MA221 — Analysis I : Real Analysis
2017 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these
questions.]

Homework Set 4 (due by Friday, October 20, in class or TA’s office hours)

Question 1. Rudin Chapter 3 Problems 6, 9, 16.

Question 2. Rudin Chapter 8 Problem 6(b), 10.

The next set of problems constructs a rather exotic metric space. Namely, it continues
beyond a previous set of homework questions, which showed that the set of all norms on
R* are ‘similar’ (i.e., gave rise to the same open sets=topology). Our goal below is to show
that (informally speaking,) the space of these metrics itself forms a metric space!

Question 3. We will say that two norms N, N’ : R¥ — R are equivalent, written N ~ N,
if there exists a scalar o > 0 such that N’(x) = o - N(x), for all x € R¥. Prove that ~ is
an equivalence relation on the set of all norms : RF — R.

We now prove that the set S of equivalence classes of norms forms a metric space. The
next question proves what is needed to define the distance between two such norms.

Question 4. Suppose N;, N, are two norms on R¥.
(a) Prove that (the boundary of) the ‘unit N;-ball’

B :={xeR": N;(x) =1}

is compact.
Hint: Using the ‘similarity’ of N; and the usual ‘Euclidean norm’ ||x||s := (z
22)1/2 which was proved in HW3, show that B is closed and bounded in (R¥, || - [|2).
But from HW3, compact sets in || - |2 are compact in any norm on R*.
(b) Prove that Ny : (R¥, N;) — R is continuous, where N; induces the metric on R*.
(c) Using the previous two parts, prove that there exist real numbers 0 < m < M such
that
Ny/N; :R¥\ {0} = R
maps inside [m, M], and the extreme values are attained.
(d) Finally, prove that if N| ~ Ny and N) ~ N, are any other equivalent norms (as in the
previous question), then there exists ¢ > 0 such that

Nj/Nj :RF\ {0} = R

maps inside [em, cM], and the extreme values are attained.



Question 5. Now we can define the distance between two points in S. Given two equiva-
lence classes of norms in S, choose any two representative norms Ny, Ny from these classes,

and define
ds(Ny, Np) :=log(M/m),
where 0 < m < M are as in Question 4(c) above.

(a) If Ny ~ Nj and Ny ~ N} are similar norms (i.e., in the same equivalence classes), then
verify that

ds(Ny{, Ny) = ds(Ny, Ny).

Hence ds is a well-defined function on § x §.

(b) Prove that ds is a metric on S. (Note: given the previous part, in this part you can
work with pairs of ‘actual’ norms instead of equivalence classes of norms.)

(c) Suppose k = 1. What is the metric space S of (equivalence classes of ) norms on R'?

Next, let us compute the distances in this exotic space for general R* (let us call it Sy)
between some ‘standard’ norms.

Question 6. Fix an integer k > 0. For every real scalar p € [1,00), define the p-norm to
be:

[l == (Jea[” + - - + Jaxl”) V7.

Note that || - |2 is the usual norm / Euclidean distance in R*.
Our goal here is to calculate the distance in the metric space Sy, between the p-norm
and the g-norm for any 1 < p < ¢ < oo.

a) As a special case, prove directly that for all vectors x € R*. we have:
(a) P , P y :

Il < flxlly < VEI|x]l2,

and both inequalities are sharp — i.e., equality can be attained in both of them. Hence,
what is the distance between (the equivalence classes of) || - ||; and || - ||o in Sg?

(b) The previous part involved a fundamental inequality. For the general case, we will
require another fundamental inequality, by Hdélder. The inequality (in our special case
of interest) says that for all x = (z1,...,x) € R¥,
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(Do not prove this, just assume it.) Using Holder’s inequality above, obtain one in-
equality that compares the norms || - ||, and || - ||, in Sk.

(c) For the ‘other’ inequality, we claim that ||x||, > ||x||, for all x, if 1 < p < ¢ < 0.
Clearly this holds for x = 0; else it suffices to assume ||x||, = 1. (Why?) Now prove
the inequality.

(d) Use the previous two parts to compute the distance between (the equivalence classes
of) the p-norm and the g-norm in S;. Note: first you will need to check — as in part
(a) — that there exist nonzero vectors in R* at which the two inequalities above are
attained.



(e) There is another standard norm, which we saw in HW3: ||x[|o := max(|x1],. .., |xk]).
Prove that for all p € [1, 00), we have

Ixlloo < NIl < B2 |oc,

whence ds, (|| - |Ips || - loo) = %'

Finally, one can ask how the set of these (equivalence classes of) p-norms looks like as a
metric subspace of S.

Question 7. A map of metric spaces f : (X,dx) — (Y,dy) is called an isometry if f is
‘distance-preserving’:

dy (f(x), f(z") = dx(z,2"), Vo,2" € X.

(a) Prove that every isometry is injective, i.e., one-to-one — as well as continuous.

(b) As an example, the next few parts classify all the isometries from the normed space R
to itself. Indeed, given such an isometry f, define a := f(0). Then f(1) = a+ 1 or
a — 1, say a + € for some € = +1. Now successively compute f(2), f(3),... as well as
F(=2), /(=3

(c) Next, compute f(1/2), hence f(n/2) for all integers n, as in (b).

(d) Compute f(1/4), hence f(n/4) for all integers n, as in (b).

(e) In general, guess f(n/2%) for all integers k > 0 and n.

(f) Finally, prove using (a),(e) that f(z) = xf(1) + (1 — 2)f(0) for all z € R. In other
words, f must be linear. Conversely, verify that every linear map : R — R with slope
+1 is an isometry.

Question 8. Finally, given an integer £ > 0, let S, denote the subset of equivalence classes
of norms {|| - ||, : 1 < p < oo} on R*. Let the map

f:8; —[0,log k]

be given by: f(]| - ||,) :== % if p < 0o, and f(|| - ||) := 0. Prove that f is an isometry.

This means that the subset of (equivalence classes of) norms || - ||, looks like the interval
0, log k] equipped with the usual metric in R.



