
1. GAUSSIAN RANDOM VARIABLES

Standard normal: A standard normal or Gaussian random variable is one with density ϕ(x) := 1√
2π e−

1
2 x2 .

Its distribution function is Φ(x) =
R x
−∞ ϕ(t)dt and its tail distribution function is denoted Φ(x) := 1−Φ(x). If

Xi are i.i.d. standard normals, then X = (X1, . . . ,Xn) is called a standard normal vector in Rn. It has density
∏n

i=1 ϕ(xi) = (2π)−n/2 exp{−|x|2/2} and the distribution is denoted by γn, so that for every Borel set A in Rn

we have γn(A) = (2π)−n/2 R

A
exp{−|x|2/2}dx.

Exercise 1. [Rotation invariance] If Pn×n is an orthogonal matrix, then γnP−1 = γn or equivalently, PX d= X .
Conversely, if a random vector with independent co-ordinates has a distribution invariant under orthogonal
transformations, then it has the same distribution as cX for some (non-random) scalar c.

Multivariate normal: If Ym×1 = µm×1 +Bm×nXn×1 where X1, . . . ,Xn are i.i.d. standard normal, then we say that
Y ∼ Nm(µ,Σ) with Σ = BBt . Implicit in this notation is the fact that the distribution of Y depends only on Σ
and not on the way in which Y is expressed as a linear combination of standard normals (this follows from
Exercise 1). It is a simple exercise that µi = E[Xi] and σi, j = Cov(Xi,Xj). Since matrices of the form BBt are
precisely positive semi-definite matrices (defined as those Σm×m for which vtΣv≥ 0 for all v ∈Rm), it is clear
that covariance matrices of normal random vectors are precisely p.s.d. matrices. Clearly, if Y ∼ Nm(µ,Σ)
and Zp×1 = Cp×mY +θp×1, then Z ∼ Np(θ+Cµ,CΣCt). Thus, affine linear transformations of normal random
vectors are again normal.

Exercise 2. The random vector Y has density if and only if Σ is non-singular, and in that case the density is

1
(2π)n/2

√
det(Σ)

exp
{
−1

2
ytΣ−1y

}
.

If Σ is singular, then X takes values in a lower dimensional subspace in Rn and hence does not have density.

Exercise 3. Irrespective of whether Σ is non-singular or not, the characteristic function of Y is given by

E
[
ei〈λ,Y 〉

]
= e−

1
2 λt Σλ, for λ ∈ Rm.

In particular, if X ∼ N(0,σ2), then its characteristic function is E[eiλX ] = e−
1
2 σ2λ2 for λ ∈ R.

Exercise 4. If Uk×1 and V(m−k)×1 are such that Yt = (Ut ,Vt), and we write µ = (µ1,µ2) and Σ =
[

Σ11 Σ12
Σ21 Σ22

]

are partitioned accordingly, then
(1) U ∼ Nk(µ1,Σ11).

(2) U
∣∣
V ∼ Nk(µ1−Σ12Σ−1/2

22 V, Σ11−Σ12Σ−1
22 Σ21) (assume that Σ22 is invertible).

Moments: All questions about a centered Gaussian random vector must be answerable in terms of the
covariance matrix. In some cases, there are explicit answers.

Exercise 5. Prove the Wick formula (also called Feynman diagram formula) for moments of centered Gaussians.

(1) Let X ∼ Nn(0,Σ). Then, E[X1 . . .Xn] = ∑
M∈Mn

∏
{i, j}∈M

σi, j, where Mn is the collection of all matchings of

the set [n] (thus Mn is empty if n is odd) and the product is over all matched pairs. For example,
E[X1X2X3X4] = σ12σ34 +σ13σ24 +σ14σ23.
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(2) If ξ∼ N(0,1), then E[ξ2n] = (2n−1)(2n−3) . . .(3)(1).

Cumulants: Let X be a real-valued random variable with E[etX ] < ∞ for t in a neighbourhood of 0. Then, we
can write the power series expansions

E[eiλX ] =
∞

∑
k=0

mn(X)
λn

n!
, logE[eiλX ] =

∞

∑
k=1

κn[X ]
λn

n!
.

Here mn[X ] = E[Xn] are the moments while κn[X ] is a linear combination of the first n moments (κ1 = m1,
κ2 = m2−m2

1, etc). Then κn is called the nth cumulant of X . If X and Y are independent, then it is clear that
κn[X +Y ] = κn[X ]+κn[Y ].

Exercise 6. (optional). Prove the following relationship between moments and cumulants. The sums below
are over partitions Π of the set [n] and Π1, . . . ,Π!Π denote the blocks of Π.

mn[X ] = ∑
Π

∏
i

κ|Πi|[X ], κn[X ] = ∑
Π

(−1)!Π−1 ∏
i

m|Πi|[X ].

Thus κ1 = m1, κ2 = m2−m2
1,

Exercise 7. If ξ∼ N(0,1), then κ1 = 0, κ2 = 1 and κn = 0 for all n≥ 3.

The converse of this result is also true and often useful in proving that a random variable is normal. For
instance, the theorem below implies that to show that a sequence of random variables converges to normal,
it suffices to show that cumulants κm[Xn]→ 0 for all m≥ m0 for some m0.

Result 8 (Marcinkiewicz). If X is a random variable with finite moments of all orders and κn[X ] = 0 for all
n≥ n0 for some n0, then X is Gaussian.

Convergence and Gaussians:

Exercise 9. The family of distributions N(µ,σ2), where µ∈R and 0≤ σ2 < ∞, is closed under convergence in

distribution (for this statement to be valid we include N(µ,0) which means δµ). Indeed, N(µn,σ2
n)

d→ N(µ,σ2)
if and only if µn → µ and σ2

n → σ2.

A vector space of Gaussian random variables: Let Y ∼ Nm(0,Σ) be a random vector in some probability
space (Ω,F ,P). Then, for every vector v ∈Rm, define the random variable Yv := vtY . Then, for any v1, . . . ,v j,
the random variables Yv1 , . . . ,Yv j are jointly normal. The joint distribution of {Yv} is fully specified by noting
that Yv have zero mean and E[YvYu] = vtΣu.

We may interpret this as follows. If Σ is p.d. (p.s.d. and non-singular), then (v,u)Σ := vtΣu defines an
inner product on Rm. On the other hand, the set L2

0(Ω,F ,P) of real-valued random variables on Ω with
zero mean and finite variance, is also an inner product space under the inner product 〈U,V 〉 := E[UV ]. The
observation in the previous paragraph is that v→ Yv is an isomorphism of (Rm,(·, ·)Σ) into L2

0(Ω,F ,P).
In other words, given any finite dimensional inner-product space (V,〈·, ·〉), we can find a collection of

Gaussian random variables on some probability space, such that this collection is isomorphic to the given
inner-product space. Later we shall see the same for Hilbert spaces1.

1This may seem fairly pointless, but here is one thought-provoking question. Given a vector space of Gaussian random variables,
we can multiply any two of them and thus get a larger vector space spanned by the given normal random variables and all pair-wise
products of them. What does this new vector space correspond to in terms of the original (V,〈·, ·〉)?
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2. THE GAUSSIAN DENSITY

Recall the standard Gaussian density ϕ(x). The corresponding cumulative distribution function is de-
noted by Φ and the tail is denoted by Φ(x) :=

R ∞
x ϕ(t)dt. The following estimate will be used very often.

Exercise 10. For all x > 0, we have 1√
2π

x
1+x2 e−

1
2 x2 ≤Φ(x)≤ 1√

2π
1
x e−

1
2 x2 In particular2, Φ(x)∼ x−1ϕ(x) as x→∞.

Most often the following simpler bound, valid for x≥ 1, suffices.

1
10x

e−
1
2 x2 ≤Φ(x)≤ e−

1
2 x2

.

For t > 0, let pt(x) := 1√
t ϕ(x/

√
t) be the N(0, t) density. We interpret p0(x)dx as the degenerate measure at

0. These densities have the following interesting properties.

Exercise 11. Show that pt ! ps = pt+s, i.e.,
R

R
pt(x− y)ps(y)dy = pt+s(x).

Exercise 12. Show that pt(x) satisfies the heat equation: ∂
∂t pt(x) = 1

2
∂2

∂x2 pt(x) for all t > 0 and x ∈ R.

Remark 13. Put together, these facts say that pt(x) is the fundamental solution to the heat equation. This

just means that the heat equation ∂
∂t u(t,x) = 1

2
∂2

∂x2 u(t,x) with the initial condition u(0,x) = f (x) can be solved
simply as u(t,x) = ( f ! pt)(x) :=

R
R f (y)pt(x− y)dy. This works for reasonable f (say f ∈ L1(R)).

We shall have many occasions to use the following “integration by parts” formula.

Exercise 14. Let X ∼Nn(0,Σ) and let F : Rn →R. Under suitable conditions on F (state sufficient conditions),
show that E [XiF(X)] = ∑n

j=1 σi jE[∂ jF(X)]. As a corollary, deduce the Wick formula of Exercise 5.

Stein’s equation: Here we may revert to t = 1, thus p1 = ϕ. Then, ϕ′(x) =−xϕ(x). Hence, for any f ∈C1
b(R),

we integrate by parts to get
R

f ′(x)ϕ(x)dx = −
R

f (x)ϕ′(x)dx =
R

f (x)xϕ(x)dx. If X ∼ N(0,1), then we may
write this as

E[(T f )(X)] = 0 for all f ∈C1
b(R), where (T f )(x) = f ′(x)− x f (x).(1)

The converse is also true. Suppose (1) holds for all f ∈ C1
b(R). Apply it to f (x) = eiλx for any fixed λ ∈ R

to get E[XeiλX ] = iλE[eiλX ]. Thus, if ψ(λ) := E[eiλX ] is the characteristic function of X , then ψ′(λ) = −λψ(λ)

which has only one solution, e−λ2/2. Hence X must have standard normal distribution.

Digression - central limit theorem: One reason for the importance of normal distribution is of course the
central limit theorem. The basic central limit theorem is for Wn := (X1 + . . .+Xn)/

√
n where Xi are i.i.d. with

zero mean and unit variance. Here is a sketch of how central limit theorem can be proved using Stein’s
method. Let f ∈C1

b(R) and observe that E[Wn f (Wn)] =
√

nE[X1 f (Wn)]. Next, write

f
(

X1 + . . .+Xn√
n

)
≈ f

(
X2 + . . .+Xn√

n

)
+

X1√
n

f ′
(

X2 + . . .+Xn√
n

)

where we do not make precise the meaning of the approximation. Let Ŵn = X2+...+Xn√
n . Then,

E[Wn f (Wn)]≈
√

nE[X1]E[ f (Ŵn)]+E[X2
1 ]E[ f ′(Ŵn)] = E[ f ′(Ŵn)].

Since Ŵn ≈Wn, this shows that E[T f (Wn)]≈ 0. We conclude that Wn ≈ N(0,1).
There are missing pieces here, most important being the last statement - that if a random variable satisfies

Stein’s equation approximately, then it must be approximately normal. When included, one does get a proof
of the standard CLT.

2The notation f (x)∼ g(x) means that lim
x→∞

f (x)
g(x) = 1.
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