cp; AT
This extends Theorem in which g(z) = z™. The idea is that if we fix exponents

0<ng<---<ny-1 and coefficients c,; for j =0,..., N —1, then
N-1 N-1 V(n)2
oM on; o ] M—n;
AN <ty ]EO Cn; A, where t); 1= ]Eo Wﬂ i, (44.12)

and this linear matrix inequality holds for all A € Px((0, p)) — possibly of rank 1 if the n; are
allowed to be arbitrary non-negative real numbers, else of all ranks if all n; € 7ZZ9U[N -2, 0).
Here the < stands for the positive semidefinite ordering, or Loewner ordering — see, e.g.,
Definition Moreover, the constant ¢, depends on M through n; and p™ =",
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If now we consider a power series g(Z) := 2 _pr>py_,+1°C a2, Then by adding several linear

matrix inequalities of the form (44.12), it follows that

Al <t, Z Cn; A%, where ¢, := Z max(cpr, 0)tar,
j= M>ny_1+1

and this is a valid linear matrix inequality, as long as the sum t, is convergent. Thus, we
now explore when this sum converges.

Even more generally: notice that a power series is the sum/integral of the power function,
over a measure on the powers which is supported on the integers. Thus, given any real measure
w supported in [ny_1 + €,00), one can consider its corresponding “Laplace transform”

a)i= [ o duto), (44.13)

N-1+€

The final application of Theorem explores in this generality, when a finite threshold
exists to bound g,[A] by a sum of N lower powers.

Theorem 44.14. Fiz N > 2 and real exponents 0 < ng < --- < ny_1 in the set 720U [N —
2,00). Also fiz scalars p,cn; > 0 for all j.

Now suppose ,&' > 0 and p is a real measure supported on [ny_1 +€,00) such that g,(x)
— defined as in — is absolutely convergent at p(1 + €'). Then there exists a finite
constant t,, € (0,00), such that the map

'U‘ch ]_glt )

entrywise preserves positivity on Pn((0,p)). Equivalently, g,[A] <t Z] o Cn; A%, for all
A€ Py((0.p)).

Proof. If u = p4 — p— denotes the decomposition of p into its positive and negative parts,
then notice (e.g., by the FitzGerald-Horn Theorem [9.3)) that

/ AM gy (M) e Py, YA ePx((0,p)).
R

Hence, it suffices to show that
00 N—-1

o V(n
w= [ trdwon= | T My <o, (4419
nn_1+e nn-1+e j=p (
since this would imply
N-1 o - o
> e A g A = [t 3 e A A a0y [ A (),
j=0 ny—1-+e . ny—1-+e

and both integrands and integrals are positive semidefinite.
In turn, isolating the terms in (44.15)) that depend on M, it suffices to show for each j that

N-1

oo
[ 0w s on) <
N 1E k=0,k



44. Exact quantitative bound: monotonicity of Schur ratios.

Real powers and power series. 297
By linearity, it suffices to examine the finiteness of the integrals

/ MEpM du, (M), k>0,

N-1t€

But by assumption, f;;il e pM (1 + &M dp, (M) is finite; and moreover, for any fixed

k > 0 there is a threshold M} beyond which (1 + &) > M*. (Indeed, this happens when

lg ¥ log(?sl).) Therefore,
> k M M koM * M M
[t dpan < [ MM )+ [ M i (0) <
ny_1+e’ ny—1+e’ M,

which concludes the proof. ]
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45. POLYNOMIAL PRESERVERS ON MATRICES WITH REAL OR COMPLEX ENTRIES.

COMPLETE HOMOGENEOUS SYMMETRIC POLYNOMIALS.

Having discussed in detail the case of matrices with entries in (0, p), we conclude this
part of the text with a brief study of entrywise polynomials preserving positivity in fixed
dimension — but now on matrices with possibly negative or even complex entries. The first
observation is that non-integer powers can no longer be applied, so we restrict ourselves to
polynomials. Second, as discussed following the proof of Lemma [41.2] it is not possible to
obtain structured results along the same lines as above, for all matrices in Py ((—p, p)), for
every polynomial of the form

t(Cpgx™ + -+ cpy_ 2™V 1) — M
acting entrywise.

The way one now proceeds is as follows. Akin to the two previous sections, the analysis
begins by bounding from above the ratio sp,(u)?/sy(u)? on the domain — in this case, on
[—p, p]V. Since the numerator and denominator both vanish at the origin, a sufficient condi-
tion to proceed would be that the zero locus of the denominator sy(+) is contained in the zero
locus of sn].(-) for every j. Since the choice of M > ny_q is arbitrary, we therefore try to
seek the best possible solution: namely, that s,(-) does not vanish on RV \ {0}. And indeed,
it is possible to completely characterize all such tuples n:

Theorem 45.1. Fix integers N > 2 and 0 < ng < --- < ny—_1. The following are equivalent:
(1) The Schur polynomial sy(-) : RN — R is positive except possibly at the origin.
(2) The Schur polynomial su(-) : RN — R is non-vanishing except possibly at the origin.
(8) The Schur polynomial sn(-) does not vanish at the two vectors e; and e; — e3.
(4) The tuple n satisfies: ng =0,...,ny—2 =N =2, andny_1— (N —1) =2r >0 is an
even integer.

Using Littlewood’s definition (42.2)), it is easy to see that such a polynomial is precisely
the complete homogeneous symmetric polynomial (of even degree k = 2r)

hk(“h“%---) = § , Ujy Ugp = = Ugy, vuj eR
1<51 <2< <j

for k > 0, where we set ho(ui,ug,...)=1.
In this section, we will prove Theorem and apply it to study entrywise polynomial
preservers of positivity over Py ((—p, p)). We then study such preservers of Pxn(D(0, p)).

45.1. Complete homogeneous symmetric polynomials are always positive. The ma-
jor part of Theorem [45.1]is to show that the polynomials ho, do not vanish outside the origin.
This is a result by Hunter in 1977 in Math. Proc. Camb. Phil. Soc. More strongly, Hunter
showed that these polynomials are always positive, with a strict lower bound:

Theorem 45.2 (Hunter, 1977, [187)). Fiz integers r,N > 1. Then we have

’21”

[[u]
har(u) = 2rpl

with equality if and only if (a) min(r, N) =1 and (b) Z;VZI u; = 0.

ucRY (45.3)

The proof uses two observations, also made by Hunter in the same work.
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Lemma 45.4 (Hunter, 1977, [I87]). Given integers k, N = 1, and u = (u1,...,un). € R,

hr(u, &) — hg(u,
(8,8) = (1, 7) = hp—1(u,&,n)
=1
for all real £ # n; and moreover,
Ohy,

a—uj(u) = hp—1(u,uj).

Proof. Recall from the definition that

u) = Z hk,s(ul, ceey uN_1>’U,§V. (45.5)

With (45.5) at hand, the first assertion follows immediately (in fact over any ground field):

P, &) = hi(wn) 5 E-n_ S gt o1t
= " h—s(u) = his(@)Y T = hyi(u ).
We isolate the final equality here:
s—1
hi—1(u, &, n) th Sy gt (45.6)
t=0

noting that it holds at all £, € R. Next, we show the second assertion. Since hy is a
symmetric polynomial, it suffices to work with j = N. Now compute using (45.5) and ({45.6])

Ohy, k
Tuj(u) = EZ: hi—s(uq, ... ,uN_l)(su}gV 1)

k
= th_s(ul,.. JUN—1 Zu uy = by (u,uy). O

With Lemma at hand, we proceed.

Proof of Theorem[{5.3 If N =1 < r, it is easy to see that (45.3) holds if and only if u; = 0.
Similarly, if r = 1, then

VRSN , Iul?
a(u) = 5 |Jull® + Zu] > oL,

with equality if and only if S°% i=1u; =0, as desired.

Henceforth we suppose that r, N > 2, and claim by induction on r that holds, with
a strict inequality. To show the claim, note that since hg,(u) is homogeneous in u of total
degree 2r, it suffices to show on the unit sphere

hor(u) > QTLT!’ ue sV
We are thus interested in optimizing (in fact minimizing) the smooth function hg,.(u), subject
to the constraint Ejvzl uf = 1. This problem is amenable to the use of Lagrange multipliers,
and we obtain that at any extreme point y € SV~ there exists A € R satisfying
Ohay
auj

(y) +2\y; =0, j=1,...,N.
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Multiply this equation by y; and sum over all j; since ho, i1s homogeneous of total degree 2r,
Euler’s equation yields

2rhor(y) +2A[ly[? =0 = A= —rha(y).

With this at hand, compute using Lemma
8h2r
Ouj
We now show that at all points y € SN~! satisfying (45.7)), one has (45.3) with a strict

inequality. As one of these points is the global minimum, this would prove the result.
There are two cases. First, the vectors y4 := %1 Nx1 € SN satisfy (45.7); it may help

hor—1(y,y;) = (y) = —2Xy; = 2rho,(y)yj, j=1,...,N. (45.7)

here to observe that the number of terms/monomials in hg(u,...,uy) is (NJF:_l). This
observation also implies that at these points y+, we have
hor(y2) = N+2r—1\ 1  (N+2r-1)(N+2r—-2)---N 1 - 1 - 1
Y+ = 2r N2 N2r 2r)! = @2r)! " 2rl

and this yields (45.3). Otherwise, y # y+ has at least two unequal coordinates, say y; # yr,
and satisfies (45.7)), hence

hor—1(y,yj) — har—1(y, yk) = 2rha-(¥) (Y5 — Yi)-
Rewriting this and using Lemma [45.4]

L hor—1(y,yj) —hor—a1(y,uk) 1
h = — = —h _ -
2(¥) = 5, — 5, h2r—2(Y, Y- yk)

1 Iyl 4y + lel?

2r  2r-l(r—1)1

where the final inequality follows from the induction hypothesis. Now since y; # yp, the final
numerator is strictly greater than 1, and this yields (45.3]). O

>

Theorem allows us to prove the existence of polynomials with negative coefficients
that entrywise preserve positivity in a fixed dimension. This is discussed presently; we first
show for completeness that the polynomials hg, are the only ones that vanish only at the
origin.

Proof of Theorem [{5.1, That (4) = (1) follows directly from Theorem and that
(1) = (2) = (3) is immediate. Now suppose (3) holds. Using thtlewood’s defini-
tion , if a tableau T of shape n — ny,;; has two nonempty rows, then in any semi-

standard filling of T', one is forced to use at least two different variables. Now evaluating the
weight of T at e; yields zero This argument shows that (3) implies n — n,;, has at most

one row, so by (42.2 -, sp(u) = hi(u) for some k > 0. Now hy(e; — e3) is easily evaluated to
be a geometric series (con51st1ng of k + 1 alternating entries 1 and —1). This vanishes if k is
odd, so (3) implies k is even, proving (4). O

45.2. Application: entrywise polynomials preserving positivity. With the above re-
sults at hand, we now prove:

Theorem 45.8. Fiz integers N > 1, k,r >0, and M > N 4+ 2r, as well as positive constants
p,Co,-..,cN—1. There exists a positive constant tg > 0 such that the polynomial

N-2 N=142r) kM

pi(x) = txk(co +cix+ -+ ey +en_1x

entrywise preserves positivity on Py ([—p, p|]) whenever t > ty.
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Proof. The result for £ = 0 implies that for arbitrary £ > 0, by the Schur product theorem.
Thus, we henceforth assume k = 0. We now prove the result by induction on N > 1 with the
N =1 case left to the reader as an exercise.

For the induction step, notice that the proof of Propositionm goes through for u € RN-#
as long as sp(u) # 0. This is indeed the case if n = (0,1,...,N —2,N — 1 + 2r), by
Theorem [45.2} Thus, to produce a threshold ¢; as in the theorem, which works for all rank-1
matrices, it suffices to show (by the discussion prior to Theorem and using the density

of (—y/p, /p)N7 in [—/p, /P that

N-—1 .
Sn; (u)Q prnJ

sup < 00.

2
ue(-ypyp) N o (W
In turn, using Theorem [45.2] it suffices to show

Sn; (u)?

[[ull*

sup o0, 7=0,1,...,N —1.
ue(—ypVm™7”

Now since the polynomial sy, is homogeneous of total degree 2r + M — n;,

snj(u)2
[[all*r

= sn, (u/[[u]*[lul M) < KR (Np)M7

for u € (—/p, \/ﬁ)Nﬁé, where Ky, is the maximum of the Schur polynomial sy, (-) on the
unit sphere SNV
This shows the existence of a threshold ¢; that proves the theorem for all rank-1 matrices in

Pxn([—p, p]). We will prove the result for all matrices in Py ([—p, p]) by applying the extension
principle (Theorem [9.12)); for this, we first note that

N-2 .
_ i N -1 2T)CN_1 _ _
i, JCj -1 ( + N—2+2r | _ _M-1
M~ pi(x) =t Jg_l et 7 x x

is again of the same form as in the theorem. Hence, by the induction hypothesis, there exists
a threshold t2 such that p)[—] preserves positivity on Py_1([—p, p]) for ¢t > to. The induction
step is now complete by taking tg := max(t1, t2). O

A natural question that remains, in parallel to the study of polynomial positivity preservers
of matrices in Py ([0, p]), is as follows:

Question 45.9. Given the data as in the preceding theorem, find the sharp constant tg.

A first step toward this goal is the related question in rank 1, which can essentially be
rephrased as follows:

Question 45.10. Given integers r > 0, N > 1, and

mog>0, m>1, ..., mnyo>N-2 my_1>N-—-1+42n
sm(u)?
hoy(u)?

Remark 45.11. Notice by homogeneity that this ratio of squares increases as one travels
radially from the origin. Thus, the maximization on the punctured solid cube is equivalent
to the same question on the boundary of this cube.

over the punctured unit cube [—1,1]" \ {0}.

maximize the ratio
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45.3. Matrices with complex entries. The final topic along this theme is to explore
matrices with complex entries, say in the open disk D(0, p) (or its closure) for some 0 < p <
oo. In this case, the set of admissible “initial sequences of powers” 0 < ng < --- < ny_1
turns out to be far more limited — and (the same) tight threshold bound is available in all
such cases:

Theorem 45.12. Fix integers M > N > 2 and k > 0, and let nj = j+k for0 <j < N —1
—i.e., N consecutive integers. Also fix real scalars p > 0, cg,...,cn—1, and define

f(z) = zk(co+clz+---+CN,1ZN_1)+cMzk+M, z € C.

Then the following are equivalent:

(1) The entrywise map f[—| preserves positivity on Px(D(0,p)).

(2) The map f[—] preserves positivity on rank-1 totally non-negative (TN ) Hankel ma-
trices in Pn((0, p)).

(3) Either all cj,cpr > 0; or¢j >0 for all j < N and cpr > —C~ 1, where

N-1
C = Z V(nj)2 pM—j
0 CjV(nmin)2 ’
Ji
where Nyin == (0,1,...,N —1) and n; := (0,1,...,5 —1,j+1,....N —1,M) for

0<j<N-1.

A chronological remark: this result was the first instance of entrywise polynomial posi-
tivity preservers with negative coefficients to be discovered, in 2016. The more refined and
challenging sharp bound for arbitrary polynomials (or tuples of real powers n) operating on
Pxn((0, p)), as well as the existence of a tight threshold for the leading term of a polynomial
preserver operating on Py ((—p, p)), were worked out later — though in this text, we have
already proved those results.

Remark 45.13. After proving Theorem [45.12] we will also show that if the initial sequence
n of non-negative integer powers is non-consecutive (i.e., not of the form in Theorem [45.12]),
then such a “structured” result does not hold for infinitely many powers M > ny_1.

Proof of Theorem[[5.13 Clearly, (1) = (2). Next, notice that the constant C in (3)
remains unchanged under a simultaneous shift of all exponents by the same amount k. Thus,
(2) = (3) by Theorem [44.1] (and Lemma [41.2).

It remains to show that (3) == (1). Since the & > 0 case follows from the k£ = 0 case
of (1) by the Schur product theorem, we assume henceforth that £ = 0. Now we proceed as
in the previous two sections, by first showing the result for rank-1 matrices, and then using
an analogue of the extension principle (Theorem @ to extend to all ranks via induction
on N. The first step here involves extending Lemma [42.10] to complex matrices:

Lemma 45.14. Fiz w € CV and a positive definite (Hermitian) matriz H € CN*N . Define
the linear pencil P, :=tH — ww?*, fort > 0. Then the following are equivalent:

(1) P; is positive semidefinite.

(3) t> wH lw = 1 — St = ww')

det H
The proof is virtually identical to that of Lemma and is hence omitted.
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Next, using that s,(u®) = sp(u) for all integer tuples n and all vectors u € C* (and

Sn,,., (1) = 1), we apply Lemma to computing the sharp threshold bound for a sin-

gle “generic” rank-1 complex matrix, parallel to how Proposition is an adaptation of
Lemma [42.10

Proposition 45.15. With the given positive scalars c;j, and integers M > N > 2 and
n; =j— 1, define

pe(z) =1 c;jz8 — M, t € (0,00), z €C.

Then the following are equivalent for u € CN-#:

(1) pi[uu’] is positive semidefinite.
(2) detpt[uu | > 0

(3) t > Z ’S“f

Once again, the proof is omitted.
We continue to repeat the approach for Px((0, p)) in previous sections. By the discussion

prior to Theorem [43.1} and using the density of D(0, \/,7))1\7’7'é in D(0, \/ﬁ)N, we next compute

sup |snj(u)2|, 0<j<N-L1
ueD(0,/p)N7
Use Littlewood’s definition (42.2)) of sy(-), and the triangle inequality, to conclude that

N N
(T )
sa(@] =[SO TTe? @) < ST sl T = sulul),  where u] = (Jut], ., [un])-

T j=1 T j=1

Thus, equality is indeed attained here if one works with a vector u € (0, \/ﬁ)N’#. For this
reason, and since s, (u) is coordinatewise non-decreasing on (0, 00)",

V(nj)2 M—j

sup s, (W)?] = sn, (V(1,. ., 1)) = , Vi
uED(O,ﬁ)NJ& ! ! \f Vv(nmin)2
Akin to Pn((0, p)), we conclude that p;[uu*] € Py for all u € D(0, /p)", if and only if
N-1 2
t>C= L')QPM_]"
— ij(nmin)
7=0

The final step is to prove the result for all matrices in Py (D(0, p)), not just those of rank
1. For this we work by induction on N > 1, with the base case following from above. For
the induction step, we will apply the extension principle (Theorem ; to do so, we first
extend that result as follows, with essentially the same proof.

Lemma 45.16. Theorem [9.19 holds if h(z) is a polynomial and I = D(0, p) or its closure.

To apply this result, first note that
N-1
M~ pl(z) =1t Z M_ljcjz]_1 — M1
j=1
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and so 1t suflices to show that this preserves positivity on Py_1(D(0,p)) if ¢ = C. By the
induction hypothesis, it suffices to show that C > C’, where C’ is the constant obtained from
M~1pl:

N-1 1\2
MV (n, ‘
C/ZE MPMJ, Whereng::(O,l,...,j—2,j,...,N—2,M—1),
J

and n/ . :=(0,1,..., N —2). Thus, to show that C > (', it suffices to show that
Vn,)> _ MV(nj)?
V(omin)? = jV(0],;,)?

for j=1,...,N — 1. This is not hard to show; e.g., for “most” cases of j, a straightforward
computation yields

( V(n;)/V(n) )2 B <(N— 1)!M/j>2 MM -
V(0umin) /V (07, (N =1)! J? i’
As promised above, we conclude by showing that for every other tuple of “initial powers”,

i.e., non-consecutive powers n, one cannot always have a positivity preserver with a negative
coefficient — even on generic one-parameter families of rank-1 matrices.

Theorem 45.17. Fix integers N > 2 and 0 < ng < --- < ny_1, where the n; are not all
consecutive. Also fit N — 1 distinct numbers uy,...,uny—1 > 0, and set

u(z) := (uy,...,uny_1,2)" e CV, z € C.

Then there exists zg € C and infinitely many integers M > ny_1, such that for all choices of
(a) scalar € >0 and (b) coefficients cpy, ... cnpy_, > 0> € R, the polynomial

f(2) i=cng2™ + - F ey 2"V + dM
does not preserve positivity on the rank-1 matriz eu(zp)u(z9)* when applied entrywise.

Note that if instead all c,;,car > 0, then f[—] preserves positivity by the Schur product
theorem; while if some c,, < 0, then the FitzGerald-Horn argument from Theorem can
be adapted to show that fleu(uy)u(un)*] € Py for all sufficiently small € > 0, where uy € C
is such that the non-zero polynomial sp(u1,...,un—1,un) # 0.

Proof. Since the n; are not all consecutive, the tableau-shape corresponding to n — ny;, has
at least one row with two cells. It follows by Littlewood’s definition that sp(u) has
at least two monomials. Now consider s,(u(z)) as a function only of z, say g(z). Then g(z)
is a polynomial that is not a constant multiple of a monomial, so it has a non-zero complex
root zp € C*. Notice that z is also not in (0, 00) because the Schur polynomial evaluated at

(u1,...,un—1,upn) is positive for every uyn € (0,00). Thus, 29 € C\ [0, 0).
By choice of zp and Cauchy’s definition of sp(u(zp)) (see Proposition ,
u(z0)™ = [u(z0)”"] - - Ju(z0) "]

is a singular matrix. That said, this matrix has rank NV — 1 by the properties of generalized
Vandermonde determinants (see Theorem ; in fact, every subset of N —1 columns here is
linearly independent. Let V{y denote the span of these columns; then the ortho-complement
VOJ- C CV is one-dimensional, i.e., there exists unique v € C up to rescaling, such that
v*u(zp)°™ = 0 for all j.
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Now given any NN consecutive integers [ +1,...,[4+ N with { > ny_1, we claim there exists

an integer M € [l + 1,1 + N] such that v*u(z)°™ # 0. Indeed, the usual Vandermonde
matrix

)o(l+1)’ . )O(Z+N)]

[u(z0 - |u(zo
is non-singular (since no coordinate in u(z) is zero), so at least one column u(z9)° ¢ V4.
In particular, v*u(zo)°M # 0, proving the claim.

Finally, choose arbitrary €, c,, > 0 > ¢ as in the theorem. We then assert that f[eu(zo)u(z0)*],

where f is defined using this value of M, is not positive semidefinite. Indeed,
N-1
v* fleu(zo)u(zo)*]v = Z Cn; €7 [V u(z0)°" 2+ deMvru(z)°M 2 = deMviu(z) M,
7=0

and this is negative, proving that fleu(zo)u(z0)*] € Pn. O
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46. APPENDIX F: CAUCHY’S AND LITTLEWOOD’S DEFINITIONS OF SCHUR POLYNOMIALS.

THE (DUAL) JACOBI-TRUDI IDENTITY AND LINDSTROM—GESSEL—VIENNOT
BIJECTIONS.

For completeness, in this section we show the equivalence of four definitions of Schur
polynomials, two of which are named identities. To proceed, first recall two other families of
symmetric polynomials: the elementary symmetric polynomials are simply

er(ug,ug,...):=uy +ug+---, ea(uy, ug,...) = ujug + urus + ugus + - - - ,
and in general,
6k(U1,ZL2,...) = E Ujy Ujy = * * Usjy,
1<j1<g2 < <Jk
These symmetric functions crucially feature while decomposing polynomials into linear fac-

tors.
We also recall the complete homogeneous symmetric polynomials

hi(ur, ug, . .. ) = > Uy Ujy Uy -

1<j1<j2 < <Ji
By convention, we set eg = hg = 1, and e = hy = 0 for £ < 0. Now we have:

Theorem 46.1. Fiz an integer N > 1 and any unital commutative ground ring. Given a
partition of N —i.e., an N-tuple of non-increasing non-negative integers A = (A > -+ > An)
with zj Aj = N - the following four definitions give the same expression sxz(u1, uz, . .. JUN),
where § ;= (N—=1,N—=2,...,0) and \+ 0 = (An,An_1+1,...,\1+ N —1) in our convention.
(1) (Littlewood’s definition.) The sum of weights over all column-strict Young tableaux

of shape A with cell entries uy,...,upn.
(2) (Cauchy’s definition, aka the type A Weyl character formula.) The ratio of the (gen-

eralized) Vandermonde determinants ayys/as, where ay = det(u;"“JrN_k).

(8) (The Jacobi—Trudi identity.) The determinant det(hAj_j+k)§Yk:1.
(4) (The dual Jacobi-Trudi identity, or von Ndgelsbach-Kostka identity.) The determi-
nant det(e,\g_jJrk), where X' is the dual partition, meaning N = #{j : \; > k}.

From this result, we deduce the equivalence of these definitions of the Schur polynomial

for fewer numbers of variables uq, ..., u,, where n < N.

Corollary 46.2. Suppose 1 <r < N and A\ry1 = --- = Ay = 0. Then the four definitions
in Theorem [{6.1] agree for the smaller set of variables uy, ..., u,.

Proof. Using fewer numbers of variables in definitions (3) and (4) amounts to specializing
the remaining variables w41, ..., uy to zero. The same holds for definition (1) since weights
involving the extra variables u,1,...,uxy now get set to zero. It follows that definitions (1),

(3), and (4) agree for fewer numbers of variables.

We will show that Cauchy’s definition (2) in Theorem has the same property. In
this case the definitions are different: Given ui,...,u, for 1 < r < N, the correspond-
ing ratio of alternating polynomials would only involve A\; > --- > A., and would equal
det(u;\”r_k);,k:l/ det(ugfk);kzl. Now claim that this equals the ratio in (2), by downward
induction on 7 < N. Note that it suffices to show the claim for r = N — 1. But here, if we
set uy := 0, then both generalized Vandermonde matrices have last column (0,...,0,1)7.

In particular, we may expand along their last columns. Now canceling the common factors
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of uy---uy_1 from each of the previous columns reduces to the case of r = N — I, and the
proof is completed by similarly continuing inductively. O

The remainder of this section is devoted to proving Theorem We will show that
(4) <= (1) <= (3) < (2), and over the ground ring Z, which then carries over to arbitrary
ground rings. To do so, we use an idea due to Karlin-Macgregor (1959), Lindstrém (1973),
and Gessel-Viennot (1985), which interprets determinants in terms of tuples of weighted
lattice paths. The approach below is taken from the work of Bressoud—Wei (1993).

Proposition 46.3. The definitions (1) and (3) are equivalent.

Proof. The proof is divided into steps, for ease of exposition.

Step 1: In this step we define the formalism of lattice paths and their weights. Define points
in the plane

P,:=(N—k+1,N), Qr:=(N—-k+1+X,1), k=1,2,...,N,

and consider (ordered) N-tuples p of (directed) lattice paths satisfying the following proper-
ties:

(1) The kth path starts at some P; and ends at @, for each k.

(2) No two paths start at the same point P;.

(3) From P;, and at each point (a,b), a path can go either east or south. Weight each

east step at height (a,b) by uni1_p.
Notice that one can assign a unique permutation o = op € Sy to each tuple of paths p, so
that paths go from P, ) to Qy for each k.
We now assign a weight to each tuple p, defined to be (—1)?? times the product of the

weights at all east steps in p. For instance, if A = (3,1, 1,0,0) partitions N = 5, then here is
a typical tuple of paths:

e For k = 4,5, P, and @y, are each connected by vertical straight lines (i.e., four south
steps each).

e P, and Q3 are connected by a vertical straight line (i.e., four south steps).

e The steps from P3 to Q2 are SESESS.

e The steps from P to Q1 are SEESSES.

This tuple p corresponds to the permutation op = (13245), and has weight —uduzuy.

Step 2: The next goal is to examine the generating function of the tuples, i.e., Zp wt(p).
Note that given o, among all tuples p with op = o, the kth path contributes a monomial of
total degree A\ — k + o(k), which can be any monomial in uq,...,uy of this total degree. It
follows that the generating function equals

N
> owitp) = D> (=17 [] hae—rsotr = det(or, ki) et
P ocESN k=1

Step 3: We next rewrite the above generating function to obtain ), wt(7") (the sum of
weights over all column-strict Young tableaux of shape A with cell entries uq, ..., uy), which
is precisely sm(ul, ..., up) by definition. To do so, we will pair off the tuples p of intersecting
paths into pairs, whose weights cancel one another.

Suppose p consists of intersecting paths. Define the final intersection point of p to be the
lattice point with maximum z-coordinate where at least two paths intersect, and if there are
more than one such points, then the one with minimal y-coordinate. Now claim that exactly
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two paths in p intersect at this point. Indeed, if three paths intersect at any point, then all

of them have to go either east or south at the next step. By the pigeonhole principle, there
are at least two paths that proceed in the same direction. It follows that a point common to
three paths in p cannot be the final intersection point, as desired.

Define the tail of p to be the two paths to the east and south of the final intersection
point in p. Given an intersecting tuple of paths p, there exists a unique other tuple p’ with
the same final intersection point between the same two paths, but with the tails swapped.
It is easy to see that the paths p and p’ satisfy have opposite signs (for their permutations
Op,0p’), but the same monomials in their weights. Therefore, wt(p) = —wt(p’), and the
intersecting paths pair off, as desired.

Step 4: From Step 3, the generating function Zp wt(p) equals the sum over only tuples of
non-intersecting paths. Each of these tuples necessarily has op = id, so all signs are positive.
In such a tuple, the monomial weight for the kth path naturally corresponds to a weakly
increasing sequence of ) integers in [1, N]. That the paths do not intersect corresponds
to the entries in the kth sequence being strictly smaller than the corresponding entries in
the (k + 1)st sequence. This yields a natural weight-preserving bijection from the tuples
of non-intersecting paths to the column-strict Young tableaux of shape A with cell entries

1,...,N. (Notice that these tableaux are in direct bijection to the column-strict Young
tableaux studied earlier in this part, by switching the cell entries j +— N + 1 — j.) This
concludes the proof. O

Proposition 46.4. The definitions (1) and (4) are equivalent.

Proof. The proof is a variant of that of Proposition Now we consider all tuples of paths
such that the kth path goes from P, ), to the point

Qr:=(N—k+1+X,1),

and, moreover, each of these paths has at most one east step at each fixed height — i.e., no
two east steps are consecutive.

Once again, in summing to obtain the generating function, given a permutation o = op,
the kth path in p contributes a monomial of total degree \; —k+ o (k), but now runs over all
monomials with individual variables of degree at most 1 — i.e., all monomials in ey, g1 q(k)-
It follows that

N
Z wt(p) = Z (=1)7 H ex ko) = det(en kij)jhmr-
p k=1

ocESN

On the other side, we once again pair off tuples — this time, leaving the ones that do
not overlap. In other words, paths in tuples may intersect at a point, but do not share an
east/south line segment. Now given a tuple containing two overlapping paths, define the
final overlap segment similarly as in Proposition [46.3} as in the previous proof, notice that
exactly two paths overlap on this segment. Then for every tuple of paths p that overlaps,
there exists a unique other tuple p’ with the same final overlap segment between the same
two paths, but with the (new version of) tails swapped. It is easy to see that p and p’ have
the same monomials as weights, but with opposite signs, so they pair off and cancel weights.

This leaves us with tuples of non-overlapping paths, all of which again corresponding to
op = id. In such a tuple, from the kth path we obtain a strictly increasing sequence of

.. integers in [1, N]. That the paths do not overlap corresponds to the entries in the kth
sequence being at most as large as the corresponding entries in the (k + 1)st sequence. This
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gives a bijection to the conjugates of column-strict Young tableaux of shape A, and hence we

once again have ) wt(p) = >_r wt(T') in this setting. O

Corollary 46.5. Schur polynomials are symmetric and homogeneous.

Proof. This follows because definition (4) is symmetric and homogeneous in the variables
Uj- ]

Finally, we show:
Proposition 46.6. The definitions (2) and (3) are equivalent.

Proof. Once again, this proof is split into steps, for ease of exposition. In the proof below,
we use the above results and assume that the definitions (1), (3), and (4) are all equivalent.
Thus, our goal is to show that

N—k\N N AeAN—k\N
det(u; ™) =1 - det(hy;—jtk)jr—1 = det(uj" )jk=1-

Step 1: We explain the formalism, which is a refinement of the one in the proof of Propo-
sition Thus, we return to the setting of paths between P, = (N — k + 1, N) and
Qr=(N—-k+1+X,1)fork=1,...,N, but now equipped also with a permutation T € Sy.
The weight of an east step now depends on its height: at height N + 1 — b an east step has
weight u, ) instead of u,. Now consider tuples of paths over all 7; let us write their weights
as wt(p) for notational clarity. In what follows, we also use p or (p,7) depending on the
need to specify and work with 7 € Sy.

For each fixed 7 € Sy, notice first that the generating function »_ wt,(p) of the 7-
permuted paths is independent of 7, by Corollary

Now we define a new weight for these 7-permuted paths p. Namely, given p = (p,7),
recall there exists a unique permutation op € Sn; now define

W, (p) i= (—1)7u(r) - wt,(p),  where  p(r) = uNp 2wy,

The new generating function is

DY wth(p) = D (=1)Tu(r) Y wir(p) = det(hn,gij) ey - det(u) )Ny,
TESN P TESN p

where the final equality follows from the above propositions, given that the inner sum is
independent of 7 from above.

Step 2: Say that a tuple p = (P, ) — Qk)x is high enough if for every 1 < k < N, the kth
path has no east steps below height N + 1 — k. Now claim that (summing over all 7 € Sy,)
the 7-tuples that are not high enough once again pair up, with canceling weights.

Modulo the claim, we prove the theorem. The first reduction is that for a fixed 7, we
may further restrict to the 7-tuples that are high enough and are non-intersecting (as in the
proof of Proposition [46.3). Indeed, defining the final intersection point and the tail of p as
in that proof, it follows that switching tails in tuples p of intersecting paths changes neither
the monomial part of the weight, nor the high-enough property; and it induces the opposite
sign to that of p.

Thus, the generating function of all 7-tuples (over all 7) equals that of all non-intersecting,
high-enough 7-tuples (also summed over all 7 € Sy). But each such tuple corresponds to
op = id, and in it, all east steps in the first path must occur in the topmost row/height/y-
coordinate of V. Hence, all east steps in the second path must occur in the next highest
row, and so on. It follows that the non-intersecting, high-enough 7-tuples p = (p,7) are in
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bijection with 7 € Sy; moreover, each such tuple has weight (—I)T,u(T)ui‘%l)ui‘é) - u;‘z\[)

Thus, the above generating function is shown to equal

Ap+N—k\N
det(ujk )j,k:lv

and the proof is complete.
Step 3: It thus remains to show the claim in Step 2 above. Given parameters
oceSy, ke[l,N], je[l,N—k,

let NH,} ; denote the T-tuples of paths p = (p,7) (with 7 running over Sy), which satisfy
the following properties:
(1) p is not high (NH) enough.
(2) In p, the kth path has an east step at most by height N — k, but the paths labeled
1,...,k — 1 are all high enough.
(3) Moreover, j is the height of the lowest east step in the kth path; thus, j € [1, N — k.
(4) The permutation associated to the start and end points of the paths in the tuple is
Op =0 € SN.
Note that the set NH of tuples of paths that are not high enough can be partitioned as

NH = | ] NHyp ;.
c€SN, k€[1,N], je[1,N—k]

We now construct an involution of sets . : NH — N H which permutes each subset NH, . ;,
and such that p and «(p) have the same monomial attached to them but different 7 and 7/,
leading to canceling signs (—1)7 # (—1)7".

Thus, suppose p is a 7-tuple in NH,, ;. Now define 7/ := 70 (N — j, N + 1 — j); in other
words,

(i + 1), if i = N — j;
(i) ==L (i — 1), ifi=N—7j+1;
7(7), otherwise.

In particular,

(_1)T/ =—(-1)" and M(T/) = M(T)UT(N#*lfj)u;(]:N_j)‘
With 7/ in hand, we can define the tuple «(p) = (¢(p),7") € NH, ;. First, change the weight
of each east step at height N +1—b, from u,() to up (). Next, we keep unchanged the paths
labeled 1,...,k—1, and in the remaining paths we do not change the source and target nodes
either (since o is fixed). Notice that weights change at only two heights j and j + 1; hence
the first £ — 1 paths do not see any weights change.

The changes in the (other) paths are now described. In the kth path, change only the
numbers n; of east steps at height | = j,j + 1, via: (nj,nj+1) = (nj+1 + 1,n; —1). Note,
the product of weights of all east steps in this path changes by a multiplicative factor of
UT_(INH,J-)UT(N—]') — which cancels the above change from u(7) to (7). Finally, in the mth
path for each m > k, if n; again denotes the number of east steps at height [, then we swap
n; <— njy1 steps in the mth path. This leaves unchanged the weight of those paths, and
hence of the tuple p overall.

It is now straightforward to verify that the map ¢ is an involution that preserves each of
the sets NH,, ;. Since wt(.(p)) = — wt(p) for all p € NH, the claim in Step 2 is true, and
the proof of the theorem is complete. ]
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BIBLIOGRAPHIC NOTES AND REFERENCES

Most of the material in this part is taken from two papers: one by Belton—Guillot—Khare—
Putinar [23] (see also [24] and [25] for summaries), and the other by Khare and Tao [217]
(see also its summary [216]). We list the remaining references. For preliminaries on Schur
polynomials, the standard reference is Macdonald’s monograph [247]. Theorem on the
coordinatewise monotonicity of Schur polynomial ratios is proved using a deep result of Lam,
Postnikov, and Pylyavskyy [231], following previous work by Skandera [339]. There are other
ways to show this result, e.g., using Chebyshev blossoming as shown by Ait-Haddou in joint
works [6}, [7], or by Dodgson condensation (see [217]). Theorem [4.8]is taken from [217] (the
coordinatewise non-decreasing property on (0, oo)]l ). We also remark that Equation ,
like Proposition was recently extended to arbitrary polynomials and (formal) power
series by the author in [214].

Theorem and its proof are due to Hunter [I87]. Appendix F follows Bressoud and
Wei [71], relying on the works of Karlin and McGregor [201], 202], Lindstrom [238], and Gessel
and Viennot [142].
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