PROBLEM SET 7 (MEASURE THEORY)

TO BE DISCUSSED ON 28ST MARCH IN TUTORIALS. PROBLEMS MARKED (*) ARE OPTIONAL.

Problem 1. State whether true or false and justify. Whenever we write L^p , it is assumed that $1 \le p \le \infty$.

- (1) $L^{\infty}(\mathbb{R}, \mathcal{B}, \lambda_1)$ is not separable (has no countable dense subset).
- (2) If $p_1 < p_2$, then $L^{p_1}(X, \mathcal{F}, \mu) \supseteq L^{p_2}(X, \mathcal{F}, \mu)$.
- (3) If $p_1 < p_2 < p_3$ then $L^{p_1}(\mu) \cap L^{p_3}(\mu) \subseteq L^{p_2}(\mu)$.
- (4) If μ is a finite measure, then for any measurable f, the set $\{p \ge 1 : f \in L^p(\mu)\}$ is an interval of the form [1, r] or [1, r) for some $r \le \infty$.
- (5) If *f* is a measurable function on (X, \mathcal{F}, μ) , then the set $\{p \ge 1 : f \in L^p(\mu)\}$ is an interval (Extra: Give exaples to show that this interval can be open or closed on the left or right).
- (6) $L^{1}(\mu) \cap L^{2}(\mu)$ is complete in the norm $\|\cdot\|_{1} + \|\cdot\|_{2}$.

Problem 2. Show that $L^{\infty}(X, \mathcal{F}, \mu)$ is complete (This was skipped in class).

Problem 3. Let $f \in L^p(X, \mathcal{F}, \mu)$ with $p < \infty$.

- (1) Show that $||f||_p^p = \int_0^\infty pt^{p-1}\mu\{|f| > t\}dt$. [*Note:* This was shown for p = 1 and simple non-negative f in an earlier exercise.]
- (2) Show that that if $f \in L^p(\mu)$, then $\mu\{|f| > t\} \le ||f||_p^p t^{-p}$.

Problem 4. Let μ be a finite measure. Then show that the following are equivalent.

- (1) $f \in L^{\infty}(\mu)$.
- (2) $f \in L^p(\mu)$ for all $p < \infty$ and $\sup_{n \to \infty} ||f||_p < \infty$.

If these equivalent conditions hold, show that $||f||_p \to ||f||_{\infty}$.

Problem 5. (1) If $f, g \in L^2$, show that $||f - g||^2 + ||f + g||^2 = 2||f||^2 + 2||g||^2$.

- (2) (*) If $f_1, \ldots, f_n \in L^2(\mu)$, show that $(\langle f_i, f_j \rangle_{L^2(\mu)})_{1 \le i,j \le n}$ is a positive semi-definite matrix.
- (3) Give examples to show that $L^p(X, \mathcal{F}, \mu)$ is not a Hilbert space if $p \neq 2$.

Problem 6. Let μ be a probability measure on *X*. If *f*, *g* are non-negative measurable and $fg \ge 1$ a.e.[μ], then $(\int_X fd\mu) (\int_X gd\mu) \ge 1$.