DISCRETE TIME MARTINGALES

Definition A sequence of random variables M,, n > 0 on a common probability space (2, F, P) is said to be a
martingale if M,, € L' (P) for each n and E[M,,41|Fn] = M, for all n > 0, where F,, = o(My, : k < n).

Proposition Let M be a martingale. Let C,, n > 1 be a sequence of random variables such that C,, € F,,_; for each n.
Then let X,, = >}, Ck(My — My_1) forn > 1. Then X is a martingale with Xo = 0 a.s.

Optional sampling theorem If ) is a martingale and 7 is a (finite a.s.) stopping time for F,,, and X,, = M;a,, then
X is a martingale.

Convergence theorem for martingales Let M/ be a martingale.
(1) If M is bounded in L' (P), i.e., sup E[|M,|] < oo, then M,, “3" M for some M € L'(P).
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(2) If M is also uniformly integrable, i.e., sup E[|M,|1|azs,|>a] — 0 as A — oo, then M,, "= M. In particular,
M, = E[M|F,,] for all n and E[M] = E[Mo).

(3) If M is bounded in L? for some p > 1, that is sup E[|M,|?] < oo, then M, R V™ particular, M,, =
E[M|F,] for all n and E[M] = E[Mo]. !

Note that the assumptions and conclusions are both progressively stronger. A natural (and surprisingly useful!) way
to construct martingales is to take an arbitrary random variable M € L*(P) and any filtration F,,, and then define the
sequence M, = E[M|F,] - this is called a “Doob martingale”. The martingale convergence theorem is a converse of
sorts to this statement, that any uniformly integrable martingale is a Doob martingale.

For all applications in this course, it is enough to remember that an L? bounded martingale converges a.s. and in L*
(and hence in L* too) and therefore E[M|F,] = M,, and E[M,] — E[M].

A few words about the proofs The first proposition about X being a martingale is a trivial consequence of definitions
and properties of conditional expectation (check it!).

The optional sampling theorem is a direct consequence of the proposition by letting C, = 1,>, which is F,,_1
measurable and X, = > 7_, Ck(My — My—1) = Y7 (Mg — Mi—1) = Myan — Mo. By the previous theorem X
is a martingale and hence, so is M rn, = X, + Mo.

The first statement in the martingale convergence theorem has a truly beautiful proof due to Doob via upcrossing
inequalities. We don’t give the proof here, but Doob’s inequality is presented below. Once the a.s. convergence of an
L' (P) martingale is proved, the other two statements are proved in less spectacular ways.

Doob’s upcrossing inequality Let M be a martingale and for any interval [a, b], let Un [a, b] be the number of upcrossings
of [a, b] by the sequence Mo, M1, ..., My. Then,
BUN[ 0 < L B[00 - 0)7) < 2 (I sw Bl ).

For an L' bounded martingale, the right hand side does not depend on N at all! Hence for any interval the number of
upcrossings is a.s. finite, and as this holds a.s. for all rational intervals simultaneously, it follows that M must converge.
Doob’s inequality itself is proved by a clever choice of Cy € F.—1 and applying the proposition above. (Informally, think
of a gambler who fixes two numbers a < b, and whenever M gets below a, decided that things can only get better now
and starts betting a dollar on each game. Once M reaches a level above b, she decides that things can only go downhill
now, and stops betting till the next time that M reaches below a, and so on. If M oscillated infinitely many times over
[a, b] then the gambler would make profit in the long run, because she makes a profit of b — a for every upcrossing).



CONTINUOUS TIME MARTINGALES

Definition A collection of random variables (M );>0, on a common filtered probability space (€2, F, (Fi)¢>o0, P) is said
to be a martingale if M; € L' (P) for each t and E[M|Fs] = M for all s < t, where Fs = (M, : u < s).

For simplicity we assume that ¢ — M, is a.s. continuous (this is sufficient for our purposes). We shall also assume
that F, is a right continuous and complete filtration. This latter is not just for simplicity, but is essential, but like in case
of BM, one can take the natural filtration and make it right continuous and complete it, all without losing the martingale

property.

Remark Results about continuous time martingales are proved using the same tools as for discrete time martingales,

namely Doob’s upcrossing inequalities. Notice that for any deterministic sequence of times 0 = to < 1 < 2 < ...,

the sequence X, = M, is a discrete time martingale and hence (assuming sup E[|M;|] < oo) for any interval [a, b],
t

the expected number of upcrossings of X over [a, b] has a finite expectation (and the bound does not depend on the
chosen times {¢;}). If M had infinitely many upcrossings across [a, b], by the assumed continuity of M, for e small, the
martingale X,, = M. would have arbitrarily large number of upcrossings across the same interval. Thus M itself must
have only finitely many upcrossings across any interval. This means, M; converges a.s. Along these lines of reasoning,
one can prove the following theorems for continuous time martingales.

Optional sampling theorem Let 7 be an F, stopping time and M an F, martingale. Define G = Frr;. Then
X: = M, is a G; martingale.

Martingale convergence theorem Let M be an F, martingale. Then
(1) If M is bounded in L*(P), i.e., sup E[|M;|] < oo, then M; “3 M for some M € L' (P).
t
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(2) If M is also uniformly integrable, i.e., sup E[|M;|1|5,|>4] — 0 as A — oo, then M; RELE VS ™ particular,
t
M, = E[M|F] for all ¢.
(3) If M is bounded in L* for some p > 1, that is sup E[| M;|?] < oo, then M} PLes M In particular, My = E[M|F]
t
for all £.

A typical application In our applications we often have a stopping time 7. We use the optional sampling theorem and

make up the martingale M, ;. If this new martingale is uniformly integrable (usually we check that it is bounded in
1 a.s. .
L?(P)) then by the martingale convergence theorem, as t — oo, we get M, a; L2945 X for some random variable
1
X. Since T At — 7 and M is continuous, it is clear that X must be equal to M,. That is, M ¢ L. M, and
M, = E[M;|G,]. In particular, setting ¢ = 0 in the last equation implies that E[M ] = E[M].

Example: Gambler’s ruin problem Consider standard 1-dimensional Brownian motion B. Clearly B is a martingale
(w.r.t the augmented filtration). Fix —a < 0 < band let 7 = inf{t : B, = —aorb}. Letp = P[B, = b] and
1—p="P[B, = —a]. Then if Xy = M, then | X;| < max{a, b} and hence X is u.i. Thus the above reasoning goes
through, and we get E[B-] = E[Bo] = 0. Thus pb — (1 — p)a = 0, which implies p = _%, which is exactly what we
found earlier using Strong Markov property.

Example: Gambler’s ruin problem continued Now consider the martingale M; = B — t. Let a, b, T be exactly as

before. Then, X = M, ¢ is again a u.i. martingale and hence E[Bg — 7] = 0. Thus
CpR2] 2 o ab® +ba®
E[r]| =E[B;] =pb”+ (1 —p)a” = P ab.

Thus martingale techniques help us to understand the stopping time distribution itself.

Exercise Check that M; = B} — 6tB7 + 3t is a martingale. What does this tell us about 7?
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