

KARHUNEN-LOÈVE EXPANSION

Theorem Let χ_n be i.i.d. standard Normal variables. Then, almost surely, the series

$$W_t := \sum_{n=0}^{\infty} \chi_n \frac{\sqrt{2} \sin(n\pi t)}{n\pi}$$

converges uniformly for $t \in [0, 1]$ and then W is the standard Brownian bridge.

For any fixed t , the sequence $\sin(n\pi t)/n\pi$ is in ℓ^2 , and hence the series defining B_t converges a.s. We need the following lemma to prove uniform convergence. It is a weaker form of a famous inequality of Bernstein that asserts that $\|p'\|_{L^\infty} \leq N\|p\|_{L^\infty}$.

Lemma Let $p(t) = \sum_{n=0}^{N-1} c_n \sin(nt)$ (more generally, any trigonometric polynomial of degree at most N). Then (i) $\|p'\|_{L^\infty} \leq N^2\|p\|_{L^\infty}$. (ii) There is an interval of length $1/N^2$ on which $|p(t)| \geq \frac{1}{2}\|p\|_{L^\infty}$.

Proof (i) Clearly

$$\|p'\|_{L^\infty} = \max_{0 \leq t \leq 1} \left| \sum_{n=0}^{N-1} c_n n\pi \sin(n\pi t) \right| \leq \left(\max_{0 \leq n \leq N-1} |c_n| \right) \frac{\pi}{2} N(N-1).$$

By the orthogonality of $\sin(n\pi t)$ on $[0, 1]$, and $\int \sin^2(n\pi t) dt = \frac{1}{2}$, we see that

$$|c_n| = \frac{1}{2} \left| \int p(t) \sin(n\pi t) dt \right| \leq \frac{1}{2} \|p\|_{L^\infty}$$

from which we get $\|p'\|_{L^\infty} \leq \frac{\pi}{4} N(N-1)\|p\|_{L^\infty} \leq N^2\|p\|_{L^\infty}$.

(ii) Thus, if $|p(t_*)| = \|p\|_{L^\infty}$, then for all $|t - t_*| \leq \frac{1}{2N^2}$, part (i) implies that $|p(t) - p(t_*)| \leq \|p'\|_{L^\infty}|t - t_*| \leq \frac{1}{2}\|p\|_{L^\infty}$. Thus $|p(t)| \geq \frac{1}{2}\|p\|_{L^\infty}$ on the interval $[t_* - 1/2N^2, t_* + 1/2N^2]$ which has length $1/N^2$. \square

Proof[Theorem] Fix $k \geq 1$ and consider $p_k(t) := \sum_{n=2^k}^{2^{k+1}-1} \chi_n \frac{\sqrt{2} \sin(n\pi t)}{n\pi}$. We would like to get an upper bound for the sup norm of p_k . By the lemma, we are assured of an interval of length 2^{-2k-2} on which p_k is at least half of $\|p_k\|_{L^\infty}$. Therefore, for any $\lambda > 0$, we get

$$\int_0^1 (e^{\lambda p_k(t)} + e^{-\lambda p_k(t)}) dt \geq \frac{1}{2^{2k+2}} e^{\frac{1}{2}\lambda\|p_k\|_{L^\infty}}.$$

Now take expectations over χ_n s to get

$$\mathbf{E} \left[e^{\frac{1}{2}\lambda\|p_k\|_{L^\infty}} \right] \leq 2^{2k+2} \int_0^1 \mathbf{E} \left[e^{\lambda p_k(t)} + e^{-\lambda p_k(t)} \right] dt = 2^{2k+3} \int_0^1 \exp \{ \lambda^2 r_k(t) \} dt$$

where $r_k(t) = \sum_{n=2^k}^{2^{k+1}-1} \frac{\sin^2(n\pi t)}{n^2\pi^2}$ by the well known $\mathbf{E}[e^{aX}] = e^{a^2/2}$. Clearly $r_k(t) \leq \frac{1}{\pi^2 2^k}$. Therefore, we get $\mathbf{E} \left[e^{\frac{1}{2}\lambda\|p_k\|_{L^\infty}} \right] \leq 2^{2k+3} \exp \left\{ \frac{\lambda^2}{\pi^2 2^k} \right\}$. By Markov's inequality, it follows that $\mathbf{P} [\|p_k\|_{L^\infty} \geq x] \leq 2^{2k+3} \exp \left\{ \frac{\lambda^2}{\pi^2 2^k} - \lambda x \right\}$. With $x = 2^{-k/4}$ and $\lambda = 2^{k/2}$, we get

$$\mathbf{P} \left[\|p_k\|_{L^\infty} \geq 2^{-k/4} \right] \leq 2^{2k+3} \exp \left\{ \frac{1}{\pi^2} - 2^{k/4} \right\}$$

which is rapidly decaying in k and hence by Borel Cantelli, we see that almost surely, $\|p_k\|_{L^\infty} \leq 2^{-k/4}$ for all large k . This implies that $W_t = \sum_k p_k(t)$ is uniformly convergent for $t \in [0, 1]$, a.s.

From the uniform convergence it follows that W is a.s. a continuous function on $[0, 1]$. It is also a Gaussian process since χ_n are i.i.d. Normals. To show that W is the Brownian bridge, it suffices to show that its covariance kernel

$$\sum_{n=1}^{\infty} \frac{2 \sin(n\pi t) \sin(n\pi s)}{\pi^2 n^2} = \begin{cases} t(1-s) & \text{if } t < s, \\ s(1-t) & \text{if } s < t. \end{cases}$$

We showed this in class (try a direct proof!). \square