
DISCRETE TIME MARTINGALES

Definition A sequence of random variables Mn, n ≥ 0 on a common probability space (Ω,F , P ) is said to be a
martingale if Mn ∈ L1(P ) for each n and E[Mn+1|Fn] = Mn for all n ≥ 0, where Fn = σ(Mk : k ≤ n).

Proposition Let M be a martingale. Let Cn, n ≥ 1 be a sequence of random variables such that Cn ∈ Fn−1 for each n.
Then let Xn =

Pn
k=1 Ck(Mk −Mk−1) for n ≥ 1. Then X is a martingale with X0 = 0 a.s.

Optional sampling theorem If M is a martingale and τ is a (finite a.s.) stopping time for Fn, and Xn = Mτ∧n, then
X is a martingale.

Convergence theorem for martingales Let M be a martingale.

(1) If M is bounded in L1(P ), i.e., sup
n

E[|Mn|] <∞, then Mn
a.s.→ M for some M ∈ L1(P ).

(2) If M is also uniformly integrable, i.e., sup
n

E[|Mn|1|Mn|>A] → 0 as A → ∞, then Mn
L1,a.s.−→ M . In particular,

Mn = E[M |Fn] for all n and E[M ] = E[M0].

(3) If M is bounded in Lp for some p > 1, that is sup
n

E[|Mn|p] < ∞, then Mn
Lp,a.s.−→ M . In particular, Mn =

E[M |Fn] for all n and E[M ] = E[M0].

Note that the assumptions and conclusions are both progressively stronger. A natural (and surprisingly useful!) way
to construct martingales is to take an arbitrary random variable M ∈ L1(P ) and any filtration Fn, and then define the
sequence Mn = E[M |Fn] - this is called a “Doob martingale”. The martingale convergence theorem is a converse of
sorts to this statement, that any uniformly integrable martingale is a Doob martingale.

For all applications in this course, it is enough to remember that an L2 bounded martingale converges a.s. and in L2

(and hence in L1 too) and therefore E[M |Fn] = Mn and E[Mn]→ E[M ].

A few words about the proofs The first proposition about X being a martingale is a trivial consequence of definitions
and properties of conditional expectation (check it!).

The optional sampling theorem is a direct consequence of the proposition by letting Cn = 1τ≥n which is Fn−1

measurable and Xn =
Pn
k=1 Ck(Mk −Mk−1) =

Pτ∧n
k=1(Mk −Mk−1) = Mτ∧n −M0. By the previous theorem X

is a martingale and hence, so is Mτ∧n = Xn +M0.
The first statement in the martingale convergence theorem has a truly beautiful proof due to Doob via upcrossing

inequalities. We don’t give the proof here, but Doob’s inequality is presented below. Once the a.s. convergence of an
L1(P ) martingale is proved, the other two statements are proved in less spectacular ways.

Doob’s upcrossing inequality LetM be a martingale and for any interval [a, b], letUN [a, b] be the number of upcrossings
of [a, b] by the sequence M0,M1, . . . ,MN . Then,

E [UN [a, b]] ≤ 1

b− aE
ˆ
(MN − a)−

˜
≤ 1

b− a

„
|a|+ sup

k
E[|Mk|]

«
.

For an L1 bounded martingale, the right hand side does not depend on N at all! Hence for any interval the number of
upcrossings is a.s. finite, and as this holds a.s. for all rational intervals simultaneously, it follows that M must converge.
Doob’s inequality itself is proved by a clever choice ofCk ∈ Fk−1 and applying the proposition above. (Informally, think
of a gambler who fixes two numbers a < b, and whenever M gets below a, decided that things can only get better now
and starts betting a dollar on each game. Once M reaches a level above b, she decides that things can only go downhill
now, and stops betting till the next time that M reaches below a, and so on. If M oscillated infinitely many times over
[a, b] then the gambler would make profit in the long run, because she makes a profit of b− a for every upcrossing).
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CONTINUOUS TIME MARTINGALES

Definition A collection of random variables (Mt)t≥0, on a common filtered probability space (Ω,F , (Ft)t≥0, P ) is said
to be a martingale if Mt ∈ L1(P ) for each t and E[Mt|Fs] = Ms for all s < t, where Fs = σ(Mu : u ≤ s).

For simplicity we assume that t → Mt is a.s. continuous (this is sufficient for our purposes). We shall also assume
that F• is a right continuous and complete filtration. This latter is not just for simplicity, but is essential, but like in case
of BM, one can take the natural filtration and make it right continuous and complete it, all without losing the martingale
property.

Remark Results about continuous time martingales are proved using the same tools as for discrete time martingales,
namely Doob’s upcrossing inequalities. Notice that for any deterministic sequence of times 0 = t0 < t1 < t2 < . . .,
the sequence Xn = Mtn is a discrete time martingale and hence (assuming sup

t
E[|Mt|] < ∞) for any interval [a, b],

the expected number of upcrossings of X over [a, b] has a finite expectation (and the bound does not depend on the
chosen times {ti}). If M had infinitely many upcrossings across [a, b], by the assumed continuity of M , for ε small, the
martingale Xn = Mnε would have arbitrarily large number of upcrossings across the same interval. Thus M itself must
have only finitely many upcrossings across any interval. This means, Mt converges a.s. Along these lines of reasoning,
one can prove the following theorems for continuous time martingales.

Optional sampling theorem Let τ be an F• stopping time and M an F• martingale. Define Gt = Fτ∧t. Then
Xt = Mτ∧t is a Gt martingale.

Martingale convergence theorem Let M be an F• martingale. Then

(1) If M is bounded in L1(P ), i.e., sup
t

E[|Mt|] <∞, then Mt
a.s.→ M for some M ∈ L1(P ).

(2) If M is also uniformly integrable, i.e., sup
t

E[|Mt|1|Mt|>A] → 0 as A → ∞, then Mt
L1,a.s.−→ M . In particular,

Mt = E[M |Ft] for all t.

(3) If M is bounded in Lp for some p > 1, that is sup
t

E[|Mt|p] <∞, then Mt
Lp,a.s.−→ M . In particular, Mt = E[M |Ft]

for all t.

A typical application In our applications we often have a stopping time τ . We use the optional sampling theorem and
make up the martingale Mτ∧t. If this new martingale is uniformly integrable (usually we check that it is bounded in

L2(P )) then by the martingale convergence theorem, as t → ∞, we get Mτ∧t
L1,a.s.−→ X for some random variable

X . Since τ ∧ t → τ and M is continuous, it is clear that X must be equal to Mτ . That is, Mτ∧t
L1,a.s.−→ Mτ and

Mt = E[Mτ |Gt]. In particular, setting t = 0 in the last equation implies that E[Mτ ] = E[M0].

Example: Gambler’s ruin problem Consider standard 1-dimensional Brownian motion B. Clearly B is a martingale
(w.r.t the augmented filtration). Fix −a < 0 < b and let τ = inf{t : Bt = −a or b}. Let p = P[Bτ = b] and
1− p = P[Bτ = −a]. Then if Xt = Mτ∧t, then |Xt| ≤ max{a, b} and hence X is u.i. Thus the above reasoning goes
through, and we get E[Bτ ] = E[B0] = 0. Thus pb − (1 − p)a = 0, which implies p = a

a+b
, which is exactly what we

found earlier using Strong Markov property.

Example: Gambler’s ruin problem continued Now consider the martingale Mt = B2
t − t. Let a, b, τ be exactly as

before. Then, Xt = Mτ∧t is again a u.i. martingale and hence E[B2
τ − τ ] = 0. Thus

E[τ ] = E[B2
τ ] = pb2 + (1− p)a2 =

ab2 + ba2

a+ b
= ab.

Thus martingale techniques help us to understand the stopping time distribution itself.

Exercise Check that Mt = B4
t − 6tB2

t + 3t2 is a martingale. What does this tell us about τ?

2


