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1 Introduction

Since the publication of the groundbreaking paper [18], Ribet’s method has played a central

role in modern algebraic number theory. Ribet’s method provides a strategy for constructing

nontrivial extensions of a p-adic Galois representation ρ1 by another such representation ρ2.

After Ribet’s original proof of the converse to Herbrand’s theorem, his method was used by

Mazur–Wiles to prove the main conjecture of Iwasawa theory over Q [15] and by Wiles to

prove the main conjecture over arbitrary totally real fields [22]. An important innovation

introduced in Mazur–Wiles is the use of Fitting ideals. More recently, generalizations of

Ribet’s method have been used by Skinner–Urban to prove the main conjecture for p-ordinary

elliptic curves [20] and by the first two authors of this paper to prove the Brumer–Stark

conjecture away from p = 2 [7].

Suppose we are working over a local ring (T,m). An important assumption that occurs

throughout the literature is that the representations ρi are residually distinguishable, i.e.

that

ρ1 6∼= ρ2 (mod m). (1)

The seminal book on Ribet’s method by Bellaiche–Chenevier [1], which works in the language

of pseudorepresentations, assumes throughout that the pseudorepresentations considered are

“residually multiplicity free”, i.e. that the pseudorepresentation analog of (1) holds. The

main theorem of this paper is a very general version of Ribet’s Lemma for GL2 where we do

not impose the assumption that the associated characters are residually distinguished. The

following is a simplified version of our main theorem.

Theorem 1.1. Let T be a complete reduced Noetherian local ring, let I ⊂ T be an ideal,

and let G be a compact group. Suppose we have a continuous representation

ρ : G −→ GL2(K), K = Frac(T),
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such that the characteristic polynomial Pρ(g)(x) lies in T[x] for all g ∈ G and furthermore

that

Pρ(g)(x) ≡ (x− χ(g))(x− ψ(g)) (mod I) (2)

for two characters χ, ψ : G −→ T∗. Suppose that for every projection of K onto one of its

field factors K → k, the projection of ρ to GL2(k) is an irreducible representation of G over

k. Then there exists a finitely generated T-module M and a surjective continuous cohomology

class

κ ∈ H1(G,M(χψ−1))

such that

FittT(M) ⊂ I. (3)

HereM(χψ−1) denotes the T-moduleM endowed with a G-action via χψ−1, and FittT(M)

denotes the 0th Fitting ideal of M over T. A cohomology class is called surjective if for every

representative cocycle κ, the elements κ(g) for g ∈ G generate M as a T-module.

The novelty of Theorem 1.1 is that we do not assume that χ 6≡ ψ (mod m). The resid-

ually indistinguishable case χ ≡ ψ (mod m) was studied recently by Ophir and Weiss, who

obtained a version of Ribet’s Lemma when working with representations over a DVR [16].

As shown by Hajjar Muñoz in [13], one can deduce Theorem 1.1 when T is a DVR from the

results of Ophir–Weiss. However, in many arithmetic applications, the local rings T that

occur are Hecke algebras that are rarely DVRs. In this paper we establish a new technique

to handle the general case.

Before discussing the proof of Theorem 1.1, we indicate some arithmetic applications of

our results. As mentioned above, in earlier work the first two named authors proved the

Brumer–Stark conjecture away from p = 2. Using the main theorem of the present paper, in

a companion paper [9] we finish the proof of the Brumer–Stark conjecture by handling the

localization at p = 2. Let us recall the statement of this conjecture.

Let F be a totally real field of degree n and let H be a finite abelian extension of F that

is a CM field. Write G = Gal(H/F ). Let S and T denote finite nonempty disjoint sets of

places of F such that S contains the set S∞ of real places and the set Sram of finite primes

ramifying in H. Associated to any character χ : G −→ C∗ one has the Artin L-function

LS(χ, s) =
∏
p6∈S

1

1− χ(p)Np−s
, Re(s) > 1, (4)

and its “T -smoothed” version

LS,T (χ, s) = LS(χ, s)
∏
p∈T

(1− χ(p)Np1−s). (5)

Assume that T satisfies the Deligne–Ribet condition ensuring the integrality of LS,T (χ, 0),

namely that T contains two primes of different residue characteristic, or one prime of residue

characteristic larger than n+ 1. In [9] we prove:
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Theorem 1.2 (Brumer–Stark Conjecture). Let p 6∈ S ∪ T be a prime of F that splits

completely in H. Fix a prime P of H above p. There exists an element u ∈ H∗ satisfying

the following.

• We have |u|w = 1 for all places w of H not lying above p, including the complex places.

• We have ∑
σ∈G

χ(σ) ordσ−1(P)(u) = LS,T (χ, 0) (6)

for all χ : G −→ C∗.

• We have u ≡ 1 (mod qOH) for all q ∈ T .

In fact, in [9] we obtain a strong refinement of the Brumer–Stark conjecture that yields

the Fitting ideal of certain Ritter–Weiss modules. In [8], we show how to use this result to de-

duce the minus part of the Equivariant Tamagawa Number Conjecture (ETNC) for the Tate

motive associated to H/F . Again, we obtain this integrally over Z and not just over Z[1/2].

The proof of ETNC, which is obtained by applying an idea of Bullach–Burns–Daoud–Seo [3]

to our results on Brumer–Stark, yields many important new corollaries, including Rubin’s

higher rank Brumer–Stark conjecture, the integral Gross–Stark conjecture and higher rank

version due to Popescu. Our results should also yield a version of the classical Main Con-

jecture of Iwasawa Theory over totally real fields at the prime p = 2. Our proof of ETNC is

rather formal, with the main arithmetic input arising from the results of [9], which in turn

are deduced from the main theorem of this paper.

We conclude the introduction by describing some features of the proof of Theorem 1.1.

It is illuminating to first consider the residually distinguishable case χ 6≡ ψ (mod m). In

this setting, Theorem 1.1 can be proven following Mazur–Wiles (see [15, Chapter 5, §5,

Proposition 1]). Fix τ ∈ G such that χ(τ) 6≡ ψ(τ) (mod m). By Hensel’s lemma, Pρ(τ)(x)

has two distinct roots in T, congruent to χ(τ) and ψ(τ) (mod m) respectively. Choose a

basis for ρ consisting of the associated eigenvectors for ρ(τ). Write

ρ(σ) =

(
a(σ) b(σ)
c(σ) d(σ)

)
and let B denote the T-module generated by the elements b(σ) ∈ K for σ ∈ G. The function

κ(σ) = ψ−1(σ)b(σ) ∈ B/IB

defines a continuous cocycle representing a surjective class in H1(G,B/IB(χψ−1)). Fur-

thermore, the irreducibility assumption on ρ implies that B is a faithful T-module which in

turn implies that FittT(B/IB) ⊂ I. This concludes our sketch of the proof in the residually

distinguished case.
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In the residually indistinguishable case, we define another canonical T-module M and

a surjective class κ ∈ H1(G,M(χψ−1)). The proof that FittT(M) ⊂ I is rather elaborate

and is the most important contribution of this paper. New techniques that we introduce to

prove this inclusion are the application of matrix invariant theory and rational cohomology.

Let us describe these ingredients in greater detail.

By definition, FittT(M) is the ideal generated by the determinants of all square matri-

ces D of relations occurring in a finite presentation of M over T. In §2.6 we prove that

assumption (2) implies that certain expressions involving the traces and determinants of the

matrices ρ(g) lie in the ideal I. It therefore suffices to prove that for all D, the element

det(D) ∈ T can be expressed in terms of these traces and determinants. While this is possi-

ble to show “by hand” using some combinatorics in small situations (see for instance §2.5),

a general proof requires a more conceptual approach.

We first pass to a ring of formal variables R that is naturally endowed with a homo-

morphism π : R −→ K and prove that it suffices to show that certain expressions in R can

be expressed modulo ker(π) in terms of traces and determinants of certain matrices taking

values in R. The advantage of this is that the ring R is naturally endowed with an action of

the algebraic group G = GL2 over Z. We then apply a theorem of De Concini and Procesi,

known as the fundamental theorem of matrix invariant theory, that identifies the subring

A ⊂ R generated by traces and determinants as the subring of R invariant under the action

of G.

Now, the element x ∈ R naturally mapping to det(D) ∈ T ⊂ K is not invariant under the

action of G, but we prove that its image in R/J is invariant for an appropriate G-invariant

ideal J ⊂ ker(π). In order to apply the theorem of De Concini and Procesi, we must then

show that x lies in the image of the natural map

A = RG −→ (R/J)G.

The cohomology theory of algebraic group actions goes by the name rational cohomology

(or Hochschild cohomology). Here “rational” refers to actions via rational maps rather than

the rational numbers—indeed, it is essential that we work integrally over Z. Our goal is

to show that the class β ∈ H1(G, J) associated to x under the connecting homomorphism

(R/J)G −→ H1(G, J) vanishes.

To do this, we first recall an important result in rational cohomology: the restriction to

the lower triangular Borel B ⊂ G induces an isomorphism

H i(G, J) ∼= H i(B, J) for all i ≥ 0.

Hence it suffices to prove the vanishing of the image of β in H1(B, J). For this, we define a

B-invariant subideal J ′ ⊂ J such that β is in the image of the canonical push-forward

H1(B, J ′) −→ H1(B, J). (7)
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We prove that (7) is actually the zero map, and hence that β vanishes. We stress that the

ideal J ′ is only endowed with an action of B (not the full group G), so restriction to the

Borel is a crucial part of our argument. If the algebraic groups B and G are replaced by

their Z-valued points, then the restriction map H1(G(Z), J) −→ H1(B(Z), J) on ordinary

group cohomology is in general not an isomorphism (or even injective). Our use of rational

cohomology in place of group cohomology is therefore essential.

The proof of the vanishing of (7) is intricate. We begin by constructing a resolution C• of

the ideal J ′ by B-modules. Here the Kozsul complex giving a resolution of an ideal generated

by a regular sequence and its generalization by Buchsbaum–Rim to determinantal ideals play

an important role. Next we embed C• into a complex D• such that H0(D•) = R/J , and

such that D• consists of acyclic B-modules. We then prove a general result showing that in

such a setup (i.e. where C• is bounded and exact, and D• is acyclic), the push forward (7)

necessarily vanishes. See Theorems 4.22 and 4.23 for precise statements.

We conclude the introduction by noting that in the main text we actually prove a stronger

version of Theorem 1.1 that relaxes the assumption that T is reduced and that establishes

local conditions for the cohomology class we construct. See Theorem 2.1 below. It is the local

conditions that require the use of the Buchsbaum–Rim complex; for the global picture in

Theorem 1.1, the classical Koszul complex suffices. The reader who wishes to understand the

main aspects of our argument in a simplified setting (e.g. where we ignore local conditions)

is encouraged to consult the announcement [6].

It is natural to attempt to generalize our construction beyond the setting of GL2. Our

hope is that our construction in the residually indistinguishable case of Ribet’s method,

appropriately generalized, will have arithmetic applications beyond those presented in [9]

and described above.

We would like to thank Rafah Hajjar Muñoz, who visited the first named author at Duke

University from UPC (Barcelona) to write an undergraduate senior thesis in the 2021–2022

academic year. Rafah did computer examples generalizing §2.5, and it was by analyzing

the formulas he produced that we realized the role of the Koszul complex in the proof of

the vanishing of β ∈ H1(G, J). We would also like to thank Robert Boltje, Brian Conrad,

Corrado De Concini, Claudio Procesi, and Geordie Williamson for helpful discussions.

The first named author is supported by a grant from the National Science Foundation

(DMS-2200787). The second named author is supported by DST-SERB grant SB/SJF/2020-

21/11, SERB MATRICS grant MTR/2020/000215, SERB SUPRA grant SPR/2019/ 000422,

and DST FIST program - 2021 [TPN - 700661]. The fourth named author is supported by

NSF grant DMS 2201346.
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2 Main Theorem and Construction of Cocycle

Our main theorem is a strengthening of Theorem 1.1 stated in the introduction, in which we

incorporate certain local conditions at the places of F . Local conditions are always necessary

in arithmetic applications, and we have chosen conditions here tailored to the application

for Brumer–Stark in [9]. We also relax the assumption that T is reduced, though we still

need an assumption on the ring K in which our representation ρ lands.

Theorem 2.1. Let T ⊂ T̃ be an inclusion of commutative Noetherian rings, with T local.

Suppose that T and T̃ are complete with respect to the maximal ideal of T. Let Ĩ ⊂ T̃ be

a nontrivial ideal and let I = Ĩ ∩ T. Let K = Frac(T̃) be the total ring of fractions of T̃.

Assume that K is a product of local rings and that the maximal ideals of K are principal.

Let G be a compact group. Suppose we are given a continuous representation

ρ : G −→ GL2(K)

satisfying the following conditions.

• For each σ ∈ G, the characteristic polynomial Pρ(σ)(x) lies in T[x]. Furthermore we

have

Pρ(σ)(x) ≡ (x− χ(σ))(x− ψ(σ)) (mod I) (8)

for two characters χ, ψ : G −→ T∗ such that χ ≡ ψ (mod m).

• Let K0 = red(K) denote the maximal reduced quotient of K. Write K0 =
∏m

i=1 ki as a

product of fields. For every projection K → K0 → ki, the projection of ρ to GL2(ki) is

an irreducible representation of G over ki.

• We are given a set of subgroups Gv ⊂ G, indexed by a finite set S, such that for each

v ∈ S there exists a basis in which the restriction of ρ has the form

ρ|Gv ∼=
(
ηv 0
∗ ξv

)
(9)

for two characters ξv, ηv : Gv −→ T̃∗.

• We are given a partition S = Σ t P. For each v ∈ Σ we have the congruence

ξv ≡ ψ|Gv (mod Ĩ). (10)

• For each v ∈ P we are given a subgroup Iv ⊂ Gv such that

(ξv)|Iv ≡ χ|Iv (mod Ĩ). (11)
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If Σ is nonempty, fix v0 ∈ Σ. Choose an element σv ∈ Gv for each v ∈ P. Then there exists

a finitely generated T-module N and a continuous cocycle

κ ∈ Z1(G, N(χψ−1))

satisfying the following conditions.

• If Σ is nonempty, we have κ(Gv0) = 0 and for each v ∈ Σ \ {v0}, there exists yv ∈ N
such that

κ(σ) = (χψ−1(σ)− 1)yv

for all σ ∈ Gv.

• The module N(χψ−1) is generated over T by κ(G) and the yv, v ∈ Σ \ {v0}.

• For each v ∈ P, we have κ(σ) = 0 for all σ ∈ Iv.

• We have (∏
v∈P

(ξv(σv)− χ(σv))

)
FittT(N) ⊂ Ĩ . (12)

Remark 2.2. We have included the assumption of residual indistinguishability

χ ≡ ψ (mod m)

in the statement of Theorem 2.1 since that is the salient case for this paper. The theorem

remains true without that assumption and can be proven when χ 6≡ ψ (mod m) using the “b-

coefficient” of the representation ρ in the appropriate basis, as indicated in the introduction.

The theorem was essentially proven this way in the residually distinguishable case in [7],

though it was not stated in this precise form.

2.1 Construction of the module N

Our setting is as in the statement of Theorem 2.1. Extend ρ to a continuous T-algebra

homomorphism

T[G] −→M2(K).

Similarly extend χ, ψ to T-algebra homomorphisms T[G] −→ T. It is well-known that the

congruence (8) extends to all t ∈ T[G]:

Pρ(t)(x) ≡ (x− χ(t))(x− ψ(t)) (mod I). (13)

See for instance [16, Lemma 3.1].

Define two T-submodules of M2(K):

∆χ = {ρ(t)− χ(t) : t ∈ T[G]}, ∆ψ = {ρ(t)− ψ(t) : t ∈ T[G]}.
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Here χ(t) and ψ(t) denote scalar matrices. It is elementary to check that ∆χ∆ψ ⊂ ∆ψ,

where the module on the left represents the T-module generated by all products tt′ with

t ∈ ∆χ, t
′ ∈ ∆ψ. We then define the T-module

M0 = ∆ψ/∆χ∆ψ. (14)

Lemma 2.3. The map κ : G −→ ∆ψ/∆χ∆ψ given by

g 7→ ψ−1(g)(ρ(g)− ψ(g))

defines a continuous cocycle κ ∈ Z1(G,M0(χψ−1)).

Proof. We check the cocycle condition:

κ(g1g2) − κ(g1)− ψ−1χ(g1)κ(g2)

= κ(g1g2)− ψ−1(g1)(ρ(g1)− ψ(g1))− ψ−1χ(g1)ψ−1(g2)(ρ(g2)− ψ(g2))

= ψ−1(g1g2)(ρ(g1g2)− ψ(g1g2))

− ψ−1(g1)ρ(g1)− ψ−1(g1g2)χ(g1)ρ(g2)− ψ−1(g1)χ(g1)ψ(g2) + 1

= ψ−1(g1g2)(ρ(g1)− χ(g1))(ρ(g2)− ψ(g2)).

The last item vanishes in the quotient defining M0.

Define

N0 = M0 ⊕
⊕

v∈Σ\{v0}

Tyv,

i.e. the direct sum of M0 with the free T-module on the set Σ \ {v0}. Let Q ⊂ N0 denote

the T-submodule generated by the relations we must impose for κ to satisfy the desired

properties, namely:

• κ(σ) for σ ∈ Gv0 (in the case that Σ is nonempty).

• κ(σ)− (1− χψ−1(σ))yv for σ ∈ Gv, v ∈ Σ \ {v0}.

• κ(σ) for σ ∈ Iv, v ∈ P .

We then define

N = N0/Q

and let M be the image of M0 in N . Note that N is finitely generated since G is compact,

ρ is continuous, and Σ is finite. The first three bullet points required of the module N in

Theorem 2.1 are clearly satisfied.

The remainder of the paper is taken up in proving the last bullet point of Theorem 2.1,

which states (∏
v∈P

(ξv(σv)− χ(σv))

)
FittT(N) ⊂ Ĩ . (15)
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2.2 Fitting Ideal

If Σ is nonempty, we fix the basis for the representation ρ corresponding to (9) for the place

v0, i.e. we choose a basis such that ρ|Gv0 is lower triangular. If Σ is empty, any basis will

suffice. Write

ρ(σ)− ψ(σ) =

(
a(σ) b(σ)
c(σ) d(σ)

)
.

Let {
ρi = ρ(gi)− ψ(gi) =

(
ai bi
ci di

)
: 1 ≤ i ≤ r

}
, (16)

with gi ∈ G, be a set of T-module generators for ∆ψ such that {ρ(gi)− χ(gi)} is a set of

T-module generators for ∆χ. The module N is generated over T by the images of the ρi
together with the images of the yv for v ∈ Σ \ {v0}. Write s = #Σ \ {v0} (and s = 0 if Σ is

empty). For each σ ∈ G choose coefficients ασ,i ∈ T such that

ρ(σ)− ψ(σ) =
r∑
i=1

ασ,iρi.

There are 5 types of relations among the r + s generators {ρi} ∪ {yv} in the module N :

(I) Relations among the ρi that already hold in ∆ψ, before any quotient is taken. Suppose

r∑
k=1

εkρk = 0 with εk ∈ T. (17)

We have the relation

(ε1, . . . , εr, 0, . . . , 0) (s zeros). (18)

(II) Relations arising from the quotient by ∆χ∆ψ. Write

νi = ψ(gi)− χ(gi) (19)

with the gi as in (16). For each 1 ≤ i, j ≤ r, write

(ρi + νi)ρj =
r∑

k=1

δijkρk (20)

with δijk ∈ T. We have the relation

(δij1, . . . , δijr, 0, . . . , 0). (21)

(III) Relations arising from the quotient by κ(Gv0). For each σ ∈ Gv0 , we have the relation

(ασ,1, . . . , ασ,r, 0, . . . , 0). (22)
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(IV) Relations arising from the quotient by κ(Iv) for v ∈ P . For each σ ∈ Iv, we have the

relation

(ασ,1, . . . , ασ,r, 0, . . . , 0). (23)

(V) Relations arising from the quotient by the conditions at v ∈ Σ. For each σ ∈ Gv, we

have the relation

(ασ,1, . . . , ασ,r, 0, . . . , 0, ψ(σ)− χ(σ), 0). (24)

Here the entry ψ(σ)− χ(σ) occurs in the coordinate corresponding to yv.

By definition, FittT(N) is the ideal of T generated by the determinants of all square

matrices D0 of dimension (r+ s) whose rows are vectors of any of the forms (18), (21), (22),

(23), or (24).

2.3 Notational simplification

Suppose we are given a matrix D0 as above. In what follows, it is notationally convenient

if we replace our given matrix D0 with another matrix D that has the same determinant.

Namely, we may choose a larger set of generators of ∆ψ so that, for all σ ∈ G contributing

rows of types (III), (IV), or (V) to D0, we include as one of our generators ρi the element

ρσ = ρ(σ)− ψ(σ).

This change replaces the matrix D0 with a matrix D defined as follows:

• The new matrix D has one additional column associated to each row of type (III),

(IV), or (V) in D0, i.e. to each new generator ρσ.

• Each row of type (I) or (II) in D0 has a corresponding row in D, with 0’s in the new

columns.

• Each row of type (III), (IV), or (V) in D0 gets replaced by 2 rows in D:

– One row (ασ,1, . . . , ασ,r, 0, . . . , 0,−1, 0, 0, . . . , 0), with the −1 in the new column

corresponding to ρσ. Note that this is a row of type (I).

– One row

(0, 0, . . . , 1, 0, . . . , 0), (25)

with the 1 in the ρσ column if we have a row of type (III) or (IV), or one row

(0, 0, . . . , 1, 0, . . . , 0, ψ(σ)− χ(σ), 0, . . . , 0), (26)

with the 1 in the ρσ column and ψ(σ) − χ(σ) in the yv column if we have a row

of type (V).
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It is easy to see that the new matrix D has the same determinant as the old one, but

the form of the rows of type (III), (IV), or (V) has been greatly simplified. Going forward,

we will ignore D0 and only work with the matrix D. In particular, r denotes the number

of generators corresponding to D (i.e., the r for D0 plus the number of new generators

included). For the matrix D, the rows of type (III) or (IV) all have the form (25), and the

rows of type (V) all have the form (26).

2.4 Auxiliary Matrices

Write P = {v1, . . . , vt}. For notational simplicity, write σi = σvi and define

zσi = ξvi(σi)− χ(σi). (27)

Associated to our matrix D from §2.3, we define an auxiliary (r+ s+ t)× (r+ s+ t) matrix

E with coefficients in T as follows.

E =



zσ1 0 · · · 0 ασ1,1 · · · ασ1,r 0 · · · 0

0 zσ2 · · · 0 ασ2,1 · · · ασ2,r 0 · · · 0

. . .
...

...
0 0 · · · zσt ασt,1 · · · ασt,r 0 · · · 0

0(r+s)×t D


(28)

Clearly we have det(E) = (
∏t

i=1 zσi) det(D), so our goal in proving (15) is to show that

det(E) ∈ Ĩ. To prove this, we will define an alteration of the matrix E yielding a new square

matrix E ′ of dimension (r + s + t) with coefficients in K = Frac(T̃), rather than T̃. The

motivation behind these alterations will become clear in Lemma 2.4 below. For the first t

rows of E, we define

xσi = ξvi(σi)− ψ(σi) (29)

and we replace the element zσi by

xσi − a(σi) = xσi −
r∑
j=1

ajασi,j.

For the last r + s rows of E, we alter the rows as follows, based on the type of relation

appearing in the corresponding row of D:

(I) or (III) No change.

(II) Replace δijj by δijj−ai−νi, replace δiji by δiji−dj, and leave the other δijk unchanged.
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(IV) Insert

ξv(σ)− ψ(σ)− a(σ)

into the column among the first t columns of E corresponding to v.

(V) Replace ψ(σ)− χ(σ) by

ξv(σ)− ψ(σ)− a(σ).

The purpose of these replacements is that with these small changes, the matrix E ′ ob-

tained has vanishing determinant.

Lemma 2.4. We have det(E ′) = 0.

Proof. By assumption, the ring K is a product of local rings, and the maximal ideal of each

of these local rings is principal. It suffices to prove the result on each such local factor, so

we assume that K is a local ring with maximal ideal generated by an element π. We will

prove the result by demonstrating an appropriate vector in the kernel of E ′.

We are given that for each place v ∈ S, there exists a change of basis matrix

Mv =

(
Av Bv

Cv Dv

)
∈ GL2(K)

such that (
a(σ) + ψ(σ) b(σ)

c(σ) d(σ) + ψ(σ)

)
Mv = Mv

(
ηv(σ) 0
∗ ξv(σ)

)
(30)

for all σ ∈ Gv. Equating the upper right entries of this matrix equation, we obtain

Dvb(σ) = Bv(ξv(σ)− ψ(σ)− a(σ)). (31)

Let us for the moment assume that each Dv is invertible in K. Writing P = {v1, . . . , vt} and

Σ \ {v0} = {w1, . . . , ws}, we define a (column) vector of length r + s+ t as follows:

w =

(
−Bv1

Dv1

, . . . ,−Bvt

Dvt

, b1, b2, . . . , br,−
Bw1

Dw1

, . . . ,−Bws

Dws

)
.

The fact that E ′w = 0 follows from the definition of the alterations made in the definition

of E ′. For example, for the first t rows, the dot product of the ith row of E ′ with the vector

w is

(ξvi(σi)− ψ(σi)− a(σi))

(
−Bvi

Dvi

)
+

r∑
j=1

ασi,jbj

= (ξvi(σi)− ψ(σi)− a(σi))

(
−Bvi

Dvi

)
+ b(σi)

= 0

by (31). The orthogonality with the other rows is similar, and we content ourselves with

brief explanations:

13



• For rows of type IV or V, we again use (31).

• For rows of type I, we use
r∑
j=1

εijbj = 0.

The same holds for rows of type (III)—this is where our chosen basis for ρ is used

(recall we chose the basis such that ρ|Gv0 is lower triangular).

• For rows of type II, we use the equation

(ai + νi)bj + bidj =
r∑

k=1

δijkbk

arising from the “b”-component of the equation (20) defining the δijk.

The second bulleted assumption in the statement of Theorem 2.1 regarding the irreducibil-

ity of the projections of ρ implies that the elements b1, . . . , br generate K as a K-module.

Therefore the equation E ′w = 0 implies that det(E ′) = 0 as desired.

This argument is easily adapted in the case that some Dvi is not a unit in K. Recall

we have reduced to the setting that K is a local ring with maximal ideal generated by an

element π (which is necessarily nilpotent). For each v ∈ S, we can write Dv = uvπ
ev for

some unit uv ∈ K∗ and integer ev ≥ 0. Let m denote the maximal ev (if some Dv = 0, then

we let m = ev be the minimal exponent k such that πk = 0). Equation (31) yields

πmb(σ) =
Bvi

uvi
πm−evi (ξvi(σ)− ψ(σ)− a(σ)).

We therefore define

w =

(
−Bv1

uv1
πm−ev1 , . . . ,−Bvt

uvt
πm−evt , b1π

m, b2π
m, . . . , brπ

m,−Bw1

uw1

πm−ew1 , . . . ,−Bws

uws

πm−ewt

)
.

The equation E ′w = 0 follows as before. Now for the v yielding the maximal ev = m, the

component of w is −Bv/uv ∈ K∗. Here we use the fact that Dv 6∈ K∗ =⇒ Bv ∈ K∗ since

Mv ∈ GL2(K). Therefore E ′w = 0 again implies det(E ′) = 0.

Our goal is to show that det(E) ∈ Ĩ, and we have shown that det(E ′) = 0. It therefore

suffices to show that det(E ′)−det(E) ∈ Ĩ. In other words, the alterations used to pass from

E to E ′ are small enough to leave the determinant unchanged modulo Ĩ. Let us motivate

our strategy to prove this with an example.
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2.5 An example

Suppose r = 2 and that S = Σ t P is empty. We consider a matrix with only rows of type

II, namely

E = D =

(
δ121 δ122

δ211 δ212

)
, whence E ′ =

(
δ121 − d2 δ122 − a1 − ν1

δ211 − a2 − ν2 δ212 − d1

)
.

As shorthand, write ti = ai + di for the trace of ρi and t12 for the trace of ρ1ρ2. By

multilinearity of the determinant, we have

det(E ′)− det(E) = − det

(
d2 a1 + ν1

δ211 δ212

)
− det

(
δ121 δ122

a2 + ν2 d1

)
+ det

(
d2 a1 + ν1

a2 + ν2 d1

)
= (t1 + ν1)δ211 − (d1δ211 + d2δ212)+

+ (t2 + ν2)δ122 − (d1δ121 + d2δ122)+

+ (d1d2 − (a1 + ν1)(a2 + ν2))

= (t1 + ν1)δ211 − (c2b1 + (d2 + ν2)d1)+

+ (t2 + ν2)δ122 − (c1b2 + (d1 + ν1)d2)+

+ (d1d2 − (a1 + ν1)(a2 + ν2))

(32)

= (t1 + ν1)δ211 + (t2 + ν2)δ122 − (t12 + t1ν2 + t2ν1 + ν1ν2). (33)

Equation (32) uses the definition (20) of the δ’s. By the fundamental assumption concerning

the representation ρ (namely, the first bullet point in the statement of Theorem 2.1), we

know that tr(ρ(σ)) − ψ(σ) − χ(σ) ∈ I. Recalling the definition of νi from (19), it directly

follows that ti + νi ∈ I. A similar elementary computation that is generalized below also

shows that t12 + t1ν2 + t2ν1 + ν1ν2 ∈ I. Hence (33) lies in I as desired.

2.6 Trace identities

We now return to the general setting. We prove that certain expressions involving traces

and determinants, generalizing the elements in parentheses in (33), lie in I.

Lemma 2.5. We have det(∆ψ) ⊂ I.

Proof. We have det(ρ(t)− ψ(t)) = Pρ(t)(ψ(t)) ≡ 0 (mod I) by (13).

Let T〈X1, . . . , Xr〉 denote the polynomial algebra over T in r noncommuting variables

Xi. Define a T-algebra homomorphism

V : T〈X1, . . . , Xr〉 −→ T, Xi 7→ −νi.

Lemma 2.6. For any f ∈ T〈X1, . . . , Xr〉 with constant term 0, we have

tr(f(ρ1, . . . , ρr)) ≡ V (f) (mod I).
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Proof. We demonstrate the result for a monomial Xj1Xj2 · · ·Xjk with k ≥ 1. Write

ρji = ρ(gi)− ψ(gi), χi = χ(gi), ψi = ψ(gi).

We calculate the following, where the congruence holds modulo I:

tr
(∏

i

ρji

)
= tr

(∏
i

(ρ(gi)− ψ(gi))
)

= tr
(∏

i

ρ(gi)
)
−
∑
i 6=j

ψi tr
(∏
k 6=i

ρ(gk)
)

+
∑
i 6=j

ψiψj tr
( ∏
k 6=i,j

ρ(gk)
)

+ · · ·+ (−1)n2
∏
i

ψi

≡
(∏

i

χi +
∏
i

ψi

)
−
∑
i

ψi

(∏
k 6=i

χi +
∏
k 6=i

ψi

)
+
∑
i 6=j

ψiψj

( ∏
k 6=i,j

χi +
∏
k 6=i,j

ψj

)
+ · · ·+ (−1)n2

∏
i

ψi.
(34)

The k-th term has
(
n
k

)
copies of

∏
i ψi, except the (n+ 1)st (final) term which has 2 copies.

Taking into account the signs, we see that the total contribution of
∏

i ψi to the sum is

(1− 1)n + (−1)n = (−1)n. The expression (34) becomes∏
i

χi −
∑
i

ψi
∏
k 6=i

χi +
∑
i 6=j

ψiψj
∏
k 6=i,j

χi + · · ·+ (−1)n
∏
i

ψi

=
∏
i

(χi − ψi) =
∏
i

(−νji).

This is the desired result.

3 Formal Variables

The goal of the remainder of the paper is to prove that

det(E ′)− det(E) ∈ Ĩ

as in the example of §2.5. For this, we must prove the existence of certain algebraic identities

relating det(E ′)− det(E) to expressions involving traces and determinants, allowing for the

application of the lemmas in §2.6. It seems intractable to derive explicit formulas such as

(33) in the general setting. Instead, a more abstract proof is required.

Since we are aiming to prove the existence of a certain polynomial identity, we shift our

perspective from working with the ring T to working with formal polynomial rings. We will

define a polynomial algebra R and a specialization homomorphism π : R −→ K = Frac(T̃).
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3.1 The ring R

We first define the ring

R0 = Z[νi, εi, δijk,xσ], (35)

whose generators, along with their images under π, we specify precisely as follows:

• Variables νi for i = 1, . . . , r with π(νi) = νi as in (19).

• Variables εi, δijk corresponding to the rows of type (I) or (II) in the matrix D, with

π(εi) = εi and π(δijk) = δijk. To be clear, there is one set of variables {ε1, . . . , εr} for

each row of type I of D, and one set of variables {δij1, . . . , δijr} for each row of type

II of D (in the latter case, with (i, j) determined by the row).

• Variables xσ for each row of type IV or V in D associated to an element σ ∈ Gv, or for

σ = σi from the first t rows of E. We have π(xσ) = ξv(σ)− ψ(σ).

We then define

R1 = R0[ai, bi, ci,di]
r
i=1, (36)

with π(ai) = ai, etc., the components of the matrices ρi (see (16)).

Finally, recall that Bv0 denotes the set of σ indexing the rows of D of type III, corre-

sponding to certain generators ρσ (= ρi for some i). We then write bσ = bi and define

R = R1/(bσ : σ ∈ Bv0). (37)

As π(bσ) = 0, we obtain an induced map π : R −→ K.

We next define matrices E,E′ ∈ Mr+s+t(R) whose images under π are related to E,E ′,

respectively. The matrix E is defined from E simply by making every entry bold, with three

exceptions.

• In the first t rows of E we replace zσi by xσi + νσi
.

• For the rows of type IV, we insert xσ + νσ into the column of E corresponding to v.

• For the rows of type V, we replace the components ψ(σ)−χ(σ) by the elements xσ+νσ.

To motivate these replacements, note that

ψ(σ)− χ(σ) ≡ − tr(ρσ) = νσ.

It follows that π(E) − E has coefficients in Ĩ. To see this for the rows of type IV, we use

the assumption that (ξv)|Iv ≡ χ|Iv (mod Ĩ). For the rows of type V, we use the assumption

ξv ≡ ψ|Gv (mod Ĩ). Since E has coefficients in T, the fact that π(E)−E has coefficients in

Ĩ implies that

π(det(E)) ≡ det(E) (mod Ĩ). (38)

We next define a matrix E′ from E by enacting the same alterations used to define E ′

from E. More precisely:
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• For the first t rows of E, the rows of type IV, and the rows of type V, replace

xσ + νσ by xσ − aσ.

• For rows of type I or III, no change.

• For rows of type II, replace δijj by δijj − ai − νi, replace δiji by δiji − dj, and leave

the other δijk unchanged.

We then have π(E′) = E ′. Combining with (38), in order to prove our desired result

det(E ′)− det(E) ∈ Ĩ, it suffices to prove that π(det(E′)− det(E)) ∈ Ĩ.

3.2 Relation Ideal

We now define the polynomial relations that allow us to reduce det(E′) − det(E) to an

expression involving traces and determinants, as in the example of §2.5. Define

ρi =

(
ai bi
ci di

)
∈M2(R).

We let J ⊂ R be the ideal generated by the following:

• The 4 coefficients of
r∑
i=1

εiρi (39)

for each row of type I in D.

• The 4 coefficients of

(ρi + νi)ρj −
r∑

k=1

δijkρk (40)

for each row of type II in D.

• For each v ∈ P , let Bv denote the union of the singleton {σv} with the set of σ indexing

the rows of type IV in D. For each v ∈ Σ \ {v0}, let Bv denote the set of σ indexing

the rows of type V in D.

For v ∈ S \ {v0} and each σ ∈ Bv, recall the variables aσ, bσ, cσ,dσ corresponding to

the entries of ρσ(= ρi for some i). For each pair of distinct σ, τ ∈ Bv we include as

generators for J the 4 coefficients of(
A(σ, τ) B(σ, τ)
C(σ, τ) D(σ, τ)

)
(41)
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where

A(σ, τ) = bσcτ − (xτ − dτ )(xσ − aσ),

B(σ, τ) = bσ(xτ − aτ )− bτ (xσ − aσ),

C(σ, τ) = cσ(xτ − dτ )− cτ (xσ − dσ),

D(σ, τ) = bτcσ − (xσ − dσ)(xτ − aτ ).

(42)

Of course, the elements D(σ, τ) are redundant since D(σ, τ) = A(τ, σ), but our reasons

for describing these generators in terms of the matrix (41) will become apparent when

we prove Lemma 4.18 below.

Lemma 3.1. We have π(J) = 0.

Proof. The fact that the elements in (39) and (40) map to 0 under π is clear since these

are precisely the relations defining εi, δijk in T. For the generators in (41) we compute as

follows.

π(B(σ, τ)) = b(σ)(ξv(τ)− ψ(τ)− a(τ))− b(τ)(ξv(σ)− ψ(σ)− a(σ)). (43)

Using (31), it is easy to see that the expression (43) vanishes if it is multiplied by Bv or by

Dv. Since Bv and Dv generate K as a K-module, it follows that (43) vanishes. The proof

that A(σ, τ), C(σ, τ), and D(σ, τ) also vanish under π is similar and uses the equation

Bvc(σ) = Dv(ξv(σ)− ψ(σ)− d(σ))

obtained from equating the lower right entries of (30).

3.3 Subring of traces and determinants

In order to apply the results on traces and determinants from §2.6, we define a certain

subring A ⊂ R a follows. Let A1 ⊂ R1 denote the sub R0-algebra generated by the traces

and determinants of all matrices in the noncommutative Z-algebra generated by the matrices

ρi:

A1 = R0[ai + di,aidi − bici,aiaj + bicj + cibj + didj, . . . ].

Let A0 denote the image of A1 in R = R1/(bτ : τ ∈ Bv0). Let A ⊂ R denote the ring

generated over A0 by the dτ for τ ∈ Bv0 . Denote by A the image of A in R/J .

The goal of the remainder of this subsection is to show that in order to deduce our desired

result π(det(E′) − det(E)) ∈ Ĩ, it suffices to prove that the image of det(E′) − det(E) in

R/J lies in A. For this, it is important that det(E′) − det(E) lies in the following ideal of

R:

IR = 〈ai + νi, bi, ci,di〉.

The fact that det(E′)−det(E) lies in IR follows from multilinearity of the determinant since

every entry of E′ −E lies in IR.
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Lemma 3.2. We have π(A ∩ (IR, J)) ⊂ Ĩ.

Proof. Let Bv0 = {τ1, . . . , τh}. Define a R0-algebra homomorphism

V : R0〈X1, . . . , Xr〉 −→ R0, Xi 7→ −νi.

Any element of A can be written as a polynomial in the expressions

tr(f(ρ1, . . . ,ρr))− V (f), (44)

det(f(ρ1, . . . ,ρr)), (45)

and dτ1 , . . . ,dτh (46)

with coefficients in R0, as f ranges over polynomials with no constant term. As we now

explain, the elements in (44)–(46) have images under π lying in Ĩ. This holds by Lemma 2.6

for (44) and by Lemma 2.5 for (45). For (46) we note that our choice of basis ensures that

π(dτi) = ξv0(τi)− ψ(τi)

(see 9), and by assumption (10) this element lies in Ĩ. It is also easy to check that each ex-

pression (44)–(46) lies in IR. For example, we note that modulo IR we have ρi ≡
(
−νi 0

0 0

)
,

from which it follows that (44) lies in IR. The computation that (45) lies in IR is similar.

The elements in (46) lie in IR by definition.

To conclude, it therefore suffices to prove that π(R0 ∩ (IR, J)) ⊂ Ĩ. To calculate the

intersection R0 ∩ (IR, J), we note that

R/IR ∼= R0,

with ai 7→ −νi and bi, ci,di 7→ 0. To compute the quotient by J we then mod out by the

elements of J with these substitutions made, and obtain

R/(IR, J) ∼= R0/IR0

where IR0 ⊂ R0 is the ideal generated by

•
∑r

i=1 εiνi for each row of type I,

•
∑r

k=1 δijkνk for each row of type II,

• (xσ + νσ)xτ for each distinct σ, τ ∈ Bv, for each v ∈ S \ {v0}.

Thus R0 ∩ (IR, J) = IR0 and it remains to check that each of the bulleted expressions maps

to Ĩ under π. For instance, for a row of type I we have

0 = tr
( r∑
i=1

εiρi

)
≡ −

r∑
i=1

εiνi (mod I)
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by Lemma 2.6. The proof for the second bulleted item is similar. For the third, we note that

π((xσ + νσ)xτ ) = (ξv(σ)− χ(σ))(ξv(ψ)− ψ(σ)). (47)

All terms in (47) lie in T̃. Furthermore ξv(σ)− χ(σ) ∈ Ĩ for v ∈ P and ξv(σ)−ψ(σ) ∈ Ĩ for

v ∈ Σ by assumptions (11) and (10). This concludes the proof.

We summarize the result of this section.

Proposition 3.3. In order to prove the desired result

det(E ′)− det(E) ∈ Ĩ ,

it suffices to prove that the image of e = det(E′)− det(E) in R/J lies in the subring A, the

image of A in R/J .

Proof. If the image of e in R/J lies in A, then we may write e = a + j with a ∈ A and

j ∈ J . Then a = e − j ∈ A ∩ (IR, J) since e ∈ IR, so Lemma 3.2 implies that π(a) ∈ Ĩ.

Since π(j) = 0, we obtain π(e) ∈ Ĩ as well. We showed in §3.1 that π(e) ≡ det(E ′)− det(E)

(mod Ĩ). The result follows.

4 Matrix Invariant Theory and Rational Cohomology

As mentioned above, we do not know how to use direct computation to show that the image

of det(E′) − det(E) in R/J lies in A. Instead, we identify the subring A ⊂ R as the

ring of invariants of a Borel subgroup of the algebraic group GL2/Z acting by simultaneous

conjugation on the matrices ρi. The cohomology theory of algebraic group actions goes by

the name rational cohomology, or alternately Hochschild cohomology, and for the convenience

of the reader we review some basic definitions. As mentioned earlier, the word “rational”

is used in the sense of rational maps, not the rational numbers; we work integrally over Z

throughout.

4.1 Rational cohomology

Let G denote the algebraic group GL2/Z, i.e.

G = SpecG, G = Z[a, b, c, d, (ad− bc)−1]

endowed with its usual structure as a group scheme given by a comultiplication

c : G −→ G⊗Z G

and a counit e : G −→ Z. The lower triangular Borel B ⊂ G will play an important role in

this study:

B = SpecB, B = Z[x, y, z, (xz)−1],

with G→ B given by

(
a b
c d

)
7→
(
x 0
y z

)
.
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Definition 4.1 ([14, I.2.7-I.2.8]). A G-module is a Z-module V endowed with a comodule

map w : V −→ G⊗Z V , a map of Z-modules satisfying:

• (1⊗ w) ◦ w = (c⊗ 1) ◦ w,

• (e⊗ 1) ◦ w = id.

Equivalently, a G-module is a Z-module V endowed with a functorial action, for each

commutative ring A, of G(A) = GL2(A) on A⊗Z V . Consider the universal element

g =

(
a b
c d

)
∈ G(G),

corresponding to id under the isomorphism G(G) ∼= Hom(G,G). The action of g on G⊗Z V

defines a map G⊗Z V −→ G⊗Z V whose restriction to 1⊗ V is w.

We say that V is a G-module over a commutative ring R if V has a structure of R-module

that commutes with the G-action.

The center Gm ⊂ G decomposes any G-module V into a sum of homogeneous G-modules:

V = ⊕n∈ZV (n), where V (n) = {v ∈ V :

(
x 0
0 x

)
v = xn ⊗ v}.

Example 4.2. We denote by A = ZA⊕ZB⊕ZC⊕ZD the G-module given by the adjoint

representation, i.e. for g =

(
a b
c d

)
the universal element,

(
g · A g ·B
g · C g ·D

)
=

(
a b
c d

)−1(
A B
C D

)(
a b
c d

)
.

Note that for g =

(
x 0
y z

)
∈ B, we have

g · A = A+
y

x
B, g ·B =

z

x
B.

In particular,

B = ZB and V = ZA⊕ ZB

are B-submodules of A. For future reference, we also record

g · C = −y
z
A− y2

xz
B +

x

z
C +

y

z
D, g ·D = −y

x
B +D.

For a B-module M , let

M(n) := M ⊗ B⊗n. (48)

Note that
∧2 V ∼= Z(1) and V∗ ∼= V(−1).
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Definition 4.3 ([14, I. 4]). If V is a G-module, define the invariants

H0(G, V ) = V G = {v ∈ V : v 7→ 1⊗ v under the coaction map V → G⊗ V }
= {v ∈ V : for all commutative rings A and g ∈ G(A), g · v = v}.

The rational cohomology groups H i(G,−) are the right derived functors of H0(G,−).

All of the definitions above carry through with G replaced by B. The following is proven

in [11, Theorem 2.1] for semisimple groups over algebraically closed fields in characteristic

p. However, these hypotheses can be removed using the techniques of [14].

Theorem 4.4. Let V be a G-module. The restriction map

H i(G, V ) −→ H i(B, V )

is an isomorphism for all i ≥ 0.

Proof. For a field k, the isomorphism H i(Gk, Vk) ∼= H i(Bk, Vk) is [14, II.4.7]. To deduce

the result over Z, apply the universal coefficient theorem [14, I.4.18] (see also the proof of

[14, II.4.5]).

Remark 4.5. Theorem 4.4 is our motivation for using rational cohomology. The analogous

statement in ordinary group cohomology for the groups G(Z) = GL2(Z) and B(Z) is in

general false.

4.2 Acyclic B-modules

Given a B-module W , the algebraic induction IndG
B(W ) is defined to be the G-module

(G⊗Z W )B, where the action of B on G comes from right-multiplication on G ([14] I.3.3).

Definition 4.6. Let V be a homogeneous G-module. We say that V has a good filtration

if there is a finite filtration 0 = V0 ⊂ · · · ⊂ Vn = V such each Vi+1/Vi is isomorphic to

the algebraic induction IndG
B(−λ) for a dominant weight λ (considered as a rank one B-

module). More generally, a G-module V = ⊕n∈ZV (n) is said to have a good filtration if each

homogeneous component V (n) has a good filtration.

The following result is proven in [11] in characteristic p. The proof easily generalizes to

G = GL2/Z using results of [14].

Theorem 4.7. G-modules V with a good filtration are acyclic: H i(G, V ) = 0 for i > 0.

Proof. It suffices to prove for V = IndG
B(−λ). The right derived functors of induction,

R∗ IndG
B(−λ), are isomorphic to sheaf cohomology H∗(G/B,L(−λ)) of a certain coherent

sheaf L(−λ) ([14, I.5.13]) . In fact, L(−λ) ∼= O(n) for some n > 0, hence the higher

cohomology vanishes: Ri IndG
B(−λ) ∼= H i(P1,O(n)) = 0 for i > 0. Therefore one can apply

[14, I.4.6] to obtain H∗(G, IndG
B(−λ)) = H∗(B,−λ). This equals 0, since the weight −λ is

not a positive root (see [11, 2.2]).
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The following result is well-known (see [5, Theorem 11.1]).

Theorem 4.8. If V and W are G-modules with good filtrations, so is V ⊗Z W .

Corollary 4.9. The adjoint representation A is a good G-module, as are its tensor powers

A⊗k.

Proof. We confirm that A has a good filtration. The standard representation std is induced

from the dominant weight λ = (0,−1), while the dual of the standard std∨ is induced from

the dominant weight λ = (1, 0). Thus A ∼= std⊗ std∨ has a good filtration.

We also need the following result ([5] Corollary 11.7):

Theorem 4.10. The module Z[ai, bi, ci,di]i=1,...,n, where G acts via simultaneous conjuga-

tion, has a good filtration.

Lemma 4.11. For any good G-module V and j ≥ 0, H i(B, V (j)) = 0 for i > j.

Proof. If j = 0, this follows from Theorem 4.7 and Theorem 4.4. If j ≥ 1, we have

H i(B, V (j)) ∼= H i−1(G, V ⊗H1(P1,O(−2j))) ∼= H i−1(G, V ⊗ Sym2j−2(std)∨)

(see [14, I.4.5 and I.4.8]). We thus need to show that H i−1(G, V ⊗Sym2j−2(std)∨) = 0 when

i > j. By [14, I.4.18], it suffices to prove that for all primes p > 0, we have

H i−1(GL2/Fp, V ⊗ Sym2j−2(std)∨ ⊗Z Fp) = 0

when i > j. By [10, §3], this is equivalent to proving that the good filtration dimension of

Sym2j−2(std)∨ ⊗ Fp

is ≤ j − 1 for all primes p. By [17, Theorem 4.2 and Lemma 3.5], Sym2j−2(std)∨ ⊗ Fp has

good filtration dimension equal to b2j−2
p
c.

Lemma 4.12. For any good G-module V ,

1. H1(B, V (1)) ∼= H0(G, V ),

2. for i > 1, H i(B, V (i))⊗ Fp
∼= 0 for primes p > 2,

3. for i > 1, H i(B, V (i))⊗ F2
∼= H0(G, V )⊗ F2.

Proof. As in Lemma 4.11, we have an isomorphism

H i(B, V (i)) ∼= H i−1(G, V ⊗ Sym2i−2(std)∨).

Taking i = 1 proves (1).
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For a prime p > 2, H i−1(G, V ⊗ Sym2i−2(std)∨) ⊗ Fp = 0, as i − 1 is greater than the

good filtration dimension of Sym2ji−2(std)∨. This proves (2).

For p = 2,

H i−1(G, V ⊗ Sym2i−2(std)∨)⊗ F2
∼= Exti−1

G (Sym2i−2(std)⊗ F2, V ⊗ F2).

By repeatedly applying the final isomorphism in the proof of [17, Theorem 4.2], we find that

Exti−1(Sym2i−2(std)⊗ F2, IndG
B(−ν)⊗ F2) ∼= Ext0(F2, IndG

B(−ν)⊗ F2),

where ν is a dominant weight. As V admits a filtration whose gradeds are such IndG
B(−ν),

this implies that

Exti−1(Sym2i−2(std)⊗ F2, V ⊗ F2) ∼= Ext0(F2, V ⊗ F2) = H0(G, V ⊗ F2).

Using the long exact sequence associated to 0→ V
·2−→ V → V ⊗F2 → 0, combined with

H1(G, V ) = 0 (Lemma 4.11), we find that H0(G, V ⊗F2) ∼= H0(G, V )⊗F2. This concludes

the proof of (3).

Corollary 4.13. Given an inclusion S1 ⊂ S2 of commutative rings which are good G-

modules, the natural map

H i(B, S1(i))⊗H0(B,S1) H
0(B, S2)→ H i(B, S2(i))

is surjective for all i ≥ 0.

Proof. The case i = 0 is automatic, and the case i = 1 follows from Lemma 4.12 (1).

For i > 2, we must show that this map is surjective after tensoring with Fp for any prime

p. By Lemma 4.12 (2), the domain and codomain both vanish unless p = 2.

The map we are considering is defined via the product structure in group cohomology. As

all of the degree-reducing isomorphisms in Lemma 4.12 came from (the inverse of) boundary

maps associated to certain long exact sequences, they are compatible with this product

structure. Thus it suffices to check that the natural map

(H0(G, S1)⊗ F2)⊗H0(G,S1) H
0(G, S2)→ (H0(G, S2)⊗ F2)

is surjective. This is clear.

Lemma 4.14. If a B-module V admits a finite resolution

Vn(n) Vn−1(n− 1) · · · V1 V0 V
fn fn−1 f2 f1 f0

where each Vj is a good G-module, then V is an acyclic B-module.
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Proof. For j = 0, . . . , n + 1, write Wj = ker(fj−1) = im(fj), so in particular W0 = V and

Wn+1 = 0. For j = 0, . . . , n, we have a short exact sequence

0 −→ Wj+1 −→ Vj(j) −→ Wj −→ 0.

Taking the associated long exact sequences in B-cohomology, a downward induction using

Lemma 4.11 shows that H i(B,Wj) vanishes for i > j. For j = 0, this is the desired result.

Theorem 4.15. Consider the B-module

S = Z[ai, bi, ci,di]i=1,...,n/(bi : 1 ≤ i ≤ k),

where B acts by simultaneous conjugation. Let V be a good G-module such that V is Z-flat.

Then V ⊗Z S is an acyclic B-module.

Proof. Let S0 = Z[ai, bi, ci,di]i=1,...,n. The elements b1, . . . , bk form a regular sequence in

S0, hence the Koszul complex for this sequence yields an exact sequence of B-modules:(
k∧
S0

k⊕
i=1

S0

)
(k) −→ · · · −→

(
k⊕
i=1

S0

)
(1) −→ S0.

This gives a resolution of S = S0/(b1, . . . , bk). If we tensor this complex with V , we obtain

an exact complex of B-modules resolving V ⊗Z S. The kth term of this complex is of the

form (
⊕

V ⊗ S0) (k). As V ⊗S0 is a good G-module by Theorem 4.10 and Theorem 4.8, we

may apply Lemma 4.14 to conclude that V ⊗ S is an acyclic B-module.

In particular, this theorem may be applied to the ring R defined in §3, with the action

of B defined in §4.3.

4.3 Matrix Invariant Theory

The following important classical result is the subject of the beautiful book [5] by de Concini

and Procesi.

Theorem 4.16. Let R0 be a Z-flat commutative ring and let

R = R0[ai, bi, ci, di]
r
i=1.

Endow R with a G-action defined by simultaneous conjugation on the matrices ρi =

(
ai bi
ci di

)
.

The ring H0(G, R) ⊂ R is generated as an algebra over R0 by the traces and determinants

of all matrices in the algebra generated by the ρi.
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Theorem 1.10 of loc. cit. is the statement above with R0 = Z and invariants taken for the

group G(Z) = GL2(Z). Since G-invariance is stronger than G(Z)-invariance, the statement

above follows for R0 = Z. Extension to arbitrary Z-flat algebras R0 on which G acts trivially

is then immediate.

We now apply Theorem 4.16 to our setting. Recall the ring R defined in (35)–(37) above

and the subring A ⊂ R defined at the start of §3.3. Let B act on R1 = R0[ai, bi, ci,di]
r
i=1

by simultaneous conjugation on the matrices ρi. In particular, B acts trivially on R0. This

action preserves the ideal (bτ : τ ∈ Bv0) (see Example 4.2), and hence descends to an action

on R = R1/(bτ : τ ∈ Bv0).

Corollary 4.17. We have H0(B, R) = A.

Proof. It is convenient to write R in the form

R = R0[ai, bi, ci,di]
s
i=1[aτ , bτ , cτ ,dτ ]/(bτ ) (49)

where we exclude the variables corresponding to the entries of ρτ with τ ∈ Bv0 from the first

list of variables, and τ ranges over Bv0 in the second set of variables. We first handle the

case s = 0, i.e.

R = R0[aτ , bτ , cτ ,dτ ]/(bτ ).

We claim that in this case H0(B, R) is the image of R0[aτ ,dτ ] in R. Let D ⊂ B denote the

torus of diagonal matrices. There is a D-module isomorphism

R ∼= R0[aτ , cτ ,dτ ], bτ 7→ 0.

Since D acts trivially on aτ and dτ but scales cτ non-trivially, it is clear that H0(D, R)

is the image of R0[aτ ,dτ ]. Since the elements aτ and dτ are B-invariant in R, the claim

follows.

Now we return to the case of general s. Let

S = R0[ai, bi, ci,di], so that R1 = S[aτ , bτ , cτ ,dτ ].

Let b = (bτ : τ ∈ Bv0). By Theorem 4.16, the image of H0(G, R1) = H0(B, R1) in

H0(B, R1/b) is the ring A0 defined in §3.3.

Let R′1 = R0[aτ , bτ , cτ ,dτ ] ⊂ R1, and let b′ = R′1 ∩ b. By the claim above for s = 0, we

have

H0(B, R′1/b
′) = R0[aτ ,dτ ].

The ring A is by definition generated over A0 by the dτ ’s and hence also by the larger

generating set of aτ ’s and dτ ’s (note aτ +dτ ∈ A0). Thus, to prove that H0(B, R1/b) = A,

it will suffice to show that the map

H0(B, R′1/b)⊗H0(B,R′1) H
0(B, R1) −→ H0(B, R1/b) (50)
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is surjective.

Since {bτ} is a regular sequence in R1, we may provide a B-module resolution of R1/b

via a Koszul complex:(∧k

R1

(
k⊕
i=1

R1

))
(k) −→ · · · −→

k⊕
i=1

R1(1) −→ R1 −→ R1/b −→ 0.

Here k denotes the number of τ ’s, and the map
⊕k

i=1 R1(1) −→ R1 sends each standard

basis vector on the left to a bτ . Let

Cj =

(∧j

R1

(
j⊕
i=1

R1

))
(j)

denote the terms of this complex. There is an analogous Koszul complex for R′1/b
′, which

we denote C ′j. We have C• ∼= C ′• ⊗R′1 R1.

There is a 2nd-quadrant spectral sequence

E−i,j1 = Hj(B, Ci) =⇒ Hj−i(B, R1/b).

Since R1 is a good G-module (Theorem 4.10), Lemma 4.11 yields Hj(B, Ci) = 0 for j > i.

This vanishing implies that we have a sequence of maps

α0 : H0(B, C0) −→ H0(B, R1/b),

αi : H
i(B, Ci) −→ H0(B, R1/b)/αi−1(H i−1(B, Ci−1)) for i = 1, . . . , k,

such that αk is surjective. In other words, αi(H
i(B, Ci)) are the associated gradeds of

the filtration on H0(B, R1/b) induced by the spectral sequence. We similarly have that

αi(H
i(B, C ′i)), i = 0, . . . , k, are the associated gradeds of the filtration on H0(B, R′1/b

′)

induced by the corresponding spectral sequence for C ′•.

To prove the surjectivity of (50), we will show that the natural map

αi(H
i(B, C ′i))⊗H0(B,R′1) H

0(B, R1) −→ αi(H
i(B, Ci)) (51)

is surjective for all i = 0, . . . , k. Since C ′i
∼=
⊕

R′1(i) and Ci ∼=
⊕

R1(i), and both R′1 and

R1 are good G-modules, we apply Corollary 4.13 to see that the natural map

H i(B, C ′i)⊗H0(B, R1) −→ H i(B, Ci)

is surjective. The surjectivity of (51) follows.
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4.4 Roadmap

We now return to the proof of our main result, Theorem 2.1, picking up the argument of §3.

Recall that we had defined an element

e = det(E′)− det(E)

and our goal is to show that its its image in R/J , denoted e, lies in A ⊂ R/J . Here A is the

image of the subring A ⊂ R in R/J . Our strategy is as follows. We will first prove that the

ideal J is stable under the action of B. We will then show that

e ∈ H0(B, R/J).

The long exact sequence in rational cohomology associated to

0 −→ J −→ R −→ R/J −→ 0

yields an exact sequence

H0(B, R) = A H0(B, R/J) H1(B, J).
cJ (52)

The equality on the left is Corollary 4.17. Let β ∈ H1(B, J) denote the image of e under

the connecting homomorphism cJ . In view of (52), the desired result e ∈ A will follow if we

can show that β = 0.

For this, we will define a certain B-stable subideal J ′ ⊂ J and show that in fact

e ∈ H0(B, R/J ′).

(This is a slight abuse of notation, as here e denotes the reduction of e modulo J ′.)

We let α = cJ ′(e) ∈ H1(B, J ′) defined as above. Then β = ι∗(α) where ι : J ′ → J is the

inclusion and ι∗ is the induced map on rational cohomology. To conclude, we will prove that

the map

ι∗ : H
1(B, J ′) −→ H1(B, J)

vanishes. Therefore β = 0, and our result follows.

4.5 Invariance

Let J ′ ⊂ J denote the subideal generated by the “b” coefficients of the matrices in (39)–(41).

To be precise, J ′ is generated by:

• The elements
∑r

i=1 εibi for each row of type I in D.

• The elements (ai + νi)bj + bidj −
∑r

k=1 δijkbk for each row of type II in D.
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• For each v ∈ S \ {v0} and distinct σ, τ ∈ Bv, the elements

B(σ, τ) = bσ(xτ − aτ )− bτ (xσ − aσ).

Lemma 4.18. The ideals J ′ and J are stable under the action of B. More precisely, the

Z-module spanned by each set of 4 relations in (39)–(41) is isomorphic as a B-module to a

copy of the adjoint representation A (see Example 4.2).

Proof. This is clear for the relations in (39) and (40) since these relations are linear com-

binations of products of the ρi, with coefficients in R0 (on which B acts trivially), and the

definition of our action is by simultaneous conjugation on ρi. We must verify this for (41)

by direct computation. The Borel B is generated by its torus and unipotent subgroups:{
σx,y =

(
x 0
0 y

)}
,

{
τx =

(
1 0
x 1

)}
. (53)

Acting on the adjoint A, the element σx,y fixes A and D, scales B by y/x and scales C by

x/y. From the definitions in (42), it follows that σx,y acts the same way onA(σ, τ), . . . , D(σ, τ).

Similarly, τx has the following action:(
A B
C D

)
7→
(

A+Bx B
C + (D − A)x−Bx2 D −Bx

)
,

and one checks that the action on the matrix (41) is the same. For instance,

τxB(σ, τ) = bσ(xτ − aτ − bτx)− bτ (xσ − aσ − bσx) = B(σ, τ).

The verification of the other 3 coefficients is similar and left to the reader. The stability of

J ′ under B follows since the b-coefficient of the adjoint is stable under B.

The goal of the rest of this subsection is to prove the following.

Lemma 4.19. We have e ∈ H0(B, R/J ′).

The matrix E has coefficients in R0, on which B acts trivially, so we must show that

det(E′) ∈ H0(B, R/J ′).

Again we use the fact that B is generated by the σx,y and τx defined in (53). The matrix

E′ has coefficients in R0[ai,di] on which σx,y acts trivially. Therefore we must only consider

the action of τx.

Note that the first t rows of E′, the rows of type IV, and the rows of type V all have

the same shape. To each such row is attached a v ∈ S \ {v0} and a σ ∈ Gv. In the

column corresponding to v we have the element xσ − aσ and in the other columns we have
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0. Therefore to streamline the exposition we will treat these rows the same and call them

“of type L.” So E′ has rows of type I, II, III, or L.

Conjugation by τx sends ai 7→ ai + bix and di 7→ di − bix. This action fixes rows of

type I or III, but is non-trivial on rows of type II or L. We will handle the rows of type II

first, and then the rows of type L one v at a time. Write S \ {v0} = {v1, . . . , vs+t}. For

i = 0, . . . , s + t, let E′i be the matrix obtained from E′, but with the rows of type II and

rows of type L associated to vj for j ≤ i replaced by their image under τx. In particular

E′s+t = τx(E
′).

Lemma 4.20. We have det(E′0) ≡ det(E′) (mod J ′).

Proof. Suppose we have a row w of type II associated to a pair (i, j). Then

τx(w)− w = (0, 0, . . . , bjx, 0, . . . ,−bix, 0, . . . , 0),

where there is bjx in the ρi slot and −bix in the ρj slot. The difference det(E′0)− det(E′)

is a linear combination (with coefficients ±1) of determinants of all matrices M obtained by

starting with E′ and replacing some nonempty subset of the rows w of type II with τx(w)−w.

Suppose we are given such a matrix M and row w. We want to show that det(M) ≡ 0

(mod J ′). Note that if i = j then τx(w)−w = 0 and hence det(M) = 0. So we assume i 6= j.

We make the following alterations to M which do not change the determinant:

• We replace τx(w)− w by

(0, 0, . . . , x, 0, . . . ,−x, 0, . . . , 0).

At the same time, in every row other than w we multiply the ρj-coordinate by bj and

the ρi-coordinate by bi.

• We then add the new ρj column to the new ρi-column.

• For each 1 ≤ k ≤ r, k 6= i, j, we add bk times the ρk-column to the new ρi-column.

Let us make some observations about the matrix M that results from these changes:

• In rows of type I, II, or III, the ρi-coordinate is precisely the generator of J ′ associated

to the row.

• In rows of type L, we have bσ in the ρi-coordinate and xσ − aσ in the v-coordinate.

The 2 × 2 determinant of any two such rows (associated to the same v) is one of the

generators of J ′.

As we now explain, the fact that det(M) ∈ J ′ follows from these two facts. We compute

det(M) as the sum ∑
π

sgn(π)
∏
w

Mw,π(w) (54)
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as π ranges over all bijections between the set of rows and columns of M , and w runs over

the set of rows of M . For a given π, consider the w such that π(w) is the ρi-column. If w is of

type I, II, or III, then the contribution to det(M) lies in J ′ by the first bulleted observation.

Now suppose w is of type L, associated to some v ∈ S \ {v0} and σ ∈ Gv. The only rows of

M with nonzero component in the v-column are those of type L associated to v. So we only

obtain a nonzero contribution to det(M) if there is such a row w′, say attached to τ ∈ Gv,
and π(w′) = the v-column. In this case we consider the permutation π′ obtained from π by

swapping the roles of w and w′. So π′(w) = v-column, π′(w′) = ρi-column, and π′(u) = π(u)

for u 6= w,w′. Then sgn(π′) = − sign(π) and by the second bulleted observation we find∏
u

Mu,π(u) −
∏
u

Mu,π′(u) = (bσ(xτ − aτ )− bτ (xσ − aσ))
∏

u6=w,w′
Mu,π′(u) ∈ J ′.

Pairing off the permutations (π, π′) in this way shows that det(M) ∈ J ′. This concludes

the proof.

By a similar argument, we can show:

Lemma 4.21. For i = 1, . . . , s+ t, we have det(E′i) ≡ det(E′i−1) (mod J ′).

Proof. Note that E′i and E′i−1 only differ in the rows of type L associated to vi, and only in

the column associated to vi. In these entries, E′i−1 has the value xτ − aτ and E′i has the

value xτ − aτ − bτx.

We therefore modify E′i by adding, for each j = 1, . . . , r, the ρj-column scaled by bjx to

the vi-column. The resulting matrix M satisfies det(M) = det(E′i). Furthermore the entries

of M and E′i−1 are equal except in the column associated to vi for the rows not associated

to vi. In the vi-column we have:

• For rows of type I, II, or III, precisely the associated generator of J ′.

• For rows of type L associated to vj 6= vi, the element bσx.

Again we compute det(M) and det(E′i−1) via (54), this time focusing on the row w such

that π(w) = vi-column.

If w is of type I, II, or III, then the first bulleted point shows that the contribution to

det(M) is 0 modulo J ′. The same is true for det(E′i−1) since the (w, π(w))-entry of E′i−1 is

0.

If w is of type L associated to vi, then the (u, π(u))-entries of M and E′i−1 are equal for

all rows u, so the contributions to the determinants are the same.

Finally, if w is of type L associated to some other place vj 6= vi, then the (w, π(w))-entry

of E′i−1 is 0, so we must show that the contribution to det(M) is also 0 modulo J ′. By the

second bullet point above, the (w, vi)-entry of M is bσx and the (w, vj)-entry is either xσ−aσ
or xσ − aσ − bσx, depending on whether j > i or j ≤ i − 1. Now, the only other rows of
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M that have nonzero vj-coordinate are those of type L associated to vj. So the contribution

of π to det(M) is 0 unless π(w′) = vj-column for some other w′ of type L associated to vj,

say attached to the element τ ∈ Gvj . The entries of M in the w′ row are the same as those

described for the w row, with σ replaced by τ . In both the cases j > i or j ≤ i− 1, the 2× 2

determinant given by the (w,w′) rows and (vi, vj) columns is equal to

bσ(xτ − aτ )− bτ (xσ − aσ) ∈ J ′. (55)

Once again we define π′ to be the permutation π with the roles of w,w′ swapped. As before,

(55) implies that the sum of the contributions of π and π′ to det(M) is 0 modulo J ′. Of

course, the contribution of π′ to det(E′i−1) is also 0. Pairing off (π, π′) in this way concludes

the proof.

Lemmas 4.20 and 4.21 imply the desired result

det(τx(E
′)) = det(E′s+t) ≡ det(E′) (mod J ′).

This concludes the proof of Lemma 4.19.

4.6 A cascade of cohomology classes

In this section, we will assume the existence of a certain morphism of complexes (see Theo-

rem 4.23 below) and use it to prove the following.

Theorem 4.22. Let ι : J ′ → J be the inclusion, let j ≥ 1, and let

ι∗ : H
j(B, J ′) −→ Hj(B, J)

be the induced map on rational cohomology groups. Then ι∗ = 0.

Theorem 4.23. There exists a morphism of complexes of B-modules:

0 Cr Cr−1 · · · C1 C0 = J ′ 0

0 Dr Dr−1 · · · D1 D0 = J 0

fr

ιr

fr−1

ιr−1

f2 f1

ι1 ι0

gr gr−1 g2 g1

(56)

such that the complex C• is exact and every module Di, for i > 0, is an acyclic B-module.

We assume Theorem 4.23 for now and use it to prove Theorem 4.22.

Proof of Theorem 4.22. The image of the map f1 is J ′. Let

αj ∈ Hj(B, J ′) = Hj(B, im(f1)).
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Our goal is to show ι0,∗αj = 0. Applying the coboundary in the long exact sequence in

cohomology associated to

0 −→ ker(f1) −→ C1 −→ im(f1) −→ 0

to αj yields a class αj+1 ∈ Hj+1(B, ker(f1)). The class αj+1 represents the obstruction to

lifting αj to a class in Hj(B, C1). Writing ker(f1) = im(f2), we can view

αj+1 ∈ Hj+1(B, im(f2)).

Repeat the process above, using the coboundary in the long exact sequence associated to

0 −→ ker(f2) −→ C2 −→ im(f2) −→ 0

to obtain αj+2 ∈ Hj+2(B, ker(f2)). Continuing in this way we obtain

αj+i ∈ Hj+i(B, ker(fi)) = Hj+i(B, im(fi+1))

for i = 0, . . . , r. Note αj+r = 0 since ker(fr) = 0.

For each i = 0, . . . , r, we define

βj+i = ιi,∗αj+i ∈ Hj+i(B, im(gi+1)).

We aim to prove that βj = ι0,∗αj vanishes. The obstruction to βj+i ∈ Hj+i(B, im(gi+1)) lift-

ing to a class in Hj+i(B, Di+1) is precisely the image of βj+i+1 in Hj+i+1(B, ker(gi+1)). Now,

βj+r = 0 since αj+r = 0, and hence we conclude that βj+r−1 lifts to a class in Hj+r−1(B, Dr).

However, Dr is B-acyclic, so Hj+r−1(B, Dr) = 0 and hence βj+r−1 = 0. Therefore, βj+r−2

lifts to a class in Hj+r−2(B, Dr−1); again this cohomology group vanishes so βj+r−2 = 0. This

downward cascading continues and we obtain βi = 0 for all i = j, . . . , j + r. In particular

βj = 0 as desired.

In the remainder of the paper we will prove Theorem 4.23. This will conclude the proof

of Theorem 2.1.

5 Construction of Complexes

5.1 Generators of J ′

Recall the ring R defined in (35)–(37) and the ideal J ′ ⊂ R defined in §4.5. We distinguish

three types of generators of J ′:

(I) The elements
∑r

i=1 εibi for each row of type I in D.

(II) The elements (ai + νi)bj + bidj −
∑r

k=1 δijkbk for each row of type II in D.
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(III) For each v ∈ S \ {v0} and distinct σ, τ ∈ Bv, the elements

B(σ, τ) = bσb
′
τ − bτb′σ,

where

b′σ := xσ − aσ. (57)

We partition {1, . . . , r} according to whether bi is associated to a place v ∈ S. We find

(after re-indexing) that we have b1, . . . , bk not associated to any place, followed by, for each

v ∈ S \ {v0}, {bσ : σ ∈ Bv}. Note that since bσ = 0 in R for σ ∈ Bv0 , we have non-zero

variables b1, . . . , bk, bk+1, . . . , b` for some k ≤ ` ≤ r.

We may view the generators of types I and II as linear forms in the variables b1, . . . , b`:

Li =
∑̀
j=1

V ijbj ∈ R. (58)

The coefficients V ij ∈ R are generic, in that we can present R as

R = S0[ai, ci,di]i=1,...,r[V ij][b1, . . . , b`],

where S0 is a subring of R0 = Z[νi, εi, δijk,xσ] and the V ij are certain linear combinations

of the generators of R0. Specifically, each V ij is an expression of the form εi, (ai + νi) −
δijj,dj − δiji, or −δijk, and S0 is obtained by deleting (in each of the 4 respective cases)

εi, δijj, δiji, or δijk from the definition of R0. Note that the group B acts trivially on the

V ij’s of the form εi or −δijk, but acts non-trivially on (ai+νi)−δijj and dj−δiji. Thus for

the purpose of producing the resolutions of Theorem 4.23, we may consider these generators

simply as
∑
V ijbj, but for the purpose of proving B-acyclicity we will need to distinguish

these two types of generators.

We may do a further change of variables and present R as

R = T0[b′σ,V ij][b1, . . . , b`], (59)

for T0 a subring of R0[ai, ci,di]i=1,...,r. Here the b′σ are defined in (57).

5.2 Motivation via regular sequences

For each v ∈ S \ {v0}, fix σv ∈ Bv. Over the ring R′ = R[(b′σv)−1]v∈S\{v0}, we may choose a

smaller set of elements to generate the extended ideal R′J ′, by removing certain generators

of type III. Indeed, the following elements generate R′J ′:

• the linear forms
∑
V ijbj ,

• for each v ∈ S \ {v0}, B(σv, τ) = b′τbσv − b′σvbτ for all τ ∈ Bv \ {σv}.
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Indeed, for σ ∈ Bv, we have

B(σ, τ) = (b′σv)−1(b′σB(σv, τ)− b′τB(σv, σ)).

These bulleted elements form a regular sequence in R′, a fact whose whose proof we omit as

it will not end up being used. To obtain an exact complex of R′-modules resolving R′/R′J ′

as required in Theorem 4.23, we would simply take the Koszul complex on this regular

sequence.

However, to prove Theorem 4.23 we need to construct a resolution of R/J ′, not of R′/R′J ′.

Unfortunately, the ring R/J cannot typically be resolved using a Koszul complex, as the ideal

J ′ is not typically generated by a regular sequence. Nevertheless, it is still possible to resolve

R/J ′ using a generalization of the Koszul complex due to Buchsbaum–Rim [2], which we

now describe.

5.3 Buchsbaum–Rim complexes

For this section, let R denote any commutative ring. Associated to an R-linear map

f : V −→ W, V = Rn, W = Rm,m ≤ n,

Buchsbaum–Rim [2] define two complexes R(f) and R(det(f)).

5.3.1 Special cases

Case m = 1. For a map f : V −→ R,

R(f) = R(det(f)) = Koszul complex on the elements f(e1), . . . , f(en) ∈ R.

The degree k term of the complex R(f) is
∧k V , and in degrees 1 and 0 the complex is given

by V R
f

. Here and throughout, all alternating powers are understood to be over R.

Case m = 2. Consider a map f : V −→ W , with

V = Rn =
⊕
i

Rei, W = R2 = Rw1 ⊕Rw2.

Write f(ei) = biw1 + b′iw2, and define rij := bib
′
j − bjb′i. The complex R(f) begins as follows:

· · ·
∧2(W ∗)⊗

∧3 V V W.
f

(60)

The image of the map
∧2(W ∗)⊗

∧3 V −→ V is generated as an R-module by

dijk = rijek + rjkei + rkiej.
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The complex R(det(f)) begins as follows:

· · ·
(
W ∗ ⊗

∧3 V
)
⊕
(∧2(W ∗)⊗

∧4 V
) ∧2 V

∧2W.
det(f)

(61)

For k ≥ 1, the degree k term of the complex R(det(f)) is:⊕
si∈{1,2}

(∧s1
W ∗
)
⊗ · · · ⊗

(∧sk−1

W ∗
)
⊗
∧2+

∑
si
V. (62)

The image of the map det(f) :
∧2(W ∗)⊗

∧2 V −→ R is generated over R by the 2× 2

minors of the m× 2 matrix corresponding to f .

The complex R(det(f)) is functorial in the following sense. Given another R-linear map

f ′ : V ′ −→ W , V ′ = Rn′ , as well as an R-linear map g : V −→ V ′ such that f ◦ g = f ′,

there is a chain homomorphism det(g) : R(det(f)) −→ R(det(f ′)) defined using the map∧i g :
∧i V −→

∧i V ′.

5.3.2 Exactness of BR-complexes

For m ≤ k ≤ n, define f(k) : Rk −→ Rm by restricting f to the first k summands of Rn.

Definition 5.1 ([2]). The map f is regular if for all m ≤ k ≤ n, we have H1(R(f(k))) = 0.

The following result of Buchsbaum–Rim generalizes the well-known exactness of the

Kozsul complex associated to a regular sequence.

Theorem 5.2 ([2]). The complexes R(f) and R(det(f)) satisfy the following.

1. If f is regular then Hi(R(f)) = 0 for all i ≥ 1.

2. If Hi(R(f)) = 0 for i ≥ j, then Hi(R(det(f))) = 0 for i ≥ j.

Corollary 5.3. If f : Rn −→ Rm is regular then R(det(f)) is a resolution of R/ im(det(f)).

We will apply this result to multiple complexes R(det(f)) and then take the tensor

product, necessitating the following lemma.

Lemma 5.4. Consider a ring R with maps fi : R
ni −→ Rmi, 1 ≤ i ≤ k, such that mi ≤ ni.

Define ideals Ji = im(det(fi)), and let J = J1 + · · ·+Jk. Suppose that fi⊗R/(J1 + · · ·+Ji−1)

is regular for all i ≤ k. Then the tensor product over R of these complexes,
⊗k

j=1R(det(fj)),

is a resolution of R/J .

Proof. By induction on k, we may suppose that the natural map

⊗k−1
j=1R(det(fj)) −→ R/

( k−1∑
j=1

Jj

)
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is a quasi-isomorphism. Then, since R(det(fk)) is a complex of free R-modules, the Tor

spectral sequence (see [21]) implies that

⊗kj=1R(det(fj)) −→ R/
( k−1∑
j=1

Jj

)
⊗R(det(fk))

is also a quasi-isomorphism. By the assumption on regularity, the codomain is an exact

complex such that the natural map

R/
( k−1∑
j=1

Jj

)
⊗R(det(fk)) −→ R

( k∑
j=1

Jj

)
is a quasi-isomorphism.

5.4 Outline of proof of Theorem 4.23

Recall that in §5.1 we described generators for J ′ of the form:

• Li =
∑
V ijbj, i = 1, . . . , n.

• B(σ, τ) = bσb
′
τ − bτb′σ for v ∈ S \ {v0}, distinct σ, τ ∈ Bv0 .

Recall also the B-modules B and V defined in Example 4.2, and the notation R(1) = B⊗ZR.

We also write VR = V ⊗Z R; this is ∼= R2 as an R-module.

To handle the first collection of generators bulleted above, we define the B-equivariant

map

f : R(1)n =
n⊕
i=1

R(1)ei −→ R, f(ei) = Li. (63)

For the second collection of generators bulleted above, we define for each v ∈ S \ {v0} the

B-equivariant map

fv :
⊕
σ∈Bv

R(1)eσ −→ VR, fv(eσ) = A⊗ bσ +B ⊗ b′σ. (64)

We consider the Buchsbaum–Rim complexes associated to the maps f, fv:

• The Koszul complex R(f) is given in degrees 1 and 0 by the map f , whose image is

the ideal J ′0 := ({
∑
V ijbj}i).

• The Buchsbaum–Rim complex R(det(fv))(−1) (note the twist) is given in degrees 1

and 0 by the map

det(fv) :
( 2∧

⊕σR(1)
)
⊗R(−1) −→

2∧
VR ⊗R(−1) ∼= R.

The image of det(fv) is the ideal J ′v := (B(σ, τ) : σ, τ ∈ Bv) ⊂ R.
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The tensor product of these complexes,

C• := R(f)⊗R
⊗

v∈S\{v0}

R(det(fv))(−1), (65)

is a complex of B-modules such that H0(C•) = R/(J ′0 +
∑

v J
′
v) = R/J ′.

To prove Theorem 4.23 it will suffice to prove:

Proposition 5.5. The complex C• satisfies the following.

1. H i(C•) = 0 for i > 0, i.e. C• is a resolution of R/J ′ and the image of C1 −→ C0 = R

is the ideal J ′.

2. C• maps to a complex D• such that the image of D1 −→ D0 = R is J , and Di is an

acyclic B-module all i ≥ 0.

We now explain how this proposition follows from the results of §5.5-§5.9. In the next

two sections (§5.5 and §5.6), we will extend the maps f and fv to maps

f̃ :
n⊕
i=1

AR −→ R, f̃v :
⊕
σ∈Bv

VR −→ VR.

Here AR = A ⊗Z R where A denotes the adjoint representation defined in example 4.2.

There are natural maps R(f) −→ R(f̃) and R(det(fv))(−1) −→ R(det(f̃v))(−1). We will

show that these maps factor through subcomplexes

R(f̃)′ ⊂ R(f̃), R(det(f̃v))(−1)′ ⊂ R(det(f̃v))(−1)

consisting of good G-modules tensored with the B-module R.

Define

J0 := ideal of R generated by the coefficients of (39) and (40),

and for v ∈ S \ {v0} define

Jv := (A(σ, τ), B(σ, τ), C(σ, τ), D(σ, τ) : σ, τ ∈ Bv) ⊂ R.

Then by definition,

J = J0 +
∑

v∈S\{v0}

Jv.

We will show that H0(R(f̃)′) = R/J0 and H0(R(f̃v)
′) = R/Jv. Define

D• := R(f̃)′ ⊗R
⊗

v∈S\{v0}

R(det(f̃v))(−1)′. (66)

It follows that

H0(D•) = R/(J0 +
∑

v∈S\{v0}

Jv) = R/J,
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i.e. that the image of the map D1 −→ D0 = R is J . As all terms of D• consist of good

G-modules tensored with R, we conclude by Theorem 4.15 that all terms of D• are acyclic

B-modules.

It will then remain to show that H i(C•) = 0 for i > 0. This will be proved using

Proposition 5.14 below, building on the work of sections §5.7-§5.9.

5.5 Extension of f

We define a map

f̃ : AnR =
n⊕
i=1

ARei −→ R

extending the map f defined in (63) as follows (here extension refers to the natural inclusion

R(1) = BR ⊂ AR, see Example 4.2).

• For linear forms Li corresponding to relations of type I, we set

f̃(Aei) =
∑

V ijaj, f̃(Bei) =
∑

V ijbj = Li,

f̃(Cei) =
∑

V ijcj, f̃(Dei) =
∑

V ijdj.

In other words, as Li came from the b-coefficient of some matrix
∑r

i=1 εiρi, we extend

f using the other 3 coefficients of
∑r

i=1 εiρi.

• For linear forms Li corresponding to relations of type II, i.e. to the b-coefficient of

(ρi + νi)ρj −
∑r

k=1 δijkρk, we similarly extend f using the other 3 coefficients.

The Koszul complex R(f̃) is a complex of B-modules. By the functoriality of the Koszul

complex we obtain a B-equivariant map R(f) −→ R(f̃).

Lemma 5.6. Expanding the terms of the complex R(f̃) via the Kunneth formula, the image

of R(f) −→ R(f̃) is contained in the subcomplex R(f̃)′ whose kth term is⊕
#I=k

⊗
i∈I

(Aei)⊗R.

Proof. The kth degree term of the Koszul complex R(f) is given by

k∧(⊕
i

R(1)ei

)
∼=
⊕
#I=k

⊗
i∈I

R(1),

since R(1) is free of rank 1 over R. The image of this map is contained in the subcomplex

R(f̃)′ whose kth degree term is identified by the Kunneth formula with⊕
#I=k

⊗
i∈I

ARei,

i.e. the submodule of
∧k⊕ARei generated by wedge products vi1ei1 ∧ · · · ∧ vikeik , vij ∈ AR,

such that i1 < · · · < ik.
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Lemma 5.7. The terms of R(f̃)′ are the tensor product of good G-modules with R.

Proof. This follows directly from Corollary 4.9.

5.6 Extension of fv

For σ ∈ Bv, recall the notation b′σ = xσ − aσ. Define now also c′σ = xσ − dσ. We define

f̃v :
⊕
σ∈Bv

VReσ −→ VR

by

f̃v(Aeσ) = A⊗ c′σ +B ⊗ cσ,
f̃v(Beσ) = A⊗ bσ +B ⊗ b′σ.

Lemma 5.8. The map f̃v is B-equivariant.

Proof. Let g =

(
x 0
y z

)
. We have

g · bσ =
z

x
bσ,

g · b′σ = g · (xσ − aσ) = xσ − aσ −
y

x
bσ = b′σ −

y

x
bσ

g · cσ = −y
z
aσ −

y2

xz
bσ +

x

z
cσ +

y

z
dσ

g · c′σ = g · (xσ − dσ) = xσ − dσ +
y

x
bσ = c′σ +

y

x
bσ.

We compute

g·
(
A⊗ bσ +B ⊗ b′σ

)
=
(
A+

y

x
B
)
⊗
(z
x
bσ

)
+
(z
x
B
)
⊗
(
b′σ −

y

x
bσ

)
=
z

x

(
A⊗ bσ +B ⊗ b′σ

)
.

We also have

g ·
(
A⊗ c′σ +B ⊗ cσ

)
=
(
A+

y

x
B
)
⊗
(
c′σ +

y

x
bσ

)
+
(z
x
B
)
⊗
(
−y
z
aσ −

y2

xz
bσ +

x

z
cσ +

y

z
dσ

)
= A⊗

(
(xσ − dσ) +

y

x
bσ

)
+B ⊗

(
y

x
(xσ − dσ) +

y2

x2
bσ −

z

y
aσ −

z

x
bσ + cσ +

y

x
dσ

)
=
(
A⊗ c′σ +B ⊗ cσ

)
+
y

x

(
A⊗ bσ +B ⊗ b′σ

)
.

The result follows.
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The BR-complex R(det(fv)) is a complex of B-modules whose degree 0 term is∧2
VR ∼= R(1),

and whose degree k ≥ 1 term is:⊕
si∈{1,2}

(∧s1
V∗R
)
⊗ · · · ⊗

(∧sk−1 V∗R
)
⊗
∧2+

∑
si
(⊕
σ∈Bv

R(1)eσ

)
. (67)

The BR-complex R(det(f̃v)) is the same but with
∧k(

⊕
σ R(1)eσ) replaced by

∧k(
⊕

σ VReσ).

The map R(det(fv)) −→ R(det(f̃v)) has image contained in the subcomplex R(det(f̃v))
′

where each
∧k(

⊕
σ VReσ) is replaced by the R-submodule generated by wedge products

vσ1eσ1 ∧ · · · ∧ vσkeσk , vi ∈ VR, such that σi 6= σj for i 6= j. This submodule is isomorphic to

a direct sum of modules
⊗k

R VR.

Lemma 5.9. H0(R(det(f̃v))
′(−1)) = R/Jv.

Proof. We are restricting the map

det(f̃v) :
2∧

(⊕σVReσ)⊗R(−1) −→ R

to the wedge-products vσeσ ∧vτeτ , vσ, vτ ∈ VR, with σ 6= τ . We need to show that the image

of this restricted map is Jv. A direct computation using the definitions in (42) shows that

the elements Beσ ∧ Aeτ , Aeσ ∧ Aeτ , Beσ ∧ Beτ , Aeσ ∧ Beτ , map to ±A(σ, τ), ±B(σ, τ),

±C(σ, τ), ±D(σ, τ). By definition, these latter elements generate Jv. The result follows.

Lemma 5.10. The terms of R(det(f̃v))
′(−1) are the tensor products of good G-modules with

R.

Proof. The degree 0 term of R(det(f̃v))
′(−1) is R. The degree k ≥ 1 term of R(det(f̃v))

′(−1)

is a direct sum of modules of the form((∧s1
V∗R
)
⊗ · · · ⊗

(∧sk−1 V∗R
)
⊗ V⊗2+

∑
si

R

)
⊗R(−1). (68)

Setting m =
∑

(si − 1) =
(∑

si

)
− (k − 1), (68) is isomorphic to((∧2

V∗R
)⊗m

⊗ (V∗R)⊗(k−1)−m ⊗ Vk+m+1
R

)
⊗R(−1) (69)

Using the isomorphisms
∧2 V ∼= Z(1), V⊗V∗ ∼= A, and V⊗V = A(1), one readily checks

that (69) is isomorphic to A⊗k ⊗R. The result now follows from Corollary 4.9.

As described in §5.4 above, Lemmas 5.7 and 5.10 imply that the complex D• defined in

(66) satisfies the property that Di is B-acyclic for i > 0. In other words, we have finished

the proof of the second part of Proposition 5.5. It remains to prove the first part of the

proposition.
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5.7 Regularity criterion for maps f : Rn −→ R2

Let R be a commutative ring. Given a map f : Rn −→ R2, write f(ei) = (bi, b
′
i), and define

rij = bib
′
j − bjb′i.

Lemma 5.11. Suppose that for k = 2, . . . , n, the congruence

r1kx ≡ 0 (mod (r12, . . . , r1(k−1)))

implies that

x ∈ (rij : i, j < k).

Then the map f : Rn −→ R2 is regular.

Proof. The goal is to show that the kernel of f is generated as an R-module by

dijk = rijek + rjkei + rkiej.

We proceed via induction. In the base case n = 2, our assumption is that r12 is a

non-zerodivisor, and this implies that ker(f) = 0. We proceed to the general case.

Any element x = (x1, . . . , xn) ∈ ker(f) satisfies
∑
r1ixi = 0. Hence

r1nxn ≡ 0 mod (r12, . . . , r1(n−1)).

The assumption implies that we may write xn =
∑

i<j<n αijrij for some αij ∈ R. There-

fore the final coordinate of (x1, . . . , xn) −
∑
αijdijn is zero. Writing this vector as y =

(y1, . . . , yn−1, 0), we can apply the inductive hypothesis to y and the restriction of f to its

first n− 1 coordinates. Hence y is a linear combination of the dijk, so x is as well.

Corollary 5.12. Let R0 be a commutative ring, and let R = R0[b′1, . . . , b
′
n, b1, . . . , bn]. The

map f : Rn −→ R2 defined by f(ei) = (bi, b
′
i) is regular.

Proof. We will show that the criterion of Lemma 5.11 holds. Let Jk = ({rij}1≤i,j≤k) ⊂ R.

First we write V = b′1 and work in R[V −1]. Note that R[V −1] · Jk = (r12, . . . , r1k), and

that

R[V −1]/R[V −1] · Jk ∼= R0[b′1, . . . , b
′
n, b1, bk+1, . . . , bn][(b′1)−1]. (70)

It is clear that the image of r1(k+1) is a non-zerodivisor in (70), and hence that the criterion

of Lemma 5.11 holds.

It remains to prove that R ∩ (R[V −1] · Jk) = Jk. Therefore suppose that x ∈ R and that

the image of x vanishes in (70). Fix nonegative integers c1, . . . , ck, as well as nonnegative

integers ai, a
′
i for k < i ≤ n. Applying the isomorphism (70), we see that the coefficients of

the monomials in x of the form

ba11 · · · bann (b′1)a
′
1 · · · (b′n)(a′n)

with ai + a′i = ci for i ≤ k,
∑
ai = constant, and

∑
a′i = constant, must sum to zero.

For example, x could be a linear combination of expressions of the form b2b
′
3 − b′2b3 or

d1b2b3b
′
4 + d2b2b

′
3b4 + d3b

′
2b3b4 with d1 + d2 + d3 = 0. It is easy to see that, modulo Jk, all

such monomials are equivalent. Therefore x ∈ Jk.
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5.8 Regularity criterion for sequences of linear polynomials

In this subsection we will show that the regularity criterion above hold for generic linear

polynomials. As motivation, let k be a field and suppose we are given homogeneous linear

polynomials

Li =
n∑
j=1

aijXj ∈ k[X1, . . . , Xn], 1 ≤ i ≤ m.

If the m × n matrix A = (aij) has linearly independent rows, then there is a change of

variables Xi =
∑
αijYj such that k[X1, . . . , Xn] ∼= k[Y1, . . . , Yn] and Li = Yi for i ≤ m. Thus

L1, . . . , Lm is a regular sequence. We now show that a similar fact holds for inhomogeneous

linear polynomials with generic coefficients over arbitrary commutative rings, essentially

because a generic matrix of size m× n with m ≤ n has linearly independent rows.

Proposition 5.13. Let R0 be a commutative ring, and let R = R0[{Aij}1≤i≤m,1≤j≤n]. Con-

sider the linear polynomials Li =
∑
AijXj − ci, 1 ≤ i ≤ m in R[X1, . . . , Xn], with ci ∈ R. If

m ≤ n, then L1, . . . , Lm is a regular sequence.

Proof. We prove the statement by induction on n, with the base case n = 1 being elementary.

Claim 1. The sequence L1, . . . , Lm is regular over R[A−1
11 ][X1, . . . , Xn].

To prove this, we enact the linear change of variables

Y1 = L1, Yj = Xj for j ≥ 1.

This is invertible over R[A−1
11 ], so

R[A−1
11 ][X1, . . . , Xn] = R[A−1

11 ][Y1, . . . , Yn]. (71)

In our new coordinates, L1 = Y1, whereas for i > 1 we have

Li = Ai1A
−1
11 Y1 +

∑
j>1

(Aij − Ai1A−1
11 A1j)Yj − (ci − Ai1A−1

11 c1)

=:
(∑

A′ijYj

)
− c′i.

For the first step in regularity, it is clear that L1 = Y1 is not a zero-divisor in (71). For the

regularity of the rest of the sequence, we use the inductive hypothesis. Let

S0 = R0[Ai1, A1j, A
−1
11 ].

Then recalling Y1 = L1, we see

R[A−1
11 ][Y1, . . . , Yn]/(L1) ∼= R[A−1

11 ][Y2, . . . , Yn]

= S0[Aij]2≤i,j≤n[Y2, . . . , Yn]

= S0[A′ij]2≤i,j≤n[Y2, . . . , Yn]. (72)
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The last equality holds because relative to S0, the change of variables Aij 7→ A′ij is just a

translation. By the inductive hypothesis, we know that L̄2, . . . , L̄m is a regular sequence in

(72). Claim 1 follows.

Claim 2. The sequence L1, L2, . . . , Lm−1 is regular over R/(A11)[X1, . . . , Xn].

Let S0 = R0[A21, . . . , Am1][Am2, . . . , Amn][X1], so that

R/(A11)[X1, . . . , Xn] = S0[{Aij}i<m,j>1][X2, . . . , Xn]. (73)

Writing c′i = ci−Ai1X1, we have L̄i =
∑n

j=2AijXj− c′i in (73). By the inductive hypothesis,

L̄1, . . . , L̄m−1 form a regular sequence in (73).

Claim 3. The sequence L1, . . . , Lm is regular over R[X1, . . . , Xn].

We induct on m, with the base case m = 0 being vacuous. We therefore suppose that

L1, . . . , Lm−1 is a regular sequence in R[X1, . . . , Xn]. It remains to show that Lm is a non-

zerodivisor modulo (L1, . . . , Lm−1). Suppose PLm =
∑

i<mQiLi. By Claim 1, we have

Ae11P =
∑
i<m

QiLi (74)

for some e ≥ 0. We need to show that there exists such an equation (with possibly different

Qi) with e = 0. Therefore suppose e > 0. Suppose there exists an index i such that

Qi 6∈ (A11). Let k be the largest such index.

Since ∑
i<m

Q̄iL̄i = Ae11P = 0 in R/(A11)[X1, . . . , Xn]

and Q̄i = 0 for i > k, we have

Q̄kL̄k =
∑
i<k

−Q̄iL̄i.

Since k < m, Claim 2 implies that Q̄k ∈ (L̄1, . . . , L̄k−1), hence Qk ∈ (L1, . . . , Lk−1, A11).

Write Qk = U1L1 + · · ·+ Uk−1Lk−1 + UkA11, and define

Q′i =


Qi + UiLk i < k

UkA11 i = k

Qi i > k.

Equation (74) then becomes

Ae11P =
∑
i<m

Q′iLi, (75)

where now Q′i ∈ (A11) for i ≥ k. Continuing the process to go from (74) to (75), we can

repeatedly change variables to decrease k. In the end we obtain an equation as in (74) where

every Qi is divisible by A11. Since A11 is not a zero divisor in R[X1, . . . , Xn], it can be

cancelled from the equation, yielding an equation like (74) with e replaced by e− 1. We can

repeat this argument until we obtain an equation with e = 0.

45



5.9 Application of regularity criteria to the resolution of J ′

Proposition 5.14. Let R0 be a commutative ring, and let

R = R0[{b′i}ni=1, {bi}n+r
i=1 , {Vij}1≤i≤r,1≤j≤n+r].

Let

{1, . . . , n} = S1 t · · · t Sk

be a partition. Define fi : R
Si −→ R2 by fi(ej) = (bj, b

′
j) for j ∈ Si. Define fk+1 : Rr −→ R

by fk+1(ei) =
∑
Vijbj. Let Ii := im(det(fi)) ⊂ R, and define I :=

∑k+1
i=1 Ii. Then the tensor

product of complexes ⊗k+1
i=1R(det(fi)) is a resolution of R/I.

Proof. To see that f1 is regular, f2⊗R/J1 is regular, all the way through fk⊗R/(I1 + · · ·+
Ik−1), we repeatedly apply Corollary 5.12. The point is that the different Ii use disjoint sets

of variables. It remains to show that fk+1 is regular over R/(I1 + · · ·+ Ik). This is the same

as showing that Li =
∑
Vijbj, 1 ≤ i ≤ r form a regular sequence in R/(I1 + · · ·+ Ik).

Define

R1 =
R0[b′1, . . . , b

′
n, b1, . . . , bn]

(I1 + · · ·+ Ik) ∩R0[b′1, . . . , b
′
n, b1, . . . , bn]

.

It is easy to see that

R/(I1 + · · ·+ Ik) = R1[Vij][bn+1, . . . , bn+r].

Set ci = −
∑

j≤n Vijbj. Then the linear polynomials may be written Li = (
∑n+r

j=n+1 Vijbj)−ci.
Hence the L1, . . . , Lr are linear polynomials in r variables with generic coefficients and non-

generic constant term. By Proposition 5.13, they form a regular sequence.

We may now complete the proof of Proposition 5.5, which as noted in §5.4 completes the

proof of Theorem 4.23. The second part of the proposition was proven in §5.6, so we must

only demonstrate the first part.

Proposition 5.14 implies that the complex C• defined in (65) is a resolution of R/J ′. The

ring R is of the appropriate form for the application of Proposition 5.14 via the presentation

(59). We will briefly verify that the numerical hypothesis on the number of generic linear

relations implicit in the statement of Proposition 5.14 is satisfied (i.e. that the two appear-

ances of the variable r, in the number of variables bi and in the domain of fk+1, are equal).

In the matrix D, we have precisely one row of type III associated to each generator of the

form ρσ, σ ∈ Bv, v ∈ S \{v0}. Therefore the number of rows of types I or II in D is precisely

the same as the number of generators ρi not associated with any v ∈ S \ {v0}. This implies

that the number of generators Li of J ′ is the same as the number of variables bi of R not

associated with any v ∈ S \ {v0}. This is precisely the condition on the number of generic

linear relations needed to apply Proposition 5.14 to the ideal J ′.
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