
MA221 – Analysis I : Real Analysis
2017 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these
questions.]

Homework Set 4 (due by Friday, October 20, in class or TA’s office hours)

Question 1. Rudin Chapter 3 Problems 6, 9, 16.

Question 2. Rudin Chapter 8 Problem 6(b), 10.

The next set of problems constructs a rather exotic metric space. Namely, it continues
beyond a previous set of homework questions, which showed that the set of all norms on
Rk are ‘similar’ (i.e., gave rise to the same open sets=topology). Our goal below is to show
that (informally speaking,) the space of these metrics itself forms a metric space!

Question 3. We will say that two norms N,N ′ : Rk → R are equivalent, written N ∼ N ′,
if there exists a scalar α > 0 such that N ′(x) = α · N(x), for all x ∈ Rk. Prove that ∼ is
an equivalence relation on the set of all norms : Rk → R.

We now prove that the set S of equivalence classes of norms forms a metric space. The
next question proves what is needed to define the distance between two such norms.

Question 4. Suppose N1, N2 are two norms on Rk.

(a) Prove that (the boundary of) the ‘unit N1-ball’

B1 := {x ∈ Rk : N1(x) = 1}
is compact.

Hint: Using the ‘similarity’ of N1 and the usual ‘Euclidean norm’ ‖x‖2 := (x21+ · · ·+
x2k)1/2 which was proved in HW3, show that B1 is closed and bounded in (Rk, ‖ · ‖2).
But from HW3, compact sets in ‖ · ‖2 are compact in any norm on Rk.

(b) Prove that N2 : (Rk, N1)→ R is continuous, where N1 induces the metric on Rk.
(c) Using the previous two parts, prove that there exist real numbers 0 < m 6 M such

that
N2/N1 : Rk \ {0} → R

maps inside [m,M ], and the extreme values are attained.
(d) Finally, prove that if N ′

1 ∼ N1 and N ′
2 ∼ N2 are any other equivalent norms (as in the

previous question), then there exists c > 0 such that

N ′
2/N

′
1 : Rk \ {0} → R

maps inside [cm, cM ], and the extreme values are attained.



Question 5. Now we can define the distance between two points in S. Given two equiva-
lence classes of norms in S, choose any two representative norms N1, N2 from these classes,
and define

dS(N1, N2) := log(M/m),

where 0 < m 6M are as in Question 4(c) above.

(a) If N1 ∼ N ′
1 and N2 ∼ N ′

2 are similar norms (i.e., in the same equivalence classes), then
verify that

dS(N ′
1, N

′
2) = dS(N1, N2).

Hence dS is a well-defined function on S × S.
(b) Prove that dS is a metric on S. (Note: given the previous part, in this part you can

work with pairs of ‘actual’ norms instead of equivalence classes of norms.)
(c) Suppose k = 1. What is the metric space S of (equivalence classes of) norms on R1?

Next, let us compute the distances in this exotic space for general Rk (let us call it Sk)
between some ‘standard’ norms.

Question 6. Fix an integer k > 0. For every real scalar p ∈ [1,∞), define the p-norm to
be:

‖x‖p := (|x1|p + · · ·+ |xk|p)1/p.
Note that ‖ · ‖2 is the usual norm / Euclidean distance in Rk.

Our goal here is to calculate the distance in the metric space Sk, between the p-norm
and the q-norm for any 1 6 p < q <∞.

(a) As a special case, prove directly that for all vectors x ∈ Rk, we have:

‖x‖2 6 ‖x‖1 6
√
k‖x‖2,

and both inequalities are sharp – i.e., equality can be attained in both of them. Hence,
what is the distance between (the equivalence classes of) ‖ · ‖1 and ‖ · ‖2 in Sk?

(b) The previous part involved a fundamental inequality. For the general case, we will
require another fundamental inequality, by Hölder. The inequality (in our special case
of interest) says that for all x = (x1, . . . , xk) ∈ Rk,(

1

k
(|x1|p + · · ·+ |xk|p)

)1/p

6

(
1

k
(|x1|q + · · ·+ |xk|q)

)1/q

.

(Do not prove this, just assume it.) Using Hölder’s inequality above, obtain one in-
equality that compares the norms ‖ · ‖p and ‖ · ‖q in Sk.

(c) For the ‘other’ inequality, we claim that ‖x‖p > ‖x‖q for all x, if 1 6 p 6 q < ∞.
Clearly this holds for x = 0; else it suffices to assume ‖x‖p = 1. (Why?) Now prove
the inequality.

(d) Use the previous two parts to compute the distance between (the equivalence classes
of) the p-norm and the q-norm in Sk. Note: first you will need to check – as in part
(a) – that there exist nonzero vectors in Rk at which the two inequalities above are
attained.



(e) There is another standard norm, which we saw in HW3: ‖x‖∞ := max(|x1|, . . . , |xk|).
Prove that for all p ∈ [1,∞), we have

‖x‖∞ 6 ‖x‖p 6 k1/p‖x‖∞,
whence dSk

(‖ · ‖p, ‖ · ‖∞) = log k
p

.

Finally, one can ask how the set of these (equivalence classes of) p-norms looks like as a
metric subspace of Sk.

Question 7. A map of metric spaces f : (X, dX) → (Y, dY ) is called an isometry if f is
‘distance-preserving’:

dY (f(x), f(x′)) = dX(x, x′), ∀x, x′ ∈ X.
(a) Prove that every isometry is injective, i.e., one-to-one – as well as continuous.
(b) As an example, the next few parts classify all the isometries from the normed space R

to itself. Indeed, given such an isometry f , define a := f(0). Then f(1) = a + 1 or
a − 1, say a + ε for some ε = ±1. Now successively compute f(2), f(3), . . . as well as
f(−2), f(−3), . . . .

(c) Next, compute f(1/2), hence f(n/2) for all integers n, as in (b).
(d) Compute f(1/4), hence f(n/4) for all integers n, as in (b).
(e) In general, guess f(n/2k) for all integers k > 0 and n.
(f) Finally, prove using (a),(e) that f(x) = xf(1) + (1 − x)f(0) for all x ∈ R. In other

words, f must be linear. Conversely, verify that every linear map : R → R with slope
±1 is an isometry.

Question 8. Finally, given an integer k > 0, let S ′
k denote the subset of equivalence classes

of norms {‖ · ‖p : 1 6 p 6∞} on Rk. Let the map

f : S ′
k → [0, log k]

be given by: f(‖ · ‖p) := log k
p

if p < ∞, and f(‖ · ‖∞) := 0. Prove that f is an isometry.

This means that the subset of (equivalence classes of) norms ‖ · ‖p looks like the interval
[0, log k] equipped with the usual metric in R.


