

MA221 – Analysis I : Real Analysis

2017 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 4 (*due by Friday, October 20*, in class or TA's office hours)

Question 1. Rudin Chapter 3 Problems 6, 9, 16.

Question 2. Rudin Chapter 8 Problem 6(b), 10.

The next set of problems constructs a rather exotic metric space. Namely, it continues beyond a previous set of homework questions, which showed that the set of all norms on \mathbb{R}^k are ‘similar’ (i.e., gave rise to the same open sets=topology). Our goal below is to show that (informally speaking,) *the space of these metrics itself forms a metric space!*

Question 3. We will say that two norms $N, N' : \mathbb{R}^k \rightarrow \mathbb{R}$ are *equivalent*, written $N \sim N'$, if there exists a scalar $\alpha > 0$ such that $N'(\mathbf{x}) = \alpha \cdot N(\mathbf{x})$, for all $\mathbf{x} \in \mathbb{R}^k$. Prove that \sim is an equivalence relation on the set of all norms : $\mathbb{R}^k \rightarrow \mathbb{R}$.

We now prove that the set \mathcal{S} of *equivalence classes* of norms forms a metric space. The next question proves what is needed to define the distance between two such norms.

Question 4. Suppose N_1, N_2 are two norms on \mathbb{R}^k .

(a) Prove that (the boundary of) the ‘unit N_1 -ball’

$$B_1 := \{\mathbf{x} \in \mathbb{R}^k : N_1(\mathbf{x}) = 1\}$$

is compact.

Hint: Using the ‘similarity’ of N_1 and the usual ‘Euclidean norm’ $\|\mathbf{x}\|_2 := (x_1^2 + \cdots + x_k^2)^{1/2}$ which was proved in HW3, show that B_1 is closed and bounded in $(\mathbb{R}^k, \|\cdot\|_2)$.

But from HW3, compact sets in $\|\cdot\|_2$ are compact in any norm on \mathbb{R}^k .

(b) Prove that $N_2 : (\mathbb{R}^k, N_1) \rightarrow \mathbb{R}$ is continuous, where N_1 induces the metric on \mathbb{R}^k .
 (c) Using the previous two parts, prove that there exist real numbers $0 < m \leq M$ such that

$$N_2/N_1 : \mathbb{R}^k \setminus \{\mathbf{0}\} \rightarrow \mathbb{R}$$

maps inside $[m, M]$, and the extreme values are attained.

(d) Finally, prove that if $N'_1 \sim N_1$ and $N'_2 \sim N_2$ are any other equivalent norms (as in the previous question), then there exists $c > 0$ such that

$$N'_2/N'_1 : \mathbb{R}^k \setminus \{\mathbf{0}\} \rightarrow \mathbb{R}$$

maps inside $[cm, cM]$, and the extreme values are attained.

Question 5. Now we can define the distance between two points in \mathcal{S} . Given two equivalence classes of norms in \mathcal{S} , choose any two representative norms N_1, N_2 from these classes, and define

$$d_{\mathcal{S}}(N_1, N_2) := \log(M/m),$$

where $0 < m \leq M$ are as in Question 4(c) above.

(a) If $N_1 \sim N'_1$ and $N_2 \sim N'_2$ are similar norms (i.e., in the same equivalence classes), then verify that

$$d_{\mathcal{S}}(N'_1, N'_2) = d_{\mathcal{S}}(N_1, N_2).$$

Hence $d_{\mathcal{S}}$ is a well-defined function on $\mathcal{S} \times \mathcal{S}$.

(b) Prove that $d_{\mathcal{S}}$ is a metric on \mathcal{S} . (Note: given the previous part, in this part you can work with pairs of ‘actual’ norms instead of equivalence classes of norms.)
(c) Suppose $k = 1$. What is the metric space \mathcal{S} of (equivalence classes of) norms on \mathbb{R}^1 ?

Next, let us compute the distances in this exotic space for general \mathbb{R}^k (let us call it \mathcal{S}_k) between some ‘standard’ norms.

Question 6. Fix an integer $k > 0$. For every real scalar $p \in [1, \infty)$, define the p -norm to be:

$$\|\mathbf{x}\|_p := (|x_1|^p + \cdots + |x_k|^p)^{1/p}.$$

Note that $\|\cdot\|_2$ is the usual norm / Euclidean distance in \mathbb{R}^k .

Our goal here is to calculate the distance in the metric space \mathcal{S}_k , between the p -norm and the q -norm for any $1 \leq p < q < \infty$.

(a) As a special case, prove directly that for all vectors $\mathbf{x} \in \mathbb{R}^k$, we have:

$$\|\mathbf{x}\|_2 \leq \|\mathbf{x}\|_1 \leq \sqrt{k} \|\mathbf{x}\|_2,$$

and both inequalities are sharp – i.e., equality can be attained in both of them. Hence, what is the distance between (the equivalence classes of) $\|\cdot\|_1$ and $\|\cdot\|_2$ in \mathcal{S}_k ?

(b) The previous part involved a fundamental inequality. For the general case, we will require another fundamental inequality, by Hölder. The inequality (in our special case of interest) says that for all $\mathbf{x} = (x_1, \dots, x_k) \in \mathbb{R}^k$,

$$\left(\frac{1}{k} (|x_1|^p + \cdots + |x_k|^p) \right)^{1/p} \leq \left(\frac{1}{k} (|x_1|^q + \cdots + |x_k|^q) \right)^{1/q}.$$

(Do not prove this, just assume it.) Using Hölder’s inequality above, obtain one inequality that compares the norms $\|\cdot\|_p$ and $\|\cdot\|_q$ in \mathcal{S}_k .

(c) For the ‘other’ inequality, we claim that $\|\mathbf{x}\|_p \geq \|\mathbf{x}\|_q$ for all \mathbf{x} , if $1 \leq p \leq q < \infty$. Clearly this holds for $\mathbf{x} = \mathbf{0}$; else it suffices to assume $\|\mathbf{x}\|_p = 1$. (Why?) Now prove the inequality.
(d) Use the previous two parts to compute the distance between (the equivalence classes of) the p -norm and the q -norm in \mathcal{S}_k . Note: first you will need to check – as in part (a) – that there exist *nonzero* vectors in \mathbb{R}^k at which the two inequalities above are attained.

(e) There is another standard norm, which we saw in HW3: $\|\mathbf{x}\|_\infty := \max(|x_1|, \dots, |x_k|)$.

Prove that for all $p \in [1, \infty)$, we have

$$\|\mathbf{x}\|_\infty \leq \|\mathbf{x}\|_p \leq k^{1/p} \|\mathbf{x}\|_\infty,$$

$$\text{whence } d_{\mathcal{S}_k}(\|\cdot\|_p, \|\cdot\|_\infty) = \frac{\log k}{p}.$$

Finally, one can ask how the set of these (equivalence classes of) p -norms *looks like* as a metric subspace of \mathcal{S}_k .

Question 7. A map of metric spaces $f : (X, d_X) \rightarrow (Y, d_Y)$ is called an *isometry* if f is ‘distance-preserving’:

$$d_Y(f(x), f(x')) = d_X(x, x'), \quad \forall x, x' \in X.$$

- (a) Prove that every isometry is injective, i.e., one-to-one – as well as continuous.
- (b) As an example, the next few parts classify all the isometries from the normed space \mathbb{R} to itself. Indeed, given such an isometry f , define $a := f(0)$. Then $f(1) = a + 1$ or $a - 1$, say $a + \epsilon$ for some $\epsilon = \pm 1$. Now successively compute $f(2), f(3), \dots$ as well as $f(-2), f(-3), \dots$
- (c) Next, compute $f(1/2)$, hence $f(n/2)$ for all integers n , as in (b).
- (d) Compute $f(1/4)$, hence $f(n/4)$ for all integers n , as in (b).
- (e) In general, guess $f(n/2^k)$ for all integers $k > 0$ and n .
- (f) Finally, prove using (a),(e) that $f(x) = xf(1) + (1 - x)f(0)$ for all $x \in \mathbb{R}$. In other words, f must be linear. Conversely, verify that every linear map $\mathbb{R} \rightarrow \mathbb{R}$ with slope ± 1 is an isometry.

Question 8. Finally, given an integer $k > 0$, let \mathcal{S}'_k denote the subset of equivalence classes of norms $\{\|\cdot\|_p : 1 \leq p \leq \infty\}$ on \mathbb{R}^k . Let the map

$$f : \mathcal{S}'_k \rightarrow [0, \log k]$$

be given by: $f(\|\cdot\|_p) := \frac{\log k}{p}$ if $p < \infty$, and $f(\|\cdot\|_\infty) := 0$. Prove that f is an isometry. This means that the subset of (equivalence classes of) norms $\|\cdot\|_p$ looks like the interval $[0, \log k]$ equipped with the usual metric in \mathbb{R} .