

PROBLEM SET 2 (MEASURE THEORY)

TO BE DISCUSSED ON 31ST JANUARY IN TUTORIALS. PROBLEMS MARKED (*) ARE OPTIONAL.

Problem 1. Let (X, \mathcal{F}, μ) be a measure space.

- (1) If $A_n, A \in \mathcal{F}$ and $A_n \uparrow A$, show that $\mu(A_n) \uparrow \mu(A)$.
- (2) If $A_n, A \in \mathcal{F}$ and $A_n \downarrow A$ and $\mu(A_n) < \infty$ for some n , then show that $\mu(A_n) \downarrow \mu(A)$.
- (3) Show that the second conclusion may fail if $\mu(A_n) = \infty$ for all n .

Problem 2. A measure μ on (X, \mathcal{F}) is said to be σ -finite if there exist E_1, E_2, \dots in \mathcal{F} such that $X = \bigcup_n E_n$ and $\mu(E_n) < \infty$ for all n .

- (1) Show that a σ -finite measure space has sets of arbitrarily high but finite measure.
- (2) Show that a σ -finite measure has at most countably many atoms. Show that the previous assertion is false without the σ -finiteness assumption.

Problem 3. Let $\mathcal{F} = \sigma(S)$ be a sigma algebra on X . Show that for any $A \in \mathcal{F}$, there exists countably many sets A_1, A_2, \dots in S such that $A \in \sigma(\{A_1, A_2, \dots\})$.

Problem 4. Let \mathcal{F} be a sigma algebra on X and assume that $B \subseteq X$ is not in \mathcal{F} . Show that the smallest sigma algebra containing \mathcal{F} and B is the collection of all sets of the form $(A_1 \cap B) \cup (A_2 \cap B^c)$ where $A_1, A_2 \in \mathcal{F}$.

(*) If μ is a measure on \mathcal{F} , can you extend it to \mathcal{G} in some way? Is the extension unique?

Problem 5. (*) Show that any convex set in \mathbb{R}^d is (Lebesgue) measurable. Is it necessarily Borel measurable?

Problem 6. (*) If $A \subseteq \mathbb{R}$ is measurable and has positive Lebesgue measure, show that it contains a three-term arithmetic progression, i.e., there exist $a, b \in A$ such that $\frac{1}{2}(a + b) \in A$.

Problem 7. Let $\mathcal{A}' \subseteq \mathcal{A}$ be two algebras on X that generate the same sigma algebra (call it \mathcal{F}). Now suppose we have a countably additive measure μ on \mathcal{A} and let μ' be the restriction of μ to \mathcal{A}' .

By the theorem proved in class, both μ' and μ extend to \mathcal{F} as measures. Are the Carathéodory sigma algebras the same? If yes, are the extended measures equal? On the way, is the outer measure constructed from μ and μ' the same?

As a particular case, if we start with a measure μ on a sigma algebra \mathcal{F} , and extend it (since \mathcal{F} is also an algebra), what is the extended sigma algebra? Is it \mathcal{F} or is it larger?

Problem 8. Let $X = \{0, 1\}^{\mathbb{N}}$ be the sequence space of zeros and ones. An element $\omega \in X$ is written as $\omega = (\omega_1, \omega_2, \dots)$.

- (1) A cylinder set is one defined by specifying the values of finitely many co-ordinates. Eg., $\{\omega : \omega_1 = 0, \omega_2 = 1, \omega_7 = 1\}$. Show that the complement of a cylinder set is a finite union of pairwise disjoint cylinder sets. Use this to describe $\mathcal{A}(S)$ as the collection of all finite unions of pairwise disjoint cylinder sets.
- (2) If A is a cylinder set for which exactly n co-ordinate values are specified, define $\mu_0(A) = 2^{-n}$. Extend in the obvious way to $\mathcal{A}(S)$ and show that μ_0 is countably additive on $\mathcal{A}(S)$.
- (3) Argue that there is a measure μ on $\sigma(S)$ that extends μ_0 .

[Note: This exercise is to make precise the notion of a infinite sequence of fair coin tosses.]